Sample records for n-irradiated optical fiber

  1. Mechanical Properties of Irradiated Polarization-Maintaining Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Ally, A.; Barnes, S.; Watkins, L.; Cuddihy, E.

    1996-01-01

    Polarization-maintaining optical fibers, referred to as PANDA fibers, were subjected to Cobalt 60 radiation (300,000 Rad). The mechanical properties of the PANDA fibers were measured after exposure to gamma radiation and compared to non-irradiated PANDA fibers.

  2. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser.

    PubMed

    Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki

    2004-12-01

    Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.

  3. The effect of irradiation process on the optical fiber coating

    NASA Astrophysics Data System (ADS)

    Wang, Zeyu; Xiao, Chun; Rong, Liang; Ji, Wei

    2018-03-01

    Protective fiber coating decides the mechanical strength of an optical fiber as well as its resistance against the influence of environment, especially in some special areas like irradiation atmospheres. According to the experiment in this paper, it was found that the tensile force and peeling force of resistant radiation optical fiber was improved because of the special optical fiber coating.

  4. Unusual Attenuation Recovery Process After Fiber Optic Cable Irradiation

    NASA Astrophysics Data System (ADS)

    Konečná, Z.; Plaček, V.; Havránek, P.

    2017-11-01

    At present, the number of optical cables in nuclear power plants has been increasing. Fiber optic cables are commonly used at nuclear power plants in instrumentation and control systems but they are usually used in environments without radiation. Nevertheless, currently, the number of applications in NPP containment with radiation is increasing. One of the most prevalent effects of radiation exposure is an increase of signal attenuation (signal loss). This is the result of fiber darkening due to radiation exposure and it is the main limitation factor in application of fiber optics in radiation environment. However, after the irradiation, the fiber optics go through a “recovery process” during which the optical properties improve again; i.e. attenuation decreases. However, we have found cable, where the expected healing process after few days changed its trend and the attenuation increased again to a value well above the attenuation just after the irradiation. This paper describes experiments that were carried out to explain this unusual recovery behaviour.

  5. Maximum-performance fiber-optic irradiation with nonimaging designs.

    PubMed

    Fang, Y; Feuermann, D; Gordon, J M

    1997-10-01

    A range of practical nonimaging designs for optical fiber applications is presented. Rays emerging from a fiber over a restricted angular range (small numerical aperture) are needed to illuminate a small near-field detector at maximum radiative efficiency. These designs range from pure reflector (all-mirror), to pure dielectric (refractive and based on total internal reflection) to lens-mirror combinations. Sample designs are shown for a specific infrared fiber-optic irradiation problem of practical interest. Optical performance is checked with computer three-dimensional ray tracing. Compared with conventional imaging solutions, nonimaging units offer considerable practical advantages in compactness and ease of alignment as well as noticeably superior radiative efficiency.

  6. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, Peter B.; Looney, Larry D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  7. Enhanced radiation resistant fiber optics

    DOEpatents

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  8. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  9. Initial Performance Evaluation of Optical Fibers and Sensors Under High-Energy Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Palmer, Matthew E.; Slusher, David; Fielder, Robert S.

    2006-01-01

    In this paper, recent work on the performance of optical fiber, fiber optic sensors, and fiber optic connectors under the influence of a high-energy electron beam is presented. Electron beam irradiation is relevant for the Jupiter Icy Moons Orbiter (JIMO) mission due to the high electron radiation environment surrounding Jupiter. As an initial feasibility test, selected optical fiber components were exposed to dose levels relevant to the Jupiter environment. Three separate fiber types were used: one series consisted of pure silica core fiber, two other series consisted of different levels of Germania-doped fiber. Additionally, a series of fused silica Extrinsic Fabry-Perot Interferometer (EFPI)-based fiber optic sensors and two different types of fiber optic connectors were tested. Two types of fiber coatings were evaluated: acrylate and polyimide. All samples were exposed to three different dose levels: 2 MRad, 20 MRad, and 50 MRad. Optical loss measurements were made on the optical fiber spools as a function of wavelength between 750 and 1750nm at periodic intervals up to 75 hrs after exposure. Attenuation is minimal and wavelength-dependent. Fiber optic sensors were evaluated using a standard EFPI sensor readout and diagnostic system. Optical connectors and optical fiber coatings were visually inspected for degradation. Additionally, tensile testing and minimum bend radius testing was conducted on the fibers. Initial loss measurements indicate a low-level of induced optical attenuation in the fiber which recovers with time. The fiber optic sensors exhibited no observable degradation after exposure. The optical fiber connectors and coatings also showed no observable degradation. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying

  10. Effects of 160 keV electron irradiation on the optical properties and microstructure of "Panda" type Polarization-Maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He

    2012-11-01

    In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.

  11. Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, A., E-mail: antonino.alessi@univ-st-etienne.fr; Girard, S.; Di Francesca, D.

    2015-08-28

    We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-dopedmore » fibers, we observed that the Ge(1) and the Ge(2) defects generation is unchanged, whereas it was enhanced for the E'Ge. In the various fibers, the comparison of the γ and X-ray induced concentrations of these kinds of Ge related defects indicates that the two irradiations induce similar effects regardless of the different employed dose rates and sources. Confocal microscopy luminescence results show that the starting content of the Germanium Lone Pair Center (GLPC) is neither strongly affected by the Ge content nor by the drawing conditions, and we consider the similarity of the GLPC content as key factor in determining many of the above reported similarities.« less

  12. Characterization of light transmissions in various optical fibers with proton beam

    NASA Astrophysics Data System (ADS)

    Song, Young Beom; Kim, Hye Jin; Kim, Mingeon; Lee, Bongsoo; Shin, Sang Hun; Yoo, Wook Jae; Jang, Kyoung Won; Hwang, Sung Won

    2017-12-01

    As a feasibility study on the development of a fiber-optic radiation sensor for proton therapy dosimetry, we characterized light transmissions of various commercial optical fibers such as silica and plastic based optical fibers by the irradiation of proton beams. In this study, we measured light transmission spectra of optical fibers as a function of absorbed doses of proton beams using a deuterium & tungsten halogen lamps and a spectrometer. To be used as a fiber-optic radiation sensor, the optical fibers should have the radiation resistant characteristics and provide stable output signals during the proton beam irradiation. In this study, we could select suitable optical fibers to be used in the fiber-optic radiation sensor without quenching effects for proton therapy dosimetry. As a result, the light transmittance of the optical fibers had decreasing trends with increasing absorbed dose as expected.

  13. Two mode optical fiber in space optics communication

    NASA Astrophysics Data System (ADS)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  14. Thermoluminescence properties of Yb-Tb-doped SiO2 optical fiber subject to 6 and 10 MV photon irradiation

    NASA Astrophysics Data System (ADS)

    Sahini, M. H.; Wagiran, H.; Hossain, I.; Saeed, M. A.; Ali, H.

    2014-08-01

    This paper reports thermoluminescence characteristics of thermoluminescence dosimetry 100 chips and Yb-Tb-doped optical fibers irradiated with 6 and 10 MV photons. Thermoluminescence response of both dosimeters increases over a wide photon dose range from 0.5 to 4 Gy. Yb-Tb-doped optical fibers demonstrate useful thermoluminescence properties and represent a good candidate for thermoluminescence dosimetry application with ionizing radiation. The results of this fiber have been compared with those of commercially available standard thermoluminescence dosimetry-100 media. Commercially available Yb-Tb-doped optical fibers and said standard media are found to yield a linear relationship between dose- and thermoluminescence signal, although Yb-Tb-doped optical fibers provide only 10 % of the sensitivity of thermoluminescence dosimetry-100. With better thermoluminescence characteristics such as small size (125 μm diameter), high flexibility, easy of handling and low cost, as compared to other thermoluminescence materials, indicate that commercial Yb-Tb-doped optical fiber is a promising thermoluminescence material for variety of applications.

  15. Fiber Optic Feed

    DTIC Science & Technology

    1990-11-06

    Naval Research Laboratory IIK Washington, DC,20375 5000 NRL Memorandum Report 6741 0 N Fiber Optic Feed DENZIL STILWELL, MARK PARENT AND LEw GOLDBERG...SUBTITLE S. FUNDING NUMBERS Fiber Optic Feed 53-0611-A0 6. AUTHOR(S) P. D. Stilwell, M. G. Parent, L. Goldberg 7. PERFORMING ORGANIZATION NAME(S) AND...DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) This report details a Fiber Optic Feeding

  16. Thermoluminescence response of flat optical fiber subjected to 9 MeV electron irradiations

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Omar, S. S. Che; Ibrahim, S. A.; Hassan, W. M. S. Wan; Ung, N. M.; Mahdiraji, G. A.; Bradley, D. A.; Alzimami, K.

    2015-01-01

    We describe the efforts of finding a new thermoluminescent (TL) media using pure silica flat optical fiber (FF). The present study investigates the dose response, sensitivity, minimum detectable dose and glow curve of FF subjected to 9 MeV electron irradiations with various dose ranges from 0 Gy to 2.5 Gy. The above-mentioned TL properties of the FF are compared with commercially available TLD-100 rods. The TL measurements of the TL media exhibit a linear dose response over the delivered dose using a linear accelerator. We found that the sensitivity of TLD-100 is markedly 6 times greater than that of FF optical fiber. The minimum detectable dose was found to be 0.09 mGy for TLD-100 and 8.22 mGy for FF. Our work may contribute towards the development of a new dosimeter for personal monitoring purposes.

  17. Fiber-Optic Thermal Sensor for TiN Film Crack Monitoring

    PubMed Central

    Hsu, Hsiang-Chang; Hsieh, Tso-Sheng; Chen, Yi-Chian; Chen, Hung-En; Tsai, Liren

    2017-01-01

    The study focuses on the thermal and temperature sensitivity behavior of an optical fiber sensor device. In this article, a titanium nitride (TiN)-coated fiber Bragg grating (FBG) sensor fabricated using an ion beam sputtering system was investigated. The reflection spectra of the FBG sensor were tested using R-soft optical software to simulate the refractive index sensitivity. In these experiments, the temperature sensitivity of the TiN FBG was measured at temperatures ranging from 100 to 500 °C using an optical spectrum analyzer (OSA). The results showed that the temperature sensitivity of the proposed TiN FBG sensor reached 12.8 pm/°C for the temperature range of 100 to 300 °C and 20.8 pm/°C for the temperature range of 300 to 500 °C. Additionally, we found that the produced oxidation at temperatures of 400–500 °C caused a crack, with the crack becoming more and more obvious at higher and higher temperatures. PMID:29137131

  18. Evaluation of insertion characteristics of less invasive Si optoneural probe with embedded optical fiber

    NASA Astrophysics Data System (ADS)

    Morikawa, Takumi; Harashima, Takuya; Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2017-04-01

    A less invasive Si optoneural probe with an embedded optical fiber was proposed and successfully fabricated. The diameter of the optical fiber was completely controlled by hydrogen fluoride etching, and the thinned optical fiber can propagate light without any leakage. This optical fiber was embedded in a trench formed inside a probe shank, which causes less damage to tissues. In addition, it was confirmed that the optical fiber embedded in the probe shank successfully irradiated light to optically stimulate gene transfected neurons. The electrochemical impedance of the probe did not change despite the light irradiation. Furthermore, probe insertion characteristics were evaluated in detail and less invasive insertion was clearly indicated for the Si optoneural probe with the embedded optical fiber compared with conventional optical neural probes. This neural probe with the embedded optical fiber can be used as a simple and easy tool for optogenetics and brain science.

  19. Real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-03-01

    There is a pressing need for a passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on a thin film of the radiochromic material on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively.

  20. Thermoluminescence characteristics of flat optical fiber in radiation dosimetry under different electron irradiation conditions

    NASA Astrophysics Data System (ADS)

    Alawiah, A.; Intan, A. M.; Bauk, S.; Abdul-Rashid, H. A.; Yusoff, Z.; Mokhtar, M. R.; Wan Abdullah, W. S.; Mat Sharif, K. A.; Mahdiraji, G. A.; Mahamd Adikan, F. R.; Tamchek, N.; Noor, N. M.; Bradley, D. A.

    2013-05-01

    Thermoluminescence (TL) flat optical fibers (FF) have been proposed as radiation sensor in medical dosimetry for both diagnostic and radiotherapy applications. A flat optical fiber with nominal dimensions of (3.226 × 3.417 × 0.980) mm3 contains pure silica SiO2 was selected for this research. The FF was annealed at 400°C for 1 h before irradiated. Kinetic parameters and dosimetric glow curve of TL response were studied in FF with respect to electron irradiation of 6 MeV, 15 MeV and 21 MeV using linear accelerator (LINAC) in the dose range of 2.0-10.0 Gy. The TL response was read using a TLD reader Harshaw Model 3500. The Time-Temperature-Profile (TTP) of the reader used includes; initial preheat temperature of 80°C, maximum readout temperature is 400°C and the heating rate of 30°Cs-1. The proposed FF shows excellent linear radiation response behavior within the clinical relevant dose range for all of these energies, good reproducibility, independence of radiation energy, independence of dose rate and exhibits a very low thermal fading. From these results, the proposed FF can be used as radiation dosimeter and favorably compares with the widely used of LiF:MgTi dosimeter in medical radiotherapy application.

  1. Effect of γ-irradiation on the optical and electrical properties of fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Anwar, Ahmad; Elfiky, Dalia; Ramadan, Ahmed M.; Hassan, G. M.

    2017-05-01

    The effect of gamma irradiation on the optical and electrical properties of the reinforced fiber polymeric based materials became an important issue. Fiberglass/epoxy and Kevlar fiber/epoxy were selected as investigated samples manufactured with hand lay-up without autoclave curing technique. The selected technique is simple and low cost while being rarely used in space materials production. The electric conductivity and dielectric constant for those samples were measured with increasing the gamma radiation dose. Moreover, the absorptivity, band gap and color change were determined. Fourier transform infrared (FTIR) was performed to each of the material's constituent to evaluate the change in the investigated materials due to radiation exposure dose. In this study, the change of electrical properties for both investigated materials showed a slight variation of the test parameters with respect to the gamma dose increase; this variation is placed in the insulators rang. The tested samples showed an insulator stable behavior during the test period. The change of optical properties for both composite specimens showed the maximum absorptivity at the gamma dose 750 kGy. These materials are suitable for structure materials and thermal control for orbital life less than 7 years. In addition, the transparency of epoxy matrix was degraded. However, there is no color change for either Kevlar fiber or fiberglass.

  2. Laser etching of groove structures with micro-optical fiber-enhanced irradiation

    PubMed Central

    2012-01-01

    A microfiber is used as a laser-focusing unit to fabricate a groove structure on TiAlSiN surfaces. After one laser pulse etching, a groove with the minimum width of 265 nm is manufactured at the area. This technique of microfabricating the groove in microscale is studied. Based on the near-field intensity enhancement at the contact area between the fiber and the surface during the laser irradiation, simulation results are also presented, which agree well with the experimental results. PMID:22713521

  3. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  4. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  5. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    PubMed

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  6. Geometrical analysis of an optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Shimamoto, Atsushi; Tanaka, Kohichi

    1996-12-01

    The performance of a multifiber optical lever was geometrically analyzed by extending the Cook and Hamm model [Appl. Opt. 34, 5854-5860 (1995)] for a basic seven-fiber optical lever. The generalized relationships between sensitivity and the displacement detection limit to the fiber core radius, illumination irradiance, and coupling angle were obtained by analyses of three various types of light source, i.e., a parallel beam light source, an infinite plane light source, and a point light source. The analysis of the point light source was confirmed by a measurement that used the light source of a light-emitting diode. The sensitivity of the fiber-optic lever is inversely proportional to the fiber core radius, whereas the receiving light power is proportional to the number of illuminating and receiving fibers. Thus, the bundling of the finer fiber with the larger number of illuminating and receiving fibers is more effective for improving sensitivity and the displacement detection limit.

  7. Optical Properties of Ar Ions Irradiated Nanocrystalline ZrC and ZrN Thin Films

    NASA Technical Reports Server (NTRS)

    Martin, C.; Miller, K. H.; Makino, H.; Craciun, D.; Simeone, D.; Craciun, V.

    2017-01-01

    Thin nanocrystalline ZrC and ZrN films (less than 400 nanometers), grown on (100) Si substrates at a substrate temperature of 500 degrees Centigrade by the pulsed laser deposition (PLD) technique, were irradiated by 800 kiloelectronvolts Ar ion irradiation with fluences from 1 times 10(sup 14) atoms per square centimeter up to 2 times 10(sup 15) atoms per square centimeter. Optical reflectance data, acquired from as-deposited and irradiated films, in the range of 500-50000 per centimeter (0.06–6 electronvolts), was used to assess the effect of irradiation on the optical and electronic properties. Both in ZrC and ZrN films we observed that irradiation affects the optical properties of the films mostly at low frequencies, which is dominated by the free carriers response. In both materials, we found a significant reduction in the free carriers scattering rate, i.e. possible increase in mobility, at higher irradiation flux. This is consistent with our previous findings that irradiation affects the crystallite size and the micro-strain, but it does not induce major structural changes.

  8. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    PubMed

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  9. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber

    PubMed Central

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-01-01

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of −0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber. PMID:25970257

  10. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  11. Optical Fiber Networks for Remote Fiber Optic Sensors

    PubMed Central

    Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel

    2012-01-01

    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011

  12. Fabrication and characterization of a real-time optical fiber dosimeter probe

    NASA Astrophysics Data System (ADS)

    Croteau, André; Caron, Serge; Rink, Alexandra; Jaffray, David; Mermut, Ozzy

    2011-07-01

    There is a pressing need for a low cost, passive optical fiber dosimeter probe for use in real-time monitoring of radiation dose delivered to clinical radiation therapy patients. An optical fiber probe using radiochromic material has been designed and fabricated based on the deposition of a radiochromic thin film on a dielectric mirror. Measurements of the net optical density vs. time before, during, and after irradiation at a rate of 500 cGy/minute to a total dose of 5 Gy were performed. Net optical densities increased from 0.2 to 2.0 for radiochromic thin film thicknesses of 2 to 20 μm, respectively. An improved optical fiber probe fabrication method is presented.

  13. Eliminating crystals in non-oxide optical fiber preforms and optical fibers

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R. (Inventor); Tucker, Dennis S. (Inventor)

    2010-01-01

    A method is provided for eliminating crystals in non-oxide optical fiber preforms as well as optical fibers drawn therefrom. The optical-fiber-drawing axis of the preform is aligned with the force of gravity. A magnetic field is applied to the preform as it is heated to at least a melting temperature thereof. The magnetic field is applied in a direction that is parallel to the preform's optical-fiber-drawing axis. The preform is then cooled to a temperature that is less than a glass transition temperature of the preform while the preform is maintained in the magnetic field. When the processed preform is to have an optical fiber drawn therefrom, the preform's optical-fiber-drawing axis is again aligned with the force of gravity and a magnetic field is again applied along the axis as the optical fiber is drawn from the preform.

  14. Characterization of the Performance of Sapphire Optical Fiber in Intense Radiation Fields, when Subjected to Very High Temperatures

    NASA Astrophysics Data System (ADS)

    Petrie, Christian M.

    The U.S. Department of Energy is interested in extending optically-based instrumentation from non-extreme environments to extremely high temperature radiation environments for the purposes of developing in-pile instrumentation. The development of in-pile instrumentation would help support the ultimate goal of understanding the behavior and predicting the performance of nuclear fuel systems at a microstructural level. Single crystal sapphire optical fibers are a promising candidate for in-pile instrumentation due to the high melting temperature and radiation hardness of sapphire. In order to extend sapphire fiber-based optical instrumentation to high temperature radiation environments, the ability of sapphire fibers to adequately transmit light in such an environment must first be demonstrated. Broadband optical transmission measurements of sapphire optical fibers were made in-situ as the sapphire fibers were heated and/or irradiated. The damage processes in sapphire fibers were also modeled from the primary knock-on event from energetic neutrons to the resulting damage cascade in order to predict the formation of stable defects that ultimately determine the resulting change in optical properties. Sapphire optical fibers were shown to withstand temperatures as high as 1300 °C with minimal increases in optical attenuation. A broad absorption band was observed to grow over time without reaching a dynamic equilibrium when the sapphire fiber was heated at temperatures of 1400 °C and above. The growth of this absorption band limits the use of sapphire optical fibers, at least in air, to temperatures of 1300 °C and below. Irradiation of sapphire fibers with gamma rays caused saturation of a defect center located below 500 nm, and extending as far as ~1000 nm, with little effect on the transmission at 1300 and 1550 nm. Increasing temperature during gamma irradiation generally reduced the added attenuation. Reactor irradiation of sapphire fibers caused an initial rapid

  15. Single optical fiber probe for optogenetics

    NASA Astrophysics Data System (ADS)

    Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin

    2012-03-01

    With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.

  16. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  17. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  18. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  19. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  20. Neutron radiation effects on Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Talnagi, Joseph; Miller, Don W.

    2003-07-01

    Nuclear Power Plant operators and Generation IV plant designers are considering advanced data transmission and measurement systems to improve system economics and safety, while concurrently addressing the issue of obsolescence of instrumentation and control systems. Fiber optic sensors have advantages over traditional sensors such as immunity to electromagnetic interference or radio frequency interference, higher sensitivity and accuracy, smaller size and less weight, higher bandwidth and multiplexing capability. A Fabry-Perot fiber optic sensor utilizes a unique interferometric mechanism and data processing technique, and has potential applications in nuclear radiation environments. Three sensors with different gamma irradiation history were irradiated in a mixed neutron/gamma irradiation field, in which the total neutron fluence was 2.6×10 16 neutrons/cm 2 and the total gamma dose was 1.09 MGy. All of them experienced a temperature shift of about 34°F but responded linearly to temperature changes. An annealing phenomenon was observed as the environmental temperature increased, which reduced the offset by approximately 63%.

  1. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  2. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  3. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  4. Investigation of Optical Fibers for Nonlinear Optics.

    DTIC Science & Technology

    1983-02-01

    fiber made v a hoc extrusi - n method (Ref I). The flber is then olaced between -wo oat f drive rollers, as shown in Figure I. A small heater coil s used...62 C 0030 UNCLASSIFED F/ 020/6 N IND 883 i1 0 1 ___ _Ill ; II 11112 1111121 MICROCOPy RESOLUTION TEST CHART NATNty AFOSR INVESTIGATION OF OPTICAL...3RCWTH The traveling zone method of facr-ca-:no SC iihers -s ’:nike an., other fiber arowth technaue. : n -his mehncd we .a. .wzn a olcr.stzalne (PC

  5. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeltner, R.; Russell, P. St.J.; Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particlemore » material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.« less

  6. Laser diode fiber optic apparatus for acupuncture treatment by the Oriental method

    NASA Astrophysics Data System (ADS)

    Pham, Van Hoi; Phung, Huu A.; Bui, Huy; Hoang, Cao D.; Vu, Duc T.; Tran, Minh T.; Nguyen, Minh H.

    1998-08-01

    The laser acupuncture equipment using laser diodes of 850, 1300 nm and optical fibers as light needles is presented. The double-frequency modulation of laser beam gives the high efficiency treatment of the low-power laser therapy by the oriental acupuncture method. The laser spot from optical fiber of 50 microns is suitable for the irradiation into special points on body or auricular by the acupuncture treatment schema. The laser intensity in pulse regime of 5 - 40 W/cm2 and irradiation time of 5 - 15 minutes are optimum for treatment of neurosis symptoms and pain-relieving.

  7. Fiber Optic Microphone

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  8. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  9. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1988-01-01

    A fiber-optic microphobe was used to analyze the spectral light gradients in benthic cyanobacterial mats with 50-micrometer depth resolution and 10-nm spectral resolution. Microcoleus chthononplastes mats were collected from hypersaline, coastal ponds at Guerrero Negro, Baja California. Gradients of spectral radiance, L, were measured at different angles through the mats and the spherically integrated scalar irradiance, Eo, was calculated. Maximal spectral light attenuation was found at the absorption peaks for the dominant photosynthetic pigments: chlorophyll a at 430 and 670 nm, carotenoids at 450-500 nm, phycocyanin at 620 nm, and bacteriochlorophyll a at 800-900 nm. Scattered light had a marked spectral effect on the scalar irradiance which near the mat surface reached up to 190% of the incident irradiance. The spherically integrated irradiance thus differed strongly from the incident irradiance both in total intensity and in spectral composition. These basic optical properties are important for the understanding of photosynthesis and light harvesting in benthic and epiphytic communities.

  10. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors

    PubMed Central

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-01-01

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 µm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors. PMID:26437407

  11. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors.

    PubMed

    Pospíšilová, Marie; Kuncová, Gabriela; Trögl, Josef

    2015-09-30

    This review summarizes principles and current stage of development of fiber-optic chemical sensors (FOCS) and biosensors (FOBS). Fiber optic sensor (FOS) systems use the ability of optical fibers (OF) to guide the light in the spectral range from ultraviolet (UV) (180 nm) up to middle infrared (IR) (10 μm) and modulation of guided light by the parameters of the surrounding environment of the OF core. The introduction of OF in the sensor systems has brought advantages such as measurement in flammable and explosive environments, immunity to electrical noises, miniaturization, geometrical flexibility, measurement of small sample volumes, remote sensing in inaccessible sites or harsh environments and multi-sensing. The review comprises briefly the theory of OF elaborated for sensors, techniques of fabrications and analytical results reached with fiber-optic chemical and biological sensors.

  12. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  13. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, John S.

    1996-01-01

    A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.

  14. Variable photonic crystal fiber optical attenuator combining air hole reduction induced radiation and bending loss

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh

    2018-06-01

    Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.

  15. Variable photonic crystal fiber optical attenuator combining air hole reduction induced radiation and bending loss

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh

    2018-02-01

    Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.

  16. Testing of Sapphire Optical Fiber and Sensors in Intense Radiation Fields When Subjected to Very High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, Thomas; Windl, Wolfgang

    The primary objective of this project was to determine the optical attenuation and signal degradation of sapphire optical fibers & sensors (temperature & strain), in-situ, operating at temperatures up to 1500°C during reactor irradiation through experiments and modeling. The results will determine the feasibility of extending sapphire optical fiber-based instrumentation to extremely high temperature radiation environments. This research will pave the way for future testing of sapphire optical fibers and fiber-based sensors under conditions expected in advanced high temperature reactors.

  17. Specialty fibers for fiber optic sensor application

    NASA Astrophysics Data System (ADS)

    Bennett, K.; Koh, J.; Coon, J.; Chien, C. K.; Artuso, A.; Chen, X.; Nolan, D.; Li, M.-J.

    2007-09-01

    Over the last several years, Fiber Optic Sensor (FOS) applications have seen an increased acceptance in many areas including oil & gas production monitoring, gyroscopes, current sensors, structural sensing and monitoring, and aerospace applications. High level optical and mechanical reliability of optical fiber is necessary to guarantee reliable performance of FOS. In this paper, we review recent research and development activities on new specialty fibers. We discuss fiber design concepts and present both modeling and experimental results. The main approaches to enhancing fiber attributes include new index profile design and fiber coating modification.

  18. On the origin of the visible light responsible for proton dose measurement using plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Taleei, Reza; Kassaee, Alireza; Finlay, Jarod C.

    2017-03-01

    We experimentally and by means of Monte Carlo simulations investigated the origin of the visible signal responsible for proton therapy dose measurement using bare plastic optical fibers. Experimentally, the fiber optic probe, embedded in tissue-mimicking plastics, was irradiated with a proton beam produced by a proton therapy cyclotron and the luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectrum of the fiber tip. Monte Carlo simulations were performed using FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and optical emission of Čerenkov radiation. The spectroscopic study of proton-irradiated plastic fibers showed a continuous spectrum with shape different from that of Čerenkov radiation. The Monte Carlo simulations confirmed that the amount of the generated Čerenkov light does not follow the radiation absorbed dose in a medium. Our results show that the origin of the optical signal responsible for the proton dose measurement using bare optical fibers is not Čerenkov radiation. Our results point toward a connection between the scintillation of the plastic material of the fiber and the origin of the signal responsible for dose measurement.

  19. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  20. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, J.S.

    1996-10-01

    A method and apparatus are disclosed for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass. 6 figs.

  1. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry.

    PubMed

    Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A

    2015-06-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation

  2. Fiber optic hydrophone

    DOEpatents

    Kuzmenko, P.J.; Davis, D.T.

    1994-05-10

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer is disclosed. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optical fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends. 2 figures.

  3. Optical fiber stripper positioning apparatus

    DOEpatents

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  4. Optical fiber sensors measurement system and special fibers improvement

    NASA Astrophysics Data System (ADS)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  5. Irradiation campaign in the EOLE critical facility of fiber optic Bragg gratings dedicated to the online temperature measurement in zero power research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellier, Frederic; Cheymol, Guy; Destouches, Christophe

    2015-07-01

    The control of temperature during operation of zero power research reactors participates to the overall control of experimentation conditions and reveals itself of a major importance more especially when measuring small multiplication factor variations. Within the framework of the refurbishment of the MASURCA facility, the development of a new temperature measurement system based on the optical fiber Bragg grating (FBG) technology is under consideration. In a first step, a series of FBGs is irradiated in the EOLE critical facility with the aim to select the most appropriate. Online temperature measurements are performed during a set of irradiations that should allowmore » reaching a fast neutron fluence of some 10{sup 14} n.cm{sup -2}. The results obtained, more especially the Bragg wavelength shifts during the irradiation campaign, are discussed in this paper and compared to data from standard PT100 temperature sensors to highlight possible radiation effects on sensor performances. Work to be conducted during the second step of the project, aiming to a feasibility demonstration using a MASURCA assembly, is also presented. (authors)« less

  6. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  7. AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Malcolm A.; White, Henry; Watson, Scott; Kelly, Antony E.

    2016-02-01

    AlGaInN ridge waveguide laser diodes are fabricated to achieve single-mode operation with optical powers up to 100 mW at ˜420 nm for visible free-space, underwater, and plastic optical fiber communication. We report high-frequency operation of AlGaInN laser diodes with data transmission up to 2.5 GHz for free-space and underwater communication and up to 1.38 GHz through 10 m of plastic optical fiber.

  8. Fiber optic-based biosensor

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  9. Buying Fiber-Optic Networks.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2003-01-01

    Describes consortia formed by college and university administrators to buy, manage, and maintain their own fiber-optic networks with the goals of cutting costs of leasing fiber-optic cable and planning for the future. Growth capacity is the real advantage of owning fiber-optic systems. (SLD)

  10. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  11. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  12. Detecting ionizing radiation with optical fibers down to biomedical doses

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.

    2013-10-01

    We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.

  13. Optical fiber-based biosensors.

    PubMed

    Monk, David J; Walt, David R

    2004-08-01

    This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.

  14. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  15. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  16. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  17. Fiber-optic fluorescence imaging

    PubMed Central

    Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J

    2010-01-01

    Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479

  18. Fiber optic crossbar switch for automatically patching optical signals

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1983-01-01

    A system for automatically optically switching fiber optic data signals between a plurality of input optical fibers and selective ones of a plurality of output fibers is described. The system includes optical detectors which are connected to each of the input fibers for converting the optic data signals appearing at the respective input fibers to an RF signal. A plurality of RF to optical signal converters are arranged in rows and columns. The output of each of the optical detectors are each applied to a respective row of optical signal converted for being converters back to an optical signal when the particular optical signal converter is selectively activated by a dc voltage.

  19. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  20. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  1. Optical-fiber-based Mueller optical coherence tomography.

    PubMed

    Jiao, Shuliang; Yu, Wurong; Stoica, George; Wang, Lihong V

    2003-07-15

    An optical-fiber-based multichannel polarization-sensitive Mueller optical coherence tomography (OCT) system was built to acquire the Jones or Mueller matrix of a scattering medium, such as biological tissue. For the first time to our knowledge, fiber-based polarization-sensitive OCT was dynamically calibrated to eliminate the polarization distortion caused by the single-mode optical fiber in the sample arm, thereby overcoming a key technical impediment to the application of optical fibers in this technology. The round-trip Jones matrix of the sampling fiber was acquired from the reflecting surface of the sample for each depth scan (A scan) with our OCT system. A new rigorous algorithm was then used to retrieve the calibrated polarization properties of the sample. This algorithm was validated with experimental data. The skin of a rat was imaged with this fiber-based system.

  2. Optical fiber sensors for high temperature harsh environment applications

    NASA Astrophysics Data System (ADS)

    Xiao, Hai; Wei, Tao; Lan, Xinwei; Zhang, Yinan; Duan, Hongbiao; Han, Yukun; Tsai, Hai-Lung

    2010-04-01

    This paper summarizes our recent research progresses in developing optical fiber harsh environment sensors for various high temperature harsh environment sensing applications such as monitoring of the operating conditions in a coal-fired power plant and in-situ detection of key gas components in coal-derived syngas. The sensors described in this paper include a miniaturized inline fiber Fabry-Perot interferometer (FPI) fabricated by one-step fs laser micromachining, a long period fiber grating (LPFG) and a fiber inline core-cladding mode interferometer (CMMI) fabricated by controlled CO2 laser irradiations. Their operating principles, fabrication methods, and applications for measurement of various physical and chemical parameters in a high temperature and high pressure coexisting harsh environment are presented.

  3. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement.

    PubMed

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group.

  4. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    PubMed Central

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). Results: SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Conclusions: Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group. PMID:25713488

  5. [Optical-fiber Fourier transform spectrometer].

    PubMed

    Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An

    2006-10-01

    A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.

  6. Selenium semiconductor core optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, G. W.; Qian, Q., E-mail: qianqi@scut.edu.cn; Peng, K. L.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Suchmore » crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.« less

  7. Optical fiber switch

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  8. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  9. Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging

    NASA Astrophysics Data System (ADS)

    Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir

    2016-12-01

    This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.

  10. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  11. SU-E-T-672: Real-Time In Vivo Dosimeters Using LiPCDA and Optical Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rink, A; Jaffray, DA; Croteau, A

    2015-06-15

    Purpose: To investigate dosimeter prototypes made with lithium pentacosa-10,12-diynoate (LiPCDA, the material used in GafChromic EBT films) and optical fibers for their suitability in real-time in vivo measurements. Methods: The prototypes, made with 500 µm plastic optical fibers and 8.5 µm thickness of LiPCDA at fiber tip, were irradiated with a 6 MV beam. To investigate the efficacy of pre-irradiation calibration, the probes were irradiated to 2 Gy twice, with 5 minutes in between. Net optical density values (netOD) around the main absorbance peak were compared, and effect of correcting second measurement by the first was assessed. Ageing was assessedmore » by irradiating two prototypes to 2 Gy and comparing the netOD to that obtained for 15 prototypes from the same batch 12–14 months earlier. To measure angular dependence, the probes were pre-irradiated with beam perpendicular to fiber axis and then, 5 minutes later either perpendicular or parallel to fiber axes. The thickness-corrected netOD measurements were compared. Results: Standard deviation of netOD for probes of the same batch was measured to be 5–6%. When netOD was corrected for material thickness by using results from the first irradiation, the standard deviation decreased to 1.3%. This was comparable to the uncertainty in measurements observed with a single probe and is attributed to variations in light output, spectrometer noise and splitter-to-probe connection variations. Comparison of netOD values obtained a year apart failed to illustrate statistically significant decrease in sensitivity due to ageing (0.38 ± 0.03 and 0.3656 ± 0.0003). NetOD measured with MV beam parallel to fiber was within error of netOD measured with MV beam perpendicular to fiber. Conclusion: Current prototype construction allows for shelf life of at least one year. With material thickness corrected for, the prototypes can measure dose with an uncertainty below 2% at a given energy and dose rate. This work has been

  12. Large core fiber optic cleaver

    DOEpatents

    Halpin, John M.

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  13. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  14. Fiber Optics,

    DTIC Science & Technology

    1986-04-04

    effectiveness of new ships and ship systems. The basis of this new technology is the optical fiber, a thin, flex- ible glass or plastic waveguide through...His photophone used unguiled modulated sunlight to transmit speech about 700 feet (213 m). In 1910, researchers performed theoretical investigations...somewhat more con- troversial use of optical fibers in terms of cost effectiveness is in LANs, or as we sometimes call them in the Navy, "data transfer

  15. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  16. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    NASA Astrophysics Data System (ADS)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  17. Large core fiber optic cleaver

    DOEpatents

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  18. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  19. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  20. Fiber optic hydrogen sensor

    DOEpatents

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  1. Sealed fiber-optic bundle feedthrough

    DOEpatents

    Tanner, Carol E.

    2002-01-01

    A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.

  2. Optical fibers and their applications 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2013-01-01

    XIVth Conference on Optical Fibers and Their Applications, Nałęczów 2012, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations from 20 research and application groups active in fiber photonics, originating from academia and industry. Topical tracks of the Conference were: photonic materials, planar waveguides, passive and active optical fibers, propagation theory in nonstandard optical fibers, and new constructions of optical fibers. A panel discussion concerned teaching in fiber photonics. The conference was accompanied by a school on Optical Fiber Technology. The paper summarizes the chosen main topical tracks of the conference on Optical Fibers and Their Applications, Nałęczów 2012. The papers from the conference presentations will be published in Proc.SPIE. The next conference from this series is scheduled for January 2014 in Białowieża.

  3. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  4. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  5. Axial strain insensitivity of weakly guiding optical fibers

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    A numerical model has been developed to calculate the modal phase shift of circular step index profile weakly guiding fibers under axial strain. Whenever an optical fiber is under stress, the optical path length, the index of refraction, and the propagation constants of each mode change. In consequence, the phase of each mode is also modified. A relationship for the modal phase shift is presented. This relation is applied to both single mode and two-mode fibers in order to determine the sensitivity characteristics of strained fibers. It was found that the phase shift is strongly dependent on the core refractive index, n(co). It was also found that it is possible to design fibers which are insensitive to axial strain. Practical applications of strain insensitive fibers are discussed.

  6. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  7. FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers

    NASA Astrophysics Data System (ADS)

    Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.

    1993-08-01

    The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).

  8. Chemistry Research of Optical Fibers.

    DTIC Science & Technology

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  9. Reduced Gravity Zblan Optical Fiber

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    2000-01-01

    Two optical fiber pullers have been designed for pulling ZBLAN optical fiber in reduced gravity. One fiber puller was designed, built and flown on board NASA's KC135 reduced gravity aircraft. A second fiber puller has been designed for use on board the International Space Station.

  10. Optical and mechanical response of high temperature optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Sirkis, Jim

    1991-01-01

    The National Aerospace Plane (NASP) will experience temperatures as high as 2500 F at critical locations in its structure. Optical fiber sensors were proposed as a means of monitoring the temperature in these critical regions by either bonding the optical fiber to, or embedding the optical fiber in, metal matrix composite (MMC) components. Unfortunately, the anticipated NASP temperature ranges exceed the glass transition region of the optical fiber glass. The attempt is made to define the operating temperature range of optical fiber sensors from both optical and mechanical perspectives. A full non-linear optical analysis was performed by modeling the optical response of an isolated sensor cyclically driven through the glass transition region.

  11. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  12. Wideband fiber optic communications link

    NASA Astrophysics Data System (ADS)

    Bray, J. R.

    1984-12-01

    This thesis examined the feasibility of upgrading a nine port fiber optic bundle telecommunications system to a single strand fiber optic system. Usable pieces of equipment were identified and new Light Emitting Diodes (LED), Photodetectors and single strand SMA styled fiber optic connectors were ordered. Background research was conducted in the area of fiber optic power launching, fiber losses, connector losses and efficiencies. A new modulation/demodulation circuit was designed and constructed using parts from unused equipment. A new front panel was constructed to house the components, switches and connectors. A 2-m piece of optical fiber was terminated with the new connectors and tested for connector loss, numeric aperture and attenuation. The new LED was characterized by its emission radiation pattern and the entire system was tested for functional operation, frequency response and bandwidth of operation. An operations manual was prepared to ensure proper use in the future. The result was a two piece, single strand, fiber optic communications systems fully TTL compatible, capable of transmitting digital signals from 80 Kbit/sec to 20 Mbit/sec. The system was tested in a half duplex mode using both baseband and carrier modulated signals.

  13. Easy and safe coated optical fiber direct connection without handling bare optical fiber

    NASA Astrophysics Data System (ADS)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Kurashima, Toshio

    2015-06-01

    We propose a novel field installable splicing technique for the direct connection of 250 μm diameter coated optical fiber that does not require bare optical fiber to be handled. Our proposed technique can realize a low insertion loss over a wide field installation temperature range of -10-40 °C. The keys to coated optical fiber direct connection are a cleaving technique and a technique for removing coated optical fiber. As the cleaving technique, we employed a method where the fiber is stretched and then a blade is pushed perpendicularly against the stretched fiber. As a result we confirmed that fiber endfaces cleaved at -10-40 °C were all mirror endfaces. With the removal technique, the coating is removed inside the connecting component by incorporating a circular cone shaped coating removal part. A mechanical splice based on these techniques successfully achieved a low insertion loss of less than 0.11 dB and a return loss of more than 50 dB at -10, 20, and 40 °C. In addition, the temperature cycle characteristics were stable over a wide temperature range of -40-75 °C.

  14. Optical-Fiber Leak Detector

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kosten, Susan E.

    1994-01-01

    Proposed optical-fiber sensor detects small changes in pressure in elastomeric O-ring or similar pressure seal, which may indicate deterioration of seal and interpreted as indications of incipient failure. According to concept, length of optical fiber embedded in seal. Light-emitting diode illuminates one end of fiber; photodetector measures intensity of light emerging from other end. Pressure-induced changes in seal bend fiber slightly, altering microbending-induced loss of light from fiber and alter intensity of light at photodetector. Change in intensity approximately proportional to change in pressure.

  15. Overview of Fiber-Optical Sensors

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  16. Wavefront Processing Through Integrated Fiber Optics.

    NASA Astrophysics Data System (ADS)

    Khan, Romel Rabiul

    This thesis is devoted to the development of a new technology of integrated fiber optics. Through the use of fusion splicing and etching several dissimilar optical fibers can be integrated into a single fiber providing wave-front processing capabilities not previously possible. Optical fibers have been utilized for their unique capabilities; such as, remote beam delivery and immunity from electromagnetic noise. In this thesis, the understanding of integrated fiber optics through fusion splicing is furthered both theoretically and experimentally. Most of the common optical components such as lenses, apertures, and modulators can be implemented through the use of fiber optics and then integrated together through fusion splicing, resulting in an alignment-free, rugged and miniaturized system. For example, a short length of multimode graded-index fiber can be used as either a lens or a window to relay an image. A step-index multimode fiber provides a spacer or an aperture. Other special arrangements can be exploited to do in-line modulation in both amplitude and phase. The power of this technique is demonstrated by focusing on a few applications where significant advantages are obtained through this technology. In laser light scattering fiber optic systems, integrated fiber optics is used for delivering and receiving light from small scattering volumes in a spatially constrained environment. When applied for the detection of cataracts in the human eye lens, laser light scattering probes with integrated fiber optics could obtain a map of the eye lens and provide invaluable data for further understanding of cataractogenesis. Use of integrated fiber optics in the high resolution structural analysis of aircraft propeller blades is also presented. Coupling of laser diode to monomode fiber through integrated fiber optics is analyzed. The generation of nondiffracting Bessel-Gauss beams using integrated fiber optics is described. The significance of the Bessel-Gauss beam lies

  17. The use of optical fiber in endodontic photodynamic therapy. Is it really relevant?

    PubMed

    Garcez, Aguinaldo S; Fregnani, Eduardo R; Rodriguez, Helena M; Nunez, Silvia C; Sabino, Caetano P; Suzuki, Hideo; Ribeiro, Martha S

    2013-01-01

    This study analyzed the necessity of use of an optical fiber/diffusor when performing antimicrobial photodynamic therapy (PDT) associated with endodontic therapy. Fifty freshly extracted human single-rooted teeth were used. Conventional endodontic treatment was performed using a sequence of ProTaper (Dentsply Maillefer Instruments), the teeth were sterilized, and the canals were contaminated with Enterococcus faecalis 3 days' biofilm. The samples were divided into five groups: group 1--ten roots irradiated with a laser tip (area of 0.04 cm(2)), group 2--ten roots irradiated with a smaller laser tip (area of 0.028 cm(2)), and group 3--ten teeth with the crown, irradiate with the laser tip with 0.04 cm(2) of area. The forth group (G4) followed the same methodology as group 3, but the irradiation was performed with smaller tip (area of 0.028 cm(2)) and G5 ten teeth with crown were irradiated using a 200-mm-diameter fiber/diffusor coupled to diode laser. Microbiological samples were taken after accessing the canal, after endodontic therapy, and after PDT. Groups 1 and 2 showed a reduction of two logs (99%), groups 3 and 4 of one log (85% and 97%, respectively), and group 5 of four logs (99.99%). Results suggest that the use of PDT added to endodontic treatment in roots canals infected with E. faecalis with the optical fiber/diffusor is better than when the laser light is used directed at the access of cavity.

  18. Duplexed sandwich immunoassays on a fiber-optic microarray.

    PubMed

    Rissin, David M; Walt, David R

    2006-03-30

    In this paper, we describe a duplexed imaging optical fiber array-based immunoassay for immunoglobulin A (IgA) and lactoferrin. To fabricate the individually addressable array, microspheres were functionalized with highly specific monoclonal antibodies. The microspheres were loaded in microwells etched into the distal face of an imaging optical fiber bundle. Two microsphere-based sandwich immunoassays were developed to simultaneously detect IgA and lactoferrin, two innate immune system proteins found in human saliva. Individual microspheres could be interrogated for the simultaneous measurement of both proteins. The working concentration range for IgA detection was between 700 pM and 100 nM, while the working concentration range for lactoferrin was between 385 pM and 10 nM. The cross-reactivity between detection antibodies and their non-specific targets was relatively low in comparison to the signal generated by the specific binding with their targets. These results suggest that the degree of multiplexing on this fiber-optic array platform can be increased beyond a duplex.

  19. Splicing Efficiently Couples Optical Fibers

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1985-01-01

    Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.

  20. SU-F-T-166: On the Nature of the Background Visible Light Observed in Fiber Optic Dosimetry of Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darafsheh, A; Kassaee, A; Finlay, J

    Purpose: The nature of the background visible light observed during fiber optic dosimetry of proton beams, whether it is due to Cherenkov radiation or not, has been debated in the literature recently. In this work, experimentally and by means of Monte Carlo simulations, we shed light on this problem and investigated the nature of the background visible light observed in fiber optics irradiated with proton beams. Methods: A bare silica fiber optics was embedded in tissue-mimicking phantoms and irradiated with clinical proton beams with energies of 100–225 MeV at Roberts Proton Therapy Center. Luminescence spectroscopy was performed by a CCD-coupledmore » spectrograph to analyze in detail the emission spectrum of the fiber tip across the visible range of 400–700 nm. Monte Carlo simulation was performed by using FLUKA Monte Carlo code to simulate Cherenkov light and ionizing radiation dose deposition in the fiber. Results: The experimental spectra of the irradiated silica fiber shows two distinct peaks at 450 and 650 nm, whose spectral shape is different from that of Cherenkov radiation. We believe that the nature of these peaks are connected to the point defects of silica including oxygen-deficiency center (ODC) and non-bridging oxygen hole center (NBOHC). Monte Carlo simulations confirmed the experimental observations that Cherenkov radiation cannot be solely responsible for such a signal. Conclusion: We showed that Cherenkov radiation is not the dominant visible signal observed in bare fiber optics irradiated with proton beams. We observed two distinct peaks at 450 and 650 nm whose nature is connected with the point defects of silica fiber including oxygen-deficiency center and non-bridging oxygen hole center.« less

  1. Career Directions--Fiber Optic Installer

    ERIC Educational Resources Information Center

    Tech Directions, 2012

    2012-01-01

    Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of light through an optical fiber that is roughly the diameter of a human hair. The light forms an electromagnetic carrier wave that is modulated to carry information. Each optical fiber is capable of carrying an enormous amount of…

  2. High pressure fiber optic sensor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Renato; Xia, Hua; Lee, Boon K

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  3. Design of Oil Viscosity Sensor Based on Plastic Optical Fiber

    NASA Astrophysics Data System (ADS)

    Yunus, Muhammad; Arifin, A.

    2018-03-01

    A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.

  4. Waveguide Studies for Fiber Optics and Optical Signal Processing Applications.

    DTIC Science & Technology

    1980-04-01

    AO-A086 115 UNI!VERtSIT? OF SOUTIUR CALEPCRNA LOS AMUSS / 5 WAVGUIDE STUIES15 FOR FEB53 OpTECS AND OpTICAL SEOSA.o P /0Ksu-y "/6 UNLSIIDAPR N0 E...SAMUE Flola-??-c-sa UNCASZFIORAC-M-8042 U Final Technical Report (1 1April 1950 L V ~ WAVEGUIDE STUDIES FOR FIBER OPTICS AND OPTICAL SIGNAL PROCESSING...and Subtitle) 081 6&4𔃾JODO )EI YAVECUIDESTUDIES FOR JIBER OPTICS ANDL 7 Final ,T/echnical epoErt, OPTICAL SI’tNAL PROCESSING APPLICATIONS.4 11 Se 77

  5. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  6. Fiber-optic proximity sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Hermann, W. A.; Primus, H. C.

    1980-01-01

    Proximity sensor for mechanical hand of remote manipulator incorporates fiber optics to conduct signals between light source and light detector. Fiber optics are not prone to noise from electromagnetic interference and radio-frequency interference as are sensors using long electrical cables.

  7. Coupling Light Emitting Diodes with Photocatalyst-Coated Optical Fibers Improves Quantum Yield of Pollutant Oxidation.

    PubMed

    Ling, Li; Tugaoen, Heather; Brame, Jonathon; Sinha, Shahnawaz; Li, Chuanhao; Schoepf, Jared; Hristovski, Kiril; Kim, Jae-Hong; Shang, Chii; Westerhoff, Paul

    2017-11-21

    A photocatalyst-coated optical fiber was coupled with a 318 nm ultraviolet-A light emitting diode, which activated the photocatalysts by interfacial photon-electron excitation while minimizing photonic energy losses due to conventional photocatalytic barriers. The light delivery mechanism was explored via modeling of evanescent wave energy produced upon total internal reflection and photon refraction into the TiO 2 surface coating. This work explores aqueous phase LED-irradiated optical fibers for treating organic pollutants and for the first time proposes a dual-mechanistic approach to light delivery and photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a function of optical fiber coating thickness, fiber length, and photocatalyst attachment method and compared against the performance of an equivalent catalyst mass in a completely mixed slurry reactor. Measured and simulated photon fluence through the optical fibers decreased as a function of fiber length, coating thickness, or TiO 2 mass externally coated on the fiber. Thinner TiO 2 coatings achieved faster pollutant removal rates from solution, and dip coating performed better than sol-gel attachment methods. TiO 2 attached to optical fibers achieved a 5-fold higher quantum yield compared against an equivalent mass of TiO 2 suspended in a slurry solution.

  8. Fiber-optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  9. Fiber optic security monitoring sensor

    NASA Astrophysics Data System (ADS)

    Englund, Marja; Ipatti, Ari; Karioja, Pentti

    1997-09-01

    In security monitoring, fiber-optic sensors are advantageous because strong and rugged optical fibers are thin, light, flexible and immune to electromagnetic interference. Optical fibers packaged into cables, such as, building and underground cables, can be used to detect even slightest disturbances, movements, vibrations, pressure changes and impacts along their entire length. When running an optical cable around a structure, and when using speckle pattern recognition technique for alarm monitoring, the distributed monitoring of the structure is possible. The sensing cable can be strung along fences, buried underground, embedded into concrete, mounted on walls, floors and ceilings, or wrapped around the specific components. In this paper, a fiber-optic security monitoring sensor based on speckle pattern monitoring is described. The description of the measuring method and the results of the experimental fiber installations are given. The applicability of embedded and surface mounted fibers to monitor the pressure and impact induced vibrations of fences and concrete structures as well as the loosening of critical parts in a power plant machinery were demonstrated in field and laboratory conditions. The experiences related to the applications and optical cable types are also discussed.

  10. Fiber optic combiner and duplicator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The investigation of the possible development of two optical devices, one to take two images as inputs and to present their arithmetic sum as a single output, the other to take one image as input and present two identical images as outputs is described. Significant engineering time was invested in establishing precision fiber optics drawing capabilities, real time monitoring of the fiber size and exact measuring of fiber optics ribbons. Various assembly procedures and tooling designs were investigated and prototype models were built and evaluated that established technical assurance that the device was feasible and could be fabricated. Although the interleaver specification in its entirety was not achieved, the techniques developed in the course of the program improved the quality of images transmitted by fiber optic arrays by at least an order of magnitude. These techniques are already being applied to the manufacture of precise fiber optic components.

  11. Fiber Optic Microswitch For Industrial Use

    NASA Astrophysics Data System (ADS)

    Desforges, F. X.; Jeunhomme, L. B.; Graindorge, Ph.; LeBoudec, G.

    1988-03-01

    Process control instrumentation is a large potential market for fiber optic sensors and particulary for fiber optic microswitches. Use of such devices brings a lot of advantages such as lighter cables, E.M. immunity, intrinsic security due to optical measurement, no grounding problems and so on. However, commercially available fiber optic microswitches exhibit high insertion losses as well as non optimal mechanical design. In fact, these drawbacks are due to operation principles which are based on a mobile shutter displaced between two fibers. The fiber optic microswitch we present here, has been specially designed for harsh environments (oil industry). The patented operation principle uses only one fiber placed in front of a retroreflecting material by the mean of a fiber optic connector. The use of this retroreflector material allows an important reduction of the position tolerances required in two fibers devices, as well as easier fabrication and potential mass production of the optical microswitch. Moreover, such a configuration yields good performances in term of reflection coefficient leading to large dynamic range and consequently large distances (up to 250 m) between the optical microswitch and its optoelectronic instrument. Optomechanical design of the microswitch as well as electronic design of the optoelectronic instrument will be examined and discussed.

  12. Realization of fiber optic displacement sensors

    NASA Astrophysics Data System (ADS)

    Guzowski, Bartlomiej; Lakomski, Mateusz

    2018-03-01

    Fiber optic sensors are very promising because of their inherent advantages such as very small size, hard environment tolerance and impact of electromagnetic fields. In this paper three different types of Intensity Fiber Optic Displacement Sensors (I-FODS) are presented. Three configurations of I-FODS were realized in two varieties. In the first one, the cleaved multimode optical fibers (MMF) were used to collect reflected light, while in the second variety the MMF ended with ball lenses were chosen. To ensure an accurate alignment of optical fibers in the sensor head the MTP C9730 optical fiber ferrules were used. In this paper the influence of distribution of transmitting and detecting optical fibers on sensitivity and linear range of operation of developed I-FODS were investigated. We have shown, that I-FODS with ball lenses receive average 10.5% more reflected power in comparison to the cleaved optical fibers and they increase linearity range of I-FODS by 33%. In this paper, an analysis of each type of the realized sensor and detailed discussion are given.

  13. Optical-Fiber Fluorosensors With Polarized Light Sources

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  14. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documentedmore » methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten

  15. High-accuracy fiber-optic shape sensing

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Froggatt, Mark E.; Kreger, Stephen T.; Seeley, Ryan J.; Gifford, Dawn K.; Sang, Alexander K.; Wolfe, Matthew S.

    2007-04-01

    We describe the results of a study of the performance characteristics of a monolithic fiber-optic shape sensor array. Distributed strain measurements in a multi-core optical fiber interrogated with the optical frequency domain reflectometry technique are used to deduce the shape of the optical fiber; referencing to a coordinate system yields position information. Two sensing techniques are discussed herein: the first employing fiber Bragg gratings and the second employing the intrinsic Rayleigh backscatter of the optical fiber. We have measured shape and position under a variety of circumstances and report the accuracy and precision of these measurements. A discussion of error sources is included.

  16. The visible signal responsible for proton therapy dosimetry using bare optical fibers is not Čerenkov radiation.

    PubMed

    Darafsheh, Arash; Taleei, Reza; Kassaee, Alireza; Finlay, Jarod C

    2016-11-01

    Proton beam dosimetry using bare plastic optical fibers has emerged as a simple approach to proton beam dosimetry. The source of the signal in this method has been attributed to Čerenkov radiation. The aim of this work was a phenomenological study of the nature of the visible light responsible for the signal in bare fiber optic dosimetry of proton therapy beams. Plastic fiber optic probes embedded in solid water phantoms were irradiated with proton beams of energies 100, 180, and 225 MeV produced by a proton therapy cyclotron. Luminescence spectroscopy was performed by a CCD-coupled spectrometer. The spectra were acquired at various depths in phantom to measure the percentage depth dose (PDD) for each beam energy. For comparison, the PDD curves were acquired using a standard multilayer ion chamber device. In order to further analyze the contribution of the Čerenkov radiation in the spectra, Monte Carlo simulation was performed using fluka Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and optical emission of Čerenkov radiation. The measured depth doses using the bare fiber are in agreement with measurements performed by the multilayer ion chamber device, indicating the feasibility of using bare fiber probes for proton beam dosimetry. The spectroscopic study of proton-irradiated fibers showed a continuous spectrum with a shape different from that of Čerenkov radiation. The Monte Carlo simulations confirmed that the amount of the generated Čerenkov light does not follow the radiation absorbed dose in a medium. The source of the optical signal responsible for the proton dose measurement using bare optical fibers is not Čerenkov radiation. It is fluorescence of the plastic material of the fiber.

  17. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  18. System for testing optical fibers

    DOEpatents

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  19. Improved Optical-Fiber Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).

  20. Assessment of GeB doped SiO2 optical fiber for the application of remote radiation sensing system

    NASA Astrophysics Data System (ADS)

    Alawiah, A.; Fadhli, M. M.; Bauk, S.; Abdul-Rashid, H. A.; Maah, M. J.

    2013-12-01

    The research and development efforts on the silica (SiO2) optical fiber for application in radiation sensing and other dosimetry field have become quite active. The widely used LiF based dosimeter (TLD) has shown a relatively low reproducibility and there is a time delay in dose assessment which loses its capability as direct real-time dose assessment dosimeters unlike diodes. The macroscopic size of the optical fiber generally does not allow direct in vivo dose sensing in the inner organ for radiotherapy and medical imaging. A flat optical fiber (FF) with nominal dimensions of (0.08 x10 x 10) mm3 of pure silica SiO2 and GeO2 with Boron doped silica fiber SiO2 was selected for this research. The Germanium was used a dopant to enhance the flat optical fiber to reach much higher responsiveness and dose sensitivity in high energy and high dose irradiation. Together with this combination, both TLD dimension and dose assessment issues was hoped to be overcome. The research conducted by comparing the response of pure silica SiO2 flat optical fiber with a GeO2 with Boron doped silica SiO2 flat optical fiber. The FF sample was annealed at 400°C for one hour before irradiated. Kinetic parameters and dosimetric glow curve of TL response and sensitivity were studied with respect to the electron beam of high dose of micro beam irradiation of 1.0 kGy, 5.0 kGy, 10.0 kGy, 50.0 kGy, 100.0 kGy, 500.0 kGy, and 1.0 MGy using Singapore Synchrotron Light Source's (PCIT) beamline. The PCIT operates at 500mA current with real time current range from 90-100mA, dose rate of 3.03 MGy/hour and energy at 8.9KeV. The source to Source Surface Distance (SSD) was at 6.0 cm, with a field size of 20mm × 8mm diameter of a half circle. The TL response was measured using a TLD reader Harshaw Model 3500. The Time-Temperature-Profile (TTP) of the reader was obtained to a preheat temperature of 150 °C for 5 s, the output signal being acquired at a temperature ramprate of 35 °Cs-1, acquisition time of

  1. Architectures of fiber optic network in telecommunications

    NASA Astrophysics Data System (ADS)

    Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.

    2005-08-01

    The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).

  2. Laser and Optical Fiber Metrology in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sporea, Dan; Sporea, Adelina

    2008-04-15

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical andmore » optoelectronic parts, tests run under the EU's Fusion Program.« less

  3. Neutron Radiation Effects in Fiber Optics.

    DTIC Science & Technology

    1980-06-05

    due to naturevs effects , the photophone as a device was doomed. However the principles of voice transmission by modulated ]iqht beams were not. From...AD-A091 661 NAVAL ACADEMY ANNAPOLIS NO F/S 20/6 NEUTRON RADIATION EFFECTS IN FIBER OPTICS.(U) N.N 80 M J MARSHFIELD NCLASSIFIED USNA-TSPR-107 MLE...34’I//E/////EE I ffffffffffffff /l-"lll/"."lmIii//2 //0 A TRIDENT SCHOLAR * PROJECT REPORT NO. 1im "NEUTRON RADIATION EFFECTS IN FIBE OPTICS UNITED

  4. Optical system components for navigation grade fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter

    2013-10-01

    Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.

  5. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  6. Neutron-induced defects in optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzolo, S., E-mail: serena.rizzolo@univ-st-etienne.fr; Dipartimento di Fisica e Chimica, Università di Palermo, Palermo; and Areva Centre Technique, Le Creusot

    2014-10-21

    We present a study on 0.8 MeV neutron-induced defects up to fluences of 10{sup 17} n/cm{sup 2} in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.

  7. Fiber optic moisture sensor

    DOEpatents

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  8. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  9. Fiber optic detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  10. Fiber optic detector

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1990-04-01

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  11. Infrared fiber optic materials

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1987-01-01

    The development of IR fiber optics for use in astronomical and other space applications is summarized. Candidate materials were sought for use in the 1 to 200 micron and the 200 to 1000 micron wavelength range. Synthesis and optical characterization were carried out on several of these materials in bulk form. And the fabrication of a few materials in single crystal fiber optic form were studied.

  12. System for testing optical fibers

    DOEpatents

    Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

  13. Optical fiber technology development in Poland

    NASA Astrophysics Data System (ADS)

    Wójcik, Waldemar; Romaniuk, Ryszard

    2010-09-01

    Optical fiber technology is an important branch of science and technology, but also economy. Together with related disciplines it creates wider areas like optoelectronics and photonics. Optical fiber technology is developed in this country rather dynamically, proportionally to the available funds designed locally for research and applications. Recently this development was enhanced with considerable funds from European Operational Funds Innovative Economy POIG and Human Capital POKL. The paper summarizes the development of optical fiber technology in Poland from academic perspective during the period of last 2-3 years. The digest is very probably not full. An emphasis is put on development of optical fiber manufacturing methods. This development was illustrated by a few examples of optical fiber applications.

  14. Fiber optic sensors for corrosion detection

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1993-01-01

    The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.

  15. Fiber optic to integrated optical chip coupler

    NASA Technical Reports Server (NTRS)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  16. Methods and apparatus for optical switching using electrically movable optical fibers

    DOEpatents

    Peterson, Kenneth A [Albuquerque, NM

    2007-03-13

    Methods and apparatuses for electrically controlled optical switches are presented. An electrically controlled optical switch includes a fixture formed using a laminated dielectric material, a first optical fiber having a fixed segment supported by the fixture and a movable segment extending into a cavity, a second optical fiber having a fixed segment supported by the fixture and an extended segment where an optical interconnect may be established between the first optical fiber and the second optical fiber, and a first electrical actuator functionally coupled to the fixture and the first fiber which alters a position of the moveable segment, based upon a control signal, for changing a state of the optical interconnect between one of two states.

  17. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  18. Changes in speckle patterns induced by load application onto an optical fiber and its possible application for sensing purpose

    NASA Astrophysics Data System (ADS)

    Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio

    2015-08-01

    Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.

  19. Shedding Light on Fiber Optics.

    ERIC Educational Resources Information Center

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  20. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.

  1. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    PubMed

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  2. SU-E-T-610: Phosphor-Based Fiber Optic Probes for Proton Beam Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darafsheh, A; Soldner, A; Liu, H

    2015-06-15

    Purpose: To investigate feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution (<0.5 mm3) based on TbF3 phosphors and evaluated its performance for measurement of proton beam including profiles and range. Methods: The fiber optic probe with TbF3 phosphor tip, embedded in tissue-mimicking phantoms was irradiated with double scattering proton beam with energy of 180 MeV. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. In order to measure the spatial beam profile and percentage depthmore » dose, we used singular value decomposition method to spectrally separate the phosphors ionoluminescence signal from the background Cerenkov radiation signal. Results: The spectra of the TbF3 fiber probe showed characteristic ionoluminescence emission peaks at 489, 542, 586, and 620 nm. By using singular value decomposition we found the contribution of the ionoluminescence signal to measure the percentage depth dose in phantoms and compared that with measurements performed with ion chamber. We observed quenching effect at the spread out Bragg peak region, manifested as under-responding of the signal, due to the high LET of the beam. However, the beam profiles were not dramatically affected by the quenching effect. Conclusion: We have evaluated the performance of a fiber optic probe with submillimeter resolution for proton beam dosimetry. We demonstrated feasibility of spectral separation of the Cerenkov radiation from the collected signal. Such fiber probes can be used for measurements of proton beams profile and range. The experimental apparatus and spectroscopy method developed in this work provide a robust platform for characterization of proton-irradiated nanophosphor particles for ultralow fluence photodynamic therapy or molecular imaging applications.« less

  3. Piezoelectric bimorph optical-fiber sensor.

    PubMed

    Sun, Fengguo; Xiao, Gaozhi; Zhang, Zhiyi; Grover, Chander P

    2004-03-20

    We propose and demonstrate a novel high-voltage optical-fiber sensor. This sensor consists of an emitting fiber, a receiving fiber, and a piezoelectric bimorph transducer. The emitting fiber is fixed in a base, whereas the receiving fiber is mounted on the free end of the piezoelectric bimorph transducer. When a voltage is applied to the piezoelectric bimorph transducer, its free end is displaced over a distance delta. The displacement induces a loss in the optical coupling between the emitting and the receiving fiber. The voltage can be measured by monitoring the coupling loss.

  4. Optically Tuned Fiber Gratings

    DTIC Science & Technology

    1998-03-01

    why we use a bulk polarization beam splitter . The fibre grating length was 50 cm with centre wavelength at 1550 nm. Fig.8 shows results of the...characteristics of glasses with enhanced non -linearity. In accordance with the specification, a fiber grating should be tuned within the range of 1...intensity pulse and has successfully demonstrated optically-tuned fiber grating. 19980617 115 14. SUBJECT TERMS Fibre Optics, Non -linear Optical

  5. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)

    2005-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  6. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    2003-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  7. Fiber optic sensors for gas turbine control

    NASA Technical Reports Server (NTRS)

    Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)

    1999-01-01

    An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.

  8. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    PubMed

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  9. Lightning vulnerability of fiber-optic cables.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.« less

  10. Compensated Fiber-Optic Frequency Distribution Equipment

    DTIC Science & Technology

    2010-11-01

    fiber optic links have been developed and deployed, providing stability sufficient to transfer hydrogen maser-derived frequency references in intra...effectively compensate for the added noise and instability of an inter-facility fiber - optic frequency distribution link , it is important to understand the...dispersion (the variation in group velocity as a function of optical wavelength) may also affect the performance of the fiber optic link , when link

  11. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  12. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  13. Dynamic evolution of the spectrum of long-period fiber Bragg gratings fabricated from hydrogen-loaded optical fiber by ultraviolet laser irradiation.

    PubMed

    Fujita, Keio; Masuda, Yuji; Nakayama, Keisuke; Ando, Maki; Sakamoto, Kenji; Mohri, Jun-pei; Yamauchi, Makoto; Kimura, Masanori; Mizutani, Yasuo; Kimura, Susumu; Yokouchi, Takashi; Suzaki, Yoshifumi; Ejima, Seiki

    2005-11-20

    Long-period fiber Bragg gratings fabricated by exposure of hydrogen-loaded fiber to UV laser light exhibit large-scale dynamic evolution for approximately two weeks at room temperature. During this time two distinct features show up in their spectrum: a large upswing in wavelength and a substantial deepening of the transmission minimum. The dynamic evolution of the transmission spectrum is explained quantitatively by use of Malo's theory of UV-induced quenching [Electron. Lett. 30, 442 (1994)] followed by refilling of hydrogen in the fiber core and the theory of hydrogen diffusion in the fiber material. The amount of hydrogen quenched by the UV irradiation is 6% of the loaded hydrogen.

  14. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  15. Germanium-doped optical fiber for real-time radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mizanur Rahman, A. K. M.; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Ung, N. M.; Mat-Sharif, K. A.; Wan Abdullah, W. S.; Amouzad Mahdiraji, Ghafour; Amin, Y. M.; Maah, M. J.; Bradley, D. A.

    2015-11-01

    Over the past three decades growing demand for individualized in vivo dosimetry and subsequent dose verification has led to the pursuit of newer, novel and economically feasible materials for dosimeters. These materials are to facilitate features such as real-time sensing and fast readouts. In this paper, purposely composed SiO2:Ge optical fiber is presented as a suitable candidate for dosimetry. The optical fiber is meant to take advantage of the RL/OSL technique, providing both online remote monitoring of dose rate, and fast readouts for absorbed dose. A laboratory-assembled OSL reader has been used to acquire the RL/OSL response to LINAC irradiations (6 MV photons). The notable RL characteristics observed include constant level of luminescence for the same dose rate (providing better consistency compared to TLD-500), and linearity of response in the radiotherapy range (1 Gy/min to 6 Gy/min). The OSL curve was found to conform to an exponential decay characteristic (illumination with low LED source). The Ge doping resulted in an effective atomic number, Zeff, of 13.5 (within the bone equivalent range). The SiO2:Ge optical fiber sensor, with efficient coupling, can be a viable solution for in vivo dosimetry, besides a broad range of applications.

  16. Alternative Controller for a Fiber-Optic Switch

    NASA Technical Reports Server (NTRS)

    Peters, Robert

    2007-01-01

    A simplified diagram of a relatively inexpensive controller for a DiCon VX (or equivalent) fiber-optic switch -- an electromechanically actuated switch for optically connecting one or two input optical fibers to any of a number of output optical fibers is shown. DiCon VX fiber-optic switches are used primarily in research and development in the telecommunication industry. This controller can control any such switch having up to 32 output channels.

  17. Effects of fiber manipulation methods on optical fiber properties

    NASA Astrophysics Data System (ADS)

    Reynolds, Robert O.; Bechter, Andrew; Crass, Jonathan

    2016-07-01

    Optical fibers are routinely used to couple high-resolution spectrographs to modern telescopes, enabling important advantages in areas such as the search for extrasolar planets using spectroscopic radial velocity measurements of candidate stars. Optical fibers partially scramble the input illumination, and this feature enables a fiber feed to provide more uniform illumination to the spectrograph optics, thereby reducing systematic errors in radial velocity measurements. However fibers suffer from focal ratio degradation (FRD), a spreading of the beam at the output of the fiber with respect to that at the fiber input, which results in losses in throughput and resolution. Modal noise, a measurement uncertainty caused by inherent fiber properties and evident as a varying spatial intensity at the fiber exit plane, reduces the signal to noise ratio in the data. Devices such as double scramblers are often used to improve scrambling, and better fiber end preparation can mitigate FRD. Many instruments agitate the fiber during an observation to reduce modal noise, and stretching the fiber during use has been shown to offer a greater reduction in that noise. But effects of agitation and stretching on fiber parameters such as total transmission and focal ratio degradation have not been adequately studied. In this paper we present measurements of transmission loss and focal ratio degradation for both agitated and stretched fibers.

  18. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOEpatents

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  19. Fiber Ring Optical Gyroscope (FROG)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design, construction, and testing of a one meter diameter fiber ring optical gyro, using 1.57 kilometers of single mode fiber, are described. The various noise components: electronic, thermal, mechanical, and optical, were evaluated. Both dc and ac methods were used. An attempt was made to measure the Earth rotation rate; however, the results were questionable because of the optical and electronic noise present. It was concluded that fiber ring optical gyroscopes using all discrete components have many serious problems that can only be overcome by discarding the discrete approach and adapting an all integrated optic technique that has the laser source, modulator, detector, beamsplitters, and bias element on a single chip.

  20. Integrated Fiber-Optic Coupler.

    DTIC Science & Technology

    1987-04-01

    p. 563, 1984. 1 .T.H. W. n h= n , G.M. Metze, B.- Y . Tuu ,J.C.C. Far., "A a s double-heterostructure diode lasers fabricated on a monolithic GaAs/Si...INII RAitI) R HR ( OLIlIR HR t( N ,% NOS( I D108 I R IOst\\1 tN( LASS~l1 D R 87 mm mhhh z V. 0 0- z C ,, Technical Document 1086 April 1987 Integrated...Cmeed".~) n Interated Fiber-Optic Coupler 12 PERSONAL AU1HOS) P.L Pruaal, E.R. Foesuim 139 TYPE OF RE[POR 3b, IME COVERED4 DATE OF REPORT (’r. 4#e ow S

  1. Optical fibers for FTTH application

    NASA Astrophysics Data System (ADS)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  2. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.

  3. Novel Fiber-Optic Ring Acoustic Emission Sensor

    PubMed Central

    Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-01

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments. PMID:29342858

  4. Recovering Signals from Optical Fiber Interferometric Sensors

    DTIC Science & Technology

    1991-06-01

    GROUP SUB* GROUp Demodulation-, optical fiber, fi ber optic, sensors, passive -homodyne demodulation, symmetric demodul -ation, asymmetric demodulation...interferomeler without feedback control or modulation ofl th laser itself and without requiring the use of electronics withi -n the interferometer. One of...the 3x3 coupler permits Passive Homodyne Demodulation -of the phase-modulated signals provided by the interferometcr without feedback control or

  5. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  6. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  7. Harsh environment fiber optic connectors/testing

    NASA Astrophysics Data System (ADS)

    Parker, Douglas A.

    2014-09-01

    Fiber optic systems are used frequently in military, aerospace and commercial aviation programs. There is a long history of implementing fiber optic data transfer for aircraft control, for harsh environment use in local area networks and more recently for in-flight entertainment systems. The advantages of fiber optics include high data rate capacity, low weight, immunity to EMI/RFI, and security from signal tapping. Technicians must be trained particularly to install and maintain fiber systems, but it is not necessarily more difficult than wire systems. However, the testing of the fiber optic interconnection system must be conducted in a standardized manner to assure proper performance. Testing can be conducted with slight differences in the set-up and procedure that produce significantly different test results. This paper reviews various options of interconnect configurations and discusses how these options can affect the performance, maintenance required and longevity of a fiber optic system, depending on the environment. Proper test methods are discussed. There is a review of the essentials of proper fiber optic testing and impact of changing such test parameters as input launch conditions, wavelength considerations, power meter options and the basic methods of testing. This becomes important right from the start when the supplier test data differs from the user's data check upon receiving the product. It also is important in periodic testing. Properly conducting the fiber optic testing will eliminate confusion and produce meaningful test results for a given harsh environment application.

  8. Fiber-Optic Terahertz Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.

    1994-01-01

    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  9. Intermodal Parametric Frequency Conversion in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Demas, Jeffrey D.

    Lasers are an essential technology enabling countless fields of optics, however, their operation wavelengths are limited to isolated regions across the optical spectrum due to the need for suitable gain media. Parametric frequency conversion (PFC) is an attractive means to convert existing lasers to new colors using nonlinear optical interactions rather than the material properties of the host medium, allowing for the development of high power laser sources across the entire optical spectrum. PFC in bulk chi(2) crystals has led to the development of the optical parametric oscillator, which is currently the standard source for high power light at non-traditional wavelengths in the laboratory setting. Ideally, however, one could implement PFC in an optical fiber, thus leveraging the crucial benefits of a guided-wave geometry: alignment-free, compact, and robust operation. Four-wave mixing (FWM) is a nonlinear effect in optical fibers that can be used to convert frequencies, the major challenge being conservation of momentum, or phase matching, between the interacting light waves. Phase matching can be satisfied through the interaction of different spatial modes in a multi-mode fiber, however, previous demonstrations have been limited by mode stability and narrow-band FWM gain. Alternatively, phase matching within the fundamental mode can be realized in high-confinement waveguides (such as photonic crystal fibers), but achieving the anomalous waveguide dispersion necessary for phase matching at pump wavelengths near ˜1 mum (where the highest power fiber lasers emit) comes at the cost of reducing the effective area of the mode, thus limiting power-handling. Here, we specifically consider the class of Bessel-like LP0,m modes in step-index fibers. It has been shown that these modes can be selectively excited and guided stably for long lengths of fiber, and mode stability increases with mode order 'm'. The effective area of modes in these fibers can be very large (>6000

  10. Embedding Optical Fibers In Cast Metal Parts

    NASA Technical Reports Server (NTRS)

    Gibler, William N.; Atkins, Robert A.; Lee, Chung E.; Taylor, Henry F.

    1995-01-01

    Use of metal strain reliefs eliminates breakage of fibers during casting process. Technique for embedding fused silica optical fibers in cast metal parts devised. Optical fiber embedded in flange, fitting, or wall of vacuum or pressure chamber, to provide hermetically sealed feedthrough for optical transmission of measurement or control signals. Another example, optical-fiber temperature sensor embedded in metal structural component to measure strain or temperature inside component.

  11. FIBER AND INTEGRATED OPTICS: Multiplexed optical-fiber sensors with autodyne detection

    NASA Astrophysics Data System (ADS)

    Potapov, V. T.; Mamedov, A. M.; Shatalin, S. V.; Yushkaĭtis, R. V.

    1993-09-01

    A method is proposed for multiplexing optical-fiber interference sensors. The method involves autodyne reception of frequency-modulated radiation reflected back to the laser. The response of a He-Ne laser with a linearly varying generation frequency to radiation reflected back from a single-mode fiber is studied. The spectrum of beats caused in the laser radiation by the reflection is shown to be governed by the distribution of reflectors along the fiber. The phases of the spectral components contain information about the phase shift of the reflected optical signal. A hydrophone array with a sensitivity of 30 μrad/Hz1/2 is described. A distributed temperature sensor with a spatial resolution of 1 m is also described.

  12. Influence of photo- and thermal bleaching on pre-irradiation low water peak single mode fibers

    NASA Astrophysics Data System (ADS)

    Yin, Jianchong; Wen, Jianxiang; Luo, Wenyun; Xiao, Zhongyin; Chen, Zhenyi; Wang, Tingyun

    2011-12-01

    Reducing the radiation-induced transmission loss in low water peak single mode fiber (LWP SMF) has been investigated by using photo-bleaching method with 980nm pump light source and using thermal-bleaching method with temperature control system. The results show that the radiation-induced loss of pre-irradiation optical fiber can be reduced effectively with the help of photo-bleaching or thermal-bleaching. Although the effort of photo-bleaching is not as significant as thermal-bleaching, by using photo-bleaching method, the loss of fiber caused by radiation-induced defects can be reduced best up to 49% at 1310nm and 28% at 1550nm in low pre-irradiation condition, the coating of the fiber are not destroyed, and the rehabilitating time is just several hours, while self-annealing usually costs months' time. What's more, the typical high power LASER for photo-bleaching can be 980nm pump Laser Diode, which is very accessible.

  13. Method for the continuous processing of hermetic fiber optic components and the resultant fiber optic-to-metal components

    DOEpatents

    Kramer, D.P.

    1994-08-09

    Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.

  14. Fiber-optic push-pull sensor systems

    NASA Technical Reports Server (NTRS)

    Gardner, David L.; Brown, David A.; Garrett, Steven L.

    1991-01-01

    Fiber-optic push-pull sensors are those which exploit the intrinsically differential nature of an interferometer with concommitant benefits in common-mode rejection of undesired effects. Several fiber-optic accelerometer and hydrophone designs are described. Additionally, the recent development at the Naval Postgraduate School of a passive low-cost interferometric signal demodulator permits the development of economical fiber-optic sensor systems.

  15. Refractive index retrieving of polarization maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.

    2018-01-01

    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  16. Silicon fiber optic sensors

    DOEpatents

    Pocha, Michael D.; Swierkowski, Steve P.; Wood, Billy E.

    2007-10-02

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  17. Hollow optical fiber induced solar cells with optical energy storage and conversion.

    PubMed

    Ding, Jie; Zhao, Yuanyuan; Duan, Jialong; Duan, Yanyan; Tang, Qunwei

    2017-11-09

    Hollow optical fiber induced dye-sensitized solar cells are made by twisting Ti wire/N719-TiO 2 nanotube photoanodes and Ti wire/Pt (CoSe, Pt 3 Ni) counter electrodes, yielding a maximized efficiency of 0.7% and good stability. Arising from optical energy storage ability, the solar cells can generate electricity without laser illumination.

  18. NONLINEAR AND FIBER OPTICS: Propagation of femtosecond solitons in a fiber-optic loop

    NASA Astrophysics Data System (ADS)

    Zakhidov, É. A.; Mirtadzhiev, F. M.; Khaĭdarov, D. V.; Kuznetsov, A. V.; Okhotnikov, A. G.

    1991-03-01

    An investigation was made of the propagation of fundamental femtosecond soliton pulses in a fiber-optic loop, which is an element with promising applications in logic operations. It is shown that such a loop can filter off the nonsoliton component effectively. The conditions for high-contrast self-switching of fundamental solitons in a fiber-optic loop are identified.

  19. Optical fiber end-facet polymer suspended-mirror devices

    NASA Astrophysics Data System (ADS)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  20. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  1. Thermal Strain Analysis of Optic Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-01

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407

  2. Robust Mapping of Incoherent Fiber-Optic Bundles

    NASA Technical Reports Server (NTRS)

    Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.

    2007-01-01

    A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.

  3. Fiber optic engine for micro projection display.

    PubMed

    Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan

    2010-03-01

    A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output.

  4. Comparison of sensitivity and resolution load sensor at various configuration polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Arifin, A.; Yusran, Miftahuddin, Abdullah, Bualkar; Tahir, Dahlang

    2017-01-01

    This study uses a load sensor with a macro-bending on polymer optical fiber loop model which is placed between two plates with a buffer spring. The load sensor with light intensity modulation principle is an infrared LED emits light through the polymer optical fiber then received by the phototransistor and amplifier. Output voltage from the amplifier continued to arduino sequence and displayed on the computer. Load augment on the sensor resulted in an increase of curvature on polymer optical fibers that can cause power losses gets bigger too. This matter will result in the intensity of light that received by phototransistor getting smaller, so that the output voltage that ligable on computer will be getting smaller too. The sensitivity and resolution load sensors analyzed based on configuration with various amount of loops, imperfection on the jacket, and imperfection at the cladding and core of polymer optical fiber. The results showed that the augment on the amount of load, imperfection on the jacket and imperfection on the sheath and core polymer optical fiber can improve the sensitivity and resolution of the load sensor. The best sensors resolution obtained on the number of loops 4 with imperfection 8 on the core and cladding polymer optical fiber that is 0.037 V/N and 0,026 N. The advantages of the load sensor based on polymers optical fiber are easy to make, low cost and simple to use measurement methods.

  5. Education kits for fiber optics, optoelectronics, and optical communications

    NASA Astrophysics Data System (ADS)

    Hájek, Martin; Švrček, Miroslav

    2007-04-01

    Our company MIKROKOM, s.r.o. is engaged for many years in development of education equipment and kits for fiber optics, optoelectronics and optical communications. We would like to inform competitors of conference about results of this long-time development. Requirements on education kits and equipment in a modern and dynamic area as is optical communications and fiber optics are quite difficult. The education kits should to clearly introduce students to given issue - the most important physical principles and technical approaches, but it should to introduce also to new and modern technologies, which are quickly changing and developing. On the other hand should be these tools and kits reasonable for the schools. In our paper we would like to describe possible ways of development of this education kits and equipment and present our results of long-time work, which covers very wide range. On the one hand we developed equipment and kits for clear demonstration of physical effects using plastic optical fibers POF, next we prepare kits with a glass fibers, which are the most used fibers in practice and after as much as the kits, which covers broad range of passive and active elements of the optical networks and systems and which makes possible to create complex optical transmission connection. This kind of systems with using corresponding tools and equipment introduce the students to properties, manipulation, measurement and usage of optical fibers, traces and many active and passive components. Furthermore, with using different sorts of optical sources, photodetectors, fiber optics couplers etc., students can get acquainted with all optoelectronics transmission system, which uses different sorts of signals. Special part will be devoted also to effort mentioned before - to implement modern technologies such as e.g. Wavelength Division Multiplex (WDM) into the education kits. Our presentation will inform auditors about development of mentioned education kits and

  6. A multicore optical fiber for distributed sensing

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Burgess, David T.; Hines, Mike; Zhu, Beyuan

    2014-06-01

    With advancements in optical fiber technology, the incorporation of multiple sensing functionalities within a single fiber structure opens the possibility to deploy dielectric, fully distributed, long-length optical sensors in an extremely small cross section. To illustrate the concept, we designed and manufactured a multicore optical fiber with three graded-index (GI) multimode (MM) cores and one single mode (SM) core. The fiber was coated with both a silicone primary layer and an ETFE buffer for high temperature applications. The fiber properties such as geometry, crosstalk and attenuation are described. A method for coupling the signal from the individual cores into separate optical fibers is also presented.

  7. Fiber optic vibration sensor using bifurcated plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  8. Fiber-optic liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    1991-01-01

    A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

  9. Fiber-optic-bundle-based optical coherence tomography.

    PubMed

    Xie, Tuqiang; Mukai, David; Guo, Shuguang; Brenner, Matthew; Chen, Zhongping

    2005-07-15

    A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.

  10. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    PubMed

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  11. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    PubMed

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  12. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  13. Optical Fiber Thermometer Based on Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Rosli, Ekbal Bin; Mohd. Noor, Uzer

    2018-03-01

    Fiber Bragg grating has generated much interest in use as sensors to measure strain, temperature, and other physical parameters. It also the most common component used to develop this sensor with the advantages of simple, intrinsic sensing elements, electrically passive operation, EMI immunity, high sensitivity, compact size and potentially low cost [6]. This paper reports the design of an optical fiber thermometer based on fiber Bragg gratings. The system was developed for detecting temperature and strain by monitoring the shift of Bragg wavelength. The shifting of Bragg wavelength is used to indicate the temperature and strain due to the change in the surrounding temperature and strain. When the temperature and strain reach the exact wavelength level of the system, the temperature and strain value will display on the Arduino liquid crystal display (LCD). The optical fiber will provide the broadband light source and after passing the FBG the Bragg wavelength into the optical spectrum analyzer (OSA). The system is based on FBG as a physical quantity sensor. The temperatures measured is taken from the water bath and that of the strain is provided by amount of slotted mass used. The outcome of this project is to characterize the Bragg wavelength shifting from the fiber Bragg grating output. As the conclusion, this project provides an efficient optical fiber thermometer in measuring temperature and strain in order to replace the use of conventional electrical instruments.

  14. Microstructured Optical Fiber for X-ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  15. Synopsis of fiber optics in harsh environments

    NASA Astrophysics Data System (ADS)

    Pirich, Ronald

    2014-09-01

    Fiber optic technology is making significant advances for use in a number of harsh environments, such as air and space platforms. Many of these applications involve integration into systems which make extensive use of optical fiber for high bandwidth signal transmission. The large signal transmission bandwidth of optical fiber has a large and positive impact on the overall performance and weight of the cable harness. There are many benefits of fiber optic systems for air and space harsh environment applications, including minimal electromagnetic interference and environmental effects, lightweight and smaller diameter cables, greater bandwidth, integrated prognostics and diagnostics and the ability to be easily upgraded. To qualify and use a fiber optic cable in space and air harsh environments requires treatment of the cable assembly as a system and understanding the design and behavior of its parts. Many parameters affect an optical fiber's ability to withstand a harsh temperature and radiation environment. The space radiation environment is dependent on orbital altitude, inclination and time, contains energetic magnetically-trapped electrons in the outer Van Allen radiation belt, trapped protons in the inner belt and solar event protons and ions. Both transient and permanent temperature and radiation have an attenuation effect on the performance of the cable fiber. This paper presents an overview of defining fiber optic system and component performance by identifying operating and storage environmental requirements, using appropriate standards to be used in fiber optic cable assembly manufacturing and integration, developing inspection methods and fixtures compliant with the selected standards and developing a fiber optic product process that assures compliance with each design requirement.

  16. Liquid-filled hollow core microstructured polymer optical fiber.

    PubMed

    Cox, F M; Argyros, A; Large, M C J

    2006-05-01

    Guidance in a liquid core is possible with microstructured optical fibers, opening up many possibilities for chemical and biochemical fiber-optic sensing. In this work we demonstrate how the bandgaps of a hollow core microstructured polymer optical fiber scale with the refractive index of liquid introduced into the holes of the microstructure. Such a fiber is then filled with an aqueous solution of (-)-fructose, and the resulting optical rotation measured. Hence, we show that hollow core microstructured polymer optical fibers can be used for sensing, whilst also fabricating a chiral optical fiber based on material chirality, which has many applications in its own right.

  17. Great prospects for fiber optics sensors

    NASA Technical Reports Server (NTRS)

    Hansen, T. E.

    1983-01-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  18. Bidirectional optical coupler for plastic optical fibers.

    PubMed

    Sugita, Tatsuya; Abe, Tomiya; Hirano, Kouki; Itoh, Yuzo

    2005-05-20

    We have developed a low-loss bidirectional optical coupler for high-speed optical communication with plastic optical fibers (POFs). The coupler, which is fabricated by an injection molding method that uses poly (methyl methacrylate), has an antisymmetric tapered shape. We show that the coupler has low insertion and branching losses. The tapered shape of the receiving branch reduces beam diameter and increases detection efficiency coupling to a photodetector, whose area is smaller than that of the plastic optical fiber. The possibility of more than 15-m bidirectional transmission with a signaling bit rate up to 500 Mbits/s for simplex step-index POFs is demonstrated.

  19. Propagating modes in gain-guided optical fibers.

    PubMed

    Siegman, A E

    2003-08-01

    Optical fibers in which gain-guiding effects are significant or even dominant compared with conventional index guiding may become of practical interest for future high-power single-mode fiber lasers. I derive the propagation characteristics of symmetrical slab waveguides and cylindrical optical fibers having arbitrary amounts of mixed gain and index guiding, assuming a single uniform transverse profile for both the gain and the refractive-index steps. Optical fibers of this type are best characterized by using a complex-valued v-squared parameter in place of the real-valued v parameter commonly used to describe conventional index-guided optical fibers.

  20. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  1. Low-cost integrated-optic fiber couplers

    NASA Astrophysics Data System (ADS)

    Sheem, Sang K.; Zhang, Feng; Choi, Jong-Ho; Lee, Yong-Woo; Low, Sarah; Lu, Shih-Yau

    1997-04-01

    In an effort to lower the cost of fiber optic couplers, integrated optic channel waveguide circuits are made of a UV-curable polymer using a molding technique, and then a novel fiber-to-channel connecting approach is employed in which UV light radiating from an optical fiber core cures the polymer in the channel, thus accomplishing a 'touchdown' of the core-extension waveguide onto the walls of the channel waveguide.

  2. Microbend fiber-optic chemical sensor

    DOEpatents

    Weiss, Jonathan D.

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  3. Distributed Fiber-Optic Sensors for Vibration Detection

    PubMed Central

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  4. Distributed Fiber-Optic Sensors for Vibration Detection.

    PubMed

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  5. Optical fiber sensors for harsh environments

    DOEpatents

    Xu, Juncheng; Wang, Anbo

    2007-02-06

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  6. Fiber-Optic Strain Sensors With Linear Characteristics

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    Fiber-optic modal domain strain sensors having linear characteristics over wide range of strains proposed. Conceived in effort to improve older fiber-optic strain sensors. Linearity obtained by appropriate choice of design parameters. Pattern of light and dark areas at output end of optical fiber produced by interference between electromagnetic modes in which laser beam propagates in fiber. Photodetector monitors intensity at one point in pattern.

  7. Making Optical-Fiber Chemical Detectors More Sensitive

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.

  8. Optical Fibers Would Sense Local Strains

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.

  9. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    PubMed

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  10. Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.

    PubMed

    Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei

    2006-09-01

    A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.

  11. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  12. Optical Fiber Sensors for Advanced Civil Structures

    NASA Astrophysics Data System (ADS)

    de Vries, Marten Johannes Cornelius

    1995-01-01

    The objective of this dissertation is to develop, analyze, and implement optical fiber-based sensors for the nondestructive quantitative evaluation of advanced civil structures. Based on a comparative evaluation of optical fiber sensors that may be used to obtain quantitative information related to physical perturbations in the civil structure, the extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor is selected as the most attractive sensor. The operation of the EFPI sensor is explained using the Kirchhoff diffraction approach. As is shown in this dissertation, this approach better predicts the signal-to-noise ratio as a function of gap length than methods employed previously. The performance of the optical fiber sensor is demonstrated in three different implementations. In the first implementation, performed with researchers in the Civil Engineering Department at the University of Southern California in Los Angeles, optical fiber sensors were used to obtain quantitative strain information from reinforced concrete interior and exterior column-to-beam connections. The second implementation, performed in cooperation with researchers at the United States Bureau of Mines in Spokane, Washington, used optical fiber sensors to monitor the performance of roof bolts used in mines. The last implementation, performed in cooperation with researchers at the Turner-Fairbanks Federal Highway Administration Research Center in McLean, Virginia, used optical fiber sensors, attached to composite prestressing strands used for reinforcing concrete, to obtain absolute strain information. Multiplexing techniques including time, frequency and wavelength division multiplexing are briefly discussed, whereas the principles of operation of spread spectrum and optical time domain reflectometery (OTDR) are discussed in greater detail. Results demonstrating that spread spectrum and OTDR techniques can be used to multiplex optical fiber sensors are presented. Finally, practical

  13. Curved Piezoelectric Actuators for Stretching Optical Fibers

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  14. Emerging technology in fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Dyott, Richard B.

    1991-03-01

    Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709

  15. Sensitive Leptospira DNA detection using tapered optical fiber sensor.

    PubMed

    Zainuddin, Nurul H; Chee, Hui Y; Ahmad, Muhammad Z; Mahdi, Mohd A; Abu Bakar, Muhammad H; Yaacob, Mohd H

    2018-03-23

    This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical fiber cable chemical stripping fixture

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)

    1995-01-01

    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  17. Spectrum-Modulating Fiber-Optic Sensors

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus

    1989-01-01

    Family of spectrum-modulating fiber-optic sensors undergoing development for use in aircraft-engine control systems. Fiber-optic sensors offer advantages of small size, high bandwidth, immunity to electromagnetic interference, and light weight. Furthermore, they reduce number of locations on aircraft to which electrical power has to be supplied.

  18. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements

    PubMed Central

    Pérez-Prieto, Sandra; López-Cardona, Juan D.; Blanco, Enrique; Moreno-López, Jorge

    2018-01-01

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point. PMID:29415477

  19. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.

    PubMed

    Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C

    2018-02-06

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  20. Modulated-splitting-ratio fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter A.

    1988-01-01

    A fiber-optic temperature sensor is described, which uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  1. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    crystal fiber cladding . Advanced Optical Fibers for High Power Fiber Lasers http://dx.doi.org/10.5772/58958 223 lengths above the second-order mode cut...brightness multimode diode lasers for a given pump waveguide dimen‐ sion. In conventional double- clad fibers, low-index polymer coatings are typically used to...was below 0.2. The fiber was passive and there was no laser demonstration in this first attempt. The first cladding - pumping demonstration in an

  2. Tapered fiber nanoprobes: plasmonic nanopillars on tapered optical fiber tips for large EM enhancement.

    PubMed

    Savaliya, Priten; Dhawan, Anuj

    2016-10-01

    Employing finite difference time domain simulations, we demonstrate that electromagnetic field enhancement is substantially greater for tapered optical fibers with plasmonic nanostructures present on their tips as compared with non-tapered optical fibers having those plasmonic nanostructures, or with tapered optical fibers without the plasmonic nanostructures. We also carried out fabrication of plasmonic nanostructures on optical fiber tips.

  3. Intersubband absorption of p-type wurtzite GaN/AlN quantum well for fiber-optics telecommunication

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong

    2017-11-01

    The intersubband transition of wurtzite (WZ) p-type GaN/AlN quantum well (QW) structures grown on GaN substrate was investigated theoretically using the multiband effective-mass theory. The peak value of the TE-polarization absorption spectrum is found to be similar to that of the TM-polarization absorption spectrum. The absorption coefficients for TE- and TM-polarizations are mainly attributed to the absorption from the ground state (m1 = 1) because holes are mainly confined in ground states near the band-edge in an investigated range of the carrier density. We observe that a transition wavelength of 1.55 μm can be obtained for the QW structure with a relatively thin (˜16 Å) well width. Thus, we expect that a p-type WZ AlN/GaN heterostructure is applicable for a photodetector application for fiber-optic communications with normal incidence of wave.

  4. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    PubMed

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  5. Vibrating Optical Fibers to Make Laser Speckle Disappear

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley

    2005-01-01

    In optical systems in which laser illumination is delivered via multimode optical fibers, laser speckle can be rendered incoherent by a simple but highly effective technique. The need to eliminate speckle arises because speckle can make it difficult to observe edges and other sharp features, thereby making it difficult to perform precision alignment of optical components. The basic ideas of the technique is to vibrate the optical fiber(s) to cause shifting of electromagnetic modes within the fiber(s) and consequent shifting of the speckle pattern in the light emerging from the fiber(s). If the frequency of vibration is high enough, a human eye cannot follow the shifting speckle pattern, so that instead of speckle, a human observer sees a smoothed pattern of light corresponding to a mixture of many electromagnetic modes. If necessary, the optical fiber(s) could be vibrated manually. However, in a typical laboratory situation, it would be more practical to attach a vibrating mechanism to the fiber(s) for routine use as part of the fiber-optic illuminator. In experiments, a commercially available small, gentle, quiet, variable- speed vibratory device was used in this way, with the result that the appearance of speckle was eliminated, as expected. Figures 1 and 2 illustrate the difference.

  6. Defect center characteristics of silica optical fiber material by gamma ray radiation

    NASA Astrophysics Data System (ADS)

    Luo, Wenyun; Xiao, Zhongyin; Wen, Jianxiang; Yin, Jianchong; Chen, Zhenyi; Wang, Zihua; Wang, Tingyun

    2011-12-01

    Defect centers play a major role in the radiation-induced transmission loss for silica optical fibers. We have investigated characteristics of the best known defect centers E' in silica optical fiber material irradiated with γ ray at room temperature, and measured by using electron spin resonance (ESR) and spectrophotometer. The results show that the defect concentrations increase linearly with radiation doses from 1kGy to 50kGy. We have established the mechanism models of radiation induced defect centers' formation. We have also studied the influences of thermal annealing on defect centers. The radiation induced defect centers can be efficiently decreased by thermal annealing. Particularly, the defect concentration is less than the initial one when the temperature of thermal annealing is over 500°C for our silica samples. These phenomena can also be explained by the optical absorption spectra we have obtained.

  7. Optical-fiber-to-waveguide coupling using carbon-dioxide-laser-induced long-period fiber gratings.

    PubMed

    Bachim, Brent L; Ogunsola, Oluwafemi O; Gaylord, Thomas K

    2005-08-15

    Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing-demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.

  8. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating

    PubMed Central

    Zheng, Yulong; Bremer, Kort

    2018-01-01

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing. PMID:29734734

  9. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating.

    PubMed

    Zheng, Yulong; Bremer, Kort; Roth, Bernhard

    2018-05-05

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.

  10. Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications

    NASA Astrophysics Data System (ADS)

    de Andrés, A. I.; Esteban, Ó.; Embid, M.

    2017-08-01

    Gamma radiation detection in the range of 662 keV, the reference for environmental protection, is done through extrinsic optical fiber sensors. The fluorescence rendered by an inorganic scintillator when irradiated with such gamma rays is gathered by a modified polymer optical fiber tip. This modification increases the recorded signal when compared with plain unaltered fiber. Two fiber tip modification are then compared in terms of light gathering capability. A chemically etched fiber, in which the cladding and part of the core are removed, and a tapered fiber in which the core-cladding structure is kept. Both structures are comparable in length and final diameter, and show linear response in the tested range up to 2 Gy/h air Kerma rate. The etched fiber shows a higher slope than the tapered one, although both improve the signal gathered by a plain fiber tip. The easy fabrication and handling of the reported transducers, together with the improved signal gathering, allow to reduce the overall system budget with the use of low-cost optoelectronics in the detection stage. This offers a significant improvement for surveillance systems in radioprotection applications, in which presence of gamma radiation coming out accidental leakage or spurious sources activity is the main target.

  11. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    PubMed

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  12. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    PubMed Central

    Jenkins, R. Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay. PMID:28134815

  13. Optical fiber endface biosensor based on resonances in dielectric waveguide gratings

    NASA Astrophysics Data System (ADS)

    Wawro, Debra D.; Tibuleac, Sorin; Magnusson, Robert; Liu, Hanli

    2000-05-01

    A new fiber optic sensor integrating dielectric diffraction gratings and thin films on optical fiber endfaces is prosed for biomedical sensing applications. This device utilizes a resonant dielectric waveguide grating structure fabricated on an optical fiber endface to probe reactions occurring in a sensing layer deposited on its surface. The operation of this sensor is based upon a fundamental resonance effect that occurs in waveguide gratings. An incident broad- spectrum signal is guided within an optical fiber and is filtered to reflect or transmit a desired spectral band by the diffractive thin film structure on its endface. Slight changes in one or more parameters of the waveguide grating, such as refractive index or thickness, can result in a responsive shift of the reflected or transmitted spectral peak that can be detected with spectroscopic instruments. This new sensor concept combines improved sensitivity and accuracy with attractive features found separately in currently available fiber optic sensors, such as large dynamic range, small sensing proximity, real time operation, and remote sensing. Diffractive elements of this type consisting of a photoresist grating on a Si3N4 waveguide have been fabricated on multimode optical fiber endfaces with 100 micrometers cores. Preliminary experimental tests using a tunable Ti:sapphire laser indicate notches of 18 percent in the transmission spectrum of the fiber endface guided-mode resonance devices. A theoretical analysis of the device performance capabilities is presented and applied to evaluate the feasibility and potential advantages of this bioprobe.

  14. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  15. Machine Tests Optical Fibers In Flexure

    NASA Technical Reports Server (NTRS)

    Darejeh, Hadi; Thomas, Henry; Delcher, Ray

    1993-01-01

    Machine repeatedly flexes single optical fiber or cable or bundle of optical fibers at low temperature. Liquid nitrogen surrounds specimen as it is bent back and forth by motion of piston. Machine inexpensive to build and operate. Tests under repeatable conditions so candidate fibers, cables, and bundles evaluated for general robustness before subjected to expensive shock and vibration tests.

  16. Fiber-Optic/Photoelastic Flow Sensors

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Cabato, Nellie L.; Brooks, Edward F.

    1995-01-01

    Simple, rugged, lightweight transducers detect periodic vortices. Fiber-optic-coupled transducers developed to measure flows over wide dynamic ranges and over wide temperature ranges in severe environments. Used to measure flows of fuel in advanced aircraft engines. Feasibility of sensors demonstrated in tests of prototype sensor in water flowing at various temperatures and speeds. Particularly attractive for aircraft applications because optical fibers compact and make possible transmission of sensor signals at high rates with immunity from electromagnetic interference at suboptical frequencies. Sensors utilize optical-to-optical conversion via photoelastic effect.

  17. Optical fiber strain sensor with improved linearity range

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1995-01-01

    A strain sensor is constructed from a two mode optical fiber. When the optical fiber is surface mounted in a straight line and the object to which the optical fiber is mounted is subjected to strain within a predetermined range, the light intensity of any point at the output of the optical fiber will have a linear relationship to strain, provided the intermodal phase difference is less than 0.17 radians.

  18. MAS Bulletin. GY-90 Fiber Optic Gyro

    DTIC Science & Technology

    1989-07-20

    487 GY.9O Fiber Optic Gyro Background. Elettronica San Giorgio ELSAG S.p.A., Genoa, Italy, has developed a fiber optic gyro (FOG) for use on short...to the length of ELSAG S.p.A., Naval Systems Division, Via G. Puccini, 2-16154 the optical path and an extremely long optical path can be Genoa, Italy...Telephone 39 10/60011, Fax 39 10/607329, Telex achieved in a small size by using a many-turn coil of optical fiber. 270660/213847 ELSAG 1. There are

  19. Nonlinear waveguide optics and photonic crystal fibers.

    PubMed

    Knight, J C; Skryabin, D V

    2007-11-12

    Focus Serial: Frontiers of Nonlinear Optics

    Optical fibers and waveguides provide unique and distinct environments for nonlinear optics, because of the combination of high intensities, long interaction lengths, and control of the propagation constants. They are also becoming of technological importance. The topic has a long history but continues to generate rapid development, most recently through the invention of the new forms of optical fiber collectively known as photonic crystal fibers. Some of the discoveries and ideas from the new fibers look set to have lasting influence in the broader field of guided-wave nonlinear optics. In this paper we introduce some of these ideas.

  20. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  1. Nanosecond electrical and optical pulses and self phase conjugation from photorefractive lithium niobate fibers and crystals

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N.; Kukhtareva, T.; Curley, M.; Jaenisch, H. M.; Edwards, M. E.; Gu, M.; Zhou, Z.; Guo, R.

    2007-09-01

    We have observed nanosecond electrical and optical pulsations from photorefractive lithium-niobate optical fibers using CW green and blue low-power lasers. Fourier spectra of the pulsations have a maximum at ~900 MHz with peaks separated by ~30MHz. We consider free-space and fiber supported illumination of the fiber crystal. Strong nonlinear enhanced backscattering with phase conjugation was observed from bulk crystals and crystal fibers along the C-axis. Model of transformation of CW laser irradiation of ferroelectric crystals into periodic nanosecond electrical and optical pulsations is suggested. This model includes combinations of photorefractive, pyroelectric, piezoelectric, and photogalvanic mechanisms of the holographic grating formation and crystal electrical charging. Possible applications of these short photo-induced electrical pulses for modulation of holographic beam coupling, pulsed electrolysis, electrophoresis, focused electron beams, X-ray and neutron generation, and hand-held micro X-ray devices for localized oncology imaging and treatment based on our advanced sensor work are discussed.

  2. Decreasing diameter fluctuation of polymer optical fiber with optimized drawing conditions

    NASA Astrophysics Data System (ADS)

    Çetinkaya, Onur; Wojcik, Grzegorz; Mergo, Pawel

    2018-05-01

    The diameter fluctuations of poly(methyl methacrylate) based polymer optical fibers, during drawing processes, have been comprehensively studied. In this study, several drawing parameters were selected for investigation; such as drawing tensions, preform diameters, preform feeding speeds, and argon flows. Varied drawing tensions were used to draw fibers, while other parameters were maintained at constant. At a later stage in the process, micro-structured polymer optical fibers were drawn under optimized drawing conditions. Fiber diameter deviations were reduced to 2.2%, when a 0.2 N drawing tension was employed during the drawing process. Higher drawing tensions led to higher diameter fluctuations. The Young’s modulus of fibers drawn with different tensions was also measured. Our results showed that fiber elasticity increased as drawing tensions decreased. The inhomogeneity of fibers was also determined by comparing the deviation of Young’s modulus.

  3. Two classes of capillary optical fibers: refractive and photonic

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2008-11-01

    This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.

  4. Optical fiber meta-tips

    NASA Astrophysics Data System (ADS)

    Principe, Maria; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Consales, Marco; Esposito, Emanuela; La Ferrara, Vera; Galdi, Vincenzo; Cusano, Andrea

    2016-04-01

    We report on the first example of a "meta-tip" configuration that integrates a metasurface on the tip of an optical fiber. Our proposed design is based on an inverted-Babinet plasmonic metasurface obtained by patterning (via focused ion beam) a thin gold film deposited on the tip of an optical fiber, so as to realize an array of rectangular aperture nanoantennas with spatially modulated sizes. By properly tuning the resonances of the aperture nanoantennas, abrupt variations can be impressed in the field wavefront and polarization. We fabricated and characterized several proof-of-principle prototypes operating an near-infrared wavelengths, and implementing the beam-steering (with various angles) of the cross-polarized component, as well as the excitation of surface waves. Our results pave the way to the integration of the exceptional field-manipulation capabilities enabled by metasurfaces with the versatility and ubiquity of fiber-optics technological platforms.

  5. Superlattice Microstructured Optical Fiber

    PubMed Central

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  6. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    August, R. R.

    1981-01-01

    Low-cost, rugged lightweight accelerometer has been developed that converts mechanical motion into digitized optical outputs and is immune to electromagnetic and electrostatic interferences. Instrument can be placed in hostile environment, such as engine under test, and output led out through miscellany of electrical fields, high temperatures, etc., by optic fiber cables to benign environment of test panel. There, digitized optical signals can be converted to electrical signals for use in standard electrical equipment or used directly in optical devices, such as optical digital computer.

  7. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  8. Optical fiber dispersion characterization study

    NASA Technical Reports Server (NTRS)

    Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.

    1979-01-01

    The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.

  9. Fabrication of Fiber Optic Grating Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)

    2005-01-01

    An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.

  10. Study of fiber optics standardization, reliability, and applications

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The use of fiber optics in space applications is investigated. Manufacturers and users detailed the problems they were having with the use or manufacture of fiber optic components. The general consensus of all the companies/agencies interviewed is that fiber optics is a maturing technology and will definitely have a place in future NASA system designs. The use of fiber optics was found to have two main advantages - weight savings and increased bandwidth.

  11. Portable fiber-optic taper coupled optical microscopy platform

    NASA Astrophysics Data System (ADS)

    Wang, Weiming; Yu, Yan; Huang, Hui; Ou, Jinping

    2017-04-01

    The optical fiber taper coupled with CMOS has advantages of high sensitivity, compact structure and low distortion in the imaging platform. So it is widely used in low light, high speed and X-ray imaging systems. In the meanwhile, the peculiarity of the coupled structure can meet the needs of the demand in microscopy imaging. Toward this end, we developed a microscopic imaging platform based on the coupling of cellphone camera module and fiber optic taper for the measurement of the human blood samples and ascaris lumbricoides. The platform, weighing 70 grams, is based on the existing camera module of the smartphone and a fiber-optic array which providing a magnification factor of 6x.The top facet of the taper, on which samples are placed, serves as an irregular sampling grid for contact imaging. The magnified images of the sample, located on the bottom facet of the fiber, are then projected onto the CMOS sensor. This paper introduces the portable medical imaging system based on the optical fiber coupling with CMOS, and theoretically analyzes the feasibility of the system. The image data and process results either can be stored on the memory or transmitted to the remote medical institutions for the telemedicine. We validate the performance of this cell-phone based microscopy platform using human blood samples and test target, achieving comparable results to a standard bench-top microscope.

  12. Microwave fiber optics delay line

    NASA Astrophysics Data System (ADS)

    Slayman, C.; Yen, H. W.

    1980-01-01

    A microwave delay line is one of the devices used in EW systems for preserving the frequency and phase contents of RF signals. For such applications, delay lines are required to have large dynamic range, wide bandwidth, low insertion loss, and a linear response. The basic components of a fiber-optics delay line are: an optical source, a wideband optical modulator, a spool of single-mode fiber with appropriate length to provide a given microwave signal delay, and a high-speed photodetector with an RF amplifier. This contract program is to study the feasibility of such a fiber-optic delay line in the frequency range of 4.0 to 6.5 GHz. The modulation scheme studied is the direct modulation of injection lasers. The most important issue identified is the frequency response of the injection laser and the photodetector.

  13. Textile Pressure Sensor Made of Flexible Plastic Optical Fibers

    PubMed Central

    Rothmaier, Markus; Luong, Minh Phi; Clemens, Frank

    2008-01-01

    In this paper we report the successful development of pressure sensitive textile prototypes based on flexible optical fibers technology. Our approach is based on thermoplastic silicone fibers, which can be integrated into woven textiles. As soon as pressure at a certain area of the textile is applied to these fibers they change their cross section reversibly, due to their elastomeric character, and a simultaneous change in transmitted light intensity can be detected. We have successfully manufactured two different woven samples with fibers of 0.51 and 0.98 mm diameter in warp and weft direction, forming a pressure sensitive matrix. Determining their physical behavior when a force is applied shows that pressure measurements are feasible. Their usable working range is between 0 and 30 N. Small drifts in the range of 0.2 to 4.6%, over 25 load cycles, could be measured. Finally, a sensor array of 2 × 2 optical fibers was tested for sensitivity, spatial resolution and light coupling between fibers at intersections. PMID:27879938

  14. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    PubMed

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  15. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  16. Fiber optic cables for severe environment

    NASA Astrophysics Data System (ADS)

    Massarani, M. G.

    1982-10-01

    The most severe challenges to the fiber optic cable are related to nuclear weapons testing and other military applications. Nuclear experiments are conducted in deep underground holes. Cables connect the experimental device to recording stations positioned at a certain distance from ground zero. Attractive features provided by fiber optic cable technology include large cost advantages in cable purchase price, savings in handling cost due to the lighter weight, immunity to electromagnetic pulses (EMP), and the capability to transmit high data rates. Details of underground nuclear testing are discussed, taking into account the underground nuclear test environment, and questions of fiber optic cable design for the underground experiments. The use of fiber optics for the Ground Launched Cruise Missile Weapons System (GLCM) is also considered. Attention is given to the GLCM environment, and the proposed cable for GLCM application.

  17. Fiber Optic Temperature Sensor Insert for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)

    2017-01-01

    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  18. Flight testing of a fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Finney, M. J.; Tregay, G. W.; Calabrese, P. R.

    1993-01-01

    A fiber optic temperature sensor (FOTS) system consisting of an optical probe, a flexible fiber optic cable, and an electro-optic signal processor was fabricated to measure the gas temperature in a turbine engine. The optical probe contained an emissive source embedded in a sapphire lightguide coupled to a fiber-optic jumper cable and was retrofitted into an existing thermocouple probe housing. The flexible fiber optic cable was constructed with 200 micron core, polyimide-coated fiber and was ruggedized for an aircraft environment. The electro-optic signal processing unit was used to ratio the intensities of two wavelength intervals and provided an analog output value of the indicated temperature. Subsequently, this optical sensor system was installed on a NASA Dryden F-15 Highly Integrated Digital Electronic Control (HIDEC) Aircraft Engine and several flight tests were conducted. Over the course of flight testing, the FOTS system's response was proportional to the average of the existing thermocouples sensing the changes in turbine engine thermal conditions.

  19. Integrated Optical Circuit Engineering For Optical Fiber Gyrocopes

    NASA Astrophysics Data System (ADS)

    Bristow, Julian P.; We, Albert C.; Keur, M.; Lukas, Greg; Ott, Daniel M...; Sriram, S.

    1988-03-01

    Fiber optic gyroscopes are of interest for low-cost, high performance rotation sensors. Integrated optical implementations of the processing optics offer the hope of mass-production, and associated cost reductions. The development of a suitable integrated optical system has been reported by other authors at a wavelength of 850nm [1]. Despite strong technical advantages at 1.3μm wavelength [2], no results have yet appeared. This wavelength is preferred for telecommunications applications applications, thus significantly reduced fiber costs may be realized. Lithium niobate is relatively immune from the photorefractive effect at this wavelength, whereas it is not at at 850nm [3].

  20. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  1. Mid-IR soliton compression in silicon optical fibers and fiber tapers.

    PubMed

    Peacock, Anna C

    2012-03-01

    Numerical simulations are used to investigate soliton compression in silicon core optical fibers at 2.3 μm in the mid-infrared waveguide regime. Compression in both standard silicon fibers and fiber tapers is compared to establish the relative compression ratios for a range of input pulse conditions. The results show that tapered fibers can be used to obtain higher levels of compression for moderate soliton orders and thus lower input powers. © 2012 Optical Society of America

  2. Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers.

    PubMed

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jinsoo; Han, Ki-Tek; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2011-01-01

    A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.

  3. FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.

    1992-02-01

    A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.

  4. FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers

    NASA Astrophysics Data System (ADS)

    Bulyuk, A. N.

    1992-10-01

    The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.

  5. Fiber optic diffraction grating maker

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  6. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  7. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  8. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  9. Optical Sensors Based on Plastic Fibers

    PubMed Central

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  10. Optical sensors based on plastic fibers.

    PubMed

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  11. Optical properties of γ-irradiated Bombyx mori silk fibroin films

    NASA Astrophysics Data System (ADS)

    Madhukumar, R.; Asha, S.; Lakshmeesha Rao, B.; Sarojini, B. K.; Byrappa, K.; Wang, Youjiang; Sangappa, Y.

    2015-11-01

    In the present work the Bombyx mori silk fibroin (SF) films were prepared by the solution casting method and effects of γ-irradiation on the optical properties and optical constants of the films have been studied by using Ultra Violet-Visible (UV-Vis) spectrophotometer. The recorded UV-Vis absorption and transmission spectra have been used to determine the optical band gap (Eg), refractive index (n), extinction coefficient (k), optical conductivity (σopt) and dielectric constants (ε*) of virgin and γ-irradiated films. Reduction in optical band gap and increase in refractive index with increasing radiation dosage were observed. It is also found that there is an increase in dielectric constants with increasing photon energy. The obtained results reveal that the refractive index of the SF films may be efficiently changed by γ-irradiation.

  12. Fiber optically isolated and remotely stabilized data transmission system

    DOEpatents

    Nelson, Melvin A.

    1992-01-01

    A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.

  13. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    NASA Astrophysics Data System (ADS)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  14. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOEpatents

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  15. Embedded fiber optic ultrasonic sensors and generators

    NASA Astrophysics Data System (ADS)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  16. Computational imaging through a fiber-optic bundle

    NASA Astrophysics Data System (ADS)

    Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.

    2017-05-01

    Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.

  17. Femtosecond laser inscription of optical circuits in the cladding of optical fibers

    NASA Astrophysics Data System (ADS)

    Grenier, Jason R.

    The aim of this dissertation was to address the question of whether the cladding of single-mode fibers (SMFs) could be modified to enable optical fibers to serve as a more integrated, highly functional platform for optical circuit devices that can efficiently interconnect with the pre-existing fiber core waveguide. The approach adopted in this dissertation was to employ femtosecond laser direct writing (FLDW), an inherently 3D fabrication technique that harnesses non-linear laser-material interactions to modify the fused silica fiber cladding. A fiber mounting and alignment technique was developed along with oil-immersion focusing to address the strong aberrations caused by the cylindrical fiber shape. The development of real-time device monitoring during the FLDW was instrumental to overcome the acute coupling sensitivity to laser alignment errors of +/-1 ?m positional uncertainty, and thereby opened a new practical direction for the precise fabrication of optical devices inside optical fibers. These powerful and flexible laser fabrication and characterization techniques were successfully employed to optimize optical waveguiding devices positioned within the core and cladding of optical fibers. X-, S-Bend, and directional couplers were developed to enable efficient coupling between the laser-formed cladding devices and the pre-existing core waveguide, enabling up to 62% power transfer over bandwidths up to 300 nm at telecommunication wavelengths. Precise alignment of femtosecond laser modification tracks were positioned inside or near the core waveguide of SMFs was further shown to enable a flexible reshaping of the optical properties to create multimode guiding sections arbitrarily along the fiber length. This core waveguide modification facilitated the precise formation of multimode interferometers along the core waveguide to precisely tailor the modal profiles, and control the spectral and polarization response. In-fiber multimode interference (MMI) splitters

  18. Performance of optical fibers in space radiation environment

    NASA Astrophysics Data System (ADS)

    Alam, M.; Abramczyk, J.; Manyam, U.; Farroni, J.; Guertin, D.

    2017-11-01

    The use of optical fibers in low earth orbiting (LEO) satellites is a source of concern due to the radiation environment in which these satellites operate and the reliability of devices based on these fibers. Although radiation induced damage in optical fibers cannot be avoided, it can certainly be minimized by intelligent engineering. Qualifying fibers for use in space is both time consuming and expensive, and manufacturers of satellites and their payloads have started to ask for radiation performance data from optical fiber vendors. Over time, Nufern has developed fiber designs, compositions and processes to make radiation hard fibers. Radiation performance data of a variety of fibers that find application in space radiation environment are presented.

  19. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  20. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium

  1. Dispersion properties of plasma cladded annular optical fiber

    NASA Astrophysics Data System (ADS)

    KianiMajd, M.; Hasanbeigi, A.; Mehdian, H.; Hajisharifi, K.

    2018-05-01

    One of the considerable problems in a conventional image transferring fiber optic system is the two-fold coupling of propagating hybrid modes. In this paper, using a simple and practical analytical approach based on exact modal vectorial analysis together with Maxwell's equations, we show that applying plasma as a cladding medium of an annular optical fiber can remove this defect of conventional fiber optic automatically without any external instrument as the polarization beam splitter. Moreover, the analysis indicates that the presence of plasma in the proposed optical fiber could extend the possibilities for controlling the propagation property. The proposed structure presents itself as a promising route to advanced optical processing and opens new avenues in applied optics and photonics.

  2. Fiber optically isolated and remotely stabilized data transmission system

    DOEpatents

    Nelson, M.A.

    1992-11-10

    A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.

  3. Fiber optic diffraction grating maker

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  4. Optical fiber sensor based on a polymer optical fiber macro-bend to study thermal expansion of metals

    NASA Astrophysics Data System (ADS)

    Pakdeevanich, Paradorn

    2018-05-01

    Thermal expansion is an important parameter for characterization of metals. As metal is heated, the molecules vibrate more violently and expand in all direction. Investigators have focused to study the thermal strain. However, the amount of expansion is difficult to measure. An attempt has been made to develop an apparatus using optical technique. The principle of this system is the transformation of length changes into changes of light intensity. The purpose of this work is to design and develop an optical fiber sensor based on a macro-bend of a polymer optical fiber. In this system, thermal expansion of metal was converted into the rolling of a needle in which placed beneath a flat bar of metal. Optical fiber sensor was attached to the ended section of a needle. As the crimp tube of the fiber sensor was moved due to thermal expansion of metal, the bend radii of optical fiber sensor was changed. As a sequence, the loss induced by the bending effect was depended on the expansion of metal that changed with temperature. In this study, we utilized optical fiber sensor to monitor and compare the thermal expansion of copper, brass and aluminum. According to our experimental results, the linear response with temperature was reported. The measured values of coefficient of thermal expansion was analyzed to be 0.45, 0.35 and 0.32 a.u./°C for aluminum bar, brass bar and copper bar, respectively. In addition, the effect of the size of the diameter of a needle on the response of bending loss was investigated.

  5. Rugged fiber optic probe for raman measurement

    DOEpatents

    O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.

    1998-01-01

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  6. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  7. Improvement of electrical and optical properties of p-GaN Ohmic metals under ultraviolet light irradiation annealing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, S.W.; Yoon, S.K.; Kwak, J.S.

    2006-05-15

    We report the improvement of electrical and optical properties of p-GaN Ohmic metals, ZnNi(10 nm)/Au(10 nm), by ultraviolet (UV) light irradiation. After UV light irradiation, the specific contact resistance of p-GaN decreased slightly from 2.99x10{sup -4} to 2.54x10{sup -4} {omega} cm{sup 2}, while the transmittance of the contact layer increased form 75% to 85% at a wavelength of 460 nm. In addition, the forward voltage of InGaN/GaN light-emitting diode chip at 20 mA decreased from 3.55 to 3.45 V, and the output power increased form 18 to 25 mW by UV light irradiation. The low resistance and high transmittance ofmore » the p-GaN Ohmic metals are attributed to the reduced Shottky barrier by the formation of gallium oxide and the increased oxidation of p-Ohmic metals, respectively, due to ozone generated form oxygen during UV light irradiation.« less

  8. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  9. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  10. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  11. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  12. 46 CFR 111.60-6 - Fiber optic cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fiber optic cable. 111.60-6 Section 111.60-6 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-6 Fiber optic cable. Each fiber optic cable must— (a) Be...

  13. An optical fiber guided ultrasonic excitation and sensing system for online monitoring of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, H.; Sohn, H.

    2012-05-01

    This study presents an embedded laser ultrasonic system for pipeline monitoring under high temperature environment. Recently, laser ultrasonics is becoming popular because of their advantageous characteristics such as (a) noncontact inspection, (b) immunity against electromagnetic interference (EMI), and (c) applicability under high temperature. However, the performance of conventional laser ultrasonic techniques for pipeline monitoring has been limited because many pipelines are covered by insulating materials and target surfaces are inaccessible. To overcome the problem, this study designs an embeddable optical fibers and fixing devices that deliver laser beams from laser sources to a target pipe using embedded optical fibers. For guided wave generation, an optical fiber is furnished with a beam collimator for irradiating a laser beam onto a target structure. The corresponding response is measured based on the principle of laser interferometry. Light from a monochromatic source is colliminated and delivered to a target surface by another optical with a focusing module, and reflected light is transmitted back to the interferometer through the same fiber. The feasibility of the proposed system for embedded ultrasonic measurement has been experimentally verified using a pipe specimen under high temperature.

  14. Low-temperature hermetic sealing of optical fiber components

    DOEpatents

    Kramer, D.P.

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fiber components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber. 5 figs.

  15. Ultra-low-loss optical fiber nanotapers.

    PubMed

    Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David

    2004-05-17

    Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

  16. N-dark-dark solitons for the coupled higher-order nonlinear Schrödinger equations in optical fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Qiang; Wang, Yue

    2017-11-01

    In this paper, we construct the binary Darboux transformation on the coupled higher-order dispersive nonlinear Schrödinger equations in optical fibers. We present the N-fold iterative transformation in terms of the determinants. By the limit technique, we derive the N-dark-dark soliton solutions from the non-vanishing background. Based on the obtained solutions, we find that the collision mechanisms of dark vector solitons exhibit the standard elastic collisions in both two components.

  17. PCS optical fibers for an automobile data bus

    NASA Astrophysics Data System (ADS)

    Clarkin, James P.; Timmerman, Richard J.; Stolte, Gary W.; Klein, Karl-Friedrich

    2005-02-01

    Optical fibers have been used for data communications in automobiles for several years. The fiber of choice thus far has been a plastic core/plastic clad optical fiber (POF) consisting of the plastic polymethylmethacrylate (PMMA). The POF fiber provides a low cost fiber with relatively easy termination. However, increasing demands regarding temperature performance, transmission losses and bandwidth have pushed the current limits of the POF fiber, and the automotive industry is now moving towards an optical fiber with a silica glass core/plastic clad (PCS). PCS optical fibers have been used successfully in industrial, medical, sensor, military and data communications systems for over two decades. The PCS fiber is now being adapted specifically for automotive use. In the following, the design criteria and design alternatives for the PCS as well as optical, thermal, and mechanical testing results for key automotive parameters are described. The fiber design tested was 200&mum synthetic silica core/230&mum fluoropolymer cladding/1510&mum nylon buffer. Key attributes such as 700 - 900 nm spectral attenuation, 125°C thermal soak, -40 to 125°C thermal cycling, bending losses, mechanical strength, termination capability, and cost are discussed and compared. Overall, a specifically designed PCS fiber is expected to be acceptable for the use in an automotive data bus, and will show improvement in optical transmission, temperature range and bandwidth. However, the final selection of buffer and jacket materials and properties will be most dependent on the selection of a reliable and economical termination method.

  18. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  19. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  20. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  1. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  2. 21 CFR 872.4620 - Fiber optic dental light.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  3. Fiber Optics: A New World of Possibilities in Light.

    ERIC Educational Resources Information Center

    Hutchinson, John

    1990-01-01

    The background and history of light and fiber optics are discussed. Applications for light passed either directly or indirectly through optical fibers are described. Suggestions for science activities that use fiber optics are provided. (KR)

  4. Rayleigh scattering in few-mode optical fibers.

    PubMed

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  5. AVIRIS foreoptics, fiber optics and on-board calibrator

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P.; Chrien, Thomas G.; Steimle, L.

    1987-01-01

    The foreoptics, fiber optic system and calibration source of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are described. The foreoptics, based on a modified Kennedy scanner, is coupled by optical fibers to the four spectrometers. The optical fibers allow convenient positioning of the spectrometers in the limited space and enable simple compensation of the scanner's thermal defocus (at the -23 C operating temp) by active control of the fiber focal plane position. A challenging requirement for the fiber optic system was the transmission to the spectral range 1.85 to 2.45 microns at .45 numerical aperture. This was solved with custom fluoride glass fibers from Verre Fluore. The onboard calibration source is also coupled to the spectrometers by the fibers and provides two radiometric levels and a reference spectrum to check the spectrometers' alignment. Results of the performance of the assembled subsystems are presented.

  6. Random-hole optical fiber evanescent-wave gas sensing.

    PubMed

    Pickrell, G; Peng, W; Wang, A

    2004-07-01

    Research on development of optical gas sensors based on evanescent-wave absorption in random-hole optical fibers is described. A process to produce random-hole optical fibers was recently developed that uses a novel in situ bubble formation technique. Gas molecules that exhibit characteristic vibrational absorption lines in the near-IR region that correspond to the transmission window for silica optical fiber have been detected through the evanescent field of the guided mode in the pore region. The presence of the gas molecules in the holes of the fiber appears as a loss at wavelengths that are characteristic of the particular gas species present in the holes. An experimental setup was constructed with these holey fibers for detection of acetylene gas. The results clearly demonstrate the characteristic absorptions in the optical spectra that correspond to the narrow-line absorptions of the acetylene gas, and this represents what is to our knowledge the first report of random-hole fiber gas sensing in the literature.

  7. Cable delay compensator for microwave signal distribution over optical fibers

    NASA Astrophysics Data System (ADS)

    Primas, Lori E.

    1990-12-01

    The basic principles of microwave fiber-optic systems are outlined with emphasis on fiber-optic cable delay compensators (CDC). Degradation of frequency and phase stability is considered, and it is pointed out that the long-term stability of a fiber-optic link is degraded by group delay variations due to temperature fluctuations in the optical fiber and low-frequency noise characteristics of the laser. A CDC employing a voltage-controlled oscillator to correct for phase variations in the optical fiber is presented, and the static as well as dynamic closed-loop analyses of the fiber-optic CDC are discussed. A constructed narrow-band fiber-optic CDC is shown to reduce phase variations caused by temperature fluctuations by a factor of 400. A wide-band CDC utilizing a temperature-controlled coil of fiber to compensate for phase delay is also proposed.

  8. Normal dispersion femtosecond fiber optical parametric oscillator.

    PubMed

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  9. Optical Fiber Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  10. Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.

    PubMed

    Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo

    2015-04-20

    A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis.

  11. Optical-Fiber-Welding Machine

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Mann, W. A.; Goldstein, R.

    1985-01-01

    Technique yields joints with average transmissivity of 91.6 percent. Electric arc passed over butted fiber ends to melt them together. Maximum optical transmissivity of joint achieved with optimum choice of discharge current, translation speed, and axial compression of fibers. Practical welding machine enables delicate and tedious joining operation performed routinely.

  12. Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands.

    PubMed

    Lu, Hai-Han; Wu, Hsiao-Wen; Li, Chung-Yi; Ho, Chun-Ming; Yang, Zih-Yi; Cheng, Ming-Te; Lu, Chang-Kai

    2017-05-01

    A bidirectional fiber-invisible laser light communication (IVLLC) and fiber-wireless convergence system with two orthogonally polarized optical sidebands for hybrid cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and experimentally demonstrated. Two optical sidebands generated by a 60-GHz MMW signal are orthogonally polarized and separated into different polarizations. These orthogonally polarized optical sidebands are delivered over a 40-km single-mode fiber (SMF) transport to effectually reduce the fiber dispersion induced by a 40-km SMF transmission and the distortion caused by the parallel polarized optical sidebands. To the best of our knowledge, this work is the first to adopt two orthogonally polarized optical sidebands in a bidirectional fiber-IVLLC and fiber-wireless convergence system to reduce fiber dispersion and distortion effectually. Good carrier-to-noise ratio, composite second order, composite triple beat, and bit error rate (BER) are achieved for downlink transmission at a 40-km SMF operation and a 100-m free-space optical (FSO) link/3-m RF wireless transmission. For up-link transmission, good BER performance is acquired over a 40-km SMF transport and a 100-m FSO link. The approach presented in this work signifies the advancements in the convergence of SMF-based backbone and optical/RF wireless-based feeder.

  13. Characterization and application of optical fibers: 1. Application of optical fibers in gas concentration and radiation dose measurements. 2. Polarization effects in fiber communication systems

    NASA Astrophysics Data System (ADS)

    Lu, Ping

    The thesis consists of two research directions: Optical fiber applications in gas concentration and radiation dose measurements; and polarization effects in fiber optic communication systems. Part I of the thesis presents two optical fiber applications. (1) An infrared (IR) fiber bundle has been designed and fabricated to measure gas concentrations in a chemical vapor deposition (CVD) chamber using Fourier transform infrared spectroscopy. This fiber bundle covers the IR range from 0.5 to 20 mum and reduces the light beam divergence in the CVD chamber, which makes it possible to measure gas concentrations in a region near the substrate surface. Semi-ellipsoid mirrors have been designed and used to increase the collection efficiency of infrared radiation and to compensate the loss introduced by the fiber bundle. (2) A fiber optic radiation sensor based on radiation-induced fiber loss is reported. The gamma radiation-induced loss spectra in various fibers have been studied. Among all the fibers tested, 5% P-doped fiber shows the highest sensitivity to gamma radiation. The wavelength and dose rate dependence of radiation-induced loss in 5% P-doped fiber are investigated and the possibility of using this fiber as a radiation sensor for radiation therapy is discussed. Part II of the thesis examines two polarization effects, polarization mode dispersion (PMD) and polarization dependent loss (PDL), in fiber optic communication systems based on the waveplate models. A new waveplate model, capable of generating any PMD and PDL values, is proposed to overcome the limitations of the conventional waveplate model. Using both models the statistical distributions of PDL and differential group delay (DGD) have been studied considering the presence of biased elliptical birefringence. The principal state of polarization (PSP) of an optical pulse is proposed for a fiber having both PMD and PDL. PMD and PDL of a pulse for a fiber consisting of two polarization maintaining fiber

  14. Fiber-optic interconnection networks for spacecraft

    NASA Technical Reports Server (NTRS)

    Powers, Robert S.

    1992-01-01

    The overall goal of this effort was to perform the detailed design, development, and construction of a prototype 8x8 all-optical fiber optic crossbar switch using low power liquid crystal shutters capable of operation in a network with suitable fiber optic transmitters and receivers at a data rate of 1 Gb/s. During the earlier Phase 1 feasibility study, it was determined that the all-optical crossbar system had significant advantages compared to electronic crossbars in terms of power consumption, weight, size, and reliability. The result is primarily due to the fact that no optical transmitters and receivers are required for electro-optic conversion within the crossbar switch itself.

  15. Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.

    PubMed

    Liang, Xiaojun; Kumar, Shiva

    2017-03-06

    We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.

  16. Development of an optical fiber flow velocity sensor.

    PubMed

    Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki

    2009-01-01

    A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.

  17. Experimental study of optical fibers influence on composite

    NASA Astrophysics Data System (ADS)

    Liu, Rong-Mei; Liang, Da-Kai

    2010-03-01

    Bending strength and elasticity modulus of composite, with and without embedded optical fibers, were experimentally studied. Two kinds of laminates, which were denoted as group 1 and group 2, were fabricated from an orthogonal woven glass/epoxy prepreg. Since the normal stress value becomes the biggest at the surface of a beam, the optical fibers were embedded at the outmost layer and were all along the loading direction. Four types of materials, using each kind of laminated prepreg respectively, were manufactured. The embedded optical fibers for the 4 material types were 0, 10, 30 and 50 respectively. Three-point bending tests were carried out on the produced specimens to study the influence of embedded optical fiber on host composite. The experimental results indicated that the materials in group 2 were more sensitive to the embedded optical fibers.

  18. Highly sensitive evanescent wave combination tapered fiber optic fluorosensor for protein detection

    NASA Astrophysics Data System (ADS)

    Nardone, Vincent; Kapoor, Rakesh

    2008-02-01

    In this paper we are reporting the development of a highly sensitive evanescent wave combination tapered fiber optic fluorosensor. We have demonstrated detection of 5 pM Bovine Serum Albumin (BSA) protein using these fiber optic sensors. The sensor can be easily adopted for detection of other proteins. Six identical probes were prepared and affinity pure Goat anti-BSA antibodies were immobilized on the probe surface. We could detect signal from all the probes kept in 5 pM to 1 nM BSA solution while no signal was detected from the probes kept in 20 nM labeled ESA solution.

  19. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    PubMed

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  20. Recent Development in Optical Fiber Biosensors

    PubMed Central

    Bosch, María Espinosa; Sánchez, Antonio Jesús Ruiz; Rojas, Fuensanta Sánchez; Ojeda, Catalina Bosch

    2007-01-01

    Remarkable developments can be seen in the field of optical fibre biosensors in the last decade. More sensors for specific analytes have been reported, novel sensing chemistries or transduction principles have been introduced, and applications in various analytical fields have been realised. This review consists of papers mainly reported in the last decade and presents about applications of optical fiber biosensors. Discussions on the trends in optical fiber biosensor applications in real samples are enumerated.

  1. Supersymmetric Transformations in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Macho, Andrés; Llorente, Roberto; García-Meca, Carlos

    2018-01-01

    Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.

  2. Fiber optic plantar pressure/shear sensor

    NASA Astrophysics Data System (ADS)

    Soetanto, William; Nguyen, Ngoc T.; Wang, Wei-Chih

    2011-04-01

    A full-scale foot pressure/shear sensor that has been developed to help diagnose the cause of ulcer formation in diabetic patients is presented. The design involves a tactile sensor array using intersecting optical fibers embedded in soft elastomer. The basic configuration incorporates a mesh that is comprised of two sets of parallel optical fiber plane; the planes are configured so the parallel rows of fiber of the top and bottom planes are perpendicular to each other. Threedimensional information is determined by measuring the loss of light from each of the waveguide to map the overall pressure distribution and the shifting of the layers relative to each other. In this paper we will present the latest development on the fiber optic plantar pressure/shear sensor which can measure normal force up from 19.09 kPa to 1000 kPa.

  3. Transverse strain measurements using fiber optic grating based sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor)

    1998-01-01

    A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.

  4. Vibro-Perception of Optical Bio-Inspired Fiber-Skin.

    PubMed

    Li, Tao; Zhang, Sheng; Lu, Guo-Wei; Sunami, Yuta

    2018-05-12

    In this research, based on the principle of optical interferometry, the Mach-Zehnder and Optical Phase-locked Loop (OPLL) vibro-perception systems of bio-inspired fiber-skin are designed to mimic the tactile perception of human skin. The fiber-skin is made of the optical fiber embedded in the silicone elastomer. The optical fiber is an instinctive and alternative sensor for tactile perception with high sensitivity and reliability, also low cost and susceptibility to the magnetic interference. The silicone elastomer serves as a substrate with high flexibility and biocompatibility, and the optical fiber core serves as the vibro-perception sensor to detect physical motions like tapping and sliding. According to the experimental results, the designed optical fiber-skin demonstrates the ability to detect the physical motions like tapping and sliding in both the Mach-Zehnder and OPLL vibro-perception systems. For direct contact condition, the OPLL vibro-perception system shows better performance compared with the Mach-Zehnder vibro-perception system. However, the Mach-Zehnder vibro-perception system is preferable to the OPLL system in the indirect contact experiment. In summary, the fiber-skin is validated to have light touch character and excellent repeatability, which is highly-suitable for skin-mimic sensing.

  5. Fiber optic evanescent wave biosensor

    NASA Astrophysics Data System (ADS)

    Duveneck, Gert L.; Ehrat, Markus; Widmer, H. M.

    1991-09-01

    The role of modern analytical chemistry is not restricted to quality control and environmental surveillance, but has been extended to process control using on-line analytical techniques. Besides industrial applications, highly specific, ultra-sensitive biochemical analysis becomes increasingly important as a diagnostic tool, both in central clinical laboratories and in the doctor's office. Fiber optic sensor technology can fulfill many of the requirements for both types of applications. As an example, the experimental arrangement of a fiber optic sensor for biochemical affinity assays is presented. The evanescent electromagnetic field, associated with a light ray guided in an optical fiber, is used for the excitation of luminescence labels attached to the biomolecules in solution to be analyzed. Due to the small penetration depth of the evanescent field into the medium, the generation of luminescence is restricted to the close proximity of the fiber, where, e.g., the luminescent analyte molecules combine with their affinity partners, which are immobilized on the fiber. Both cw- and pulsed light excitation can be used in evanescent wave sensor technology, enabling the on-line observation of an affinity assay on a macroscopic time scale (seconds and minutes), as well as on a microscopic, molecular time scale (nanoseconds or microseconds).

  6. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  7. Nonlinear optics in hollow-core photonic bandgap fibers.

    PubMed

    Bhagwat, Amar R; Gaeta, Alexander L

    2008-03-31

    Hollow-core photonic-bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. In this review we summarize the nonlinear optics experiments that have been performed using these hollow-core fibers.

  8. Clinical in vivo dosimetry using optical fibers.

    PubMed

    Gripp, S; Haesing, F W; Bueker, H; Schmitt, G

    1998-01-01

    Discoloring of glass due to ionizing radiation depends on the absorbed dose. The radiation-induced light attenuation in optical fibers may be used as a measure of the dose. In high-energy photon beams (6 MV X rays), a lead-doped silica fiber can be calibrated. A dosimeter based on an optical fiber was developed for applications in radiation therapy. The diameter of the mounted fiber is 0.25 mm, whereas the length depends on the sensitivity required. To demonstrate the applicability, a customized fiber device was used to determine scattered radiation close to the lens of the eye. Measurements were compared with TLDs (LiF) in an anthropomorphic phantom. The comparison with TLD measurements shows good agreement. In contrast to TLD, optical fibers provide immediate dose values, and the readout procedure is much easier. Owing to its small size and diameter, interesting invasive dose measurements are feasible.

  9. Optical fiber head for providing lateral viewing

    DOEpatents

    Everett, Matthew J.; Colston, Billy W.; James, Dale L.; Brown, Steve; Da Silva, Luiz

    2002-01-01

    The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than 39.degree. or must be at least 51.degree.. The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.

  10. Fiber optic strain measurements using an optically-active polymer

    NASA Astrophysics Data System (ADS)

    Buckley, Leonard J.; Neumeister, Gary C.

    1992-03-01

    A study encompassing the use of an optically-active polymer as the strain-sensing medium in an organic matrix composite was performed. Several compounds were synthesized for use as the inner cladding material for silica fiber-optic cores. These materials include a diacetylene containing polyamide. It is possible to dynamically modify the optical properties of these materials through changes in applied strain or temperature. By doing so the characteristic absorption in the visible is reversibly shifted to a higher energy state. The polymer-coated fiber-optic cores were initially studied in epoxy resin. Additionally, one of the polyamide/diacetylene polymers was studied in a spin-fiber form consisting of 15 micron filaments assembled in multifilament tows. The most promising configuration and materials were then investigated further by embedding in graphite/epoxy composite laminates. In each case the shift in the visible absorption peak was monitored as a function of applied mechanical strain.

  11. High-density fiber optic biosensor arrays

    NASA Astrophysics Data System (ADS)

    Epstein, Jason R.; Walt, David R.

    2002-02-01

    Novel approaches are required to coordinate the immense amounts of information derived from diverse genomes. This concept has influenced the expanded role of high-throughput DNA detection and analysis in the biological sciences. A high-density fiber optic DNA biosensor was developed consisting of oligonucleotide-functionalized, 3.1 mm diameter microspheres deposited into the etched wells on the distal face of a 500 micrometers imaging fiber bundle. Imaging fiber bundles containing thousands of optical fibers, each associated with a unique oligonucleotide probe sequence, were the foundation for an optically connected, individually addressable DNA detection platform. Different oligonucleotide-functionalized microspheres were combined in a stock solution, and randomly dispersed into the etched wells. Microsphere positions were registered from optical dyes incorporated onto the microspheres. The distribution process provided an inherent redundancy that increases the signal-to-noise ratio as the square root of the number of sensors examined. The representative amount of each probe-type in the array was dependent on their initial stock solution concentration, and as other sequences of interest arise, new microsphere elements can be added to arrays without altering the existing detection capabilities. The oligonucleotide probe sequences hybridize to fluorescently-labeled, complementary DNA target solutions. Fiber optic DNA microarray research has included DNA-protein interaction profiles, microbial strain differentiation, non-labeled target interrogation with molecular beacons, and single cell-based assays. This biosensor array is proficient in DNA detection linked to specific disease states, single nucleotide polymorphism (SNP's) discrimination, and gene expression analysis. This array platform permits multiple detection formats, provides smaller feature sizes, and enables sensor design flexibility. High-density fiber optic microarray biosensors provide a fast

  12. Crystal-free Formation of Non-Oxide Optical Fiber

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  13. Fiber optic sensing for telecommunication satellites

    NASA Astrophysics Data System (ADS)

    Reutlinger, Arnd; Glier, Markus; Zuknik, Karl-Heinz; Hoffmann, Lars; Müller, Mathias; Rapp, Stephan; Kurvin, Charles; Ernst, Thomas; McKenzie, Iain; Karafolas, Nikos

    2017-11-01

    Modern telecommunication satellites can benefit from the features of fiber optic sensing wrt to mass savings, improved performance and lower costs. Within the course of a technology study, launched by the European Space Agency, a fiber optic sensing system has been designed and is to be tested on representative mockups of satellite sectors and environment.

  14. Fiber optic systems in the UV region

    NASA Astrophysics Data System (ADS)

    Huebner, Michael; Meyer, H.; Klein, Karl-Friedrich; Hillrichs, G.; Ruetting, Martin; Veidemanis, M.; Spangenberg, Bernd; Clarkin, James P.; Nelson, Gary W.

    2000-05-01

    Mainly due to the unexpected progress in manufacturing of solarization-reduced all-silica fibers, new fiber-optic applications in the UV-region are feasible. However, the other components like the UV-sources and the detector- systems have to be improved, too. Especially, the miniaturization is very important fitting to the small-sized fiber-optic assemblies leading to compact and mobile UV- analytical systems. Based on independent improvements in the preform and fiber processing, UV-improved fibers with different properties have been developed. The best UV-fiber for the prosed applications is selectable by its short and long-term spectral behavior, especially in the region from 190 to 350 nm. The spectrum of the UV-source and the power density in the fiber have an influence on the nonlinear transmission and the damaging level; however, hydrogen can reduce the UV-defect concentration. After determining the diffusion processes in the fiber, the UV-lifetime in commercially available all-silica fibers can be predicted. Newest results with light from deuterium-lamps, excimer- lasers and 5th harmonics of Nd:YAG laser will be shown. Many activities are in the field of UV-sources. In addition to new UV-lasers like the Nd:YAG laser at 213 nm, a new low- power deuterium-lamp with smaller dimensions has been introduced last year. Properties of this lamp will be discussed, taking into account some of the application requirements. Finally, some new applications with UV-fiber optics will be shown; especially the TLC-method can be improved significantly, combining a 2-row fiber-array with a diode-array spectrometer optimized for fiber-optics.

  15. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hutsel, Michael R.

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in

  16. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  17. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  18. A new optical intra-tissue fiber irradiation ALA-PDT in the treatment of acne vulgaris in rabbit model: improved safety and tolerability.

    PubMed

    Wang, Qian; Jiang, Can; Liu, Wei; Chen, Jin; Lin, Xinyu; Huang, Xiangning; Duan, Xiling

    2017-01-01

    Photodynamic therapy with topical aminolevulinic acid (ALA-PDT) has been suggested to be effective in treatment of acne vulgaris. However, adverse events occur during and after treatment. To compare the efficacy and tolerability of optical intra-tissue fiber irradiation (OFI) ALA-PDT versus traditional ALA-PDT in treatment of acne vulgaris in rabbit models. Twenty-five rabbits of clean grade were used. Twenty rabbits were randomly selected to establish acne model and the other five were used as control. Rabbits in model group (40 ears) were further divided into four groups (10 ears/group): I, OFI-ALA-PDT with the head of optical fiber inserted into the target lesion (intra-tissue); II, traditional ALA-PDT group; III, OFI group; IV, blank control group without any treatment. Uncomfortable symptoms, adverse events, and effectiveness rates were recorded on post-treatment day 14, 30, and 45. On post-treatment day 14, the effectiveness rate in OFI-ALA-PDT group was obviously higher than that of the other three groups (P<0.05). However, no improved effects were observed in OFI-ALA-PDT group on day 30 and 45. During the period of treatment, the frequencies of uncomfortable symptoms in ALA-PDT group were obviously higher than those in the other three groups (P<0.05). The adverse event rate in OFI-ALA-PDT group was obviously lower than that of the ALA-PDT group (P<0.05). The unblindness of the study and temporary animal models of acne induced may hamper the assessment and monitoring of the results, and future studies are still needed to clarify it further. The OFI-ALA-PDT group (intra-tissue irradiation) showed no improved efficacy on treating rabbit ear acne but had higher safety and better tolerability.

  19. Materials Development for Next Generation Optical Fiber

    PubMed Central

    Ballato, John; Dragic, Peter

    2014-01-01

    Optical fibers, the enablers of the Internet, are being used in an ever more diverse array of applications. Many of the rapidly growing deployments of fibers are in high-power and, particularly, high power-per-unit-bandwidth systems where well-known optical nonlinearities have historically not been especially consequential in limiting overall performance. Today, however, nominally weak effects, most notably stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are among the principal phenomena restricting continued scaling to higher optical power levels. In order to address these limitations, the optical fiber community has focused dominantly on geometry-related solutions such as large mode area (LMA) designs. Since such scattering, and all other linear and nonlinear optical phenomena including higher order mode instability (HOMI), are fundamentally materials-based in origin, this paper unapologetically advocates material solutions to present and future performance limitations. As such, this paper represents a ‘call to arms’ for material scientists and engineers to engage in this opportunity to drive the future development of optical fibers that address many of the grand engineering challenges of our day. PMID:28788683

  20. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  1. Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing.

    PubMed

    Han, Ming; Wang, Yunjing; Wang, Anbo

    2007-07-15

    We report a novel type of polarization optical time-domain reflectometry (POTDR) for fully distributed fiber-optic sensing, in which the reflected optical signal is from a series of fiber Bragg gratings that are uniformly distributed along the fiber. Compared with a conventional POTDR that uses the Rayleigh backscattering, this grating-assisted POTDR can have a much better signal-to-noise ratio and consequently a better measurement resolution and a larger measurement range of the fiber birefringence. Experimental results have shown that the measurement resolution of the grating-assisted POTDR is almost an order of magnitude better than that of a conventional POTDR.

  2. Use of optical fibers in spectrophotometry

    NASA Technical Reports Server (NTRS)

    Ramsey, Lawrence W.

    1988-01-01

    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.

  3. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber.

    PubMed

    Dashti, Pedram Z; Alhassen, Fares; Lee, Henry P

    2006-02-03

    Acousto-optic interaction in optical fiber is examined from the perspective of copropagating optical and acoustic vortex modes. Calculation of the acousto-optic coupling coefficient between different optical modes leads to independent conservation of spin and orbital angular momentum of the interacting photons and phonons. We show that the orbital angular momentum of the acoustic vortex can be transferred to a circularly polarized fundamental optical mode to form a stable optical vortex in the fiber carrying orbital angular momentum. The technique provides a useful way of generating stable optical vortices in the fiber medium.

  4. Recent Developments in Fiber Optics Humidity Sensors.

    PubMed

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-19

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.

  5. Recent Developments in Fiber Optics Humidity Sensors

    PubMed Central

    Ascorbe, Joaquin; Corres, Jesus M.; Arregui, Francisco J.; Matias, Ignacio R.

    2017-01-01

    A wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution. PMID:28422074

  6. Rayleigh scattering in few-mode optical fibers

    PubMed Central

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-01-01

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003

  7. Small Business Innovations (Fiber Optics)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  8. Residual strain sensor using Al-packaged optical fiber and Brillouin optical correlation domain analysis.

    PubMed

    Choi, Bo-Hun; Kwon, Il-Bum

    2015-03-09

    We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

  9. Utilization of Infrared Fiber Optic in the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  10. A forty-year history of fiber optic smart structures

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Scheel, Ingrid U.

    2017-04-01

    In 1977 McDonnell Douglas Astronautics Company began a project on using fiber optic sensors to support the Delta Rocket program. This resulted in a series of fiber sensors to support the measurement of rotation, acoustics, vibration, strain, and temperature for a variety of applications and early work on fiber optic smart structures. The work on fiber optic smart structures transitioned in part to Blue Road Research in 1993 and continued in 2006 to the present at Columbia Gorge Research. This paper summarizes some of the efforts made by these companies to implement fiber optic smart structures over this forty year period.

  11. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  12. [The design and application of domestic mid-IR fiber optics].

    PubMed

    Weng, Shi-fu; Gao, Jian-ping; Xu, Yi-zhuang; Yang, Li-min; Bian, Bei-ya; Xiang, Hai-bo; Wu, Jin-guang

    2004-05-01

    The combination of mid-IR fiber optics and FTIR has made the non-invasive determination of samples in situ, with long distances, and in vivo possible. In this paper domestic mid-IR fiber optics was improved to investigate the transmission ability of fiber optics and its application to the sample determination. New design was applied to obtaining one bare fiber optics, which has a minor energy loss and higher signal-to-noise ratio. The spectra of H2O/EtOH and tissue samples were measured using the new designed fiber optics and the results show that home-made mid-IR fiber optics can be applied to the field of determination of general and biological samples.

  13. Silicon-Etalon Fiber-Optic Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus; Flatico, Joseph M.; Azar, Massood Tabib

    1993-01-01

    Developmental temperature sensor consists of silicon Fabry-Perot etalon attached to end of optical fiber. Features immunity to electrical interference, small size, light weight, safety, and chemical inertness. Output encoded in ration of intensities at two different wavelengths, rather than in overall intensity, with result that temperature readings not degraded much by changes in transmittance of fiber-optic link.

  14. Hermetic fiber optic-to-metal connection technique

    DOEpatents

    Kramer, Daniel P.

    1992-09-01

    A glass-to-glass hermetic sealing technique is disclosed which can be used to splice lengths of glass fibers together. A solid glass preform is inserted into the cavity of a metal component which is then heated to melt the glass. An end of an optical fiber is then advanced into the molten glass and the entire structure cooled to solidify the glass in sealing engagement with the optical fiber end and the metal cavity. The surface of the re-solidified glass may be machined for mating engagement with another component to make a spliced fiber optic connection. The resultant structure has a helium leak rate of less than 1.times.10.sup.-8 cm.sup.3 /sec.

  15. Fiber-optic photoelastic pressure sensor with fiber-loss compensation

    NASA Technical Reports Server (NTRS)

    Beheim, G.; Anthan, D. J.

    1987-01-01

    A new fiber-optic pressure sensor is described that has high immunity to the effects of fiber-loss variations. This device uses the photoelastic effect to modulate the proportion of the light from each of two input fibers that is coupled into each of two output fibers. This four-fiber link permits two detectors to be used to measure the sensor's responses to the light from each of two independently controlled sources. These four detector outputs are processed to yield a loss-compensated signal that is a stable and sensitive pressure indicator.

  16. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings.

    PubMed

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-03-11

    Active ultrasonic testing is widely used for medical diagnosis, material characterization and structural health monitoring. Ultrasonic transducer is a key component in active ultrasonic testing. Due to their many advantages such as small size, light weight, and immunity to electromagnetic interference, fiber-optic ultrasonic transducers are particularly attractive for permanent, embedded applications in active ultrasonic testing for structural health monitoring. However, current fiber-optic transducers only allow effective ultrasound generation at a single location of the fiber end. Here we demonstrate a fiber-optic device that can effectively generate ultrasound at multiple, selected locations along a fiber in a controllable manner based on a smart light tapping scheme that only taps out the light of a particular wavelength for laser-ultrasound generation and allow light of longer wavelengths pass by without loss. Such a scheme may also find applications in remote fiber-optic device tuning and quasi-distributed biochemical fiber-optic sensing.

  17. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber.

    PubMed

    Yang, Xinghua; Guo, Xiaohui; Li, Song; Kong, Depeng; Liu, Zhihai; Yang, Jun; Yuan, Libo

    2016-04-15

    We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.

  18. Fiber Optic Multimode Development Study.

    DTIC Science & Technology

    1982-12-01

    techniques. These techniques include chemical vapor deposition, ion exchange and diffusion, dip coating, ion implantation, and laser heating . Three...8i63 p NCLASSIFIED F/G 2916 N S .... .... 2. m. i pa 1 1 1. 1111 0i I 11112.0 L4 2,2 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARSI 963...NUMBER RADC-TR-82 -315 i, /2S- 3 W 4. TITLE (and Subtitle) LTYP OERPRT&P IOnEEFinai oTec hnica ILeportat Jul 80 - Jul 81 FIBER OPTIC MULTIMODE DEVELOPMENT

  19. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  20. Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH.

    PubMed

    Hsu, Paul S; Kulatilaka, Waruna D; Roy, Sukesh; Gord, James R

    2013-05-01

    We investigate the fundamental transmission characteristics of nanosecond-duration, 10 kHz repetition rate, ultraviolet (UV) laser pulses through state-of-the-art, UV-grade fused-silica fibers being used for hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging. Studied in particular are laser-induced damage thresholds (LIDTs), nonlinear absorption, and optical transmission stability during long-term UV irradiation. Solarization (photodegradation) effects are significantly enhanced when the fiber is exposed to high-repetition-rate, 283 nm UV irradiation. For 10 kHz laser pulses, two-photon absorption is strong and LIDTs are low, as compared to those of laser pulses propagating at 10 Hz. The fiber characterization results are utilized to perform single-laser-shot, OH-PLIF imaging in pulsating turbulent flames with a laser that operates at 10 kHz. The nearly spatially uniform output beam that exits a long multimode fiber becomes ideal for PLIF measurements. The proof-of-concept measurements show significant promise for extending the application of a fiber-coupled, high-speed OH-PLIF system to harsh environments such as combustor test beds, and potential system improvements are suggested.

  1. Demonstration of theoretical and experimental simulations in fiber optics course

    NASA Astrophysics Data System (ADS)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  2. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology

    PubMed Central

    Xie, Wen-Ge; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-01-01

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach–Zehnder interferometer (MZI) typed sensors, Fabry–Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed. PMID:29419745

  3. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  4. Noninvasive encapsulated fiber optic probes for interferometric measurement

    NASA Astrophysics Data System (ADS)

    Zboril, O.; Cubik, J.; Kepak, S.; Nedoma, J.; Fajkus, M.; Zavodny, P.; Vasinek, V.

    2017-10-01

    This article focuses on the sensitivity of encapsulated interferometric probes. These probes are used mainly for BioMed and security applications. Fiber-optic sensors are interesting for these applications, as they are resistant to electromagnetic interference (EMI) and that also do not affect the surrounding medical and security equipment. Using a loop of the optical fiber with is not a suitable for these measurements. The optical fiber should be fixed to one position, and should not significantly bend. For these reasons, the optical fiber is encapsulated. Furthermore, it is necessary that the encapsulated measuring probes were flexible, inert, water resistant and not toxic. Fiber-optic sensors shouldn't be magnetically active, so they can be used for example, in magnetic resonance environments (MR). Probes meeting these requirements can be widely used in health care and security applications. Encapsulation of interferometric measuring arm brings changes in susceptibility of measurements in comparison with the optical fiber without encapsulation. To evaluate the properties of the encapsulated probes, series of probes made from different materials for encapsulation was generated, using two types of optical fibers with various degrees of protection. Comparison of the sensitivity of different encapsulated probes was performed using a series of measurements at various frequencies. The measurement results are statistically compared in the article and commented. Given the desired properties polydimethylsiloxane (PDMS) polymer has been proven the most interesting encapsulating material for further research.

  5. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip.

    PubMed

    Lin, Yongbin; Guo, Junpeng; Lindquist, Robert G

    2009-09-28

    Dramatic increase in the bandwidth of optical fiber inline polarizer can be achieved by using metal nano-grid on the fiber tip. However, high extinction ratio of such fiber polarizer requires high spatial frequency metal nano girds with high aspect ratio on the small area of optical fiber tip. We report the development of a nano-fabrication process on the optical fiber tip, and the design and realization of the first ultra-wideband fiber inline polarization device with Au nano gird fabricated on a single mode optical fiber end face.

  6. Cylindrically distributing optical fiber tip for uniform laser illumination of hollow organs

    NASA Astrophysics Data System (ADS)

    Buonaccorsi, Giovanni A.; Burke, T.; MacRobert, Alexander J.; Hill, P. D.; Essenpreis, Matthias; Mills, Timothy N.

    1993-05-01

    To predict the outcome of laser therapy it is important to possess, among other things, an accurate knowledge of the intensity and distribution of the laser light incident on the tissue. For irradiation of the internal surfaces of hollow organs, modified fiber tips can be used to shape the light distribution to best suit the treatment geometry. There exist bulb-tipped optical fibers emitting a uniform isotropic distribution of light suitable for the treatment of organs which approximate a spherical geometry--the bladder, for example. For the treatment of organs approximating a cylindrical geometry--e.g. the oesophagus--an optical fiber tip which emits a uniform cylindrical distribution of light is required. We report on the design, development and testing of such a device, the CLD fiber tip. The device was made from a solid polymethylmethacrylate (PMMA) rod, 27 mm in length and 4 mm in diameter. One end was shaped and 'silvered' to form a mirror which reflected the light emitted from the delivery fiber positioned at the other end of the rod. The shape of the mirror was such that the light fell with uniform intensity on the circumferential surface of the rod. This surface was coated with BaSO4 reflectance paint to couple the light out of the rod and onto the surface of the tissue.

  7. Optical Fiber Grating Hydrogen Sensors: A Review

    PubMed Central

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-01-01

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed. PMID:28287499

  8. Optical Fiber Grating Hydrogen Sensors: A Review.

    PubMed

    Dai, Jixiang; Zhu, Li; Wang, Gaopeng; Xiang, Feng; Qin, Yuhuan; Wang, Min; Yang, Minghong

    2017-03-12

    In terms of hydrogen sensing and detection, optical fiber hydrogen sensors have been a research issue due to their intrinsic safety and good anti-electromagnetic interference. Among these sensors, hydrogen sensors consisting of fiber grating coated with sensitive materials have attracted intensive research interests due to their good reliability and distributed measurements. This review paper mainly focuses on optical fiber hydrogen sensors associated with fiber gratings and various materials. Their configurations and sensing performances proposed by different groups worldwide are reviewed, compared and discussed in this paper. Meanwhile, the challenges for fiber grating hydrogen sensors are also addressed.

  9. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  10. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies.

    PubMed

    Zhao, Xihong; Tsao, Yu-Chia; Lee, Fu-Jung; Tsai, Woo-Hu; Wang, Ching-Ho; Chuang, Tsung-Liang; Wu, Mu-Shiang; Lin, Chii-Wann

    2016-07-01

    A side-polished fiber optic surface plasmon resonance (SPR) sensor was fabricated to expose the core surface and then deposited with a 40 nm thin gold film for the near surface sensing of effective refractive index changes with surface concentration or thickness of captured avian influenza virus subtype H6. The detection surface of the SPR optical fiber sensor was prepared through the plasma modification method for binding a self-assembled monolayer of isopropanol chemically on the gold surface of the optical fiber. Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide was activated to enable EB2-B3 monoclonal antibodies to capture A/chicken/Taiwan/2838V/00 (H6N1) through a flow injection system. The detection limit of the fabricated optical fiber sensor for A/chicken/Taiwan/2838V/00 was 5.14 × 10(5) EID50/0.1 mL, and the response time was 10 min on average. Moreover, the fiber optic sensor has the advantages of a compact size and low cost, thus rendering it suitable for online and remote sensing. The results indicated that the optical fiber sensor can be used for epidemiological surveillance and diagnosing of avian influenza subtype H6 rapidly. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Designing optical-fiber modulators by using magnetic fluids.

    PubMed

    Horng, H E; Chieh, J J; Chao, Y H; Yang, S Y; Hong, Chin-Yih; Yang, H C

    2005-03-01

    To reduce interface loss between optical fibers and devices in telecommunication systems, the development of an optical-fiber-based device that can be fused directly with fibers is important. A novel optical modulator consisting of a bare fiber core surrounded by magnetic fluids instead of by a SiO2 cladding layer is proposed. Applying a magnetic field raises the refractive index of the magnetic fluid. Thus we can control the occurrence of total reflection at the interface between the fiber core and the magnetic fluid when light propagates along the fiber. As a result, the intensity of the outgoing light is modulated by variation in field strength. Details of the design, fabrication, and working properties of such a modulator are presented.

  12. Continuum generation in optical fibers for high-resolution holographic coherence domain imaging application

    NASA Astrophysics Data System (ADS)

    Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.

    2009-02-01

    High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.

  13. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    NASA Astrophysics Data System (ADS)

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  14. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers

    PubMed Central

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-01-01

    A glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba2TiSi2O8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers. PMID:28358045

  15. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers.

    PubMed

    Fang, Zaijin; Xiao, Xusheng; Wang, Xin; Ma, Zhijun; Lewis, Elfed; Farrell, Gerald; Wang, Pengfei; Ren, Jing; Guo, Haitao; Qiu, Jianrong

    2017-03-30

    A glass-ceramic optical fiber containing Ba 2 TiSi 2 O 8 nanocrystals fabricated using a novel combination of the melt-in-tube method and successive heat treatment is reported for the first time. For the melt-in-tube method, fibers act as a precursor at the drawing temperature for which the cladding glass is softened while the core glass is melted. It is demonstrated experimentally that following heat treatment, Ba 2 TiSi 2 O 8 nanocrystals with diameters below 10 nm are evenly distributed throughout the fiber core. Comparing to the conventional rod-in-tube method, the melt-in-tube method is superior in terms of controllability of crystallization to allow for the fabrication of low loss glass-ceramic fibers. When irradiated using a 1030 nm femtosecond laser, an enhanced green emission at a wavelength of 515 nm is observed in the glass-ceramic fiber, which demonstrates second harmonic generation of a laser action in the fabricated glass-ceramic fibers. Therefore, this new glass-ceramic fiber not only provides a highly promising development for frequency conversion of lasers in all optical fiber based networks, but the melt-in-tube fabrication method also offers excellent opportunities for fabricating a wide range of novel glass-ceramic optical fibers for multiple future applications including fiber telecommunications and lasers.

  16. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Astrophysics Data System (ADS)

    1986-10-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  17. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  18. Effects of 200 keV Ar-ions irradiation on the structural and optical properties of reactively sputtered CrN films

    NASA Astrophysics Data System (ADS)

    Novaković, M.; Popović, M.; Zhang, K.; Rakočević, Z.; Bibić, N.

    2016-12-01

    Modification in structural and optical properties of chromium-nitride (CrN) films induced by argon ion irradiation and thermal annealings were investigated using various experimental techniques. CrN films deposited by d. c. reactive sputtering on Si substrate were implanted with 200 keV argon ions, at fluences of 5-20 × 1015 ions/cm2. As-implanted samples were then annealed in vacuum, for 2 h at 700 °C. Rutherford backscattering spectrometry, X-ray diffraction, cross-sectional (high-resolution) transmission electron microscopy and spectroscopic ellipsometry (SE) measurements were carried out in order to study structural and optical properties of the layers. After irradiation with 200 keV Ar ions a damaged surface layer of nanocrystalline structure was generated, which extended beyond the implantation profile, but left an undamaged bottom zone. Partial loss of columnar structure observed in implanted samples was recovered after annealing at 700 °C and CrN started to decompose to Cr2N. This layer geometry determined from transmission electron microscopy was inferred in the analysis of SE data using the combined Drude and Tauc-Lorentz model, and the variation of the optical bandgap was deduced. The results are discussed on the basis of the changes induced in the microstructure. It was found that the optical properties of the layers are strongly dependent on the defects' concentration of CrN.

  19. Analysis of Photonic Phase-Shifting Technique Employing Amplitude-Controlled Fiber-Optic Delay Lines

    DTIC Science & Technology

    2012-01-13

    Controlled Fiber-Optic Delay Lines January 13, 2012 Approved for public release; distribution is unlimited. Meredith N. draa ViNceNt J. Urick keith J...Draa, Vincent J. Urick , and Keith J. Williams Naval Research Laboratory, Code 5652 4555 Overlook Avenue, SW Washington, DC 20375-5320 NRL/MR/5650--12...9376 Approved for public release; distribution is unlimited. Unclassified Unclassified Unclassified UU 29 Vincent J. Urick (202) 767-9352 Fiber optics

  20. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  1. Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy.

    PubMed

    Gu, Min; Bird, Damian

    2003-05-01

    The three-dimensional optical transfer function is derived for analyzing the imaging performance in fiber-optical two-photon fluorescence microscopy. Two types of fiber-optical geometry are considered: The first involves a single-mode fiber for delivering a laser beam for illumination, and the second is based on the use of a single-mode fiber coupler for both illumination delivery and signal collection. It is found that in the former case the transverse and axial cutoff spatial frequencies of the three-dimensional optical transfer function are the same as those in conventional two-photon fluorescence microscopy without the use of a pinhole.However, the transverse and axial cutoff spatial frequencies in the latter case are 1.7 times as large as those in the former case. Accordingly, this feature leads to an enhanced optical sectioning effect when a fiber coupler is used, which is consistent with our recent experimental observation.

  2. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOEpatents

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  3. The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers

    NASA Astrophysics Data System (ADS)

    Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina

    2017-02-01

    Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.

  4. Low-temperature hermetic sealing of optical fiber components

    DOEpatents

    Kramer, Daniel P.

    1996-10-22

    A method for manufacturing low-temperature hermetically sealed optical fi components is provided. The method comprises the steps of: inserting an optical fiber into a housing, the optical fiber having a glass core, a glass cladding and a protective buffer layer disposed around the core and cladding; heating the housing to a predetermined temperature, the predetermined temperature being below a melting point for the protective buffer layer and above a melting point of a solder; placing the solder in communication with the heated housing to allow the solder to form an eutectic and thereby fill a gap between the interior of the housing and the optical fiber; and cooling the housing to allow the solder to form a hermetic compression seal between the housing and the optical fiber.

  5. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  6. A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice

    NASA Astrophysics Data System (ADS)

    Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen

    2017-12-01

    We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.

  7. Design of a multimodal fibers optic system for small animal optical imaging.

    PubMed

    Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico

    2015-02-01

    Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. A new fiber optic sensor for inner surface roughness measurement

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  9. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    NASA Astrophysics Data System (ADS)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  10. Optical fiber designs for beam shaping

    NASA Astrophysics Data System (ADS)

    Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka

    2014-03-01

    A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.

  11. Quantum cryptography over underground optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, R.J.; Luther, G.G.; Morgan, G.L.

    1996-05-01

    Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure,more » real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``« less

  12. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    PubMed

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  13. Exact dark soliton solutions for a family of N coupled nonlinear Schrödinger equations in optical fiber media.

    PubMed

    Nakkeeran, K

    2001-10-01

    We consider a family of N coupled nonlinear Schrödinger equations which govern the simultaneous propagation of N fields in the normal dispersion regime of an optical fiber with various important physical effects. The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solutions are explicitly derived.

  14. All-optical switching application based on optical nonlinearity of Yb(3+) doped aluminosilicate glass fiber with a long-period fiber gratings pair.

    PubMed

    Kim, Yune; Kim, Nam; Chung, Youngjoo; Paek, Un-Chul; Han, Won-Taek

    2004-02-23

    We propose a new fiber-type all-optical switching device based on the optical nonlinearity of Yb(3+) doped fiber and a long-period fiber gratings(LPG) pair. The all-optical ON-OFF switching with the continuous wave laser signal at ~1556nm in the LPG pair including the 25.5cm long Yb(3+) doped fiber was demonstrated up to ~200Hz upon pumping with the modulated square wave pulses at 976nm, where a full optical switching with the ~18dB extinction ratio was obtained at the launched pump power of ~35mW.

  15. Fiber optic in vivo imaging in the mammalian nervous system

    PubMed Central

    Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J

    2010-01-01

    The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896

  16. All-optical fiber anemometer based on laser heated fiber Bragg gratings.

    PubMed

    Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Cho, L H; Lu, Chao

    2011-05-23

    A fiber-optic anemometer based on fiber Bragg gratings (FBGs) is presented. A short section of cobalt-doped fiber was utilized to make a fiber-based "hot wire" for wind speed measurement. Fiber Bragg gratings (FBGs) were fabricated in the cobalt-doped fiber using 193 nm laser pulses to serve as localized temperature sensors. A miniature all-optical fiber anemometer is constructed by using two FBGs to determine the dynamic thermal equilibrium between the laser heating and air flow cooling through monitoring the FBGs' central wavelengths. It was demonstrated that the sensitivity of the sensor can be adjusted through the power of pump laser or the coating on the FBG. Experimental results reveal that the proposed FBG-based anemometer exhibits very good performance for wind speed measurement. The resolution of the FBG-based anemometer is about 0.012 m/s for wind speed range between 2.0 m/s and 8.0 m/s.

  17. Single mode variable-sensitivity fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.

    1992-01-01

    We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.

  18. Side-emitting fiber optic position sensor

    DOEpatents

    Weiss, Jonathan D [Albuquerque, NM

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  19. Optical fiber-based sensors: application to chemical biology.

    PubMed

    Brogan, Kathryn L; Walt, David R

    2005-10-01

    Optical fibers have been used to develop sensors based on nucleic acids and cells. Sensors employing DNA probes have been developed for various genomics applications and microbial pathogen detection. Live cell-based sensors have enabled the monitoring of environmental toxins, and have been used for fundamental studies on populations of individual cells. Both single-core optical fiber sensors and optical fiber sensor arrays have been used for sensing based on nucleic acids and live cells.

  20. Multimode fiber optic wavelength division multiplexing

    NASA Technical Reports Server (NTRS)

    Spencer, J. L.

    1982-01-01

    Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single optical fiber, can have increased bandwidth and fault isolation properties over single wavelength optical systems. Two WDM system designs that might be used with multimode fibers are considered and a general description of the components which could be used to implement the system are given. The components described are sources, multiplexers, demultiplexers, and detectors. Emphasis is given to the demultiplexer technique which is the major developmental component in the WDM system.

  1. Fiber-optic technology for transport aircraft

    NASA Astrophysics Data System (ADS)

    1993-07-01

    A development status evaluation is presented for fiber-optic devices that are advantageously applicable to commercial aircraft. Current developmental efforts at a major U.S. military and commercial aircraft manufacturer encompass installation techniques and data distribution practices, as well as the definition and refinement of an optical propulsion management interface system, environmental sensing systems, and component-qualification criteria. Data distribution is the most near-term implementable of fiber-optic technologies aboard commercial aircraft in the form of onboard local-area networks for intercomputer connections and passenger entertainment.

  2. Optical fibers for the distribution of frequency and timing references

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1981-01-01

    An optical fiber communications link was installed for the purpose of evaluating the applicability of optical fiber technology to the distribution of frequency and timing reference signals. It incorporated a 1.5km length of optical fiber cable containing two multimode optical fibers. The two fibers were welded together at one end of the cable to attain a path length of 3km. Preliminary measurements made on this link, including Allan variance and power spectral density of phase noise are reported.

  3. Investigation of cladding and coating stripping methods for specialty optical fibers

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Dhital, Dipesh; Yoon, Dong-Jin

    2011-03-01

    Fiber optic sensing technology is used extensively in several engineering fields, including smart structures, health and usage monitoring, non-destructive testing, minimum invasive sensing, safety monitoring, and other advanced measurement fields. A general optical fiber consists of a core, cladding, and coating layers. Many sensing principles require that the cladding or coating layer should be removed or modified. In addition, since different sensing systems are needed for different types of optical fibers, it is very important to find and sort out the suitable cladding or coating removal method for a particular fiber. This study focuses on finding the cladding and coating stripping methods for four recent specialty optical fibers, namely: hard polymer-clad fiber, graded-index plastic optical fiber, copper/carbon-coated optical fiber, and aluminum-coated optical fiber. Several methods, including novel laser stripping and conventional chemical and mechanical stripping, were tried to determine the most suitable and efficient technique. Microscopic investigation of the fiber surfaces was used to visually evaluate the mechanical reliability. Optical time domain reflectometric signals of the successful removal cases were investigated to further examine the optical reliability. Based on our results, we describe and summarize the successful and unsuccessful methods.

  4. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  5. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.

    2011-02-15

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less

  6. Apparatus and method for determining the optical power passing through an optical fiber

    DOEpatents

    Toeppen, John S.

    1995-01-01

    An apparatus and method for determining the optical power transmitted through an optical fiber. The invention is based on measuring the intensity of the fluorescence produced by a doped segment of an optical fiber. The dopant is selected so that it emits light at a different wavelength than that responsible for producing the fluorescence. The doped segment is of sufficient length and dopant concentration to provide a detectable signal, but short enough to prevent the doped segment from serving as a gain medium, resulting in amplified spontaneous emission and excess fluorescence traveling along the optical fiber. The dopant material is excited by the optical signal carried by the fiber, causing a fluorescence. In the preferred embodiment the intensity of the fluorescence is proportional to the intensity of the propagating light. The signal power is then determined from the intensity of the fluorescence. The intensity of the fluorescent signal is measured by a photodetector placed so as to detect the light emitted through the side of the doped segment. The detector may wrap around the circumference of the fiber, or be placed to one side and used in conjunction with a reflector placed on the opposing side of the fiber. Filters may be used to shield the detector from other light sources and assist with accurately determining the optical power of the signal propagating within the fiber.

  7. Apparatus and method for determining the optical power passing through an optical fiber

    DOEpatents

    Toeppen, John S.

    1995-04-04

    An apparatus and method for determining the optical power transmitted through an optical fiber. The invention is based on measuring the intensity of the fluorescence produced by a doped segment of an optical fiber. The dopant is selected so that it emits light at a different wavelength than that responsible for producing the fluorescence. The doped segment is of sufficient length and dopant concentration to provide a detectable signal, but short enough to prevent the doped segment from serving as a gain medium, resulting in amplified spontaneous emission and excess fluorescence traveling along the optical fiber. The dopant material is excited by the optical signal carried by the fiber, causing a fluorescence. In the preferred embodiment the intensity of the fluorescence is proportional to the intensity of the propagating light. The signal power is then determined from the intensity of the fluorescence. The intensity of the fluorescent signal is measured by a photodetector placed so as to detect the light emitted through the side of the doped segment. The detector may wrap around the circumference of the fiber, or be placed to one side and used in conjunction with a reflector placed on the opposing side of the fiber. Filters may be used to shield the detector from other light sources and assist with accurately determining the optical power of the signal propagating within the fiber.

  8. UV irradiation improves the bond strength of resin cement to fiber posts.

    PubMed

    Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo

    2011-01-01

    The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (p<0.05). UV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.

  9. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    NASA Technical Reports Server (NTRS)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).

  10. An in-fiber integrated optofluidic device based on an optical fiber with an inner core.

    PubMed

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo

    2014-06-21

    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  11. Switch configuration for migration to optical fiber network

    NASA Technical Reports Server (NTRS)

    Zobrist, George W.

    1993-01-01

    The purpose is to investigate the migration of an Ethernet LAN segment to fiber optics. At the present time it is proposed to support a Fiber Distributed Data Interface (FDDI) backbone and to upgrade the VAX cluster to fiber optic interface. Possibly some workstations will have an FDDI interface. The remaining stations on the Ethernet LAN will be segmented. The rationale for migrating from the present Ethernet configuration to a fiber optic backbone is due to the increase in the number of workstations and the movement of applications to a windowing environment, extensive document transfers, and compute intensive applications.

  12. Comment on "Optical-fiber-based Mueller optical coherence tomography".

    PubMed

    Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2004-12-15

    We comment on the recent Letter by Jiao et al. [Opt. Lett. 28, 1206 (2003)] in which a polarization-sensitive optical coherence tomography system was presented. Interrogating a sample with two orthogonal incident polarization states cannot always recover birefringence correctly. A previously presented fiber-based polarization-sensitive system was inaccurately characterized, and its method of eliminating the polarization distortion caused by single-mode optical fiber was presented earlier by Saxer et al. [Opt. Lett. 25, 1355 (2000)].

  13. A Self-Referencing Intensity-Based Fiber Optic Sensor with Multipoint Sensing Characteristics

    PubMed Central

    Choi, Sang-Jin; Kim, Young-Chon; Song, Minho; Pan, Jae-Kyung

    2014-01-01

    A self-referencing, intensity-based fiber optic sensor (FOS) is proposed and demonstrated. The theoretical analysis for the proposed design is given, and the validity of the theoretical analysis is confirmed via experiments. We define the measurement parameter, X, and the calibration factor, β, to find the transfer function, Hm,n, of the intensity-based FOS head. The self-referencing and multipoint sensing characteristics of the proposed system are validated by showing the measured Hm,n2 and relative error versus the optical power attenuation of the sensor head for four cases: optical source fluctuation, various remote sensing point distances, fiber Bragg gratings (FBGs) with different characteristics, and multiple sensor heads with cascade and/or parallel forms. The power-budget analysis and limitations of the measurement rates are discussed, and the measurement results of fiber-reinforced plastic (FRP) coupon strain using the proposed FOS are given as an actual measurement. The proposed FOS has several benefits, including a self-referencing characteristic, the flexibility to determine FBGs, and a simple structure in terms of the number of devices and measuring procedure. PMID:25046010

  14. FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Fiber-optic interferometers: control of spectral composition of the radiation and formation of high-intensity optical pulses

    NASA Astrophysics Data System (ADS)

    Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.

    1990-05-01

    A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.

  15. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  16. Quantum and classical properties of soliton propagation in optical fibers

    NASA Astrophysics Data System (ADS)

    Krylov, Dmitriy

    2001-05-01

    Quantum and classical aspects of nonlinear optical pulse propagation in optical fibers are studied with the emphasis on temporal solitons. The theoretical and experimental investigation focuses on phenomena that can fundamentally limit transmission and detection of optical signals in fiber-optic communication systems that employ solitons. In transmission experiments the first evidence is presented that a pre-chirped high-order soliton pulse propagating in a low anomalous dispersion optical fiber will irreversibly break up into an ordered train of fundamental (N = 1) solitons. The experimental results confirm previous analytical predictions and show excellent agreement with numerical simulations. This phenomenon presents a fundamental limitation on systems that utilize dispersion-management or pre-chirping of optical pulses, and has to be taken into consideration when designing such systems. The experiments also show that the breakup process can be repeated by cascading two independent breakup stages. Each stage accepts a single input pulse and produces two independent pulses. The stages are cascaded to produce a one-to-four breakup. Solitons are also shown to be ideally suited for investigating non-classical properties of light. Based on the general quantum theory of optical pulse propagation, a new scheme for generating amplitude-squeezed solitons is designed and implemented in a highly asymmetric fiber Sagnac interferometer. A record reduction of 5.7dB (73%) and, with correction for linear losses, 7.0dB (81%) in photon-number fluctuations below the shot-noise level is measured by direct detection. The same scheme is also shown to generate significant classical noise reduction and is limited by Raman effects in fiber. Such large squeezing levels can be employed in practical fiber optic communication systems to achieve noiseless amplification and better signal to noise ratios in direct detection. The photon number states can also be used in quantum non- demolition

  17. Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.

    PubMed

    Ye, Qing; Qu, Ronghui; Fang, Zujie

    2007-04-10

    A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.

  18. 7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...

  19. 7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...

  20. 7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...

  1. Laser backlight unit based on a leaky optical fiber

    NASA Astrophysics Data System (ADS)

    Okuda, Yuuto; Onoda, Kousuke; Fujieda, Ichiro

    2012-07-01

    A backlight unit is constructed by laying out an optical fiber on a two-dimensional plane and letting the light leak out in a controlled manner. In experiment, we formed multiple grooves on the surface of a plastic optical fiber by pressing a heated knife edge. The depth of the groove determined the percentage of the optical power leaking out. The optical fiber with multiple grooves was embedded in an acrylic plate with a spiral trench, and a diffuser sheet was placed over it. When we injected laser light into the end of the optical fiber, this configuration successfully worked as an area illuminator. However, the coherent nature of the laser light caused severe speckle noise. We evaluated the speckle contrast under darkness, and it varied from 80% to 23%, depending on the lens aperture used to capture the images of the illuminator. We glued an ultrasound generator to the optical fiber to introduce phase modulation for the light propagating inside the optical fiber. In this way, the speckle contrast was reduced by a factor of seven to four. Under room lighting, the speckle noise was made barely noticeable by turning on the ultrasound generator.

  2. Analysis of strain-induced crystallinity in neutron-irradiated amorphous PET fiber

    NASA Astrophysics Data System (ADS)

    Mallick, B.

    2015-05-01

    Polyethylene terephthalate (PET) fiber of 2.2 denier per filament has been irradiated with 4.44-MeV fast neutron beam at different low doses: 0.58-2,513.5 mGy. The variation of crystallinity because of neutron irradiation straining in PET filaments has been investigated. Study of the effects of irradiation by using X-ray diffraction and differential scanning calorimetry technique confirms the radiation-induced microstrain-dependent crystallinity of PET fiber.

  3. Microstructure of the smart composite structures with embedded fiber optic sensing nerves

    NASA Astrophysics Data System (ADS)

    Liu, Jingyuan; Luo, Fei; Li, Changchun; Ma, Naibin

    1997-11-01

    The composite structures with embedded optical fiber sensors construct a smart composite structure system, which may have the characteristics of the in-service self-measurement, self- recognition and self-judgement action. In the present work, we studied the microstructures of carbon/epoxy composite laminates with embedded sensing optical fibers, and the integration of optical fiber with composites was also discussed. The preliminary experiment results show that because of the difference between the sensing optical fibers and the reinforcing fibers in their size, the microstructure of the composites with embedded optical fibers will produce partial local changes in the area of embedded optical fiber, these changes may affect the mechanical properties of composite structures. When the optical fibers are embedded parallel to the reinforcing fibers, due to the composite prepregs are formed under a press action during its curing process, the reinforcing fibers can be arranged equably around the optical fibers. But when the optical fibers are embedded perpendicularly to the reinforcement fibers, the resin rich pocket will appear in the composite laminates surrounding the embedded optical fiber. The gas holes will be easily produced in these zones which may produce a premature failure of the composite structure. The photoelastic experiments are also given in the paper.

  4. A fusion-spliced near-field optical fiber probe using photonic crystal fiber for nanoscale thermometry based on fluorescence-lifetime measurement of quantum dots.

    PubMed

    Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji

    2011-01-01

    We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.

  5. Optical fiber-based fluorescent viscosity sensor

    NASA Astrophysics Data System (ADS)

    Haidekker, Mark A.; Akers, Walter J.; Fischer, Derek; Theodorakis, Emmanuel A.

    2006-09-01

    Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.

  6. Optical fiber-based fluorescent viscosity sensor.

    PubMed

    Haidekker, Mark A; Akers, Walter J; Fischer, Derek; Theodorakis, Emmanuel A

    2006-09-01

    Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.

  7. Mach-Zehnder atom interferometer inside an optical fiber

    NASA Astrophysics Data System (ADS)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  8. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  9. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  10. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  11. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  12. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  13. Fast modal decomposition for optical fibers using digital holography.

    PubMed

    Lyu, Meng; Lin, Zhiquan; Li, Guowei; Situ, Guohai

    2017-07-26

    Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.

  14. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1988-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  15. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1989-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  16. Laboratory measurements of modal noise on optical fiber

    NASA Astrophysics Data System (ADS)

    Iuzzolino, M.; Sanna, N.; Tozzi, A.; Oliva, E.

    Many scientific instruments are nowadays coupled to the telescope through optical fibers. This is also the case of the current configuration of GIANO, the high resolution near infrared echelle spectrograph installed at the TNG telescope. As experienced and frequent users of the IR optical fiber, the GIANO building team decided to go deep in the characterization of the optical fiber in the IR band, and in particular to understand and analyze the fiber modal noise. This work is also a preparatory study for the future HIRES@E-ELT instrument design. This paper consists in the description of the fiber laboratory tests, and in the explanation of the results. The whole job defines a wider comprehension of the modal noise, and demonstrates the existence of two aspects influencing this noise. The first one, well known in literature, refers to the interferences between the fiber modes at the exit endface of the fiber, and it can be mitigated by mechanical scrambling techniques. The second one, unknown before, is entirely dependent on the way in which light is injected at the entrance of the fiber, and no mitigation have been observed with any classical scrambling technique (e.g. double-scramblers). These considerations apply to both ZBLAN or fused silica optical fiber, and to both circular and octagonal core shape.

  17. Fiber optic detector for immuno-testing

    DOEpatents

    Partin, Judy K.; Ward, Thomas E.; Grey, Alan E.

    1992-01-01

    A portable fiber optic detector that senses the presence of specific target chemicals in air or a gas by exchanging the target chemical for a fluoroescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  18. [Study of Raman scattering of plastic optical fiber].

    PubMed

    Sun, Xiu-Ping; Feng, Ke-Cheng; Zhang, Xi-He; Tan, Yong; Zhang, Feng-Dong; Wang, Zhao-Min

    2005-12-01

    The first order stimulated Raman scattering (SRS) spectrum of PMMA plastic optical fiber was given, and the characteristic of the first order Stokes spectrum was studied. The threshold and the spectrum width were measured. The formation mechanism of SRS was analyzed, and then the first order Stokes spectrum of plastic optical fiber and that of silica fiber were compared.

  19. Changes of propagation light in optical fiber submicron wires

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K. A.; Łukowski, A.; Jaroszewicz, L. R.

    2013-05-01

    At the moment technology allows to miniaturize measurement system to several micrometers. Application of an optical fiber taper in such system needs to manufacture a new one with diameters below single micrometers which is very difficult and expensive. Another way to obtain this level of diameters is the process of tapering from the existing fibers. In the paper, experimental results of propagation light from a supercontinnum sources of the wavelength generates the wavelength of 350-2000 nm, in different optical fiber submicron wires made from tapers manufactured from single mode fibers are presented. Biconical optical fibers' tapers were manufactured in low pressure gas burner technique. There are presented spectral characteristics of a propagated beam. For the test, there was manufactured an optical fiber submicron wires with a different length of waist region with a diameter near one micrometer. We put to the test a taper made from a standard telecommunication fiber SMF-28 with a cutoff wavelength equal to 1260.

  20. Multiplexed neural recording along a single optical fiber via optical reflectometry

    PubMed Central

    Rodriques, Samuel G.; Marblestone, Adam H.; Scholvin, Jorg; Dapello, Joel; Sarkar, Deblina; Mankin, Max; Gao, Ruixuan; Wood, Lowell; Boyden, Edward S.

    2016-01-01

    Abstract. We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100  μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found—possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance—then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing. PMID:27194640

  1. Respiratory monitoring system based on fiber optic macro bending

    NASA Astrophysics Data System (ADS)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  2. Fiber optics for aircraft engine/inlet control

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1981-01-01

    NASA programs that focus on the use of fiber optics for aircraft engine/inlet control are reviewed. Fiber optics for aircraft control is attractive because of its inherent immunity to EMI and RFI noise. Optical signals can be safely transmitted through areas that contain flammable or explosive materials. The use of optics also makes remote sensing feasible by eliminating the need for electrical wires to be connected between sensors and computers. Using low-level optical signals to control actuators is also feasible when power is generated at the actuator. Each application of fiber optics for aircraft control has different requirements for both the optical cables and the optical connectors. Sensors that measure position and speed by using slotted plates can use lossy cables and bundle connectors if data transfer is in the parallel mode. If position and speed signals are multiplexed, cable and connector requirements change. Other sensors that depend on changes in transmission through materials require dependable characteristics of both the optical cables and the optical connectors. A variety of sensor types are reviewed, including rotary position encoders, tachometers, temperature sensors, and blade tip clearance sensors for compressors and turbines. Research on a gallium arsenide photoswitch for optically switched actuators that operate at 250 C is also described.

  3. Low cost fiber optic sensing of sugar solution

    NASA Astrophysics Data System (ADS)

    Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao

    2015-03-01

    The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.

  4. Multimode fiber for high-density optical interconnects

    NASA Astrophysics Data System (ADS)

    Bickham, Scott R.; Ripumaree, Radawan; Chalk, Julie A.; Paap, Mark T.; Hurley, William C.; McClure, Randy L.

    2017-02-01

    Data centers (DCs) are facing the challenge of delivering more capacity over longer distances. As line rates increase to 25 Gb/s and higher, DCs are being challenged with signal integrity issues due to the long electrical traces that require retiming. In addition, the density of interconnects on the front panel is limited by the size and power dissipation requirements of the pluggable modules. One proposal to overcome these issues is to use embedded optical transceivers in which optical fibers are used to transport data to and from the front panel. These embedded modules will utilize arrays of VCSEL or silicon-photonic transceivers, and in both cases, the capacity may be limited by the density of the optical connections on the chip. To address this constraint, we have prototyped optical fibers in which the glass and coating diameters are reduced to 80 and 125 microns, respectively. These smaller diameters enable twice as many optical interconnects in the same footprint, and this in turn will allow the transceiver arrays to be collinearly located on small chips with dimensions on the order of (5x5mm2)1,2. We have also incorporated these reduced diameter fibers into small, flexible 8-fiber ribbon cables which can simplify routing constraints inside modules and optical backplanes.

  5. Toxin detection using a fiber-optic-based biosensor

    NASA Astrophysics Data System (ADS)

    Ogert, Robert A.; Shriver-Lake, Lisa C.; Ligler, Frances S.

    1993-05-01

    Using an evanescent wave fiber optic-based biosensor developed at Naval Research Laboratory, ricin toxin can be detected in the low ng/ml range. Sensitivity was established at 1 - 5 ng/ml using a two-step assay. The two-step assay showed enhanced signal levels in comparison to a one-step assay. A two-step assay utilizes a 10 minute incubation of an immobilized affinity purified anti-ricin antibody fiber optic probe in the ricin sample before placement in a solution of fluorophore-labeled goat anti-ricin antibodies. The specific fluorescent signal is obtained by the binding of the fluorophore-labeled antibodies to ricin which is bound by the immobilized antibodies on the fiber optic probe. The toxin can be detected directly from urine and river water using this fiber optic assay.

  6. Fiber-optic beam control systems using microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    This dissertation, for the first time, proposes, studies, and experimentally demonstrated novel fiber-optic beam control systems based on the use of microelectromechanical system (MEMS) technology in which the miniaturized versions of mechanical systems can be obtained. Beam control modules include optical add/drop filters, optical switches, variable photonic delay lines (VPDLs), and variable optical attenuators (VOAs). The optical add/drop filter functions as a multiwavelength optical switch that offers the ability to drop and add a certain number of desired wavelengths at an intermediate location where access to all the propagating optical channels is not required between transmission terminals. The VOA can also be used in networks where stocking and tracking of fixed attenuators is difficult. Other specific applications of the VOA are optical gain equalization and polarization dependent loss and gain compensation required in high data-rate wavelength division multiplexed (WDM) lightwave systems. A VPDL can be used to adjust timing amongst multiwavelength optical signals in order to reduce timing jitter and burst traffic in photonic packet switching and parallel signal processing systems. In this dissertation, a small tilt micromirror device is proposed for the implementation of all fiber-optic beam control modules. In particular, the macro-pixel approach where several micromirrors are used to manipulate the desired optical beam is introduced to realize high speed and fault tolerant beam control modules. To eliminate the need of careful optical alignment, an all fiber-connectorized multiwavelength optical switch structure is presented and experimentally demonstrated by using a fiber-loop mirror concept with polarization control. In addition, liquid crystal (LC) devices are studied and are used to implement a compact retro- reflective 2 x 2 fiber-optic switch. Compared to MEMS- based mirror technology, the LC technology is more sensitive to temperature, thereby

  7. Detection of bacteria using bacteriophage with hollow gold nanostructures immobilized fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Halkare, Pallavi; Punjabi, Nirmal; Wangchuk, Jigme; Kondabagil, Kiran; Mukherji, Soumyo

    2016-04-01

    Hollow gold nanostructures (HGNS) have been used in variety of optical biosensors due to their inherent advantage of operating at near infra red (NIR) wavelength, large extinction coefficient and high dielectric sensitivity. The absorption wavelength of these nanostructures can be modulated by changing the ratio of hollow region to the core shell thickness. The aim of the present study is to incorporate the properties of HGNS, to develop LSPR based U-bent fiber optic sensor for detection of pathogens. The detection was carried out using an experimental set up consisting of a white light source, 200 μm diameter optical fiber having bend diameter of 1.6 mm +/- 0. 2 mm and a spectrometer. The HGNS were immobilized on the decladded portion of the fiber optic probe by chemisorptions. The effective plasmon penetration depth of the HGNS immobilized fiber optic sensor was approximated by using alternating layers of positively and negatively charged polyelectrolytes. The HGNS immobilized U-bent fiber optic sensor was used for detection of E.coli B40 strain using bacteriophage T4. The preliminary experiments were carried out with 104 cfu/ml of E.coli B40 and the change in absorbance obtained was approx. 0.042 +/- 0.0045 abs. units (n = 3). The response of this sensor was found to be better than spherical gold nanoparticle immobilized sensing platforms.

  8. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S.; Buzhinsky, O. I.

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  9. Method for enhancing signals transmitted over optical fibers

    DOEpatents

    Ogle, James W.; Lyons, Peter B.

    1983-01-01

    A method for spectral equalization of high frequency spectrally broadband signals transmitted through an optical fiber. The broadband signal input is first dispersed by a grating. Narrow spectral components are collected into an array of equalizing fibers. The fibers serve as optical delay lines compensating for material dispersion of each spectral component during transmission. The relative lengths of the individual equalizing fibers are selected to compensate for such prior dispersion. The output of the equalizing fibers couple the spectrally equalized light onto a suitable detector for subsequent electronic processing of the enhanced broadband signal.

  10. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  11. Development of self-sensing BFRP bars with distributed optic fiber sensors

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  12. Lightweight fiber optic microphones and accelerometers

    NASA Astrophysics Data System (ADS)

    Bucaro, J. A.; Lagakos, N.

    2001-06-01

    We have designed, fabricated, and tested two lightweight fiber optic sensors for the dynamic measurement of acoustic pressure and acceleration. These sensors, one a microphone and the other an accelerometer, are required for active blanket sound control technology under development in our laboratory. The sensors were designed to perform to certain specifications dictated by our active sound control application and to do so without exhibiting sensitivity to the high electrical voltages expected to be present. Furthermore, the devices had to be small (volumes less than 1.5 cm3) and light (less than 2 g). To achieve these design criteria, we modified and extended fiber optic reflection microphone and fiber microbend displacement device designs reported in the literature. After fabrication, the performances of each sensor type were determined from measurements made in a dynamic pressure calibrator and on a shaker table. The fiber optic microbend accelerometer, which weighs less than 1.8 g, was found to meet all performance goals including 1% linearity, 90 dB dynamic range, and a minimum detectable acceleration of 0.2 mg/√Hz . The fiber optic microphone, which weighs less than 1.3 g, also met all goals including 1% linearity, 85 dB dynamic range, and a minimum detectable acoustic pressure level of 0.016 Pa/√Hz . In addition to our specific use in active sound control, these sensors appear to have application in a variety of other areas.

  13. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    PubMed

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  14. Fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors

    NASA Astrophysics Data System (ADS)

    Mizukami, Masato; Makihara, Mitsuhiro

    2013-07-01

    Conventionally, in intelligent buildings in a metropolitan area network and in small-scale facilities in the optical access network, optical connectors are joined manually using an optical connection board and a patch panel. In this manual connection approach, mistakes occur due to discrepancies between the actual physical settings of the connections and their management because these processes are independent. Moreover, manual cross-connection is time-consuming and expensive because maintenance personnel must be dispatched to remote places to correct mistakes. We have developed a fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors, which are the key elements of automatic optical fiber cross-connect equipment. We evaluate the performance of the equipment, such as its optical characteristics and environmental specifications. We also devise new optical connection mechanisms that enable the automated optical fiber cross-connect module to handle and connect angled physical contact (APC) optical connector plugs. We evaluate the performance of the equipment, such as its optical characteristics. The evaluation results confirm that the automated optical fiber cross-connect equipment can connect APC connectors with low loss and high return loss, indicating that the automated optical fiber cross-connect equipment is suitable for practical use in intelligent buildings and optical access networks.

  15. Power system applications of fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Jackson, S. P.; Kirkham, H.; Yeh, C.

    1986-01-01

    This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.

  16. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  17. Optical Sensing: Fiber Structures and Interrogation Techniques

    NASA Astrophysics Data System (ADS)

    Carvalho, Joel Pedro

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  18. Self-starting picosecond optical pulse source using stimulated Brillouin scattering in an optical fiber.

    PubMed

    Tang, W W; Shu, C

    2005-02-21

    We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.

  19. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  20. In Situ Multi-Species (O2, N2, Fuel, Other) Fiber Optic Sensor for Fuel Tank Ullage

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2007-01-01

    A rugged and compact fiber optic sensor system for in situ real-time measurement of nitrogen (N2), oxygen (O2), hydrocarbon (HC) fuel vapors, and other gases has been developed over the past several years at Glenn Research Center. The intrinsically-safe, solid-state fiber optic sensor system provides a 1% precision measurement (by volume) of multiple gases in a 5-sec time window. The sensor has no consumable parts to wear out and requires less than 25 W of electrical power to operate. The sensor head is rugged and compact and is ideal for use in harsh environments such as inside an aircraft fuel tank, or as a feedback sensor in the vent-box of an on-board inert gas generation system (OBIGGS). Multiple sensor heads can be monitored with a single optical detection unit for a cost-effective multi-point sensor system. The present sensor technology is unique in its ability to measure N2 concentration directly, and in its ability to differentiate different types of HC fuels. The present sensor system provides value-added aircraft safety information by simultaneously and directly measuring the nitrogen-oxygen-fuel triplet, which provides the following advantages: (1) information regarding the extent of inerting by N2, (2) information regarding the chemical equivalence ratio, (3) information regarding the composition of the aircraft fuel, and (4) by providing a self-consistent calibration by utilizing a singular sensor for all species. Using the extra information made available by this sensor permits the ignitability of a fuel-oxidizer mixture to be more accurately characterized, which may permit a reduction in the amount of inerting required on a real-time basis, and yet still maintain a fire-safe fuel tank. This translates to an increase in fuel tank fire-safety through a better understanding of the physics of fuel ignition, and at the same time, a reduction in compressed bleed air usage and concomitant aircraft operational costs over the long-run. The present fiber

  1. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  2. Stretch-tuning optical fiber Bragg gratings using macro-fiber composite (MFC) piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Allison, Sidney G.; Shams, Qamar A.; Geddis, Demetris L.

    2005-11-01

    The demand for high safety and reliability standards for aerospace vehicles has resulted in time-consuming periodic on-ground inspections. These inspections usually call for the disassembling and reassembling of the vehicle, which can lead to damage or degradation of structures or auxiliary systems. In order to increase aerospace vehicle safety and reliability while reducing the cost of inspection, an on-board real-time structural health monitoring sensing system is required. There are a number of systems that can be used to monitor the structures of aerospace vehicles. Fiber optic sensors have been at the forefront of the health monitoring sensing system research. Most of the research has been focused on the development of Bragg grating-based fiber optic sensors. Along with the development of fiber Bragg grating sensors has been the development of a grating measurement technique based on the principle of optical frequency domain reflectometry (OFDR), which enables the interrogation of hundreds of low reflectivity Bragg gratings. One drawback of these measurement systems is the 1 - 3 Hz measurement speed, which is limited by commercially available tunable lasers. The development of high-speed fiber stretching mechanisms to provide high rate tunable Erbium-doped optical fiber lasers can alleviate this drawback. One successful approach used a thin-layer composite unimorph ferroelectric driver and sensor (THUNDER) piezoelectric actuator, and obtained 5.3-nm wavelength shift. To eliminate the mechanical complexity of the THUNDER actuator, the research reported herein uses the NASA Langley Research Center (LaRC) Macro-Fiber Composite (MFC) actuator to tune Bragg grating based optical fibers.

  3. Recent Developments Of Optical Fiber Sensors For Automotive Use

    NASA Astrophysics Data System (ADS)

    Sasayama, Takao; Oho, Shigeru; Kuroiwa, Hiroshi; Suzuki, Seikoo

    1987-12-01

    Optical fiber sensing technologies are expected to apply for many future electronic control systems in automobiles, because of their original outstanding features, such as high noise immunity, high heat resistance, and flexible light propagation paths which can be applicable to measure the movements and directions of the mobiles. In this paper, two typical applications of fiber sensing technologies in automobiles have been described in detail. The combustion flame detector is one of the typical applications of a fiber spectroscopic technology which utilizes the feature of high noise and heat resistibility and remote sensibility. Measurements of engine combustion conditions, such as the detonation, the combustion initiation, and the air-fuel ratio, have been demonstrated in an experimental fiber sensing method. Fiber interferometers, such as a fiber gyroscope, have a lot of possibilities in future mobile applications because they are expandable to many kinds of measurements for movements and physical variables. An optical fiber gyroscope utilizing the single polarized optical fiber and optical devices has been developed. Quite an accurate measurement of vehicle position was displayed on a prototype navigation system which installed the fiber gyroscope as a rotational speed sensor.

  4. Controlled core removal from a D-shaped optical fiber.

    PubMed

    Markos, Douglas J; Ipson, Benjamin L; Smith, Kevin H; Schultz, Stephen M; Selfridge, Richard H; Monte, Thomas D; Dyott, Richard B; Miller, Gregory

    2003-12-20

    The partial removal of a section of the core from a continuous D-shaped optical fiber is presented. In the core removal process, selective chemical etching is used with hydrofluoric (HF) acid. A 25% HF acid solution removes the cladding material above the core, and a 5% HF acid solution removes the core. A red laser with a wavelength of 670 nm is transmitted through the optical fiber during the etching. The power transmitted through the optical fiber is correlated to the etch depth by scanning electron microscope imaging. The developed process provides a repeatable method to produce an optical fiber with a specific etch depth.

  5. Optical fiber sensors embedded in flexible polymer foils

    NASA Astrophysics Data System (ADS)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  6. Benefits of glass fibers in solar fiber optic lighting systems.

    PubMed

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  7. Metal-coated optical fiber damage sensors

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chen; Sirkis, James S.

    1993-07-01

    A process which uses electroplating methods has been developed to fabricate metal coated optical fiber sensors. The elastic-plastic characteristics of the metal coatings have been exploited to develop a sensor capable of `remembering' low velocity impact damage. These sensors have been investigated under uniaxial tension testing of unembedded sensors and under low velocity impact of graphite/epoxy specimens with embedded sensors using both Michelson and polarimetric optical arrangements. The tests show that coating properties alter the optical fiber sensor performance and that the permanent deformation in the coating can be used to monitor composite delamination/impact damage.

  8. Fabrication of micro/nano optical fiber by mechano-electrospinning

    NASA Astrophysics Data System (ADS)

    Chen, Qinnan; Wu, Dezhi; Yu, Zhe; Mei, Xuecui; Fang, Ke; Sun, Daoheng

    2017-10-01

    We study a novel fabrication method of micro/nano optical fiber by mechano-electrospinning (MES) direct-written technology. MES process is able to precisely manipulate the position and diameter of the electro-spun micro/nano fiber by adjusting the mechanical drawing force, which through changing the speed of motion stage (substrate). By adjusting the substrate speed, the nozzle-to-substrate distance and the applied voltage, the poly(methyl methacrylate) (PMMA) micro/nano optical fibers (MNOF) with controlled diameter are obtained and the tapered MNOF are fabricated by continuously changing the substrate speed. The transmission characteristics of PMMA micro/nano fiber is experimentally demonstrated, and a PMMA micro/nano fiber based refractive index sensor is designed. Our works shows the new fabrication method of MNOF by MES has the potential in the field of light mode conversion, optical waveguide coupling, refractive index detection and new micro/nano optical fiber components.

  9. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1999-04-06

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  10. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1995-05-30

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

  11. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1995-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  12. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1999-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  13. Metal-coated optical fibers for high temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  14. Raman fiber optic probe assembly for use in hostile environments

    DOEpatents

    Schmucker, John E.; Falk, Jon C.; Archer, William B.; Blasi, Raymond J.

    2000-01-01

    This invention provides a device for Raman spectroscopic measurement of composition and concentrations in a hostile environment by the use of a first fiber optic as a means of directing high intensity monochromatic light from a laser to the hostile environment and a second fiber optic to receive the lower intensity scattered light for transmittal to a monochromator for analysis. To avoid damage to the fiber optics, they are protected from the hostile environment. A preferred embodiment of the Raman fiber optic probe is able to obtain Raman spectra of corrosive gases and solutions at temperatures up to 600.degree. F. and pressures up to 2000 psi. The incident exciting fiber optic cable makes an angle of substantially 90.degree. with the collecting fiber optic cable. This 90.degree. geometry minimizes the Rayleigh scattering signal picked up by the collecting fiber, because the intensity of Rayleigh scattering is lowest in the direction perpendicular to the beam path of the exciting light and therefore a 90.degree. scattering geometry optimizes the signal to noise ratio.

  15. Fiber optics structural mechanics and nanotechnology based new generation of fiber coatings

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2006-02-01

    This paper consists of two parts - review and extension. The review part deals with typical fiber optics structures (bare, single- and dual-coated fibers; fibers experiencing low temperature micro-bending; fibers soldered into ferrules or adhesively bonded into capillaries; role of the non-linear stress-strain relationship, etc.) subjected to thermally induced and/or mechanical loading in bending, tension, compression, or to various combinations of such loadings. The emphasis is on the state-of-the-art in the area of optical fiber coatings and the functional (optical), mechanical and environmental problems that occur in polymer-coated or metallized fibers. The solutions to the examined problems are obtained using analytical methods (predictive models) of structural mechanics. The review is based primarily on the author's research conducted at Bell Laboratories, Murray Hill, NJ, during his eighteen years tenure with this company. The extension part addresses a new generation of optical fiber coatings and deals with the application of a newly developed (by the ERS/Siloptix Co.) nano-particle material (NPM) that is used as an attractive substitute for the existing optical fiber coatings. This NPM-based coating has all the merits of polymer and metal coatings, but is free of their shortcomings. The developed material is an unconventional inhomogeneous "smart" composite material, which is equivalent to a homogeneous material with the following major properties: low Young's modulus, immunity to corrosion, good-to-excellent adhesion to adjacent material(s), non-volatile, stable properties at temperature extremes (from -220°C to +350°C), very long (practically infinite) lifetime, "active" hydrophobicity - the material provides a moisture barrier (to both water and water vapor), and, if necessary, can even "wick" moisture away from the contact surface; ability for "self-healing" and "healing": the NPM is able to restore its own dimensions, when damaged, and is able to

  16. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    Fiber Optic Wing Shape Sensing on Ikhana involves five major areas 1) Algorithm development: Local-strain-to-displacement algorithms have been developed for complex wing shapes for real-time implementation (NASA TP-2007-214612, patent application submitted) 2) FBG system development: Dryden advancements to fiber optic sensing technology have increased data sampling rates to levels suitable for monitoring structures in flight (patent application submitted) 3) Instrumentation: 2880 FBG strain sensors have been successfully installed on the Ikhana wings 4) Ground Testing: Fiber optic wing shape sensing methods for high aspect ratio UAVs have been validated through extensive ground testing in Dryden s Flight Loads Laboratory 5) Flight Testing: Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008) Real-time fiber optic wing shape sensing successfully demonstrated in flight

  17. Fiber Optic System Test Results In A Tactical Military Aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.; Greenwell, Roger A.

    1980-09-01

    The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.

  18. Universal fiber-optic C.I.E. colorimeter

    DOEpatents

    Kronberg, James W.

    1992-01-01

    Apparatus for color measurements according to the C.I.E. system comprises a first fiber optic cable for receiving and linearizing light from a light source, a lens system for spectrally displaying the linearized light and focusing the light on one end of a trifurcated fiber optic assembly that integrates and separates the light according to the three C.I.E. tristimulus functions. The separated light is received by three photodiodes and electronically evaluated to determine the magnitude of the light corresponding to the tristimulus functions. The fiber optic assembly is made by forming, at one end, a bundle of optic fibers to match the contours of one of the tristimulus functions, encapsulating that bundle, adding a second bundle that, together with the first bundle, will match the contours of the first plus one other tristimulus function, encapsulating that second bundle, then adding a third bundle which together with the first and second bundles, has contours matching the sum of all three tristimulus functions. At the other end of the assembly the three bundles are separated and aligned with their respective photodiodes.

  19. New intravascular flow sensor using fiber optics

    NASA Astrophysics Data System (ADS)

    Stenow, Erik N. D.

    1994-12-01

    A new sensor using fiber optics is suggested for blood flow measurements in small vessels. The sensor principle and a first evaluation on a flow model are presented. The new sensor uses small CO2 gas bubbles as flow markers for optical detection. When the bubbles pass an optical window, light emitted from one fiber is reflected and scattered into another fiber. The sensor has been proven to work in a 3 mm flow model using two 110 micrometers optical fibers and a 100 micrometers steel capillary inserted into a 1 mm guide wire. The evaluation of a sensor archetype shows that the new sensor provides a promising method for intravascular blood flow measurement in small vessels. The linearity for steady state flow is studied in the flow interval 30 - 130 ml/min. comparison with ultrasound Doppler flowmetry was performed for pulsatile flow in the interval 25 - 125 ml/min. with a pulse length between 0.5 and 2 s. The use of intravascular administered CO2 in small volumes is harmless because the gas is rapidly dissolved in whole blood.

  20. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    DTIC Science & Technology

    2014-12-23

    coupled for d = 2λ . Results are shown for the TE polarization , where the transverse electric field vector is pointing in the vertical direction in these...16, 42–44 (1991). 6. D. U. Noske, N. Pandit, and J. R. Taylor, “Subpicosecond soliton pulse formation from self-mode- locked erbium fibre laser using...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode- Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1