Sample records for n-linked glycan structures

  1. N-Glycan Structure Annotation of Glycopeptides Using a Linearized Glycan Structure Database (GlyDB)

    PubMed Central

    Ren, Jian Min; Rejtar, Tomas; Li, Lingyun; Karger, Barry L.

    2008-01-01

    While glycoproteins are abundant in nature, and changes in glycosylation occur in cancer and other diseases, glycoprotein characterization remains a challenge due to the structural complexity of the biopolymers. This paper presents a general strategy, termed GlyDB, for glycan structure annotation of N-linked glycopeptides from tandem mass spectra in the LC-MS analysis of proteolytic digests of glycoproteins. The GlyDB approach takes advantage of low-energy collision induced dissociation of N-linked glycopeptides that preferentially cleaves the glycosidic bonds while the peptide backbone remains intact. A theoretical glycan structure database derived from biosynthetic rules for N-linked glycans was constructed employing a novel representation of branched glycan structures consisting of multiple linear sequences. The commonly used peptide identification program, Sequest, could then be utilized to assign experimental tandem mass spectra to individual glycoforms. Analysis of synthetic glycopeptides and well-characterized glycoproteins demonstrate that the GlyDB approach can be a useful tool for annotation of glycan structures and for selection of a limited number of potential glycan structure candidates for targeted validation. PMID:17625816

  2. Structural analysis of glycoproteins: building N-linked glycans with Coot.

    PubMed

    Emsley, Paul; Crispin, Max

    2018-04-01

    Coot is a graphics application that is used to build or manipulate macromolecular models; its particular forte is manipulation of the model at the residue level. The model-building tools of Coot have been combined and extended to assist or automate the building of N-linked glycans. The model is built by the addition of monosaccharides, placed by variation of internal coordinates. The subsequent model is refined by real-space refinement, which is stabilized with modified and additional restraints. It is hoped that these enhanced building tools will help to reduce building errors of N-linked glycans and improve our knowledge of the structures of glycoproteins.

  3. An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.

    PubMed

    Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup

    2009-01-01

    Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.

  4. Structural analysis of N-linked glycans in Caenorhabditis elegans.

    PubMed

    Natsuka, Shunji; Adachi, Jiro; Kawaguchi, Masahumi; Nakakita, Shin-ichi; Hase, Sumihiro; Ichikawa, Akira; Ikura, Koji

    2002-06-01

    Caenorhabditis elegans is an excellent model for morphogenetic research. However, little information is available on the structure of cell-surface glycans in C. elegans, although several lines of evidence have suggested a role for these glycans in cell-cell interactions during development. In this study, we analyzed N-glycan structures. Oligosaccharides liberated by hydrazinolysis from a total membrane fraction were labeled by pyridylamination, and around 90% of the N-glycans were detected as neutral oligosaccharides. The most dominant structure was Man(alpha)1-6(Man(alpha)1-3)Man(beta)1-4GlcNAc(beta)1-4GlcNAc, which is commonly found in insects. Branching structures of major oligomannose-type glycans were the same as those found in mammals. Structures that had a core fucose or non-reducing end N-acetylglucosamine were also identified, but ordinary complex-type glycans with N-acetyllactosamine were not detected as major components.

  5. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1.

    PubMed

    Lennemann, Nicholas J; Rhein, Bethany A; Ndungo, Esther; Chandran, Kartik; Qiu, Xiangguo; Maury, Wendy

    2014-01-28

    Ebola virus (EBOV) entry requires the virion surface-associated glycoprotein (GP) that is composed of a trimer of heterodimers (GP1/GP2). The GP1 subunit contains two heavily glycosylated domains, the glycan cap and the mucin-like domain (MLD). The glycan cap contains only N-linked glycans, whereas the MLD contains both N- and O-linked glycans. Site-directed mutagenesis was performed on EBOV GP1 to systematically disrupt N-linked glycan sites to gain an understanding of their role in GP structure and function. All 15 N-glycosylation sites of EBOV GP1 could be removed without compromising the expression of GP. The loss of these 15 glycosylation sites significantly enhanced pseudovirion transduction in Vero cells, which correlated with an increase in protease sensitivity. Interestingly, exposing the receptor-binding domain (RBD) by removing the glycan shield did not allow interaction with the endosomal receptor, NPC1, indicating that the glycan cap/MLD domains mask RBD residues required for binding. The effects of the loss of GP1 N-linked glycans on Ca(2+)-dependent (C-type) lectin (CLEC)-dependent transduction were complex, and the effect was unique for each of the CLECs tested. Surprisingly, EBOV entry into murine peritoneal macrophages was independent of GP1 N-glycans, suggesting that CLEC-GP1 N-glycan interactions are not required for entry into this important primary cell. Finally, the removal of all GP1 N-glycans outside the MLD enhanced antiserum and antibody sensitivity. In total, our results provide evidence that the conserved N-linked glycans on the EBOV GP1 core protect GP from antibody neutralization despite the negative impact the glycans have on viral entry efficiency. Filovirus outbreaks occur sporadically throughout central Africa, causing high fatality rates among the general public and health care workers. These unpredictable hemorrhagic fever outbreaks are caused by multiple species of Ebola viruses, as well as Marburg virus. While filovirus

  6. The Role of Conserved N-Linked Glycans on Ebola Virus Glycoprotein 2.

    PubMed

    Lennemann, Nicholas J; Walkner, Madeline; Berkebile, Abigail R; Patel, Neil; Maury, Wendy

    2015-10-01

    N-linked glycosylation is a common posttranslational modification found on viral glycoproteins (GPs) and involved in promoting expression, cellular attachment, protection from proteases, and antibody evasion. The GP subunit GP2 of filoviruses contains 2 completely conserved N-linked glycosylation sites (NGSs) at N563 and N618, suggesting that they have been maintained through selective pressures. We assessed mutants lacking these glycans for expression and function to understand the role of these sites during Ebola virus entry. Elimination of either GP2 glycan individually had a modest effect on GP expression and no impact on antibody neutralization of vesicular stomatitis virus pseudotyped with Ebola virus GP. However, loss of the N563 glycan enhanced entry by 2-fold and eliminated GP detection by a well-characterized monoclonal antibody KZ52. Loss of both sites dramatically decreased GP expression and abolished entry. Surprisingly, a GP that retained a single NGS at N563, eliminating the remaining 16 NGSs from GP1 and GP2, had detectable expression, a modest increase in entry, and pronounced sensitivity to antibody neutralization. Our findings support the importance of the GP2 glycans in GP expression/structure, transduction efficiency, and antibody neutralization, particularly when N-linked glycans are also removed from GP1. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Restricted N-glycan conformational space in the PDB and its implication in glycan structure modeling.

    PubMed

    Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil

    2013-01-01

    Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures.

  8. Restricted N-glycan Conformational Space in the PDB and Its Implication in Glycan Structure Modeling

    PubMed Central

    Jo, Sunhwan; Lee, Hui Sun; Skolnick, Jeffrey; Im, Wonpil

    2013-01-01

    Understanding glycan structure and dynamics is central to understanding protein-carbohydrate recognition and its role in protein-protein interactions. Given the difficulties in obtaining the glycan's crystal structure in glycoconjugates due to its flexibility and heterogeneity, computational modeling could play an important role in providing glycosylated protein structure models. To address if glycan structures available in the PDB can be used as templates or fragments for glycan modeling, we present a survey of the N-glycan structures of 35 different sequences in the PDB. Our statistical analysis shows that the N-glycan structures found on homologous glycoproteins are significantly conserved compared to the random background, suggesting that N-glycan chains can be confidently modeled with template glycan structures whose parent glycoproteins share sequence similarity. On the other hand, N-glycan structures found on non-homologous glycoproteins do not show significant global structural similarity. Nonetheless, the internal substructures of these N-glycans, particularly, the substructures that are closer to the protein, show significantly similar structures, suggesting that such substructures can be used as fragments in glycan modeling. Increased interactions with protein might be responsible for the restricted conformational space of N-glycan chains. Our results suggest that structure prediction/modeling of N-glycans of glycoconjugates using structure database could be effective and different modeling approaches would be needed depending on the availability of template structures. PMID:23516343

  9. Structural characterization of the N-glycans of gpMuc from Mucuna pruriens seeds.

    PubMed

    Di Patrizi, Lisa; Rosati, Floriana; Guerranti, Roberto; Pagani, Roberto; Gerwig, Gerrit J; Kamerling, Johannis P

    2006-11-01

    Mucuna pruriens seeds are used in some countries as a human prophylactic oral anti-snake remedy. Aqueous extracts of M. pruriens seeds possess in vivo activity against cobra and viper venoms, and protect mice against Echis carinatus venom. It was recently demonstrated that the seed immunogen generating the antibody that cross-reacts with the venom proteins is a multiform glycoprotein (gpMuc), and the immunogenic properties of gpMuc seemed to mainly reside in its glycan chains. In the present study, gpMuc was found to contain only N-glycans. Part of the N-glycans could be released with peptide-(N (4)-(N-acetyl-beta -glucosaminyl)asparagine amidase F (PNGase F-sensitive N-glycans); the PNGase F-resistant N-glycans were PNGase A-sensitive. The oligosaccharides released were analyzed by a combination of MALDI-TOF mass spectrometry, HPLC profiling of 2-aminobenzamide-labelled derivatives and (1)H NMR spectroscopy. The PNGase F-sensitive N-glycans comprised a mixture of oligomannose-type structures ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2), and two xylosylated structures, Xyl(1)Man(3)GlcNAc(2) and Xyl(1)Man(4)GlcNAc(2). The PNGase A-sensitive N-glycans, containing (alpha 1-3)-linked fucose, were identified as Fuc(1)Xyl(1)Man(2)GlcNAc(2) and Fuc(1)Xyl(1)Man(3)GlcNAc(2). In view of the determined N-glycan ensemble, the immunoreactivity of gpMuc was ascribed to the presence of core (beta 1-2)-linked xylose- and core alpha (1-3)-linked fucose-modified N-glycan chains.

  10. Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer

    PubMed Central

    Abbott, Karen L.; Nairn, Alison V.; Hall, Erica M.; Horton, Marc B.; McDonald, John F.; Moremen, Kelley W.; Dinulescu, Daniela M.; Pierce, Michael

    2014-01-01

    Epithelial ovarian cancer is the deadliest female reproductive tract malignancy in Western countries. Less than 25% of cases are diagnosed when the cancer is confined, however, pointing to the critical need for early diagnostics for ovarian cancer. Identifying the changes that occur in the glycome of ovarian cancer cells may provide an avenue to develop a new generation of potential biomarkers for early detection of this disease. We performed a glycotranscriptomic analysis of endometrioid ovarian carcinoma using human tissue, as well as a newly developed mouse model that mimics this disease. Our results show that the N-linked glycans expressed in both non-diseased mouse and human ovarian tissues are similar; moreover, malignant changes in the expression of N-linked glycans in both mouse and human endometrioid ovarian carcinoma are qualitatively similar. Lectin reactivity was used as a means for rapid validation of glycan structural changes in the carcinomas that were predicted by the glycotranscriptome analysis. Among several changes in glycan expression noted, the increase of bisected N-linked glycans and the transcripts of the enzyme responsible for its biosynthesis, GnT-III, was the most significant. This study provides evidence that glycotranscriptome analysis can be an important tool in identifying potential cancer biomarkers. PMID:18690643

  11. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

    PubMed

    Lei, Y; Yu, H; Dong, Y; Yang, J; Ye, W; Wang, Y; Chen, W; Jia, Z; Xu, Z; Li, Z; Zhang, F

    2015-01-01

    DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD) of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.

  12. MALDI-MS/MS with Traveling Wave Ion Mobility for the Structural Analysis of N-Linked Glycans

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Scarff, Charlotte A.; Crispin, Max; Scanlan, Christopher N.; Bonomelli, Camille; Scrivens, James H.

    2012-11-01

    The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.

  13. N-linked glycan truncation causes enhanced clearance of plasma-derived von Willebrand factor.

    PubMed

    O'Sullivan, J M; Aguila, S; McRae, E; Ward, S E; Rawley, O; Fallon, P G; Brophy, T M; Preston, R J S; Brady, L; Sheils, O; Chion, A; O'Donnell, J S

    2016-12-01

    Essentials von Willebrands factor (VWF) glycosylation plays a key role in modulating in vivo clearance. VWF glycoforms were used to examine the role of specific glycan moieties in regulating clearance. Reduction in sialylation resulted in enhanced VWF clearance through asialoglycoprotein receptor. Progressive VWF N-linked glycan trimming resulted in increased macrophage-mediated clearance. Click to hear Dr Denis discuss clearance of von Willebrand factor in a free presentation from the ISTH Academy SUMMARY: Background Enhanced von Willebrand factor (VWF) clearance is important in the etiology of both type 1 and type 2 von Willebrand disease (VWD). In addition, previous studies have demonstrated that VWF glycans play a key role in regulating in vivo clearance. However, the molecular mechanisms underlying VWF clearance remain poorly understood. Objective To define the molecular mechanisms through which VWF N-linked glycan structures influence in vivo clearance. Methods By use of a series of exoglycosidases, different plasma-derived VWF (pd-VWF) glycoforms were generated. In vivo clearance of these glycoforms was then assessed in VWF -/- mice in the presence or absence of inhibitors of asialoglycoprotein receptor (ASGPR), or following clodronate-induced macrophage depletion. Results Reduced amounts of N-linked and O-linked sialylation resulted in enhanced pd-VWF clearance modulated via ASGPR. In addition to this role of terminal sialylation, we further observed that progressive N-linked glycan trimming also resulted in markedly enhanced VWF clearance. Furthermore, these additional N-linked glycan effects on clearance were ASGPR-independent, and instead involved enhanced macrophage clearance that was mediated, at least in part, through LDL receptor-related protein 1. Conclusion The carbohydrate determinants expressed on VWF regulate susceptibility to proteolysis by ADAMTS-13. In addition, our findings now further demonstrate that non-sialic acid carbohydrate

  14. Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans

    PubMed Central

    De Castro, Cristina; Molinaro, Antonio; Piacente, Francesco; Gurnon, James R.; Sturiale, Luisa; Palmigiano, Angelo; Lanzetta, Rosa; Parrilli, Michelangelo; Garozzo, Domenico; Tonetti, Michela G.; Van Etten, James L.

    2013-01-01

    The major capsid protein Vp54 from the prototype chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) contains four Asn-linked glycans. The structure of the four N-linked oligosaccharides and the type of substitution at each glycosylation site was determined by chemical, spectroscopic, and spectrometric analyses. Vp54 glycosylation is unusual in many ways, including: (i) unlike most viruses, PBCV-1 encodes most, if not all, of the machinery to glycosylate its major capsid protein; (ii) the glycans are attached to the protein by a β-glucose linkage; (iii) the Asn-linked glycans are not located in a typical N-X-(T/S) consensus site; and (iv) the process probably occurs in the cytoplasm. The four glycoforms share a common core structure, and the differences are related to the nonstoichiometric presence of two monosaccharides. The most abundant glycoform consists of nine neutral monosaccharide residues, organized in a highly branched fashion. Among the most distinctive features of the glycoforms are (i) a dimethylated rhamnose as the capping residue of the main chain, (ii) a hyperbranched fucose unit, and (iii) two rhamnose residues with opposite absolute configurations. These glycoforms differ from what has been reported so far in the three domains of life. Considering that chloroviruses and other members of the family Phycodnaviridae may have a long evolutionary history, we suggest that the chlorovirus glycosylation pathway is ancient, possibly existing before the development of the endoplasmic reticulum and Golgi pathway, and involves still unexplored mechanisms. PMID:23918378

  15. Xylose Migration During Tandem Mass Spectrometry of N-Linked Glycans

    NASA Astrophysics Data System (ADS)

    Hecht, Elizabeth S.; Loziuk, Philip L.; Muddiman, David C.

    2017-04-01

    Understanding the rearrangement of gas-phase ions via tandem mass spectrometry is critical to improving manual and automated interpretation of complex datasets. N-glycan analysis may be carried out under collision induced (CID) or higher energy collision dissociation (HCD), which favors cleavage at the glycosidic bond. However, fucose migration has been observed in tandem MS, leading to the formation of new bonds over four saccharide units away. In the following work, we report the second instance of saccharide migration ever to occur for N-glycans. Using horseradish peroxidase as a standard, the beta-1,2 xylose was observed to migrate from a hexose to a glucosamine residue on the (Xyl)Man3GlcNac2 glycan. This investigation was followed up in a complex N-linked glycan mixture derived from stem differentiating xylem tissue, and the rearranged product ion was observed for 75% of the glycans. Rearrangement was not favored in isomeric glycans with a core or antennae fucose and unobserved in glycans predicted to have a permanent core-fucose modification. As the first empirical observation of this rearrangement, this work warrants dissemination so it may be searched in de novo sequencing glycan workflows.

  16. Extracting Both Peptide Sequence and Glycan Structural Information by 157 nm Photodissociation of N-Linked Glycopeptides

    PubMed Central

    Zhang, Liangyi; Reilly, James P.

    2009-01-01

    157 nm photodissociation of N-linked glycopeptides was investigated in MALDI tandem time-of-flight (TOF) and linear ion trap mass spectrometers. Singly-charged glycopeptides yielded abundant peptide and glycan fragments. The peptide fragments included a series of x-, y-, v- and w- ions with the glycan remaining intact. These provide information about the peptide sequence and the glycosylation site. In addition to glycosidic fragments, abundant cross-ring glycan fragments that are not observed in low-energy CID were detected. These fragments provide insight into the glycan sequence and linkages. Doubly-charged glycopeptides generated by nanospray in the linear ion trap mass spectrometer also yielded peptide and glycan fragments. However, the former were dominated by low-energy fragments such as b- and y- type ions while glycan was primarily cleaved at glycosidic bonds. PMID:19113943

  17. Structural features of N-glycans linked to glycoproteins expressed in three kinds of water plants: Predominant occurrence of the plant complex type N-glycans bearing Lewis a epitope.

    PubMed

    Maeda, Megumi; Tani, Misato; Yoshiie, Takeo; Vavricka, Christopher J; Kimura, Yoshinobu

    2016-11-29

    The Japanese cedar pollen allergen (Cry j1) and the mountain cedar pollen allergen (Jun a1) are glycosylated with plant complex type N-glycans bearing Lewis a epitope(s) (Galβ1-3[Fucα1-4]GlcNAc-). The biological significance of Lewis a type plant N-glycans and their effects on the human immune system remain to be elucidated. Since a substantial amount of such plant specific N-glycans are required to evaluate immunological activity, we have searched for good plant-glycan sources to characterize Lewis a epitope-containing plant N-glycans. In this study, we have found that three water plants, Elodea nuttallii, Egeria densa, and Ceratophyllum demersum, produce glycoproteins bearing Lewis a units. Structural analysis of the N-glycans revealed that almost all glycoproteins expressed in these three water plants predominantly carry plant complex type N-glycans including the Lewis a type, suggesting that these water plants are good sources for preparation of Lewis a type plant N-glycans in substantial amounts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome.

    PubMed

    Kronewitter, Scott R; An, Hyun Joo; de Leoz, Maria Lorna; Lebrilla, Carlito B; Miyamoto, Suzanne; Leiserowitz, Gary S

    2009-06-01

    Annotation of the human serum N-linked glycome is a formidable challenge but is necessary for disease marker discovery. A new theoretical glycan library was constructed and proposed to provide all possible glycan compositions in serum. It was developed based on established glycobiology and retrosynthetic state-transition networks. We find that at least 331 compositions are possible in the serum N-linked glycome. By pairing the theoretical glycan mass library with a high mass accuracy and high-resolution MS, human serum glycans were effectively profiled. Correct isotopic envelope deconvolution to monoisotopic masses and the high mass accuracy instruments drastically reduced the amount of false composition assignments. The high throughput capacity enabled by this library permitted the rapid glycan profiling of large control populations. With the use of the library, a human serum glycan mass profile was developed from 46 healthy individuals. This paper presents a theoretical N-linked glycan mass library that was used for accurate high-throughput human serum glycan profiling. Rapid methods for evaluating a patient's glycome are instrumental for studying glycan-based markers.

  19. Increased Bisecting N-Acetylglucosamine and Decreased Branched Chain Glycans of N-linked Glycoproteins in Expressed Prostatic Secretions Associated with Prostate Cancer Progression

    PubMed Central

    Nyalwidhe, Julius O.; Betesh, Lucy R.; Powers, Thomas W.; Jones, E. Ellen; White, Krista Y.; Burch, Tanya C.; Brooks, Jasmin; Watson, Megan T.; Lance, Raymond S.; Troyer, Dean A.; Semmes, O. John; Mehta, Anand; Drake, Richard R.

    2013-01-01

    Purpose Using prostatic fluids rich in glycoproteins like prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) , the goal of this study was to identify the structural types and relative abundance of glycans associated with prostate cancer status for subsequent use in emerging mass spectrometry-based glycopeptide analysis platforms. Experimental Design A series of pooled samples of expressed prostatic secretions (EPS) and exosomes reflecting different stages of prostate cancer disease were used for N-linked glycan profiling by three complementary methods, MALDI-TOF profiling, normal-phase HPLC separation, and triple quadropole MS analysis of PAP glycopeptides. Results Glycan profiling of N-linked glycans from different EPS fluids indicated a global decrease in larger branched tri- and tetra-antennary glycans. Differential exoglycosidase treatments indicated a substantial increase in bisecting N-acetylglucosamines correlated with disease severity. A triple quadrupole MS analysis of the N-linked glycopeptides sites from PAP in aggressive prostate cancer pools was done to cross-reference with the glycan profiling data. Conclusion and clinical relevance Changes in glycosylation as detected in EPS fluids reflect the clinical status of prostate cancer. Defining these molecular signatures at the glycopeptide level in individual samples could improve current approaches of diagnosis and prognosis. PMID:23775902

  20. Protein structure controls the processing of the N-linked oligosaccharides and glycosylphosphatidylinositol glycans of variant surface glycoproteins expressed in bloodstream form Trypanosoma brucei.

    PubMed

    Zitzmann, N; Mehlert, A; Carrouée, S; Rudd, P M; Ferguson, M A; Carroué, S

    2000-03-01

    The variant surface glycoproteins (VSGs) of Trypanosoma brucei are a family of homodimeric glycoproteins that adopt similar shapes. An individual trypanosome expresses one VSG at a time in the form of a dense protective mono-layer on the plasma membrane. VSG genes are expressed from one of several polycistronic transcription units (expression sites) that contain several expression site associated genes. We used a transformed trypanosome clone expressing two different VSGs (VSG121 and VSG221) from the same expression site (that of VSG221) to establish whether the genotype of the trypanosome clone or the VSG structure itself controls VSG N-linked oligosaccharide and GPI anchor glycan processing. In-gel release and fluorescent labeling of N-linked oligosaccharides and on-blot fluorescent labeling and release of GPI anchor glycans were employed to compare the carbohydrate structures of VSG121 and VSG221 when expressed individually in wild-type trypanosome clones and when expressed together in the transformed trypanosome clone. The data indicate that the genotype of the trypanosome clone has no effect on the N-linked oligosaccharide structures present on a given VSG variant and only a minor effect on the GPI anchor glycans. The latter is most likely an effect of changes in inter-VSG packing when two VGSs are expressed simultaneously. Thus, N-linked oligosaccharide and GPI anchor processing enzymes appear to be constitutively expressed in bloodstream form African trypanosomes and the tertiary and quaternary structures of the VSG homodimers appear to dictate the processing and glycoform microheterogeneity of surface-expressed VSGs.

  1. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans

    PubMed Central

    Peng, Wenjie; Pranskevich, Jennifer; Nycholat, Corwin; Gilbert, Michel; Wakarchuk, Warren; Paulson, James C; Razi, Nahid

    2012-01-01

    Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans. PMID:22786570

  2. A novel broad specificity fucosidase capable of core α1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes.

    PubMed

    Vainauskas, Saulius; Kirk, Charlotte H; Petralia, Laudine; Guthrie, Ellen P; McLeod, Elizabeth; Bielik, Alicia; Luebbers, Alex; Foster, Jeremy M; Hokke, Cornelis H; Rudd, Pauline M; Shi, Xiaofeng; Taron, Christopher H

    2018-06-22

    Exoglycosidases are often used for detailed characterization of glycan structures. Bovine kidney α-fucosidase is commonly used to determine the presence of core α1-6 fucose on N-glycans, an important modification of glycoproteins. Recently, several studies have reported that removal of core α1-6-linked fucose from N-glycans labeled with the reactive N-hydroxysuccinimide carbamate fluorescent labels 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC) and RapiFluor-MS is severely impeded. We report here the cloning, expression and biochemical characterization of an α-fucosidase from Omnitrophica bacterium (termed fucosidase O). We show that fucosidase O can efficiently remove α1-6- and α1-3-linked core fucose from N-glycans. Additionally, we demonstrate that fucosidase O is able to efficiently hydrolyze core α1-6-linked fucose from N-glycans labeled with any of the existing NHS-carbamate activated fluorescent dyes.

  3. N-Linked Glycan Profiling of Mature Human Milk by High Performance Microfluidic Chip Liquid Chromatography Time-of-Flight Tandem Mass Spectrometry

    PubMed Central

    Dallas, David C.; Martin, William F.; Strum, John S.; Zivkovic, Angela M.; Smilowitz, Jennifer T.; Underwood, Mark A.; Affolter, Michael; Lebrilla, Carlito B.; German, J. Bruce

    2015-01-01

    N-linked glycans of skim human milk proteins were determined for three mothers. N-linked glycans are linked to immune defense, cell growth, and cell-cell adhesion, but their functions in human milk are undetermined. Protein-bound N-linked glycans were released with Peptidyl N-glycosidase F (PNGase F), enriched by graphitized carbon chromatography and analyzed with Chip-TOF MS. To be defined as N-glycans, compounds were required, in all three procedural replicates, to match, within 6 ppm, against a theoretical human N-glycan library, be at least two-fold higher in abundance in PNGase F-treated than in control samples. Fifty-two N-linked glycan compositions were identified and 24 were confirmed via tandem mass spectra analysis. Twenty-seven compositions have been found previously in human milk and 25 are novel compositions. By abundance, 84% of N-glycans were fucosylated and 47% were sialylated. The majority (70%) of total N-glycan abundance was comprised of N-glycans found in all three milk samples. PMID:21384928

  4. Structural Feature Ions for Distinguishing N- and O-Linked Glycan Isomers by LC-ESI-IT MS/MS

    NASA Astrophysics Data System (ADS)

    Everest-Dass, Arun V.; Abrahams, Jodie L.; Kolarich, Daniel; Packer, Nicolle H.; Campbell, Matthew P.

    2013-06-01

    Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure-function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.

  5. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  6. Mass Spectrometric Quantification of N-Linked Glycans by Reference to Exogenous Standards.

    PubMed

    Mehta, Nickita; Porterfield, Mindy; Struwe, Weston B; Heiss, Christian; Azadi, Parastoo; Rudd, Pauline M; Tiemeyer, Michael; Aoki, Kazuhiro

    2016-09-02

    Environmental and metabolic processes shape the profile of glycoprotein glycans expressed by cells, whether in culture, developing tissues, or mature organisms. Quantitative characterization of glycomic changes associated with these conditions has been achieved historically by reductive coupling of oligosaccharides to various fluorophores following release from glycoprotein and subsequent HPLC or capillary electrophoretic separation. Such labeling-based approaches provide a robust means of quantifying glycan amount based on fluorescence yield. Mass spectrometry, on the other hand, has generally been limited to relative quantification in which the contribution of the signal intensity for an individual glycan is expressed as a percent of the signal intensity summed over the total profile. Relative quantification has been valuable for highlighting changes in glycan expression between samples; sensitivity is high, and structural information can be derived by fragmentation. We have investigated whether MS-based glycomics is amenable to absolute quantification by referencing signal intensities to well-characterized oligosaccharide standards. We report the qualification of a set of N-linked oligosaccharide standards by NMR, HPLC, and MS. We also demonstrate the dynamic range, sensitivity, and recovery from complex biological matrices for these standards in their permethylated form. Our results indicate that absolute quantification for MS-based glycomic analysis is reproducible and robust utilizing currently available glycan standards.

  7. Fragmentation of negative ions from N-linked carbohydrates, part 4. Fragmentation of complex glycans lacking substitution on the 6-antenna.

    PubMed

    Harvey, David J; Jaeken, Jaak; Butler, Mike; Armitage, Alison J; Rudd, Pauline M; Dwek, Raymond A

    2010-05-01

    Negative ion CID spectra of N-linked glycans released from glycoproteins contain many ions that are diagnostic for specific structural features such as the detailed arrangement of antennae and the location of fucose residues. Identification of such ions requires reference glycans that are often difficult to acquire in a pure state. The recent acquisition of a sample of N-glycans from a patient lacking the enzyme N-acetylglucosaminyltransferase-2 provided an opportunity to investigate fragmentation of glycans lacking a 6-antenna. These glycans contained one or two galactose-N-acetylglucosamine-chains attached to the 3-linked mannose residue of the trimannosyl-chitobiose core with and without fucose substitution. The spectra from the patient sample clearly defined the antenna distribution and showed striking differences from the spectra of isomeric compounds obtained from normal subjects. Furthermore, they provided additional information on previously identified antenna-specific fragment ions and indicated the presence of additional ions that were diagnostic of fucose substitution. Glycans obtained from such enzyme-deficient patients can, thus, be a valuable way of obtaining spectra of specific isomers in a relatively pure state for interpretation of mass spectra. 2010 John Wiley & Sons, Ltd.

  8. Structural analysis of N-glycans by the glycan-labeling method using 3-aminoquinoline-based liquid matrix in negative-ion MALDI-MS.

    PubMed

    Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-ichirou; Tanaka, Koichi

    2012-11-06

    Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.

  9. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis.

    PubMed

    Nairn, Alison V; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W

    2012-11-02

    The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.

  10. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    PubMed

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-05

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B and G

    PubMed Central

    Stewart-Jones, Guillaume B. E.; Soto, Cinque; Lemmin, Thomas; Chuang, Gwo-Yu; Druz, Aliaksandr; Kong, Rui; Thomas, Paul V.; Wagh, Kshitij; Zhou, Tongqing; Behrens, Anna-Janina; Bylund, Tatsiana; Choi, Chang W.; Davison, Jack R.; Georgiev, Ivelin S.; Joyce, M. Gordon; Do Kwon, Young; Pancera, Marie; Taft, Justin; Yang, Yongping; Zhang, Baoshan; Shivatare, Sachin S.; Shivatare, Vidya S.; Lee, Chang-Chun D.; Wu, Chung-Yi; Bewley, Carole A.; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Crispin, Max; Baxa, Ulrich; Korber, Bette T.; Wong, Chi-Huey; Mascola, John R.; Kwong, Peter D.

    2017-01-01

    The HIV-1-envelope (Env) trimer is covered by a glycan shield of ~90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, which encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans amongst known broadly neutralizing antibodies that target the glycan-shielded trimer. PMID:27114034

  12. Protein-Linked Glycan Degradation in Infants Fed Human Milk

    PubMed Central

    Dallas, David C.; Sela, David; Underwood, Mark A.; German, J. Bruce; Lebrilla, Carlito

    2014-01-01

    Many human milk proteins are glycosylated. Glycosylation is important in protecting bioactive proteins and peptide fragments from digestion. Protein-linked glycans have a variety of functions; however, there is a paucity of information on protein-linked glycan degradation in either the infant or the adult digestive system. Human digestive enzymes can break down dietary disaccharides and starches, but most of the digestive enzymes required for complex protein-linked glycan degradation are absent from both human digestive secretions and the external brush border membrane of the intestinal lining. Indeed, complex carbohydrates remain intact throughout their transit through the stomach and small intestine, and are undegraded by in vitro incubation with either adult pancreatic secretions or intact intestinal brush border membranes. Human gastrointestinal bacteria, however, produce a wide variety of glycosidases with regio- and anomeric specificities matching those of protein-linked glycan structures. These bacteria degrade a wide array of complex carbohydrates including various protein-linked glycans. That bacteria possess glycan degradation capabilities, whereas the human digestive system, perse, does not, suggests that most dietary protein-linked glycan breakdown will be of bacterial origin. In addition to providing a food source for specific bacteria in the colon, protein-linked glycans from human milk may act as decoys for pathogenic bacteria to prevent invasion and infection of the host. The composition of the intestinal microbiome may be particularly important in the most vulnerable humans-the elderly, the immunocompromised, and infants (particularly premature infants). PMID:24533224

  13. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G.

    PubMed

    Stewart-Jones, Guillaume B E; Soto, Cinque; Lemmin, Thomas; Chuang, Gwo-Yu; Druz, Aliaksandr; Kong, Rui; Thomas, Paul V; Wagh, Kshitij; Zhou, Tongqing; Behrens, Anna-Janina; Bylund, Tatsiana; Choi, Chang W; Davison, Jack R; Georgiev, Ivelin S; Joyce, M Gordon; Kwon, Young Do; Pancera, Marie; Taft, Justin; Yang, Yongping; Zhang, Baoshan; Shivatare, Sachin S; Shivatare, Vidya S; Lee, Chang-Chun D; Wu, Chung-Yi; Bewley, Carole A; Burton, Dennis R; Koff, Wayne C; Connors, Mark; Crispin, Max; Baxa, Ulrich; Korber, Bette T; Wong, Chi-Huey; Mascola, John R; Kwong, Peter D

    2016-05-05

    The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. N-Linked Glycosylation in Archaea: a Structural, Functional, and Genetic Analysis

    PubMed Central

    Ding, Yan; Meyer, Benjamin H.; Albers, Sonja-Verena; Kaminski, Lina; Eichler, Jerry

    2014-01-01

    SUMMARY N-glycosylation of proteins is one of the most prevalent posttranslational modifications in nature. Accordingly, a pathway with shared commonalities is found in all three domains of life. While excellent model systems have been developed for studying N-glycosylation in both Eukarya and Bacteria, an understanding of this process in Archaea was hampered until recently by a lack of effective molecular tools. However, within the last decade, impressive advances in the study of the archaeal version of this important pathway have been made for halophiles, methanogens, and thermoacidophiles, combining glycan structural information obtained by mass spectrometry with bioinformatic, genetic, biochemical, and enzymatic data. These studies reveal both features shared with the eukaryal and bacterial domains and novel archaeon-specific aspects. Unique features of N-glycosylation in Archaea include the presence of unusual dolichol lipid carriers, the use of a variety of linking sugars that connect the glycan to proteins, the presence of novel sugars as glycan constituents, the presence of two very different N-linked glycans attached to the same protein, and the ability to vary the N-glycan composition under different growth conditions. These advances are the focus of this review, with an emphasis on N-glycosylation pathways in Haloferax, Methanococcus, and Sulfolobus. PMID:24847024

  15. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    PubMed Central

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-01-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan structures was determined to be 30% while it was found to be 35% for either fucosylated or sialylated structures The optimum CE for mannose and complex type N-glycan structures was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan structures in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these structures was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitudes. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan structures enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples. PMID:25698222

  16. Structural Studies of Fucosylated N-Glycans by Ion Mobility Mass Spectrometry and Collision-Induced Fragmentation of Negative Ions

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Struwe, Weston B.

    2018-05-01

    There is considerable potential for the use of ion mobility mass spectrometry in structural glycobiology due in large part to the gas-phase separation attributes not typically observed by orthogonal methods. Here, we evaluate the capability of traveling wave ion mobility combined with negative ion collision-induced dissociation to provide structural information on N-linked glycans containing multiple fucose residues forming the Lewisx and Lewisy epitopes. These epitopes are involved in processes such as cell-cell recognition and are important as cancer biomarkers. Specific information that could be obtained from the intact N-glycans by negative ion CID included the general topology of the glycan such as the presence or absence of a bisecting GlcNAc residue and the branching pattern of the triantennary glycans. Information on the location of the fucose residues was also readily obtainable from ions specific to each antenna. Some isobaric fragment ions produced prior to ion mobility could subsequently be separated and, in some cases, provided additional valuable structural information that was missing from the CID spectra alone.

  17. Systematic Comparison of Reverse Phase and Hydrophilic Interaction Liquid Chromatography Platforms for the Analysis of N-linked Glycans

    PubMed Central

    Walker, S. Hunter; Carlisle, Brandon C.; Muddiman, David C.

    2013-01-01

    Due to the hydrophilic nature of glycans, reverse phase chromatography has not been widely used as a glycomic separation technique coupled to mass spectrometry. Other approaches such as hydrophilic interaction chromatography and porous graphitized carbon chromatography are often employed, though these strategies frequently suffer from decreased chromatographic resolution, long equilibration times, indefinite retention, and column bleed. Herein, it is shown that through an efficient hydrazone formation derivatization of N-linked glycans (∼4 hr of additional sample preparation time which is carried out in parallel), numerous experimental and practical advantages are gained when analyzing the glycans by online reverse phase chromatography. These benefits include an increased number of glycans detected, increased peak capacity of the separation, and the ability to analyze glycans on the identical liquid chromatography-mass spectrometry platform commonly used for proteomic analyses. The data presented show that separation of derivatized N-linked glycans by reverse phase chromatography significantly out-performs traditional separation of native or derivatized glycans by hydrophilic interaction chromatography. Furthermore, the movement to a more ubiquitous separation technique will afford numerous research groups the opportunity to analyze both proteomic and glycomic samples on the same platform with minimal time and physical change between experiments, increasing the efficiency of ‘multi-omic’ biological approaches. PMID:22954204

  18. N-Glycans Modulate the Function of Human Corticosteroid-Binding Globulin*

    PubMed Central

    Sumer-Bayraktar, Zeynep; Kolarich, Daniel; Campbell, Matthew P.; Ali, Sinan; Packer, Nicolle H.; Thaysen-Andersen, Morten

    2011-01-01

    Human corticosteroid-binding globulin (CBG), a heavily glycosylated protein containing six N-linked glycosylation sites, transports cortisol and other corticosteroids in blood circulation. Here, we investigate the biological importance of the N-glycans of CBG derived from human serum by performing a structural and functional characterization of CBG N-glycosylation. Liquid chromatography-tandem MS-based glycoproteomics and glycomics combined with exoglycosidase treatment revealed 26 complex type N-glycoforms, all of which were terminated with α2,3-linked neuraminic acid (NeuAc) residues. The CBG N-glycans showed predominantly bi- and tri-antennary branching, but higher branching was also observed. N-glycans from all six N-glycosylation sites were identified with high site occupancies (70.5–99.5%) and glycoforms from all sites contained a relatively low degree of core-fucosylation (0–34.9%). CBG showed site-specific glycosylation and the site-to-site differences in core-fucosylation and branching could be in silico correlated with the accessibility to the individual glycosylation sites on the maturely folded protein. Deglycosylated and desialylated CBG analogs were generated to investigate the biological importance of CBG N-glycans. As a functional assay, MCF-7 cells were challenged with native and glycan-modified CBG and the amount of cAMP, which is produced as a quantitative response upon CBG binding to its cell surface receptor, was used to evaluate the CBG:receptor interaction. The removal of both CBG N-glycans and NeuAc residues increased the production of cAMP significantly. This confirms that N-glycans are involved in the CBG:receptor interaction and indicates that the modulation is performed by steric and/or electrostatic means through the terminal NeuAc residues. PMID:21558494

  19. Multiplexing N-glycan analysis by DNA analyzer.

    PubMed

    Feng, Hua-Tao; Li, Pingjing; Rui, Guo; Stray, James; Khan, Shaheer; Chen, Shiaw-Min; Li, Sam F Y

    2017-07-01

    Analysis of N-glycan structures has been gaining attentions over the years due to their critical importance to biopharma-based applications and growing roles in biological research. Glycan profiling is also critical to the development of biosimilar drugs. The detailed characterization of N-glycosylation is mandatory because it is a nontemplate driven process and that significantly influences critical properties such as bio-safety and bio-activity. The ability to comprehensively characterize highly complex mixtures of N-glycans has been analytically challenging and stimulating because of the difficulties in both the structure complexity and time-consuming sample pretreatment procedures. CE-LIF is one of the typical techniques for N-glycan analysis due to its high separation efficiency. In this paper, a 16-capillary DNA analyzer was coupled with a magnetic bead glycan purification method to accelerate the sample preparation procedure and therefore increase N-glycan assay throughput. Routinely, the labeling dye used for CE-LIF is 8-aminopyrene-1,3,6-trisulfonic acid, while the typical identification method involves matching migration times with database entries. Two new fluorescent dyes were used to either cross-validate and increase the glycan identification precision or simplify sample preparation steps. Exoglycosidase studies were carried out using neuramididase, galactosidase, and fucosidase to confirm the results of three dye cross-validation. The optimized method combines the parallel separation capacity of multiple-capillary separation with three labeling dyes, magnetic bead assisted preparation, and exoglycosidase treatment to allow rapid and accurate analysis of N-glycans. These new methods provided enough useful structural information to permit N-glycan structure elucidation with only one sample injection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Kinetics of N-Glycan Release from Human Immunoglobulin G (IgG) by PNGase F: All Glycans Are Not Created Equal.

    PubMed

    Huang, Yining; Orlando, Ron

    2017-12-01

    The biologic activity of IgG molecules is modulated by its crystallizable fragment N-glycosylation, and thus, the analysis of IgG glycosylation is critical. A standard approach to analyze glycosylation of IgGs involves the release of the N-glycans by the enzyme peptide N-glycosidase F, which cleaves the linkage between the asparagine residue and innermost N-acetylglucosamine (GlcNAc) of all N-glycans except those containing a 3-linked fucose attached to the reducing terminal GlcNAc residue. The importance of obtaining complete glycan release for accurate quantitation led us to investigate the kinetics of this de-glycosylation reaction for IgG glycopeptides and to determine the effect of glycan structure and amino acid sequence on the rate of glycan release from glycopeptides of IgGs. This study revealed that the slight differences in amino acid sequences did not lead to a statistically different deglycosylation rate. However, statistically significant differences in the deglycosylation rate constants were observed between glycopeptides differing only in glycan structure ( i.e. , nonfucosylated, fucosylated, bisecting-GlcNAc, sialylated, etc .). For example, a single sialic acid residue was found to decrease the rate by a factor of 3. Similar reductions in rate were associated with the presence of a bisecting-GlcNAc. We predict the differences in release kinetics can lead to significant quantitative variations of the glycosylation study of IgGs.

  1. Ion Mobility-Mass Spectrometry Analysis of Serum N-linked Glycans from Esophageal Adenocarcinoma Phenotypes

    PubMed Central

    Gaye, M. M.; Valentine, S. J.; Hu, Y.; Mirjankar, N.; Hammoud, Z. T.; Mechref, Y.; Lavine, B. K.; Clemmer, D. E.

    2012-01-01

    Three disease phenotypes, Barrett’s esophagus (BE), high-grade dysplasia (HGD), esophageal adenocarcinoma (EAC), and a set of normal control (NC) serum samples are examined using a combination of ion mobility spectrometry (IMS), mass spectrometry (MS) and principal component analysis (PCA) techniques. Samples from a total of 136 individuals were examined, including: 7 characterized as BE, 12 as HGD, 56 as EAC and 61 as NC. In typical datasets it was possible to assign ~20 to 30 glycan ions based on MS measurements. Ion mobility distributions for these ions show multiple features. In some cases, such as the [S1H5N4+3Na]3+ and [S1F1H5N4+3Na]3+ glycan ions, the ratio of intensities of high-mobility features to low-mobility features vary significantly for different groups. The degree to which such variations in mobility profiles can be used to distinguish phenotypes is evaluated for eleven N-linked glycan ions. An outlier analysis on each sample class followed by an unsupervised PCA using a genetic algorithm for pattern recognition reveals that EAC samples are separated from NC samples based on 46 features originating from the 11-glycan composite IMS distribution. PMID:23126309

  2. Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells.

    PubMed

    Yang, Xiaojing; Tao, Shujuan; Orlando, Ron; Brockhausen, Inka; Kan, Frederick W K

    2012-09-01

    Oviduct-specific glycoprotein (OVGP1) is a major mucin-like glycoprotein synthesized and secreted exclusively by non-ciliated secretory cells of mammalian oviduct. In vitro functional studies showed that OVGP1 plays important roles during fertilization and early embryo development. We have recently produced recombinant human oviduct-specific glycoprotein (rhOVGP1) in human embryonic kidney 293 (HEK293) cells. The present study was undertaken to characterize the structures and determine the biosynthetic pathways of the N- and O-glycans of rhOVGP1. Treatment of the stable rhOVGP1-expressing HEK293 cells with either GalNAcα-Bn to block O-glycan extension, tunicamycin to block N-glycosylation, or neuraminidase increased the electrophoretic mobility of rhOVGP1. A detailed analysis of O- and N-linked glycans of rhOVGP1 by mass spectrometry showed a broad range of many simple and complex glycan structures. In order to identify the enzymes involved in the glycosylation of rhOVGP1, we assayed glycosyltransferase activities involved in the assembly of O- and N-glycans in HEK293 cells, and compared these to those from the immortalized human oviductal cells (OE-E6/E7). Our results demonstrate that HEK293 and OE-E6/E7 cells exhibit a similar spectrum of glycosyltransferase activities that can synthesize elongated and sialylated O-glycans with core 1 and 2 structures, as well as complex multiantennary N-glycans. It is anticipated that the knowledge gained from the present study will facilitate future studies of the role of the glycans of human OVGP1 in fertilization and early embryo development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Collision-induced fragmentation of negative ions from N-linked glycans derivatized with 2-aminobenzoic acid.

    PubMed

    Harvey, David J

    2005-05-01

    N-Linked glycans from bovine ribonuclease B, chicken ovalbumin, bovine fetuin, porcine thyroglobulin and human alpha(1)-acid glycoprotein were derivatized with 2-aminobenzoic acid by reductive amination and their tandem mass spectra were recorded by negative ion electrospray ionization with a quadrupole time-of-flight mass spectrometer. Derivatives were also prepared from 2-amino-5-methyl- and 2-amino-4,5-dimethoxybenzoic acid in order to confirm the identity of fragment ions containing the reducing terminus. Major fragments from the [M - H](-) ions from the neutral glycans retained the derivative (Y-type cleavages) and provided information on sequence and branching. Other major fragments were products of A-type cross-ring cleavages giving information on antenna structure. Singly doubly and triply charged ions were formed from sialylated glycans. They produced major fragments by loss of sialic acid and a series of singly charged ions that were similar to those from the neutral analogues. Doubly charge ions were also produced by the neutral glycans and were fragmented to form product ions with one and two charges. Again, the fragment ions with a single charge were similar to those from the singly charged parents, but branching information was less obvious because of the occurrence of more abundant ions produced by multiple cleavages. Detection limits were around 200 fmol (3 : 1 signal-to-noise ratio). Copyright 2005 John Wiley & Sons, Ltd.

  4. Structural Analysis of N- and O-glycans Using ZIC-HILIC/Dialysis Coupled to NMR Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Yi; Feng, Ju; Deng, Shuang

    2014-11-19

    Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation,) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we employed SEC, Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), and ZIC-HILIC coupled with dialysis strategies to enrich the glycopeptides from the pronase E digests of RNase B, followed by NMR analysis ofmore » the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is the most efficient, which was thus applied to the analysis of biological complex sample, the pronase E digest of the secreted proteins from the fungi Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled to dialysis is superior to the commonly used SEC separation to prepare glycopeptides for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.« less

  5. N-Glycan Modification in Aspergillus Species▿

    PubMed Central

    Kainz, Elke; Gallmetzer, Andreas; Hatzl, Christian; Nett, Juergen H.; Li, Huijuan; Schinko, Thorsten; Pachlinger, Robert; Berger, Harald; Reyes-Dominguez, Yazmid; Bernreiter, Andreas; Gerngross, Tillmann; Wildt, Stefan; Strauss, Joseph

    2008-01-01

    The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. This strategy allowed the isolation of a strain with a functional α-1,2-mannosidase producing increased amounts of N-glycans of the Man5GlcNAc2 type. This strain was further engineered by the introduction of a functional GlcNAc transferase I construct yielding GlcNAcMan5GlcNac2 N-glycans. Additionally, we deleted algC genes coding for an enzyme involved in an early step of the fungal glycosylation pathway yielding Man3GlcNAc2 N-glycans. This modification of fungal glycosylation is a step toward the ability to produce humanized complex N-glycans on therapeutic proteins in filamentous fungi. PMID:18083888

  6. Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression.

    PubMed

    Kato, Tatsuya; Kikuta, Kotaro; Kanematsu, Ayumi; Kondo, Sachiko; Yagi, Hirokazu; Kato, Koichi; Park, Enoch Y

    2017-09-01

    To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae. Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man 3 GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins. Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.

  7. Mass spectrometric profiling reveals association of N-glycan patterns with epithelial ovarian cancer progression.

    PubMed

    Chen, Huanhuan; Deng, Zaian; Huang, Chuncui; Wu, Hongmei; Zhao, Xia; Li, Yan

    2017-07-01

    Aberrant changes of N-glycan modifications on proteins have been linked to various diseases including different cancers, suggesting possible avenue for exploring their etiologies based on N-glycomic analysis. Changes in N-glycan patterns during epithelial ovarian cancer development have so far been investigated mainly using serum, plasma, ascites, and cell lines. However, changes in patterns of N-glycans in tumor tissues during epithelial ovarian cancer progression have remained largely undefined. To investigate whether changes in N-glycan patterns correlate with oncogenesis and progression of epithelial ovarian cancer, we profiled N-glycans from formalin-fixed paraffin-embedded tissue slides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantitatively compared among different pathological grades of epithelial ovarian cancer and healthy controls. Our results show that among the 80 compositions of N-glycan detected, expression levels of high-mannose type were higher in epithelial ovarian cancer samples than that observed in healthy controls, accompanied by reduced levels of hybrid-type glycans. By applying receiver operating characteristic analysis, we show that a combined panel composed of four high-mannose and three fucosylated neutral complex N-glycans allows for good discrimination of epithelial ovarian cancer from healthy controls. Furthermore, using a statistical analysis of variance assay, we found that different N-glycan patterns, including 2 high-mannose-type, 2 fucosylated and sialylated complex structures, and 10 fucosylated neutral complex N-glycans, exhibited specific changes in N-glycan abundance across epithelial ovarian cancer grades. Together, our results provide strong evidence that N-glycomic changes are a strong indicator for epithelial ovarian cancer pathological grades and should provide avenues to identify novel biomarkers for epithelial ovarian cancer diagnosis and monitoring.

  8. The S-Layer Glycoprotein of the Crenarchaeote Sulfolobus acidocaldarius Is Glycosylated at Multiple Sites with Chitobiose-Linked N-Glycans

    PubMed Central

    Peyfoon, Elham; Meyer, Benjamin; Hitchen, Paul G.; Panico, Maria; Morris, Howard R.; Haslam, Stuart M.; Albers, Sonja-Verena; Dell, Anne

    2010-01-01

    Glycosylation of the S-layer of the crenarchaea Sulfolobus acidocaldarius has been investigated using glycoproteomic methodologies. The mature protein is predicted to contain 31 N-glycosylation consensus sites with approximately one third being found in the C-terminal domain spanning residues L1004-Q1395. Since this domain is rich in Lys and Arg and therefore relatively tractable to glycoproteomic analysis, this study has focused on mapping its N-glycosylation. Our analysis identified nine of the 11 consensus sequence sites, and all were found to be glycosylated. This constitutes a remarkably high glycosylation density in the C-terminal domain averaging one site for each stretch of 30–40 residues. Each of the glycosylation sites observed was shown to be modified with a heterogeneous family of glycans, with the largest having a composition Glc1Man2GlcNAc2 plus 6-sulfoquinovose (QuiS), consistent with the tribranched hexasaccharide previously reported in the cytochrome b558/566 of S. acidocaldarius. S. acidocaldarius is the only archaeal species whose N-glycans are known to be linked via the chitobiose core disaccharide that characterises the N-linked glycans of Eukarya. PMID:20936123

  9. The glycan structure of albumin Redhill, a glycosylated variant of human serum albumin.

    PubMed

    Kragh-Hansen, U; Donaldson, D; Jensen, P H

    2001-11-26

    Although human serum albumin is synthesized without carbohydrate, glycosylated variants of the protein can be found. We have determined the structure of the glycan bound to the double-mutant albumin Redhill (-1 Arg, 320 Ala-->Thr). The oligosaccharide was released from the protein using anhydrous hydrazine, and its structure was investigated using neuraminidase and a reagent array analysis method, which is based on the use of specific exoglycosidases. The glycan was shown to be a disialylated biantennary complex type oligosaccharide N-linked to 318 Asn. However, a minor part (11 mol%) of the glycan was without sialic acid. The structure is principally the same as that of glycans bound to two other types of glycosylated albumin variants. Glycosylation can affect, for example, the fatty acid binding properties of albumin. Taking the present information into account, it is apparent that different effects on binding are caused not by different glycan structures but by different locations of attachment, with the possible addition of local conformational changes in the protein molecule.

  10. A novel role for Gtb1p in glucose trimming of N-linked glycans

    PubMed Central

    Quinn, Robert P; Mahoney, Sarah J; Wilkinson, Barrie M; Thornton, David J; Stirling, Colin J

    2009-01-01

    Glucosidase II (GluII) is a glycan-trimming enzyme active on nascent glycoproteins in the endoplasmic reticulum (ER). It trims the middle and innermost glucose residues (Glc2 and Glc1) from N-linked glycans. The monoglucosylated glycan produced by the first GluII trimming reaction is recognized by calnexin/calreticulin and serves as the signal for entry into this folding pathway. GluII is a heterodimer of α and β subunits corresponding to yeast Gls2p and Gtb1p, respectively. While Gls2p contains the glucosyl hydrolase active site, the Gtb1p subunit has previously been shown to be essential for the Glc1 trimming event. Here we demonstrate that Gtb1p also determines the rate of Glc2 trimming. In order to further dissect these activities we mutagenized a number of conserved residues across the protein. Our data demonstrate that both the MRH and G2B domains of Gtb1p contribute to the Glc2 trimming event but that the MRH domain is essential for Glc1 trimming. PMID:19542522

  11. Exploring Site-Specific N-Glycosylation Microheterogeneity of Haptoglobin using Glycopeptide CID Tandem Mass Spectra and Glycan Database Search

    PubMed Central

    Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav

    2013-01-01

    Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something which detached N-glycan and de-glycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy which takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false-discovery-rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at false-discovery-rate 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at false-discovery-rate 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http

  12. Reductive chemical release of N-glycans as 1-amino-alditols and subsequent 9-fluorenylmethyloxycarbonyl labeling for MS and LC/MS analysis.

    PubMed

    Wang, Chengjian; Qiang, Shan; Jin, Wanjun; Song, Xuezheng; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2018-06-06

    Glycoproteins play pivotal roles in a series of biological processes and their glycosylation patterns need to be structurally and functionally characterized. However, the lack of versatile methods to release N-glycans as functionalized forms has been undermining glycomics studies. Here a novel method is developed for dissociation of N-linked glycans from glycoproteins for analysis by MS and online LC/MS. This new method employs aqueous ammonia solution containing NaBH 3 CN as the reaction medium to release glycans from glycoproteins as 1-amino-alditol forms. The released glycans are conveniently labeled with 9-fluorenylmethyloxycarbonyl (Fmoc) and analyzed by ESI-MS and online LC/MS. Using the method, the neutral and acidic N-glycans were successfully released without peeling degradation of the core α-1,3-fucosylated structure or detectable de-N-acetylation, revealing its general applicability to various types of N-glycans. The Fmoc-derivatized N-glycans derived from chicken ovalbumin, Fagopyrum esculentum Moench Pollen and FBS were successfully analyzed by online LC/MS to distinguish isomers. The 1-amino-alditols were also permethylated to form quaternary ammonium cations at the reducing end, which enhance the MS sensitivity and are compatible with sequential multi-stage mass spectrometry (MS n ) fragmentation for glycan sequencing. The Fmoc-labeled N-glycans were further permethylated to produce methylated carbamates for determination of branches and linkages by sequential MS n fragmentation. N-Glycosylation represents one of the most common post-translational modification forms and plays pivotal roles in the structural and functional regulation of proteins in various biological activities, relating closely to human health and diseases. As a type of informational molecule, the N-glycans of glycoproteins participate directly in the molecular interactions between glycan epitopes and their corresponding protein receptors. Detailed structural and functional

  13. Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation

    PubMed Central

    Samuelson, John; Robbins, Phillips W.

    2014-01-01

    Asparagine-linked glycans (N-glycans) of medically important protists have much to tell us about the evolution of N-glycosylation and of N-glycan-dependent quality control (N-glycan QC) of protein folding in the endoplasmic reticulum. While host N-glycans are built upon a dolichol-pyrophosphate-linked precursor with 14 sugars (Glc3Man9GlcNAc2), protist N-glycan precursors vary from Glc3Man9GlcNAc2 (Acanthamoeba) to Man9GlcNAc2 (Trypanosoma) to Glc3Man5GlcNAc2 (Toxoplasma) to Man5GlcNAc2 (Entamoeba, Trichomonas, and Eimeria) to GlcNAc2 (Plasmodium and Giardia) to zero (Theileria). As related organisms have differing N-glycan lengths (e.g. Toxoplasma, Eimeria, Plasmodium, and Theileria), the present N-glycan variation is based upon secondary loss of Alg genes, which encode enzymes that add sugars to the N-glycan precursor. An N-glycan precursor with Man5GlcNAc2 is necessary but not sufficient for N-glycan QC, which is predicted by the presence of the UDP-glucose:glucosyltransferase (UGGT) plus calreticulin and/or calnexin. As many parasites lack glucose in their N-glycan precursor, UGGT product may be identified by inhibition of glucosidase II. The presence of an armless calnexin in Toxoplasma suggests secondary loss of N-glycan QC from coccidia. Positive selection for N-glycan sites occurs in secreted proteins of organisms with NG-QC and is based upon an increased likelihood of threonine but not serine in the second position versus asparagine. In contrast, there appears to be selection against N-glycan length in Plasmodium and N-glycan site density in Toxoplasma. Finally, there is suggestive evidence for N-glycan-dependent ERAD in Trichomonas, which glycosylates and degrades the exogenous reporter mutant carboxypeptidase Y (CPY*). PMID:25475176

  14. Glycan fragment database: a database of PDB-based glycan 3D structures.

    PubMed

    Jo, Sunhwan; Im, Wonpil

    2013-01-01

    The glycan fragment database (GFDB), freely available at http://www.glycanstructure.org, is a database of the glycosidic torsion angles derived from the glycan structures in the Protein Data Bank (PDB). Analogous to protein structure, the structure of an oligosaccharide chain in a glycoprotein, referred to as a glycan, can be characterized by the torsion angles of glycosidic linkages between relatively rigid carbohydrate monomeric units. Knowledge of accessible conformations of biologically relevant glycans is essential in understanding their biological roles. The GFDB provides an intuitive glycan sequence search tool that allows the user to search complex glycan structures. After a glycan search is complete, each glycosidic torsion angle distribution is displayed in terms of the exact match and the fragment match. The exact match results are from the PDB entries that contain the glycan sequence identical to the query sequence. The fragment match results are from the entries with the glycan sequence whose substructure (fragment) or entire sequence is matched to the query sequence, such that the fragment results implicitly include the influences from the nearby carbohydrate residues. In addition, clustering analysis based on the torsion angle distribution can be performed to obtain the representative structures among the searched glycan structures.

  15. Identification of high-mannose and multiantennary complex-type N-linked glycans containing alpha-galactose epitopes from Nurse shark IgM heavy chain.

    PubMed

    Harvey, David J; Crispin, Max; Moffatt, Beryl E; Smith, Sylvia L; Sim, Robert B; Rudd, Pauline M; Dwek, Raymond A

    2009-11-01

    MALDI-TOF mass spectrometry, negative ion nano-electrospray MS/MS and exoglycosidase digestion were used to identify 36 N-linked glycans from 19S IgM heavy chain derived from the nurse shark (Ginglymostoma cirratum). The major glycan was the high-mannose compound, Man(6)GlcNAc(2) accompanied by small amounts of Man(5)GlcNAc(2), Man(7)GlcNAc(2) and Man(8)GlcNAc(2). Bi- and tri-antennary (isomer with a branched 3-antenna) complex-type glycans were also abundant, most contained a bisecting GlcNAc residue (beta1-->4-linked to the central mannose) and with varying numbers of alpha-galactose residues capping the antennae. Small amounts of monosialylated glycans were also found. This appears to be the first comprehensive study of glycosylation in this species of animal. The glycosylation pattern has implications for the mechanism of activation of the complement system by nurse shark IgM.

  16. Comparison of analytical methods for profiling N- and O-linked glycans from cultured cell lines

    PubMed Central

    Togayachi, Akira; Azadi, Parastoo; Ishihara, Mayumi; Geyer, Rudolf; Galuska, Christina; Geyer, Hildegard; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Karlsson, Niclas G.; Jin, Chunsheng; Kato, Koichi; Yagi, Hirokazu; Kondo, Sachiko; Kawasaki, Nana; Hashii, Noritaka; Kolarich, Daniel; Stavenhagen, Kathrin; Packer, Nicolle H.; Thaysen-Andersen, Morten; Nakano, Miyako; Taniguchi, Naoyuki; Kurimoto, Ayako; Wada, Yoshinao; Tajiri, Michiko; Yang, Pengyuan; Cao, Weiqian; Li, Hong; Rudd, Pauline M.; Narimatsu, Hisashi

    2016-01-01

    The Human Disease Glycomics/Proteome Initiative (HGPI) is an activity in the Human Proteome Organization (HUPO) supported by leading researchers from international institutes and aims at development of disease-related glycomics/glycoproteomics analysis techniques. Since 2004, the initiative has conducted three pilot studies. The first two were N- and O-glycan analyses of purified transferrin and immunoglobulin-G and assessed the most appropriate analytical approach employed at the time. This paper describes the third study, which was conducted to compare different approaches for quantitation of N- and O-linked glycans attached to proteins in crude biological samples. The preliminary analysis on cell pellets resulted in wildly varied glycan profiles, which was probably the consequence of variations in the pre-processing sample preparation methodologies. However, the reproducibility of the data was not improved dramatically in the subsequent analysis on cell lysate fractions prepared in a specified method by one lab. The study demonstrated the difficulty of carrying out a complete analysis of the glycome in crude samples by any single technology and the importance of rigorous optimization of the course of analysis from preprocessing to data interpretation. It suggests that another collaborative study employing the latest technologies in this rapidly evolving field will help to realize the requirements of carrying out the large-scale analysis of glycoproteins in complex cell samples. PMID:26511985

  17. Alterations of the serum N-glycan profile in female patients with Major Depressive Disorder.

    PubMed

    Boeck, Christina; Pfister, Sophia; Bürkle, Alexander; Vanhooren, Valerie; Libert, Claude; Salinas-Manrique, Juan; Dietrich, Detlef E; Kolassa, Iris-Tatjana; Karabatsiakis, Alexander

    2018-07-01

    Glycans are short chains of saccharides linked to glycoproteins that are known to be involved in a wide range of inflammatory processes. As depression has been consistently associated with chronic low-grade inflammation, we asked whether patients with Major Depressive Disorder show alterations in the N-glycosylation pattern of serum proteins that might be linked to associated changes in inflammatory processes. In a study cohort of 21 female patients with an acute depressive episode and 21 non-depressed female control subjects aged between 50 and 69 years, we analyzed the serum N-glycan profile by DNA Sequencer Adapted-Fluorophore Assisted Carbohydrate Electrophoresis (DSA-FACE) and assessed the serum levels of interleukin (IL)- 6, tumor necrosis factor (TNF)-α and C-reactive protein (CRP) by chemiluminescence immunoassays and nephelometry. Compared to controls, MDD patients showed significant differences in the serum levels of several N-glycan structures. Alterations in the serum N-glycan profile were associated with depressive symptom severity and exploratory analyses revealed that they were most pronounced in MDD patients with a history of childhood sexual abuse. Furthermore, MDD patients showed higher levels of IL-6 and a trend for higher CRP levels, which were also associated with similar alterations in the serum N-glycan profile as those characteristic for MDD patients. The relatively small sample size and the presence of potential confounders (e.g., BMI, smoking, medication). The results offer the first evidence that specific differences in the N-glycosylation pattern of serum proteins constitute a so far unrecognized level of biological alterations that might be involved in the immune changes associated with MDD. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans.

    PubMed

    Wuhrer, Manfred; Koeleman, Carolien A M; Deelder, André M

    2009-06-01

    Tandem mass spectrometry of glycans and glycoconjugates in protonated form is known to result in rearrangement reactions leading to internal residue loss. Here we studied the occurrence of hexose rearrangements in tandem mass spectrometry of N-glycopeptides and reductively aminated N-glycans by MALDI-TOF/TOF-MS/MS and ESI-ion trap-MS/MS. Fragmentation of proton adducts of oligomannosidic N-glycans of ribonuclease B that were labeled with 2-aminobenzamide and 2-aminobenzoic acid resulted in transfer of one to five hexose residues to the fluorescently tagged innermost N-acetylglucosamine. Glycopeptides from various biological sources with oligomannosidic glycans were likewise shown to undergo hexose rearrangement reactions, resulting in chitobiose cleavage products that have acquired one or two hexose moieties. Tryptic immunoglobulin G Fc-glycopeptides with biantennary N-glycans likewise showed hexose rearrangements resulting in hexose transfer to the peptide moiety retaining the innermost N-acetylglucosamine. Thus, as a general phenomenon, tandem mass spectrometry of reductively aminated glycans as well as glycopeptides may result in hexose rearrangements. This characteristic of glycopeptide MS/MS has to be considered when developing tools for de novo glycopeptide structural analysis.

  19. Tandem mass spectrometry of isomeric aniline-labeled N-glycans separated on porous graphitic carbon: Revealing the attachment position of terminal sialic acids and structures of neutral glycans.

    PubMed

    Michael, Claudia; Rizzi, Andreas M

    2015-07-15

    Quantitative monitoring of changes in the N-glycome upon disease has gained significance in the context of biomarker discovery. Separation and quantification of isobaric glycan isomers can be attained by using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS). Collision-induced dissociation (CID)-based fragmentation of separated isobaric glycans is evaluated in respect to its potential of providing fragment ions specific for the linkage positions of terminal sialic acids and the presence of intersecting GlcNAc moieties, respectively. N-Glycans were labeled via reductive amination using (12)C6-aniline and (13)C6-aniline as isotope-coded labeling reagents. The differently labeled glycans were merged and separated into various species using a porous graphitic carbon (PGC) stationary phase. Identification of structural features of separated isobaric isomers was performed by CID-based tandem mass spectrometry (MS/MS) carried out in a quadrupole time-of-flight (QqTOF) or a quadrupole ion-trap (IT) mass spectrometer. Working in the negative ion mode, new diagnostic CID fragment ions could be found that are indicative for the α2,6-type linkage of sialic acids. Other diagnostic ions, identified before as being indicative for the substitution of the 6-antenna, could be confirmed as being of relevance also in the case of aniline labeling. In the positive ion mode, CID fragment ions indicative for the structure of short neutral N-glycans were identified. One new diagnostic ion specific for the linkage position of the terminal sialic acids and one for the presence of bisecting GlcNAc in N-glycans were identified. The aniline label introduced for improved relative quantitation in MS(1) was found not to significantly alter the CID fragmentation patterns that were reported previously by other authors for unlabeled/reduced glycans or for glycans with more polar labels. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Identification of Isomeric N-Glycan Structures by Mass Spectrometry with 157 nm Laser-Induced Photofragmentation

    PubMed Central

    Devakumar, Arugadoss; Mechref, Yehia; Kang, Pilsoo; Novotny, Milos V.; Reilly, James P.

    2008-01-01

    Characterization of structural isomers has become increasingly important and extremely challenging in glycobiology. This communication demonstrates the capability of ion-trap mass spectrometry in conjunction with 157 nm photofragmentation to identify different structural isomers of permethylated N-glycans derived from ovalbumin without chromatographic separation. The results are compared with CID experiments. Photodissociation generates extensive cross-ring fragment ions as well as diagnostic glycosidic product ions that are not usually observed in CID MS/MS experiments. The detection of these product ions aids in characterizing indigenous glycan isomers. The ion-trap facilitates MSn experiments on the diagnostic glycosidic fragments and cross-ring product ions generated through photofragmentation, thus allowing unambiguous assignment of all of the isomeric structures associated with the model glycoprotein utilized in this study. Photofragmentation is demonstrated to be a powerful technique for the structural characterization of glycans. PMID:18487060

  1. Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS.

    PubMed

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  2. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  3. Regulation of Glycan Structures in Animal Tissues

    PubMed Central

    Nairn, Alison V.; York, William S.; Harris, Kyle; Hall, Erica M.; Pierce, J. Michael; Moremen, Kelley W.

    2008-01-01

    Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for glycan regulation hypothesize that transcriptional control of the enzymes involved in glycan synthesis, modification, and catabolism determines glycan abundance and diversity. However, few broad-based studies have examined correlations between glycan structures and transcripts encoding the relevant biosynthetic and catabolic enzymes. Low transcript abundance for many glycan-related genes has hampered broad-based transcript profiling for comparison with glycan structural data. In an effort to facilitate comparison with glycan structural data and to identify the molecular basis of alterations in glycan structures, we have developed a medium-throughput quantitative real time reverse transcriptase-PCR platform for the analysis of transcripts encoding glycan-related enzymes and proteins in mouse tissues and cells. The method employs a comprehensive list of >700 genes, including enzymes involved in sugar-nucleotide biosynthesis, transporters, glycan extension, modification, recognition, catabolism, and numerous glycosylated core proteins. Comparison with parallel microarray analyses indicates a significantly greater sensitivity and dynamic range for our quantitative real time reverse transcriptase-PCR approach, particularly for the numerous low abundance glycan-related enzymes. Mapping of the genes and transcript levels to their respective biosynthetic pathway steps allowed a comparison with glycan structural data and provides support for a model where many, but not all, changes in glycan abundance result from alterations in transcript expression of corresponding biosynthetic enzymes. PMID:18411279

  4. A Lectin from Platypodium elegans with Unusual Specificity and Affinity for Asymmetric Complex N-Glycans*

    PubMed Central

    Benevides, Raquel Guimarães; Ganne, Géraldine; Simões, Rafael da Conceição; Schubert, Volker; Niemietz, Mathäus; Unverzagt, Carlo; Chazalet, Valérie; Breton, Christelle; Varrot, Annabelle; Cavada, Benildo Sousa; Imberty, Anne

    2012-01-01

    Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with Kd of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm. PMID:22692206

  5. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans.

    PubMed

    Song, Xuezheng; Johns, Brian A; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F; Cummings, Richard D

    2013-11-15

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here, we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or retagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker.

  6. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans

    PubMed Central

    Song, Xuezheng; Johns, Brian A.; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F.; Cummings, Richard D.

    2014-01-01

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or re-tagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker. PMID:23992636

  7. A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.

    PubMed

    Kim, Seonghun

    2018-02-01

    Mucin-type O-glycans are involved in biological functions on the cell surface as well as the glycoproteins and can also be used as specific carbohydrate biomarkers of many diseases. In this study, I purified a novel core 1 O-linked glycan specific lectin, Hericium erinaceus lecin (HeL), from the fruiting body of the mushroom Hericium erinaceus, which is known as the natural source for a sialic acid-binding lectin. Upon optimization of the purification conditions, a sequence of ion exchange, affinity, ion exchange, and size-exclusion chromatography resulted in the highest yield and best quality of lectin without protease activity. The resulting purified HeL is an apparent hexameric protein with a subunit molecular weight of 15kDa, and a pI of 4.3. In hemagglutination inhibition assay, the purified lectin was only inhibited by glycoproteins containing mucin-type O-glycans and reacted weakly with Galβ(1,3)GalNAc. Glycan array analyses showed that HeL specifically interacts with core 1 O-linked glycans as well as extended O-glycan structures containing sialylation or fucosylation. The glycan binding specificity of HeL is comparable to that of peanut agglutinin for detection of a broader range of extended core 1 O-glycan structures. Taken together, these results provide an efficient and optimized procedure for the purification of HeL from the fruiting body of the mushroom Hericium erinaceus. Moreover, HeL represents a powerful tool for analyzing core 1 and extended core 1 O- glycan structures in diagnosis assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk

    PubMed Central

    Gil, Geun-Cheol; Velander, William H; Van Cott, Kevin E

    2008-01-01

    Glycosylation of recombinant proteins is of particular importance because it can play significant roles in the clinical properties of the glycoprotein. In this work, the N-glycan structures of recombinant human Factor IX (tg-FIX) produced in the transgenic pig mammary gland were determined. The majority of the N-glycans of transgenic pig-derived Factor IX (tg-FIX) are complex, bi-antennary with one or two terminal N-acetylneuraminic acid (Neu5Ac) moieties. We also found that the N-glycan structures of tg-FIX produced in the porcine mammary epithelial cells differed with respect to N-glycans from glycoproteins produced in other porcine tissues. tg-FIX contains no detectable Neu5Gc, the sialic acid commonly found in porcine glycoproteins produced in other tissues. Additionally, we were unable to detect glycans in tg-FIX that have a terminal Galα(1,3)Gal disaccharide sequence, which is strongly antigenic in humans. The N-glycan structures of tg-FIX are also compared to the published N-glycan structures of recombinant human glycoproteins produced in other transgenic animal species. While tg-FIX contains only complex structures, antithrombin III (goat), C1 inhibitor (rabbit), and lactoferrin (cow) have both high mannose and complex structures. Collectively, these data represent a beginning point for the future investigation of species-specific and tissue/cell-specific differences in N-glycan structures among animals used for transgenic animal bioreactors. PMID:18456721

  9. Psathyrella velutina Mushroom Lectin Exhibits High Affinity toward Sialoglycoproteins Possessing Terminal N-Acetylneuraminic Acid alpha 2,3-Linked to Penultimate Galactose Residues of Trisialyl N-Glycans. Comparison with other sialic acid-specific lectins.

    PubMed

    Ueda, Haruko; Matsumoto, Hanako; Takahashi, Noriko; Ogawa, Haruko

    2002-07-12

    A lectin from the fruiting body of the Psathyrella velutina mushroom (PVL) was found to bind specifically to N-acetylneuraminic acid, as well as to GlcNAc (Ueda, H., Kojima, K., Saitoh, T., and Ogawa, H. (1999) FEBS Lett. 448, 75-80). In this study, the glycan sequences that PVL recognizes with high affinity on sialoglycoproteins were revealed. Among sialic acid-specific lectins only PVL could reveal the sialylated N-acetyllactosamine structure of glycoproteins in blotting studies, based on the dual specificity. The affinity of PVL to fetuin was measured by surface plasmon resonance to be 10(7) m(-1), which is an order of magnitude higher than those of Sambucus nigra agglutinin and Maackia amurensis mitogen, whereas affinity to asialofetuin was approximately 0 and to asialo-agalactofetuin was 10(8) m(-1), suggesting that PVL exhibits remarkably high affinities toward glycoproteins possessing trisialo- or GlcNAc-exposed glycans. Transferrin was separated into fractions that correspond to the sialylation states on an immobilized PVL column. Transferrin-possessing trisialoglycans containing alpha2,3-linked N-acetylneuraminic acid on the beta1,4-linked GlcNAc branch bound to the PVL column and eluted with GlcNAc; those containing only alpha2,6-linked sialic acids were retarded, whereas other transferrin fractions passed through the column. These results indicate that PVL is a lectin with potential for separation and detection of sialoglycoproteins because of its dual specificity toward sialoglycans and GlcNAc exposed glycans.

  10. Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni*

    PubMed Central

    Scott, Nichollas E.; Parker, Benjamin L.; Connolly, Angela M.; Paulech, Jana; Edwards, Alistair V. G.; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P.; Højrup, Peter; Packer, Nicolle H.; Larsen, Martin R.; Cordwell, Stuart J.

    2011-01-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous

  11. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni.

    PubMed

    Scott, Nichollas E; Parker, Benjamin L; Connolly, Angela M; Paulech, Jana; Edwards, Alistair V G; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P; Højrup, Peter; Packer, Nicolle H; Larsen, Martin R; Cordwell, Stuart J

    2011-02-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous

  12. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis.

    PubMed

    Partridge, Emily A; Le Roy, Christine; Di Guglielmo, Gianni M; Pawling, Judy; Cheung, Pam; Granovsky, Maria; Nabi, Ivan R; Wrana, Jeffrey L; Dennis, James W

    2004-10-01

    The Golgi enzyme beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is up-regulated in carcinomas and promotes the substitution of N-glycan with poly N-acetyllactosamine, the preferred ligand for galectin-3 (Gal-3). Here, we report that expression of Mgat5 sensitized mouse cells to multiple cytokines. Gal-3 cross-linked Mgat5-modified N-glycans on epidermal growth factor and transforming growth factor-beta receptors at the cell surface and delayed their removal by constitutive endocytosis. Mgat5 expression in mammary carcinoma was rate limiting for cytokine signaling and consequently for epithelial-mesenchymal transition, cell motility, and tumor metastasis. Mgat5 also promoted cytokine-mediated leukocyte signaling, phagocytosis, and extravasation in vivo. Thus, conditional regulation of N-glycan processing drives synchronous modification of cytokine receptors, which balances their surface retention against loss via endocytosis.

  13. A Novel Endo-β-N-Acetylglucosaminidase Releases Specific N-Glycans Depending on Different Reaction Conditions

    PubMed Central

    De Moura Bell, Juliana Maria Leite Nobrega; Frese, Steven A.; Liu, Yan; Mills, David A.; Block, David E.; Barile, Daniela

    2015-01-01

    Milk glycoproteins are involved in different functions and contribute to different cellular processes, including adhesion and signaling, and shape the development of the infant micro-biome. Methods have been developed to study the complexities of milk protein glycosylation and understand the role of N-glycans in protein functionality. Endo-β-N-acetylglucosaminidase (EndoBI-1) isolated from Bifidobacterium longum subsp. infantis ATCC 15697 is a recently isolated heat-stable enzyme that cleaves the N-N′-diacetyl chitobiose moiety found in the N-glycan core. The effects of different processing conditions (pH, temperature, reaction time, and enzyme/protein ratio) were evaluated for their ability to change EndoBI-1 activity on bovine colostrum whey glycoproteins using advanced mass spectrometry. This study shows that EndoBI-1 is able to cleave a high diversity of N-glycan structures. Nano-LC-Chip–Q-TOF MS data also revealed that different reaction conditions resulted in different N-glycan compositions released, thus modifying the relative abundance of N-glycan types. In general, more sialylated N-glycans were released at lower temperatures and pH values. These results demonstrated that EndoBI-1 is able to release a wide variety of N-glycans, whose compositions can be selectively manipulated using different processing conditions. PMID:26101185

  14. Unique N-Glycan Moieties of the 66-kDa Cell Wall Glycoprotein from the Red Microalga Porphyridium sp.

    PubMed Central

    Levy-Ontman, Oshrat; Arad, Shoshana (Malis); Harvey, David J.; Parsons, Thomas B.; Fairbanks, Antony; Tekoah, Yoram

    2011-01-01

    We report here the structural determination of the N-linked glycans in the 66-kDa glycoprotein, part of the unique sulfated complex cell wall polysaccharide of the red microalga Porphyridium sp. Structures were elucidated by a combination of normal phase/reverse phase HPLC, positive ion MALDI-TOF MS, negative ion electrospray ionization, and MS/MS. The sugar moieties of the glycoprotein consisted of at least four fractions of N-linked glycans, each composed of the same four monosaccharides, GlcNAc, Man, 6-O-MeMan, and Xyl, with compositions Man8–9Xyl1–2Me3GlcNAc2. The present study is the first report of N-glycans with the terminal Xyl attached to the 6-mannose branch of the 6-antenna and to the 3-oxygen of the penultimate (core) GlcNAc. Another novel finding was that all four glycans contain three O-methylmannose residues in positions that have never been reported before. Although it is known that some lower organisms are able to methylate terminal monosaccharides in glycans, the present study on Porphyridium sp. is the first describing an organism that is able to methylate non-terminal mannose residues. This study will thus contribute to understanding of N-glycosylation in algae and might shed light on the evolutionary development from prokaryotes to multicellular organisms. It also may contribute to our understanding of the red algae polysaccharide formation. The additional importance of this research lies in its potential for biotechnological applications, especially in evaluating the use of microalgae as cell factories for the production of therapeutic proteins. PMID:21515680

  15. Genotypic and phenotypic characterization of the O-linked protein glycosylation system reveals high glycan diversity in paired meningococcal carriage isolates.

    PubMed

    Børud, Bente; Bårnes, Guro K; Brynildsrud, Ola Brønstad; Fritzsønn, Elisabeth; Caugant, Dominique A

    2018-03-19

    Species within the genus Neisseria display significant glycan diversity associated with the O -linked protein glycosylation ( pgl ) systems due to phase variation, polymorphic genes and gene content. The aim of this study was to examine in detail the pgl genotype and glycosylation phenotype in meningococcal isolates and the changes occurring during short-term asymptomatic carriage. Paired meningococcal isolates derived from 50 asymptomatic meningococcal carriers, taken about two months apart, were analyzed with whole genome sequencing. The O -linked protein glycosylation genes were characterized in detail using the Genome Comparator tool at the PubMLST.org database. Immunoblotting with glycan specific antibodies were used to investigate the protein glycosylation phenotype. All major pgl locus polymorphisms identified in N. meningitidis to date were present in our isolate collection, with the variable presence of pglG-pglH, both in combination with either pglB or pglB2. We identified significant changes and diversity in the pgl genotype and/or glycan phenotype in 96% of the paired isolates. There was also a high degree of glycan microheterogeneity, in which different variants of glycan structures were found at a given glycoprotein. The main mechanism responsible for the observed differences was phase variable expression of the involved glycosyltransferases and the O-acetyltransferase. To our knowledge, this is the first characterization of the pgl genotype and glycosylation phenotype in a larger strain collection. This study thus provides important insight into glycan diversity in N. meningitidis and phase variability changes that influence the expressed glycoform repertoire during meningococcal carriage. Importance Bacterial meningitis is a serious global health problem and one of the major causative organisms is Neisseria meningitidis , which is also a common commensal in the upper respiratory tract of healthy humans. In bacteria, numerous loci involved in

  16. Simple and Robust N-Glycan Analysis Based on Improved 2-Aminobenzoic Acid Labeling for Recombinant Therapeutic Glycoproteins.

    PubMed

    Jeong, Yeong Ran; Kim, Sun Young; Park, Young Sam; Lee, Gyun Min

    2018-03-21

    N-glycans of therapeutic glycoproteins are critical quality attributes that should be monitored throughout all stages of biopharmaceutical development. To reduce both the time for sample preparation and the variations in analytical results, we have developed an N-glycan analysis method that includes improved 2-aminobenzoic acid (2-AA) labeling to easily remove deglycosylated proteins. Using this analytical method, 15 major 2-AA-labeled N-glycans of Enbrel ® were separated into single peaks in hydrophilic interaction chromatography mode and therefore could be quantitated. 2-AA-labeled N-glycans were also highly compatible with in-line quadrupole time-of-flight mass spectrometry (MS) for structural identification. The structures of 15 major and 18 minor N-glycans were identified from their mass values determined by quadrupole time-of-flight MS. Furthermore, the structures of 14 major N-glycans were confirmed by interpreting the MS/MS data of each N-glycan. This analytical method was also successfully applied to neutral N-glycans of Humira ® and highly sialylated N-glycans of NESP ® . Furthermore, the analysis data of Enbrel ® that were accumulated for 2.5 years demonstrated the high-level consistency of this analytical method. Taken together, the results show that a wide repertoire of N-glycans of therapeutic glycoproteins can be analyzed with high efficiency and consistency using the improved 2-AA labeling-based N-glycan analysis method. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. N-glycan signatures identified in tumor interstitial fluid and serum of breast cancer patients: association with tumor biology and clinical outcome.

    PubMed

    Terkelsen, Thilde; Haakensen, Vilde D; Saldova, Radka; Gromov, Pavel; Hansen, Merete Kjaer; Stöckmann, Henning; Lingjaerde, Ole Christian; Børresen-Dale, Anne-Lise; Papaleo, Elena; Helland, Åslaug; Rudd, Pauline M; Gromova, Irina

    2018-06-01

    Particular N-glycan structures are known to be associated with breast malignancies by coordinating various regulatory events within the tumor and corresponding microenvironment, thus implying that N-glycan patterns may be used for cancer stratification and as predictive or prognostic biomarkers. However, the association between N-glycans secreted by breast tumor and corresponding clinical relevance remain to be elucidated. We profiled N-glycans by HILIC UPLC across a discovery dataset composed of tumor interstitial fluids (TIF, n = 85), paired normal interstitial fluids (NIF, n = 54) and serum samples (n = 28) followed by independent evaluation, with the ultimate goal of identifying tumor-related N-glycan patterns in blood of patients with breast cancer. The segregation of N-linked oligosaccharides revealed 33 compositions, which exhibited differential abundances between TIF and NIF. TIFs were depleted of bisecting N-glycans, which are known to play essential roles in tumor suppression. An increased level of simple high mannose N-glycans in TIF strongly correlated with the presence of tumor infiltrating lymphocytes within tumor. At the same time, a low level of highly complex N-glycans in TIF inversely correlated with the presence of infiltrating lymphocytes within tumor. Survival analysis showed that patients exhibiting increased TIF abundance of GP24 had better outcomes, whereas low levels of GP10, GP23, GP38, and coreF were associated with poor prognosis. Levels of GP1, GP8, GP9, GP14, GP23, GP28, GP37, GP38, and coreF were significantly correlated between TIF and paired serum samples. Cross-validation analysis using an independent serum dataset supported the observed correlation between TIF and serum, for five of nine N-glycan groups: GP8, GP9, GP14, GP23, and coreF. Collectively, our results imply that profiling of N-glycans from proximal breast tumor fluids is a promising strategy for determining tumor-derived glyco-signature(s) in the blood. N-glycans

  18. N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    PubMed Central

    Engström, Åke; Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Hreinsson, Julius; Wånggren, Kjell; Clark, Gary F.; Dell, Anne; Schedin-Weiss, Sophia

    2011-01-01

    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA. PMID:22205989

  19. Mucin glycan foraging in the human gut microbiome

    PubMed Central

    Tailford, Louise E.; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie

    2015-01-01

    The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health. PMID:25852737

  20. Probing the Role of N-Linked Glycans in the Stability and Activity of Fungal Cellobiohydrolases by Mutational Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adney, W. S.; Jeoh, T.; Beckham, G. T.

    2009-01-01

    The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonlymore » used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity

  1. An engineered high affinity Fbs1 carbohydrate binding protein for selective capture of N-glycans and N-glycopeptides

    PubMed Central

    Chen, Minyong; Shi, Xiaofeng; Duke, Rebecca M.; Ruse, Cristian I.; Dai, Nan; Taron, Christopher H.; Samuelson, James C.

    2017-01-01

    A method for selective and comprehensive enrichment of N-linked glycopeptides was developed to facilitate detection of micro-heterogeneity of N-glycosylation. The method takes advantage of the inherent properties of Fbs1, which functions within the ubiquitin-mediated degradation system to recognize the common core pentasaccharide motif (Man3GlcNAc2) of N-linked glycoproteins. We show that Fbs1 is able to bind diverse types of N-linked glycomolecules; however, wild-type Fbs1 preferentially binds high-mannose-containing glycans. We identified Fbs1 variants through mutagenesis and plasmid display selection, which possess higher affinity and improved recovery of complex N-glycomolecules. In particular, we demonstrate that the Fbs1 GYR variant may be employed for substantially unbiased enrichment of N-linked glycopeptides from human serum. Most importantly, this highly efficient N-glycopeptide enrichment method enables the simultaneous determination of N-glycan composition and N-glycosites with a deeper coverage (compared to lectin enrichment) and improves large-scale N-glycoproteomics studies due to greatly reduced sample complexity. PMID:28534482

  2. Top-Down Chemoenzymatic Approach to Synthesizing Diverse High-Mannose N-Glycans and Related Neoglycoproteins for Carbohydrate Microarray Analysis.

    PubMed

    Toonstra, Christian; Wu, Lisa; Li, Chao; Wang, Denong; Wang, Lai-Xi

    2018-05-22

    High-mannose-type N-glycans are an important component of neutralizing epitopes on HIV-1 envelope glycoprotein gp120. They also serve as signals for protein folding, trafficking, and degradation in protein quality control. A number of lectins and antibodies recognize high-mannose-type N-glycans, and glycan array technology has provided an avenue to probe these oligomannose-specific proteins. We describe in this paper a top-down chemoenzymatic approach to synthesize a library of high-mannose N-glycans and related neoglycoproteins for glycan microarray analysis. The method involves the sequential enzymatic trimming of two readily available natural N-glycans, the Man 9 GlcNAc 2 Asn prepared from soybean flour and the sialoglycopeptide (SGP) isolated from chicken egg yolks, coupled with chromatographic separation to obtain a collection of a full range of natural high-mannose N-glycans. The Asn-linked N-glycans were conjugated to bovine serum albumin (BSA) to provide neoglycoproteins containing the oligomannose moieties. The glycoepitopes displayed were characterized using an array of glycan-binding proteins, including the broadly virus-neutralizing agents, glycan-specific antibody 2G12, Galanthus nivalis lectin (GNA), and Narcissus pseudonarcissus lectin (NPA).

  3. Simple Sugars to Complex Disease—Mucin-Type O-Glycans in Cancer

    PubMed Central

    Kudelka, Matthew R.; Ju, Tongzhong; Heimburg-Molinaro, Jamie; Cummings, Richard D.

    2017-01-01

    Mucin-type O-glycans are a class of glycans initiated with N-acetylgalactosamine (GalNAc) α-linked primarily to Ser/Thr residues within glycoproteins and often extended or branched by sugars or saccharides. Most secretory and membrane-bound proteins receive this modification, which is important in regulating many biological processes. Alterations in mucin-type O-glycans have been described across tumor types and include expression of relatively small-sized, truncated O-glycans and altered terminal structures, both of which are associated with patient prognosis. New discoveries in the identity and expression of tumor-associated O-glycans are providing new avenues for tumor detection and treatment. This chapter describes mucin-type O-glycan biosynthesis, altered mucin-type O-glycans in primary tumors, including mechanisms for structural changes and contributions to the tumor phenotype, and clinical approaches to detect and target altered O-glycans for cancer treatment and management. PMID:25727146

  4. Hemocytes and Plasma of the Eastern Oyster (Crassostrea virginica) Display a Diverse Repertoire of Sulfated and Blood Group A-modified N-Glycans*

    PubMed Central

    Kurz, Simone; Jin, Chunsheng; Hykollari, Alba; Gregorich, Daniel; Giomarelli, Barbara; Vasta, Gerardo R.; Wilson, Iain B. H.; Paschinger, Katharina

    2013-01-01

    The eastern oyster (Crassostrea virginica) has become a useful model system for glycan-dependent host-parasite interactions due to the hijacking of the oyster galectin CvGal1 for host entry by the protozoan parasite Perkinsus marinus, the causative agent of Dermo disease. In this study, we examined the N-glycans of both the hemocytes, which via CvGal1 are the target of the parasite, and the plasma of the oyster. In combination with HPLC fractionation, exoglycosidase digestion, and fragmentation of the glycans, mass spectrometry revealed that the major N-glycans of plasma are simple hybrid structures, sometimes methylated and core α1,6-fucosylated, with terminal β1,3-linked galactose; a remarkable high degree of sulfation of such glycans was observed. Hemocytes express a larger range of glycans, including core-difucosylated paucimannosidic forms, whereas bi- and triantennary glycans were found in both sources, including structures carrying sulfated and methylated variants of the histo-blood group A epitope. The primary features of the oyster whole hemocyte N-glycome were also found in dominin, the major plasma glycoprotein, which had also been identified as a CvGal1 glycoprotein ligand associated with hemocytes. The occurrence of terminal blood group moieties on oyster dominin and on hemocyte surfaces can account in part for their affinity for the endogenous CvGal1. PMID:23824194

  5. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures.

    PubMed

    Ceroni, Alessio; Dell, Anne; Haslam, Stuart M

    2007-08-07

    Carbohydrates play a critical role in human diseases and their potential utility as biomarkers for pathological conditions is a major driver for characterization of the glycome. However, the additional complexity of glycans compared to proteins and nucleic acids has slowed the advancement of glycomics in comparison to genomics and proteomics. The branched nature of carbohydrates, the great diversity of their constituents and the numerous alternative symbolic notations, make the input and display of glycans not as straightforward as for example the amino-acid sequence of a protein. Every glycoinformatic tool providing a user interface would benefit from a fast, intuitive, appealing mechanism for input and output of glycan structures in a computer readable format. A software tool for building and displaying glycan structures using a chosen symbolic notation is described here. The "GlycanBuilder" uses an automatic rendering algorithm to draw the saccharide symbols and to place them on the drawing board. The information about the symbolic notation is derived from a configurable graphical model as a set of rules governing the aspect and placement of residues and linkages. The algorithm is able to represent a structure using only few traversals of the tree and is inherently fast. The tool uses an XML format for import and export of encoded structures. The rendering algorithm described here is able to produce high-quality representations of glycan structures in a chosen symbolic notation. The automated rendering process enables the "GlycanBuilder" to be used both as a user-independent component for displaying glycans and as an easy-to-use drawing tool. The "GlycanBuilder" can be integrated in web pages as a Java applet for the visual editing of glycans. The same component is available as a web service to render an encoded structure into a graphical format. Finally, the "GlycanBuilder" can be integrated into other applications to create intuitive and appealing user

  6. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    PubMed Central

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  7. Hydrazinonicotinic acid derivatization for selective ionization and improved glycan structure characterization by MALDI-MS.

    PubMed

    Jiao, Jing; Yang, Lijun; Zhang, Ying; Lu, Haojie

    2015-08-21

    The analysis of glycan is important for understanding cell biology and disease processes because the glycans play a key role in many important biological behaviors, such as cell division, cellular localization, tumor immunology and inflammation. Nevertheless, it is still hard work to analyze glycans by MALDI-MS, which generally stems from the inherent low abundance and the low ionization efficiency of glycans. Moreover, the difficulty in generating informative fragmentations further hinders glycans structure characterization. In this work, hydrazinonicotinic acid (HYNIC) was used as a novel derivatized reagent for improved and selective detection of glycans. Through tagging the reducing terminus of glycans with the diazanyl group of HYNIC, significant enhancement of the ionization efficiency of glycans was achieved. After derivatization, the signal to noise ratio (S/N) of the maltoheptaose was improved by more than one order of magnitude in positive mode. HYNIC derivatization also allowed the sensitive detection of sialylated glycan in negative mode, with a 15 fold enhancement of S/N. Interestingly, it is noteworthy that the HYNIC reagent not only effectively labeled the reducing end of glycans in the presence of tryptic peptides, but also suppressed the ionization of peptides, enabling the direct detection of glycans from glycoprotein without separation. Therefore, analysis of glycans became easier due to the omission of a pre-separation step. Importantly, by using different acid reagents as the catalyst, derivatized product signals corresponding to [M + Na](+) or [M + H](+) were obtained respectively, which yield complementary fragmentation patterns for the structure elucidation of glycans. Finally, more than 40 N-glycans were successfully detected in 10 μL human serum using this method.

  8. Several N-Glycans on the HIV Envelope Glycoprotein gp120 Preferentially Locate Near Disulphide Bridges and Are Required for Efficient Infectivity and Virus Transmission.

    PubMed

    Mathys, Leen; Balzarini, Jan

    2015-01-01

    The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV) but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow efficient viral infection

  9. Several N-Glycans on the HIV Envelope Glycoprotein gp120 Preferentially Locate Near Disulphide Bridges and Are Required for Efficient Infectivity and Virus Transmission

    PubMed Central

    Mathys, Leen; Balzarini, Jan

    2015-01-01

    The HIV envelope glycoprotein gp120 contains nine disulphide bridges and is highly glycosylated, carrying on average 24 N-linked glycans. Using a probability calculation, we here demonstrate that there is a co-localization of disulphide bridges and N-linked glycans in HIV-1 gp120, with a predominance of N-linked glycans in close proximity to disulphide bridges, at the C-terminal side of the involved cysteines. Also, N-glycans are frequently found immediately adjacent to disulphide bridges in gp120 at the N-terminal side of the involved cysteines. In contrast, N-glycans at positions close to, but not immediately neighboring disulphide bridges seem to be disfavored at the N-terminal side of the involved cysteines. Such a pronounced co-localization of disulphide bridges and N-glycans was also found for the N-glycans on glycoprotein E1 of the hepatitis C virus (HCV) but not for other heavily glycosylated proteins such as E2 from HCV and the surface GP from Ebola virus. The potential functional role of the presence of N-glycans near disulphide bridges in HIV-1 gp120 was studied using site-directed mutagenesis, either by deleting conserved N-glycans or by inserting new N-glycosylation sites near disulphide bridges. The generated HIV-1NL4.3 mutants were subjected to an array of assays, determining the envelope glycoprotein levels in mutant viral particles, their infectivity and the capture and transmission efficiencies of mutant virus particles by DC-SIGN. Three N-glycans located nearby disulphide bridges were found to be crucial for the preservation of several of these functions of gp120. In addition, introduction of new N-glycans upstream of several disulphide bridges, at locations where there was a significant absence of N-glycans in a broad variety of virus strains, was found to result in a complete loss of viral infectivity. It was shown that the N-glycan environment around well-defined disulphide bridges of gp120 is highly critical to allow efficient viral infection

  10. Crystal structure of a fully glycosylated HIV-1 gp120 core reveals a stabilizing role for the glycan at Asn262

    DOE PAGES

    Kong, Leopold; Wilson, Ian A.; Kwong, Peter D.

    2014-12-26

    The crystal structure of a fully glycosylated HIV-1 gp120 core in complex with CD4 receptor and Fab 17b at 4.5-Å resolution reveals 9 of the 15 N-linked glycans of core gp120 to be partially ordered. The glycan at position Asn262 had the most extensive and well-ordered electron density, and a GlcNAc 2Man 7 was modeled. Lastly, the GlcNAc stem of this glycan is largely buried in a cleft in gp120, suggesting a role in gp120 folding and stability. Its arms interact with the stems of neighboring glycans from the oligomannose patch, which is a major target for broadly neutralizing antibodies.

  11. N-glycans in liver-secreted and immunoglogulin-derived protein fractions

    PubMed Central

    Bekesova, S.; Kosti, O.; Chandler, K.B.; Wu, J.; Madej, H.L.; Brown, K.C.; Simonyan, V.; Goldman, R.

    2013-01-01

    N-glycosylation of proteins provides a rich source of information on liver disease progression because majority of serum glycoproteins, with the exception of immunoglobulins, are secreted by the liver. In this report, we present results of an optimized workflow for MALDI-TOF analysis of permethylated N-glycans detached from serum proteins and separated into liver secreted and immunoglobulin fractions. We have compared relative intensities of N-glycans in 23 healthy controls and 23 cirrhosis patients. We were able to detect 82 N-glycans associated primarily with liver secreted glycoproteins, 54 N-glycans in the protein G bound fraction and 52 N-glycans in the fraction bound to protein A. The N-glycan composition of the fractions differed substantially, independent of liver disease. The relative abundance of approximately 53% N-glycans in all fractions was significantly altered in the cirrhotic liver. The removal of immunoglobulins allowed detection of an increase in a series of high mannose and hybrid N-glycans associated with the liver secreted protein fraction. PMID:22326963

  12. In-depth analyses of native N-linked glycans facilitated by high-performance anion exchange chromatography-pulsed amperometric detection coupled to mass spectrometry.

    PubMed

    Szabo, Zoltan; Thayer, James R; Agroskin, Yury; Lin, Shanhua; Liu, Yan; Srinivasan, Kannan; Saba, Julian; Viner, Rosa; Huhmer, Andreas; Rohrer, Jeff; Reusch, Dietmar; Harfouche, Rania; Khan, Shaheer H; Pohl, Christopher

    2017-05-01

    Characterization of glycans present on glycoproteins has become of increasing importance due to their biological implications, such as protein folding, immunogenicity, cell-cell adhesion, clearance, receptor interactions, etc. In this study, the resolving power of high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) was applied to glycan separations and coupled to mass spectrometry to characterize native glycans released from different glycoproteins. A new, rapid workflow generates glycans from 200 μg of glycoprotein supporting reliable and reproducible annotation by mass spectrometry (MS). With the relatively high flow rate of HPAE-PAD, post-column splitting diverted 60% of the flow to a novel desalter, then to the mass spectrometer. The delay between PAD and MS detectors is consistent, and salt removal after the column supports MS. HPAE resolves sialylated (charged) glycans and their linkage and positional isomers very well; separations of neutral glycans are sufficient for highly reproducible glycoprofiling. Data-dependent MS 2 in negative mode provides highly informative, mostly C- and Z-type glycosidic and cross-ring fragments, making software-assisted and manual annotation reliable. Fractionation of glycans followed by exoglycosidase digestion confirms MS-based annotations. Combining the isomer resolution of HPAE with MS 2 permitted thorough N-glycan annotation and led to characterization of 17 new structures from glycoproteins with challenging glycan profiles.

  13. Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Yong; Karaveg, Khanita; Moremen, Kelley W.

    2016-11-17

    Asn-linked glycosylation of newly synthesized polypeptides occurs in the endoplasmic reticulum of eukaryotic cells. Glycan structures are trimmed and remodeled as they transit the secretory pathway, and processing intermediates play various roles as ligands for folding chaperones and signals for quality control and intracellular transport. Key steps for the generation of these trimmed intermediates are catalyzed by glycoside hydrolase family 47 (GH47) α-mannosidases that selectively cleave α1,2-linked mannose residues. Despite the sequence and structural similarities among the GH47 enzymes, the molecular basis for residue-specific cleavage remains obscure. The present studies reveal enzyme–substrate complex structures for two related GH47 α-mannosidases andmore » provide insights into how these enzymes recognize the same substrates differently and catalyze the complementary glycan trimming reactions necessary for glycan maturation.« less

  14. Particle-based N-linked glycan analysis of selected proteins from biological samples using nonglycosylated binders.

    PubMed

    Sroka-Bartnicka, Anna; Karlsson, Isabella; Ndreu, Lorena; Quaranta, Alessandro; Pijnappel, Matthijs; Thorsén, Gunnar

    2017-01-05

    Glycosylation is one of the most common and important post-translational modifications, influencing both the chemical and the biological properties of proteins. Studying the glycosylation of the entire protein population of a sample can be challenging because variations in the concentrations of certain proteins can enhance or obscure changes in glycosylation. Furthermore, alterations in the glycosylation pattern of individual proteins, exhibiting larger variability in disease states, have been suggested as biomarkers for different types of cancer, as well as inflammatory and neurodegenerative diseases. In this paper, we present a rapid and efficient method for glycosylation analysis of individual proteins focusing on changes in the degree of fucosylation or other alterations to the core structure of the glycans, such as the presence of bisecting N-acetylglucosamines and a modified degree of branching. Streptavidin-coated magnetic beads are used in combination with genetically engineered immunoaffinity binders, called VHH antibody fragments. A major advantage of the VHHs is that they are nonglycosylated; thus, enzymatic release of glycans from the targeted protein can be performed directly on the beads. After deglycosylation, the glycans are analyzed by MALDI-TOF-MS. The developed method was evaluated concerning its specificity, and thereafter implemented for studying the glycosylation pattern of two different proteins, alpha-1-antitrypsin and transferrin, in human serum and cerebrospinal fluid. To our knowledge, this is the first example of a protein array-type experiment that employs bead-based immunoaffinity purification in combination with mass spectrometry analysis for fast and efficient glycan analysis of individual proteins in biological fluid. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans.

    PubMed

    Pagel, Kevin; Harvey, David J

    2013-05-21

    Currently, the vast majority of complex carbohydrates are characterized using mass spectrometry (MS)-based techniques. Measuring the molecular mass of a sugar, however, immediately poses a fundamental problem: entire classes of the constituting monosaccharide building blocks exhibit an identical atomic composition and, consequently, also an identical mass. Therefore, carbohydrate MS data can be highly ambiguous and often it is simply not possible to clearly assign a particular molecular structure. A promising approach to overcome the above-mentioned limitation is to implement an additional gas-phase separation dimension using ion mobility spectrometry (IMS), which is a method in which molecules of identical mass and structure but different structure can be separated according to their shape and collision cross section (CCS). With the emergence of commercially available hybrid ion mobility-mass spectrometry (IM-MS) instruments in 2006, IMS technology became readily available. Because of the nonhomogeneous, traveling wave (TW) field utilized in these instruments, however, CCS values currently cannot be determined directly from the drift times measured. Instead, an external calibration using compounds of known CCS and similar molecular identity is required. Here, we report a calibration protocol for TW IMS instruments using a series of sodiated N-glycans that were released from commercially available glycoproteins using an easy-to-follow protocol. The underlying CCS values were determined using a modified Synapt HDMS instrument with a linear drift tube, which was described in detail previously. Our data indicate that, under in-source fragmentation conditions, only a few glycans are required to obtain a TW IMS calibration of sufficient quality. In this context, however, the type of glycan was shown to be of tremendous importance. Furthermore, our data clearly demonstrate that carbohydrate isomers with identical mass but different conformation can be distinguished based

  16. CSF N-glycan profile reveals sialylation deficiency in a patient with GM2 gangliosidosis presenting as childhood disintegrative disorder.

    PubMed

    Barone, Rita; Sturiale, Luisella; Fiumara, Agata; Palmigiano, Angelo; Bua, Rosaria O; Rizzo, Renata; Zappia, Mario; Garozzo, Domenico

    2016-04-01

    Protein N-glycosylation consists in the synthesis and processing of the oligosaccharide moiety (N-glycan) linked to a protein and it serves several functions for the proper central nervous system (CNS) development and function. Previous experimental and clinical studies have shown the importance of proper glycoprotein sialylation for the synaptic function and the occurrence of autism spectrum disorders (ASD) in the presence of sialylation deficiency in the CNS. Late-onset Tay Sachs disease (LOTSD) is a lysosomal disorder caused by mutations in the HEXA gene resulting in GM2-ganglioside storage in the CNS. It is characterized by progressive neurological impairment and high co-occurrence of psychiatric disturbances. We studied the N-glycome profile of the cerebrospinal fluid (CSF) in a 14 year-old patient with GM2-gangliosidosis (LOTSD). At the age of 4, the patient presented regressive autism fulfilling criteria for childhood disintegrative disorder (CDD). A CSF sample was obtained in the course of diagnostic work-up for the suspicion of an underlying neurodegenerative disorder. We found definite changes of CSF N-glycans due to a dramatic decrease of sialylated biantennary and triantennary structures and an increase of asialo-core fucosylated bisected N-glycans. No changes of total plasma N-glycans were found. Herein findings highlight possible relationships between the early onset psychiatric disturbance featuring CDD in the patient and defective protein sialylation in the CNS. In conclusion, the study first shows aberrant N-glycan structures of CSF proteins in LOTSD; unveils possible pathomechanisms of GM2-gangliosidosis; supports existing relationships between neuropsychiatric disorders and unproper protein glycosylation in the CNS. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  17. N-linked (N-) glycoproteomics of urinary exosomes. [Corrected].

    PubMed

    Saraswat, Mayank; Joenväära, Sakari; Musante, Luca; Peltoniemi, Hannu; Holthofer, Harry; Renkonen, Risto

    2015-02-01

    Epithelial cells lining the urinary tract secrete urinary exosomes (40-100 nm) that can be targeted to specific cells modulating their functionality. One potential targeting mechanism is adhesion between vesicle surface glycoproteins and target cells. This makes the glycopeptide analysis of exosomes important. Exosomes reflect the physiological state of the parent cells; therefore, they are a good source of biomarkers for urological and other diseases. Moreover, the urine collection is easy and noninvasive and urinary exosomes give information about renal and systemic organ systems. Accordingly, multiple studies on proteomic characterization of urinary exosomes in health and disease have been published. However, no systematic analysis of their glycoproteomic profile has been carried out to date, whereas a conserved glycan signature has been found for exosomes from urine and other sources including T cell lines and human milk. Here, we have enriched and identified the N-glycopeptides from these vesicles. These enriched N-glycopeptides were solved for their peptide sequence, glycan composition, structure, and glycosylation site using collision-induced dissociation MS/MS (CID-tandem MS) data interpreted by a publicly available software GlycopeptideId. Released glycans from the same sample was also analyzed with MALDI-MS. We have identified the N-glycoproteome of urinary exosomes. In total 126 N-glycopeptides from 51 N-glycosylation sites belonging to 37 glycoproteins were found in our results. The peptide sequences of these N-glycopeptides were identified unambiguously and their glycan composition (for 125 N-glycopeptides) and structures (for 87 N-glycopeptides) were proposed. A corresponding glycomic analysis with released N-glycans was also performed. We identified 66 unique nonmodified N-glycan compositions and in addition 13 sulfated/phosphorylated glycans were also found. This is the first systematic analysis of N-glycoproteome of urinary exosomes. © 2015 by The

  18. Analysis of nonhuman N-glycans as the minor constituents in recombinant monoclonal antibody pharmaceuticals.

    PubMed

    Maeda, Eiki; Kita, Soichiro; Kinoshita, Mitsuhiro; Urakami, Koji; Hayakawa, Takao; Kakehi, Kazuaki

    2012-03-06

    Minor N-linked glycans containing N-glycolylneuraminic acid residues and/or α-Gal epitopes (i.e., galactose-α1,3-galactose residues) have been reported to be present in recombinant monoclonal antibody (mAb) therapeutics. These contaminations are due to their production processes using nonhuman mammalian cell lines in culture media containing animal-derived materials. In case of the treatment of tumors, we inevitably use such mAbs by careful risk-benefit considerations to prolong patients' lives. However, expanding their clinical applications such as for rheumatism, asthma, and analgesia demands more careful evaluation of the product characteristics. The present work for detailed evaluations of N-glycans demonstrates the methods using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and a combination of high-performance liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The CE-LIF method provides excellent separation of both major and minor N-glycans from six commercial mAb pharmaceuticals within 30 min and clearly indicates that a possible trigger of immunogenicity in humans due to the presence of nonhuman N-glycans is present. We strongly believe that the proposed method will be a powerful tool for the analysis of N-glycans of recombinant mAb products in various development stages, such as clone selection, process control, and routine release testing to ensure safety and efficacy of the products.

  19. Nonreductive chemical release of intact N-glycans for subsequent labeling and analysis by mass spectrometry.

    PubMed

    Yuan, Jiangbei; Wang, Chengjian; Sun, Yujiao; Huang, Linjuan; Wang, Zhongfu

    2014-10-01

    A novel strategy is proposed, using cost-saving chemical reactions to generate intact free reducing N-glycans and their fluorescent derivatives from glycoproteins for subsequent analysis. N-Glycans without core α-1,3-linked fucose are released in reducing form by selective hydrolysis of the N-type carbohydrate-peptide bond of glycoproteins under a set of optimized mild alkaline conditions and are comparable to those released by commonly used peptide-N-glycosidase (PNGase) F in terms of yield without any detectable side reaction (peeling or deacetylation). The obtained reducing glycans can be routinely derivatized with 2-aminobenzoic acid (2-AA), 1-phenyl-3-methyl-5-pyrazolone (PMP), and potentially some other fluorescent reagents for comprehensive analysis. Alternatively, the core α-1,3-fucosylated N-glycans are released in mild alkaline medium and derivatized with PMP in situ, and their yields are comparable to those obtained using commonly used PNGase A without conspicuous peeling reaction or any detectable deacetylation. Using this new technique, the N-glycans of a series of purified glycoproteins and complex biological samples were successfully released and analyzed by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS), demonstrating its general applicability to glycomic studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts.

    PubMed

    Yoon, Seon-Joo; Utkina, Natalia; Sadilek, Martin; Yagi, Hirokazu; Kato, Koichi; Hakomori, Sen-itiroh

    2013-07-01

    High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.

  1. Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7.

    PubMed

    Belyakov, Alexei Ye; Burygin, Gennady L; Arbatsky, Nikolai P; Shashkov, Alexander S; Selivanov, Nikolai Yu; Matora, Larisa Yu; Knirel, Yuriy A; Shchyogolev, Sergei Yu

    2012-11-01

    This is the first report to have identified an O-linked repetitive glycan in bacterial flagellin, a structural protein of the flagellum. Studies by sugar analysis, Smith degradation, (1)H and (13)C NMR spectroscopy, and mass spectrometry showed that the glycan chains of the polar flagellum flagellin of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 are represented by a polysaccharide with a molecular mass of 7.7 kDa, which has a branched tetrasaccharide repeating unit of the following structure: Copyright © 2012. Published by Elsevier Ltd.

  2. N-glycan profiles in H9N2 avian influenza viruses from chicken eggs and human embryonic lung fibroblast cells.

    PubMed

    Chen, Wentian; Zhong, Yaogang; Su, Rui; Qi, Huicai; Deng, Weina; Sun, Yu; Ma, Tianran; Wang, Xilong; Yu, Hanjie; Wang, Xiurong; Li, Zheng

    2017-11-01

    N-glycosylation can affect the host specificity, virulence and infectivity of influenza A viruses (IAVs). In this study, the distribution and evolution of N-glycosylation sites in the hemagglutinin (HA) and neuraminidase (NA) of H9N2 virus were explored using phylogenetic analysis. Then, one strain of the H9N2 subtypes was proliferated in the embryonated chicken eggs (ECE) and human embryonic lung fibroblast cells (MRC-5) system. The proliferated viral N-glycan profiles were analyzed by a glycomic method that combined the lectin microarray and MALDI-TOF/TOF-MS. As a result, HA and NA of H9N2 viruses prossess six and five highly conserved N-glycosylation sites, respectively. Sixteen lectins (e.g., MAL-II, SNA and UEA-I) had increased expression levels of the glycan structures in the MRC-5 compared with the ECE system; however, 6 lectins (e.g., PHA-E, PSA and DSA) had contrasting results. Eleven glycans from the ECE system and 13 glycans from the MRC-5 system were identified. Our results showed that the Fucα-1,6GlcNAc(core fucose) structure was increased, and pentaantennary N-glycans were only observed in the ECE system. The SAα2-3/6Gal structures were highly expressed and Fucα1-2Galβ1-4GlcNAc structures were only observed in the MRC-5 system. We conclude that the existing SAα2-3/6Gal sialoglycans make the offspring of the H9N2 virus prefer entially attach to each other, which decreases the virulence. Alterations in the glycosylation sites for the evolution and role of IAVs have been widely described; however, little is known about the exact glycan structures for the same influenza strain from different hosts. Our findings may provide a novel way for further discussing the molecular mechanism of the viral transmission and virulence associated with viral glycosylation in avian and human hosts as well as vital information for designing a vaccine against influenza and other human viruses. Copyright © 2017. Published by Elsevier B.V.

  3. Introducing N-glycans into natural products through a chemoenzymatic approach.

    PubMed

    Huang, Wei; Ochiai, Hirofumi; Zhang, Xinyu; Wang, Lai-Xi

    2008-11-24

    The present study describes an efficient chemoenzymatic method for introducing a core N-glycan of glycoprotein origin into various lipophilic natural products. It was found that the endo-beta-N-acetylglucosaminidase from Arthrobactor protophormiae (Endo-A) had broad substrate specificity and can accommodate a wide range of glucose (Glc)- or N-acetylglucosamine (GlcNAc)-containing natural products as acceptors for transglycosylation, when an N-glycan oxazoline was used as a donor substrate. Using lithocholic acid as a model compound, we have shown that introduction of an N-glycan could be achieved by a two-step approach: chemical glycosylation to introduce a monosaccharide (Glc or GlcNAc) as a handle, and then Endo-A catalyzed transglycosylation to accomplish the site-specific N-glycan attachment. For those natural products that already carry terminal Glc or GlcNAc residues, direct enzymatic transglycosylation using sugar oxazoline as the donor substrate was achievable to introduce an N-glycan. It was also demonstrated that simultaneous double glycosylation could be fulfilled when the natural product contains two Glc residues. This chemoenzymatic method is concise, site-specific, and highly convergent. Because N-glycans of glycoprotein origin can serve as ligands for diverse lectins and cell-surface receptors, introduction of a defined N-glycan into biologically significant natural products may bestow novel properties onto these natural products for drug discovery and development.

  4. Large scale preparation of high mannose and paucimannose N-glycans from soybean proteins by oxidative release of natural glycans (ORNG).

    PubMed

    Zhu, Yuyang; Yan, Maomao; Lasanajak, Yi; Smith, David F; Song, Xuezheng

    2018-07-15

    Despite the important advances in chemical and chemoenzymatic synthesis of glycans, access to large quantities of complex natural glycans remains a major impediment to progress in Glycoscience. Here we report a large-scale preparation of N-glycans from a kilogram of commercial soy proteins using oxidative release of natural glycans (ORNG). The high mannose and paucimannose N-glycans were labeled with a fluorescent tag and purified by size exclusion and multidimensional preparative HPLC. Side products are identified and potential mechanisms for the oxidative release of natural N-glycans from glycoproteins are proposed. This study demonstrates the potential for using the ORNG approach as a complementary route to synthetic approaches for the preparation of multi-milligram quantities of biomedically relevant complex glycans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Structural Diversity of Human Gastric Mucin Glycans*

    PubMed Central

    Jin, Chunsheng; Kenny, Diarmuid T.; Skoog, Emma C.; Padra, Médea; Adamczyk, Barbara; Vitizeva, Varvara; Thorell, Anders; Venkatakrishnan, Vignesh; Lindén, Sara K.; Karlsson, Niclas G.

    2017-01-01

    The mucin O-glycosylation of 10 individuals with and without gastric disease was examined in depth in order to generate a structural map of human gastric glycosylation. In the stomach, these mucins and their O-glycosylation protect the epithelial surface from the acidic gastric juice and provide the first point of interaction for pathogens such as Helicobacter pylori, reported to cause gastritis, gastric and duodenal ulcers and gastric cancer. The rational of the present study was to map the O-glycosylation that the pathogen may come in contact with. An enormous diversity in glycosylation was found, which varied both between individuals and within mucins from a single individual: mucin glycan chain length ranged from 2–13 residues, each individual carried 34–103 O-glycan structures and in total over 258 structures were identified. The majority of gastric O-glycans were neutral and fucosylated. Blood group I antigens, as well as terminal α1,4-GlcNAc-like and GalNAcβ1–4GlcNAc-like (LacdiNAc-like), were common modifications of human gastric O-glycans. Furthemore, each individual carried 1–14 glycan structures that were unique for that individual. The diversity and alterations in gastric O-glycosylation broaden our understanding of the human gastric O-glycome and its implications for gastric cancer research and emphasize that the high individual variation makes it difficult to identify gastric cancer specific structures. However, despite the low number of individuals, we could verify a higher level of sialylation and sulfation on gastric O-glycans from cancerous tissue than from healthy stomachs. PMID:28461410

  6. Integrated Omics and Computational Glycobiology Reveal Structural Basis for Influenza A Virus Glycan Microheterogeneity and Host Interactions.

    PubMed

    Khatri, Kshitij; Klein, Joshua A; White, Mitchell R; Grant, Oliver C; Leymarie, Nancy; Woods, Robert J; Hartshorn, Kevan L; Zaia, Joseph

    2016-06-01

    Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential. Mutations leading to changes in the number of HA glycosylation sites are often reported. Such genetic sequencing studies predict at best the disruption or creation of sequons for N-linked glycosylation; they do not reflect actual phenotypic changes in HA structure. Therefore, combined analysis of glycan micro and macro-heterogeneity and bioassays will better define the relationships among glycosylation, viral bioactivity and evolution. We present a study that integrates proteomics, glycomics and glycoproteomics of HA before and after adaptation to innate immune system pressure. We combined this information with glycan array and immune lectin binding data to correlate the phenotypic changes with biological activity. Underprocessed glycoforms predominated at the glycosylation sites found to be involved in viral evolution in response to selection pressures and interactions with innate immune-lectins. To understand the structural basis for site-specific glycan microheterogeneity at these sites, we performed structural modeling and molecular dynamics simulations. We observed that the presence of immature, high-mannose type glycans at a particular site correlated with reduced accessibility to glycan remodeling enzymes. Further, the high mannose glycans at sites implicated in immune lectin recognition were predicted to be capable of forming trimeric interactions with the immune-lectin surfactant protein-D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Structure and synthesis of polyisoprenoids used in N-glycosylation across the three domains of life

    PubMed Central

    Jones, Meredith B.; Rosenberg, Julian N.; Betenbaugh, Michael J.; Krag, Sharon S.

    2009-01-01

    N-linked protein glycosylation was originally thought to be specific to eukaryotes, but evidence of this post-translational modification has now been discovered across all domains of life: Eucarya, Bacteria, and Archaea. In all cases, the glycans are first assembled in a step-wise manner on a polyisoprenoid carrier lipid. At some stage of lipid-linked oligosaccharide synthesis, the glycan is flipped across a membrane. Subsequently, the completed glycan is transferred to specific asparagine residues on the protein of interest. Interestingly, though the N-glycosylation pathway seems to be conserved, the biosynthetic pathways of the polyisoprenoid carriers, the specific structures of the carriers, and the glycan residues added to the carriers vary widely. In this review we will elucidate how organisms in each basic domain of life synthesize the polyisoprenoids that they utilize for N-linked glycosylation and briefly discuss the subsequent modifications of the lipid to generate a lipid-linked oligosaccharide. PMID:19348869

  8. Recognition of microbial glycans by human intelectin-1

    DOE PAGES

    Wesener, Darryl A.; Wangkanont, Kittikhun; McBride, Ryan; ...

    2015-07-06

    The glycans displayed on mammalian cells can differ markedly from those on microbes. Such differences could, in principle, be 'read' by carbohydrate-binding proteins, or lectins. In this paper, we used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human glycan epitopes but does interact with multiple glycan epitopes found exclusively on microbes: β-linked D-galactofuranose (β-Galf), D-phosphoglycerol–modified glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-oct-2-ulosonic acid (KDO). The 1.6-Å-resolution crystal structure of hIntL-1 complexed with β-Galf revealed that hIntL-1 uses a bound calcium ion to coordinate terminal exocyclic 1,2-diols. N-acetylneuraminic acid (Neu5Ac), a sialic acid widespread in humanmore » glycans, has an exocyclic 1,2-diol but does not bind hIntL-1, probably owing to unfavorable steric and electronic effects. hIntL-1 marks only Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. Finally, this ligand selectivity suggests that hIntL-1 functions in microbial surveillance.« less

  9. Profiling and characterization of sialylated N-glycans by 2D-HPLC (HIAX/PGC) with online orbitrap MS/MS and offline MSn.

    PubMed

    Hanneman, Andrew J S; Strand, James; Huang, Chi-Ting

    2014-02-01

    Glycosylation is a critical parameter used to evaluate protein quality and consistency. N-linked glycan profiling is fundamental to the support of biotherapeutic protein manufacturing from early stage process development through drug product commercialization. Sialylated glycans impact the serum half-life of receptor-Fc fusion proteins (RFPs), making their quality and consistency a concern during the production of fusion proteins. Here, we describe an analytical approach providing both quantitative profiling and in-depth mass spectrometry (MS)-based structural characterization of sialylated RFP N-glycans. Aiming to efficiently link routine comparability studies with detailed structural characterization, an integrated workflow was implemented employing fluorescence detection, online positive and negative ion tandem mass spectrometry (MS/MS), and offline static nanospray ionization-sequential mass spectrometry (NSI-MS(n)). For routine use, high-performance liquid chromatography profiling employs established fluorescence detection of 2-aminobenzoic acid derivatives (2AA) and hydrophilic interaction anion-exchange chromatography (HIAX) charge class separation. Further characterization of HIAX peak fractions is achieved by online (-) ion orbitrap MS/MS, offering the advantages of high mass accuracy and data-dependent MS/MS. As required, additional characterization uses porous graphitized carbon in the second chromatographic dimension to provide orthogonal (+) ion MS/MS spectra and buffer-free liquid chromatography peak eluants that are optimum for offline (+)/(-) NSI-MS(n) investigations to characterize low-abundance species and specific moieties including O-acetylation and sulfation. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  11. Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica.

    PubMed

    Gutternigg, Martin; Bürgmayr, Sabine; Pöltl, Gerald; Rudolf, Judith; Staudacher, Erika

    2007-11-01

    The N-glycosylation potentials of Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica were analysed by investigation of the N-glycan structures of the skin and viscera glycoproteins by a combination of HPLC and mass-spectrometry methods. It is one of the first steps to enlarge the knowledge on the glycosylation abilities of gastropods, which may help to establish new cell culture systems, to uncover new means for pest control for some species, and to identify carbohydrate-epitopes which may be relevant for immune response. All snails analysed contained mainly oligomannosidic and small paucimannosidic structures, often terminated with 3-O-methylated mannoses. The truncated structures carried modifications by beta1-2-linked xylose to the beta-mannose residue, and/or an alpha-fucosylation, mainly alpha1,6-linked to the innermost N-acetylglucosaminyl residue of the core. Many of these structures were missing the terminal N-acetylglucosamine, which has been shown to be a prerequisite for processing to complex N-glycans in the Golgi. In some species (Planorbarius corneus and Achatina fulica) traces of large structures, terminated by 3-O-methylated galactoses and carrying xylose and/or fucose residues, were also detected. In Planorbarius viscera low amounts of terminal alpha1-2-fucosylation were determined. Combining these results, gastropods seem to be capable to produce all kinds of structures ranging from those typical in mammals through to structures similar to those found in plants, insects or nematodes. The detailed knowledge of this very complex glycosylation system of the gastropods will be a valuable tool to understand the principle rules of glycosylation in all organisms.

  12. Abolishment of N-glycan mannosylphosphorylation in glyco-engineered Saccharomyces cerevisiae by double disruption of MNN4 and MNN14 genes.

    PubMed

    Kim, Yeong Hun; Kang, Ji-Yeon; Gil, Jin Young; Kim, Sang-Yoon; Shin, Keun Koo; Kang, Hyun Ah; Kim, Jeong-Yoon; Kwon, Ohsuk; Oh, Doo-Byoung

    2017-04-01

    Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

  13. LC-MS/MS Analysis of Permethylated Free Oligosaccharides and N-glycans Derived from Human, Bovine, and Goat Milk Samples

    PubMed Central

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-01-01

    Oligosaccharides in milk not only provide nutrition to the infants, but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat and human milk using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat and human milk samples (without isomeric consideration) were 11, 8 and 11 respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by PGC LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using PGC column. Permethylation of the glycan structures facilitated the interpretation of tandem MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. PMID:26959529

  14. LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples.

    PubMed

    Dong, Xue; Zhou, Shiyue; Mechref, Yehia

    2016-06-01

    Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum.

    PubMed

    Satoh, Tadashi; Yamaguchi, Takumi; Kato, Koichi

    2015-01-30

    In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.

  16. Harnessing glycomics technologies: integrating structure with function for glycan characterization

    PubMed Central

    Robinson, Luke N.; Artpradit, Charlermchai; Raman, Rahul; Shriver, Zachary H.; Ruchirawat, Mathuros; Sasisekharan, Ram

    2013-01-01

    Glycans, or complex carbohydrates, are a ubiquitous class of biological molecules which impinge on a variety of physiological processes ranging from signal transduction to tissue development and microbial pathogenesis. In comparison to DNA and proteins, glycans present unique challenges to the study of their structure and function owing to their complex and heterogeneous structures and the dominant role played by multivalency in their sequence-specific biological interactions. Arising from these challenges, there is a need to integrate information from multiple complementary methods to decode structure-function relationships. Focusing on acidic glycans, we describe here key glycomics technologies for characterizing their structural attributes, including linkage, modifications, and topology, as well as for elucidating their role in biological processes. Two cases studies, one involving sialylated branched glycans and the other sulfated glycosaminoglycans, are used to highlight how integration of orthogonal information from diverse datasets enables rapid convergence of glycan characterization for development of robust structure-function relationships. PMID:22522536

  17. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

    PubMed Central

    Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo

    2014-01-01

    As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the

  19. Kinetic characterization of a novel endo-β-N-acetylglucosaminidase on concentrated bovine colostrum whey to release bioactive glycans.

    PubMed

    Karav, Sercan; Parc, Annabelle Le; de Moura Bell, Juliana Maria Leite Nobrega; Rouquié, Camille; Mills, David A; Barile, Daniela; Block, David E

    2015-09-01

    EndoBI-1 is a recently isolated endo-β-N-acetylglucosaminidase, which cleaves the N-N'-diacetyl chitobiose moiety found in the N-glycan core of high mannose, hybrid and complex N-glycans. These N-glycans have selective prebiotic activity for a key infant gut microbe, Bifidobacterium longum subsp. infantis. The broad specificity of EndoBI-1 suggests the enzyme may be useful for many applications, particularly for deglycosylating milk glycoproteins in dairy processing. To facilitate its commercial use, we determined kinetic parameters for EndoBI-1 on the model substrates ribonuclease B and bovine lactoferrin, as well as on concentrated bovine colostrum whey. Km values ranging from 0.25 to 0.49, 0.43 to 1.00 and 0.90 to 3.18 mg/mL and Vmax values ranging from 3.5×10(-3) to 5.09×10(-3), 4.5×10(-3) to 7.75×10(-3) and 1.9×10(-2)to 5.2×10(-2) mg/mL×min were determined for ribonuclease B, lactoferrin and whey, respectively. In general, EndoBI-1 showed the highest apparent affinity for ribonuclease B, while the maximum reaction rate was the highest for concentrated whey. EndoBI-1-released N-glycans were quantified by a phenol-sulphuric total carbohydrate assay and the resultant N-glycan structures monitored by nano-LC-Chip-Q-TOF MS. The kinetic parameters and structural characterization of glycans released suggest EndoBI-1 can facilitate large-scale release of complex, bioactive glycans from a variety of glycoprotein substrates. Moreover, these results suggest that whey, often considered as a waste product, can be used effectively as a source of prebiotic N-glycans. Copyright © 2015. Published by Elsevier Inc.

  20. Evidence that maturation of the N-linked glycans of the respiratory syncytial virus (RSV) glycoproteins is required for virus-mediated cell fusion: The effect of {alpha}-mannosidase inhibitors on RSV infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Terence P.; Jeffree, Chris E.; Li, Ping

    2006-07-05

    Glycan heterogeneity of the respiratory syncytial virus (RSV) fusion (F) protein was demonstrated by proteomics. The effect of maturation of the virus glycoproteins-associated glycans on virus infectivity was therefore examined using the {alpha}-mannosidase inhibitors deoxymannojirimycin (DMJ) and swainsonine (SW). In the presence of SW the N-linked glycans on the F protein appeared in a partially mature form, whereas in the presence of DMJ no maturation of the glycans was observed. Neither inhibitor had a significant effect on G protein processing or on the formation of progeny virus. Although the level of infectious virus and syncytia formation was not significantly affectedmore » by SW-treatment, DMJ-treatment correlated with a one hundred-fold reduction in virus infectivity. Our data suggest that glycan maturation of the RSV glycoproteins, in particular those on the F protein, is an important step in virus maturation and is required for virus infectivity.« less

  1. The goat mammary glandular epithelial (GMGE) cell line promotes polyfucosylation and N,N'-diacetyllactosediaminylation of N-glycans linked to recombinant human erythropoietin.

    PubMed

    Sánchez, O; Montesino, R; Toledo, J R; Rodríguez, E; Díaz, D; Royle, L; Rudd, P M; Dwek, R A; Gerwig, G J; Kamerling, J P; Harvey, D J; Cremata, J A

    2007-08-15

    We have established a continuous, non-transformed cell line from primary cultures from Capra hircus mammary gland. Low-density cultures showed a homogeneous epithelial morphology without detectable fibroblastic or myoepithelial cells. The culture was responsive to contact inhibition of proliferation and its doubling time was dependent on the presence of insulin and epidermal growth factor (EGF). GMGE cells secrete caseins regardless of the presence or absence of lactogenic hormones in the culture media. Investigation of the total N-glycan pool of human erythropoietin (rhEPO) expressed in GMGE cells by monosaccharide analysis, HPLC profiling, and mass spectrometry, indicated significant differences with respect to the same protein expressed in Chinese hamster ovary (CHO) cells. N-Glycans of rhEPO-GMGE are core-fucosylated, but fucosylation of outer arms was also found. Our results also revealed the presence of low levels of sialylation (>95% Neu5Ac), N,N'-diacetyllactosediamine units, and possibly Gal-Gal non-reducing terminal elements.

  2. Evidence for an imidazoline by-product from glycans using tandem mass spectrometry.

    PubMed

    Duff, Robert J; Smith, Elaine; Li, Wenzhou; Fodor, Szilan

    2017-06-09

    Herein is reported the separation and identification of a previously unknown imidazoline by-product originating from the fluorescent labeling procedure when applied to enzymatically released N-linked glycans of a human IgG1. The imidazoline by-product was generated via the reductive amination procedure with either sodium cyanoborohydride or 2-picoline borane. Using ultra performance liquid chromatography (UPLC) in conjunction with hydrophilic interaction-based chromatography (HILIC), the 2-aminobenzoic acid (2-AA)-labeled glycans were well-resolved from imidazoline by-products to facilitate direct identification utilizing electrospray ionization mass spectrometry (ESI-MS) with fragmentation. It was found that this minor species (∼2%) was 18.0105u less than the neighboring peak GlcNAc 2 Man 3 GlcNAc 2 Fuc peak, abbreviated as A2G0F at 1582.5899u. While this mass loss corresponds to the mass of a water molecule, the molecular location of loss of water was not straightforward in consideration of the biantennary A2G0F structure. Model studies were carried out using A2G0F standard and N-acetyllactosamine to identify the impurity as an imidazoline ring structure located at the reducing end of the glycan as confirmed by high resolution mass fragment ions. Imidazoline content decreased when the reductant concentration was increased. To conclude, evidence for the imidazoline structure was accomplished through high resolution, high accuracy mass spectrometry (HRAM), and experiments showing chemical susceptibility and isotopically labeled tracers. This study is the first to identify these minor species which likely impact all N-acetylglucosamine-type N-linked glycans from biologics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria.

    PubMed

    Clark, Emily L; Emmadi, Madhu; Krupp, Katharine L; Podilapu, Ananda R; Helble, Jennifer D; Kulkarni, Suvarn S; Dube, Danielle H

    2016-12-16

    Bacterial glycans contain rare, exclusively bacterial monosaccharides that are frequently linked to pathogenesis and essentially absent from human cells. Therefore, bacterial glycans are intriguing molecular targets. However, systematic discovery of bacterial glycoproteins is hampered by the presence of rare deoxy amino sugars, which are refractory to traditional glycan-binding reagents. Thus, the development of chemical tools that label bacterial glycans is a crucial step toward discovering and targeting these biomolecules. Here, we explore the extent to which metabolic glycan labeling facilitates the studying and targeting of glycoproteins in a range of pathogenic and symbiotic bacterial strains. We began with an azide-containing analog of the naturally abundant monosaccharide N-acetylglucosamine and discovered that it is not broadly incorporated into bacterial glycans, thus revealing a need for additional azidosugar substrates to broaden the utility of metabolic glycan labeling in bacteria. Therefore, we designed and synthesized analogs of the rare deoxy amino d-sugars N-acetylfucosamine, bacillosamine, and 2,4-diacetamido-2,4,6-trideoxygalactose and established that these analogs are differentially incorporated into glycan-containing structures in a range of pathogenic and symbiotic bacterial species. Further application of these analogs will refine our knowledge of the glycan repertoire in diverse bacteria and may find utility in treating a variety of infectious diseases with selectivity.

  4. LC-MS/MS Peptide Mapping with Automated Data Processing for Routine Profiling of N-Glycans in Immunoglobulins

    NASA Astrophysics Data System (ADS)

    Shah, Bhavana; Jiang, Xinzhao Grace; Chen, Louise; Zhang, Zhongqi

    2014-06-01

    Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.

  5. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    PubMed

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive

  6. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report themore » isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to

  7. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    PubMed Central

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Abdool Karim, Salim S.; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.

    2016-01-01

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site

  8. N-glycan structures of human transferrin produced by Lymantria dispar (gypsy moth)cells using the LdMNPV expression system

    Treesearch

    One Choi; Noboru Tomiya; Jung H. Kim; James M. Slavicek; Michael J. Betenbaugh; Yuan C. Lee

    2003-01-01

    N-glycan structures of recombinant human serum transferrin (hTf) expressed by Lymantria dispar (gypsy moth) 652Y cells were determined. The gene encoding hTf was incorporated into a Lymantria dispar nucleopolyhedrovirus (LdMNPV) under the control of the polyhedrin promoter. This virus was then...

  9. Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system.

    PubMed

    Jervis, Adrian J; Wood, Alison G; Cain, Joel A; Butler, Jonathan A; Frost, Helen; Lord, Elizabeth; Langdon, Rebecca; Cordwell, Stuart J; Wren, Brendan W; Linton, Dennis

    2018-04-01

    N-linked protein glycosylation systems operate in species from all three domains of life. The model bacterial N-linked glycosylation system from Campylobacter jejuni is encoded by pgl genes present at a single chromosomal locus. This gene cluster includes the pglB oligosaccharyltransferase responsible for transfer of glycan from lipid carrier to protein. Although all genomes from species of the Campylobacter genus contain a pgl locus, among the related Helicobacter genus only three evolutionarily related species (H. pullorum, H. canadensis and H. winghamensis) potentially encode N-linked protein glycosylation systems. Helicobacter putative pgl genes are scattered in five chromosomal loci and include two putative oligosaccharyltransferase-encoding pglB genes per genome. We have previously demonstrated the in vitro N-linked glycosylation activity of H. pullorum resulting in transfer of a pentasaccharide to a peptide at asparagine within the sequon (D/E)XNXS/T. In this study, we identified the first H. pullorum N-linked glycoprotein, termed HgpA. Production of histidine-tagged HgpA in the background of insertional knockout mutants of H. pullorum pgl/wbp genes followed by analysis of HgpA glycan structures demonstrated the role of individual gene products in the PglB1-dependent N-linked protein glycosylation pathway. Glycopeptide purification by zwitterionic-hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry identified six glycosites from five H. pullorum proteins, which was consistent with proteins reactive with a polyclonal antiserum generated against glycosylated HgpA. This study demonstrates functioning of a H. pullorum N-linked general protein glycosylation system.

  10. Electrostatics and N-glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signalling.

    PubMed

    Liao, Wei-Ju; Tsao, Ku-Chi; Yang, Ruey-Bing

    2016-03-01

    SCUBE1 (S1), a secreted and membrane-bound glycoprotein, has a modular protein structure composed of an N-terminal signal peptide sequence followed by nine epidermal growth factor (EGF)-like repeats, a spacer region and three cysteine-rich (CR) motifs with multiple potential N-linked glycosylation sites, and one CUB domain at the C-terminus. Soluble S1 is a biomarker of platelet activation but an active participant of thrombosis via its adhesive EGF-like repeats, whereas its membrane-associated form acts as a bone morphogenetic protein (BMP) co-receptor in promoting BMP signal activity. However, the mechanism responsible for the membrane tethering and the biological importance of N-glycosylation of S1 remain largely unknown. In the present study, molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. Injection of mRNA encoding zebrafish wild-type but not N-glycan-deficient scube1 restores the expression of haematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. We describe novel mechanisms in targeting S1 to the plasma membrane and demonstrate that N-glycans are required for S1 functions during primitive haematopoiesis in zebrafish. © 2016 Authors; published by Portland Press Limited.

  11. Discrimination of Isomers of Released N- and O-Glycans Using Diagnostic Product Ions in Negative Ion PGC-LC-ESI-MS/MS

    NASA Astrophysics Data System (ADS)

    Ashwood, Christopher; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.

    2018-03-01

    Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers. [Figure not available: see fulltext.

  12. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system

    PubMed Central

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D.; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-01-01

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy. PMID:28186137

  13. GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system.

    PubMed

    Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D; Baba, Hiroko; Ikenaka, Kazuhiro

    2017-02-10

    Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P 0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.

  14. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    PubMed

    Viswanathan, Karthik; Koh, Xiaoying; Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M; Sasisekharan, Ram

    2010-10-29

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.

  15. Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin

    PubMed Central

    Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M.; Sasisekharan, Ram

    2010-01-01

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA. PMID:21060797

  16. Characterization of N-linked oligosaccharides assembled on secretory recombinant glucose oxidase and cell wall mannoproteins from the methylotrophic yeast Hansenula polymorpha.

    PubMed

    Kim, Moo Woong; Rhee, Sang Ki; Kim, Jeong-Yoon; Shimma, Yoh-ichi; Chiba, Yasunori; Jigami, Yoshifumi; Kang, Hyun Ah

    2004-03-01

    Presently almost no information is available on the oligosaccharide structure of the glycoproteins secreted from the methylotrophic yeast Hansenula polymorpha, a promising host for the production of recombinant proteins. In this study, we analyze the size distribution and structure of N-linked oligosaccharides attached to the recombinant glycoprotein glucose oxidase (GOD) and the cell wall mannoproteins obtained from H. polymorpha. Oligosaccharide profiling showed that the major oligosaccharide species derived from the H. polymorpha-secreted recombinant GOD (rGOD) had core-type structures (Man(8-12)GlcNAc(2)). Analyses using anti-alpha 1,3-mannose antibody and exoglycosidases specific for alpha 1,2- or alpha 1,6-mannose linkages revealed that the mannose outer chains of N-glycans on the rGOD have very short alpha 1,6 extensions and are mainly elongated in alpha 1,2-linkages without a terminal alpha 1,3-linked mannose addition. The N-glycans released from the H. polymorpha mannoproteins were shown to contain mostly mannose in their outer chains, which displayed almost identical size distribution and structure to those of H. polymorpha-derived rGOD. These results strongly indicate that the outer chain processing of N-glycans by H. polymorpha significantly differs from that by Saccharomyces cerevisiae, thus generating much shorter mannose outer chains devoid of terminal alpha 1,3-linked mannoses.

  17. Effects of brefeldin A on oligosaccharide processing. Evidence for decreased branching of complex-type glycans and increased formation of hybrid-type glycans.

    PubMed

    Chawla, D; Hughes, R C

    1991-10-01

    Brefeldin A (BFA), a drug that induces redistribution of Golgi-apparatus proteins into the endoplasmic reticulum, was used to determine the role of subcellular compartmentalization in the processing of asparagine-linked oligosaccharides. Baby-hamster kidney cells were pulse-labelled with [3H]mannose for 30-60 min and chased for up to several hours in the presence or in the absence of BFA or labelled continuously for several hours with and without the drug. Cellular glycoproteins were digested to glycopeptides with Pronase and either fractionated into glycan classes by lectin affinity chromatography or digested further by endoglycosidase H and endoglycosidase D. Released oligosaccharides obtained in the latter procedure were then separated from each other and from endoglycosidase-resistant glycopeptides by paper chromatography. The results show that BFA induces a very fast processing of protein-linked Glc3Man9GlcNAc2 oligosaccharide down to man5GlcNAc2 and conversion into complex-type and hybrid-type glycans. The major difference between untreated and BFA-treated cells is a large increase in bi-antennary and hybrid-type glycans in the latter cells. These results indicate that galactosylation of a mono-antennary GlcNAcMan5GlcNAc2 hybrid blocks subsequent action by mannosidase II and N-acetylglucosaminyl transferase II, producing galactosylated hybrid-type glycans. Similarly, galactosylation of the product of N-acetylglucosaminyltransferases I and II, i.e. a Man3GlcNAc2 core substituted with GlcNAc beta 1----2 on both alpha 1----3- and alpha 1----6-linked mannose residues, blocks branching N-acetylglucosaminyltransferases IV and V, thereby causing an increase in bi-antennary glycans and a decrease in tri- and tetra-antennary glycans.

  18. Hybrid- and complex-type N-glycans are not essential for Newcastle disease virus infection and fusion of host cells.

    PubMed

    Sun, Qing; Zhao, Lixiang; Song, Qingqing; Wang, Zheng; Qiu, Xusheng; Zhang, Wenjun; Zhao, Mingjun; Zhao, Guo; Liu, Wenbo; Liu, Haiyan; Li, Yunsen; Liu, Xiufan

    2012-03-01

    N-linked glycans are composed of three major types: high-mannose (Man), hybrid or complex. The functional role of hybrid- and complex-type N-glycans in Newcastle disease virus (NDV) infection and fusion was examined in N-acetylglucosaminyltransferase I (GnT I)-deficient Lec1 cells, a mutant Chinese hamster ovary (CHO) cell incapable of synthesizing hybrid- and complex-type N-glycans. We used recombinant NDV expressing green fluorescence protein or red fluorescence protein to monitor NDV infection, syncytium formation and viral yield. Flow cytometry showed that CHO-K1 and Lec1 cells had essentially the same degree of NDV infection. In contrast, Lec2 cells were found to be resistant to NDV infection. Compared with CHO-K1 cells, Lec1 cells were shown to more sensitive to fusion induced by NDV. Viral attachment was found to be comparable in both lines. We found that there were no significant differences in the yield of progeny virus produced by both CHO-K1 and Lec1 cells. Quantitative analysis revealed that NDV infection and fusion in Lec1 cells were also inhibited by treatment with sialidase. Pretreatment of Lec1 cells with Galanthus nivalis agglutinin specific for terminal α1-3-linked Man prior to inoculation with NDV rendered Lec1 cells less sensitive to cell-to-cell fusion compared with mock-treated Lec1 cells. Treatment of CHO-K1 and Lec1 cells with tunicamycin, an inhibitor of N-glycosylation, significantly blocked fusion and infection. In conclusion, our results suggest that hybrid- and complex-type N-glycans are not required for NDV infection and fusion. We propose that high-Man-type N-glycans could play an important role in the cell-to-cell fusion induced by NDV.

  19. Peracetylated 4-Fluoro-glucosamine Reduces the Content and Repertoire of N- and O-Glycans without Direct Incorporation*

    PubMed Central

    Barthel, Steven R.; Antonopoulos, Aristotelis; Cedeno-Laurent, Filiberto; Schaffer, Lana; Hernandez, Gilberto; Patil, Shilpa A.; North, Simon J.; Dell, Anne; Matta, Khushi L.; Neelamegham, Sriram; Haslam, Stuart M.; Dimitroff, Charles J.

    2011-01-01

    Prior studies have shown that treatment with the peracetylated 4-fluorinated analog of glucosamine (4-F-GlcNAc) elicits anti-skin inflammatory activity by ablating N-acetyllactosamine (LacNAc), sialyl Lewis X (sLeX), and related lectin ligands on effector leukocytes. Based on anti-sLeX antibody and lectin probing experiments on 4-F-GlcNAc-treated leukocytes, it was hypothesized that 4-F-GlcNAc inhibited sLeX formation by incorporating into LacNAc and blocking the addition of galactose or fucose at the carbon 4-position of 4-F-GlcNAc. To test this hypothesis, we determined whether 4-F-GlcNAc is directly incorporated into N- and O-glycans released from 4-F-GlcNAc-treated human sLeX (+) T cells and leukemic KG1a cells. At concentrations that abrogated galectin-1 (Gal-1) ligand and E-selectin ligand expression and related LacNAc and sLeX structures, MALDI-TOF and MALDI-TOF/TOF mass spectrometry analyses showed that 4-F-GlcNAc 1) reduced content and structural diversity of tri- and tetra-antennary N-glycans and of O-glycans, 2) increased biantennary N-glycans, and 3) reduced LacNAc and sLeX on N-glycans and on core 2 O-glycans. Moreover, MALDI-TOF MS did not reveal any m/z ratios relating to the presence of fluorine atoms, indicating that 4-F-GlcNAc did not incorporate into glycans. Further analysis showed that 4-F-GlcNAc treatment had minimal effect on expression of 1200 glycome-related genes and did not alter the activity of LacNAc-synthesizing enzymes. However, 4-F-GlcNAc dramatically reduced intracellular levels of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis. These data show that Gal-1 and E-selectin ligand reduction by 4-F-GlcNAc is not caused by direct 4-F-GlcNAc glycan incorporation and consequent chain termination but rather by interference with UDP-GlcNAc synthesis. PMID:21493714

  20. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation

    PubMed Central

    Castilho, Alexandra; Gruber, Clemens; Thader, Andreas; Oostenbrink, Chris; Pechlaner, Maria; Steinkellner, Herta; Altmann, Friedrich

    2015-01-01

    We investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (α1,3- and α1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF3, and GnGnF6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core α1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies. PMID:26067753

  1. Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs.

    PubMed

    Arata-Kawai, Hanayo; Singer, Mark S; Bistrup, Annette; Zante, Annemieke van; Wang, Yang-Qing; Ito, Yuki; Bao, Xingfeng; Hemmerich, Stefan; Fukuda, Minoru; Rosen, Steven D

    2011-01-01

    L-selectin initiates lymphocyte interactions with high endothelial venules (HEVs) of lymphoid organs through binding to ligands with specific glycosylation modifications. 6-Sulfo sLe(x), a sulfated carbohydrate determinant for L-selectin, is carried on core 2 and extended core 1 O-glycans of HEV-expressed glycoproteins. The MECA-79 monoclonal antibody recognizes sulfated extended core 1 O-glycans and partially blocks lymphocyte-HEV interactions in lymphoid organs. Recent evidence has identified the contribution of 6-sulfo sLe(x) carried on N-glycans to lymphocyte homing in mice. Here, we characterize CL40, a novel IgG monoclonal antibody. CL40 equaled or surpassed MECA-79 as a histochemical staining reagent for HEVs and HEV-like vessels in mouse and human. Using synthetic carbohydrates, we found that CL40 bound to 6-sulfo sLe(x) structures, on both core 2 and extended core 1 structures, with an absolute dependency on 6-O-sulfation. Using transfected CHO cells and gene-targeted mice, we observed that CL40 bound its epitope on both N-glycans and O-glycans. Consistent with its broader glycan-binding, CL40 was superior to MECA-79 in blocking lymphocyte-HEV interactions in both wild-type mice and mice deficient in forming O-glycans. This superiority was more marked in human, as CL40 completely blocked lymphocyte binding to tonsillar HEVs, whereas MECA-79 inhibited only 60%. These findings extend the evidence for the importance of N-glycans in lymphocyte homing in mouse and indicate that this dependency also applies to human lymphoid organs. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments.

    PubMed

    Harvey, David J; Seabright, Gemma E; Vasiljevic, Snezana; Crispin, Max; Struwe, Weston B

    2018-05-01

    Extracted arrival time distributions of negative ion CID-derived fragments produced prior to traveling-wave ion mobility separation were evaluated for their ability to provide structural information on N-linked glycans. Fragmentation of high-mannose glycans released from several glycoproteins, including those from viral sources, provided over 50 fragments, many of which gave unique collisional cross-sections and provided additional information used to assign structural isomers. For example, cross-ring fragments arising from cleavage of the reducing terminal GlcNAc residue on Man 8 GlcNAc 2 isomers have unique collision cross-sections enabling isomers to be differentiated in mixtures. Specific fragment collision cross-sections enabled identification of glycans, the antennae of which terminated in the antigenic α-galactose residue, and ions defining the composition of the 6-antenna of several of the glycans were also found to have different cross-sections from isomeric ions produced in the same spectra. Potential mechanisms for the formation of the various ions are discussed and the estimated collisional cross-sections are tabulated. Graphical Abstract ᅟ.

  3. Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Seabright, Gemma E.; Vasiljevic, Snezana; Crispin, Max; Struwe, Weston B.

    2018-05-01

    Extracted arrival time distributions of negative ion CID-derived fragments produced prior to traveling-wave ion mobility separation were evaluated for their ability to provide structural information on N-linked glycans. Fragmentation of high-mannose glycans released from several glycoproteins, including those from viral sources, provided over 50 fragments, many of which gave unique collisional cross-sections and provided additional information used to assign structural isomers. For example, cross-ring fragments arising from cleavage of the reducing terminal GlcNAc residue on Man8GlcNAc2 isomers have unique collision cross-sections enabling isomers to be differentiated in mixtures. Specific fragment collision cross-sections enabled identification of glycans, the antennae of which terminated in the antigenic α-galactose residue, and ions defining the composition of the 6-antenna of several of the glycans were also found to have different cross-sections from isomeric ions produced in the same spectra. Potential mechanisms for the formation of the various ions are discussed and the estimated collisional cross-sections are tabulated. [Figure not available: see fulltext.

  4. Simultaneous Release and Labeling of O- and N-Glycans Allowing for Rapid Glycomic Analysis by Online LC-UV-ESI-MS/MS.

    PubMed

    Wang, Chengjian; Lu, Yu; Han, Jianli; Jin, Wanjun; Li, Lingmei; Zhang, Ying; Song, Xuezheng; Huang, Linjuan; Wang, Zhongfu

    2018-05-24

    Most glycoproteins and biological protein samples undergo both O- and N-glycosylation, making characterization of their structures very complicated and time-consuming. Nevertheless, to fully understand the biological functions of glycosylation, both the glycosylation forms need to be analyzed. Herein we report a versatile, convenient one-pot method in which O- and N-glycans are simultaneously released from glycoproteins and chromogenically labeled in situ and thus available for further characterization. In this procedure, glycoproteins are incubated with 1-phenyl-3-methyl-5-pyrazolone (PMP) in aqueous ammonium hydroxide, making O-glycans released from protein backbones by β-elimination and N-glycans liberated by alkaline hydrolysis. The released glycans are promptly derivatized with PMP in situ by Knoevenagel condensation and Michael addition, with peeling degradation almost completely prevented. The recovered mixture of O- and N-glycans as bis-PMP derivatives features strong ultraviolet (UV) absorbing ability and hydrophobicity, allowing for high-resolution chromatographic separation and high-sensitivity spectrometric detection. Using this technique, O- and N-glycans were simultaneously prepared from some model glycoproteins and complex biological samples, without significant peeling, desialylation, deacetylation, desulfation or other side-reactions, and then comprehensively analyzed by online HILIC-UV-ESI-MS/MS and RP-HPLC-UV-ESI-MS/MS, with which some novel O- and N-glycan structures were first found. This method provides a simple, versatile strategy for high-throughput glycomics analysis.

  5. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells.

    PubMed

    Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M; Conradt, Harald S; Costa, Júlia

    2013-01-01

    Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.

  6. Efficient adhesion-based plasma membrane isolation for cell surface N-glycan analysis.

    PubMed

    Mun, Ji-Young; Lee, Kyung Jin; Seo, Hoon; Sung, Min-Sun; Cho, Yee Sook; Lee, Seung-Goo; Kwon, Ohsuk; Oh, Doo-Byoung

    2013-08-06

    Glycans, which decorate cell surfaces, play crucial roles in various physiological events involving cell surface recognition. Despite the importance of surface glycans, most analyses have been performed using total cells or whole membranes rather than plasma membranes due to difficulties related to isolation. In the present study, we employed an adhesion-based method for plasma membrane isolation to analyze N-glycans on cell surfaces. Cells were attached to polylysine-coated glass plates and then ruptured by hypotonic pressure. After washing to remove intracellular organelles, only a plasma membrane fraction remained attached to the plates, as confirmed by fluorescence imaging using organelle-specific probes. The plate was directly treated with trypsin to digest and detach the glycoproteins from the plasma membrane. From the resulting glycopeptides, N-glycans were released and analyzed using MALDI-TOF mass spectrometry and HPLC. When N-glycan profiles obtained by this method were compared to those by other methods, the amount of high-mannose type glycans mainly contaminated from the endoplasmic reticulum was dramatically reduced, which enabled the efficient detection of complex type glycans present on the cell surface. Moreover, this method was successfully used to analyze the increase of high-mannose glycans on the surface as induced by a mannosidase inhibitor treatment.

  7. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics.

    PubMed

    Taniguchi, Naoyuki; Kizuka, Yasuhiko

    2015-01-01

    Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer. © 2015 Elsevier Inc. All rights reserved.

  8. Analytical Scheme Leading to Integrated High-Sensitivity Profiling of Glycosphingolipids Together with N- and O-Glycans from One Sample

    NASA Astrophysics Data System (ADS)

    Benktander, John D.; Gizaw, Solomon T.; Gaunitz, Stefan; Novotny, Milos V.

    2018-05-01

    Glycoconjugates are directly or indirectly involved in many biological processes. Due to their complex structures, the structural elucidation of glycans and the exploration of their role in biological systems have been challenging. Glycan pools generated through release from glycoprotein or glycolipid mixtures can often be very complex. For the sake of procedural simplicity, many glycan profiling studies choose to concentrate on a single class of glycoconjugates. In this paper, we demonstrate it feasible to cover glycosphingolipids, N-glycans, and O-glycans isolated from the same sample. Small volumes of human blood serum and ascites fluid as well as small mouse brain tissue samples are sufficient to profile sequentially glycans from all three classes of glycoconjugates and even positively identify some mixture components through MALDI-MS and LC-ESI-MS. The results show that comprehensive glycan profiles can be obtained from the equivalent of 500-μg protein starting material or possibly less. These methodological improvements can help accelerating future glycomic comprehensive studies, especially for precious clinical samples.

  9. Bisecting GlcNAc restricts conformations of branches in model N-glycans with GlcNAc termini.

    PubMed

    Hanashima, Shinya; Suga, Akitsugu; Yamaguchi, Yoshiki

    2018-02-01

    Bisected N-glycans play significant roles in tumor migration and Alzheimer's disease through modulating the action and localization of their carrier proteins. Such biological functions are often discussed in terms of the conformation of the attached N-glycans with or without bisecting GlcNAc. To obtain insights into the effects of bisecting GlcNAc on glycan conformation, a systematic NMR structural analysis was performed on two pairs of synthetic N-glycans, with and without bisecting GlcNAc. The analysis reveals that terminal GlcNAcs and bisecting GlcNAc cooperate to restrict the conformations of both the α1-3 and α1-6 branches of N-glycans. 1 H and 13 C chemical shift comparisons suggest that bisecting GlcNAc directly modulates local conformation. Unique NOE correlations between core-mannose and the α1-3 branch mannose as well as the 3 J C-H constant of the glycoside linkage indicate that bisecting GlcNAc restricts the conformation of the 1-3 branch. The angles of the glycosidic bonds between core-mannose and α1-6 branch mannose derived from 3 J C-H and 3 J H-H coupling constants show that terminal GlcNAcs restrict the distribution of the ψ angle to 180° and the bisecting GlcNAc increases the distribution of the ω angle +60° in the presence of terminal GlcNAcs. It is feasible that restriction of branch conformations by bisecting GlcNAc has important consequences for protein-glycan interplay and following biological events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The GM2 Glycan Serves as a Functional Coreceptor for Serotype 1 Reovirus

    PubMed Central

    Liu, Yan; Blaum, Bärbel S.; Reiter, Dirk M.; Feizi, Ten; Dermody, Terence S.; Stehle, Thilo

    2012-01-01

    Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus. PMID:23236285

  11. The GM2 glycan serves as a functional coreceptor for serotype 1 reovirus.

    PubMed

    Reiss, Kerstin; Stencel, Jennifer E; Liu, Yan; Blaum, Bärbel S; Reiter, Dirk M; Feizi, Ten; Dermody, Terence S; Stehle, Thilo

    2012-01-01

    Viral attachment to target cells is the first step in infection and also serves as a determinant of tropism. Like many viruses, mammalian reoviruses bind with low affinity to cell-surface carbohydrate receptors to initiate the infectious process. Reoviruses disseminate with serotype-specific tropism in the host, which may be explained by differential glycan utilization. Although α2,3-linked sialylated oligosaccharides serve as carbohydrate receptors for type 3 reoviruses, neither a specific glycan bound by any reovirus serotype nor the function of glycan binding in type 1 reovirus infection was known. We have identified the oligosaccharide portion of ganglioside GM2 (the GM2 glycan) as a receptor for the attachment protein σ1 of reovirus strain type 1 Lang (T1L) using glycan array screening. The interaction of T1L σ1 with GM2 in solution was confirmed using NMR spectroscopy. We established that GM2 glycan engagement is required for optimal infection of mouse embryonic fibroblasts (MEFs) by T1L. Preincubation with GM2 specifically inhibited type 1 but not type 3 reovirus infection of MEFs. To provide a structural basis for these observations, we defined the mode of receptor recognition by determining the crystal structure of T1L σ1 in complex with the GM2 glycan. GM2 binds in a shallow groove in the globular head domain of T1L σ1. Both terminal sugar moieties of the GM2 glycan, N-acetylneuraminic acid and N-acetylgalactosamine, form contacts with the protein, providing an explanation for the observed specificity for GM2. Viruses with mutations in the glycan-binding domain display diminished hemagglutination capacity, a property dependent on glycan binding, and reduced capacity to infect MEFs. Our results define a novel mode of virus-glycan engagement and provide a mechanistic explanation for the serotype-dependent differences in glycan utilization by reovirus.

  12. Electron Capture Dissociation of Divalent Metal-adducted Sulfated N-Glycans Released from Bovine Thyroid Stimulating Hormone

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Håkansson, Kristina

    2013-11-01

    Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.

  13. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.

    PubMed

    Harvey, David J; Watanabe, Yasunori; Allen, Joel D; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B

    2018-06-01

    Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.

  14. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Watanabe, Yasunori; Allen, Joel D.; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B.

    2018-04-01

    Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. [Figure not available: see fulltext.

  15. Role of Glycans in Cholesteryl Ester Transfer Protein revealed by MD simulation.

    PubMed

    Hao, Dongxiao; Yang, Zhiwei; Gao, Teng; Tian, Zhiqi; Zhang, Lei; Zhang, Shengli

    2018-05-03

    Current cholesteryl ester transfer protein (CETP) inhibitors are designed based on the unglycosylated crystal structure, and most of them have failed to cure cardiovascular disease (CVD). It is particularly important for us to investigate the glycosylation structure of CETP (CETP-G) and effect of glycans on the structure and function of CETP. Here, we used a total of 3.0-μs molecular dynamics trajectories of nascent structure of CETP (CETP-N) and CETP-G to study their structural differentiations, to shed new light on the CETP-mediated lipid exchange. In accordance with our simulations and previous mutation studies, relative to CETP-N, CETP-G adopts a more stretched shape with higher hydrophobic and hydrophilic SASA of N-terminal oscillating with larger amplitude, in which Glycan88 provides partial assistance for CEs through the N-terminal. Glycan341 reduces the flexibility of neck flap, with the interference of CEs through the neck region. Besides, Glycan240 reduces the flexibility of Helix-X to interfere the CEs transfer. Glycan396 decreases the flexibility and increases the hydrophobic SASA of C-terminal. Overall, these glycans affect the dynamics and structure of CETP through forming H-bonds with surrounding residues, and the sampled conformations of glycan is also affected by its surrounding residues. Thus, glycans are an integral part of CETP, further studies on the CETP inhibition and treatment of CVD should fully consider the effect of glycans. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  16. Structural characterization and biological implications of sulfated N-glycans in a serine protease from the neotropical moth Hylesia metabus (Cramer [1775]) (Lepidoptera: Saturniidae).

    PubMed

    Cabrera, Gleysin; Salazar, Víctor; Montesino, Raquel; Támbara, Yanet; Struwe, Weston B; Leon, Evelyn; Harvey, David J; Lesur, Antoine; Rincón, Mónica; Domon, Bruno; Méndez, Milagros; Portela, Madelón; González-Hernández, Annia; Triguero, Ada; Durán, Rosario; Lundberg, Ulf; Vonasek, Eva; González, Luis Javier

    2016-03-01

    Contact with the urticating setae from the abdomen of adult females of the neo-tropical moth Hylesia metabus gives rise to an urticating dermatitis, characterized by intense pruritus, generalized malaise and occasionally ocular lesions (lepidopterism). The setae contain a pro-inflammatory glycosylated protease homologous to other S1A serine proteases of insects. Deglycosylation with PNGase F in the presence of a buffer prepared with 40% H2 (18)O allowed the assignment of an N-glycosylation site. Five main paucimannosidic N-glycans were identified, three of which were exclusively α(1-6)-fucosylated at the proximal GlcNAc. A considerable portion of these N-glycans are anionic species sulfated on either the 4- or the 6-position of the α(1-6)-mannose residue of the core. The application of chemically and enzymatically modified variants of the toxin in an animal model in guinea pigs showed that the pro-inflammatory and immunological reactions, e.g. disseminated fibrin deposition and activation of neutrophils, are due to the presence of sulfate-linked groups and not on disulfide bonds, as demonstrated by the reduction and S-alkylation of the toxin. On the other hand, the hemorrhagic vascular lesions observed are attributed to the proteolytic activity of the toxin. Thus, N-glycan sulfation may constitute a defense mechanism against predators. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray

    PubMed Central

    Mickum, Megan L.; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W. Evan; Wilkins, Patricia P.; Van Die, Irma; Smith, David F.; Nyame, A. Kwame

    2016-01-01

    Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. PMID:26883596

  18. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis.

    PubMed

    Hilliard, Mark; Alley, William R; McManus, Ciara A; Yu, Ying Qing; Hallinan, Sinead; Gebler, John; Rudd, Pauline M

    Glycosylation is an important attribute of biopharmaceutical products to monitor from development through production. However, glycosylation analysis has traditionally been a time-consuming process with long sample preparation protocols and manual interpretation of the data. To address the challenges associated with glycan analysis, we developed a streamlined analytical solution that covers the entire process from sample preparation to data analysis. In this communication, we describe the complete analytical solution that begins with a simplified and fast N-linked glycan sample preparation protocol that can be completed in less than 1 hr. The sample preparation includes labelling with RapiFluor-MS tag to improve both fluorescence (FLR) and mass spectral (MS) sensitivities. Following HILIC-UPLC/FLR/MS analyses, the data are processed and a library search based on glucose units has been included to expedite the task of structural assignment. We then applied this total analytical solution to characterize the glycosylation of the NIST Reference Material mAb 8761. For this glycoprotein, we confidently identified 35 N-linked glycans and all three major classes, high mannose, complex, and hybrid, were present. The majority of the glycans were neutral and fucosylated; glycans featuring N-glycolylneuraminic acid and those with two galactoses connected via an α1,3-linkage were also identified.

  19. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    PubMed

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more

  20. Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution.

    PubMed

    Nishima, Wataru; Miyashita, Naoyuki; Yamaguchi, Yoshiki; Sugita, Yuji; Re, Suyong

    2012-07-26

    The introduction of bisecting GlcNAc and core fucosylation in N-glycans is essential for fine functional regulation of glycoproteins. In this paper, the effect of these modifications on the conformational properties of N-glycans is examined at the atomic level by performing replica-exchange molecular dynamics (REMD) simulations. We simulate four biantennary complex-type N-glycans, namely, unmodified, two single-substituted with either bisecting GlcNAc or core fucose, and disubstituted forms. By using REMD as an enhanced sampling technique, five distinct conformers in solution, each of which is characterized by its local orientation of the Manα1-6Man glycosidic linkage, are observed for all four N-glycans. The chemical modifications significantly change their conformational equilibria. The number of major conformers is reduced from five to two and from five to four upon the introduction of bisecting GlcNAc and core fucosylation, respectively. The population change is attributed to specific inter-residue hydrogen bonds, including water-mediated ones. The experimental NMR data, including nuclear Overhauser enhancement and scalar J-coupling constants, are well reproduced taking the multiple conformers into account. Our structural model supports the concept of "conformer selection", which emphasizes the conformational flexibility of N-glycans in protein-glycan interactions.

  1. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improvemore » quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.« less

  2. Hierarchical sampling for metastable conformers determines biomolecular recognition: the case of malectin and diglucosylated N-glycan interactions.

    PubMed

    Mamidi, Ashalatha Sreshty; Surolia, Avadhesha

    2015-01-01

    Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin's exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate-aromatic interactions including CH-π and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to β-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.

  3. Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1.

    PubMed

    Rips, Stephan; Bentley, Nolan; Jeong, In Sil; Welch, Justin L; von Schaewen, Antje; Koiwa, Hisashi

    2014-09-01

    Arabidopsis thaliana KORRIGAN1 (KOR1) is an integral membrane endo-β1,4-glucanase in the trans-Golgi network and plasma membrane that is essential for cellulose biosynthesis. The extracellular domain of KOR1 contains eight N-glycosylation sites, N1 to N8, of which only N3 to N7 are highly conserved. Genetic evidence indicated that cellular defects in attachment and maturation of these N-glycans affect KOR1 function in vivo, whereas the manner by which N-glycans modulate KOR1 function remained obscure. Site-directed mutagenesis analysis of green fluorescent protein (GFP)-KOR1 expressed from its native regulatory sequences established that all eight N-glycosylation sites (N1 to N8) are used in the wild type, whereas stt3a-2 cells could only inefficiently add N-glycans to less conserved sites. GFP-KOR1 variants with a single N-glycan at nonconserved sites were less effective than those with one at a highly conserved site in rescuing the root growth phenotype of rsw2-1 (kor1 allele). When functionally compromised, GFP-KOR1 tended to accumulate at the tonoplast. GFP-KOR1Δall (without any N-glycan) exhibited partial complementation of rsw2-1; however, root growth of this line was still negatively affected by the absence of complex-type N-glycan modifications in the host plants. These results suggest that one or several additional factor(s) carrying complex N-glycans cooperate(s) with KOR1 in trans to grant proper targeting/functioning in plant cells. © 2014 American Society of Plant Biologists. All rights reserved.

  4. Direct glycan structure determination of intact N-linked glycopeptides by low-energy collision-induced dissociation tandem mass spectrometry and predicted spectral library searching.

    PubMed

    Pai, Pei-Jing; Hu, Yingwei; Lam, Henry

    2016-08-31

    Intact glycopeptide MS analysis to reveal site-specific protein glycosylation is an important frontier of proteomics. However, computational tools for analyzing MS/MS spectra of intact glycopeptides are still limited and not well-integrated into existing workflows. In this work, a new computational tool which combines the spectral library building/searching tool, SpectraST (Lam et al. Nat. Methods2008, 5, 873-875), and the glycopeptide fragmentation prediction tool, MassAnalyzer (Zhang et al. Anal. Chem.2010, 82, 10194-10202) for intact glycopeptide analysis has been developed. Specifically, this tool enables the determination of the glycan structure directly from low-energy collision-induced dissociation (CID) spectra of intact glycopeptides. Given a list of possible glycopeptide sequences as input, a sample-specific spectral library of MassAnalyzer-predicted spectra is built using SpectraST. Glycan identification from CID spectra is achieved by spectral library searching against this library, in which both m/z and intensity information of the possible fragmentation ions are taken into consideration for improved accuracy. We validated our method using a standard glycoprotein, human transferrin, and evaluated its potential to be used in site-specific glycosylation profiling of glycoprotein datasets from LC-MS/MS. In addition, we further applied our method to reveal, for the first time, the site-specific N-glycosylation profile of recombinant human acetylcholinesterase expressed in HEK293 cells. For maximum usability, SpectraST is developed as part of the Trans-Proteomic Pipeline (TPP), a freely available and open-source software suite for MS data analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dual Modifications Strategy to Quantify Neutral and Sialylated N-Glycans Simultaneously by MALDI-MS

    PubMed Central

    2015-01-01

    Differences in ionization efficiency among neutral and sialylated glycans prevent direct quantitative comparison by their respective mass spectrometric signals. To overcome this challenge, we developed an integrated chemical strategy, Dual Reactions for Analytical Glycomics (DRAG), to quantitatively compare neutral and sialylated glycans simultaneously by MALDI-MS. Initially, two glycan samples to be compared undergo reductive amination with 2-aminobenzoic acid and 2-13[C6]-aminobenzoic acid, respectively. The different isotope-incorporated glycans are then combined and subjected to the methylamidation of the sialic acid residues in one mixture, homogenizing the ionization responses for all neutral and sialylated glycans. By this approach, the expression change of relevant glycans between two samples is proportional to the ratios of doublet signals with a static 6 Da mass difference in MALDI-MS and the change in relative abundance of any glycan within samples can also be determined. The strategy was chemically validated using well-characterized N-glycans from bovine fetuin and IgG from human serum. By comparing the N-glycomes from a first morning (AM) versus an afternoon (PM) urine sample obtained from a single donor, we further demonstrated the ability of DRAG strategy to measure subtle quantitative differences in numerous urinary N-glycans. PMID:24766348

  6. Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS.

    PubMed

    Zhou, Hui; Warren, Peter G; Froehlich, John W; Lee, Richard S

    2014-07-01

    Differences in ionization efficiency among neutral and sialylated glycans prevent direct quantitative comparison by their respective mass spectrometric signals. To overcome this challenge, we developed an integrated chemical strategy, Dual Reactions for Analytical Glycomics (DRAG), to quantitatively compare neutral and sialylated glycans simultaneously by MALDI-MS. Initially, two glycan samples to be compared undergo reductive amination with 2-aminobenzoic acid and 2-(13)[C6]-aminobenzoic acid, respectively. The different isotope-incorporated glycans are then combined and subjected to the methylamidation of the sialic acid residues in one mixture, homogenizing the ionization responses for all neutral and sialylated glycans. By this approach, the expression change of relevant glycans between two samples is proportional to the ratios of doublet signals with a static 6 Da mass difference in MALDI-MS and the change in relative abundance of any glycan within samples can also be determined. The strategy was chemically validated using well-characterized N-glycans from bovine fetuin and IgG from human serum. By comparing the N-glycomes from a first morning (AM) versus an afternoon (PM) urine sample obtained from a single donor, we further demonstrated the ability of DRAG strategy to measure subtle quantitative differences in numerous urinary N-glycans.

  7. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray.

    PubMed

    Mickum, Megan L; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W Evan; Wilkins, Patricia P; Van Die, Irma; Smith, David F; Nyame, A Kwame; Cummings, Richard D; Rivera-Marrero, Carlos A

    2016-05-01

    Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. The multiple roles of epidermal growth factor repeat O-glycans in animal development

    PubMed Central

    Haltom, Amanda R; Jafar-Nejad, Hamed

    2015-01-01

    The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives. PMID:26175457

  9. Databases of Conformations and NMR Structures of Glycan Determinants.

    PubMed

    Sarkar, Anita; Drouillard, Sophie; Rivet, Alain; Perez, Serge

    2015-12-01

    The present study reports a comprehensive nuclear magnetic resonance (NMR) characterization and a systematic conformational sampling of the conformational preferences of 170 glycan moieties of glycosphingolipids as produced in large-scale quantities by bacterial fermentation. These glycans span across a variety of families including the blood group antigens (A, B and O), core structures (Types 1, 2 and 4), fucosylated oligosaccharides (core and lacto-series), sialylated oligosaccharides (Types 1 and 2), Lewis antigens, GPI-anchors and globosides. A complementary set of about 100 glycan determinants occurring in glycoproteins and glycosaminoglycans has also been structurally characterized using molecular mechanics-based computation. The experimental and computational data generated are organized in two relational databases that can be queried by the user through a user-friendly search engine. The NMR ((1)H and (13)C, COSY, TOCSY, HMQC, HMBC correlation) spectra and 3D structures are available for visualization and download in commonly used structure formats. Emphasis has been given to the use of a common nomenclature for the structural encoding of the carbohydrates and each glycan molecule is described by four different types of representations in order to cope with the different usages in chemistry and biology. These web-based databases were developed with non-proprietary software and are open access for the scientific community available at http://glyco3d.cermav.cnrs.fr. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology.

    PubMed

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2015-10-16

    Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.

  11. Development and application of an algorithm to compute weighted multiple glycan alignments.

    PubMed

    Hosoda, Masae; Akune, Yukie; Aoki-Kinoshita, Kiyoko F

    2017-05-01

    A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures. Thus, we have developed the MCAW (Multiple Carbohydrate Alignment with Weights) tool that can align multiple glycan structures, to aid in the understanding of their function as binding recognition molecules. We have described in detail the first algorithm to perform multiple glycan alignments by modeling glycans as trees. To test our tool, we prepared several data sets, and as a result, we found that the glycan motif could be successfully aligned without any prior knowledge applied to the tool, and the known recognition binding sites of glycans could be aligned at a high rate amongst all our datasets tested. We thus claim that our tool is able to find meaningful glycan recognition and binding patterns using data obtained by glycan-binding experiments. The development and availability of an effective multiple glycan alignment tool opens possibilities for many other glycoinformatics analysis, making this work a big step towards furthering glycomics analysis. http://www.rings.t.soka.ac.jp. kkiyoko@soka.ac.jp. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  12. Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim

    2016-01-01

    The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389

  13. A spin column-free approach to sodium hydroxide-based glycan permethylation.

    PubMed

    Hu, Yueming; Borges, Chad R

    2017-07-24

    Glycan permethylation was introduced as a tool to facilitate the study of glycans in 1903. Since that time, permethylation procedures have been continually modified to improve permethylation efficiency and qualitative applicability. Typically, however, either laborious preparation steps or cumbersome and uneconomical spin columns have been needed to obtain decent permethylation yields on small glycan samples. Here we describe a spin column-free (SCF) glycan permethylation procedure that is applicable to both O- and N-linked glycans and can be employed upstream to intact glycan analysis by MALDI-MS, ESI-MS, or glycan linkage analysis by GC-MS. The SCF procedure involves neutralization of NaOH beads by acidified phosphate buffer, which eliminates the risk of glycan oxidative degradation and avoids the use of spin columns. Optimization of the new permethylation procedure provided high permethylation efficiency for both hexose (>98%) and HexNAc (>99%) residues-yields which were comparable to (or better than) those of some widely-used spin column-based procedures. A light vs. heavy labelling approach was employed to compare intact glycan yields from a popular spin-column based approach to the SCF approach. Recovery of intact N-glycans was significantly better with the SCF procedure (p < 0.05), but overall yield of O-glycans was similar or slightly diminished (p < 0.05 for tetrasaccharides or smaller). When the SCF procedure was employed upstream to hydrolysis, reduction and acetylation for glycan linkage analysis of pooled glycans from unfractionated blood plasma, analytical reproducibility was on par with that from previous spin column-based "glycan node" analysis results. When applied to blood plasma samples from stage III-IV breast cancer patients (n = 20) and age-matched controls (n = 20), the SCF procedure facilitated identification of three glycan nodes with significantly different distributions between the cases and controls (ROC c-statistics > 0.75; p < 0

  14. A spin column-free approach to sodium hydroxide-based glycan permethylation†

    PubMed Central

    Hu, Yueming; Borges, Chad R.

    2018-01-01

    Glycan permethylation was introduced as a tool to facilitate the study of glycans in 1903. Since that time, permethylation procedures have been continually modified to improve permethylation efficiency and qualitative applicability. Typically, however, either laborious preparation steps or cumbersome and uneconomical spin columns have been needed to obtain decent permethylation yields on small glycan samples. Here we describe a spin column-free (SCF) glycan permethylation procedure that is applicable to both O- and N-linked glycans and can be employed upstream to intact glycan analysis by MALDI-MS, ESI-MS, or glycan linkage analysis by GC-MS. The SCF procedure involves neutralization of NaOH beads by acidified phosphate buffer, which eliminates the risk of glycan oxidative degradation and avoids the use of spin columns. Optimization of the new permethylation procedure provided high permethylation efficiency for both hexose (>98%) and HexNAc (>99%) residues—yields which were comparable to (or better than) those of some widely-used spin column-based procedures. A light vs. heavy labelling approach was employed to compare intact glycan yields from a popular spin-column based approach to the SCF approach. Recovery of intact N-glycans was significantly better with the SCF procedure (p < 0.05), but overall yield of O-glycans was similar or slightly diminished (p < 0.05 for tetrasaccharides or smaller). When the SCF procedure was employed upstream to hydrolysis, reduction and acetylation for glycan linkage analysis of pooled glycans from unfractionated blood plasma, analytical reproducibility was on par with that from previous spin column-based “glycan node” analysis results. When applied to blood plasma samples from stage III–IV breast cancer patients (n = 20) and age-matched controls (n = 20), the SCF procedure facilitated identification of three glycan nodes with significantly different distributions between the cases and controls (ROC c-statistics > 0.75; p

  15. Saccharomyces cerevisiae KTR4, KTR5 and KTR7 encode mannosyltransferases differentially involved in the N- and O-linked glycosylation pathways.

    PubMed

    Hernández, Nahúm V; López-Ramírez, Luz A; Díaz-Jiménez, Diana F; Mellado-Mojica, Erika; Martínez-Duncker, Iván; López, Mercedes G; Mora-Montes, Héctor M

    2017-10-01

    Saccharomyces cerevisiae is a model to understand basic aspects of protein glycosylation pathways. Although these metabolic routes have been thoroughly studied, there are still knowledge gaps; among them, the role of the MNT1/KRE2 gene family. This family is composed of nine members, with only six functionally characterized. The enzymes Ktr1, Ktr3, and Mnt1/Kre2 have overlapping activities in both O-linked and N-linked glycan synthesis; while Ktr2 and Yur1 participate exclusively in the elongation of the N-linked glycan outer chain. KTR6 encodes for a phosphomannosyltransferase that synthesizes the cell wall phosphomannan. Here, we aimed to establish the functional role of KTR4, KTR5 and KTR7 in the protein glycosylation pathways, by using heterologous complementation in Candida albicans null mutants lacking members of the MNT1/KRE2 gene family. The three S. cerevisiae genes restored defects in the C. albicans N-linked glycosylation pathway. KTR5 and KTR7 partially complemented a C. albicans null mutant with defects in the synthesis of O-linked glycans, and only KTR4 fully elongated the O-linked glycans like wild-type cells. Therefore, our results suggest that the three genes have a redundant activity in the S. cerevisiae N-linked glycosylation pathway, but KTR4 plays a major role in O-linked glycan synthesis. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Structural evolution of glycan recognition by a family of potent HIV antibodies.

    PubMed

    Garces, Fernando; Sok, Devin; Kong, Leopold; McBride, Ryan; Kim, Helen J; Saye-Francisco, Karen F; Julien, Jean-Philippe; Hua, Yuanzi; Cupo, Albert; Moore, John P; Paulson, James C; Ward, Andrew B; Burton, Dennis R; Wilson, Ian A

    2014-09-25

    The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Distinct roles of N- and O-glycans in cellulase activity and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Antonella; Knott, Brandon C.; Supekar, Nitin T.

    In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. In this paper, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalyticmore » domain (CD) - a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict a-helix formation and decreased cellulose interaction for the nonglycosylated linker. In conclusion, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.« less

  18. Distinct roles of N- and O-glycans in cellulase activity and stability

    DOE PAGES

    Amore, Antonella; Knott, Brandon C.; Supekar, Nitin T.; ...

    2017-12-11

    In nature, many microbes secrete mixtures of glycoside hydrolases, oxidoreductases, and accessory enzymes to deconstruct polysaccharides and lignin in plants. These enzymes are often decorated with N- and O-glycosylation, the roles of which have been broadly attributed to protection from proteolysis, as the extracellular milieu is an aggressive environment. Glycosylation has been shown to sometimes affect activity, but these effects are not fully understood. In this paper, we examine N- and O-glycosylation on a model, multimodular glycoside hydrolase family 7 cellobiohydrolase (Cel7A), which exhibits an O-glycosylated carbohydrate-binding module (CBM) and an O-glycosylated linker connected to an N- and O-glycosylated catalyticmore » domain (CD) - a domain architecture common to many biomass-degrading enzymes. We report consensus maps for Cel7A glycosylation that include glycan sites and motifs. Additionally, we examine the roles of glycans on activity, substrate binding, and thermal and proteolytic stability. N-glycan knockouts on the CD demonstrate that N-glycosylation has little impact on cellulose conversion or binding, but does have major stability impacts. O-glycans on the CBM have little impact on binding, proteolysis, or activity in the whole-enzyme context. However, linker O-glycans greatly impact cellulose conversion via their contribution to proteolysis resistance. Molecular simulations predict an additional role for linker O-glycans, namely that they are responsible for maintaining separation between ordered domains when Cel7A is engaged on cellulose, as models predict a-helix formation and decreased cellulose interaction for the nonglycosylated linker. In conclusion, this study reveals key roles for N- and O-glycosylation that are likely broadly applicable to other plant cell-wall-degrading enzymes.« less

  19. Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.

    PubMed

    Bradel-Tretheway, Birgit G; Liu, Qian; Stone, Jacquelyn A; McInally, Samantha; Aguilar, Hector C

    2015-07-01

    Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses. Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly

  20. Global site-specific analysis of glycoprotein N-glycan processing.

    PubMed

    Cao, Liwei; Diedrich, Jolene K; Ma, Yuanhui; Wang, Nianshuang; Pauthner, Matthias; Park, Sung-Kyu Robin; Delahunty, Claire M; McLellan, Jason S; Burton, Dennis R; Yates, John R; Paulson, James C

    2018-06-01

    N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 μg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes ∼7 d to complete.

  1. Demonstration of hydrazide tagging for O-glycans and a central composite design of experiments optimization using the INLIGHT™ reagent.

    PubMed

    King, Samuel R; Hecht, Elizabeth S; Muddiman, David C

    2018-02-01

    The INLIGHT™ strategy for N-linked glycan derivatization has been shown to overcome many of the challenges associated with glycan analysis. The hydrazide tag reacts efficiently with the glycans, increasing their non-polar surface area, allowing for reversed-phase separations and increased ionization efficiency. We have taken the INLIGHT™ strategy and adopted it for use with O-linked glycans. A central composite design was utilized to find optimized tagging conditions (45% acetic acid, 0.1 μg/μL tag concentration, 37 C, 1.75 h). Derivatization at optimized conditions was much quicker than any hydrazide derivatization strategy used previously. Human immunoglobulin A (IgA) and bovine submaxillary mucin (BSM) were then deglycosylated through hydrazinolysis and the removed glycans were tagged under optimum conditions. XIC of tagged glycans and MS2 data show successful hydrazide tagging of O-linked glycans for the first time. Graphical abstract The INLIGHT™ hydrazide tag was optimized using a central composite design for derivatization of O-linked glycans. Two glycoprotein standards were deglycosylated through hydrazinolysis and tagged at the optimized conditions. MS/MS data shows INLIGHT™ derivatization of glycans demonstrating successful hydrazide tagging of O-glycans for the first time.

  2. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search

    PubMed Central

    Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T.; Campbell, Matthew P.; Lisacek, Frederique

    2015-01-01

    Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues. PMID:26656740

  3. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection

    PubMed Central

    Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.

    2015-01-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  4. Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells

    PubMed Central

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z.

    2010-01-01

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In

  5. Pulse-chase analysis of N-linked sugar chains from glycoproteins in mammalian cells.

    PubMed

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z

    2010-04-27

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-(3)H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2

  6. Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans.

    PubMed

    Katoh, Toshihiko; Katayama, Takane; Tomabechi, Yusuke; Nishikawa, Yoshihide; Kumada, Jyunichi; Matsuzaki, Yuji; Yamamoto, Kenji

    2016-10-28

    Endo-β-N-acetylglucosaminidase M (Endo-M), an endoglycosidase from the fungus Mucor hiemalis, is a useful tool for chemoenzymatic synthesis of glycoconjugates, including glycoprotein-based therapeutics having a precisely defined glycoform, by virtue of its transglycosylation activity. Although Endo-M has been known to act on various N-glycans, it does not act on core-fucosylated N-glycans, which exist widely in mammalian glycoproteins, thus limiting its application. Therefore, we performed site-directed mutagenesis on Endo-M to isolate mutant enzymes that are able to act on mammalian-type core-α1,6-fucosylated glycans. Among the Endo-M mutant enzymes generated, those in which the tryptophan at position 251 was substituted with alanine or asparagine showed altered substrate specificities. Such mutant enzymes exhibited increased hydrolysis of a synthetic α1,6-fucosylated trimannosyl core structure, whereas their activity on the afucosylated form decreased. In addition, among the Trp-251 mutants, the W251N mutant was most efficient in hydrolyzing the core-fucosylated substrate. W251N mutants could act on the immunoglobulin G-derived core-fucosylated glycopeptides and human lactoferrin glycoproteins. This mutant was also capable of transferring the sialyl glycan from an activated substrate intermediate (sialyl glyco-oxazoline) onto an α1,6-fucosyl-N-acetylglucosaminyl biotin. Furthermore, the W251N mutant gained a glycosynthase-like activity when a N175Q substitution was introduced and it caused accumulation of the transglycosylation products. These findings not only give insights into the substrate recognition mechanism of glycoside hydrolase family 85 enzymes but also widen their scope of application in preparing homogeneous glycoforms of core-fucosylated glycoproteins for the production of potent glycoprotein-based therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time of flight mass spectrometry

    PubMed Central

    Gil, Geun-Cheol; Iliff, Bryce; Cerny, Ron; Velander, William H.; Van Cott, Kevin E.

    2010-01-01

    Appropriate glycosylation of recombinant therapeutic glycoproteins has been emphasized in biopharmaceutical industries because the carbohydrate component can affect safety, efficacy, and consistency of the glycoproteins. Reliable quantification methods are essential to ensure consistency of their products with respect to glycosylation, particularly sialylation. Mass spectrometry (MS) has become a popular tool to analyze glycan profiles and structures, showing high resolution and sensitivity with structure identification ability. However, quantification of sialylated glycans using MS is not as reliable because of the different ionization efficiency between neutral and acidic glycans. We report here that amidation in mild acidic conditions can be used to neutralize acidic N-glycans still attached to the protein. The resulting amidated N-glycans can then released from the protein using PNGase F, and labeled with permanent charges on the reducing end to avoid any modification and the formation of metal adducts during MS analysis. The N-glycan modification, digestion, and desalting steps were performed using a single-pot method that can be done in microcentrifuge tubes or 96-well microfilter plates, enabling high throughput glycan analysis. Using this method we were able to perform quantitative MALDI-TOF MS of a recombinant human glycoprotein to determine changes in fucosylation and changes in sialylation that were in very good agreement with a normal phase HPLC oligosaccharide mapping method. PMID:20586471

  8. Determination of N-glycans by high performance liquid chromatography using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the glycosylamine labeling reagent.

    PubMed

    Wu, Yike; Sha, Qiuyue; Du, Juan; Wang, Chang; Zhang, Liang; Liu, Bi-Feng; Lin, Yawei; Liu, Xin

    2018-02-02

    Robust, efficient identification and accurate quantification of N-glycans are of great significance in N-glycomics analysis. Here, a simple and rapid derivatization method, based on the combination of microwave-assisted deglycosylation and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) labeling, was developed for the analysis of N-glycan by high performance liquid chromatography with fluorescence detection (HPLC-FLD). After optimizing various parameters affecting deglycosylation and derivatization by RNase B, the time for N-glycan labeling was shortened to 50 min with ∼10-fold enhancement in detection sensitivity comparing to conventional 2-aminobenzoic acid (2-AA) labeling method. Additionally, the method showed good linearity (correlation coefficients > 0.991) and reproducibility (RSD < 8.7%). These advantages of the proposed method were further validated by the analysis of complex samples, including fetuin and human serum. Investigation of serum N-glycome for preliminary diagnosis of human lung cancer was conducted, where significant changes of several N-glycans corresponding to core-fucosylated, mono- and disialylated glycans have been evidenced by a series of statistical analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Comparison of N- and O-linked glycosylation patterns of ebolavirus glycoproteins.

    PubMed

    Collar, Amanda L; Clarke, Elizabeth C; Anaya, Eduardo; Merrill, Denise; Yarborough, Sarah; Anthony, Scott M; Kuhn, Jens H; Merle, Christine; Theisen, Manfred; Bradfute, Steven B

    2017-02-01

    Ebolaviruses are emerging pathogens that cause severe and often fatal viral hemorrhagic fevers. Four distinct ebolaviruses are known to cause Ebola virus disease in humans. The ebolavirus envelope glycoprotein (GP 1,2 ) is heavily glycosylated, but the precise glycosylation patterns of ebolaviruses are largely unknown. Here we demonstrate that approximately 50 different N-glycan structures are present in GP 1,2 derived from the four pathogenic ebolaviruses, including high mannose, hybrid, and bi-, tri-, and tetra-antennary complex glycans with and without fucose and sialic acid. The overall N-glycan composition is similar between the different ebolavirus GP 1,2 s. In contrast, the amount and type of O-glycan structures varies widely between ebolavirus GP 1,2 s. Notably, this O-glycan dissimilarity is also present between two variants of Ebola virus, the original Yambuku variant and the Makona variant responsible for the most recent Western African epidemic. The data presented here should serve as the foundation for future ebolaviral entry and immunogenicity studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-04-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.

  11. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa).

    PubMed

    Harmoko, Rikno; Yoo, Jae Yong; Ko, Ki Seong; Ramasamy, Nirmal Kumar; Hwang, Bo Young; Lee, Eun Ji; Kim, Ho Soo; Lee, Kyung Jin; Oh, Doo-Byoung; Kim, Dool-Yi; Lee, Sanghun; Li, Yang; Lee, Sang Yeol; Lee, Kyun Oh

    2016-10-01

    In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Discovery of β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase involved in the metabolism of N-glycans.

    PubMed

    Nihira, Takanori; Suzuki, Erika; Kitaoka, Motomitsu; Nishimoto, Mamoru; Ohtsubo, Ken'ichi; Nakai, Hiroyuki

    2013-09-20

    A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-D-mannosyl-N-acetyl-D-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-D-mannosyl-N-acetyl-D-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-D-mannose 1-phosphate and N-acetyl-D-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the D-mannose residue of β-1,4-D-mannosyl-N-acetyl-D-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-D-mannopyranosyl-N-acetyl-D-glucosamine:phosphate α-D-mannosyltransferase as the systematic name and β-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase as the short name for BT1033.

  13. Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile

    PubMed Central

    Thanabalasingham, Gaya; Huffman, Jennifer E.; Kattla, Jayesh J.; Novokmet, Mislav; Rudan, Igor; Gloyn, Anna L.; Hayward, Caroline; Adamczyk, Barbara; Reynolds, Rebecca M.; Muzinic, Ana; Hassanali, Neelam; Pucic, Maja; Bennett, Amanda J.; Essafi, Abdelkader; Polasek, Ozren; Mughal, Saima A.; Redzic, Irma; Primorac, Dragan; Zgaga, Lina; Kolcic, Ivana; Hansen, Torben; Gasperikova, Daniela; Tjora, Erling; Strachan, Mark W.J.; Nielsen, Trine; Stanik, Juraj; Klimes, Iwar; Pedersen, Oluf B.; Njølstad, Pål R.; Wild, Sarah H.; Gyllensten, Ulf; Gornik, Olga; Wilson, James F.; Hastie, Nicholas D.; Campbell, Harry; McCarthy, Mark I.; Rudd, Pauline M.; Owen, Katharine R.; Lauc, Gordan; Wright, Alan F.

    2013-01-01

    A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic ≥0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction. PMID:23274891

  14. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE PAGES

    Hu, Liya; Ramani, Sasirekha; Czako, Rita; ...

    2015-09-30

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  15. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Liya; Ramani, Sasirekha; Czako, Rita

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  16. Structural Aspects of N-Glycosylations and the C-terminal Region in Human Glypican-1*

    PubMed Central

    Awad, Wael; Adamczyk, Barbara; Örnros, Jessica; Karlsson, Niclas G.; Mani, Katrin; Logan, Derek T.

    2015-01-01

    Glypicans are multifunctional cell surface proteoglycans involved in several important cellular signaling pathways. Glypican-1 (Gpc1) is the predominant heparan sulfate proteoglycan in the developing and adult human brain. The two N-linked glycans and the C-terminal domain that attach the core protein to the cell membrane are not resolved in the Gpc1 crystal structure. Therefore, we have studied Gpc1 using crystallography, small angle x-ray scattering, and chromatographic approaches to elucidate the composition, structure, and function of the N-glycans and the C terminus and also the topology of Gpc1 with respect to the membrane. The C terminus is shown to be highly flexible in solution, but it orients the core protein transverse to the membrane, directing a surface evolutionarily conserved in Gpc1 orthologs toward the membrane, where it may interact with signaling molecules and/or membrane receptors on the cell surface, or even the enzymes involved in heparan sulfate substitution in the Golgi apparatus. Furthermore, the N-glycans are shown to extend the protein stability and lifetime by protection against proteolysis and aggregation. PMID:26203194

  17. Preparation and biological activities of anti-HER2 monoclonal antibodies with fully core-fucosylated homogeneous bi-antennary complex-type glycans.

    PubMed

    Tsukimura, Wataru; Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Matsuda, Akio; Takegawa, Kaoru; Furukawa, Kiyoshi; Shirai, Takashi

    2017-12-01

    Recently, the absence of a core-fucose residue in the N-glycan has been implicated to be important for enhancing antibody-dependent cellular cytotoxicity (ADCC) activity of immunoglobulin G monoclonal antibodies (mAbs). Here, we first prepared anti-HER2 mAbs having two core-fucosylated N-glycan chains with the single G2F, G1aF, G1bF, or G0F structure, together with those having two N-glycan chains with a single non-core-fucosylated corresponding structure for comparison, and determined their biological activities. Dissociation constants of mAbs with core-fucosylated N-glycans bound to recombinant Fcγ-receptor type IIIa variant were 10 times higher than those with the non-core-fucosylated N-glycans, regardless of core glycan structures. mAbs with the core-fucosylated N-glycans had markedly reduced ADCC activities, while those with the non-core-fucosylated N-glycans had high activities. These results indicate that the presence of a core-fucose residue in the N-glycan suppresses the binding to the Fc-receptor and the induction of ADCC of anti-HER2 mAbs.

  18. Comparative Profiling of N-Glycans Isolated from Serum Samples of Ovarian Cancer Patients and Analyzed by Microchip Electrophoresis

    PubMed Central

    Mitra, Indranil; Alley, William R.; Goetz, John A.; Vasseur, Jacqueline A.; Novotny, Milos V.; Jacobson, Stephen C.

    2013-01-01

    Ovarian cancer is the fifth leading cause of cancer-related mortalities for women in the United States and the most lethal gynecological cancer. Aberrant glycosylation has been linked to several human diseases, including ovarian cancer, and accurate measurement of changes in glycosylation may provide relevant diagnostic and prognostic information. In this work, we used microchip electrophoresis coupled with laser-induced fluorescence detection to determine quantitative differences among the N-glycan profiles of control individuals and late-stage recurrent ovarian cancer patients prior to and after an experimental drug treatment that combined docetaxel and imatinib mesylate. N-Glycans were enzymatically released from 5-μL aliquots of serum samples, labeled with the anionic fluorescent tag, 8-aminopyrene-1,3,6-trisulfonic acid, and analyzed on microfluidic devices. A 22-cm long separation channel, operated at 1250 V/cm, generated analysis times less than 100 s, separation efficiencies up to 8 × 105 plates (3.6 × 106 plates/m), and migration time reproducibilities better than 0.1% relative standard deviation after peak alignment. Principal component analysis (PCA) and analysis of variance (ANOVA) tests showed significant differences between the control and both pre- and post-treatment cancer samples and subtle differences between the pre- and post-treatment cancer samples. Area-under-the curve (AUC) values from receiver operating characteristics (ROC) tests were used to evaluate the diagnostic merit of N-glycan peaks, and specific N-glycan peaks used in combination provided AUCs > 0.90 (highly accurate test) when the control and pre-treatment cancer samples and control and post-treatment samples were compared. PMID:23984816

  19. Endoglycosidase and glycoamidase release of N-linked oligosaccharides.

    PubMed

    Freeze, Hudson H; Kranz, Christian

    2006-09-01

    Nearly all proteins entering the lumen of the endoplasmic reticulum (ER) become glycosylated en route to a cellular organelle, the plasma membrane, or the extracellular space. Many glycans can be attached to proteins, but the most common are the N-linked oligosaccharides. These chains are added very soon after a protein enters the ER, but they undergo extensive remodeling (processing), especially in the Golgi. Processing changes the sensitivity of the N-glycan to enzymes that cleave entire sugar chains or individual monosaccharides, which also changes the migration of the protein on SDS gels. These changes can be used to indicate when a protein has passed a particular subcellular location. This unit details some of the methods used to track a protein as it traffics from the ER to the Golgi toward its final location.

  20. Concurrent Automated Sequencing of the Glycan and Peptide Portions of O-Linked Glycopeptide Anions by Ultraviolet Photodissociation Mass Spectrometry

    PubMed Central

    Madsen, James A.; Ko, Byoung Joon; Xu, Hua; Iwashkiw, Jeremy A.; Robotham, Scott A.; Shaw, Jared B.; Feldman, Mario F.; Brodbelt, Jennifer S.

    2013-01-01

    O -glycopeptides are often acidic owing to the frequent occurrence of acidic saccharides in the glycan, rendering traditional proteomic workflows that rely on positive mode tandem mass spectrometry (MS/MS) less effective. In this report, we demonstrate the utility of negative mode ultraviolet photodissociation (UVPD) MS for the characterization of acidic O-linked glycopeptide anions. This method was evaluated for a series of singly- and multiply-deprotonated glycopeptides from the model glycoprotein kappa casein, resulting in production of both peptide and glycan product ions that afforded 100% sequence coverage of the peptide and glycan moieties from a single MS/MS event. The most abundant and frequent peptide sequence ions were a/x-type products, which, importantly, were found to retain the labile glycan modifications. The glycan-specific ions mainly arose from glycosidic bond cleavages (B, Y, C, and Z ions) in addition to some less common cross-ring cleavages. Based on the UVPD fragmentation patterns, an automated database searching strategy (based on the MassMatrix algorithm) was designed that is specific for the analysis of glycopeptide anions by UVPD. This algorithm was used to identify glycopeptides from mixtures of glycosylated and non-glycosylated peptides, sequence both glycan and peptide moieties simultaneously, and pinpoint the correct site(s) of glycosylation. This methodology was applied to uncover novel site-specificity of the O-linked glycosylated OmpA/MotB from the “superbug” A. baumannii to help aid in the elucidation of the functional role that protein glycosylation plays in pathogenesis. PMID:24006841

  1. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-10-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.

  2. Glycosylated proteins preserved over millennia: N-glycan analysis of Tyrolean Iceman, Scythian Princess and Warrior

    PubMed Central

    Ozcan, Sureyya; Kim, Bum Jin; Ro, Grace; Kim, Jae-Han; Bereuter, Thomas L.; Reiter, Christian; Dimapasoc, Lauren; Garrido, Daniel; Mills, David A.; Grimm, Rudolf; Lebrilla, Carlito B.; An, Hyun Joo

    2014-01-01

    An improved understanding of glycosylation will provide new insights into many biological processes. In the analysis of oligosaccharides from biological samples, a strict regime is typically followed to ensure sample integrity. However, the fate of glycans that have been exposed to environmental conditions over millennia has not yet been investigated. This is also true for understanding the evolution of the glycosylation machinery in humans as well as in any other biological systems. In this study, we examined the glycosylation of tissue samples derived from four mummies which have been naturally preserved: – the 5,300 year old “Iceman called Oetzi”, found in the Tyrolean Alps; the 2,400 year old “Scythian warrior” and “Scythian Princess”, found in the Altai Mountains; and a 4 year old apartment mummy, found in Vienna/Austria. The number of N-glycans that were identified varied both with the age and the preservation status of the mummies. More glycan structures were discovered in the contemporary sample, as expected, however it is significant that glycan still exists in the ancient tissue samples. This discovery clearly shows that glycans persist for thousands of years, and these samples provide a vital insight into ancient glycosylation, offering us a window into the distant past. PMID:24831691

  3. A Novel Method for Relative Quantitation of N-Glycans by Isotopic Labeling Using 18O-Water

    PubMed Central

    Tao, Shujuan; Orlando, Ron

    2014-01-01

    Quantitation is an essential aspect of comprehensive glycomics study. Here, a novel isotopic-labeling method is described for N-glycan quantitation using 18O-water. The incorporation of the 18O-labeling into the reducing end of N-glycans is simply and efficiently achieved during peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase F release. This process provides a 2-Da mass difference compared with the N-glycans released in 16O-water. A mathematical calculation method was also developed to determine the 18O/16O ratios from isotopic peaks. Application of this method to several standard glycoprotein mixtures and human serum demonstrated that this method can facilitate the relative quantitation of N-glycans over a linear dynamic range of two orders, with high accuracy and reproducibility. PMID:25365792

  4. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A.

    PubMed

    Yao, Guorui; Zhang, Sicai; Mahrhold, Stefan; Lam, Kwok-Ho; Stern, Daniel; Bagramyan, Karine; Perry, Kay; Kalkum, Markus; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2016-07-01

    Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan-which is conserved in all SV2 isoforms across vertebrates-is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors.

  5. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway.

    PubMed

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-02-03

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4-5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers.

  6. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway

    PubMed Central

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-01-01

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4–5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers. PMID:28157181

  7. Structural basis of mammalian glycan targeting by Vibrio cholerae cytolysin and biofilm proteins

    PubMed Central

    De, Swastik; Kaus, Katherine; Sinclair, Shada

    2018-01-01

    Vibrio cholerae is an aquatic gram-negative microbe responsible for cholera, a pandemic disease causing life-threatening diarrheal outbreaks in populations with limited access to health care. Like most pathogenic bacteria, V. cholerae secretes virulence factors to assist colonization of human hosts, several of which bind carbohydrate receptors found on cell-surfaces. Understanding how pathogenic virulence proteins specifically target host cells is important for the development of treatment strategies to fight bacterial infections. Vibrio cholerae cytolysin (VCC) is a secreted pore-forming toxin with a carboxy-terminal β-prism domain that targets complex N-glycans found on mammalian cell-surface proteins. To investigate glycan selectivity, we studied the VCC β-prism domain and two additional β-prism domains found within the V. cholerae biofilm matrix protein RbmC. We show that the two RbmC β-prism domains target a similar repertoire of complex N-glycan receptors as VCC and find through binding and modeling studies that a branched pentasaccharide core (GlcNAc2-Man3) represents the likely footprint interacting with these domains. To understand the structural basis of V. cholerae β-prism selectivity, we solved high-resolution crystal structures of fragments of the pentasaccharide core bound to one RbmC β-prism domain and conducted mutagenesis experiments on the VCC toxin. Our results highlight a common strategy for cell-targeting utilized by both toxin and biofilm matrix proteins in Vibrio cholerae and provide a structural framework for understanding the specificity for individual receptors. Our results suggest that a common strategy for disrupting carbohydrate interactions could affect multiple virulence factors produced by V. cholerae, as well as similar β-prism domains found in other vibrio pathogens. PMID:29432487

  8. N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma.

    PubMed

    Li, Jiang-Hua; Huang, Wan; Lin, Peng; Wu, Bo; Fu, Zhi-Guang; Shen, Hao-Miao; Jing, Lin; Liu, Zhen-Yu; Zhou, Yang; Meng, Yao; Xu, Bao-Qing; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-11-21

    Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer, is a transmembrane glycoprotein that mediates oncogenic processes partly through N-glycosylation modifications. N-glycosylation has been demonstrated to be instrumental for the regulation of CD147 function during malignant transformation. However, the role that site-specific glycosylation of CD147 plays in its defective function in hepatocellular carcinomacells needs to be determined. Here, we demonstrate that the modification of N-glycosylation at Asn152 on CD147 strongly promotes hepatocellular carcinoma (HCC) invasion and migration. After the removal of N-glycans at Asn152, CD147 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated endoplasmic reticulum-associated degradation (ERAD). Furthermore, N-linked glycans at Asn152 were required for CD147 to acquire and maintain proper folding in the ER. Moreover, N-linked glycans at Asn152 functioned as a recognition motif that was directly mediated by the CNX quality control system. Two phases in the retention-based ER chaperones system drove ER-localized CD147 trafficking to degradation. Deletion of N-linked glycosylation at Asn152 on CD147 significantly suppressed in situ tumour metastasis. These data could potentially shed light on the molecular regulation of CD147 through glycosylation and provide a valuable means of developing drugs that target N-glycans at Asn152 on CD147.

  9. N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma

    PubMed Central

    Li, Jiang-Hua; Huang, Wan; Lin, Peng; Wu, Bo; Fu, Zhi-Guang; Shen, Hao-Miao; Jing, Lin; Liu, Zhen-Yu; Zhou, Yang; Meng, Yao; Xu, Bao-Qing; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-01-01

    Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer, is a transmembrane glycoprotein that mediates oncogenic processes partly through N-glycosylation modifications. N-glycosylation has been demonstrated to be instrumental for the regulation of CD147 function during malignant transformation. However, the role that site-specific glycosylation of CD147 plays in its defective function in hepatocellular carcinomacells needs to be determined. Here, we demonstrate that the modification of N-glycosylation at Asn152 on CD147 strongly promotes hepatocellular carcinoma (HCC) invasion and migration. After the removal of N-glycans at Asn152, CD147 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated endoplasmic reticulum-associated degradation (ERAD). Furthermore, N-linked glycans at Asn152 were required for CD147 to acquire and maintain proper folding in the ER. Moreover, N-linked glycans at Asn152 functioned as a recognition motif that was directly mediated by the CNX quality control system. Two phases in the retention-based ER chaperones system drove ER-localized CD147 trafficking to degradation. Deletion of N-linked glycosylation at Asn152 on CD147 significantly suppressed in situ tumour metastasis. These data could potentially shed light on the molecular regulation of CD147 through glycosylation and provide a valuable means of developing drugs that target N-glycans at Asn152 on CD147. PMID:27869218

  10. Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; McBride, Ryan; Nycholat, Corwin M.

    2012-02-13

    Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only formore » {alpha}2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For {alpha}2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with {alpha}2-6- and {alpha}2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for {alpha}2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.« less

  11. Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Glycan Recognition*

    PubMed Central

    Wangkanont, Kittikhun; Wesener, Darryl A.; Vidani, Jack A.; Kiessling, Laura L.; Forest, Katrina T.

    2016-01-01

    Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates. PMID:26755729

  12. Structure and Biological Roles of Mucin-type O-glycans at the Ocular Surface

    PubMed Central

    Guzman-Aranguez, Ana; Argüeso, Pablo

    2010-01-01

    Mucins are major components in mucus secretions and apical cell membranes on wet-surfaced epithelia. Structurally, they are characterized by the presence of tandem repeat domains containing heavily O-glycosylated serine and threonine residues. O-glycans contribute to maintaining the highly extended and rigid structure of mucins, conferring to them specific physical and biological properties essential for their protective functions. At the ocular surface epithelia, mucin-type O-glycan chains are short and predominantly sialylated, perhaps reflecting specific requirements of the ocular surface. Traditionally, secreted mucins and their O-glycans in the tear film have been involved in the clearance of debris and pathogens from the surface of the eye. New evidence, however, shows that O-glycans on the cell-surface glycocalyx have additional biological roles in the protection of corneal and conjunctival epithelia, such as preventing bacterial adhesion, promoting boundary lubrication, and maintaining the epithelial barrier function through their interaction with galectin-3. Abnormalities in mucin-type O-glycosylation have been identified in many disorders where the stability of the ocular surface is compromised. This review summarizes recent advances in understanding the structure, biosynthesis, and function of mucin-type O-glycans at the ocular surface and their alteration in ocular surface disease. PMID:20105403

  13. On-line capillary electrophoresis/laser-induced fluorescence/mass spectrometry analysis of glycans labeled with Teal™ fluorescent dye using an electrokinetic sheath liquid pump-based nanospray ion source.

    PubMed

    Khan, Shaheer; Liu, Jenkuei; Szabo, Zoltan; Kunnummal, Baburaj; Han, Xiaorui; Ouyang, Yilan; Linhardt, Robert J; Xia, Qiangwei

    2018-06-15

    N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Isomer-specific profiling of N-glycans derived from human serum for potential biomarker discovery in pancreatic cancer.

    PubMed

    Liu, Yufei; Wang, Chang; Wang, Ran; Wu, Yike; Zhang, Liang; Liu, Bi-Feng; Cheng, Liming; Liu, Xin

    2018-06-15

    Glycosylation is one of the most important post-translational modifications of protein. Recently, global profiling of human serum glycomics has become a noninvasive method for cancer-related biomarker discovery and many studies have focused on compositional glycan profiling. In contrast, structure-specific glycan profiling may provide more potential biomarkers with higher specificity than compositional profiling. In this work, N-glycans released from human serum were neutralized with methylamine and reduced by ammonia-borane complex prior to profiling using nanoLC-ESI-MS with porous graphitized carbon (PGC) and relative abundances of over 280 isomers were compared between pancreatic cancer (PC) cases (n = 32) and healthy controls (n = 32). Statistical analysis identified 25 specific-isomeric biomarkers with significant differences (p-value < 0.05). ROC and PCA analysis were performed to assess the potential biomarkers which were identified as being significantly altered in cancer. The AUCs of the significantly changed specific-isomers were ranging from 0.712 to 0.949. In addition, with the combination of all potential biomarkers, a higher AUC of 0.976 with sensitivity (93.5%) and specificity (90.6%) was obtained. Overall, the proposed strategy coupled to relative quantitative analysis of isomeric glycans make it possible to discover new biomarkers for the diagnosis of PC. Pancreatic cancer (PC) has a poor prognosis with a five-year survival rate <5%. Therefore, a strategy for accurate diagnosis of PC is indeed required. In this paper, a dual-derivatized strategy for structure-specific glycan profiling has been used and according to our best knowledge, this is the first application of this strategy for PC biomarker discovery, in which the separation, identification and relative quantification of isomeric glycans can be simultaneously obtained. In addition, by in-depth analysis of isomeric glycans, the full description of the stereo- and region- diversity

  15. Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum

    PubMed Central

    Mitsuda, Satoshi; Yokomichi, Tomonobu; Yokoigawa, Junpei; Kataoka, Takao

    2014-01-01

    Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1) in response to interleukin-1α (IL-1α). We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum. PMID:24649404

  16. Strategies for the profiling, characterisation and detailed structural analysis of N-linked oligosaccharides.

    PubMed

    Tharmalingam, Tharmala; Adamczyk, Barbara; Doherty, Margaret A; Royle, Louise; Rudd, Pauline M

    2013-02-01

    Many post-translational modifications, including glycosylation, are pivotal for the structural integrity, location and functional activity of glycoproteins. Sub-populations of proteins that are relocated or functionally changed by such modifications can change resting proteins into active ones, mediating specific effector functions, as in the case of monoclonal antibodies. To ensure safe and efficacious drugs it is essential to employ appropriate robust, quantitative analytical strategies that can (i) perform detailed glycan structural analysis, (ii) characterise specific subsets of glycans to assess known critical features of therapeutic activities (iii) rapidly profile glycan pools for at-line monitoring or high level batch to batch screening. Here we focus on these aspects of glycan analysis, showing how state-of-the-art technologies are required at all stages during the production of recombinant glycotherapeutics. These data can provide insights into processing pathways and suggest markers for intervention at critical control points in bioprocessing and also critical decision points in disease and drug monitoring in patients. Importantly, these tools are now enabling the first glycome/genome studies in large populations, allowing the integration of glycomics into other 'omics platforms in a systems biology context.

  17. β4-Integrin/PI3K Signaling Promotes Tumor Progression through the Galectin-3-N-Glycan Complex.

    PubMed

    Kariya, Yukiko; Oyama, Midori; Hashimoto, Yasuhiro; Gu, Jianguo; Kariya, Yoshinobu

    2018-06-01

    Malignant transformation is associated with aberrant N -glycosylation, but the role of protein N -glycosylation in cancer progression remains poorly defined. β4-integrin is a major carrier of N -glycans and is associated with poor prognosis, tumorigenesis, and metastasis. Here, N -glycosylation of β4-integrin contributes to the activation of signaling pathways that promote β4-dependent tumor development and progression. Increased expression of β1,6GlcNAc-branched N -glycans was found to be colocalized with β4-integrin in human cutaneous squamous cell carcinoma tissues, and that the β1,6GlcNAc residue was abundant on β4-integrin in transformed keratinocytes. Interruption of β1,6GlcNAc-branching formation on β4-integrin with the introduction of bisecting GlcNAc by N -acetylglucosaminyltransferase III overexpression was correlated with suppression of cancer cell migration and tumorigenesis. N -Glycan deletion on β4-integrin impaired β4-dependent cancer cell migration, invasion, and growth in vitro and diminished tumorigenesis and proliferation in vivo The reduced abilities of β4-integrin were accompanied with decreased phosphoinositol-3 kinase (PI3K)/Akt signals and were restored by the overexpression of the constitutively active p110 PI3K subunit. Binding of galectin-3 to β4-integrin via β1,6GlcNAc-branched N -glycans promoted β4-integrin-mediated cancer cell adhesion and migration. In contrast, a neutralizing antibody against galectin-3 attenuated β4-integrin N -glycan-mediated PI3K activation and inhibited the ability of β4-integrin to promote cell motility. Furthermore, galectin-3 knockdown by shRNA suppressed β4-integrin N -glycan-mediated tumorigenesis. These findings provide a novel role for N -glycosylation of β4-integrin in tumor development and progression, and the regulatory mechanism for β4-integrin/PI3K signaling via the galectin-3- N -glycan complex. Implications: N -Glycosylation of β4-integrin plays a functional role in promoting

  18. Structures of Xenopus Embryonic Epidermal Lectin Reveal a Conserved Mechanism of Microbial Glycan Recognition.

    PubMed

    Wangkanont, Kittikhun; Wesener, Darryl A; Vidani, Jack A; Kiessling, Laura L; Forest, Katrina T

    2016-03-11

    Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Recombinant Human Lysyl Oxidase-like 2 Secreted from Human Embryonic Kidney Cells Displays Complex and Acidic Glycans at All Three N-Linked Glycosylation Sites.

    PubMed

    Go, Eden P; Moon, Hee-Jung; Mure, Minae; Desaire, Heather

    2018-05-04

    Human lysyl oxidase-like 2 (hLOXL2), a glycoprotein implicated in tumor progression and organ fibrosis, is a molecular target for anticancer and antifibrosis treatment. This glycoprotein contains three predicted N-linked glycosylation sites; one is near the protein's active site, and at least one more is known to facilitate the protein's secretion. Because the glycosylation impacts the protein's biology, we sought to characterize the native, mammalian glycosylation profile and to determine how closely this profile is recapitulated when the protein is expressed in insect cells. All three glycosylation sites on the protein, expressed in human embryonic kidney (HEK) cells, were characterized individually using a mass spectrometry-based glycopeptide analysis workflow. These data were compared to the glycosylation profile of the same protein expressed in insect cells. We found that the producer cell type imparts a substantial influence on the glycosylation of this important protein. The more-relevant version, expressed in HEK cells, contains large, acidic glycoforms; these glycans are not generated in insect cells. The glycosylation differences likely have structural and functional consequences, and these data should be considered when generating protein for functional studies or for high-throughput screening campaigns.

  20. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  1. Processing of N-linked oligosaccharides from precursor- to mature-form herpes simplex virus type 1 glycoprotein gC.

    PubMed Central

    Serafini-Cessi, F; Dall'Olio, F; Pereira, L; Campadelli-Fiume, G

    1984-01-01

    Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983). Images PMID:6088806

  2. Processing of N-linked oligosaccharides from precursor- to mature-form herpes simplex virus type 1 glycoprotein gC.

    PubMed

    Serafini-Cessi, F; Dall'Olio, F; Pereira, L; Campadelli-Fiume, G

    1984-09-01

    Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983).

  3. The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line

    PubMed Central

    Carvalho, Fernanda Caroline; Soares, Sandro Gomes; Tamarozzi, Mirela Barros; Rego, Eduardo Magalhães; Roque-Barreira, Maria-Cristina

    2011-01-01

    ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment. PMID:22132163

  4. The glycan-mediated mechanism on the interactions of gp120 with CD4 and antibody: Insights from molecular dynamics simulation.

    PubMed

    Zhang, Yan; Niu, Yuzhen; Tian, Jiaqi; Liu, Xuewei; Yao, Xiaojun; Liu, Huanxiang

    2017-12-01

    N-linked glycans such as 234 and 276 gp 120 glycans are vital components of HIV evasion from humoral immunity and important for HIV-1 neutralization of many broadly neutralizing antibodies (bNAbs). However, it is unknown the action mechanism of two glycans. To investigate the roles of the glycans on the interactions of gp120 with CD4 and antibody, molecular dynamic simulations based on gp120-CD4-8ANC195 complex with 234 and 276 gp 120 glycans, 234 gp 120 glycan, 276 gp 120 glycan, and without glycan were performed. Our results reveal that 276 gp 120 glycan can enhance gp120-CD4 and gp120-antibody interactions through the formation of hydrogen bonds of the glycan with CD4 and antibody and make the binding interface of gp120, CD4 and antibody stable; 234 gp 120 glycan primarily reinforces gp120-antibody interactions and weakly affects gp120-CD4 interactions as it mainly lies between gp120 and antibody. The co-operating of two glycans can enhance gp120-CD4 and gp120-antibody associations. Through the structural analysis, it can be seen that 234 gp 120 glycan leads to moving upward of two glycans and the variable region of heavy chain, which is favorable for the interactions of gp120 with CD4 and antibody. The information obtained in this study can provide the guidance for design vaccines and small molecule inhibitors. © 2017 John Wiley & Sons A/S.

  5. N-Glycosylation analysis of yeast Carboxypeptidase Y reveals the ultimate removal of phosphate from glycans at Asn368.

    PubMed

    B S, Gnanesh Kumar; Surolia, Avadhesha

    2017-05-01

    Carboxypeptidase Y from Saccharomyces cerivisiae was characterized for its site specific N-glycosylation through mass spectrometry. The N-glycopeptides were derived using non specific proteases and are analysed directly on liquid chromatography coupled to ion trap mass spectrometer in tandem mode. The evaluation of glycan fragment ions and the Y 1 ions (peptide+HexNAc) +n revealed the glycan sequence and the corresponding site of attachment. We observed the microheterogeneity in N-glycans such as Man 11-15 GlcNAc 2 at Asn 13 , Man 8-12 GlcNAc 2 at Asn 87 , Man 9-14 GlcNAc 2 at Asn 168 and phosphorylated Man 12-17 GlcNAc 2 as well as Man 11-16 GlcNAc 2 at Asn 368 . The presence of N-glycans with Man <18 GlcNAc 2 indicated that in vacuoles the steady release of mannose/phospho mannose residues from glycans occurs initially at Asn 13 or Asn 168 followed by at Asn 368 . However, glycans at Asn 87 which comprises Man 8-12 residues as reported earlier remain intact suggesting its inaccessibility for a similar processing. This in turn indicates the interaction of the glycan at Asn 87 with the polypeptide chain implicating it in the folding of the protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses*

    PubMed Central

    Yu, Ying; Lasanajak, Yi; Song, Xuezheng; Hu, Liya; Ramani, Sasirekha; Mickum, Megan L.; Ashline, David J.; Prasad, B. V. Venkataram; Estes, Mary K.; Reinhold, Vernon N.; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MSn analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MSn are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures. PMID:25048705

  7. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    PubMed

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  8. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): A Novel Glycan Relative Quantification Strategy

    PubMed Central

    Walker, S. Hunter; Taylor, Amber D.; Muddiman, David C.

    2013-01-01

    The INLIGHT strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction due to isotopic overlap and a post-acquisition normalization of the data to account for both the systematic variability, a plot of the experimental H:L ratio vs. the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics. PMID:23860851

  9. Separation of 2-aminobenzoic acid-derivatized glycosaminoglycans and asparagine-linked glycans by capillary electrophoresis.

    PubMed

    Sato, Kae; Sato, Kiichi; Okubo, Akira; Yamazaki, Sunao

    2005-01-01

    A capillary electrophoresis method was developed for the analysis of oligosaccharides combined with derivatization with 2-aminobenzoic acid. Glycosaminoglycan delta-disaccharides were effectively resolved on a fused-silica capillary tube using 150 mM borate, pH 8.5, as a running electrolyte solution. This analytical method was applied to the identification of glycosaminoglycan in combination with enzymatic digestion. The separation of N-glycans or glucose-oligomers was performed with a phosphate buffer containing polyethylene glycol or borate as an electrolyte solution. This method is expected to be useful in the determination of oligosaccharide structures in a glycoprotein.

  10. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies

    NASA Astrophysics Data System (ADS)

    Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey

    2016-04-01

    A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.

  11. Natural antibodies to glycans.

    PubMed

    Bovin, N V

    2013-07-01

    A wide variety of so-called natural antibodies (nAbs), i.e. immunoglobulins generated by B-1 cells, are directed to glycans. nAbs to glycans can be divided in three groups: 1) conservative nAbs, i.e. practically the same in all healthy donors with respect to their epitope specificity and level in blood; 2) allo-antibodies to blood group antigens; 3) plastic antibodies related to the first or the second group but discussed separately because their level changes considerably during diseases and some temporary conditions, in particular inflammation and pregnancy. Antibodies from the third group proved to be prospective markers of a number of diseases, whereas their unusual level (below or above the norm) is not necessarily the consequence of disease/state. Modern microarrays allowed the determination of the human repertoire, which proved to be unexpectedly broad. It was observed that the content of some nAbs reaches about 0.1% of total immunoglobulins. Immunoglobulins of M class dominate for most nAbs, constituting up to 80-90%. Their affinity (to a monovalent glycan, in KD terms) were found to be within the range 10(-4)-10(-6) M. Antibodies to Galβ1-3GlcNAc (Le(C)), 4-HSO3Galβ1-4GalNAc (4'-O-SuLN), Fucα1-3GlcNAc, Fucα1-4GlcNAc, GalNAcα1-3Gal (Adi), Galα1-4Galβ1-4Glc (P(k)), Galα1-4Galβ1-4GlcNAc (P1), GlcNAcα-terminated glycans, and hyaluronic acid should be noted among the nAbs revealed and studied during the last decade. At the same time, a kind of "taboo" is observed for a number of glycans: antibodies to Le(X) and Le(Y), and almost all gangliosides have not been observed in healthy persons. Many of the revealed nAbs were directed to constrained inner (core) part of glycan, directly adjoined to lipid of cell membrane or protein. The biological function of these nAbs remains unclear; for anti-core antibodies, a role of surveillance on appearance of aberrant, especially cancer, antigens is supposed. The first data related to oncodiagnostics based on

  12. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  13. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE PAGES

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul; ...

    2015-11-01

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  14. Reduced Immunogenicity of Arabidopsis hgl1 Mutant N-Glycans Caused by Altered Accessibility of Xylose and core Fucose Epitopes*

    PubMed Central

    Kaulfürst-Soboll, Heidi; Rips, Stephan; Koiwa, Hisashi; Kajiura, Hiroyuki; Fujiyama, Kazuhito; von Schaewen, Antje

    2011-01-01

    Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins. PMID:21478158

  15. Solid-phase glycan isolation for glycomics analysis

    PubMed Central

    Yang, Shuang; Zhang, Hui

    2013-01-01

    Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis. PMID:23090885

  16. The HIV glycan shield as a target for broadly neutralizing antibodies.

    PubMed

    Doores, Katie J

    2015-12-01

    The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies. © The Author. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  17. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes.

    PubMed

    Meli, Vijaykumar S; Ghosh, Sumit; Prabha, T N; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2010-02-09

    In a globalized economy, the control of fruit ripening is of strategic importance because excessive softening limits shelf life. Efforts have been made to reduce fruit softening in transgenic tomato through the suppression of genes encoding cell wall-degrading proteins. However, these have met with very limited success. N-glycans are reported to play an important role during fruit ripening, although the role of any particular enzyme is yet unknown. We have identified and targeted two ripening-specific N-glycoprotein modifying enzymes, alpha-mannosidase (alpha-Man) and beta-D-N-acetylhexosaminidase (beta-Hex). We show that their suppression enhances fruit shelf life, owing to the reduced rate of softening. Analysis of transgenic tomatoes revealed approximately 2.5- and approximately 2-fold firmer fruits in the alpha-Man and beta-Hex RNAi lines, respectively, and approximately 30 days of enhanced shelf life. Overexpression of alpha-Man or beta-Hex resulted in excessive fruit softening. Expression of alpha-Man and beta-Hex is induced by the ripening hormone ethylene and is modulated by a regulator of ripening, rin (ripening inhibitor). Furthermore, transcriptomic comparative studies demonstrate the down-regulation of cell wall degradation- and ripening-related genes in RNAi fruits. It is evident from these results that N-glycan processing is involved in ripening-associated fruit softening. Genetic manipulation of N-glycan processing can be of strategic importance to enhance fruit shelf life, without any negative effect on phenotype, including yield.

  18. The logic of automated glycan assembly.

    PubMed

    Seeberger, Peter H

    2015-05-19

    Carbohydrates are the most abundant biopolymers on earth and part of every living creature. Glycans are essential as materials for nutrition and for information transfer in biological processes. To date, in few cases a detailed correlation between glycan structure and glycan function has been established. A molecular understanding of glycan function will require pure glycans for biological, immunological, and structural studies. Given the immense structural complexity of glycans found in living organisms and the lack of amplification methods or expression systems, chemical synthesis is the only means to access usable quantities of pure glycan molecules. While the solid-phase synthesis of DNA and peptides has become routine for decades, access to glycans has been technically difficult, time-consuming and confined to a few expert laboratories. In this Account, the development of a comprehensive approach to the automated synthesis of all classes of mammalian glycans, including glycosaminoglycans and glycosylphosphatidyl inositol (GPI) anchors, as well as bacterial and plant carbohydrates is described. A conceptual advance concerning the logic of glycan assembly was required in order to enable automated execution of the synthetic process. Based on the central glycosidic bond forming reaction, a general concept for the protecting groups and leaving groups has been developed. Building blocks that can be procured on large scale, are stable for prolonged periods of time, but upon activation result in high yields and selectivities were identified. A coupling-capping and deprotection cycle was invented that can be executed by an automated synthesis instrument. Straightforward postsynthetic protocols for cleavage from the solid support as well as purification of conjugation-ready oligosaccharides have been established. Introduction of methods to install selectively a wide variety of glycosidic linkages has enabled the rapid assembly of linear and branched oligo- and

  19. Identification and characterization of isomeric N-glycans of human alfa-acid-glycoprotein by stable isotope labelling and ZIC-HILIC-MS in combination with exoglycosidase digestion.

    PubMed

    Mancera-Arteu, Montserrat; Giménez, Estela; Barbosa, José; Sanz-Nebot, Victòria

    2016-10-12

    In this study, a ZIC-HILIC-MS methodology for the analysis of N-glycan isomers was optimized to obtain greater detection sensitivity and thus identify more glycan structures in hAGP. In a second step, this method was combined with glycan reductive isotope labelling (GRIL) through [(12)C6]/[(13)C6]-aniline and exoglycosidase digestion to characterize the different glycan isomers. The GRIL method allows the peak areas resulting from two different labelled samples to be compared, since neither retention time shifts nor variations in the ionization of glycans between these samples are obtained. First, sialic acid linkage assignations were performed for most hAGP glycan isomers with α2-3 sialidase digestion. Bi-, tri- and tetraantennary glycan isomers with different terminal sialic acid linkages to galactose (α2-3 or α2-6) were assigned, and the potential of this technique for the structural characterization of isobaric isomers was therefore demonstrated. Furthermore, fucose linkage isomers of hAGP glycans were also characterized using this isotope-labelling approach in combination with α1-3,4 fucosidase and β1-4 galactosidase digestion. α1-3 antennary fucoses and α1-6 core fucosylation were detected in hAGP fucosylated glycans. These established methodologies can be extremely useful for patho-glycomic studies to characterize glycoproteins of biomedical interest and find novel glycan isomers that could be used as biomarkers in cancer research. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Quantitative analysis of glycoprotein glycans.

    PubMed

    Orlando, Ron

    2013-01-01

    The ability to quantitatively determine changes in the N- and O-linked glycans is an essential component of comparative glycomics. Multiple strategies are available to by which this can be accomplished, including; both label free approaches and isotopic labeling strategies. The focus of this chapter is to describe each of these approaches while providing insight into their strengths and weaknesses, so that glycomic investigators can make an educated choice of the strategy that is best suited for their particular application.

  1. Glycan analysis of glycoprotein pharmaceuticals: Evaluation of analytical approaches to Z number determination in pharmaceutical erythropoietin products.

    PubMed

    Yuen, Chun-Ting; Zhou, Yong; Wang, Qing-Zhou; Hou, Ji-Feng; Bristow, Adrian; Wang, Jun-Zhi

    2011-11-01

    N-Glycosylation of many glycoprotein drugs is important for biological activity and should therefore be the target of specific and quantitative analytical methods. In this study, we focus on the two N-glycan mapping approaches that are used in pharmacopoeial monograph to analyse N-glycans released from fifteen preparations of recombinant human erythropoietin supplied by ten Chinese manufacturers. Underivatised N-glycans were analysed by high performance anion-exchange chromatography with pulsed amperometric detection and fluorophore-labelled N-glycans were analysed by weak anion-exchange and normal-phase high performance liquid chromatography. N-glycans were also analysed by matrix assisted laser desorption ionisation mass spectrometry. The release of N-glycans by PNGase F was shown to be consistent. Z number, a mathematical expression of the total negatively charged N-glycans composition has provided a convenient way to summarise the complex dataset and it might be suitable for product consistency monitoring. However, this Z number reduces the information of individual acidic N-glycan structure and is also found to be method dependent. Therefore, its use requires clear specification and validation. In this study, we only found weak but positive correlation between the Z number and its bioactivity. Wide range of N-glycans yields were obtained from the fifteen preparations but the significance of their differences is unclear. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  2. Human Milk Secretory Immunoglobulin A and Lactoferrin N-Glycans Are Altered in Women with Gestational Diabetes Mellitus123

    PubMed Central

    Smilowitz, Jennifer T.; Totten, Sarah M.; Huang, Jincui; Grapov, Dmitry; Durham, Holiday A.; Lammi-Keefe, Carol J.; Lebrilla, Carlito; German, J. Bruce

    2013-01-01

    Very little is known about the effects of gestational diabetes mellitus (GDM) on lactation and milk components. Recent reports suggested that hyperglycemia during pregnancy was associated with altered breast milk immune factors. Human milk oligosaccharides (HMOs) and N-glycans of milk immune-modulatory proteins are implicated in modulation of infant immunity. The objective of the current study was to evaluate the effect of GDM on HMO and protein-conjugated glycan profiles in breast milk. Milk was collected at 2 wk postpartum from women diagnosed with (n = 8) or without (n = 16) GDM at week 24–28 in pregnancy. Milk was analyzed for HMO abundances, protein concentrations, and N-glycan abundances of lactoferrin and secretory immunoglobulin A (sIgA). HMOs and N-glycans were analyzed by mass spectrometry and milk lactoferrin and sIgA concentrations were analyzed by the Bradford assay. The data were analyzed using multivariate modeling confirmed with univariate statistics to determine differences between milk of women with compared with women without GDM. There were no differences in HMOs between milk from women with vs. without GDM. Milk from women with GDM compared with those without GDM was 63.6% lower in sIgA protein (P < 0.05), 45% higher in lactoferrin total N-glycans (P < 0.0001), 36–72% higher in lactoferrin fucose and sialic acid N-glycans (P < 0.01), and 32–43% lower in sIgA total, mannose, fucose, and sialic acid N-glycans (P < 0.05). GDM did not alter breast milk free oligosaccharide abundances but decreased total protein and glycosylation of sIgA and increased glycosylation of lactoferrin in transitional milk. The results suggest that maternal glucose dysregulation during pregnancy has lasting consequences that may influence the innate immune protective functions of breast milk. PMID:24047700

  3. CD22 Ligands on a Natural N-Glycan Scaffold Efficiently Deliver Toxins to B-Lymphoma Cells.

    PubMed

    Peng, Wenjie; Paulson, James C

    2017-09-13

    CD22 is a sialic acid-binding immunoglobulin-like lectin (Siglec) that is highly expressed on B-cells and B cell lymphomas, and is a validated target for antibody and nanoparticle based therapeutics. However, cell targeted therapeutics are limited by their complexity, heterogeneity, and difficulties in production. We describe here a chemically defined natural N-linked glycan scaffold that displays high affinity CD22 glycan ligands and outcompetes the natural ligand for the receptor, resulting in single molecule binding to CD22 and endocytosis into cells. Binding affinity is increased by up to 1500-fold compared to the monovalent ligand, while maintaining the selectivity for hCD22 over other Siglecs. Conjugates of these multivalent ligands with auristatin and saporin toxins are efficiently internalized via hCD22 resulting in killing of B-cell lymphoma cells. This single molecule ligand targeting strategy represents an alternative to antibody- and nanoparticle-mediated approaches for delivery of agents to cells expressing CD22 and other Siglecs.

  4. Solid-phase glycan isolation for glycomics analysis.

    PubMed

    Yang, Shuang; Zhang, Hui

    2012-12-01

    Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Extensive Determination of Glycan Heterogeneity Reveals an Unusual Abundance of High Mannose Glycans in Enriched Plasma Membranes of Human Embryonic Stem Cells*

    PubMed Central

    An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T.; Schaffer, David V.; Bertozzi, Carolyn R.; Lebrilla, Carlito B.

    2012-01-01

    Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine

  6. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    PubMed Central

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  7. Development of a Schistosoma mansoni shotgun O-glycan microarray and application to the discovery of new antigenic schistosome glycan motifs.

    PubMed

    van Diepen, Angela; van der Plas, Arend-Jan; Kozak, Radoslaw P; Royle, Louise; Dunne, David W; Hokke, Cornelis H

    2015-06-01

    Upon infection with Schistosoma, antibody responses are mounted that are largely directed against glycans. Over the last few years significant progress has been made in characterising the antigenic properties of N-glycans of Schistosoma mansoni. Despite also being abundantly expressed by schistosomes, much less is understood about O-glycans and antibody responses to these have not yet been systematically analysed. Antibody binding to schistosome glycans can be analysed efficiently and quantitatively using glycan microarrays, but O-glycan array construction and exploration is lagging behind because no universal O-glycanase is available, and release of O-glycans has been dependent on chemical methods. Recently, a modified hydrazinolysis method has been developed that allows the release of O-glycans with free reducing termini and limited degradation, and we applied this method to obtain O-glycans from different S. mansoni life stages. Two-dimensional HPLC separation of 2-aminobenzoic acid-labelled O-glycans generated 362 O-glycan-containing fractions that were printed on an epoxide-modified glass slide, thereby generating the first shotgun O-glycan microarray containing naturally occurring schistosome O-glycans. Monoclonal antibodies and mass spectrometry showed that the O-glycan microarray contains well-known antigenic glycan motifs as well as numerous other, potentially novel, antibody targets. Incubations of the microarrays with sera from Schistosoma-infected humans showed substantial antibody responses to O-glycans in addition to those observed to the previously investigated N- and glycosphingolipid glycans. This underlines the importance of the inclusion of these often schistosome-specific O-glycans in glycan antigen studies and indicates that O-glycans contain novel antigenic motifs that have potential for use in diagnostic methods and studies aiming at the discovery of vaccine targets. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights

  8. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides

    PubMed Central

    Yahashiri, Atsushi; Jorgenson, Matthew A.; Weiss, David S.

    2015-01-01

    Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to “denuded” glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from the Escherichia coli cell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained from E. coli and Bacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of both E. coli and B. subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division. PMID:26305949

  9. Mass spectrometric analysis of O-linked oligosaccharides from various recombinant expression systems.

    PubMed

    Kenny, Diarmuid T; Gaunitz, Stefan; Hayes, Catherine A; Gustafsson, Anki; Sjöblom, Magnus; Holgersson, Jan; Karlsson, Niclas G

    2013-01-01

    Analysis of O-linked glycosylation is one of the main challenges during structural validation of recombinant glycoproteins. With methods available for N-linked glycosylation in regard to oligosaccharide analysis as well as glycopeptide mapping, there are still challenges for O-linked glycan analysis. Here, we present mass spectrometric methodology for O-linked oligosaccharides released by reductive β-elimination. Using LC-MS and LC-MS(2) with graphitized carbon columns, oligosaccharides are analyzed without derivatization. This approach provides a high-throughput method for screening during clonal selection, as well as product structure verification, without impairing sequencing ability. The protocols are exemplified by analysis of glycoproteins from mammalian cell cultures (CHO cells) as well as insect cells and yeast. The data shows that the method can be successfully applied to both neutral and acidic O-linked oligosaccharides, where sialic acid, hexuronic acid, and sulfate are common substituents. Further characterization of O-glycans can be achieved using permethylation. Permethylation of O-linked oligosaccharides followed by direct infusion into the mass spectrometer provide information about oligosaccharide composition, and subsequent MS (n) experiments can be carried out to elucidate oligosaccharide structure including linkage information and sequence.

  10. Chemoenzymatic assembly of mammalian O-mannose glycans.

    PubMed

    Cao, Hongzhi; Meng, Caicai; Sasmal, Aniruddha; Zhang, Yan; Gao, Tian; Liu, Chang-Cheng; Khan, Naazneen; Varki, Ajit; Wang, Fengshan

    2018-05-26

    O-Mannose glycans account up to 30% of total O-glycans in brain. Previous synthesis and functional studies only focused on the Core M3 O-mannose glycans of α-dystroglycan which are a causative factor for various muscular diseases. In this study, a highly efficient chemoenzymatic strategy was developed that enabled the first collective synthesis of 63 Core M1 and Core M2 O-mannose glycans. This chemoenzymatic strategy features the gram-scale chemical synthesis of 5 judiciously designed core structures, and the diversity-oriented modification of the core structures with 3 enzyme modules to provide 58 complex O-mannose glycans in a linear sequence that does not exceed 4 steps. The binding profiles of synthetic O-mannose glycans with a panel of lectins, antibodies and brain proteins were also explored using the printed O-mannose glycan array. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Imaging specific cellular glycan structures using glycosyltransferases via click chemistry.

    PubMed

    Wu, Zhengliang L; Person, Anthony D; Anderson, Matthew; Burroughs, Barbara; Tatge, Timothy; Khatri, Kshitij; Zou, Yonglong; Wang, Lianchun; Geders, Todd; Zaia, Joseph; Sackstein, Robert

    2018-02-01

    Heparan sulfate (HS) is a polysaccharide fundamentally important for biologically activities. T/Tn antigens are universal carbohydrate cancer markers. Here, we report the specific imaging of these carbohydrates using a mesenchymal stem cell line and human umbilical vein endothelial cells (HUVEC). The staining specificities were demonstrated by comparing imaging of different glycans and validated by either removal of target glycans, which results in loss of signal, or installation of target glycans, which results in gain of signal. As controls, representative key glycans including O-GlcNAc, lactosaminyl glycans and hyaluronan were also imaged. HS staining revealed novel architectural features of the extracellular matrix (ECM) of HUVEC cells. Results from T/Tn antigen staining suggest that O-GalNAcylation is a rate-limiting step for O-glycan synthesis. Overall, these highly specific approaches for HS and T/Tn antigen imaging should greatly facilitate the detection and functional characterization of these biologically important glycans. © The Author(s) 2017. Published by Oxford University Press.

  12. Sensitive and Structure-Informative N-Glycosylation Analysis by MALDI-MS; Ionization, Fragmentation, and Derivatization

    PubMed Central

    Nishikaze, Takashi

    2017-01-01

    Mass spectrometry (MS) has become an indispensable tool for analyzing post translational modifications of proteins, including N-glycosylated molecules. Because most glycosylation sites carry a multitude of glycans, referred to as “glycoforms,” the purpose of an N-glycosylation analysis is glycoform profiling and glycosylation site mapping. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has unique characteristics that are suited for the sensitive analysis of N-glycosylated products. However, the analysis is often hampered by the inherent physico-chemical properties of N-glycans. Glycans are highly hydrophilic in nature, and therefore tend to show low ion yields in both positive- and negative-ion modes. The labile nature and complicated branched structures involving various linkage isomers make structural characterization difficult. This review focuses on MALDI-MS-based approaches for enhancing analytical performance in N-glycosylation research. In particular, the following three topics are emphasized: (1) Labeling for enhancing the ion yields of glycans and glycopeptides, (2) Negative-ion fragmentation for less ambiguous elucidation of the branched structure of N-glycans, (3) Derivatization for the stabilization and linkage isomer discrimination of sialic acid residues. PMID:28794918

  13. Biological roles of glycans

    PubMed Central

    Varki, Ajit

    2017-01-01

    Abstract Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences. PMID:27558841

  14. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment ofmore » the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.« less

  15. MCAW-DB: A glycan profile database capturing the ambiguity of glycan recognition patterns.

    PubMed

    Hosoda, Masae; Takahashi, Yushi; Shiota, Masaaki; Shinmachi, Daisuke; Inomoto, Renji; Higashimoto, Shinichi; Aoki-Kinoshita, Kiyoko F

    2018-05-11

    Glycan-binding protein (GBP) interaction experiments, such as glycan microarrays, are often used to understand glycan recognition patterns. However, oftentimes the interpretation of glycan array experimental data makes it difficult to identify discrete GBP binding patterns due to their ambiguity. It is known that lectins, for example, are non-specific in their binding affinities; the same lectin can bind to different monosaccharides or even different glycan structures. In bioinformatics, several tools to mine the data generated from these sorts of experiments have been developed. These tools take a library of predefined motifs, which are commonly-found glycan patterns such as sialyl-Lewis X, and attempt to identify the motif(s) that are specific to the GBP being analyzed. In our previous work, as opposed to using predefined motifs, we developed the Multiple Carbohydrate Alignment with Weights (MCAW) tool to visualize the state of the glycans being recognized by the GBP under analysis. We previously reported on the effectiveness of our tool and algorithm by analyzing several glycan array datasets from the Consortium of Functional Glycomics (CFG). In this work, we report on our analysis of 1081 data sets which we collected from the CFG, the results of which we have made publicly and freely available as a database called MCAW-DB. We introduce this database, its usage and describe several analysis results. We show how MCAW-DB can be used to analyze glycan-binding patterns of GBPs amidst their ambiguity. For example, the visualization of glycan-binding patterns in MCAW-DB show how they correlate with the concentrations of the samples used in the array experiments. Using MCAW-DB, the patterns of glycans found to bind to various GBP-glycan binding proteins are visualized, indicating the binding "environment" of the glycans. Thus, the ambiguity of glycan recognition is numerically represented, along with the patterns of monosaccharides surrounding the binding region. The

  16. Multi-Site N-glycan mapping study 1: Capillary electrophoresis – laser induced fluorescence

    PubMed Central

    Szekrényes, Ákos; Park, SungAe Suhr; Santos, Marcia; Lew, Clarence; Jones, Aled; Haxo, Ted; Kimzey, Michael; Pourkaveh, Shiva; Szabó, Zoltán; Sosic, Zoran; Feng, Peng; Váradi, Csaba; de l'Escaille, François; Falmagne, Jean-Bernard; Sejwal, Preeti; Niedringhaus, Thomas; Michels, David; Freckleton, Gordon; Hamm, Melissa; Manuilov, Anastasiya; Schwartz, Melissa; Luo, Jiann-Kae; van Dyck, Jonathan; Leung, Pui-King; Olajos, Marcell; Gu, Yingmei; Gao, Kai; Wang, Wenbo; Wegstein, Jo; Tep, Samnang; Guttman, András

    2016-01-01

    An international team that included 20 independent laboratories from biopharmaceutical companies, universities, analytical contract laboratories and national authorities in the United States, Europe and Asia was formed to evaluate the reproducibility of sample preparation and analysis of N-glycans using capillary electrophoresis of 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled glycans with laser induced fluorescence (CE-LIF) detection (16 sites) and ultra high-performance liquid chromatography (UHPLC, 12 sites; results to be reported in a subsequent publication). All participants used the same lot of chemicals, samples, reagents, and columns/capillaries to run their assays. Migration time, peak area and peak area percent values were determined for all peaks with >0.1% peak area. Our results demonstrated low variability and high reproducibility, both, within any given site as well across all sites, which indicates that a standard N-glycan analysis platform appropriate for general use (clone selection, process development, lot release, etc.) within the industry can be established. PMID:26466659

  17. Direct Enzymatic Branch-End Extension of Glycocluster-Presented Glycans: An Effective Strategy for Programming Glycan Bioactivity.

    PubMed

    Bayón, Carlos; He, Ning; Deir-Kaspar, Mario; Blasco, Pilar; André, Sabine; Gabius, Hans-Joachim; Rumbero, Ángel; Jiménez-Barbero, Jesús; Fessner, Wolf-Dieter; Hernáiz, María J

    2017-01-31

    The sequence of a glycan and its topology of presentation team up to determine the specificity and selectivity of recognition by saccharide receptors (lectins). Structure-activity analysis would be furthered if the glycan part of a glycocluster could be efficiently elaborated in situ while keeping all other parameters constant. By using a bacterial α2,6-sialyltransferase and a small library of bi- to tetravalent glycoclusters, we illustrate the complete conversion of scaffold-presented lactoside units into two different sialylated ligands based on N-acetyl/glycolyl-neuraminic acid incorporation. We assess the ensuing effect on their bioactivity for a plant toxin, and present an analysis of the noncovalent substrate binding contacts that the added sialic acid moiety makes to the lectin. Enzymatic diversification of a scaffold-presented glycan can thus be brought to completion in situ, offering a versatile perspective for rational glycocluster engineering. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhanced Conformational Sampling of N-Glycans in Solution with Replica State Exchange Metadynamics.

    PubMed

    Galvelis, Raimondas; Re, Suyong; Sugita, Yuji

    2017-05-09

    Molecular dynamics (MD) simulation of a N-glycan in solution is challenging because of high-energy barriers of the glycosidic linkages, functional group rotational barriers, and numerous intra- and intermolecular hydrogen bonds. In this study, we apply different enhanced conformational sampling approaches, namely, metadynamics (MTD), the replica-exchange MD (REMD), and the recently proposed replica state exchange MTD (RSE-MTD), to a N-glycan in solution and compare the conformational sampling efficiencies of the approaches. MTD helps to cross the high-energy barrier along the ω angle by utilizing a bias potential, but it cannot enhance sampling of the other degrees of freedom. REMD ensures moderate-energy barrier crossings by exchanging temperatures between replicas, while it hardly crosses the barriers along ω. In contrast, RSE-MTD succeeds to cross the high-energy barrier along ω as well as to enhance sampling of the other degrees of freedom. We tested two RSE-MTD schemes: in one scheme, 64 replicas were simulated with the bias potential along ω at different temperatures, while simulations of four replicas were performed with the bias potentials for different CVs at 300 K. In both schemes, one unbiased replica at 300 K was included to compute conformational properties of the glycan. The conformational sampling of the former is better than the other enhanced sampling methods, while the latter shows reasonable performance without spending large computational resources. The latter scheme is likely to be useful when a N-glycan-attached protein is simulated.

  19. Revisiting the substrate specificity of mammalian α1,6-fucosyltransferase reveals that it catalyzes core fucosylation of N-glycans lacking α1,3-arm GlcNAc.

    PubMed

    Yang, Qiang; Zhang, Roushu; Cai, Hui; Wang, Lai-Xi

    2017-09-08

    The mammalian α1,6-fucosyltransferase (FUT8) catalyzes the core fucosylation of N -glycans in the biosynthesis of glycoproteins. Previously, intensive in vitro studies with crude extract or purified enzyme concluded that the attachment of a GlcNAc on the α1,3 mannose arm of N -glycan is essential for FUT8-catalyzed core fucosylation. In contrast, we have recently shown that expression of erythropoietin in a GnTI knock-out, FUT8-overexpressing cell line results in the production of fully core-fucosylated glycoforms of the oligomannose substrate Man 5 GlcNAc 2 , suggesting that FUT8 can catalyze core fucosylation of N -glycans lacking an α1,3-arm GlcNAc in cells. Here, we revisited the substrate specificity of FUT8 by examining its in vitro activity toward an array of selected N -glycans, glycopeptides, and glycoproteins. Consistent with previous studies, we found that free N -glycans lacking an unmasked α1,3-arm GlcNAc moiety are not FUT8 substrates. However, Man 5 GlcNAc 2 glycan could be efficiently core-fucosylated by FUT8 in an appropriate protein/peptide context, such as with the erythropoietin protein, a V3 polypeptide derived from HIV-1 gp120, or a simple 9-fluorenylmethyl chloroformate-protected Asn moiety. Interestingly, when placed in the V3 polypeptide context, a mature bi-antennary complex-type N -glycan also could be core-fucosylated by FUT8, albeit at much lower efficiency than the Man 5 GlcNAc 2 peptide. This study represents the first report of in vitro FUT8-catalyzed core fucosylation of N -glycans lacking the α1,3-arm GlcNAc moiety. Our results suggest that an appropriate polypeptide context or other adequate structural elements in the acceptor substrate could facilitate the core fucosylation by FUT8. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. N-linked glycosylation of cortical N-methyl-D-aspartate and kainate receptor subunits in schizophrenia.

    PubMed

    Tucholski, Janusz; Simmons, Micah S; Pinner, Anita L; McMillan, Laurence D; Haroutunian, Vahram; Meador-Woodruff, James H

    2013-08-21

    Dysfunctional glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. Abnormal expressions in schizophrenia of ionotropic glutamate receptors (iGluRs) and the proteins that regulate their trafficking have been found to be region and subunit specific in brain, suggesting that abnormal trafficking of iGluRs may contribute toward altered glutamatergic neurotransmission. The post-translational modification N-glycosylation of iGluR subunits can be used as a proxy for their intracellular localization. Receptor complexes assemble in the lumen of the endoplasmic reticulum, where N-glycosylation begins with the addition of N-linked oligomannose glycans, and is subsequently trimmed and replaced by more elaborate glycans while trafficking through the Golgi apparatus. Previously, we found abnormalities in N-glycosylation of the GluR2 AMPA receptor subunit in schizophrenia. Here, we investigated N-glycosylation of N-methyl-D-aspartate and kainate (KA) receptor subunits in the dorsolateral prefrontal cortex from patients with schizophrenia and a comparison group. We used enzymatic deglycosylation with two glycosidases: endoglycosidase H (Endo H), which removes immature high mannose-containing sugars, and peptide-N-glycosidase F (PNGase F), which removes all N-linked sugars. The NR1, NR2A, NR2B, GluR6, and KA2 subunits were all sensitive to treatment with Endo H and PNGase F. The GluR6 KA receptor subunit was significantly more sensitive to Endo H-mediated deglycosylation in schizophrenia, suggesting a larger molecular mass of N-linked high mannose and/or hybrid sugars on GluR6. This finding, taken with our previous work, suggests that a cellular mechanism underlying abnormal glutamate neurotransmission in schizophrenia may involve abnormal trafficking of both AMPA and KA receptors.

  1. Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans

    PubMed Central

    Garcia-Campos, Andres; Cwiklinski, Krystyna; Dalton, John P.; Hokke, Cornelis H.; O’Neill, Sandra; Mulcahy, Grace

    2016-01-01

    Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F

  2. Functional Regulation of Sugar Assimilation by N-Glycan-specific Interaction of Pancreatic α-Amylase with Glycoproteins of Duodenal Brush Border Membrane*

    PubMed Central

    Asanuma-Date, Kimie; Hirano, Yuki; Le, Na; Sano, Kotone; Kawasaki, Nana; Hashii, Noritaka; Hiruta, Yoko; Nakayama, Ken-ichi; Umemura, Mariko; Ishikawa, Kazuhiko; Sakagami, Hiromi; Ogawa, Haruko

    2012-01-01

    Porcine pancreatic α-amylase (PPA) binds to N-linked glycans of glycoproteins (Matsushita, H., Takenaka, M., and Ogawa, H. (2002) J. Biol Chem., 277, 4680–4686). Immunostaining revealed that PPA is located at the brush-border membrane (BBM) of enterocytes in the duodenum and that the binding is inhibited by mannan but not galactan, indicating that PPA binds carbohydrate-specifically to BBM. The ligands for PPA in BBM were identified as glycoprotein N-glycans that are significantly involved in the assimilation of glucose, including sucrase-isomaltase (SI) and Na+/Glc cotransporter 1 (SGLT1). Binding of SI and SGLT1 in BBM to PPA was dose-dependent and inhibited by mannan. Using BBM vesicles, we found functional changes in PPA and its ligands in BBM due to the N-glycan-specific interaction. The starch-degrading activity of PPA and maltose-degrading activity of SI were enhanced to 240 and 175%, respectively, while Glc uptake by SGLT1 was markedly inhibited by PPA at high but physiologically possible concentrations, and the binding was attenuated by the addition of mannose-specific lectins, especially from Galanthus nivalis. Additionally, recombinant human pancreatic α-amylases expressed in yeast and purified by single-step affinity chromatography exhibited the same carbohydrate binding specificity as PPA in binding assays with sugar-biotinyl polymer probes. The results indicate that mammalian pancreatic α-amylases share a common carbohydrate binding activity and specifically bind to the intestinal BBM. Interaction with N-glycans in the BBM activated PPA and SI to produce much Glc on the one hand and to inhibit Glc absorption by enterocytes via SGLT1 in order to prevent a rapid increase in blood sugar on the other. PMID:22584580

  3. Substrate specificities and intracellular distributions of three N-glycan processing enzymes functioning at a key branch point in the insect N-glycosylation pathway.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2012-03-02

    Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the

  4. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica).

    PubMed

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young; Kim, Yeong Shik; Linhardt, Robert J

    2008-12-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide -->4)-alpha-D-GlcNpAc (1-->4)-alpha-L-IdoAp2S(1-->, analyzed by SAX (strong-anion exchange)-HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex(2-4)-HexNAc(2)), high mannose (Hex(5-9)-HexNAc(2)), and complex (Hex(3)-HexNAc(2-10)) types. None showed core fucosylation.

  5. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family.

    PubMed

    Stone, Jacquelyn A; Nicola, Anthony V; Baum, Linda G; Aguilar, Hector C

    2016-02-01

    O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.

  6. Releasing N-glycan from peptide N-terminus by N-terminal succinylation assisted enzymatic deglycosylation.

    PubMed

    Weng, Yejing; Sui, Zhigang; Jiang, Hao; Shan, Yichu; Chen, Lingfan; Zhang, Shen; Zhang, Lihua; Zhang, Yukui

    2015-04-22

    Due to the important roles of N-glycoproteins in various biological processes, the global N-glycoproteome analysis has been paid much attention. However, by current strategies for N-glycoproteome profiling, peptides with glycosylated Asn at N-terminus (PGANs), generated by protease digestion, could hardly be identified, due to the poor deglycosylation capacity by enzymes. However, theoretically, PGANs occupy 10% of N-glycopeptides in the typical tryptic digests. Therefore, in this study, we developed a novel strategy to identify PGANs by releasing N-glycans through the N-terminal site-selective succinylation assisted enzymatic deglycosylation. The obtained PGANs information is beneficial to not only achieve the deep coverage analysis of glycoproteomes, but also discover the new biological functions of such modification.

  7. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A

    PubMed Central

    Yao, Guorui; Zhang, Sicai; Mahrhold, Stefan; Lam, Kwok-ho; Stern, Daniel; Bagramyan, Karine; Perry, Kay; Kalkum, Markus; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2016-01-01

    Botulinum neurotoxin serotype A1 (BoNT/A1) is one of the most dangerous potential bioterrorism agents, and exerts its action by invading motoneurons. It is also a licensed drug widely used for medical and cosmetic applications. Here we report a 2.0 Å resolution crystal structure of BoNT/A1 receptor-binding domain in complex with its neuronal receptor, the glycosylated human SV2C. We find that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan—conserved in all SV2 isoforms across vertebrates—is essential for BoNT/A1 binding to neurons and its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an anti-botulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications to achieve highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors. PMID:27294781

  8. Quantitative isomer-specific N-glycan fingerprinting using isotope coded labeling and high performance liquid chromatography-electrospray ionization-mass spectrometry with graphitic carbon stationary phase.

    PubMed

    Michael, Claudia; Rizzi, Andreas M

    2015-02-27

    Glycan reductive isotope labeling (GRIL) using (12)C6-/(13)C6-aniline as labeling reagent is reported with the aim of quantitative N-glycan fingerprinting. Porous graphitized carbon (PGC) as stationary phase in capillary scale HPLC coupled to electrospray mass spectrometry with time of flight analyzer was applied for the determination of labeled N-glycans released from glycoproteins. The main benefit of using stable isotope-coding in the context of comparative glycomics lies in the improved accuracy and precision of the quantitative analysis in combined samples and in the potential of correcting for structure-dependent incomplete enzymatic release of oligosaccharides when comparing identical target proteins. The method was validated with respect to mobile phase parameters, reproducibility, accuracy, linearity and limit of detection/quantification (LOD/LOQ) using test glycoproteins. It is shown that the developed method is capable of determining relative amounts of N-glycans (including isomers) comparing two samples in one single HPLC-MS run. The analytical potential and usefulness of GRIL in combination with PGC-ESI-TOF-MS is demonstrated comparing glycosylation in human monoclonal antibodies produced in Chinese hamster ovary cells (CHO) and hybridoma cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients

    PubMed Central

    Pochechueva, Tatiana; Chinarev, Alexander; Schoetzau, Andreas; Fedier, André; Bovin, Nicolai V.; Hacker, Neville F.; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-01-01

    Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2–6 vs. α2–3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers. PMID:27764122

  10. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients.

    PubMed

    Pochechueva, Tatiana; Chinarev, Alexander; Schoetzau, Andreas; Fedier, André; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-01-01

    Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2-6 vs. α2-3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers.

  11. Diversity in the protein N-glycosylation pathways within the Campylobacter genus.

    PubMed

    Nothaft, Harald; Scott, Nichollas E; Vinogradov, Evgeny; Liu, Xin; Hu, Rui; Beadle, Bernadette; Fodor, Christopher; Miller, William G; Li, Jianjun; Cordwell, Stuart J; Szymanski, Christine M

    2012-11-01

    The foodborne bacterial pathogen, Campylobacter jejuni, possesses an N-linked protein glycosylation (pgl) pathway involved in adding conserved heptasaccharides to asparagine-containing motifs of >60 proteins, and releasing the same glycan into its periplasm as free oligosaccharides. In this study, comparative genomics of all 30 fully sequenced Campylobacter taxa revealed conserved pgl gene clusters in all but one species. Structural, phylogenetic and immunological studies showed that the N-glycosylation systems can be divided into two major groups. Group I includes all thermotolerant taxa, capable of growth at the higher body temperatures of birds, and produce the C. jejuni-like glycans. Within group I, the niche-adapted C. lari subgroup contain the smallest genomes among the epsilonproteobacteria, and are unable to glucosylate their pgl pathway glycans potentially reminiscent of the glucosyltransferase regression observed in the O-glycosylation system of Neisseria species. The nonthermotolerant Campylobacters, which inhabit a variety of hosts and niches, comprise group II and produce an unexpected diversity of N-glycan structures varying in length and composition. This includes the human gut commensal, C. hominis, which produces at least four different N-glycan structures, akin to the surface carbohydrate diversity observed in the well-studied commensal, Bacteroides. Both group I and II glycans are immunogenic and cell surface exposed, making these structures attractive targets for vaccine design and diagnostics.

  12. Mucin-type O-glycans in Tears of Normal Subjects and Patients with Non-Sjögren’s Dry Eye

    PubMed Central

    Guzman-Aranguez, Ana; Mantelli, Flavio; Argüeso, Pablo

    2009-01-01

    Purpose O-linked carbohydrates (O-glycans) contribute to the hydrophilic character of mucins in mucosal tissues. This study aimed to identify the repertoire of O-glycans in the tear film, and the glycosyltransferases associated with their biosynthesis, in normal subjects and patients with non-Sjögren’s dry eye. Methods Human tear fluid was collected from the inferior conjunctival fornix. O-glycans were released by hydrazinolysis, labeled with 2-aminobenzamide, and analyzed by fluorometric, high-performance liquid chromatography (HPLC) coupled with exoglycosidase digestions. O-glycan structures identified in tears were related to potential biosynthetic pathways in human conjunctival epithelium using a glycogene microarray database. Lectin-binding analyses were performed using agglutinins from Arachis hypogaea, Maackia amurensis, and Sambucus nigra. Results The O-glycan profile of human tears consisted primarily of core 1 (Galβ1-3GalNAcα1-Ser/Thr)-based structures. Mono-sialyl O-glycans represented approximately 66% of the glycan pool, being α2-6-sialyl core 1 the predominant O-glycan structure in human tears (48%). Four families of glycosyltranferases potentially related to the biosynthesis of these structures were identified in human conjunctiva. These included thirteen polypeptide-GalNAc-transferases (GALNT), the core 1 β-3-galactosyltransferase (T-synthase), three α2-6-sialyltransferases (ST6GalNAc), and two α2-3-sialyltransferases (ST3Gal). No significant differences in total amount of O-glycans were detected between tears of normal subjects and dry eye patients, by HPLC and lectin blot. Likewise, no differences in glycosyltransferase expression were found by glycogene microarray. Conclusions This study identifies the most common mucin-type O-glycans in human tears and their expected biosynthetic pathways in ocular surface epithelia. Patients with non-Sjögren’s dry eye show no alterations in composition and amount of O-glycans in the tear fluid. PMID

  13. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    PubMed Central

    Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm

    2008-01-01

    Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500

  14. Glycan array data management at Consortium for Functional Glycomics.

    PubMed

    Venkataraman, Maha; Sasisekharan, Ram; Raman, Rahul

    2015-01-01

    Glycomics or the study of structure-function relationships of complex glycans has reshaped post-genomics biology. Glycans mediate fundamental biological functions via their specific interactions with a variety of proteins. Recognizing the importance of glycomics, large-scale research initiatives such as the Consortium for Functional Glycomics (CFG) were established to address these challenges. Over the past decade, the Consortium for Functional Glycomics (CFG) has generated novel reagents and technologies for glycomics analyses, which in turn have led to generation of diverse datasets. These datasets have contributed to understanding glycan diversity and structure-function relationships at molecular (glycan-protein interactions), cellular (gene expression and glycan analysis), and whole organism (mouse phenotyping) levels. Among these analyses and datasets, screening of glycan-protein interactions on glycan array platforms has gained much prominence and has contributed to cross-disciplinary realization of the importance of glycomics in areas such as immunology, infectious diseases, cancer biomarkers, etc. This manuscript outlines methodologies for capturing data from glycan array experiments and online tools to access and visualize glycan array data implemented at the CFG.

  15. Orthogonal Assessment of Biotherapeutic Glycosylation: A Case Study Correlating N-Glycan Core Afucosylation of Herceptin with Mechanism of Action.

    PubMed

    Upton, Rosie; Bell, Leonard; Guy, Colin; Caldwell, Paul; Estdale, Sian; Barran, Perdita E; Firth, David

    2016-10-18

    In the development of therapeutic antibodies and biosimilars, an appropriate biopharmaceutical CMC control strategy that connects critical quality attributes with mechanism of action should enable product assessment at an early stage of development in order to mitigate risk. Here we demonstrate a new analytical workflow using trastuzumab which comprises "middle-up" analysis using a combination of IdeS and the endoglycosidases EndoS and EndoS2 to comprehensively map the glycan content. Enzymatic cleavage between the two N-acetyl glucosamine residues of the chitobiose core of N-glycans significantly simplifies the oligosaccharide component enabling facile distinction of GlcNAc from GlcNAc with core fucose. This approach facilitates quantitative determination of total Fc-glycan core-afucosylation, which was in turn correlated with receptor binding affinity by surface plasmon resonance and in vitro ADCC potency with a cell based bioassay. The strategy also quantifies Fc-glycan occupancy and the relative contribution from high mannose glycans.

  16. Development and application of a robust N-glycan profiling method for heightened characterization of monoclonal antibodies and related glycoproteins.

    PubMed

    Shang, Tanya Q; Saati, Andrew; Toler, Kelly N; Mo, Jianming; Li, Heyi; Matlosz, Tonya; Lin, Xi; Schenk, Jennifer; Ng, Chee-Keng; Duffy, Toni; Porter, Thomas J; Rouse, Jason C

    2014-07-01

    A highly robust hydrophilic interaction liquid chromatography (HILIC) method that involves both fluorescence and mass spectrometric detection was developed for profiling and characterizing enzymatically released and 2-aminobenzamide (2-AB)-derivatized mAb N-glycans. Online HILIC/mass spectrometry (MS) with a quadrupole time-of-flight mass spectrometer provides accurate mass identifications of the separated, 2-AB-labeled N-glycans. The method features a high-resolution, low-shedding HILIC column with acetonitrile and water-based mobile phases containing trifluoroacetic acid (TFA) as a modifier. This column and solvent system ensures the combination of robust chromatographic performance and full compatibility and sensitivity with online MS in addition to the baseline separation of all typical mAb N-glycans. The use of TFA provided distinct advantages over conventional ammonium formate as a mobile phase additive, such as, optimal elution order for sialylated N-glycans, reproducible chromatographic profiles, and matching total ion current chromatograms, as well as minimal signal splitting, analyte adduction, and fragmentation during HILIC/MS, maximizing sensitivity for trace-level species. The robustness and selectivity of HILIC for N-glycan analyses allowed for method qualification. The method is suitable for bioprocess development activities, heightened characterization, and clinical drug substance release. Application of this HILIC/MS method to the detailed characterization of a marketed therapeutic mAb, Rituxan(®), is described. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. OsMOGS is required for N-glycan formation and auxin-mediated root development in rice (Oryza sativa L.)

    PubMed Central

    Zhang, SaiNa; Lim, Jae-Min; Lee, Kyun Oh; Li, ChuanYou; Qian, Qian; Jiang, De An; Qi, YanHua

    2014-01-01

    SUMMARY N-glycosylation is a major modification of glycoproteins in eukaryotic cells. In Arabidopsis, great progress has been made in functional analysis of N-glycan production; however, there are few studies in monocotyledons. Here, we characterized a rice (Oryza sativa L.) osmogs mutant with shortened roots and isolated a gene coding a putative mannosyl-oligosaccharide glucosidase (OsMOGS), an ortholog of α-glucosidase I in Arabidopsis, which trims the terminal glucosyl residue of the oligosaccharide chain of nascent peptides in the endoplasmic reticulum (ER). OsMOGS is strongly expressed in rapidly cell-dividing tissues and OsMOGS protein is localized in the ER. Mutation of OsMOGS entirely blocked N-glycan maturation and inhibited high-mannose N-glycan formation. The osmogs mutant exhibited severe defects in root cell division and elongation, resulting in a short-root phenotype. In addition, osmogs plants had impaired root hair formation and elongation, and reduced root epidemic cell wall thickness due to decreased cellulose synthesis. Further analysis showed that auxin content and polar transport in osmogs roots were reduced due to incomplete N-glycosylation of the B subfamily of ATP-binding cassette transporter proteins (ABCBs). Our results demonstrate that involvement of OsMOGS in N-glycan formation is required for auxin-mediated root development in rice. PMID:24597623

  18. Comparative glycan profiling of Ceratopteris richardii 'C-Fern' gametophytes and sporophytes links cell-wall composition to functional specialization.

    PubMed

    Eeckhout, Sharon; Leroux, Olivier; Willats, William G T; Popper, Zoë A; Viane, Ronald L L

    2014-10-01

    Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii 'C-Fern', a widely used model system for ferns. Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of 'C-Fern' sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes. While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns. The differences and similarities in glycan cell-wall composition between 'C-Fern' gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica)

    PubMed Central

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N.; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young

    2009-01-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-Hex-NAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. PMID:18670878

  20. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic.

    PubMed

    Glozman, Rina; Okiyoneda, Tsukasa; Mulvihill, Cory M; Rini, James M; Barriere, Herve; Lukacs, Gergely L

    2009-03-23

    N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a polytopic membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), independently of lectin-like chaperones. Defective N-glycosylation reduces cell surface expression by impairing both early secretory and endocytic traffic of CFTR. Conformational destabilization of the glycan-deficient CFTR induces ubiquitination, leading to rapid elimination from the cell surface. Ubiquitinated CFTR is directed to lysosomal degradation instead of endocytic recycling in early endosomes mediated by ubiquitin-binding endosomal sorting complex required for transport (ESCRT) adaptors Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and TSG101. These results suggest that cotranslational N-glycosylation can exert a chaperone-independent profolding change in the energetic of CFTR in vivo as well as outline a paradigm for the peripheral trafficking defect of membrane proteins with impaired glycosylation.

  1. Comparative glycan profiling of Ceratopteris richardii ‘C-Fern’ gametophytes and sporophytes links cell-wall composition to functional specialization

    PubMed Central

    Eeckhout, Sharon; Leroux, Olivier; Willats, William G. T.; Popper, Zoë A.; Viane, Ronald L. L.

    2014-01-01

    Background and Aims Innovations in vegetative and reproductive characters were key factors in the evolutionary history of land plants and most of these transformations, including dramatic changes in life cycle structure and strategy, necessarily involved cell-wall modifications. To provide more insight into the role of cell walls in effecting changes in plant structure and function, and in particular their role in the generation of vascularization, an antibody-based approach was implemented to compare the presence and distribution of cell-wall glycan epitopes between (free-living) gametophytes and sporophytes of Ceratopteris richardii ‘C-Fern’, a widely used model system for ferns. Methods Microarrays of sequential diamino-cyclohexane-tetraacetic acid (CDTA) and NaOH extractions of gametophytes, spores and different organs of ‘C-Fern’ sporophytes were probed with glycan-directed monoclonal antibodies. The same probes were employed to investigate the tissue- and cell-specific distribution of glycan epitopes. Key Results While monoclonal antibodies against pectic homogalacturonan, mannan and xyloglucan widely labelled gametophytic and sporophytic tissues, xylans were only detected in secondary cell walls of the sporophyte. The LM5 pectic galactan epitope was restricted to sporophytic phloem tissue. Rhizoids and root hairs showed similarities in arabinogalactan protein (AGP) and xyloglucan epitope distribution patterns. Conclusions The differences and similarities in glycan cell-wall composition between ‘C-Fern’ gametophytes and sporophytes indicate that the molecular design of cell walls reflects functional specialization rather than genetic origin. Glycan epitopes that were not detected in gametophytes were associated with cell walls of specialized tissues in the sporophyte. PMID:24699895

  2. doGlycans-Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS.

    PubMed

    Danne, Reinis; Poojari, Chetan; Martinez-Seara, Hector; Rissanen, Sami; Lolicato, Fabio; Róg, Tomasz; Vattulainen, Ilpo

    2017-10-23

    Carbohydrates constitute a structurally and functionally diverse group of biological molecules and macromolecules. In cells they are involved in, e.g., energy storage, signaling, and cell-cell recognition. All of these phenomena take place in atomistic scales, thus atomistic simulation would be the method of choice to explore how carbohydrates function. However, the progress in the field is limited by the lack of appropriate tools for preparing carbohydrate structures and related topology files for the simulation models. Here we present tools that fill this gap. Applications where the tools discussed in this paper are particularly useful include, among others, the preparation of structures for glycolipids, nanocellulose, and glycans linked to glycoproteins. The molecular structures and simulation files generated by the tools are compatible with GROMACS.

  3. Removal of either N-glycan site from the envelope receptor binding domain of Moloney and Friend but not AKV mouse ecotropic gammaretroviruses alters receptor usage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoper, Ryan C.; Ferrarone, John; Yan Yuhe

    2009-09-01

    Three N-linked glycosylation sites were removed from the envelope glycoproteins of Friend, Moloney, and AKV mouse ecotropic gammaretroviruses: gs1 and gs2, in the receptor binding domain; and gs8, in a region implicated in post-binding cell fusion. Mutants were tested for their ability to infect rodent cells expressing 4 CAT-1 receptor variants. Three mutants (Mo-gs1, Mo-gs2, and Fr-gs1) infect NIH 3T3 and rat XC cells, but are severely restricted in Mus dunni cells and Lec8, a Chinese hamster cell line susceptible to ecotropic virus. This restriction is reproduced in ferret cells expressing M. dunni dCAT-1, but not in cells expressing NIHmore » 3T3 mCAT-1. Virus binding assays, pseudotype assays, and the use of glycosylation inhibitors further suggest that restriction is primarily due to receptor polymorphism and, in M. dunni cells, to glycosylation of cellular proteins. Virus envelope glycan size or type does not affect infectivity. Thus, host range variation due to N-glycan deletion is receptor variant-specific, cell-specific, virus type-specific, and glycan site-specific.« less

  4. Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.

    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by themore » SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.« less

  5. Evaluation of a di-O-methylated glycan as a potential antigenic target for the serodiagnosis of human toxocariasis.

    PubMed

    Elefant, G R; Roldán, W H; Seeböck, A; Kosma, P

    2016-04-01

    Serodiagnosis of human toxocariasis is based on the detection of specific IgG antibodies by the enzyme-linked immunosorbent assay (ELISA) using Toxocara larvae excretory-secretory (TES) antigens, but its production is a laborious and time-consuming process being also limited by the availability of adult females of T. canis as source for ova to obtain larvae. Chemical synthesis of the di-O-methylated (DiM) glycan structure found in the TES antigens has provided material for studying the antibody reactivity in a range of mammalian hosts, showing reactivity with human IgM and IgG. In this study, we have evaluated the performance of the DiM glycan against a panel of sera including patients with toxocariasis (n = 60), patients with other helminth infections (n = 75) and healthy individuals (n = 94), showing that DiM is able to detect IgG antibodies with a sensitivity and specificity of 91·7% and 94·7%, respectively, with a very good agreement with the TES antigens (kappa = 0·825). However, cross-reactivity was observed in some sera from patients with ascariasis, hymenolepiasis and fascioliasis. These results show that the DiM glycan could be a promising antigenic tool for the serodiagnosis of human toxocariasis. © 2016 John Wiley & Sons Ltd.

  6. A recombinant fungal lectin for labeling truncated glycans on human cancer cells.

    PubMed

    Audfray, Aymeric; Beldjoudi, Mona; Breiman, Adrien; Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne

    2015-01-01

    Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases.

  7. A Recombinant Fungal Lectin for Labeling Truncated Glycans on Human Cancer Cells

    PubMed Central

    Hurbin, Amandine; Boos, Irene; Unverzagt, Carlo; Bouras, Mourad; Lantuejoul, Sylvie; Coll, Jean-Luc; Varrot, Annabelle; Le Pendu, Jacques; Busser, Benoit; Imberty, Anne

    2015-01-01

    Cell surface glycoconjugates present alterations of their structures in chronic diseases and distinct oligosaccharide epitopes have been associated with cancer. Among them, truncated glycans present terminal non-reducing β-N-acetylglucosamine (GlcNAc) residues that are rare on healthy tissues. Lectins from unconventional sources such as fungi or algi provide novel markers that bind specifically to such epitopes, but their availability may be challenging. A GlcNAc-binding lectin from the fruiting body of the fungus Psathyrella velutina (PVL) has been produced in good yield in bacterial culture. A strong specificity for terminal GlcNAc residues was evidenced by glycan array. Affinity values obtained by microcalorimetry and surface plasmon resonance demonstrated a micromolar affinity for GlcNAcβ1-3Gal epitopes and for biantennary N-glycans with GlcNAcβ1-2Man capped branches. Crystal structure of PVL complexed with GlcNAcβ1-3Gal established the structural basis of the specificity. Labeling of several types of cancer cells and use of inhibitors of glycan metabolism indicated that rPVL binds to terminal GlcNAc but also to sialic acid (Neu5Ac). Analysis of glycosyltransferase expression confirmed the higher amount of GlcNAc present on cancer cells. rPVL binding is specific to cancer tissue and weak or no labeling is observed for healthy ones, except for stomach glands that present unique αGlcNAc-presenting mucins. In lung, breast and colon carcinomas, a clear delineation could be observed between cancer regions and surrounding healthy tissues. PVL is therefore a useful tool for labeling agalacto-glycans in cancer or other diseases. PMID:26042789

  8. Glycomics and glycoproteomics focused on aging and age-related diseases--Glycans as a potential biomarker for physiological alterations.

    PubMed

    Miura, Yuri; Endo, Tamao

    2016-08-01

    Since glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity. We herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes. Glycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity. Alterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor

    NASA Astrophysics Data System (ADS)

    Lloyd, Katy A.; Wang, Jiabin; Urban, Britta C.; Czajkowsky, Daniel M.; Pleass, Richard J.

    2017-02-01

    IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.

  10. ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY

    PubMed Central

    Mechref, Yehia

    2012-01-01

    The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203

  11. Zwitterionic-hydrophilic interaction capillary liquid chromatography coupled to tandem mass spectrometry for the characterization of human alpha-acid-glycoprotein N-glycan isomers.

    PubMed

    Mancera-Arteu, Montserrat; Giménez, Estela; Barbosa, José; Peracaula, Rosa; Sanz-Nebot, Victòria

    2017-10-23

    In this work, a μZIC-HILIC-MS/MS methodology was established in negative ion mode for the characterization of glycan isomers. The possibility to separate the glycan isomers by the μZIC-HILIC strategy coupled to a high resolution tandem mass spectrometry detection permitted us to obtain valuable information about each glycan structure. The most important diagnostic ion fragments previously described to characterize structural features of glycans, were evaluated in this study using hAGP as model glycoprotein. The assignation of hAGP glycan isomers performed in our previous work using the GRIL strategy in combination with exoglycosidase digestion [1] was used in this paper to confirm or discard some ion fragments reported in the literature and delve into the structural characterization of glycan isomers. Sialic acid as well as fucose linkage-type glycan isomers were assigned using this approach and daughter ions with higher diagnostic value were determined. The location of α2-3/α2-6 sialic acids on antennas and a deeper characterization of several highly sialylated tri- and tetraantennary glycans was also possible using the established MS/MS method. Moreover, relying on the characterization performed in Ref. [1], core and antenna fucosylation were differentiated in this work using specific ion fragments obtained in the tandem mass spectra. This methodology was also applied to hAGP purified from control and pathological serum samples, which corroborated its robustness and its potential for finding novel glycan-based biomarkers in patho-glycomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. An Automated Micro-Total Immunoassay System for Measuring Cancer-Associated α2,3-linked Sialyl N-Glycan-Carrying Prostate-Specific Antigen May Improve the Accuracy of Prostate Cancer Diagnosis

    PubMed Central

    Ishikawa, Tomokazu; Yoneyama, Tohru; Tobisawa, Yuki; Hatakeyama, Shingo; Kurosawa, Tatsuo; Nakamura, Kenji; Narita, Shintaro; Mitsuzuka, Koji; Duivenvoorden, Wilhelmina; Pinthus, Jehonathan H.; Hashimoto, Yasuhiro; Koie, Takuya; Habuchi, Tomonori; Arai, Yoichi; Ohyama, Chikara

    2017-01-01

    The low specificity of the prostate-specific antigen (PSA) for early detection of prostate cancer (PCa) is a major issue worldwide. The aim of this study to examine whether the serum PCa-associated α2,3-linked sialyl N-glycan-carrying PSA (S2,3PSA) ratio measured by automated micro-total immunoassay systems (μTAS system) can be applied as a diagnostic marker of PCa. The μTAS system can utilize affinity-based separation involving noncovalent interaction between the immunocomplex of S2,3PSA and Maackia amurensis lectin to simultaneously determine concentrations of free PSA and S2,3PSA. To validate quantitative performance, both recombinant S2,3PSA and benign-associated α2,6-linked sialyl N-glycan-carrying PSA (S2,6PSA) purified from culture supernatant of PSA cDNA transiently-transfected Chinese hamster ovary (CHO)-K1 cells were used as standard protein. Between 2007 and 2016, fifty patients with biopsy-proven PCa were pair-matched for age and PSA levels, with the same number of benign prostatic hyperplasia (BPH) patients used to validate the diagnostic performance of serum S2,3PSA ratio. A recombinant S2,3PSA- and S2,6PSA-spiked sample was clearly discriminated by μTAS system. Limit of detection of S2,3PSA was 0.05 ng/mL and coefficient variation was less than 3.1%. The area under the curve (AUC) for detection of PCa for the S2,3PSA ratio (%S2,3PSA) with cutoff value 43.85% (AUC; 0.8340) was much superior to total PSA (AUC; 0.5062) using validation sample set. Although the present results are preliminary, the newly developed μTAS platform for measuring %S2,3PSA can achieve the required assay performance specifications for use in the practical and clinical setting and may improve the accuracy of PCa diagnosis. Additional validation studies are warranted. PMID:28241428

  13. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite

    PubMed Central

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-01-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440

  14. Glycan Engineering for Cell and Developmental Biology.

    PubMed

    Griffin, Matthew E; Hsieh-Wilson, Linda C

    2016-01-21

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Profiling N-glycans of the egg jelly coat of the sea urchin Paracentrotus lividus by MALDI-TOF mass spectrometry and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectrometry systems.

    PubMed

    Şahar, Umut; Deveci, Remziye

    2017-05-01

    Sea urchin eggs are surrounded by a carbohydrate-rich layer, termed the jelly coat, that consists of polysaccharides and glycoproteins. In the present study, we describe two mass spectrometric strategies to characterize the N-glycosylation of the Paracentrotus lividus egg jelly coat, which has an alecithal-type extracellular matrix like mammalian eggs. Egg jelly was isolated, lyophilized, and dialyzed, followed by peptide N-glycosidase F (PNGase-F) treatment to release N-glycans from their protein chain. These N-glycans were then derivatized by permethylation reaction, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectroscopy (CapLC ESI-Ion trap-MS/MS). N-glycans in the egg jelly coat glycoproteins were indicated by sodiated molecules at m/z 1579.8, 1783.9, 1988.0, 2192.0, and 2397.1 for permethylated oligosaccharides on MALDI-TOF MS. Fragmentation and structural characterization of these oligosaccharides were performed by ESI-Ion trap MS/MS. Then, MALDI-TOF-MS and ESI-Ion trap-MS/MS spectra were interpreted using the GlycoWorkbench software suite, a tool for building, displaying, and profiling glycan masses, to identify the original oligosaccharide structures. The oligosaccharides of the isolated egg jelly coat were mainly of the high mannose type. © 2017 Wiley Periodicals, Inc.

  16. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    PubMed Central

    Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Thakur, Archana; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2011-01-01

    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses. PMID:21030387

  17. Assignment by Negative-Ion Electrospray Tandem Mass Spectrometry of the Tetrasaccharide Backbones of Monosialylated Glycans Released from Bovine Brain Gangliosides

    NASA Astrophysics Data System (ADS)

    Chai, Wengang; Zhang, Yibing; Mauri, Laura; Ciampa, Maria G.; Mulloy, Barbara; Sonnino, Sandro; Feizi, Ten

    2018-05-01

    Gangliosides, as plasma membrane-associated sialylated glycolipids, are antigenic structures and they serve as ligands for adhesion proteins of pathogens, for toxins of bacteria, and for endogenous proteins of the host. The detectability by carbohydrate-binding proteins of glycan antigens and ligands on glycolipids can be influenced by the differing lipid moieties. To investigate glycan sequences of gangliosides as recognition structures, we have underway a program of work to develop a "gangliome" microarray consisting of isolated natural gangliosides and neoglycolipids (NGLs) derived from glycans released from them, and each linked to the same lipid molecule for arraying and comparative microarray binding analyses. Here, in the first phase of our studies, we describe a strategy for high-sensitivity assignment of the tetrasaccharide backbones and application to identification of eight of monosialylated glycans released from bovine brain gangliosides. This approach is based on negative-ion electrospray mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) of the desialylated glycans. Using this strategy, we have the data on backbone regions of four minor components among the monosialo-ganglioside-derived glycans; these are of the ganglio-, lacto-, and neolacto-series.

  18. Core 1-derived O-glycans are essential E-selectin ligands on neutrophils.

    PubMed

    Yago, Tadayuki; Fu, Jianxin; McDaniel, J Michael; Miner, Jonathan J; McEver, Rodger P; Xia, Lijun

    2010-05-18

    Neutrophils roll on E-selectin in inflamed venules through interactions with cell-surface glycoconjugates. The identification of physiologic E-selectin ligands on neutrophils has been elusive. Current evidence suggests that P-selectin glycoprotein ligand-1 (PSGL-1), E-selectin ligand-1 (ESL-1), and CD44 encompass all glycoprotein ligands for E-selectin; that ESL-1 and CD44 use N-glycans to bind to E-selectin; and that neutrophils lacking core 2 O-glycans have partially defective interactions with E-selectin. These data imply that N-glycans on ESL-1 and CD44 and O-glycans on PSGL-1 constitute all E-selectin ligands, with neither glycan subset having a dominant role. The enzyme T-synthase transfers Gal to GalNAcalpha1-Ser/Thr to form the core 1 structure Galbeta1-3GalNAcalpha1-Ser/Thr, a precursor for core 2 and extended core 1 O-glycans that might serve as selectin ligands. Here, using mice lacking T-synthase in endothelial and hematopoietic cells, we found that E-selectin bound to CD44 and ESL-1 in lysates of T-synthase-deficient neutrophils. However, the cells exhibited markedly impaired rolling on E-selectin in vitro and in vivo, failed to activate beta2 integrins while rolling, and did not emigrate into inflamed tissues. These defects were more severe than those of neutrophils lacking PSGL-1, CD44, and the mucin CD43. Our results demonstrate that core 1-derived O-glycans are essential E-selectin ligands; that some of these O-glycans are on protein(s) other than PSGL-1, CD44, and CD43; and that PSGL-1, CD44, and ESL-1 do not constitute all glycoprotein ligands for E-selectin.

  19. NKG2D and CD94 bind to multimeric alpha2,3-linked N-acetylneuraminic acid.

    PubMed

    Imaizumi, Yuzo; Higai, Koji; Suzuki, Chiho; Azuma, Yutaro; Matsumoto, Kojiro

    2009-05-08

    Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to alpha2,3-sialylated human alpha(1)-acid glycoprotein (AGP) but not to alpha2,6-sialylated AGP. Mutagenesis revealed that (152)Y of NKG2D and (144)F and (160)N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to alpha2,3-sialylated but not to alpha2,6-sialylated multi-antennary N-glycans.

  20. Unique, polyfucosylated glycan-receptor interactions are essential for regeneration of Hydra magnipapillata.

    PubMed

    Sahadevan, Sonu; Antonopoulos, Aristotelis; Haslam, Stuart M; Dell, Anne; Ramaswamy, Subramanian; Babu, Ponnusamy

    2014-01-17

    Cell-cell communications, cell-matrix interactions, and cell migrations play a major role in regeneration. However, little is known about the molecular players involved in these critical events, especially cell surface molecules. Here, we demonstrate the role of specific glycan-receptor interactions in the regenerative process using Hydra magnipapillata as a model system. Global characterization of the N- and O-glycans expressed by H. magnipapillata using ultrasensitive mass spectrometry revealed mainly polyfucosylated LacdiNAc antennary structures. Affinity purification showed that a putative C-type lectin (accession number Q6SIX6) is a likely endogenous receptor for the novel polyfucosylated glycans. Disruption of glycan-receptor interactions led to complete shutdown of the regeneration machinery in live Hydra. A time-dependent, lack-of-regeneration phenotype observed upon incubation with exogenous fuco-lectins suggests the involvement of a polyfucose receptor-mediated signaling mechanism during regeneration. Thus, for the first time, the results presented here provide direct evidence for the role of polyfucosylated glycan-receptor interactions in the regeneration of H. magnipapillata.

  1. Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells.

    PubMed

    Hsieh, P; Robbins, P W

    1984-02-25

    We have examined the synthesis and processing of asparagine-linked oligosaccharides from Aedes albopictus C6/36 mosquito cells. These cells synthesized a glucose-containing lipid-linked oligosaccharide with properties identical to that of Glc3Man9GlcNAc2-PP-dolichol. Results of brief pulse label experiments with [3H]mannose were consistent with the transfer of Glc3Man9GlcNAc2 to protein followed by the rapid removal of glucose residues. Pulse-chase experiments established that further processing of oligosaccharides in C6/36 cells resulted in the removal of up to six alpha-linked mannose residues yielding Man3GlcNAc2 whose structure is identical to that of the trimannosyl "core" of N-linked oligosaccharides of vertebrate cells and yeast. Complex-type oligosaccharides were not observed in C6/36 cells. When Sindbis virus was grown in mosquito cells, Man3GlcNAc2 glycans were preferentially located at the two glycosylation sites which were previously shown to have complex glycans in virus grown in vertebrate cells. These Man3GlcNAc2 structures are the most extensively processed oligosaccharides in A. albopictus, and as such, are analogous to the complex glycans of vertebrate cells. We suggest that determinants of oligosaccharide processing which reside in the polypeptide are universally recognized despite evolutionary divergence of the oligosaccharide-processing pathway between insects and vertebrates.

  2. Pancreatic α-Amylase Controls Glucose Assimilation by Duodenal Retrieval through N-Glycan-specific Binding, Endocytosis, and Degradation*

    PubMed Central

    Date, Kimie; Satoh, Ayano; Iida, Kaoruko; Ogawa, Haruko

    2015-01-01

    α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na+/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104–23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption

  3. Selected Reaction Monitoring to Differentiate and Relatively Quantitate Isomers of Sulfated and Unsulfated Core 1 O-Glycans from Salivary MUC7 Protein in Rheumatoid Arthritis*

    PubMed Central

    Flowers, Sarah A.; Ali, Liaqat; Lane, Catherine S.; Olin, Magnus; Karlsson, Niclas G.

    2013-01-01

    Rheumatoid arthritis is a common and debilitating systemic inflammatory condition affecting up to 1% of the world's population. This study aimed to investigate the immunological significance of O-glycans in chronic arthritis at a local and systemic level. O-Glycans released from synovial glycoproteins during acute and chronic arthritic conditions were compared and immune-reactive glycans identified. The sulfated core 1 O-glycan (Galβ1–3GalNAcol) was immune reactive, showing a different isomeric profile in the two conditions. From acute reactive arthritis, three isomers could be sequenced, but in patients with chronic rheumatoid arthritis, only a single 3-Gal sulfate-linked isomer could be identified. The systemic significance of this glycan epitope was investigated using the salivary mucin MUC7 in patients with rheumatoid arthritis and normal controls. To analyze this low abundance glycan, a selected reaction monitoring (SRM) method was developed to differentiate and relatively quantitate the core 1 O-glycan and the sulfated core 1 O-glycan Gal- and GalNAc-linked isomers. The acquisition of highly sensitive full scan linear ion trap MS/MS spectra in addition to quantitative SRM data allowed the 3- and 6-linked Gal isomers to be differentiated. The method was used to relatively quantitate the core 1 glycans from MUC7 to identify any systemic changes in this carbohydrate epitope. A statistically significant increase in sulfation was identified in salivary MUC7 from rheumatoid arthritis patients. This suggests a potential role for this epitope in chronic inflammation. This study was able to develop an SRM approach to specifically identify and relatively quantitate sulfated core 1 isomers and the unsulfated structure. The expansion of this method may afford an avenue for the high throughput investigation of O-glycans. PMID:23457413

  4. N-linked oligosaccharides on chondroitin 6-sulfotransferase-1 are required for production of the active enzyme, Golgi localization, and sulfotransferase activity toward keratan sulfate.

    PubMed

    Yusa, Akiko; Kitajima, Ken; Habuchi, Osami

    2006-07-21

    We have shown previously that purified chondroitin 6-sulfotransferase-1 (C6ST-1) was a glycoprotein abundant in N-linked oligosaccharides and could sulfate both chondroitin (C6ST activity) and keratan sulfate (KSST activity); however, functional roles of the N-glycans have remained unclear. In the present study, we show essential roles of N-glycans attached to C6ST-1 in the generation of the active enzyme and in its KSST activity. Treatment with tunicamycin of COS-7 cells transfected with C6ST-1 cDNA totally abolished production of the active C6ST-1. A nearly complete removal of N-glycans of the recombinant C6ST-1 by peptide N-glycosidase F increased the C6ST activity but decreased the KSST activity. Among six potential N-glycosylation sites, deletion of the fourth or sixth site from the amino terminus inhibited production of the active C6ST-1, whereas deletion of the fifth site resulted in a marked loss of the KSST activity. Wild-type recombinant C6ST-1 showed a typical Golgi localization, whereas M-4 recombinant C6ST-1, in which the fourth N-glycosylation site was deleted, colocalized with calnexin, an endoplasmic reticulum-resident protein. Unlike wildtype recombinant C6ST-1, M-4 recombinant C6ST-1 showed a weak affinity toward wheat germ agglutinin and was converted completely to the nonglycosylated form by endoglycosidase H. These observations suggest that N-glycan attached to the fourth N-glycosylation site may function in the proper processing of N-glycans required for the Golgi localization, thereby causing the production of the active C6ST-1, and that N-glycan attached to the fifth N-glycosylation site may contribute to the KSST activity of C6ST-1.

  5. Changes to serum sample tube and processing methodology does not cause Intra-Individual [corrected] variation in automated whole serum N-glycan profiling in health and disease.

    PubMed

    Ventham, Nicholas T; Gardner, Richard A; Kennedy, Nicholas A; Shubhakar, Archana; Kalla, Rahul; Nimmo, Elaine R; Fernandes, Daryl L; Satsangi, Jack; Spencer, Daniel I R

    2015-01-01

    Serum N-glycans have been identified as putative biomarkers for numerous diseases. The impact of different serum sample tubes and processing methods on N-glycan analysis has received relatively little attention. This study aimed to determine the effect of different sample tubes and processing methods on the whole serum N-glycan profile in both health and disease. A secondary objective was to describe a robot automated N-glycan release, labeling and cleanup process for use in a biomarker discovery system. 25 patients with active and quiescent inflammatory bowel disease and controls had three different serum sample tubes taken at the same draw. Two different processing methods were used for three types of tube (with and without gel-separation medium). Samples were randomised and processed in a blinded fashion. Whole serum N-glycan release, 2-aminobenzamide labeling and cleanup was automated using a Hamilton Microlab STARlet Liquid Handling robot. Samples were analysed using a hydrophilic interaction liquid chromatography/ethylene bridged hybrid(BEH) column on an ultra-high performance liquid chromatography instrument. Data were analysed quantitatively by pairwise correlation and hierarchical clustering using the area under each chromatogram peak. Qualitatively, a blinded assessor attempted to match chromatograms to each individual. There was small intra-individual variation in serum N-glycan profiles from samples collected using different sample processing methods. Intra-individual correlation coefficients were between 0.99 and 1. Unsupervised hierarchical clustering and principal coordinate analyses accurately matched samples from the same individual. Qualitative analysis demonstrated good chromatogram overlay and a blinded assessor was able to accurately match individuals based on chromatogram profile, regardless of disease status. The three different serum sample tubes processed using the described methods cause minimal inter-individual variation in serum whole N-glycan

  6. Influence of culture medium supplementation of tobacco NT1 cell suspension cultures on the N-glycosylation of human secreted alkaline phosphatase.

    PubMed

    Becerra-Arteaga, Alejandro; Shuler, Michael L

    2007-08-15

    We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins. (c) 2007 Wiley Periodicals, Inc.

  7. Changes to Serum Sample Tube and Processing Methodology Does Not Cause Inter-Individual Variation in Automated Whole Serum N-Glycan Profiling in Health and Disease

    PubMed Central

    Shubhakar, Archana; Kalla, Rahul; Nimmo, Elaine R.; Fernandes, Daryl L.; Satsangi, Jack; Spencer, Daniel I. R.

    2015-01-01

    Introduction Serum N-glycans have been identified as putative biomarkers for numerous diseases. The impact of different serum sample tubes and processing methods on N-glycan analysis has received relatively little attention. This study aimed to determine the effect of different sample tubes and processing methods on the whole serum N-glycan profile in both health and disease. A secondary objective was to describe a robot automated N-glycan release, labeling and cleanup process for use in a biomarker discovery system. Methods 25 patients with active and quiescent inflammatory bowel disease and controls had three different serum sample tubes taken at the same draw. Two different processing methods were used for three types of tube (with and without gel-separation medium). Samples were randomised and processed in a blinded fashion. Whole serum N-glycan release, 2-aminobenzamide labeling and cleanup was automated using a Hamilton Microlab STARlet Liquid Handling robot. Samples were analysed using a hydrophilic interaction liquid chromatography/ethylene bridged hybrid(BEH) column on an ultra-high performance liquid chromatography instrument. Data were analysed quantitatively by pairwise correlation and hierarchical clustering using the area under each chromatogram peak. Qualitatively, a blinded assessor attempted to match chromatograms to each individual. Results There was small intra-individual variation in serum N-glycan profiles from samples collected using different sample processing methods. Intra-individual correlation coefficients were between 0.99 and 1. Unsupervised hierarchical clustering and principal coordinate analyses accurately matched samples from the same individual. Qualitative analysis demonstrated good chromatogram overlay and a blinded assessor was able to accurately match individuals based on chromatogram profile, regardless of disease status. Conclusions The three different serum sample tubes processed using the described methods cause minimal

  8. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Pagel, Kevin; Thalassinos, Konstantinos; Struwe, Weston B.; Crispin, Max; Scrivens, Jim

    2016-01-01

    Nitrogen cross sections of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1-acid glycoprotein, thyroglobulin and fucosylated glycoproteins from the human parotid gland were measured with a travelling-wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3GlcNAc3 from chicken ovalbumin and Man3GlcNAc3Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra. Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an overall asymmetric ATD profile usually suggested that separations were due to conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in cross sections were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between cross sections and structural types were also investigated and it was found that complex glycans tended to have slightly smaller cross sections than high-mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility-m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger cross sections. PMID:27477117

  9. Host specific glycans are correlated with susceptibility to infection by lagoviruses, but not with their virulence.

    PubMed

    Lopes, Ana M; Breiman, Adrien; Lora, Mónica; Le Moullac-Vaidye, Béatrice; Galanina, Oxana; Nyström, Kristina; Marchandeau, Stephane; Le Gall-Reculé, Ghislaine; Strive, Tanja; Neimanis, Aleksija; Bovin, Nicolai V; Ruvoën-Clouet, Nathalie; Esteves, Pedro J; Abrantes, Joana; Le Pendu, Jacques

    2017-11-29

    The rabbit hemorrhagic disease virus (RHDV) and the European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus , respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged and many non-pathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, non-pathogenic lagoviruses and EBHSV potentially play a role in determining host range and virulence of lagoviruses. We observed binding to A, B or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits ( Oryctolagus cuniculus ), that have recently been classified as GI strains. Yet, we could not explain the emergence of virulence since similar glycan specificities were found between several pathogenic and non-pathogenic strains. By contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species ( Oryctolagus cuniculus, Lepus europaeus and Sylvilagus floridanus ) showed species-specific patterns regarding the susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagoviruses host specificity and range. IMPORTANCE Lagoviruses constitute a genus of the Caliciviridae family, comprising highly pathogenic viruses, RHDV and EBHSV, which infect rabbits and hares, respectively. Recently, non-pathogenic strains were discovered and new pathogenic strains have emerged. In addition, host

  10. N-linked glycosylation of recombinant cellobiohydrolase I (Cel7A) from Penicillium verruculosum and its effect on the enzyme activity.

    PubMed

    Dotsenko, Anna S; Gusakov, Alexander V; Volkov, Pavel V; Rozhkova, Aleksandra M; Sinitsyn, Arkady P

    2016-02-01

    Cellobiohydrolase I from Penicillium verruculosum (PvCel7A) has four potential N-glycosylation sites at its catalytic module: Asn45, Asn194, Asn388, and Asn430. In order to investigate how the N-glycosylation influences the activity and other properties of the enzyme, the wild type (wt) PvCel7A and its mutant forms, carrying Asn to Ala substitutions, were cloned into Penicillium canescens PCA10 (niaD-) strain, a fungal host for production of heterologous proteins. The rPvCel7A-wt and N45A, N194A, N388A mutants were successfully expressed and purified for characterization, whereas the expression of N430A mutant was not achieved. The MALDI-TOF mass spectrometry fingerprinting of peptides, obtained as a result of digestion of rPvCel7A forms with specific proteases, showed that the N-linked glycans represent variable high-mannose oligosaccharides and the products of their sequential enzymatic trimming, according to the formula (Man)0-13 (GlcNAc)2 , or a single GlcNAc residue. Mutations had no notable effect on pH-optimum of PvCel7A activity and enzyme thermostability. However, the mutations influenced both the enzyme adsorption ability on Avicel and its activity against natural and synthetic substrates. In particular, the N45A mutation led to a significant increase in the rate of Avicel and milled aspen wood hydrolysis, while the substrate digestion rates in the case of N194A and N388A mutants were notably lower relative to rPvCel7A-wt. These data, together with data of 3D structural modeling of the PvCel7A catalytic module, indicate that the N-linked glycans are an important part of the processive catalytic machinery of PvCel7A. © 2015 Wiley Periodicals, Inc.

  11. Cytoplasmic peptide:N-glycanase cleaves N-glycans on a carboxypeptidase Y mutant during ERAD in Saccharomyces cerevisiae.

    PubMed

    Hosomi, Akira; Suzuki, Tadashi

    2015-04-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is a pathway by which misfolded or improperly assembled proteins in the ER are directed to degradation. The cytoplasmic peptide:N-glycanase (PNGase) is a deglycosylating enzyme that cleaves N-glycans from misfolded glycoproteins during the ERAD process. The mutant form of yeast carboxypeptidase Y (CPY*) is an ERAD model substrate that has been extensively studied in yeast. While a delay in the degradation of CPY* in yeast cells lacking the cytoplasmic PNGase (Png1 in yeast) was evident, the in vivo action of PNGase on CPY* has not been detected. We constructed new ERAD substrates derived from CPY*, bearing epitope tags at both N- and C-termini and examined the degradation intermediates observed in yeast cells with compromised proteasome activity. The occurrence of the PNGase-mediated deglycosylation of intact CPY* and its degradation intermediates was evident. A major endoproteolytic reaction on CPY* appears to occur between amino acid 400 and 404. The findings reported herein clearly indicate that PNGase indeed releases N-glycans from CPY* during the ERAD process in vivo. This report implies that the PNGase-mediated deglycosylation during the ERAD process may occur more abundantly than currently envisaged. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Milk Glycans and Their Interaction with the Infant-Gut Microbiota

    PubMed Central

    Kirmiz, Nina; Robinson, Randall C.; Shah, Ishita M.; Barile, Daniela; Mills, David A.

    2018-01-01

    Human milk is a unique and complex fluid that provides infant nutrition and delivers an array of bioactive molecules that serve various functions. Glycans, abundant in milk, can be found as free oligosaccharides or as glycoconjugates. Milk glycans are increasingly linked to beneficial outcomes in neonates through protection from pathogens and modulation of the immune system. Indeed, these glycans influence the development of the infant and the infant-gut microbiota. Bifidobacterium species commonly are enriched in breastfed infants and are among a limited group of bacteria that readily consume human milk oligosaccharides (HMOs) and milk glycoconjugates. Given the importance of bifidobacteria in infant health, numerous studies have examined the molecular mechanisms they employ to consume HMOs and milk glycans, thus providing insight into this unique enrichment and shedding light on a range of translational opportunities to benefit at-risk infants. PMID:29580136

  13. Mass Isotopomer Analysis of Metabolically Labeled Nucleotide Sugars and N- and O-Glycans for Tracing Nucleotide Sugar Metabolisms*

    PubMed Central

    Nakajima, Kazuki; Ito, Emi; Ohtsubo, Kazuaki; Shirato, Ken; Takamiya, Rina; Kitazume, Shinobu; Angata, Takashi; Taniguchi, Naoyuki

    2013-01-01

    Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism. PMID:23720760

  14. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan.

    PubMed

    Manya, Hiroshi; Endo, Tamao

    2017-10-01

    O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: microwave-assisted deglycosylation and one-step purification with diamond nanoparticles.

    PubMed

    Tzeng, Yan-Kai; Chang, Cheng-Chun; Huang, Chien-Ning; Wu, Chih-Che; Han, Chau-Chung; Chang, Huan-Cheng

    2008-09-01

    A streamlined protocol has been developed to accelerate, simplify, and enhance matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) of neutral underivatized glycans released from glycoproteins. It involved microwave-assisted enzymatic digestion and release of glycans, followed by rapid removal of proteins and peptides with carboxylated/oxidized diamond nanoparticles, and finally treating the analytes with NaOH before mixing them with acidic matrix (such as 2,5-dihydroxybenzoic acid) to suppress the formation of both peptide and potassiated oligosaccharide ions in MS analysis. The advantages of this protocol were demonstrated with MALDI-TOF-MS of N-linked glycans released from ovalbumin and ribonuclease B.

  16. The Impact of O-Glycan Chemistry on the Stability of Intrinsically Disordered Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T; Prates, Erica T; Crowley, Michael F

    2018-03-02

    Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. O-linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting O-mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs). Here, we synthesized variants of a model IDP, specifically a natively O-mannosylated linker from a fungal enzyme, withmore » a-O-linked mannose, glucose, and galactose moieties, along with a non-glycosylated linker. Upon exposure to thermolysin, O-mannosylation, by far, provides the highest extent of proteolysis protection. To explain this observation, extensive molecular dynamics simulations were conducted, revealing that the axial configuration of the C2-hydroxyl group (2-OH) of a-mannose adjacent to the glycan-peptide bond strongly influences the conformational features of the linker. Specifically, a-mannose restricts the torsions of the IDP main chain more than other glycans whose equatorial 2-OH groups exhibit interactions that favor perpendicular glycan-protein backbone orientation. We suggest that IDP stiffening due to O-mannosylation impairs protease action, with contributions from protein-glycan interactions, protein flexibility, and protein stability. Our results further imply that resistance to proteolysis is an important driving force for evolutionary selection of a-mannose in eukaryotic IDPs, and more broadly, that glycan motifs for proteolysis protection likely coevolve with the protein sequence to which they attach.« less

  17. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  18. Relative quantitation of glycosylation variants by stable isotope labeling of enzymatically released N-glycans using [12C]/[13C] aniline and ZIC-HILIC-ESI-TOF-MS.

    PubMed

    Giménez, Estela; Sanz-Nebot, Victòria; Rizzi, Andreas

    2013-09-01

    Glycan reductive isotope labeling (GRIL) using [(12)C]- and [(13)C]-coded aniline was used for relative quantitation of N-glycans. In a first step, the labeling method by reductive amination was optimized for this reagent. It could be demonstrated that selecting aniline as limiting reactant and using the reductant in excess is critical for achieving high derivatization yields (over 95 %) and good reproducibility (relative standard deviations ∼1-5 % for major and ∼5-10 % for minor N-glycans). In a second step, zwitterionic-hydrophilic interaction liquid chromatography in capillary columns coupled to electrospray mass spectrometry with time-of-flight analyzer (μZIC-HILIC-ESI-TOF-MS) was applied for the analysis of labeled N-glycans released from intact glycoproteins. Ovalbumin, bovine α1-acid-glycoprotein and bovine fetuin were used as test glycoproteins to establish and evaluate the methodology. Excellent separation of isomeric N-glycans and reproducible quantitation via the extracted ion chromatograms indicate a great potential of the proposed methodology for glycoproteomic analysis and for reliable relative quantitation of glycosylation variants in biological samples.

  19. Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing

    NASA Astrophysics Data System (ADS)

    Both, P.; Green, A. P.; Gray, C. J.; Šardzík, R.; Voglmeir, J.; Fontana, C.; Austeri, M.; Rejzek, M.; Richardson, D.; Field, R. A.; Widmalm, G.; Flitsch, S. L.; Eyers, C. E.

    2014-01-01

    Mass spectrometry is the primary analytical technique used to characterize the complex oligosaccharides that decorate cell surfaces. Monosaccharide building blocks are often simple epimers, which when combined produce diastereomeric glycoconjugates indistinguishable by mass spectrometry. Structure elucidation frequently relies on assumptions that biosynthetic pathways are highly conserved. Here, we show that biosynthetic enzymes can display unexpected promiscuity, with human glycosyltransferase pp-α-GanT2 able to utilize both uridine diphosphate N-acetylglucosamine and uridine diphosphate N-acetylgalactosamine, leading to the synthesis of epimeric glycopeptides in vitro. Ion-mobility mass spectrometry (IM-MS) was used to separate these structures and, significantly, enabled characterization of the attached glycan based on the drift times of the monosaccharide product ions generated following collision-induced dissociation. Finally, ion-mobility mass spectrometry following fragmentation was used to determine the nature of both the reducing and non-reducing glycans of a series of epimeric disaccharides and the branched pentasaccharide Man3 glycan, demonstrating that this technique may prove useful for the sequencing of complex oligosaccharides.

  20. Chemo-enzymatic synthesis of a glycosylated peptide containing a complex N-glycan based on unprotected oligosaccharides by using DMT-MM and Endo-M.

    PubMed

    Tomabechi, Yusuke; Katoh, Toshihiko; Kunishima, Munetaka; Inazu, Toshiyuki; Yamamoto, Kenji

    2017-08-01

    For chemo-enzymatic synthesis of a glycosylated peptide, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was used for the synthesis of a N-acetylglucosaminyl peptide and a pseudoglycopeptide by solid-phase peptide synthesis without the requirement of protecting groups on the carbohydrate. We also performed transglycosylation of an N-glycan to the N-acetylglucosaminyl peptide using endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) to synthesize a glycopeptide containing a complex N-glycan.

  1. Loss of intestinal core 1–derived O-glycans causes spontaneous colitis in mice

    PubMed Central

    Fu, Jianxin; Wei, Bo; Wen, Tao; Johansson, Malin E.V.; Liu, Xiaowei; Bradford, Emily; Thomsson, Kristina A.; McGee, Samuel; Mansour, Lilah; Tong, Maomeng; McDaniel, J. Michael; Sferra, Thomas J.; Turner, Jerrold R.; Chen, Hong; Hansson, Gunnar C.; Braun, Jonathan; Xia, Lijun

    2011-01-01

    Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell–specific deficiency of core 1–derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1–derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1–derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase–specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC. PMID:21383503

  2. Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells.

    PubMed

    Chang, Veronica T; Spooner, Robert A; Crispin, Max; Davis, Simon J

    2015-01-01

    Some of the most important and interesting molecules in metazoan biology are glycoproteins. The importance of the carbohydrate component of these structures is often revealed by the disease phenotypes that manifest when the biosynthesis of particular glycoforms is disrupted. On the other hand, the presence of large amounts of carbohydrate can often hinder the structural and functional analysis of glycoproteins. There are often good reasons, therefore, for wanting to engineer and predefine the N-glycans present on glycoproteins, e.g., in order to characterize the functions of the glycans or facilitate their subsequent removal. Here, we describe in detail two distinct ways in which to usefully interfere with oligosaccharide processing, one involving the use of specific processing inhibitors, and the other the selection of cell lines mutated at gene loci that control oligosaccharide processing, using cytotoxic lectins. Both approaches have the capacity for controlled, radical alteration of oligosaccharide processing in eukaryotic cells used for heterologous protein expression, and have great utility in the structural analysis of glycoproteins.

  3. Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions.

    PubMed

    Shriver, Zachary; Raman, Rahul; Viswanathan, Karthik; Sasisekharan, Ram

    2009-08-28

    Protein-glycan interactions are important regulators of a variety of biological processes, ranging from immune recognition to anticoagulation. An important area of active research is directed toward understanding the role of host cell surface glycans as recognition sites for pathogen protein receptors. Recognition of cell surface glycans is a widely employed strategy for a variety of pathogens, including bacteria, parasites, and viruses. We present here a representative example of such an interaction: the binding of influenza A hemagglutinin (HA) to specific sialylated glycans on the cell surface of human upper airway epithelial cells, which initiates the infection cycle. We detail a generalizable strategy to understand the nature of protein-glycan interactions both structurally and biochemically, using HA as a model system. This strategy combines a top-down approach using available structural information to define important contacts between glycans and HA, with a bottom-up approach using data-mining and informatics approaches to identify the common motifs that distinguish glycan binders from nonbinders. By probing protein-glycan interactions simultaneously through top-down and bottom-up approaches, we can scientifically validate a series of observations. This in turn provides additional confidence and surmounts known challenges in the study of protein-glycan interactions, such as accounting for multivalency, and thus truly defines concepts such as specificity, affinity, and avidity. With the advent of new technologies for glycomics-including glycan arrays, data-mining solutions, and robust algorithms to model protein-glycan interactions-we anticipate that such combination approaches will become tractable for a wide variety of protein-glycan interactions.

  4. Glycans – the third revolution in evolution

    PubMed Central

    Lauc, Gordan; Krištić, Jasminka; Zoldoš, Vlatka

    2014-01-01

    The development and maintenance of a complex organism composed of trillions of cells is an extremely complex task. At the molecular level every process requires a specific molecular structures to perform it, thus it is difficult to imagine how less than tenfold increase in the number of genes between simple bacteria and higher eukaryotes enabled this quantum leap in complexity. In this perspective article we present the hypothesis that the invention of glycans was the third revolution in evolution (the appearance of nucleic acids and proteins being the first two), which enabled the creation of novel molecular entities that do not require a direct genetic template. Contrary to proteins and nucleic acids, which are made from a direct DNA template, glycans are product of a complex biosynthetic pathway affected by hundreds of genetic and environmental factors. Therefore glycans enable adaptive response to environmental changes and, unlike other epiproteomic modifications, which act as off/on switches, glycosylation significantly contributes to protein structure and enables novel functions. The importance of glycosylation is evident from the fact that nearly all proteins invented after the appearance of multicellular life are composed of both polypeptide and glycan parts. PMID:24904645

  5. Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface.

    PubMed

    Settem, Rajendra P; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu

    2013-10-17

    Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized surface-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens.

  6. Structure and Specificity of a Binary Tandem Domain F-Lectin from Striped Bass (Morone saxatilis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchet, M.; Odom, E; Vasta, J

    2010-01-01

    The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical 81-A-long and 60-A-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysismore » of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking 'non-self' carbohydrate ligands and 'self' carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.« less

  7. Twoplex 12/13 C6 aniline stable isotope and linkage-specific sialic acid labeling 2D-LC-MS workflow for quantitative N-glycomics.

    PubMed

    Albrecht, Simone; Mittermayr, Stefan; Smith, Josh; Martín, Silvia Millán; Doherty, Margaret; Bones, Jonathan

    2017-01-01

    Quantitative glycomics represents an actively expanding research field ranging from the discovery of disease-associated glycan alterations to the quantitative characterization of N-glycans on therapeutic proteins. Commonly used analytical platforms for comparative relative quantitation of complex glycan samples include MALDI-TOF-MS or chromatographic glycan profiling with subsequent data alignment and statistical evaluation. Limitations of such approaches include run-to-run technical variation and the potential introduction of subjectivity during data processing. Here, we introduce an offline 2D LC-MS E workflow for the fractionation and relative quantitation of twoplex isotopically labeled N-linked oligosaccharides using neutral 12 C 6 and 13 C 6 aniline (Δmass = 6 Da). Additional linkage-specific derivatization of sialic acids using 4-(4,6-dimethoxy-1,3,5-trizain-2-yl)-4-methylmorpholinium chloride offered simultaneous and advanced in-depth structural characterization. The potential of the method was demonstrated for the differential analysis of structurally defined N-glycans released from serum proteins of patients diagnosed with various stages of colorectal cancer. The described twoplex 12 C 6 / 13 C 6 aniline 2D LC-MS platform is ideally suited for differential glycomic analysis of structurally complex N-glycan pools due to combination and analysis of samples in a single LC-MS injection and the associated minimization in technical variation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Automated Glycan Assembly of Oligosaccharides Related to Arabinogalactan Proteins.

    PubMed

    Bartetzko, Max P; Schuhmacher, Frank; Hahm, Heung Sik; Seeberger, Peter H; Pfrengle, Fabian

    2015-09-04

    Arabinogalactan proteins are heavily glycosylated proteoglycans in plants. Their glycan portion consists of type-II arabinogalactan polysaccharides whose heterogeneity hampers the assignment of the arabinogalactan protein function. Synthetic chemistry is key to the procurement of molecular probes for plant biologists. Described is the automated glycan assembly of 14 oligosaccharides from four monosaccharide building blocks. These linear and branched glycans represent key structural features of natural type-II arabinogalactans and will serve as tools for arabinogalactan biology.

  9. Defining Putative Glycan Cancer Biomarkers by Mass Spectrometry

    PubMed Central

    Mechref, Yehia; Hu, Yunli; Garcia, Aldo; Hussein, Ahmed

    2013-01-01

    Summary For decades, the association between aberrant glycosylation and many types of cancers has been shown. However, defining the changes of glycan structures has not been demonstrated until recently. This has been facilitated by the major advances in mass spectrometry and separation science which allowed the detailed characterization of glycan changes associated with cancer. Mass spectrometry glycomics methods have been successfully employed to compare the glycomic profiles of different human specimen collected from disease-free individuals and patients with cancer. Additionally, comparing the glycomic profiles of glycoproteins purified from specimen collected from disease-free individuals and patients with cancer has also been performed. These types of glycan analyses employing mass spectrometry or liquid-chromatography mass spectrometry allowed the characterization of native, labeled, and permethylated glycans. This review discusses the different glycomic and glycoproteomic methods employed for defining glycans as cancer biomarkers of different organs, including breast, colon, esophagus, liver, lung, ovarian, pancreas and prostate. PMID:23157355

  10. A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies.

    PubMed

    Ruprecht, Colin; Bartetzko, Max P; Senf, Deborah; Dallabernadina, Pietro; Boos, Irene; Andersen, Mathias C F; Kotake, Toshihisa; Knox, J Paul; Hahn, Michael G; Clausen, Mads H; Pfrengle, Fabian

    2017-11-01

    In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc.

    PubMed

    Anumula, Kalyan Rao

    2012-08-31

    Typical clinical grade human IgG (intravenous immunoglobulin, IVIG), used for carbohydrate analysis, is derived from thousands of healthy donors. Quantitative high-resolution glycan profiles of IgG and its Fc-Fab fragments are presented here. Glycan profiles were established following digestions with Fc specific endoglycosidase S and generic PNGase F under denaturing and non-denaturing (native) conditions. The native PNGase F glycan profile of IgG was similar (but not identical) to that of Endo S. Endo S profiles did not contain the glycans with bisecting GlcNAc. PNGase F glycan profiles were the same for Fc fragments that were isolated from pepsin and Ide S protease digests. Both isolated Fab fragments and the previously deglycosylated IVIG (native conditions) yielded the same glycan profile. Glycan profiles were established using high resolution HPLC with 2-aminobenzoic acid (2AA) labeling. An accurate determination of sialylation levels can be made by this method. Carbohydrate content in Fc and Fab was determined using an internal standard and corrected for both protein and glycan recoveries. Fab portion contained about 14% of the total carbohydrate which translates to 2.3 sugar chains per mol in IVIG where 2 chains are located in the CH2 domain of the Fc. Fc glycans consisted of neutral (N) 84.5%; mono-sialylated (S1) 15% and di-sialylated (S2) 0.5%. In contrast, Fab contained N, 21%; S1, 43% and S2, 36%. The distribution of bisecting N-acetylglucosamine and fucose was found to be very different in various glycans (N, S1 and S2) found in Fab and Fc. Total IgG glycan profile (Fab plus Fc) contained N, 78.5%; S1, 17% and S2, 4.5%. Percent distribution of glycans G0, G1 and G2 (with 0, 1 and 2 two galactoses) was 26, 49 and 25 respectively within the 78% of the neutral glycans. Glycan profiles were nearly the same for various clinical grade IVIG preparations from various manufacturers. A fast HPLC profiling method was developed for the separation and quantitation

  12. Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin

    PubMed Central

    Dias, Ana M.; Oliveira, Patrícia; Cabral, Joana; Seruca, Raquel; Oliveira, Carla; Morgado-Díaz, José Andrés; Reis, Celso A.; Pinho, Salomé S.

    2013-01-01

    Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications. PMID:24282611

  13. Primary structure of the wall peptidoglycan of leprosy-derived corynebacteria.

    PubMed Central

    Janczura, E; Leyh-Bouille, M; Cocito, C; Ghuysen, J M

    1981-01-01

    The cell walls isolated from axenically grown leprosy-derived corynebacteria were submitted to various chemical and enzymatic degradations. The glycan strands of the wall peptidoglycan are essentially composed of N-acetylglycosaminyl-N-acetylmuramic acid disaccharide units. Small amounts of N-acetylglycosaminyl-N-glycolylmuramic acid (less than 10%) were also detected. The muramic acid residues of adjacent glycan strands are substituted by amidated tetrapeptide units which, in turn, are cross-linked through direct linkages extending between the C-terminal D-alanine residue of one tetrapeptide and the mesodiaminopimelic acid residue of another tetrapeptide. Such a structure is very similar to that of the wall peptidoglycan found in the taxonomically related microorganisms of the Corynebacterium, Mycobacterium, and Nocardia groups. PMID:7462160

  14. Morphological and glycan features of the camel oviduct epithelium.

    PubMed

    Accogli, Gianluca; Monaco, Davide; El Bahrawy, Khalid Ahmed; El-Sayed, Ashraf Abd El-Halim; Ciannarella, Francesca; Beneult, Benedicte; Lacalandra, Giovanni Michele; Desantis, Salvatore

    2014-07-01

    This study describes regional differences in the oviduct of the one-humped camel (Camelus dromedarius) during the growth phase (GP) and the mature phase (MP) of the follicular wave by means of morphometry, scanning electron microscopy (SEM) and glycohistochemistry investigations. Epithelium height significantly increased in the ampulla and decreased in the isthmus passing from the GP to the MP. Under SEM, non-ciliated cells displayed apical blebs (secretory) or short microvilli. Cilia glycocalyx expressed glycans terminating with sialic acid linked α2,6 to Gal/GalNAc (SNA affinity) throughout the oviducts of GP and MP and sialic acid linked α2,3 to Galβ1,3GalNAc (MAL II and KOH-sialidase (K-s)-PNA staining) throughout the MP oviducts. Non-ciliated cells displayed lectin-binding sites from the supra-nuclear cytoplasm to the luminal surface. Ampulla non-ciliated cells showed O-linked (mucin-type) sialoglycans (MAL II and K-s-PNA) during GP and MP and N-linked sialoglycans (SNA) during the MP. Isthmus non-ciliated cells expressed SNA reactivity in GP and MP, also K-s-PNA binders in MP, and MAL II and PNA affinity (Galβ1,3GalNAc) during GP. Galβ1,3GalNAc was sialilated in the non-ciliated cells of GP UTJ. Luminal surface lacked of Galβ1,3GalNAc in GP and MP, whereas it expressed α2,6- and α2,3-linked sialic acids. In GP intraluminal substance reacted with SNA, MAL II, K-s-PNA in ampulla and only with MAL II in the isthmus and UTJ. These results demonstrate that the morphology and the glycan pattern of the camel oviductal epithelium vary during the follicular wave and that could relate to the region-specific functions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins.

    PubMed

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.

  16. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins

    PubMed Central

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented. PMID:24848368

  17. Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array.

    PubMed

    Yamada, Keita; Hirabayashi, Jun; Kakehi, Kazuaki

    2013-03-19

    A method is proposed for the analysis of O-glycans as 9-fluorenylmethyl (Fmoc) derivatives. After releasing the O-glycans from the protein backbone in the presence of ammonia-based media, the glycosylamines thus formed are conveniently labeled with Fmoc-Cl and analyzed by HPLC and MALDI-TOF MS after easy purification. Fmoc labeled O-glycans showed 3.5 times higher sensitivities than those labeled with 2-aminobenzoic acid in fluorescent detection. Various types of O-glycans having sialic acids, fucose, and/or sulfate residues were successfully labeled with Fmoc and analyzed by HPLC and MALDI-TOF MS. The method was applied to the comprehensive analysis of O-glycans expressed on MKN45 cells (human gastric adenocarcinoma). In addition, Fmoc-derivatized O-glycans were easily converted to free hemiacetal or glycosylamine-form glycans that are available for fabrication of glycan array and neoglycoproteins. To demonstrate the availability of our methods, we fabricate the glycan array with Fmoc labeled glycans derived from mucin samples and cancer cells. The model studies using the glycan array showed clear interactions between immobilized glycans and some lectins.

  18. Identification of a Conserved Glycan Signature for Microvesicles

    PubMed Central

    Batista, Bianca S.; Eng, William S.; Pilobello, Kanoelani T.; Hendricks-Muñoz, Karen D.; Mahal, Lara K.

    2011-01-01

    Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in immune regulation, cancer progression and the spread of infectious agents. The biological functions of these small vesicles are dependent upon their composition, which is regulated by mechanisms that are not well understood. Although numerous proteomic studies of these particles exist, little is known about their glycosylation. Carbohydrates are involved in protein trafficking and cellular recognition. Glycomic analysis may thus provide valuable insights into microvesicle biology. In this study, we analyzed glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology. Comparison of the microvesicle glycomes with their parent cell membranes revealed both enrichment and depletion of specific glycan epitopes in these particles. These include enrichment in high mannose, polylactosamine, α-2,6 sialic acid, and complex N-linked glycans and exclusion of terminal blood group A and B antigens. The polylactosamine signature derives from distinct glycoprotein cohorts in microvesicles of different origins. Taken together our data point to the emergence of microvesicles from a specific membrane microdomain, implying a role for glycosylation in microvesicle protein sorting. PMID:21859146

  19. The TGF-β inhibitory activity of antibody 37E1B5 depends on its H-CDR2 glycan.

    PubMed

    Tsui, Ping; Higazi, Daniel R; Wu, Yanli; Dunmore, Rebecca; Solier, Emilie; Kasali, Toyin; Bond, Nicholas J; Huntington, Catherine; Carruthers, Alan; Hood, John; Borrok, M Jack; Barnes, Arnita; Rickert, Keith; Phipps, Sandrina; Shirinian, Lena; Zhu, Jie; Bowen, Michael A; Dall'Acqua, William; Murray, Lynne A

    2017-01-01

    Excessive transforming growth factor (TGF)-β is associated with pro-fibrotic responses in lung disease, yet it also plays essential roles in tissue homeostasis and autoimmunity. Therefore, selective inhibition of excessive and aberrant integrin-mediated TGF-β activation via targeting the α-v family of integrins is being pursued as a therapeutic strategy for chronic lung diseases, to mitigate any potential safety concerns with global TGF-β inhibition. In this work, we reveal a novel mechanism of inhibiting TGF-β activation utilized by an αvβ8 targeting antibody, 37E1B5. This antibody blocks TGF-β activation while not inhibiting cell adhesion. We show that an N-linked complex-type Fab glycan in H-CDR2 of 37E1B5 is directly involved in the inhibition of latent TGF-β activation. Removal of the Fab N-glycosylation site by single amino acid substitution, or removal of N-linked glycans by enzymatic digestion, drastically reduced the antibody's ability to inhibit latency-associated peptide (LAP) and αvβ8 association, and TGF-β activation in an αvβ8-mediated TGF-β signaling reporter assay. Our results indicate a non-competitive, allosteric inhibition of 37E1B5 on αvβ8-mediated TGF-β activation. This unique, H-CDR2 glycan-mediated mechanism may account for the potent but tolerable TGF-b activation inhibition and lack of an effect on cellular adhesion by the antibody.

  20. Site-specific characterization of envelope protein N-glycosylation on Sanofi Pasteur's tetravalent CYD dengue vaccine.

    PubMed

    Dubayle, Jean; Vialle, Sandrine; Schneider, Diane; Pontvianne, Jérémy; Mantel, Nathalie; Adam, Olivier; Guy, Bruno; Talaga, Philippe

    2015-03-10

    Recently, several virus studies have shown that protein glycosylation play a fundamental role in the virus-host cell interaction. Glycosylation characterization of the envelope proteins in both insect and mammalian cell-derived dengue virus (DENV) has established that two potential glycosylation residues, the asparagine 67 and 153 can potentially be glycosylated. Moreover, it appears that the glycosylation of these two residues can influence dramatically the virus production and the infection spreading in either mosquito or mammalian cells. The Sanofi Pasteur tetravalent dengue vaccine (CYD) consists of four chimeric viruses produced in mammalian vero cells. As DENV, the CYDs are able to infect human monocyte-derived dendritic cells in vitro via C-type lectins cell-surface molecules. Despite the importance of this interaction, the specific glycosylation pattern of the DENV has not been clearly documented so far. In this paper, we investigated the structure of the N-linked glycans in the four CYD serotypes. Using MALDI-TOF analysis, the N-linked glycans of CYDs were found to be a mix of high-mannose, hybrid and complex glycans. Site-specific N-glycosylation analysis of CYDs using nanoLC-ESI-MS/MS demonstrates that both asparagine residues 67 and 153 are glycosylated. Predominant glycoforms at asparagine 67 are high mannose-type structures while mainly complex- and hybrid-type structures are detected at asparagine 153. In vitro studies have shown that the immunological consequences of infection by the CYD dengue viruses 1-4 versus the wild type parents are comparable in human monocyte-derived dendritic cells. Our E-protein glycan characterizations of CYD are consistent with those observations from the wild type parents and thus support in vitro studies. In addition, these data provide new insights for the role of glycans in the dengue virus-host cell interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mapping N-linked glycosylation of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose.

    PubMed

    Rubio, Marcelo Ventura; Zubieta, Mariane Paludetti; Franco Cairo, João Paulo Lourenço; Calzado, Felipe; Paes Leme, Adriana Franco; Squina, Fabio Marcio; Prade, Rolf Alexander; de Lima Damásio, André Ricardo

    2016-01-01

    The genus Aspergillus includes microorganisms that naturally degrade lignocellulosic biomass, secreting large amounts of carbohydrate-active enzymes (CAZymes) that characterize their saprophyte lifestyle. Aspergillus has the capacity to perform post-translational modifications (PTM), which provides an additional advantage for the use of these organisms as a host for the production of heterologous proteins. In this study, the N-linked glycosylation of CAZymes identified in the secretome of Aspergillus nidulans grown on lignocellulose was mapped. Aspergillus nidulans was grown in glucose, xylan and pretreated sugarcane bagasse (SCB) for 96 h, after which glycoproteomics and glycomics were carried out on the extracellular proteins (secretome). A total of 265 proteins were identified, with 153, 210 and 182 proteins in the glucose, xylan and SCB substrates, respectively. CAZymes corresponded to more than 50 % of the total secretome in xylan and SCB. A total of 182 N-glycosylation sites were identified, of which 121 were detected in 67 CAZymes. A prevalence of the N-glyc sequon N-X-T (72.2 %) was observed in N-glyc sites compared with N-X-S (27.8 %). The amino acids flanking the validated N-glyc sites were mainly composed of hydrophobic and polar uncharged amino acids. Selected proteins were evaluated for conservation of the N-glyc sites in Aspergilli homologous proteins, but a pattern of conservation was not observed. A global analysis of N-glycans released from the proteins secreted by A. nidulans was also performed. While the proportion of N-glycans with Hex5 to Hex9 was similar in the xylan condition, a prevalence of Hex5 was observed in the SCB and glucose conditions. The most common and frequent N-glycosylated motifs, an overview of the N-glycosylation of the CAZymes and the number of mannoses found in N-glycans were analyzed. There are many bottlenecks in protein production by filamentous fungi, such as folding, transport by vesicles and secretion, but N

  2. Molecular glycopathology by capillary electrophoresis: Analysis of the N-glycome of formalin-fixed paraffin-embedded mouse tissue samples.

    PubMed

    Donczo, Boglarka; Szarka, Mate; Tovari, Jozsef; Ostoros, Gyorgyi; Csanky, Eszter; Guttman, Andras

    2017-06-01

    Capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used to analyze endoglycosidase released and fluorophore-labeled N-glycans from formalin-fixed paraffin-embedded (FFPE) mouse tissue samples of lung, brain, heart, spleen, liver, kidney and intestine. The FFPE samples were first deparaffinized followed by solubilization and glycoprotein retrieval. PNGase F mediated release of the N-linked oligosaccharides was followed by labeling with aminopyrene trisulfonate. After CE-LIF glycoprofiling of the FFPE mouse tissues, the N-glycan pool of the lung specimen was subject to further investigation by exoglycosidase array based carbohydrate sequencing. Structural assignment of the oligosaccharides was accomplished by the help of the GUcal software and the associated database, based on the mobility shifts after treatments with the corresponding exoglycosidase reaction mixtures. Sixteen major N-linked carbohydrate structures were sequenced from the mouse lung FFPE tissue glycome and identified, as high mannose (3) neutral biantennary (3) sialylated monoantennary (1) and sialylated bianennary (9) oligosaccharides. Two of these latter ones also possessed alpha(1-3) linked galactose residues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impact of Hybrid and Complex N-Glycans on Cell Surface Targeting of the Endogenous Chloride Cotransporter Slc12a2

    PubMed Central

    Singh, Richa; Pacheco-Andrade, Romario; Almiahuob, Mohamed Y. Mahmoud

    2015-01-01

    The Na+K+2Cl− cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active. PMID:26351455

  4. Glycomic characterization of basal tears and changes with diabetes and diabetic retinopathy.

    PubMed

    Nguyen-Khuong, Terry; Everest-Dass, Arun V; Kautto, Liisa; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H

    2015-03-01

    As a secreted fluid, the state of tear glycosylation is particularly important in the role of immunity of the ocular surface. Tears are a valuable source of non-invasive biomarkers for disease and there are continued efforts to characterize their components thoroughly. In this study, a small volume of basal tears (5 μL) was collected from healthy controls, patients with diabetes without retinopathy and patients with diabetes and retinopathy. The detailed N- and O-linked tear protein glycome was characterized and the relative abundance of each structure determined. Of the 50 N-linked glycans found, 89% were complex with 50% containing a bisecting N-acetylglucosamine, 65% containing a core fucose whilst 33% were sialylated. Of the 8 O-linked glycans detected, 3 were of cores 1 and 5 of core 2 type, with a majority of them being sialylated (90%). Additionally, these glycan structures were profiled across the three diabetic disease groups. Whilst the higher abundant structures did not alter across the three groups, only five low abundance N-linked glycans and 1 O-linked glycan did alter with the onset of diabetes mellitus and diabetic retinopathy (DR). These results suggest the conservation of glycan types on basal tear proteins between individuals and point to only small changes in glycan expression on the proteins in tears with the development of diabetes and DR. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Glycan Engagement Dictates Hydrocephalus Induction by Serotype 1 Reovirus

    PubMed Central

    Stencel-Baerenwald, Jennifer; Reiss, Kerstin; Blaum, Bärbel S.; Colvin, Daniel; Li, Xiao-Nan; Abel, Ty; Boyd, Kelli; Stehle, Thilo

    2015-01-01

    ABSTRACT Receptors expressed on the host cell surface adhere viruses to target cells and serve as determinants of viral tropism. Several viruses bind cell surface glycans to facilitate entry, but the contribution of specific glycan moieties to viral disease is incompletely understood. Reovirus provides a tractable experimental model for studies of viral neuropathogenesis. In newborn mice, serotype 1 (T1) reovirus causes hydrocephalus, whereas serotype 3 (T3) reovirus causes encephalitis. T1 and T3 reoviruses engage distinct glycans, suggesting that glycan-binding capacity contributes to these differences in pathogenesis. Using structure-guided mutagenesis, we engineered a mutant T1 reovirus incapable of binding the T1 reovirus-specific glycan receptor, GM2. The mutant virus induced substantially less hydrocephalus than wild-type virus, an effect phenocopied by wild-type virus infection of GM2-deficient mice. In comparison to wild-type virus, yields of mutant virus were diminished in cultured ependymal cells, the cell type that lines the brain ventricles. These findings suggest that GM2 engagement targets reovirus to ependymal cells in mice and illuminate the function of glycan engagement in reovirus serotype-dependent disease. PMID:25736887

  6. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer

    PubMed Central

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-01-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3−/−/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3−/−/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer. PMID:24037315

  7. In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics.

    PubMed

    Ramya, T N C; Weerapana, Eranthie; Liao, Lujian; Zeng, Ying; Tateno, Hiroaki; Liao, Liang; Yates, John R; Cravatt, Benjamin F; Paulson, James C

    2010-06-01

    CD22, a regulator of B-cell signaling, is a siglec that recognizes the sequence NeuAcalpha2-6Gal on glycoprotein glycans as ligands. CD22 interactions with glycoproteins on the same cell (in cis) and apposing cells (in trans) modulate its activity in B-cell receptor signaling. Although CD22 predominantly recognizes neighboring CD22 molecules as cis ligands on B-cells, little is known about the trans ligands on apposing cells. We conducted a proteomics scale study to identify candidate trans ligands of CD22 on B-cells by UV photocross-linking CD22-Fc chimera bound to B-cell glycoproteins engineered to carry sialic acids with a 9-aryl azide moiety. Using mass spectrometry-based quantitative proteomics to analyze the cross-linked products, 27 glycoproteins were identified as candidate trans ligands. Next, CD22 expressed on the surface of one cell was photocross-linked to glycoproteins on apposing B-cells followed by immunochemical analysis of the products with antibodies to the candidate ligands. Of the many candidate ligands, only the B-cell receptor IgM was found to be a major in situ trans ligand of CD22 that is selectively redistributed to the site of cell contact upon interaction with CD22 on the apposing cell.

  8. Post-translational Modification of Extremophilic Proteins: N-glycosylation in Archaea

    DTIC Science & Technology

    2014-12-02

    Kaminski, Z. Guan, S. Yurist-Doutsch, J. Eichler. Two Distinct N-Glycosylation Pathways Process the Haloferax volcanii S-Layer Glycoprotein upon Changes...Promiscuity: AglB, the Archaeal Oligosaccharyltransferase, Can Process a Variety of Lipid-Linked Glycans, Applied and Environmental Microbiology, (11 2013...Archaea,  N-­‐linked   oligosaccharides  are   assembled  on  dolichol  phosphate  prior  to  transfer  of  the  glycan

  9. Validation of N-glycan markers that improve the performance of CA19-9 in pancreatic cancer.

    PubMed

    Zhao, Yun-Peng; Zhou, Ping-Ting; Ji, Wei-Ping; Wang, Hao; Fang, Meng; Wang, Meng-Meng; Yin, Yue-Peng; Jin, Gang; Gao, Chun-Fang

    2017-02-01

    Pancreatic cancer (PC) has a high mortality rate because it is usually diagnosed late. Glycosylation of proteins is known to change in tumor cells during the development of PC. The objectives of this study were to identify and validate the diagnostic value of novel biomarkers based on N-glycomic profiling for PC. In total, 217 individuals including subjects with PC, pancreatitis, and healthy controls were divided randomly into a training group (n = 164) and validation groups (n = 53). Serum N-glycomic profiling was analyzed by DSA-FACE. The diagnostic model was constructed based on N-glycan markers with logistic stepwise regression. The diagnostic performance of the model was assessed further in validation cohort. The level of total core fucose residues was increased significantly in PC. Two diagnostic models designated GlycoPCtest and PCmodel (combining GlycoPCtest and CA19-9) were constructed to differentiate PC from normal. The area under the receiver operating characteristic curve (AUC) of PCmodel was higher than that of CA19-9 (0.925 vs. 0.878). The diagnostic models based on N-glycans are new, valuable, noninvasive alternatives for identifying PC. The diagnostic efficacy is improved by combined GlycoPCtest and CA19-9 for the discrimination of patients with PC from healthy controls.

  10. Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants, and insects.

    PubMed

    Gutternigg, Martin; Kretschmer-Lubich, Dorothea; Paschinger, Katharina; Rendić, Dubravko; Hader, Josef; Geier, Petra; Ranftl, Ramona; Jantsch, Verena; Lochnit, Günter; Wilson, Iain B H

    2007-09-21

    In many invertebrates and plants, the N-glycosylation profile is dominated by truncated paucimannosidic N-glycans, i.e. glycans consisting of a simple trimannosylchitobiosyl core often modified by core fucose residues. Even though they lack antennal N-acetylglucosamine residues, the biosynthesis of these glycans requires the sequential action of GlcNAc transferase I, Golgi mannosidase II, and, finally, beta-N-acetylglucosaminidases. In Drosophila, the recently characterized enzyme encoded by the fused lobes (fdl) gene specifically removes the non-reducing N-acetylglucosamine residue from the alpha1,3-antenna of N-glycans. In the present study, we examined the products of five beta-N-acetylhexosaminidase genes from Caenorhabditis elegans (hex-1 to hex-5, corresponding to reading frames T14F9.3, C14C11.3, Y39A1C.4, Y51F10.5, and Y70D2A.2) in addition to three from Arabidopsis thaliana (AtHEX1, AtHEX2, and AtHEX3, corresponding to reading frames At1g65590, At3g55260, and At1g05590). Based on homology, the Caenorhabditis HEX-1 and all three Arabidopsis enzymes are members of the same sub-family as the aforementioned Drosophila fused lobes enzyme but either act as chitotriosidases or non-specifically remove N-acetylglucosamine from both N-glycan antennae. The other four Caenorhabditis enzymes are members of a distinct sub-family; nevertheless, two of these enzymes displayed the same alpha1,3-antennal specificity as the fused lobes enzyme. Furthermore, a deletion of part of the Caenorhabditis hex-2 gene drastically reduces the native N-glycan-specific hexosaminidase activity in mutant worm extracts and results in a shift in the N-glycan profile, which is a demonstration of its in vivo enzymatic relevance. Based on these data, it is hypothesized that the genetic origin of paucimannosidic glycans in nematodes, plants, and insects involves highly divergent members of the same hexosaminidase gene family.

  11. N-Glycomic Changes in Serum Proteins in Type 2 Diabetes Mellitus Correlate with Complications and with Metabolic Syndrome Parameters

    PubMed Central

    Bonfigli, Anna Rita; Boemi, Massimo; Olivieri, Fabiola; Ceriello, Antonio; Genovese, Stefano; Spazzafumo, Liana; Borelli, Vincenzo; Bacalini, Maria Giulia; Salvioli, Stefano; Garagnani, Paolo; Dewaele, Sylviane; Libert, Claude; Franceschi, Claudio

    2015-01-01

    Background Glycosylation, i.e the enzymatic addition of oligosaccharides (or glycans) to proteins and lipids, known as glycosylation, is one of the most common co-/posttranslational modifications of proteins. Many important biological roles of glycoproteins are modulated by N-linked oligosaccharides. As glucose levels can affect the pathways leading to glycosylation of proteins, we investigated whether metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM), pathological conditions characterized by altered glucose levels, are associated with specific modifications in serum N-glycome. Methods We enrolled in the study 562 patients with Type 2 Diabetes Mellitus (T2DM) (mean age 65.6±8.2 years) and 599 healthy control subjects (CTRs) (mean age, 58.5±12.4 years). N-glycome was evaluated in serum glycoproteins. Results We found significant changes in N-glycan composition in the sera of T2DM patients. In particular, α(1,6)-linked arm monogalactosylated, core-fucosylated diantennary N-glycans (NG1(6)A2F) were significantly reduced in T2DM compared with CTR subjects. Importantly, they were equally reduced in diabetic patients with and without complications (P<0.001) compared with CTRs. Macro vascular-complications were found to be related with decreased levels of NG1(6)A2F. In addition, NG1(6)A2F and NG1(3)A2F, identifying, respectively, monogalactosylated N-glycans with α(1,6)- and α(1,3)-antennary galactosylation, resulted strongly correlated with most MS parameters. The plasmatic levels of these two glycans were lower in T2DM as compared to healthy controls, and even lower in patients with complications and MS, that is the extreme “unhealthy” phenotype (T2DM+ with MS). Conclusions Imbalance of glycosyltransferases, glycosidases and sugar nucleotide donor levels is able to cause the structural changes evidenced by our findings. Serum N-glycan profiles are thus sensitive to the presence of diabetes and MS. Serum N-glycan levels could therefore provide a non

  12. High-temperature LC-MS/MS of permethylated glycans derived from glycoproteins.

    PubMed

    Zhou, Shiyue; Hu, Yunli; Mechref, Yehia

    2016-06-01

    Various glycomic analysis methods have been developed due to the essential roles of glycans in biological processes as well as the potential application of glycomics in biomarker discovery in many diseases. Permethylation is currently considered to be one of the most common derivatization methods in MS-based glycomic analysis. Permethylation not only improves ionization efficiency and stability of sialylated glycans in positive mode but also allows for enhanced separation performance on reversed-phase liquid chromatography (RPLC). Recently, RPLC-MS analysis of permethylated glycans exhibited excellent performance in sensitivity and reproducibility and became a widely-applied comprehensive strategy in glycomics. However, separating permethylated glycans by RPLC always suffers from peak broadening for high-molecular-weight branched glycans, which probably due to the low exchange rate between the stationary phase and mobile phase limited by intermolecular interactions of the methyl groups associated with the branching of the glycan structures. In this study, we employed high separation temperature conditions for RPLC of permethylated glycans, thus achieving enhanced peak capacity, improving peak shape, and enhancing separation efficiency. Additionally, partial isomeric separation were observed in RPLC of permethylated glycans at high-temperature. Mathematical processing of the correlation between retention time and molecular weight also revealed the advantage of high-temperature LC method for both manual and automatic glycan identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides.

    PubMed

    Hoogenboom, Jorin; Berghuis, Nathalja; Cramer, Dario; Geurts, Rene; Zuilhof, Han; Wennekes, Tom

    2016-10-10

    Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling. To further expand our knowledge of plant glycobiology by direct imaging of its glycans via this method, there is need for novel click-compatible glycan analogs for plants that can be bioorthogonally labelled via copper-free techniques. Arabidopsis seedlings were incubated with azido-containing monosaccharide analogs of N-acetylglucosamine, N-acetylgalactosamine, L-fucose, and L-arabinofuranose. These azido-monosaccharides were metabolically incorporated in plant cell wall glycans of Arabidopsis seedlings. Control experiments indicated active metabolic incorporation of the azido-monosaccharide analogs into glycans rather than through non-specific absorption of the glycan analogs onto the plant cell wall. Successful copper-free labeling reactions were performed, namely an inverse-electron demand Diels-Alder cycloaddition reaction using an incorporated N-acetylglucosamine analog, and a strain-promoted azide-alkyne click reaction. All evaluated azido-monosaccharide analogs were observed to be non-toxic at the used concentrations under normal growth conditions. Our results for the metabolic incorporation and fluorescent labeling of these azido-monosaccharide analogs expand the possibilities for studying plant glycans by direct imaging. Overall we successfully evaluated five azido-monosaccharide analogs for their ability to be metabolically incorporated in Arabidopsis roots and their imaging after fluorescent labeling. This expands

  14. Site-Specific N-Glycosylation of Recombinant Pentameric and Hexameric Human IgM

    NASA Astrophysics Data System (ADS)

    Moh, Edward S. X.; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.

    2016-07-01

    Glycosylation is known to play an important role in IgG antibody structure and function. Polymeric IgM, the largest known antibody in humans, displays five potential N-glycosylation sites on each heavy chain monomer. IgM can exist as a pentamer with a connecting singly N-glycosylated J-chain (with a total of 51 glycosylation sites) or as a hexamer (60 glycosylation sites). In this study, the N-glycosylation of recombinant pentameric and hexameric IgM produced by the same human cell type and culture conditions was site-specifically profiled by RP-LC-CID/ETD-MS/MS using HILIC-enriched tryptic and GluC glycopeptides. The occupancy of all putative N-glycosylation sites on the pentameric and hexameric IgM were able to be determined. Distinct glycosylation differences were observed between each of the five N-linked sites on the IgM heavy chains. While Asn171, Asn332, and Asn395 all had predominantly complex type glycans, differences in glycan branching and sialylation were observed between the sites. Asn563, a high mannose-rich glycosylation site that locates in the center of the IgM polymer, was only approximately 60% occupied in both the pentameric and hexameric IgM forms, with a difference in relative abundance of the glycan structures between the pentamer and hexamer. This study highlights the information obtained by characterization of the site-heterogeneity of a highly glycosylated protein of high molecular mass with quaternary structure, revealing differences that would not be seen by global glycan or deglycosylated peptide profiling.

  15. Glycans: bioactive signals decoded by lectins.

    PubMed

    Gabius, Hans-Joachim

    2008-12-01

    The glycan part of cellular glycoconjugates affords a versatile means to build biochemical signals. These oligosaccharides have an exceptional talent in this respect. They surpass any other class of biomolecule in coding capacity within an oligomer (code word). Four structural factors account for this property: the potential for variability of linkage points, anomeric position and ring size as well as the aptitude for branching (first and second dimensions of the sugar code). Specific intermolecular recognition is favoured by abundant potential for hydrogen/co-ordination bonds and for C-H/pi-interactions. Fittingly, an array of protein folds has developed in evolution with the ability to select certain glycans from the natural diversity. The thermodynamics of this reaction profits from the occurrence of these ligands in only a few energetically favoured conformers, comparing favourably with highly flexible peptides (third dimension of the sugar code). Sequence, shape and local aspects of glycan presentation (e.g. multivalency) are key factors to regulate the avidity of lectin binding. At the level of cells, distinct glycan determinants, a result of enzymatic synthesis and dynamic remodelling, are being defined as biomarkers. Their presence gains a functional perspective by co-regulation of the cognate lectin as effector, for example in growth regulation. The way to tie sugar signal and lectin together is illustrated herein for two tumour model systems. In this sense, orchestration of glycan and lectin expression is an efficient means, with far-reaching relevance, to exploit the coding potential of oligosaccharides physiologically and medically.

  16. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors

    PubMed Central

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-01-01

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn91 in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus. PMID:22642577

  17. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

    PubMed

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-06-15

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.

  18. GLYDE-II: The GLYcan data exchange format

    PubMed Central

    Ranzinger, Rene; Kochut, Krys J.; Miller, John A.; Eavenson, Matthew; Lütteke, Thomas; York, William S.

    2017-01-01

    Summary The GLYcan Data Exchange (GLYDE) standard has been developed for the representation of the chemical structures of monosaccharides, glycans and glycoconjugates using a connection table formalism formatted in XML. This format allows structures, including those that do not exist in any database, to be unambiguously represented and shared by diverse computational tools. GLYDE implements a partonomy model based on human language along with rules that provide consistent structural representations, including a robust namespace for specifying monosaccharides. This approach facilitates the reuse of data processing software at the level of granularity that is most appropriate for extraction of the desired information. GLYDE-II has already been used as a key element of several glycoinformatics tools. The philosophical and technical underpinnings of GLYDE-II and recent implementation of its enhanced features are described. PMID:28955652

  19. Chitin-Like Molecules Associate with Cryptococcus neoformans Glucuronoxylomannan To Form a Glycan Complex with Previously Unknown Properties

    PubMed Central

    Ramos, Caroline L.; Fonseca, Fernanda L.; Rodrigues, Jessica; Guimarães, Allan J.; Cinelli, Leonardo P.; Miranda, Kildare; Nimrichter, Leonardo; Casadevall, Arturo; Travassos, Luiz R.

    2012-01-01

    In prior studies, we demonstrated that glucuronoxylomannan (GXM), the major capsular polysaccharide of the fungal pathogen Cryptococcus neoformans, interacts with chitin oligomers at the cell wall-capsule interface. The structural determinants regulating these carbohydrate-carbohydrate interactions, as well as the functions of these structures, have remained unknown. In this study, we demonstrate that glycan complexes composed of chitooligomers and GXM are formed during fungal growth and macrophage infection by C. neoformans. To investigate the required determinants for the assembly of chitin-GXM complexes, we developed a quantitative scanning electron microscopy-based method using different polysaccharide samples as inhibitors of the interaction of chitin with GXM. This assay revealed that chitin-GXM association involves noncovalent bonds and large GXM fibers and depends on the N-acetyl amino group of chitin. Carboxyl and O-acetyl groups of GXM are not required for polysaccharide-polysaccharide interactions. Glycan complex structures composed of cryptococcal GXM and chitin-derived oligomers were tested for their ability to induce pulmonary cytokines in mice. They were significantly more efficient than either GXM or chitin oligomers alone in inducing the production of lung interleukin 10 (IL-10), IL-17, and tumor necrosis factor alpha (TNF-α). These results indicate that association of chitin-derived structures with GXM through their N-acetyl amino groups generates glycan complexes with previously unknown properties. PMID:22562469

  20. Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells.

    PubMed

    Li, Yun; Fu, Jianxin; Ling, Yun; Yago, Tadayuki; McDaniel, J Michael; Song, Jianhua; Bai, Xia; Kondo, Yuji; Qin, Yannan; Hoover, Christopher; McGee, Samuel; Shao, Bojing; Liu, Zhenghui; Sonon, Roberto; Azadi, Parastoo; Marth, Jamey D; McEver, Rodger P; Ruan, Changgeng; Xia, Lijun

    2017-08-01

    Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1 -/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1 -/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1 -/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1 -/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1 -/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.

  1. Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank.

    PubMed

    Park, Sang-Jun; Lee, Jumin; Patel, Dhilon S; Ma, Hongjing; Lee, Hui Sun; Jo, Sunhwan; Im, Wonpil

    2017-10-01

    Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse. Unfortunately, current PDB files do not provide exact annotations for most carbohydrate derivatives and more than 50% of PDB glycan chains have at least one carbohydrate derivative that could not be correctly recognized by the original Glycan Reader. Glycan Reader has been improved and now identifies most sugar types and chemical modifications (including various glycolipids) in the PDB, and both PDB and PDBx/mmCIF formats are supported. CHARMM-GUI Glycan Reader is updated to generate the simulation system and input of various glycoconjugates with most sugar types and chemical modifications. It also offers a new functionality to edit the glycan structures through addition/deletion/modification of glycosylation types, sugar types, chemical modifications, glycosidic linkages, and anomeric states. The simulation system and input files can be used for CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Glycan Fragment Database in GlycanStructure.Org is also updated to provide an intuitive glycan sequence search tool for complex glycan structures with various chemical modifications in the PDB. http://www.charmm-gui.org/input/glycan and http://www.glycanstructure.org. wonpil@lehigh.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. The Glycan Microarray Story from Construction to Applications.

    PubMed

    Hyun, Ji Young; Pai, Jaeyoung; Shin, Injae

    2017-04-18

    Not only are glycan-mediated binding processes in cells and organisms essential for a wide range of physiological processes, but they are also implicated in various pathological processes. As a result, elucidation of glycan-associated biomolecular interactions and their consequences is of great importance in basic biological research and biomedical applications. In 2002, we and others were the first to utilize glycan microarrays in efforts aimed at the rapid analysis of glycan-associated recognition events. Because they contain a number of glycans immobilized in a dense and orderly manner on a solid surface, glycan microarrays enable multiple parallel analyses of glycan-protein binding events while utilizing only small amounts of glycan samples. Therefore, this microarray technology has become a leading edge tool in studies aimed at elucidating roles played by glycans and glycan binding proteins in biological systems. In this Account, we summarize our efforts on the construction of glycan microarrays and their applications in studies of glycan-associated interactions. Immobilization strategies of functionalized and unmodified glycans on derivatized glass surfaces are described. Although others have developed immobilization techniques, our efforts have focused on improving the efficiencies and operational simplicity of microarray construction. The microarray-based technology has been most extensively used for rapid analysis of the glycan binding properties of proteins. In addition, glycan microarrays have been employed to determine glycan-protein interactions quantitatively, detect pathogens, and rapidly assess substrate specificities of carbohydrate-processing enzymes. More recently, the microarrays have been employed to identify functional glycans that elicit cell surface lectin-mediated cellular responses. Owing to these efforts, it is now possible to use glycan microarrays to expand the understanding of roles played by glycans and glycan binding proteins in

  3. Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation.

    PubMed

    Harada, Yoichiro; Buser, Reto; Ngwa, Elsy M; Hirayama, Hiroto; Aebi, Markus; Suzuki, Tadashi

    2013-11-08

    Asparagine (N)-linked glycosylation regulates numerous cellular activities, such as glycoprotein quality control, intracellular trafficking, and cell-cell communications. In eukaryotes, the glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), a multimembrane protein complex that is localized in the endoplasmic reticulum (ER). During N-glycosylation in the ER, the protein-unbound form of oligosaccharides (free oligosaccharides; fOSs), which is structurally related to N-glycan, is released into the ER lumen. However, the enzyme responsible for this process remains unidentified. Here, we demonstrate that eukaryotic OST generates fOSs. Biochemical and genetic analyses using mutant strains of Saccharomyces cerevisiae revealed that the generation of fOSs is tightly correlated with the N-glycosylation activity of OST. Furthermore, we present evidence that the purified OST complex can generate fOSs by hydrolyzing dolichol-linked oligosaccharide, the glycan donor substrate for N-glycosylation. The heterologous expression of a single subunit of OST from the protozoan Leishmania major in S. cerevisiae demonstrated that this enzyme functions both in N-glycosylation and generation of fOSs. This study provides insight into the mechanism of PNGase-independent formation of fOSs.

  4. Profiling of Glycan Receptors for Minute Virus of Mice in Permissive Cell Lines Towards Understanding the Mechanism of Cell Recognition

    PubMed Central

    Halder, Sujata; Cotmore, Susan; Heimburg-Molinaro, Jamie; Smith, David F.; Cummings, Richard D.; Chen, Xi; Trollope, Alana J.; North, Simon J.; Haslam, Stuart M.; Dell, Anne; Tattersall, Peter; McKenna, Robert; Agbandje-McKenna, Mavis

    2014-01-01

    The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3′SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3′SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3′SIA-LeX identified in a previous glycan microarray screen. PMID:24475195

  5. Glycan reductive isotope labeling for quantitative glycomics.

    PubMed

    Xia, Baoyun; Feasley, Christa L; Sachdev, Goverdhan P; Smith, David F; Cummings, Richard D

    2009-04-15

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [(12)C(6)]aniline and [(13)C(6)]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.

  6. Determination of N-linked glycosylation in viral glycoproteins by negative ion mass spectrometry and ion mobility

    PubMed Central

    Bitto, David; Harvey, David J.; Halldorsson, Steinar; Doores, Katie J.; Pritchard, Laura K.; Huiskonen, Juha T.; Bowden, Thomas A.; Crispin, Max

    2016-01-01

    Summary Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans. PMID:26169737

  7. Development of a data independent acquisition mass spectrometry workflow to enable glycopeptide analysis without predefined glycan compositional knowledge.

    PubMed

    Lin, Chi-Hung; Krisp, Christoph; Packer, Nicolle H; Molloy, Mark P

    2018-02-10

    Glycoproteomics investigates glycan moieties in a site specific manner to reveal the functional roles of protein glycosylation. Identification of glycopeptides from data-dependent acquisition (DDA) relies on high quality MS/MS spectra of glycopeptide precursors and often requires manual validation to ensure confident assignments. In this study, we investigated pseudo-MRM (MRM-HR) and data-independent acquisition (DIA) as alternative acquisition strategies for glycopeptide analysis. These approaches allow data acquisition over the full MS/MS scan range allowing data re-analysis post-acquisition, without data re-acquisition. The advantage of MRM-HR over DDA for N-glycopeptide detection was demonstrated from targeted analysis of bovine fetuin where all three N-glycosylation sites were detected, which was not the case with DDA. To overcome the duty cycle limitation of MRM-HR acquisition needed for analysis of complex samples such as plasma we trialed DIA. This allowed development of a targeted DIA method to identify N-glycopeptides without pre-defined knowledge of the glycan composition, thus providing the potential to identify N-glycopeptides with unexpected structures. This workflow was demonstrated by detection of 59 N-glycosylation sites from 41 glycoproteins from a HILIC enriched human plasma tryptic digest. 21 glycoforms of IgG1 glycopeptides were identified including two truncated structures that are rarely reported. We developed a data-independent mass spectrometry workflow to identify specific glycopeptides from complex biological mixtures. The novelty is that this approach does not require glycan composition to be pre-defined, thereby allowing glycopeptides carrying unexpected glycans to be identified. This is demonstrated through the analysis of immunoglobulins in human plasma where we detected two IgG1 glycoforms that are rarely observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A multi-method approach toward de novo glycan characterization: a Man-5 case study.

    PubMed

    Prien, Justin M; Prater, Bradley D; Cockrill, Steven L

    2010-05-01

    Regulatory agencies' expectations for biotherapeutic approval are becoming more stringent with regard to product characterization, where minor species as low as 0.1% of a given profile are typically identified. The mission of this manuscript is to demonstrate a multi-method approach toward de novo glycan characterization and quantitation, including minor species at or approaching the 0.1% benchmark. Recently, unexpected isomers of the Man(5)GlcNAc(2) (M(5)) were reported (Prien JM, Ashline DJ, Lapadula AJ, Zhang H, Reinhold VN. 2009. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap mass spectrometry (MS). J Am Soc Mass Spectrom. 20:539-556). In the current study, quantitative analysis of these isomers found in commercial M(5) standard demonstrated that they are in low abundance (<1% of the total) and therefore an exemplary "litmus test" for minor species characterization. A simple workflow devised around three core well-established analytical procedures: (1) fluorescence derivatization; (2) online rapid resolution reversed-phase separation coupled with negative-mode sequential mass spectrometry (RRRP-(-)-MS(n)); and (3) permethylation derivatization with nanospray sequential mass spectrometry (NSI-MS(n)) provides comprehensive glycan structural determination. All methods have limitations; however, a multi-method workflow is an at-line stopgap/solution which mitigates each method's individual shortcoming(s) providing greater opportunity for more comprehensive characterization. This manuscript is the first to demonstrate quantitative chromatographic separation of the M(5) isomers and the use of a commercially available stable isotope variant of 2-aminobenzoic acid to detect and chromatographically resolve multiple M(5) isomers in bovine ribonuclease B. With this multi-method approach, we have the capabilities to comprehensively characterize a biotherapeutic's glycan array in a de novo manner, including structural isomers at >/=0

  9. Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells

    PubMed Central

    Li, Yun; Fu, Jianxin; Ling, Yun; Yago, Tadayuki; McDaniel, J. Michael; Song, Jianhua; Bai, Xia; Kondo, Yuji; Qin, Yannan; Hoover, Christopher; McGee, Samuel; Shao, Bojing; Liu, Zhenghui; Sonon, Roberto; Azadi, Parastoo; Marth, Jamey D.; McEver, Rodger P.; Ruan, Changgeng; Xia, Lijun

    2017-01-01

    Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1−/−). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1−/− mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1−/− platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell–Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1−/− platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1−/− platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver. PMID:28716912

  10. Shifted Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65 results in formation of high mannose N-glycans in aggressive prostate cancer cells.

    PubMed

    Bhat, Ganapati; Hothpet, Vishwanath-Reddy; Lin, Ming-Fong; Cheng, Pi-Wan

    2017-11-01

    There is a pressing need for biomarkers that can distinguish indolent from aggressive prostate cancer to prevent over-treatment of patients with indolent tumor. Golgi targeting of glycosyltransferases was characterized by confocal microscopy after knockdown of GM130, giantin, or both. N-glycans on a trans-Golgi enzyme β4galactosyltransferase-1 isolated by immunoprecipitation from androgen-sensitive and independent prostate cancer cells were determined by matrix-assisted laser desorption-time of flight-mass spectrometry. In situ proximity ligation assay was employed to determine co-localization of (a) α-mannosidase IA, an enzyme required for processing Man 8 GlcNAc 2 down to Man 5 GlcNAc 2 to enable synthesis of complex-type N-glycans, with giantin, GM130, and GRASP65, and (b) trans-Golgi glycosyltransferases with high mannose N-glycans terminated with α3-mannose. Defective giantin in androgen-independent prostate cancer cells results in a shift of Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65. Consequently, trans-Golgi enzymes and cell surface glycoproteins acquire high mannose N-glycans, which are absent in cells with functional giantin. In situ proximity ligation assays of co-localization of α-mannosidase IA with GM130 and GRASP65, and trans-Golgi glycosyltransferases with high mannose N-glycans are negative in androgen-sensitive LNCaP C-33 cells but positive in androgen-independent LNCaP C-81 and DU145 cells, and LNCaP C-33 cells devoid of giantin. In situ proximity ligation assays of Golgi localization of α-mannosidase IA at giantin versus GM130-GRASP65 site, and absence or presence of N-glycans terminated with α3-mannose on trans-Golgi glycosyltransferases may be useful for distinguishing indolent from aggressive prostate cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Targeted Mass Spectrometric Approach for Biomarker Discovery and Validation with Nonglycosylated Tryptic Peptides from N-linked Glycoproteins in Human Plasma*

    PubMed Central

    Lee, Ju Yeon; Kim, Jin Young; Park, Gun Wook; Cheon, Mi Hee; Kwon, Kyung-Hoon; Ahn, Yeong Hee; Moon, Myeong Hee; Lee, Hyoung–Joo; Paik, Young Ki; Yoo, Jong Shin

    2011-01-01

    A simple mass spectrometric approach for the discovery and validation of biomarkers in human plasma was developed by targeting nonglycosylated tryptic peptides adjacent to glycosylation sites in an N-linked glycoprotein, one of the most important biomarkers for early detection, prognoses, and disease therapies. The discovery and validation of novel biomarkers requires complex sample pretreatment steps, such as depletion of highly abundant proteins, enrichment of desired proteins, or the development of new antibodies. The current study exploited the steric hindrance of glycan units in N-linked glycoproteins, which significantly affects the efficiency of proteolytic digestion if an enzymatically active amino acid is adjacent to the N-linked glycosylation site. Proteolytic digestion then results in quantitatively different peptide products in accordance with the degree of glycosylation. The effect of glycan steric hindrance on tryptic digestion was first demonstrated using alpha-1-acid glycoprotein (AGP) as a model compound versus deglycosylated alpha-1-acid glycoprotein. Second, nonglycosylated tryptic peptide biomarkers, which generally show much higher sensitivity in mass spectrometric analyses than their glycosylated counterparts, were quantified in human hepatocellular carcinoma plasma using a label-free method with no need for N-linked glycoprotein enrichment. Finally, the method was validated using a multiple reaction monitoring analysis, demonstrating that the newly discovered nonglycosylated tryptic peptide targets were present at different levels in normal and hepatocellular carcinoma plasmas. The area under the receiver operating characteristic curve generated through analyses of nonglycosylated tryptic peptide from vitronectin precursor protein was 0.978, the highest observed in a group of patients with hepatocellular carcinoma. This work provides a targeted means of discovering and validating nonglycosylated tryptic peptides as biomarkers in human plasma

  12. Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering.

    PubMed

    Yu, Xiaojie; Marshall, Michael J E; Cragg, Mark S; Crispin, Max

    2017-06-01

    Antibody-based therapeutics has emerged as a major tool in cancer treatment. Guided by the superb specificity of the antibody variable domain, it allows the precise targeting of tumour markers. Recently, eliciting cellular effector functions, mediated by the Fc domain, has gained traction as a means by which to generate more potent antibody therapeutics. Extensive mutagenesis studies of the Fc protein backbone has enabled the generation of Fc variants that more optimally engage the Fcγ receptors known to mediate cellular effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and cellular phagocytosis. In addition to the protein backbone, the homodimeric Fc domain contains two opposing N-linked glycans, which represent a further point of potential immunomodulation, independent of the Fc protein backbone. For example, a lack of core fucose usually attached to the IgG Fc glycan leads to enhanced ADCC activity, whereas a high level of terminal sialylation is associated with reduced inflammation. Significant growth in knowledge of Fc glycosylation over the last decade, combined with advancement in genetic engineering, has empowered glyco-engineering to fine-tune antibody therapeutics. This has culminated in the approval of two glyco-engineered antibodies for cancer therapy: the anti-CCR4 mogamulizumab approved in 2012 and the anti-CD20 obinutuzumab in 2013. We discuss here the technological platforms for antibody glyco-engineering and review the current clinical landscape of glyco-engineered antibodies.

  13. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis.

    PubMed

    Giménez, Estela; Balmaña, Meritxell; Figueras, Joan; Fort, Esther; de Bolós, Carme; Sanz-Nebot, Victòria; Peracaula, Rosa; Rizzi, Andreas

    2015-03-25

    In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [(12)C]- and [(13)C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α1-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in hAGP as a candidate structure worth to be corroborated by an extended study including more clinical cases; especially those with chronic pancreatitis and initial stages of pancreatic cancer. Importantly, the results demonstrate that the presented methodology combining an enrichment of a target protein by IAC with isotope coded relative quantitation of N-glycans can be successfully used for

  14. Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells.

    PubMed

    Srikrishna, G; Panneerselvam, K; Westphal, V; Abraham, V; Varki, A; Freeze, H H

    2001-04-01

    We recently showed that a class of novel carboxylated N:-glycans was constitutively expressed on endothelial cells. Activated, but not resting, neutrophils expressed binding sites for the novel glycans. We also showed that a mAb against these novel glycans (mAbGB3.1) inhibited leukocyte extravasation in a murine model of peritoneal inflammation. To identify molecules that mediated these interactions, we isolated binding proteins from bovine lung by their differential affinity for carboxylated or neutralized glycans. Two leukocyte calcium-binding proteins that bound in a carboxylate-dependent manner were identified as S100A8 and annexin I. An intact N terminus of annexin I and heteromeric assembly of S100A8 with S100A9 (another member of the S100 family) appeared necessary for this interaction. A mAb to S100A9 blocked neutrophil binding to immobilized carboxylated glycans. Purified human S100A8/A9 complex and recombinant human annexin I showed carboxylate-dependent binding to immobilized bovine lung carboxylated glycans and recognized a subset of mannose-labeled endothelial glycoproteins immunoprecipitated by mAbGB3.1. Saturable binding of S100A8/A9 complex to endothelial cells was also blocked by mAbGB3.1. These results suggest that the carboxylated glycans play important roles in leukocyte trafficking by interacting with proteins known to modulate extravasation.

  15. Diversity within the O-linked protein glycosylation systems of acinetobacter species.

    PubMed

    Scott, Nichollas E; Kinsella, Rachel L; Edwards, Alistair V G; Larsen, Martin R; Dutta, Sucharita; Saba, Julian; Foster, Leonard J; Feldman, Mario F

    2014-09-01

    The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison of the 26 glycoproteins identified revealed that different A. baumannii strains target similar protein substrates, both in characteristics of the sites of O-glycosylation and protein identity. Surprisingly, glycan micro-heterogeneity was also observed within nearly all isolates examined demonstrating glycan heterogeneity is a widespread phenomena in Acinetobacter O-linked glycosylation. By comparing the 11 main glycoforms and over 20 alternative glycoforms characterized within the 15 strains, trends within the glycan utilized for O-linked glycosylation could be observed. These trends reveal Acinetobacter O-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans with similar characteristics across all A. baumannii. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  17. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  18. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and dried cell walls of the yeast...

  19. Structural analysis of N-linked carbohydrate chains of funnel web spider (Agelenopsis aperta) venom peptide isomerase.

    PubMed

    Shikata, Y; Ohe, H; Mano, N; Kuwada, M; Asakawa, N

    1998-06-01

    The structure of the N-linked carbohydrate chains of peptide isomerase from the venom of the funnel web spider (Agelenopsis aperta) has been analyzed. Carbohydrates were released from peptide isomerase by hydrazinolysis and reductively aminated with 2-aminopyridine. The fluorescent derivatives were purified by phenol/chloroform extraction, followed by size-exclusion HPLC. The structure of the purified pyridylamino (PA-) carbohydrate chains were analyzed by a combination of two-dimensional HPLC mapping, sugar composition analysis, sequential exoglycosidase digestions, and mass spectrometry. The peptide isomerase contains six kinds of N-linked carbohydrate chains of truncated high-mannose type, with a fucose alpha 1-6 linked to the reducing N-acetylglucosamine in approximately 80% of them.

  20. The sugar code: Why glycans are so important.

    PubMed

    Gabius, Hans-Joachim

    2018-02-01

    The cell surface is the platform for presentation of biochemical signals that are required for intercellular communication. Their profile necessarily needs to be responsive to internal and external factors in a highly dynamic manner. The structural features of the signals must meet the criterion of high-density information coding in a minimum of space. Thus, only biomolecules that can generate many different oligomers ('words') from few building blocks ('letters') qualify to meet this challenge. Examining the respective properties of common biocompounds that form natural oligo- and polymers comparatively, starting with nucleotides and amino acids (the first and second alphabets of life), comes up with sugars as clear frontrunner. The enzymatic machinery for the biosynthesis of sugar chains can indeed link monosaccharides, the letters of the third alphabet of life, in a manner to reach an unsurpassed number of oligomers (complex carbohydrates or glycans). Fittingly, the resulting glycome of a cell can be likened to a fingerprint. Conjugates of glycans with proteins and sphingolipids (glycoproteins and glycolipids) are ubiquitous in Nature. This implies a broad (patho)physiologic significance. By looking at the signals, at the writers and the erasers of this information as well as its readers and ensuing consequences, this review intends to introduce a broad readership to the principles of the concept of the sugar code. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Conformational Heterogeneity of the HIV Envelope Glycan Shield.

    PubMed

    Yang, Mingjun; Huang, Jing; Simon, Raphael; Wang, Lai-Xi; MacKerell, Alexander D

    2017-06-30

    To better understand the conformational properties of the glycan shield covering the surface of the HIV gp120/gp41 envelope (Env) trimer, and how the glycan shield impacts the accessibility of the underlying protein surface, we performed enhanced sampling molecular dynamics (MD) simulations of a model glycosylated HIV Env protein and related systems. Our simulation studies revealed a conformationally heterogeneous glycan shield with a network of glycan-glycan interactions more extensive than those observed to date. We found that partial preorganization of the glycans potentially favors binding by established broadly neutralizing antibodies; omission of several specific glycans could increase the accessibility of other glycans or regions of the protein surface to antibody or CD4 receptor binding; the number of glycans that can potentially interact with known antibodies is larger than that observed in experimental studies; and specific glycan conformations can maximize or minimize interactions with individual antibodies. More broadly, the enhanced sampling MD simulations described here provide a valuable tool to guide the engineering of specific Env glycoforms for HIV vaccine design.

  2. Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.

    The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced highmore » titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens.« less

  3. Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies

    DOE PAGES

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.; ...

    2016-06-23

    The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced highmore » titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens.« less

  4. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  5. The underestimated N-glycomes of lepidopteran species

    PubMed Central

    Stanton, Rhiannon; Hykollari, Alba; Eckmair, Barbara; Malzl, Daniel; Dragosits, Martin; Palmberger, Dieter; Wang, Ping; Wilson, Iain B. H.; Paschinger, Katharina

    2017-01-01

    Background Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. Methods Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. Results We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. Conclusion The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. Significance The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production. PMID:28077298

  6. GLYCAN REDUCTIVE ISOTOPE LABELING (GRIL) FOR QUANTITATIVE GLYCOMICS

    PubMed Central

    Xia, Baoyun; Feasley, Christa L.; Sachdev, Goverdhan P.; Smith, David F.; Cummings, Richard D.

    2009-01-01

    Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed Glycan Reductive Isotope Labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [12C6]-aniline and [13C6]-aniline. These dual-labeled aniline-tagged glycans can be recovered by reversed-phase chromatography and quantified based on UV-absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins using this method. This technique allows for linear, relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of Glycomics. PMID:19454239

  7. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates

    PubMed Central

    Yoshino, Timothy P.; Wu, Xiao-Jun; Gonzalez, Laura A.; Hokke, Cornelis H.

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval S. mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins, as well as

  8. Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins

    PubMed Central

    de Val, Natalia; Montefiori, David; Tomaras, Georgia D.; Shen, Xiaoying; Kalyuzhniy, Oleksandr; Sanders, Rogier W.; McCoy, Laura E.; Moore, John P.; Ward, Andrew B.

    2018-01-01

    Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an

  9. Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies.

    PubMed

    Pochechueva, Tatiana; Jacob, Francis; Goldstein, Darlene R; Huflejt, Margaret E; Chinarev, Alexander; Caduff, Rosemarie; Fink, Daniel; Hacker, Neville; Bovin, Nicolai V; Heinzelmann-Schwarz, Viola

    2011-12-01

    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P(1), a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P(1) antibody binding profiles displayed much lower concordance. Whilst anti-P(1) antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p=0.004), we got only similar results using SA (p=0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection. © The Author(s) 2011. This article is published with open access at Springerlink.com

  10. When galectins recognize glycans: from biochemistry to physiology and back again.

    PubMed

    Di Lella, Santiago; Sundblad, Victoria; Cerliani, Juan P; Guardia, Carlos M; Estrin, Dario A; Vasta, Gerardo R; Rabinovich, Gabriel A

    2011-09-20

    In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings. © 2011 American Chemical Society

  11. Relative Quantification and Higher-Order Modeling of the Plasma Glycan Cancer Burden Ratio in Ovarian Cancer Case-Control Samples

    PubMed Central

    Hecht, Elizabeth S.; Scholl, Elizabeth H.; Walker, S. Hunter; Taylor, Amber D.; Cliby, William A.; Motsinger-Reif, Alison A.; Muddiman, David C.

    2016-01-01

    An early-stage, population-wide biomarker for ovarian cancer (OVC) is essential to reverse its high mortality rate. Aberrant glycosylation by OVC has been reported, but studies have yet to identify an N-glycan with sufficiently high specificity. We curated a human biorepository of 82 case-control plasma samples, with 27%, 12%, 46%, and 15% falling across stages I–IV, respectively. For relatve quantitation, glycans were analyzed by the individuality normalization when labeling with glycan hydrazide tags (INLIGHT) strategy for enhanced electrospray ionization, MS/MS analysis. Sixty-three glycan cancer burden ratios (GBRs), defined as the log10 ratio of the case-control extracted ion chromatogram abundances, were calculated above the limit of detection. The final GBR models, built using stepwise forward regression, included three significant terms: OVC stage, normalized mean GBR, and tag chemical purity; glycan class, fucosylation, or sialylation were not significant variables. After Bonferroni correction, seven N-glycans were identified as significant (p < 0.05), and after false discovery rate correction, an additional four glycans were determined to be significant (p < 0.05), with one borderline (p = 0.05). For all N-glycans, the vectors of the effects from stages II–IV were sequentially reversed, suggesting potential biological changes in OVC morphology or in host response. PMID:26347193

  12. Anti-GM1 antibodies as a model of the immune response to self-glycans.

    PubMed

    Nores, Gustavo A; Lardone, Ricardo D; Comín, Romina; Alaniz, María E; Moyano, Ana L; Irazoqui, Fernando J

    2008-03-01

    Glycans are a class of molecules with high structural variability, frequently found in the plasma membrane facing the extracellular space. Because of these characteristics, glycans are often considered as recognition molecules involved in cell social functions, and as targets of pathogenic factors. Induction of anti-glycan antibodies is one of the early events in immunological defense against bacteria that colonize the body. Because of this natural infection, antibodies recognizing a variety of bacterial glycans are found in sera of adult humans and animals. The immune response to glycans is restricted by self-tolerance, and no antibodies to self-glycans should exist in normal subjects. However, antibodies recognizing structures closely related to self-glycans do exist, and can lead to production of harmful anti-self antibodies. Normal human sera contain low-affinity anti-GM1 IgM-antibodies. Similar antibodies with higher affinity or different isotype are found in some neuropathy patients. Two hypotheses have been developed to explain the origin of disease-associated anti-GM1 antibodies. According to the "molecular mimicry" hypothesis, similarity between GM1 and Campylobacter jejuni lipopolysaccharide carrying a GM1-like glycan is the cause of Guillain-Barré syndrome associated with anti-GM1 IgG-antibodies. According to the "binding site drift" hypothesis, IgM-antibodies associated with disease originate through changes in the binding site of normally occurring anti-GM1 antibodies. We now present an "integrated" hypothesis, combining the "mimicry" and "drift" concepts, which satisfactorily explains most of the published data on anti-GM1 antibodies.

  13. Antibody Evasion by a Gammaherpesvirus O-Glycan Shield

    PubMed Central

    Machiels, Bénédicte; Lété, Céline; Guillaume, Antoine; Mast, Jan; Stevenson, Philip G.; Vanderplasschen, Alain; Gillet, Laurent

    2011-01-01

    All gammaherpesviruses encode a major glycoprotein homologous to the Epstein-Barr virus gp350. These glycoproteins are often involved in cell binding, and some provide neutralization targets. However, the capacity of gammaherpesviruses for long-term transmission from immune hosts implies that in vivo neutralization is incomplete. In this study, we used Bovine Herpesvirus 4 (BoHV-4) to determine how its gp350 homolog - gp180 - contributes to virus replication and neutralization. A lack of gp180 had no impact on the establishment and maintenance of BoHV-4 latency, but markedly sensitized virions to neutralization by immune sera. Antibody had greater access to gB, gH and gL on gp180-deficient virions, including neutralization epitopes. Gp180 appears to be highly O-glycosylated, and removing O-linked glycans from virions also sensitized them to neutralization. It therefore appeared that gp180 provides part of a glycan shield for otherwise vulnerable viral epitopes. Interestingly, this O-glycan shield could be exploited for neutralization by lectins and carbohydrate-specific antibody. The conservation of O-glycosylation sites in all gp350 homologs suggests that this is a general evasion mechanism that may also provide a therapeutic target. PMID:22114560

  14. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics.

    PubMed

    Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L

    2010-02-15

    Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.

  15. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops.

    PubMed

    Kolchinsky, P; Kiprilov, E; Bartley, P; Rubinstein, R; Sodroski, J

    2001-04-01

    The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.

  16. Azahar: a PyMOL plugin for construction, visualization and analysis of glycan molecules

    NASA Astrophysics Data System (ADS)

    Arroyuelo, Agustina; Vila, Jorge A.; Martin, Osvaldo A.

    2016-08-01

    Glycans are key molecules in many physiological and pathological processes. As with other molecules, like proteins, visualization of the 3D structures of glycans adds valuable information for understanding their biological function. Hence, here we introduce Azahar, a computing environment for the creation, visualization and analysis of glycan molecules. Azahar is implemented in Python and works as a plugin for the well known PyMOL package (Schrodinger in The PyMOL molecular graphics system, version 1.3r1, 2010). Besides the already available visualization and analysis options provided by PyMOL, Azahar includes 3 cartoon-like representations and tools for 3D structure caracterization such as a comformational search using a Monte Carlo with minimization routine and also tools to analyse single glycans or trajectories/ensembles including the calculation of radius of gyration, Ramachandran plots and hydrogen bonds. Azahar is freely available to download from http://www.pymolwiki.org/index.php/Azahar and the source code is available at https://github.com/agustinaarroyuelo/Azahar.

  17. Functional Glycomic Analysis of Human Milk Glycans Reveals the Presence of Virus Receptors and Embryonic Stem Cell Biomarkers*

    PubMed Central

    Yu, Ying; Mishra, Shreya; Song, Xuezheng; Lasanajak, Yi; Bradley, Konrad C.; Tappert, Mary M.; Air, Gillian M.; Steinhauer, David A.; Halder, Sujata; Cotmore, Susan; Tattersall, Peter; Agbandje-McKenna, Mavis; Cummings, Richard D.; Smith, David F.

    2012-01-01

    Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens. PMID:23115247

  18. The N Domain of Human Angiotensin-I-converting Enzyme

    PubMed Central

    Anthony, Colin S.; Corradi, Hazel R.; Schwager, Sylva L. U.; Redelinghuys, Pierre; Georgiadis, Dimitris; Dive, Vincent; Acharya, K. Ravi; Sturrock, Edward D.

    2010-01-01

    Angiotensin-I-converting enzyme (ACE) plays a critical role in the regulation of blood pressure through its central role in the renin-angiotensin and kallikrein-kinin systems. ACE contains two domains, the N and C domains, both of which are heavily glycosylated. Structural studies of ACE have been fraught with severe difficulties because of surface glycosylation of the protein. In order to investigate the role of glycosylation in the N domain and to create suitable forms for crystallization, we have investigated the importance of the 10 potential N-linked glycan sites using enzymatic deglycosylation, limited proteolysis, and mass spectrometry. A number of glycosylation mutants were generated via site-directed mutagenesis, expressed in CHO cells, and analyzed for enzymatic activity and thermal stability. At least eight of 10 of the potential glycan sites are glycosylated; three C-terminal sites were sufficient for expression of active N domain, whereas two N-terminal sites are important for its thermal stability. The minimally glycosylated Ndom389 construct was highly suitable for crystallization studies. The structure in the presence of an N domain-selective phosphinic inhibitor RXP407 was determined to 2.0 Å resolution. The Ndom389 structure revealed a hinge region that may contribute to the breathing motion proposed for substrate binding. PMID:20826823

  19. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tongqing; Doria-Rose, Nicole A.; Cheng, Cheng

    While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralizationmore » character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.« less

  20. Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening

    PubMed Central

    Priem, Bernard; Gross, Kenneth C.

    1992-01-01

    The oligosaccharide glycans mannosylα1-6(mannosylα1-3)mannosylα1-6(mannosylα1-3) mannosylβ1-4-N-acetylglucosamine and mannosylα1-6(mannosylα1-3)(xylosylβ1-2) mannosylβ1-4-N-acetylglucosaminyl(fucosylα1-3) N-acetylglucosamine were infiltrated into mature green tomato fruit (Lycopersicon esculentum Mill., cv Rutgers). Coinfiltration of 1 nanogram per gram fresh weight of the glycans with 40 micrograms per gram fresh weight galactose, a level of galactose insufficient to promote ripening, stimulated ripening as measured by red coloration and ethylene production. PMID:16668644

  1. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Zhang, Xing; Schocker, Nathaniel S.

    Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules such as proteins and lipids, and alter their properties and functions, so understanding the effect glycans have on cellular systems is essential. However the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycanmore » standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS.« less

  2. The Interaction of N-Glycans in Fcγ Receptor I α-Chain with Escherichia coli K1 Outer Membrane Protein A for Entry into Macrophages

    PubMed Central

    Krishnan, Subramanian; Liu, Fan; Abrol, Ravinder; Hodges, Jacqueline; Goddard, William A.; Prasadarao, Nemani V.

    2014-01-01

    Neonatal meningitis, caused by Escherichia coli K1, is a serious central nervous system disease. We have established that macrophages serve as permissive niches for E. coli K1 to multiply in the host and for attaining a threshold level of bacterial load, which is a prerequisite for the onset of the disease. Here, we demonstrate experimentally that three N-glycans in FcγRIa interact with OmpA of E. coli K1 for binding to and entering the macrophages. Adoptive transfer of FcγRIa−/− bone marrow-derived macrophages transfected with FcγRIa into FcγRIa−/− newborn mice renders them susceptible to E. coli K1-induced meningitis. In contrast, mice that received bone marrow-derived macrophages transfected with FcγRIa in which N-glycosylation sites 1, 4, and 5 are mutated to alanines exhibit resistance to E. coli K1 infection. Our molecular dynamics and simulation studies predict that N-glycan 5 exhibits strong binding at the barrel site of OmpA formed by loops 3 and 4, whereas N-glycans 1 and 4 interact with loops 1, 3, and 4 of OmpA at tip regions. Molecular modeling data also suggest no role for the IgG binding site in the invasion process. In agreement, experimental mutations in IgG binding site had no effect on the E. coli K1 entry into macrophages in vitro or on the onset of meningitis in newborn mice. Together, this integration of experimental and computational studies reveals how the N-glycans in FcγRIa interact with the OmpA of E. coli K1 for inducing the disease pathogenesis. PMID:25231998

  3. Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag.

    PubMed

    Song, Xuezheng; Lasanajak, Yi; Rivera-Marrero, Carlos; Luyai, Anthony; Willard, Margaret; Smith, David F; Cummings, Richard D

    2009-12-15

    Glycan microarray technology has become a successful tool for studying protein-carbohydrate interactions, but a limitation has been the laborious synthesis of glycan structures by enzymatic and chemical methods. Here we describe a new method to generate quantifiable glycan libraries from natural sources by combining widely used protease digestion of glycoproteins and Fmoc chemistry. Glycoproteins including chicken ovalbumin, bovine fetuin, and horseradish peroxidase (HRP) were digested by Pronase, protected by FmocCl, and efficiently separated by 2D-HPLC. We show that glycans from HRP glycopeptides separated by HPLC and fluorescence monitoring retained their natural reducing end structures, mostly core alpha1,3-fucose and core alpha1,2-xylose. After simple Fmoc deprotection, the glycans were printed on NHS-activated glass slides. The glycans were interrogated using plant lectins and antibodies in sera from mice infected with Schistosoma mansoni, which revealed the presence of both IgM and IgG antibody responses to HRP glycopeptides. This simple approach to glycopeptide purification and conjugation allows for the development of natural glycopeptide microarrays without the need to remove and derivatize glycans and potentially compromise their reducing end determinants.

  4. Differential N-Glycosylation Patterns in Lung Adenocarcinoma Tissue

    PubMed Central

    Ruhaak, L. Renee; Taylor, Sandra L.; Stroble, Carol; Nguyen, Uyen Thao; Parker, Evan A.; Song, Ting; Lebrilla, Carlito B.; Rom, William N.; Pass, Harvey; Kim, Kyoungmi; Kelly, Karen; Miyamoto, Suzanne

    2015-01-01

    To decrease the mortality of lung cancer, better screening and diagnostic tools as well as treatment options are needed. Protein glycosylation is one of the major post-translational modifications that is altered in cancer, but it is not exactly clear which glycan structures are affected. A better understanding of the glycan structures that are differentially regulated in lung tumor tissue is highly desirable and will allow us to gain greater insight into the underlying biological mechanisms of aberrant glycosylation in lung cancer. Here, we assess differential glycosylation patterns of lung tumor tissue and nonmalignant tissue at the level of individual glycan structures using nLC–chip–TOF–MS. Using tissue samples from 42 lung adenocarcinoma patients, 29 differentially expressed (FDR < 0.05) glycan structures were identified. The levels of several oligomannose type glycans were upregulated in tumor tissue. Furthermore, levels of fully galactosylated glycans, some of which were of the hybrid type and mostly without fucose, were decreased in cancerous tissue, whereas levels of non- or low-galactosylated glycans mostly with fucose were increased. To further assess the regulation of the altered glycosylation, the glycomics data was compared to publicly available gene expression data from lung adenocarcinoma tissue compared to nonmalignant lung tissue. The results are consistent with the possibility that the observed N-glycan changes have their origin in differentially expressed glycosyltransferases. These results will be used as a starting point for the further development of clinical glycan applications in the fields of imaging, drug targeting, and biomarkers for lung cancer. PMID:26322380

  5. GlycoPP: A Webserver for Prediction of N- and O-Glycosites in Prokaryotic Protein Sequences

    PubMed Central

    Chauhan, Jagat S.; Bhat, Adil H.; Raghava, Gajendra P. S.; Rao, Alka

    2012-01-01

    Glycosylation is one of the most abundant post-translational modifications (PTMs) required for various structure/function modulations of proteins in a living cell. Although elucidated recently in prokaryotes, this type of PTM is present across all three domains of life. In prokaryotes, two types of protein glycan linkages are more widespread namely, N- linked, where a glycan moiety is attached to the amide group of Asn, and O- linked, where a glycan moiety is attached to the hydroxyl group of Ser/Thr/Tyr. For their biologically ubiquitous nature, significance, and technology applications, the study of prokaryotic glycoproteins is a fast emerging area of research. Here we describe new Support Vector Machine (SVM) based algorithms (models) developed for predicting glycosylated-residues (glycosites) with high accuracy in prokaryotic protein sequences. The models are based on binary profile of patterns, composition profile of patterns, and position-specific scoring matrix profile of patterns as training features. The study employ an extensive dataset of 107 N-linked and 116 O-linked glycosites extracted from 59 experimentally characterized glycoproteins of prokaryotes. This dataset includes validated N-glycosites from phyla Crenarchaeota, Euryarchaeota (domain Archaea), Proteobacteria (domain Bacteria) and validated O-glycosites from phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria (domain Bacteria). In view of the current understanding that glycosylation occurs on folded proteins in bacteria, hybrid models have been developed using information on predicted secondary structures and accessible surface area in various combinations with training features. Using these models, N-glycosites and O-glycosites could be predicted with an accuracy of 82.71% (MCC 0.65) and 73.71% (MCC 0.48), respectively. An evaluation of the best performing models with 28 independent prokaryotic glycoproteins confirms the suitability of these models in predicting N- and O

  6. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans*

    PubMed Central

    Robb, Melissa; Robb, Craig S.; Higgins, Melanie A.; Hobbs, Joanne K.; Paton, James C.; Boraston, Alisdair B.

    2015-01-01

    An important facet of the interaction between the pathogen Streptococcus pneumoniae (pneumococcus) and its human host is the ability of this bacterium to process host glycans. To achieve cleavage of the glycosidic bonds in host glycans, S. pneumoniae deploys a wide array of glycoside hydrolases. Here, we identify and characterize a new family 20 glycoside hydrolase, GH20C, from S. pneumoniae. Recombinant GH20C possessed the ability to hydrolyze the β-linkages joining either N-acetylglucosamine or N-acetylgalactosamine to a wide variety of aglycon residues, thus revealing this enzyme to be a generalist N-acetylhexosaminidase in vitro. X-ray crystal structures were determined for GH20C in a ligand-free form, in complex with the N-acetylglucosamine and N-acetylgalactosamine products of catalysis and in complex with both gluco- and galacto-configured inhibitors O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc), O-(2-acetamido-2-deoxy-d-galactopyranosylidene)amino N-phenyl carbamate (GalPUGNAc), N-acetyl-d-glucosamine-thiazoline (NGT), and N-acetyl-d-galactosamine-thiazoline (GalNGT) at resolutions from 1.84 to 2.7 Å. These structures showed N-acetylglucosamine and N-acetylgalactosamine to be recognized via identical sets of molecular interactions. Although the same sets of interaction were maintained with the gluco- and galacto-configured inhibitors, the inhibition constants suggested preferred recognition of the axial O4 when an aglycon moiety was present (Ki for PUGNAc > GalPUGNAc) but preferred recognition of an equatorial O4 when the aglycon was absent (Ki for GalNGT > NGT). Overall, this study reveals GH20C to be another tool that is unique in the arsenal of S. pneumoniae and that it may implement the effort of the bacterium to utilize and/or destroy the wide array of host glycans that it may encounter. PMID:26491009

  7. High-sensitivity O-glycomic analysis of mice deficient in core 2 β1,6-N-acetylglucosaminyltransferases

    PubMed Central

    Ismail, Mohd Nazri; Stone, Erica L; Panico, Maria; Lee, Seung Ho; Luu, Ying; Ramirez, Kevin; Ho, Samuel B; Fukuda, Minoru; Marth, Jamey D; Haslam, Stuart M; Dell, Anne

    2011-01-01

    Core 2 β1,6-N-acetylglucosaminyltransferase (C2GnT), which exists in three isoforms, C2GnT1, C2GnT2 and C2GnT3, is one of the key enzymes in the O-glycan biosynthetic pathway. These isoenzymes produce core 2 O-glycans and have been correlated with the biosynthesis of core 4 O-glycans and I-branches. Previously, we have reported mice with single and multiple deficiencies of C2GnT isoenzyme(s) and have evaluated the biological and structural consequences of the loss of core 2 function. We now present more comprehensive O-glycomic analyses of neutral and sialylated glycans expressed in the colon, small intestine, stomach, kidney, thyroid/trachea and thymus of wild-type, C2GnT2 and C2GnT3 single knockouts and the C2GnT1–3 triple knockout mice. Very high-quality data have emerged from our mass spectrometry techniques with the capability of detecting O-glycans up to at least 3500 Da. We were able to unambiguously elucidate the types of O-glycan core, branching location and residue linkages, which allowed us to exhaustively characterize structural changes in the knockout tissues. The C2GnT2 knockout mice suffered a major loss of core 2 O-glycans as well as glycans with I-branches on core 1 antennae especially in the stomach and the colon. In contrast, core 2 O-glycans still dominated the O-glycomic profile of most tissues in the C2GnT3 knockout mice. Analysis of the C2GnT triple knockout mice revealed a complete loss of both core 2 O-glycans and branched core 1 antennae, confirming that the three known isoenzymes are entirely responsible for producing these structures. Unexpectedly, O-linked mannosyl glycans are upregulated in the triple deficient stomach. In addition, our studies have revealed an interesting terminal structure detected on O-glycans of the colon tissues that is similar to the RM2 antigen from glycolipids. PMID:20855471

  8. Glycobiology simplified: diverse roles of glycan recognition in inflammation

    PubMed Central

    Schnaar, Ronald L.

    2016-01-01

    Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (writers) with specific and limited biosynthetic capabilities into a tractable and increasingly accessible number of potential glycan patterns that are functionally read by several dozen human glycan-binding proteins (readers). Nowhere is the importance of glycan recognition better understood than in infection and immunity, and knowledge in this area has already led to glycan mimetic anti-infective and anti-inflammatory drugs. This review includes a brief tutorial on human glycobiology and a limited number of specific examples of glycan-binding protein-glycan interactions that initiate and regulate inflammation. Examples include representatives from different glycan-binding protein families, including the C-type lectins (E-selectin, P-selectin, dectin-1, and dectin-2), sialic acid-binding immunoglobulin-like lectins (sialic acid-binding immunoglobulin-like lectins 8 and 9), galectins (galectin-1, galectin-3, and galectin-9), as well as hyaluronic acid-binding proteins. As glycoscience technologies advance, opportunities for enhanced understanding of glycans and their roles in leukocyte cell biology provide increasing opportunities for discovery and therapeutic intervention. PMID:27004978

  9. N-glycosylation of Colorectal Cancer Tissues

    PubMed Central

    Balog, Crina I. A.; Stavenhagen, Kathrin; Fung, Wesley L. J.; Koeleman, Carolien A.; McDonnell, Liam A.; Verhoeven, Aswin; Mesker, Wilma E.; Tollenaar, Rob A. E. M.; Deelder, André M.; Wuhrer, Manfred

    2012-01-01

    Colorectal cancer is the third most common cancer worldwide with an annual incidence of ∼1 million cases and an annual mortality rate of ∼655,000 individuals. There is an urgent need for identifying novel targets to develop more sensitive, reliable, and specific tests for early stage detection of colon cancer. Post-translational modifications are known to play an important role in cancer progression and immune surveillance of tumors. In the present study, we compared the N-glycan profiles from 13 colorectal cancer tumor tissues and corresponding control colon tissues. The N-glycans were enzymatically released, purified, and labeled with 2-aminobenzoic acid. Aliquots were profiled by hydrophilic interaction liquid chromatography (HILIC-HPLC) with fluorescence detection and by negative mode MALDI-TOF-MS. Using partial least squares discriminant analysis to investigate the N-glycosylation changes in colorectal cancer, an excellent separation and prediction ability were observed for both HILIC-HPLC and MALDI-TOF-MS data. For structure elucidation, information from positive mode ESI-ion trap-MS/MS and negative mode MALDI-TOF/TOF-MS was combined. Among the features with a high separation power, structures containing a bisecting GlcNAc were found to be decreased in the tumor, whereas sulfated glycans, paucimannosidic glycans, and glycans containing a sialylated Lewis type epitope were shown to be increased in tumor tissues. In addition, core-fucosylated high mannose N-glycans were detected in tumor samples. In conclusion, the combination of HILIC and MALDI-TOF-MS profiling of N-glycans with multivariate statistical analysis demonstrated its potential for identifying N-glycosylation changes in colorectal cancer tissues and provided new leads that might be used as candidate biomarkers. PMID:22573871

  10. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification.

    PubMed

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z; Clemmer, David E; Rizzo, Thomas R

    2017-10-01

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. Graphical Abstract ᅟ.

  11. Impaired Lysosomal Trimming of N-Linked Oligosaccharides Leads to Hyperglycosylation of Native Lysosomal Proteins in Mice with α-Mannosidosis ▿

    PubMed Central

    Damme, Markus; Morelle, Willy; Schmidt, Bernhard; Andersson, Claes; Fogh, Jens; Michalski, Jean-Claude; Lübke, Torben

    2010-01-01

    α-Mannosidosis is caused by the genetic defect of the lysosomal α-d-mannosidase (LAMAN), which is involved in the breakdown of free α-linked mannose-containing oligosaccharides originating from glycoproteins with N-linked glycans, and thus manifests itself in an extensive storage of mannose-containing oligosaccharides. Here we demonstrate in a model of mice with α-mannosidosis that native lysosomal proteins exhibit elongated N-linked oligosaccharides as shown by two-dimensional difference gel electrophoresis, deglycosylation assays, and mass spectrometry. The analysis of cathepsin B-derived oligosaccharides revealed a hypermannosylation of glycoproteins in mice with α-mannosidosis as indicated by the predominance of extended Man3GlcNAc2 oligosaccharides. Treatment with recombinant human α-mannosidase partially corrected the hyperglycosylation of lysosomal proteins in vivo and in vitro. These data clearly demonstrate that LAMAN is involved not only in the lysosomal catabolism of free oligosaccharides but also in the trimming of asparagine-linked oligosaccharides on native lysosomal proteins. PMID:19884343

  12. Characterization of Isomeric Glycans by Reversed Phase Liquid Chromatography-Electronic Excitation Dissociation Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wei, Juan; Costello, Catherine E.; Lin, Cheng

    2018-04-01

    The occurrence of numerous structural isomers in glycans from biological sources presents a severe challenge for structural glycomics. The subtle differences among isomeric structures demand analytical methods that can provide structural details while working efficiently with on-line glycan separation methods. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool for mixture analysis, the commonly utilized collision-induced dissociation (CID) method often does not generate a sufficient number of fragments at the MS2 level for comprehensive structural characterization. Here, we studied the electronic excitation dissociation (EED) behaviors of metal-adducted, permethylated glycans, and identified key spectral features that could facilitate both topology and linkage determinations. We developed an EED-based, nanoscale, reversed phase (RP)LC-MS/MS platform, and demonstrated its ability to achieve complete structural elucidation of up to five structural isomers in a single LC-MS/MS analysis. [Figure not available: see fulltext.

  13. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN.

    PubMed

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E; Huante, Matthew B; Slack, Olga A L; Carpio, Victor H; Freiberg, Alexander N; Ikegami, Tetsuro

    2016-05-23

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)-any amino acid (X)-serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: "Gc-large" and "Gc-small", and N1077 was responsible for "Gc-large" band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN.

  14. Qualitative and Quantitative Analysis of Carbohydrate Modification on Glycoproteins from Seeds of Ginkgo biloba.

    PubMed

    Wang, Ting; Hu, Xiao-Chun; Cai, Zhi-Peng; Voglmeir, Josef; Liu, Li

    2017-09-06

    Recent progress in the relationship between carbohydrate cross-reactive determinants (CCDs) and allergic response highlights the importance of carbohydrate moieties in the innate immune system. Previous research pointed out that the protein allergen in Ginkgo biloba seeds is glycosylated, and the oligosaccharides conjugated to these proteins might also contribute to the allergy. The aim of this study was to analyze carbohydrate moieties, especially N-linked glycans, of glycoproteins from Ginkgo seeds originating from different places for detailed structures, to enable further research on the role played by N-glycans in Ginkgo-caused allergy. Results of monosaccharide composition and immunoblotting assays indicated the existence of N-glycans. Detailed structural elucidation of the N-glycans was further carried out by means of hydrophilic interaction ultraperformance liquid chromatography (HILIC-UPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In total, 14 out of 16 structures detected by UPLC were confirmed by MALDI-TOF-MS and tandem mass spectrometry, among which complex-type N-glycans bearing Lewis A determinants and high-mannose-type N-glycans were identified from Ginkgo seeds for the first time. Precise quantification of N-glycans was performed by use of an external standard, and both the absolute amount of each N-glycan and the percentage of different types of N-glycan showed significant diversity among the samples without any pattern of geographic variation.

  15. Galectins are human milk glycan receptors

    PubMed Central

    Noll, Alexander J; Gourdine, Jean-Philippe; Yu, Ying; Lasanajak, Yi; Smith, David F; Cummings, Richard D

    2016-01-01

    The biological recognition of human milk glycans (HMGs) is poorly understood. Because HMGs are rich in galactose we explored whether they might interact with human galectins, which bind galactose-containing glycans and are highly expressed in epithelial cells and other cell types. We screened a number of human galectins for their binding to HMGs on a shotgun glycan microarray consisting of 247 HMGs derived from human milk, as well as to a defined HMG microarray. Recombinant human galectins (hGal)-1, -3, -4, -7, -8 and -9 bound selectively to glycans, with each galectin recognizing a relatively unique binding motif; by contrast hGal-2 did not recognize HMGs, but did bind to the human blood group A Type 2 determinants on other microarrays. Unlike other galectins, hGal-7 preferentially bound to glycans expressing a terminal Type 1 (Galβ1-3GlcNAc) sequence, a motif that had eluded detection on non-HMG glycan microarrays. Interactions with HMGs were confirmed in a solution setting by isothermal titration microcalorimetry and hapten inhibition experiments. These results demonstrate that galectins selectively bind to HMGs and suggest the possibility that galectin–HMG interactions may play a role in infant immunity. PMID:26747425

  16. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence

    PubMed Central

    Tuncil, Yunus E.; Xiao, Yao; Porter, Nathan T.; Reuhs, Bradley L.

    2017-01-01

    ABSTRACT When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron, we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome. PMID:29018117

  17. The role of lectins and glycans in platelet clearance

    PubMed Central

    Hoffmeister, Karin M.

    2015-01-01

    Summary In recent years, it has become increasingly apparent that the life span of transfused platelets in circulation is regulated, at least in part, by glycan-lectin mediated mechanisms. There is clear evidence that refrigerated platelets are cleared by glycan-lectin mediated clearance mechanisms. Acute platelet cooling clusters glycoprotein (GP) Ibα receptors bearing uncovered N-acetylglucosamine (GlcNAc), and αMβ2 integrins on hepatic macrophages recognise clustered GlcNAc to rapidly clear these platelets from circulation. With prolonged refrigeration GPIbα clustering bearing uncovered galactose increases, which mediates the removal of long-term refrigerated platelets via hepatic Ashwell-Morell receptors (AMR), originally named as asialoglycoprotein receptors. In contrast, little is known about the molecular mechanisms of transfused room temperature platelet clearance. This review examines the role of glycan-lectin mediated clearance of exogenous, i.e. transfused chilled platelet clearance and briefly addresses the current knowledge of stored platelet function, degradation and its relation to platelet clearance. PMID:21781240

  18. N-Glycosylation Profiling of Porcine Reproductive and Respiratory Syndrome Virus Envelope Glycoprotein 5

    PubMed Central

    Li, Juan; Tao, Shujuan; Orlando, Ron; Murtaugh, Michael P.

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-sense ssRNA virus whose envelope contains four glycoproteins and three nonglycosylated proteins. Glycans of major envelope glycoprotein 5 (GP5) are proposed as important for virus assembly and entry into permissive cells. Structural characterization of GP5 glycans would facilitate the mechanistic understanding of these processes. Thus, we purified the PRRSV type 2 prototype strain, VR2332, and analyzed the virion-associated glycans by both biochemical and mass spectrometric methods. Endoglycosidase digestion showed that GP5 was the primary protein substrate, and that the carbohydrate moieties were primarily complex-type N-glycans. Mass spectrometric analysis (HPLC-ESI-MS/MS) of GP5 N-glycans revealed an abundance of N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc) oligomers in addition to sialic acids. GlcNAc and LacNAc accessibility to ligands was confirmed by lectin co-precipitation. Our findings help to explain PRRSV infection of cells lacking sialoadhesin and provide a glycan database to facilitate molecular structural studies of PRRSV. PMID:25726973

  19. Methylated glycans as conserved targets of animal and fungal innate defense

    PubMed Central

    Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S.; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M.; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus

    2014-01-01

    Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441

  20. Role of N-linked oligosaccharides in processing and intracellular transport of E2 glycoprotein of rubella virus.

    PubMed Central

    Qiu, Z; Hobman, T C; McDonald, H L; Seto, N O; Gillam, S

    1992-01-01

    The role of N-linked glycosylation in processing and intracellular transport of rubella virus glycoprotein E2 has been studied by expressing glycosylation mutants of E2 in COS cells. A panel of E2 glycosylation mutants were generated by oligonucleotide-directed mutagenesis. Each of the three potential N-linked glycosylation sites was eliminated separately as well as in combination with the other two sites. Expression of the E2 mutant proteins in COS cells indicated that in rubella virus M33 strain, all three sites are used for the addition of N-linked oligosaccharides. Removal of any of the glycosylation sites resulted in slower glycan processing, lower stability, and aberrant disulfide bonding of the mutant proteins, with the severity of defect depending on the number of deleted carbohydrate sites. The mutant proteins were transported to the endoplasmic reticulum and Golgi complex but were not detected on the cell surface. However, the secretion of the anchor-free form of E2 into the medium was not completely blocked by the removal of any one of its glycosylation sites. This effect was dependent on the position of the deleted glycosylation site. Images PMID:1583721

  1. A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo

    PubMed Central

    Freund, Natalia T.; Horwitz, Joshua A.; Nogueira, Lilian; Sievers, Stuart A.; Scharf, Louise; Scheid, Johannes F.; Gazumyan, Anna; Liu, Cassie; Velinzon, Klara; Goldenthal, Ariel; Sanders, Rogier W.; Moore, John P.; Bjorkman, Pamela J.; Seaman, Michael S.; Walker, Bruce D.; Klein, Florian; Nussenzweig, Michel C.

    2015-01-01

    The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans. PMID:26516768

  2. N-Glycans on the Rift Valley Fever Virus Envelope Glycoproteins Gn and Gc Redundantly Support Viral Infection via DC-SIGN

    PubMed Central

    Phoenix, Inaia; Nishiyama, Shoko; Lokugamage, Nandadeva; Hill, Terence E.; Huante, Matthew B.; Slack, Olga A.L.; Carpio, Victor H.; Freiberg, Alexander N.; Ikegami, Tetsuro

    2016-01-01

    Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)–any amino acid (X)–serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: “Gc-large” and “Gc-small”, and N1077 was responsible for “Gc-large” band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN. PMID:27223297

  3. Glycan microarray screening assay for glycosyltransferase specificities.

    PubMed

    Peng, Wenjie; Nycholat, Corwin M; Razi, Nahid

    2013-01-01

    Glycan microarrays represent a high-throughput approach to determining the specificity of glycan-binding proteins against a large set of glycans in a single format. This chapter describes the use of a glycan microarray platform for evaluating the activity and substrate specificity of glycosyltransferases (GTs). The methodology allows simultaneous screening of hundreds of immobilized glycan acceptor substrates by in situ incubation of a GT and its appropriate donor substrate on the microarray surface. Using biotin-conjugated donor substrate enables direct detection of the incorporated sugar residues on acceptor substrates on the array. In addition, the feasibility of the method has been validated using label-free donor substrate combined with lectin-based detection of product to assess enzyme activity. Here, we describe the application of both procedures to assess the specificity of a recombinant human α2-6 sialyltransferase. This technique is readily adaptable to studying other glycosyltransferases.

  4. Development of Two Analytical Methods Based on Reverse Phase Chromatographic and SDS-PAGE Gel for Assessment of Deglycosylation Yield in N-Glycan Mapping.

    PubMed

    Eckard, Anahita D; Dupont, David R; Young, Johnie K

    2018-01-01

    N -lined glycosylation is one of the critical quality attributes (CQA) for biotherapeutics impacting the safety and activity of drug product. Changes in pattern and level of glycosylation can significantly alter the intrinsic properties of the product and, therefore, have to be monitored throughout its lifecycle. Therefore fast, precise, and unbiased N -glycan mapping assay is desired. To ensure these qualities, using analytical methods that evaluate completeness of deglycosylation is necessary. For quantification of deglycosylation yield, methods such as reduced liquid chromatography-mass spectrometry (LC-MS) and reduced capillary gel electrophoresis (CGE) have been commonly used. Here we present development of two additional methods to evaluate deglycosylation yield: one based on LC using reverse phase (RP) column and one based on reduced sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE gel) with offline software (GelAnalyzer). With the advent of rapid deglycosylation workflows in the market for N -glycan profiling replacing overnight incubation, we have aimed to quantify the level of deglycosylation in a selected rapid deglycosylation workflow. Our results have shown well resolved peaks of glycosylated and deglycosylated protein species with RP-LC method allowing simple quantification of deglycosylation yield of protein with high confidence. Additionally a good correlation, ≥0.94, was found between deglycosylation yields estimated by RP-LC method and that of reduced SDS-PAGE gel method with offline software. Evaluation of rapid deglycosylation protocol from GlycanAssure™ HyPerformance assay kit performed on fetuin and RNase B has shown complete deglycosylation within the recommended protocol time when evaluated with these techniques. Using this kit, N -glycans from NIST mAb were prepared in 1.4 hr and analyzed by hydrophilic interaction chromatography (HILIC) ultrahigh performance LC (UHPLC) equipped with a fluorescence detector (FLD

  5. Notable Aspects of Glycan-Protein Interactions

    PubMed Central

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  6. Automated glycan assembly of galactosylated xyloglucan oligosaccharides and their recognition by plant cell wall glycan-directed antibodies.

    PubMed

    Dallabernardina, Pietro; Ruprecht, Colin; Smith, Peter J; Hahn, Michael G; Urbanowicz, Breeanna R; Pfrengle, Fabian

    2017-12-06

    We report the automated glycan assembly of oligosaccharides related to the plant cell wall hemicellulosic polysaccharide xyloglucan. The synthesis of galactosylated xyloglucan oligosaccharides was enabled by introducing p-methoxybenzyl (PMB) as a temporary protecting group for automated glycan assembly. The generated oligosaccharides were printed as microarrays, and the binding of a collection of xyloglucan-directed monoclonal antibodies (mAbs) to the oligosaccharides was assessed. We also demonstrated that the printed glycans can be further enzymatically modified while appended to the microarray surface by Arabidopsis thaliana xyloglucan xylosyltransferase 2 (AtXXT2).

  7. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site

    PubMed Central

    Crooks, Ema T.; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S.; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O’Dell, Sijy; LaBranche, Celia; Robinson, James E.; Montefiori, David C.; McKee, Krisha; Du, Sean X.; Doria-Rose, Nicole; Kwong, Peter D.; Mascola, John R.; Zhu, Ping; Schief, William R.; Wyatt, Richard T.; Whalen, Robert G.; Binley, James M.

    2015-01-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative “glycan fence” that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine. PMID:26023780

  8. Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site.

    PubMed

    Crooks, Ema T; Tong, Tommy; Chakrabarti, Bimal; Narayan, Kristin; Georgiev, Ivelin S; Menis, Sergey; Huang, Xiaoxing; Kulp, Daniel; Osawa, Keiko; Muranaka, Janelle; Stewart-Jones, Guillaume; Destefano, Joanne; O'Dell, Sijy; LaBranche, Celia; Robinson, James E; Montefiori, David C; McKee, Krisha; Du, Sean X; Doria-Rose, Nicole; Kwong, Peter D; Mascola, John R; Zhu, Ping; Schief, William R; Wyatt, Richard T; Whalen, Robert G; Binley, James M

    2015-05-01

    Eliciting broad tier 2 neutralizing antibodies (nAbs) is a major goal of HIV-1 vaccine research. Here we investigated the ability of native, membrane-expressed JR-FL Env trimers to elicit nAbs. Unusually potent nAb titers developed in 2 of 8 rabbits immunized with virus-like particles (VLPs) expressing trimers (trimer VLP sera) and in 1 of 20 rabbits immunized with DNA expressing native Env trimer, followed by a protein boost (DNA trimer sera). All 3 sera neutralized via quaternary epitopes and exploited natural gaps in the glycan defenses of the second conserved region of JR-FL gp120. Specifically, trimer VLP sera took advantage of the unusual absence of a glycan at residue 197 (present in 98.7% of Envs). Intriguingly, removing the N197 glycan (with no loss of tier 2 phenotype) rendered 50% or 16.7% (n = 18) of clade B tier 2 isolates sensitive to the two trimer VLP sera, showing broad neutralization via the surface masked by the N197 glycan. Neutralizing sera targeted epitopes that overlap with the CD4 binding site, consistent with the role of the N197 glycan in a putative "glycan fence" that limits access to this region. A bioinformatics analysis suggested shared features of one of the trimer VLP sera and monoclonal antibody PG9, consistent with its trimer-dependency. The neutralizing DNA trimer serum took advantage of the absence of a glycan at residue 230, also proximal to the CD4 binding site and suggesting an epitope similar to that of monoclonal antibody 8ANC195, albeit lacking tier 2 breadth. Taken together, our data show for the first time that strain-specific holes in the glycan fence can allow the development of tier 2 neutralizing antibodies to native spikes. Moreover, cross-neutralization can occur in the absence of protecting glycan. Overall, our observations provide new insights that may inform the future development of a neutralizing antibody vaccine.

  9. Protein-Glycan Quinary Interactions in Crowding Environment Unveiled by NMR Spectroscopy.

    PubMed

    Diniz, Ana; Dias, Jorge S; Jiménez-Barbero, Jesús; Marcelo, Filipa; Cabrita, Eurico J

    2017-09-21

    Protein-glycan interactions as modulators for quinary structures in crowding environments were explored. The interaction between human galectin 3 (Gal-3) and distinct macromolecular crowders, such as bovine and human serum albumin (BSA and HSA), Ficoll 70 and PEG3350, was scrutinized. The molecular recognition event of the specific ligand, lactose, by Gal-3 in crowding conditions was evaluated. Gal-3 interactions were monitored by NMR analysing chemical shift perturbation (CSP) and line broadening of 1 H 15 N-HSQC signals. The intensity of the Gal-3 1 H 15 N-HSQC signals decreased in the presence of all crowders, due to the increase in the solution viscosity and to the formation of large protein complexes. When glycosylated containing samples of BSA and HSA were used, signal broadening was more severe than that observed in the presence of the more viscous solutions of PEG3350 and Ficoll 70. However, for the samples containing glycoproteins, the signal intensity of 1 H 15 N-HSQC recovered upon addition of lactose. We show that serum proteins interact with Gal-3, through their α2,3-linked sialylgalactose moieties exposed at their surfaces, competing with lactose for the same binding site. The quinary interaction between Gal-3 and serum glycoproteins, could help to co-localize Gal-3 at the cell surface, and may play a role in adhesion and signalling functions of this protein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Inhibition of N-linked oligosaccharide processing does not prevent the secretion of thyroglobulin. A study with swainsonine and deoxynojirimycin.

    PubMed

    Franc, J L; Hovsepian, S; Fayet, G; Bouchilloux, S

    1986-05-15

    The effects of two drugs, swainsonine (SW) and deoxynojirimycin (dNM), on synthesis and export of thyroglobulin were studied in folliculized porcine thyroid cells cultured in a serum-free medium. These drugs were expected to alter N-linked glycans in thyroglobulin. Newly synthesized thyroglobulin labeled with [2-3H]mannose or [4,5-3H]leucine was obtained by immunoprecipitation from the follicular contents, culture media and cell extracts; the first two compartments, containing secreted thyroglobulin, were sometimes analyzed together. Leucine incorporation was not inhibited by SW and only slightly by dNM. In contrast dNM strongly decreased mannose incorporation (by up to 50-75% at 1-3 mM). However after 16-h mannose labelings, SW and/or dNM at 2.5 microM and 3 mM respectively did not significantly modify the relative proportions of radioactive thyroglobulin in the above-mentioned compartments. Pronase glycopeptides prepared from these thyroglobulins were examined with respect to behaviour on concanavalin-A-Sepharose and position on Bio-Gel P-4. Oligosaccharides released by endoglucosaminidase H and with high affinity for the lectin, i.e. high-mannose and certain hybrids, were further characterized by various exoglycosidase treatments. Thyroglobulin from control cells displayed complex and high-mannose glycans comparable in size and proportion to those attributed to tissue-extracted porcine thyroglobulin. After treatment with SW (an inhibitor of alpha-mannosidase II), complex glycans were almost totally replaced by sialylated hybrid glycans. In contrast to this nearly total suppression, dNM (an inhibitor of the trimming glucosidases) caused only a 30% decrease in labeling of complex units and an about 50% increase in high-mannose glycans, covered to some degree by glucose. Finally a [3H]leucine pulse-chase study was performed on thyroglobulin secretion in the absence or presence of both SW and dNM. Though a slowdown was detectable in the first few hours, this study

  11. Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation.

    PubMed

    Spiro, R G

    2004-05-01

    Misfolded or incompletely assembled multisubunit glycoproteins undergo endoplasmic reticulum-associated degradation (ERAD) regulated in large measure by their N-linked polymannose oligosaccharides. In this quality control system lectin interaction with Glc(3)Man(9)GlcNAc(2) glycans after trimming with endoplasmic reticulum (ER) alpha-glucosidases and alpha-mannosidases sorts out persistently unfolded glycoproteins for N-deglycosylation and proteolytic degradation. Monoglucosylated (Glc(1)Man(9)GlcNAc(2)) glycoproteins take part in the calnexin/calreticulin glucosylation-deglucosylation cycle, while the Man(8)GlcNAc(2) isomer B product of ER mannosidase I interacts with EDEM. Proteasomal degradation requires retrotranslocation into the cytosol through a Sec61 channel and deglycosylation by peptide: N-glycosidase (PNGase); in alternate models both PNGase and proteasomes may be either free in the cytosol or ER membrane-imbedded/attached. Numerous proteins appear to undergo nonproteasomal degradation in which deglycosylation and proteolysis take place in the ER lumen. The released free oligosaccharides (OS) are transported to the cytosol as OS-GlcNAc(2) along with similar components produced by the hydrolytic action of the oligosaccharyltransferase, where they together with OS from the proteasomal pathway are trimmed to Man(5)GlcNAc(1) by the action of cytosolic endo-beta- N-acetylglucosaminidase and alpha-mannosidase before entering the lysosomes. Some misfolded glycoproteins can recycle between the ER, intermediate and Golgi compartments, where they are further processed before ERAD. Moreover, properly folded glycoproteins with mannose-trimmed glycans can be deglucosylated in the Golgi by endomannosidase, thereby releasing calreticulin and permitting formation of complex OS. A number of regulatory controls have been described, including the glucosidase-glucosyltransferase shuttle, which controls the level of Glc(3)Man(9)GlcNAc(2)-P-P-Dol, and the unfolded protein

  12. Rational and Computational Design of Stabilized Variants of Cyanovirin-N which Retain Affinity and Specificity for Glycan Ligands

    PubMed Central

    Patsalo, Vadim; Raleigh, Daniel P.; Green, David F.

    2011-01-01

    Cyanovirin-N (CVN) is an 11-kDa pseudo-symmetric cyanobacterial lectin that has been shown to inhibit infection by the Human Immunodeficiency Virus (HIV) by binding to high-mannose oligosaccharides on the surface of the viral envelope glycoprotein gp120. In this work we describe rationally-designed CVN variants that stabilize the protein fold while maintaining high affinity and selectivity for their glycan targets. Poisson–Boltzmann calculations and protein repacking algorithms were used to select stabilizing mutations in the protein core. By substituting the buried polar side chains of Ser11, Ser20, and Thr61 with aliphatic groups, we stabilized CVN by nearly 12 °C against thermal denaturation, and by 1 m of GuaHCl against chemical denaturation, relative to a previously-characterized stabilized mutant. Glycan microarray binding experiments confirmed that the specificity profile of carbohydrate binding is unperturbed by the mutations, and is identical for all variants. In particular, the variants selectively bound glycans containing the Manα(1→2)Man linkage, which is the known minimal binding unit of CVN. We also report the slow denaturation kinetics of CVN and show that they can complicate thermodynamic analysis; in particular, the unfolding of CVN cannot be described as a fixed two-state transition. Accurate thermodynamic parameters are needed to describe the complicated free energy landscape of CVN, and we provide updated values for CVN unfolding. PMID:22032696

  13. One-pot enzymatic glycan remodeling of a therapeutic monoclonal antibody by endoglycosidase S (Endo-S) from Streptococcus pyogenes.

    PubMed

    Tong, Xin; Li, Tiezheng; Orwenyo, Jared; Toonstra, Christian; Wang, Lai-Xi

    2018-04-01

    A facile, one-pot enzymatic glycan remodeling of antibody rituximab to produce homogeneous high-mannose and hybrid type antibody glycoforms is described. This method was based on the unique substrate specificity of the endoglycosidase S (Endo-S) from Streptococcus pyogenes. While Endo-S efficiently hydrolyzes the bi-antennary complex type IgG Fc N-glycans, we found that Endo-S did not hydrolyze the "ground state" high-mannose or hybrid glycoforms, and only slowly hydrolyzed the highly activated high-mannose or hybrid N-glycan oxazolines. Moreover, we found that wild-type Endo-S could efficiently use high-mannose or hybrid glycan oxazolines for transglycosylation without product hydrolysis. The combination of the remarkable difference in substrate specificity of Endo-S allows the deglycosylation of heterogeneous rituximab and the transglycosylation with glycan oxazoline to take place in one-pot without the need of isolating the deglycosylated intermediate or changing the enzyme to afford the high-mannose type, hybrid type, and some selectively modified truncated form of antibody glycoforms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence.

    PubMed

    Tuncil, Yunus E; Xiao, Yao; Porter, Nathan T; Reuhs, Bradley L; Martens, Eric C; Hamaker, Bruce R

    2017-10-10

    When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron , we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome. IMPORTANCE The microorganisms that reside in the human colon fulfill their energy

  15. Glycan analysis of recombinant Aspergillus niger endo-polygalacturonase A.

    PubMed

    Woosley, Bryan D; Kim, Young Hwan; Kumar Kolli, V S; Wells, Lance; King, Dan; Poe, Ryan; Orlando, Ron; Bergmann, Carl

    2006-10-16

    The enzyme endo-polygalacturonase A, or PGA, is produced by the fungus, Aspergillus niger, and appears to play a critical role during invasion of plant cell walls. The enzyme has been homologously overexpressed in order to provide sufficient quantities of purified enzyme for structural and biological studies. We have characterized this enzyme in terms of its post-translational modifications (PTMs) and found it to be both N- and O-glycosylated. Additionally, we have characterized the glycosyl moieties using MALDI-TOF and LC-ESI mass spectrometry. The characterization of all PTMs on PGA, along with molecular modeling, allows us to reveal potential roles played by the glycans in modulating the interaction of the enzyme with other macromolecules.

  16. Serum anti-glycan antibodies in paediatric-onset Crohn's disease: association with disease phenotype and diagnostic accuracy.

    PubMed

    Sładek, Małgorzata; Wasilewska, Agata; Swiat, Agnieszka; Cmiel, Adam

    2014-01-01

    Antibodies reacting with various microbial epitopes have been described in inflammatory bowel disease (IBD) and are associated with a specific diagnosis and clinical presentation. To evaluate the profile of new anti-glycan antibodies, their potential association with disease phenotype and diagnostic accuracy in paediatric Crohn's disease (CD). Blood samples from 134 paediatric IBD patients (109 CD, 25 ulcerative colitis (UC)) and 67 controls were blindly analysed for anti-Saccharomyces cerevisiae (ASCA), anti-chitobioside carbohydrate (ACCA), anti-laminaribioside carbohydrate (ALCA), and anti-mannobioside carbohydrate (AMCA) antibodies using commercially available assays. The serological response to glycans was correlated with clinical disease characteristics. At least one of the tested anti-glycan antibodies was present in 75% of CD patients. Despite the high frequency of reactivity to glycan epitopes, a limited overlap of serological markers was observed. In total, 49% of ASCA-negative patients presented with one of the following: ACCA, ALCA, or AMCA. The occurrence of one antibody from the anti-glycan panel was independently associated with complicated disease phenotype and ileocolonic disease location. A higher level of immune response as assessed by the quartile sum scores for ACCA, ALCA, and AMCA was linked with older age at diagnosis (10-17 years) and ileocolonic disease location. The ASCA had the greatest accuracy for diagnosis and differentiation of CD. Qualitative and quantitative serologicalal response to glycan epitopes was associated with distinct clinical presentation in paediatric CD patients. This raises the possibility for the use of these markers to differentiate subgroups of CD patients with more sever clinical presentation. The ASCA was the most accurate serological marker for CD; however, testing for the new anti-glycan antibodies may constitute an adjunctive tool in a specific group of patients to aid in the differentiation of CD with absent

  17. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    PubMed

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  18. Glycan antagonists and inhibitors: a fount for drug discovery.

    PubMed

    Brown, Jillian R; Crawford, Brett E; Esko, Jeffrey D

    2007-01-01

    Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.

  19. Tertiary structure in N-linked oligosaccharides.

    PubMed

    Homans, S W; Dwek, R A; Rademacher, T W

    1987-10-06

    Distance constraints derived from two-dimensional nuclear Overhauser effect measurements have been used to define the orientation of the Man alpha 1-3Man beta linkage in seven different N-linked oligosaccharides, all containing the common pentasaccharide core Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc. Conformational invariance of the Man alpha 1-3Man beta linkage was found for those structures bearing substitutions on the Man alpha 1-3Man beta antenna. However, the presence of either a GlcNAc residue in the beta 1-4 linkage to Man beta ("bisecting GlcNAc") or a xylose residue in the beta 1-2 linkage to Man beta of the trimannosyl core was found to generate conformational transitions that were similar. These transitions were accompanied by characteristic chemical shift perturbations of proton resonances in the vicinity of the Man alpha 1-3Man beta linkage. Molecular orbital energy calculations suggest that the conformational transition between the unsubstituted and substituted cores arises from energetic constraints in the vicinity of the Man alpha 1-3Man beta linkage, rather than specific long-range interactions. These data taken together with our previous results on the Man alpha 1-6Man beta linkage [Homans, S. W., Dwek R. A., Boyd, J., Mahmoudian, M., Richards, W. G., & Rademacher, T. W. (1986) Biochemistry 25, 6342] allow us to discuss the consequences of the modulation of oligosaccharide solution conformations.

  20. Individual N-Glycans Added at Intervals along the Stalk of the Nipah Virus G Protein Prevent Fusion but Do Not Block the Interaction with the Homologous F Protein

    PubMed Central

    Zhu, Qiyun; Biering, Scott B.; Mirza, Anne M.; Grasseschi, Brittany A.; Mahon, Paul J.; Lee, Benhur; Aguilar, Hector C.

    2013-01-01

    The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F. PMID:23283956

  1. The interaction of N-glycans in Fcγ receptor I α-chain with Escherichia coli K1 outer membrane protein A for entry into macrophages: experimental and computational analysis.

    PubMed

    Krishnan, Subramanian; Liu, Fan; Abrol, Ravinder; Hodges, Jacqueline; Goddard, William A; Prasadarao, Nemani V

    2014-11-07

    Neonatal meningitis, caused by Escherichia coli K1, is a serious central nervous system disease. We have established that macrophages serve as permissive niches for E. coli K1 to multiply in the host and for attaining a threshold level of bacterial load, which is a prerequisite for the onset of the disease. Here, we demonstrate experimentally that three N-glycans in FcγRIa interact with OmpA of E. coli K1 for binding to and entering the macrophages. Adoptive transfer of FcγRIa(-/-) bone marrow-derived macrophages transfected with FcγRIa into FcγRIa(-/-) newborn mice renders them susceptible to E. coli K1-induced meningitis. In contrast, mice that received bone marrow-derived macrophages transfected with FcγRIa in which N-glycosylation sites 1, 4, and 5 are mutated to alanines exhibit resistance to E. coli K1 infection. Our molecular dynamics and simulation studies predict that N-glycan 5 exhibits strong binding at the barrel site of OmpA formed by loops 3 and 4, whereas N-glycans 1 and 4 interact with loops 1, 3, and 4 of OmpA at tip regions. Molecular modeling data also suggest no role for the IgG binding site in the invasion process. In agreement, experimental mutations in IgG binding site had no effect on the E. coli K1 entry into macrophages in vitro or on the onset of meningitis in newborn mice. Together, this integration of experimental and computational studies reveals how the N-glycans in FcγRIa interact with the OmpA of E. coli K1 for inducing the disease pathogenesis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Structural differences between cell matrix and culture medium N-linked oligosaccharides on heavy proteochondroitin sulfate proteoglycan (PCS-H)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cioffi, L.; Conrad, H.E.

    1986-05-01

    Tibial chondrocytes were labeled metabolically with /sup 3/H-man and the PCS-H was isolated from the culture medium (CM) and the cell matrix (Ma) pools. Equal amounts of /sup 3/H were incorporated into the PCS-H of the CM and Ma pools. The PCS-H pools were digested with thermolysin, Chondroitinase, and then N-glycanase, and the N-linked oligosaccharides were chromatographed on Con-A Sepharose. The ratios of complex to high mannose oligosaccharides for the CM and Ma were 6.1 and 2.6, respectively. More than 60% of the complex CM N-linked oligosaccharides were charged species whereas only 40% of the Ma N-linked oligosaccharides were charged.more » The oligosaccharides were analyzed by HPLC. Both complex and high mannose oligosaccharides found in the PCS-H of the CM and Ma pools were mixtures of identical structures but the amounts of each structure in the two pools showed marked differences. These observations indicate that distinct PCS-H species are found in the CM and Ma pools.« less

  3. Using pulse field gradient NMR diffusion measurements to define molecular size distributions in glycan preparations.

    PubMed

    Miller, Michelle C; Klyosov, Anatole; Platt, David; Mayo, Kevin H

    2009-07-06

    Glycans comprise perhaps the largest biomass in nature, and more and more glycans are used in a number of applications, including those as pharmaceutical agents in the clinic. However, defining glycan molecular weight distributions during and after their preparation is not always straightforward. Here, we use pulse field gradient (PFG) (1)H NMR self-diffusion measurements to assess molecular weight distributions in various glycan preparations. Initially, we derived diffusion coefficients, D, on a series of dextrans with reported weight-average molecular weights from about 5 kDa to 150 kDa. For each dextran sample, we analyzed 15 diffusion decay curves, one from each of the 15 major (1)H resonance envelopes, to provide diffusion coefficients. By measuring D as a function of dextran concentration, we determined D at infinite dilution, D(inf), which allowed estimation of the hydrodynamic radius, R(h), using the Stokes-Einstein relationship. A plot of log D(inf) versus log R(h) was linear and provided a standard calibration curve from which R(h) is estimated for other glycans. We then applied this methodology to investigate two other glycans, an alpha-(1-->2)-L-rhamnosyl-alpha-(1-->4)-D-galacturonosyl with quasi-randomly distributed, mostly terminal beta(1-->4)-linked galactose side-chains (GRG) and an alpha(1-->6)-D-galacto-beta(1-->4)-D-mannan (Davanat), which is presently being tested against cancer in the clinic. Using the dextran-derived calibration curve, we find that average R(h) values for GRG and Davanat are 76+/-6 x 10(-10) m and 56+/-3 x 10(-10) m, with GRG being more polydispersed than Davanat. Results from this study will be useful to investigators requiring knowledge of polysaccharide dispersity, needing to study polysaccharides under various solution conditions, or wanting to follow degradation of polysaccharides during production.

  4. Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1

    PubMed Central

    Razawi, Hanieh; Kinlough, Carol L; Staubach, Simon; Poland, Paul A; Rbaibi, Youssef; Weisz, Ora A; Hughey, Rebecca P; Hanisch, Franz-Georg

    2013-01-01

    The apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005. Glycobiology. 15:1111–1124). Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. To address this novel observation, we used recombinant epitope-tagged MUC1 (MUC1-M) and mutant forms with abrogated clathrin-mediated endocytosis (MUC1-M-Y20,60N) or blocked recycling (palmitoylation-defective MUC1-M-CQC/AQA). We show that the CQC/AQA mutant transits the TGN at significantly lower levels, concomitant with a strongly reduced shedding from the plasma membrane and its accumulation in endosomal compartments. Intriguingly, the O-glycosylation of the shed MUC1 ectodomain subunit changes from preponderant sialylated core 1 (MUC1-M) to core 2 glycans on the non-recycling CQC/AQA mutant. The O-glycoprofile of the non-recycling CQC/AQA mutant resembles the core 2 glycoprofile on a secretory MUC1 probe that transits the Golgi complex only once. In contrast, the MUC1-M-Y20,60N mutant recycles via flotillin-dependent pathways and shows the wild-type phenotype with dominant core 1 expression. Differential radiolabeling of protein with [35S]Met/Cys or glycans with [3H]GlcNH2 in pulse-chase experiments of surface biotinylated MUC1 revealed a significantly shorter half-life of [3H]MUC1 when compared with [35S]MUC1, whereas the same ratio for the CQC/AQA mutant was close to one. This finding further supports the novel possibility of a recycling-associated O-glycan

  5. Greedy feature selection for glycan chromatography data with the generalized Dirichlet distribution

    PubMed Central

    2013-01-01

    Background Glycoproteins are involved in a diverse range of biochemical and biological processes. Changes in protein glycosylation are believed to occur in many diseases, particularly during cancer initiation and progression. The identification of biomarkers for human disease states is becoming increasingly important, as early detection is key to improving survival and recovery rates. To this end, the serum glycome has been proposed as a potential source of biomarkers for different types of cancers. High-throughput hydrophilic interaction liquid chromatography (HILIC) technology for glycan analysis allows for the detailed quantification of the glycan content in human serum. However, the experimental data from this analysis is compositional by nature. Compositional data are subject to a constant-sum constraint, which restricts the sample space to a simplex. Statistical analysis of glycan chromatography datasets should account for their unusual mathematical properties. As the volume of glycan HILIC data being produced increases, there is a considerable need for a framework to support appropriate statistical analysis. Proposed here is a methodology for feature selection in compositional data. The principal objective is to provide a template for the analysis of glycan chromatography data that may be used to identify potential glycan biomarkers. Results A greedy search algorithm, based on the generalized Dirichlet distribution, is carried out over the feature space to search for the set of “grouping variables” that best discriminate between known group structures in the data, modelling the compositional variables using beta distributions. The algorithm is applied to two glycan chromatography datasets. Statistical classification methods are used to test the ability of the selected features to differentiate between known groups in the data. Two well-known methods are used for comparison: correlation-based feature selection (CFS) and recursive partitioning (rpart). CFS

  6. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  7. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures.

    PubMed

    Chandrasekaran, E V; Xue, Jun; Xia, Jie; Khaja, Siraj D; Piskorz, Conrad F; Locke, Robert D; Neelamegham, Sriram; Matta, Khushi L

    2016-10-01

    Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3'/6'sulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate

  8. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform

    PubMed Central

    Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P.; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong

    2015-01-01

    A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven. PMID:26193329

  9. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform.

    PubMed

    Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong

    2015-07-16

    A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10-100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.

  10. Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype.

    PubMed

    Venkatakrishnan, Vignesh; Thaysen-Andersen, Morten; Chen, Sharon C A; Nevalainen, Helena; Packer, Nicolle H

    2015-01-01

    Although mucin O-glycosylation of sputum from individuals suffering from cystic fibrosis (CF) is known to be altered relative to their unaffected counterparts, protein N-glycosylation of CF sputum remains structurally and functionally under-characterized. We report the first N-glycome of soluble proteins in sputum derived from five CF patients, two pathogen-free and two pathogen-infected/colonized non-CF individuals suffering from other pulmonary conditions. N-Glycans were profiled using porous graphitized carbon-liquid chromatography-negative ion-tandem mass spectrometry following enzymatic release from sputum proteins. The composition, topology and linkage isomers of 68 N-glycans were characterized and relatively quantified. Recurring structural features in all sputum N-glycomes were terminal α2,6-sialylation, α1,6-core fucosylation, β1,4-bisecting GlcNAcylation and compositions indicating paucimannosylation. Despite covering different genotypes, age, gender and microbial flora, the sputum N-glycomes showed little interpatient and longitudinal variation within CF patients. Comparative N-glycome analysis between inter-patient group revealed that lung infection/colonization, in general, extensively enriches the CF sputum N-glycosylation phenotype with paucimannose with simultaneous over-sialylation/fucosylation and under-bisecting GlcNAcylation of complex/hybrid N-glycans. In contrast, the sputum from CF patients had only slightly increased abundance of paucimannose N-glycans relative to pathogen-infected/colonized non-CF individuals. Similar to mucin O-glycosylation, protein N-glycosylation appears to be regulated primarily as a secondary effect of bacterial infection and inflammation rather than the CF pathogenesis in sputum. This study provides new structural N-glycan information to help understand the complex cellular and molecular environment of the CF affected respiratory tract. © The Author 2014. Published by Oxford University Press. All rights reserved

  11. Subtle Differences in Symbiont Cell Surface Glycan Profiles Do Not Explain Species-Specific Colonization Rates in a Model Cnidarian-Algal Symbiosis

    PubMed Central

    Parkinson, John E.; Tivey, Trevor R.; Mandelare, Paige E.; Adpressa, Donovon A.; Loesgen, Sandra; Weis, Virginia M.

    2018-01-01

    Mutualisms between cnidarian hosts and dinoflagellate endosymbionts are foundational to coral reef ecosystems. These symbioses are often re-established every generation with high specificity, but gaps remain in our understanding of the cellular mechanisms that control symbiont recognition and uptake dynamics. Here, we tested whether differences in glycan profiles among different symbiont species account for the different rates at which they initially colonize aposymbiotic polyps of the model sea anemone Aiptasia (Exaiptasia pallida). First, we used a lectin array to characterize the glycan profiles of colonizing Symbiodinium minutum (ITS2 type B1) and noncolonizing Symbiodinium pilosum (ITS2 type A2), finding subtle differences in the binding of lectins Euonymus europaeus lectin (EEL) and Urtica dioica agglutinin lectin (UDA) that distinguish between high-mannoside and hybrid-type protein linked glycans. Next, we enzymatically cleaved glycans from the surfaces of S. minutum cultures and followed their recovery using flow cytometry, establishing a 48–72 h glycan turnover rate for this species. Finally, we exposed aposymbiotic host polyps to cultured S. minutum cells masked by EEL or UDA lectins for 48 h, then measured cell densities the following day. We found no effect of glycan masking on symbiont density, providing further support to the hypothesis that glycan-lectin interactions are more important for post-phagocytic persistence of specific symbionts than they are for initial uptake. We also identified several methodological and biological factors that may limit the utility of studying glycan masking in the Aiptasia system. PMID:29765363

  12. Reliable LC-MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards.

    PubMed

    Zhou, Shiyue; Tello, Nadia; Harvey, Alex; Boyes, Barry; Orlando, Ron; Mechref, Yehia

    2016-06-01

    Glycans have numerous functions in various biological processes and participate in the progress of diseases. Reliable quantitative glycomic profiling techniques could contribute to the understanding of the biological functions of glycans, and lead to the discovery of potential glycan biomarkers for diseases. Although LC-MS is a powerful analytical tool for quantitative glycomics, the variation of ionization efficiency and MS intensity bias are influencing quantitation reliability. Internal standards can be utilized for glycomic quantitation by MS-based methods to reduce variability. In this study, we used stable isotope labeled IgG2b monoclonal antibody, iGlycoMab, as an internal standard to reduce potential for errors and to reduce variabililty due to sample digestion, derivatization, and fluctuation of nanoESI efficiency in the LC-MS analysis of permethylated N-glycans released from model glycoproteins, human blood serum, and breast cancer cell line. We observed an unanticipated degradation of isotope labeled glycans, tracked a source of such degradation, and optimized a sample preparation protocol to minimize degradation of the internal standard glycans. All results indicated the effectiveness of using iGlycoMab to minimize errors originating from sample handling and instruments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High Throughput ELISAs to Measure a Unique Glycan on Transferrin in Cerebrospinal Fluid: A Possible Extension toward Alzheimer's Disease Biomarker Development.

    PubMed

    Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro

    2011-01-01

    We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on "CSF-type" Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on "serum-type" Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected "CSF-type" Tf but not "serum-type" Tf whereas SSA-TfAb ELISA detected "serum-type" Tf but not "CSF-type" Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases.

  14. More Than Just Oligomannose: An N-glycomic Comparison of Penicillium Species*

    PubMed Central

    Hykollari, Alba; Jin, Chunsheng; Yan, Shi; Vanbeselaere, Jorick; Razzazi-Fazeli, Ebrahim

    2016-01-01

    N-glycosylation is an essential set of post-translational modifications of proteins; in the case of filamentous fungi, N-glycans are present on a range of secreted and cell wall proteins. In this study, we have compared the glycans released by peptide/N-glycosidase F from proteolysed cell pellets of three Penicillium species (P. dierckxii, P. nordicum and P. verrucosum that all belong to the Eurotiomycetes). Although the major structures are all within the range Hex5–11HexNAc2 as shown by mass spectrometry, variations in reversed-phase chromatograms and MS/MS fragmentation patterns are indicative of differences in the actual structure. Hydrofluoric acid and mannosidase treatments revealed that the oligomannosidic glycans were not only in part modified with phosphoethanolamine residues and outer chain och1-dependent mannosylation, but that bisecting galactofuranose was present in a species-dependent manner. These data are the first to specifically show the modification of N-glycans in fungi with zwitterionic moieties. Furthermore, our results indicate that mere mass spectrometric screening is insufficient to reveal the subtly complex nature of N-glycosylation even within a single fungal genus. PMID:26515459

  15. Comparative analysis of cell wall surface glycan expression in Candida albicans and Saccharomyces cerevisiae yeasts by flow cytometry.

    PubMed

    Martínez-Esparza, M; Sarazin, A; Jouy, N; Poulain, D; Jouault, T

    2006-07-31

    The yeast Candida albicans is an opportunistic pathogen, part of the normal human microbial flora that causes infections in immunocompromised individuals with a high morbidity and mortality levels. Recognition of yeasts by host cells is based on components of the yeast cell wall, which are considered part of its virulence attributes. Cell wall glycans play an important role in the continuous interchange that regulates the balance between saprophytism and parasitism, and also between resistance and infection. Some of these molecular entities are expressed both by the pathogenic yeast C. albicans and by Saccharomyces cerevisiae, a related non-pathogenic yeast, involving similar molecular mechanisms and receptors for recognition. In this work we have exploited flow cytometry methods for probing surface glycans of the yeasts. We compared glycan expression by C. albicans and by S. cerevisiae, and studied the effect of culture conditions. Our results show that the expression levels of alpha- and beta-linked mannosides as well as beta-glucans can be successfully evaluated by flow cytometry methods using different antibodies independent of agglutination reactions. We also found that the surface expression pattern of beta-mannosides detected by monoclonal or polyclonal antibodies are differently modulated during the growth course. These data indicate that the yeast beta-mannosides exposed on mannoproteins and/or phospholipomannan are increased in stationary phase, whereas those linked to mannan are not affected by the yeast growth phase. The cytometric method described here represents a useful tool to investigate to what extent C. albicans is able to regulate its glycan surface expression and therefore modify its virulence properties.

  16. Status Report on the High-Throughput Characterization of Complex Intact O-Glycopeptide Mixtures

    NASA Astrophysics Data System (ADS)

    Pap, Adam; Klement, Eva; Hunyadi-Gulyas, Eva; Darula, Zsuzsanna; Medzihradszky, Katalin F.

    2018-05-01

    A very complex mixture of intact, human N- and O-glycopeptides, enriched from the tryptic digest of urinary proteins of three healthy donors using a two-step lectin affinity enrichment, was analyzed by LC-MS/MS, leading to approximately 45,000 glycopeptide EThcD spectra. Two search engines, Byonic and Protein Prospector, were used for the interpretation of the data, and N- and O-linked glycopeptides were assigned from separate searches. The identification rate was very low in all searches, even when results were combined. Thus, we investigated the reasons why was it so, to help to improve the identification success rate. Focusing on O-linked glycopeptides, we noticed that in EThcD, larger glycan oxonium ions better survive the activation than those in HCD. These fragments, combined with reducing terminal Y ions, provide important information about the glycan(s) present, so we investigated whether filtering the peaklists for glycan oxonium ions indicating the presence of a tetra- or hexasaccharide structure would help to reveal all molecules containing such glycans. Our study showed that intact glycans frequently do not survive even mild supplemental activation, meaning one cannot rely on these oxonium ions exclusively. We found that ETD efficiency is still a limiting factor, and for highly glycosylated peptides, the only information revealed in EThcD was related to the glycan structures. The limited overlap of results delivered by the two search engines draws attention to the fact that automated data interpretation of O-linked glycopeptides is not even close to being solved. [Figure not available: see fulltext.

  17. N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation.

    PubMed

    Balog, Crina I A; Stavenhagen, Kathrin; Fung, Wesley L J; Koeleman, Carolien A; McDonnell, Liam A; Verhoeven, Aswin; Mesker, Wilma E; Tollenaar, Rob A E M; Deelder, André M; Wuhrer, Manfred

    2012-09-01

    Colorectal cancer is the third most common cancer worldwide with an annual incidence of ~1 million cases and an annual mortality rate of ~655,000 individuals. There is an urgent need for identifying novel targets to develop more sensitive, reliable, and specific tests for early stage detection of colon cancer. Post-translational modifications are known to play an important role in cancer progression and immune surveillance of tumors. In the present study, we compared the N-glycan profiles from 13 colorectal cancer tumor tissues and corresponding control colon tissues. The N-glycans were enzymatically released, purified, and labeled with 2-aminobenzoic acid. Aliquots were profiled by hydrophilic interaction liquid chromatography (HILIC-HPLC) with fluorescence detection and by negative mode MALDI-TOF-MS. Using partial least squares discriminant analysis to investigate the N-glycosylation changes in colorectal cancer, an excellent separation and prediction ability were observed for both HILIC-HPLC and MALDI-TOF-MS data. For structure elucidation, information from positive mode ESI-ion trap-MS/MS and negative mode MALDI-TOF/TOF-MS was combined. Among the features with a high separation power, structures containing a bisecting GlcNAc were found to be decreased in the tumor, whereas sulfated glycans, paucimannosidic glycans, and glycans containing a sialylated Lewis type epitope were shown to be increased in tumor tissues. In addition, core-fucosylated high mannose N-glycans were detected in tumor samples. In conclusion, the combination of HILIC and MALDI-TOF-MS profiling of N-glycans with multivariate statistical analysis demonstrated its potential for identifying N-glycosylation changes in colorectal cancer tissues and provided new leads that might be used as candidate biomarkers.

  18. Predicting the Retention Behavior of Specific O-Linked Glycopeptides.

    PubMed

    Badgett, Majors J; Boyes, Barry; Orlando, Ron

    2017-09-01

    O -Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O -glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O - N -acetylgalactosamine ( O -GalNAc), O - N -acetylglucosamine ( O -GlcNAc), and O -fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications.

  19. Predicting the Retention Behavior of Specific O-Linked Glycopeptides

    PubMed Central

    Badgett, Majors J.; Boyes, Barry; Orlando, Ron

    2017-01-01

    O-Linked glycosylation is a common post-translational modification that can alter the overall structure, polarity, and function of proteins. Reverse-phase (RP) chromatography is the most common chromatographic approach to analyze O-glycosylated peptides and their unmodified counterparts, even though this approach often does not provide adequate separation of these two species. Hydrophilic interaction liquid chromatography (HILIC) can be a solution to this problem, as the polar glycan interacts with the polar stationary phase and potentially offers the ability to resolve the peptide from its modified form(s). In this paper, HILIC is used to separate peptides with O-N-acetylgalactosamine (O-GalNAc), O-N-acetylglucosamine (O-GlcNAc), and O-fucose additions from their native forms, and coefficients representing the extent of hydrophilicity were derived using linear regression analysis as a means to predict the retention times of peptides with these modifications. PMID:28785176

  20. Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning

    PubMed Central

    Rondard, Philippe; Huang, Siluo; Monnier, Carine; Tu, Haijun; Blanchard, Bertrand; Oueslati, Nadia; Malhaire, Fanny; Li, Ying; Trinquet, Eric; Labesse, Gilles; Pin, Jean-Philippe; Liu, Jianfeng

    2008-01-01

    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABAB1 and GABAB2. GABAB1 binds agonists, whereas GABAB2 is required for trafficking GABAB1 to the cell surface, increasing agonist affinity to GABAB1, and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABAB1 VFT leads to GABAB2 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABAB VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABAB2, including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation. PMID:18388862

  1. Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

    PubMed Central

    Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2011-01-01

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604

  2. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria

    PubMed Central

    Karav, Sercan; Le Parc, Annabelle; Leite Nobrega de Moura Bell, Juliana Maria; Frese, Steven A.; Kirmiz, Nina; Block, David E.; Barile, Daniela

    2016-01-01

    ABSTRACT Milk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intact N-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 released N-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-released N-glycans supported the rapid growth of Bifidobacterium longum subsp. infantis (B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth of Bifidobacterium animalis subsp. lactis (B. lactis), a species which does not. Conversely, B. infantis ATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed that B. infantis consumed 73% of neutral and 92% of sialylated N-glycans, while B. lactis degraded only 11% of neutral and virtually no (<1%) sialylated N-glycans. These results provide mechanistic support that N-linked glycoproteins from milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, released N-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety of N-glycans released from bovine milk glycoproteins suggests that they may serve as

  3. Glycan profiling of monoclonal antibodies using zwitterionic-type hydrophilic interaction chromatography coupled with electrospray ionization mass spectrometry detection.

    PubMed

    Mauko, Lea; Nordborg, Anna; Hutchinson, Joseph P; Lacher, Nathan A; Hilder, Emily F; Haddad, Paul R

    2011-01-15

    We present a new method for the analysis of glycans enzymatically released from monoclonal antibodies (MAbs) employing a zwitterionic-type hydrophilic interaction chromatography (ZIC-HILIC) column coupled with electrospray ionization mass spectrometry (ESI-MS). Both native and reduced glycans were analyzed, and the developed procedure was compared with a standard HILIC procedure used in the pharmaceutical industry whereby fluorescent-labeled glycans are analyzed using a TSK Amide-80 column coupled with fluorescence detection. The separation of isobaric alditol oligosaccharides present in monoclonal antibodies and ribonuclease B is demonstrated, and ZIC-HILIC is shown to have good capability for structural recognition. Glycan profiles obtained with the ZIC-HILIC column and ESI-MS provided detailed information on MAb glycosylation, including identification of some less abundant glycan species, and are consistent with the profiles generated with the standard procedure. This new ZIC-HILIC method offers a simpler and faster approach for glycosylation analysis of therapeutic antibodies. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Neutral glycans from sandfish skin can reduce friction of polymers

    PubMed Central

    Vihar, Boštjan; Hanisch, Franz Georg; Baumgartner, Werner

    2016-01-01

    The lizard Scincus scincus, also known as sandfish, can move through aeolian desert sand in a swimming-like manner. A prerequisite for this ability is a special integument, i.e. scales with a very low friction for sand and a high abrasion resistance. Glycans in the scales are causally related to the low friction. Here, we analysed the glycans and found that neutral glycans with five to nine mannose residues are important. If these glycans were covalently bound to acrylic polymers like poly(methyl methacrylate) or acrylic car coatings at a density of approximately one molecule per 4 nm², friction for and adhesion of sand particles could be reduced to levels close to those observed with sandfish scales. This was also found true, if the glycans were isolated from sources other than sandfish scales like plants such as almonds or mistletoe. We speculate that these neutral glycans act as low density spacers separating sand particles from the dense scales thereby reducing van der Waals forces. PMID:27030038

  5. Informatic innovations in glycobiology: relevance to drug discovery.

    PubMed

    Mamitsuka, Hiroshi

    2008-02-01

    The recent development and applications of tree-based informatics on glycans have accelerated the biological analysis on glycans, particularly from structural viewpoints. We review three major aspects of recent informatics innovations on glycan structures: maturity of well-organized databases on glycan structures linking with other biological information, implementation of glycan structure matching algorithms and extensive development of methods for mining frequent patterns from glycan structures.

  6. Evidence that biosynthesis of the second and third sugars of the archaellin Tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar.

    PubMed

    Siu, Sarah; Robotham, Anna; Logan, Susan M; Kelly, John F; Uchida, Kaoru; Aizawa, Shin-Ichi; Jarrell, Ken F

    2015-05-01

    Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for

  7. Evidence that Biosynthesis of the Second and Third Sugars of the Archaellin Tetrasaccharide in the Archaeon Methanococcus maripaludis Occurs by the Same Pathway Used by Pseudomonas aeruginosa To Make a Di-N-Acetylated Sugar

    PubMed Central

    Siu, Sarah; Robotham, Anna; Logan, Susan M.; Kelly, John F.; Uchida, Kaoru; Aizawa, Shin-Ichi

    2015-01-01

    ABSTRACT Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-l-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. IMPORTANCE This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is

  8. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors.

    PubMed

    Karst, Daniel J; Scibona, Ernesto; Serra, Elisa; Bielser, Jean-Marc; Souquet, Jonathan; Stettler, Matthieu; Broly, Hervé; Soos, Miroslav; Morbidelli, Massimo; Villiger, Thomas K

    2017-09-01

    Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can

  9. N-Glycosylation of Asparagine 130 in the Extracellular Domain of the Human Calcitonin Receptor Significantly Increases Peptide Hormone Affinity.

    PubMed

    Lee, Sang-Min; Booe, Jason M; Gingell, Joseph J; Sjoelund, Virginie; Hay, Debbie L; Pioszak, Augen A

    2017-07-05

    The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is activated by the peptide hormones calcitonin and amylin. Calcitonin regulates bone remodeling through CTR, whereas amylin regulates blood glucose and food intake by activating CTR in complex with receptor activity-modifying proteins (RAMPs). These receptors are targeted clinically for the treatment of osteoporosis and diabetes. Here, we define the role of CTR N-glycosylation in hormone binding using purified calcitonin and amylin receptor extracellular domain (ECD) glycoforms and fluorescence polarization/anisotropy and isothermal titration calorimetry peptide-binding assays. N-Glycan-free CTR ECD produced in Escherichia coli exhibited ∼10-fold lower peptide affinity than CTR ECD produced in HEK293T cells, which yield complex N-glycans, or in HEK293S GnTI - cells, which yield core N-glycans (Man 5 GlcNAc 2 ). PNGase F-catalyzed removal of N-glycans at N73, N125, and N130 in the CTR ECD decreased peptide affinity ∼10-fold, whereas Endo H-catalyzed trimming of the N-glycans to single GlcNAc residues had no effect on peptide binding. Similar results were observed for an amylin receptor RAMP2-CTR ECD complex. Characterization of peptide-binding affinities of purified N → Q CTR ECD glycan site mutants combined with PNGase F and Endo H treatment strategies and mass spectrometry to define the glycan species indicated that a single GlcNAc residue at CTR N130 was responsible for the peptide affinity enhancement. Molecular modeling suggested that this GlcNAc functions through an allosteric mechanism rather than by directly contacting the peptide. These results reveal an important role for N-linked glycosylation in the peptide hormone binding of a clinically relevant class B GPCR.

  10. Heparan sulfates and the decrease of N-glycans promote early adipogenic differentiation rather than myogenesis of murine myogenic progenitor cells.

    PubMed

    Grassot, Vincent; Bouchatal, Amel; Da Silva, Anne; Chantepie, Sandrine; Papy-Garcia, Dulce; Maftah, Abderrahman; Gallet, Paul-François; Petit, Jean-Michel

    In vitro, extracted muscle satellite cells, called myogenic progenitor cells, can differentiate either in myotubes or preadipocytes, depending on environmental factors and the medium. Transcriptomic analyses on glycosylation genes during satellite cells differentiation into myotubes showed that 31 genes present a significant variation of expression at the early stages of murine myogenic progenitor cells (MPC) differentiation. In the present study, we analyzed the expression of 383 glycosylation related genes during murine MPC differentiation into preadipocytes and compared the data to those previously obtained during their differentiation into myotubes. Fifty-six glycosylation related genes are specifically modified in their expression during early adipogenesis. The variations correspond mainly to: a decrease of N-glycans, and of alpha (2,3) and (2,6) linked sialic acids, and to a high level of heparan sulfates. A high amount of TGF-β1 in extracellular media during early adipogenesis was also observed. It seems that the increases of heparan sulfates and TGF-β1 favor pre-adipogenic differentition of MPC and possibly prevent their myogenic differentiation. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin

    PubMed Central

    Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis

    2009-01-01

    AB5 toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB5 toxin secreted by Shiga toxigenic Escherichia coli (STEC)1, which causes serious gastrointestinal disease in humans2. SubAB causes haemolytic uraemic syndrome-like pathology in mice3 via SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone4. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesised in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite human lack of Neu5Gc biosynthesis, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, together with the human lack of Neu5Gc-containing body fluid competitors, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin’s receptor is generated by metabolic incorporation of an exogenous factor derived from food. PMID:18971931

  12. Comparison of RP-HPLC modes to analyse the N-glycome of the free-living nematode Pristionchus pacificus

    PubMed Central

    Yan, Shi; Wilson, Iain B. H.; Paschinger, Katharina

    2015-01-01

    Pristionchus pacificus is a free-living nematode increasingly used as an organism for comparison to the more familiar model Caenorhabditis elegans. In this study, we examined the N-glycans of this organism isolated after serial release with peptide:N-glycosidases F and A; after fluorescent labelling with 2-aminopyridine, chromatographic fractionation by three types of reversed-phase HPLC (with either classical C18, fused core C18 or alkylamide bonded phases) followed by mass spectrometric analyses revealed key features of its N-glycome. In addition to paucimannosidic and oligomannosidic glycans typical of invertebrates, N-glycans with two core fucose residues were detected. Furthermore, a range of glycans carrying up to three phosphorylcholine residues was observed whereas, unlike C. elegans, no tetrafucosylated N-glycans were detected. Structures with three fucose residues, unusual methylation of core α1,3-fucose or with galactosylated fucose motifs were found in low amounts; these features may correlate with a different ensemble or expression of glycosyltransferase genes as compared to C. elegans. From an analytical perspective, both the alkylamide RP-amide and fused core C18 columns, as compared to a classical C18 material, offer advantages in terms of resolution and of elution properties, as some minor pyridylamino-labelled glycans (e.g., those carrying phosphorylcholine) appear in earlier fractions and so potential losses of such structures due to insufficient gradient length can be avoided. PMID:25639343

  13. High Throughput ELISAs to Measure a Unique Glycan on Transferrin in Cerebrospinal Fluid: A Possible Extension toward Alzheimer's Disease Biomarker Development

    PubMed Central

    Shirotani, Keiro; Futakawa, Satoshi; Nara, Kiyomitsu; Hoshi, Kyoka; Saito, Toshie; Tohyama, Yuriko; Kitazume, Shinobu; Yuasa, Tatsuhiko; Miyajima, Masakazu; Arai, Hajime; Kuno, Atsushi; Narimatsu, Hisashi; Hashimoto, Yasuhiro

    2011-01-01

    We have established high-throughput lectin-antibody ELISAs to measure different glycans on transferrin (Tf) in cerebrospinal fluid (CSF) using lectins and an anti-transferrin antibody (TfAb). Lectin blot and precipitation analysis of CSF revealed that PVL (Psathyrella velutina lectin) bound an unique N-acetylglucosamine-terminated N-glycans on “CSF-type” Tf whereas SSA (Sambucus sieboldiana agglutinin) bound α2,6-N-acetylneuraminic acid-terminated N-glycans on “serum-type” Tf. PVL-TfAb ELISA of 0.5 μL CSF samples detected “CSF-type” Tf but not “serum-type” Tf whereas SSA-TfAb ELISA detected “serum-type” Tf but not “CSF-type” Tf, demonstrating the specificity of the lectin-TfAb ELISAs. In idiopathic normal pressure hydrocephalus (iNPH), a senile dementia associated with ventriculomegaly, amounts of the SSA-reactive Tf were significantly higher than in non-iNPH patients, indicating that Tf glycan analysis by the high-throughput lectin-TfAb ELISAs could become practical diagnostic tools for iNPH. The lectin-antibody ELISAs of CSF proteins might be useful for diagnosis of the other neurological diseases. PMID:21876827

  14. Solution NMR Analyses of the C-type Carbohydrate Recognition Domain of DC-SIGNR Protein Reveal Different Binding Modes for HIV-derived Oligosaccharides and Smaller Glycan Fragments

    PubMed Central

    Probert, Fay; Whittaker, Sara B.-M.; Crispin, Max; Mitchell, Daniel A.; Dixon, Ann M.

    2013-01-01

    The C-type lectin DC-SIGNR (dendritic cell-specific ICAM-3-grabbing non-integrin-related; also known as L-SIGN or CD299) is a promising drug target due to its ability to promote infection and/or within-host survival of several dangerous pathogens (e.g. HIV and severe acute respiratory syndrome coronavirus (SARS)) via interactions with their surface glycans. Crystallography has provided excellent insight into the mechanism by which DC-SIGNR interacts with small glycans, such as (GlcNAc)2Man3; however, direct observation of complexes with larger, physiological oligosaccharides, such as Man9GlcNAc2, remains elusive. We have utilized solution-state nuclear magnetic resonance spectroscopy to investigate DC-SIGNR binding and herein report the first backbone assignment of its active, calcium-bound carbohydrate recognition domain. Direct interactions with the small sugar fragments Man3, Man5, and (GlcNAc)2Man3 were investigated alongside Man9GlcNAc derived from recombinant gp120 (present on the HIV viral envelope), providing the first structural data for DC-SIGNR in complex with a virus-associated ligand, and unique binding modes were observed for each glycan. In particular, our data show that DC-SIGNR has a different binding mode for glycans on the HIV viral envelope compared with the smaller glycans previously observed in the crystalline state. This suggests that using the binding mode of Man9GlcNAc, instead of those of small glycans, may provide a platform for the design of DC-SIGNR inhibitors selective for high mannose glycans (like those on HIV). 15N relaxation measurements provided the first information on the dynamics of the carbohydrate recognition domain, demonstrating that it is a highly flexible domain that undergoes ligand-induced conformational and dynamic changes that may explain the ability of DC-SIGNR to accommodate a range of glycans on viral surfaces. PMID:23788638

  15. N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers.

    PubMed

    Hamouda, Houda; Ullah, Mujib; Berger, Markus; Sittinger, Michael; Tauber, Rudolf; Ringe, Jochen; Blanchard, Véronique

    2013-12-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are easy to isolate and expand, develop into several tissues, including fat, migrate to diseased organs, have immunosuppressive properties and secrete regenerative factors. This makes MSCs ideal for regenerative medicine. For application and regulatory purposes, knowledge of (bio)markers characterizing MSCs and their development stages is of paramount importance. The cell surface is coated with glycans that possess lineage-specific nature, which makes glycans to be promising candidate markers. In the context of soft tissue generation, we aimed to identify glycans that could be markers for MSCs and their adipogenically differentiated progeny. MSCs were isolated from human bone marrow, adipogenically stimulated for 15 days and adipogenesis was verified by staining the lipid droplets and quantitative real time polymerase chain reaction of the marker genes peroxisome proliferator-activated receptor gamma (PPARG) and fatty acid binding protein-4 (FABP4). Using matrix-assisted laser desorption-ionization-time of flight mass spectrometry combined with exoglycosidase digestions, we report for the first time the N-glycome of MSCs during adipogenic differentiation. We were able to detect more than 100 different N-glycans, including high-mannose, hybrid, and complex N-glycans, as well as poly-N-acetyllactosamine chains. Adipogenesis was accompanied by an increased amount of biantennary fucosylated structures, decreased amount of fucosylated, afucosylated tri- and tetraantennary structures and increased sialylation. N-glycans H6N5F1 and H7N6F1 were significantly overexpressed in undifferentiated MSCs while H3N4F1 and H5N4F3 were upregulated in adipogenically differentiated MSCs. These glycan structures are promising candidate markers to detect and distinguish MSCs and their adipogenic progeny.

  16. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.

    PubMed

    Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Tojino, Mami; Sugawara, Shu-Ichi; Takashima, Shou; Hirose, Yuriko; Tsukimura, Wataru; Mizuno, Mamoru; Amano, Junko; Matsuda, Akio; Tomita, Masahiro; Takayanagi, Atsushi; Shoda, Shin-Ichiro; Shirai, Takashi

    2015-01-01

    Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG'ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG'ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG'ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells, and

  17. N-linked glycoprotein analysis using dual-extraction ultrahigh-performance liquid chromatography and electrospray tandem mass spectrometry.

    PubMed

    Siu, S O; Lam, Maggie P Y; Lau, Edward; Yeung, William S B; Cox, David M; Chu, Ivan K

    2010-01-01

    Although reverse-phase liquid chromatography (RP-LC) is a common technique for peptide separation in shotgun proteomics and glycoproteomics, it often provides unsatisfactory results for the analysis of glycopeptides and glycans. This bias against glycopeptides makes it difficult to study glycoproteins. By coupling mass spectrometry (MS) with a combination of RP-LC and normal-phase (NP)-LC as an integrated front-end separation system, we demonstrate that effective identification and characterization of both peptides and glycopeptides mixtures, and their constituent glycan structures, can be achieved from a single sample injection event.

  18. Reduction of N-linked xylose and fucose by expression of rat beta1,4-N-acetylglucosaminyltransferase III in tobacco BY-2 cells depends on Golgi enzyme localization domain and genetic elements used for expression.

    PubMed

    Karg, Saskia R; Frey, Alexander D; Kallio, Pauli T

    2010-03-01

    Plant-specific N-glycosylation, such as the introduction of core alpha1,3-fucose and beta1,2-xylose residues, is a major obstacle to the utilization of plant cell- or plant-derived recombinant therapeutic proteins. The beta1,4-N-acetylglucosaminyltransferase III (GnTIII) introduces a bisecting GlcNAc residue into N-glycans, which exerts a high level of substrate mediated control over subsequent modifications, for example inhibiting mammalian core fucosylation. Based on similar findings in plants, we used Nicotianatabacum BY-2 cells to study the effects of localization and expression levels of GnTIII in the remodeling of the plant N-glycosylation pathway. The N-glycans produced by the cells expressing GnTIII were partially bisected and practically devoid of the paucimannosidic type which is typical for N-glycans produced by wildtype BY-2 suspension cultured cells. The proportion of human-compatible N-glycans devoid of fucose and xylose could be increased from an average of 4% on secreted protein from wildtype cells to as high as 59% in cells expressing chimeric GnTIII, named GnTIII(A.th.) replacing its native localization domain with the cytoplasmic tail, transmembrane, and stem region of Arabidopsis thaliana mannosidase II. The changes in N-glycosylation observed were dependent on the catalytic activity of GnTIII, as the expression of catalytically inactive GnTIII mutants did not show a significant effect on N-glycosylation. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution.

    PubMed

    Liu, Yang; Xu, Shenyuan; Woodruff, Andrew L; Xia, Ming; Tan, Ming; Kennedy, Michael A; Jiang, Xi

    2017-11-01

    Recognition of specific cell surface glycans, mediated by the VP8* domain of the spike protein VP4, is the essential first step in rotavirus (RV) infection. Due to lack of direct structural information of virus-ligand interactions, the molecular basis of ligand-controlled host ranges of the major human RVs (P[8] and P[4]) in P[II] genogroup remains unknown. Here, through characterization of a minor P[II] RV (P[19]) that can infect both animals (pigs) and humans, we made an important advance to fill this knowledge gap by solving the crystal structures of the P[19] VP8* in complex with its ligands. Our data showed that P[19] RVs use a novel binding site that differs from the known ones of other genotypes/genogroups. This binding site is capable of interacting with two types of glycans, the mucin core and type 1 histo-blood group antigens (HBGAs) with a common GlcNAc as the central binding saccharide. The binding site is apparently shared by other P[II] RVs and possibly two genotypes (P[10] and P[12]) in P[I] as shown by their highly conserved GlcNAc-interacting residues. These data provide strong evidence of evolutionary connections among these human and animal RVs, pointing to a common ancestor in P[I] with a possible animal host origin. While the binding properties to GlcNAc-containing saccharides are maintained, changes in binding to additional residues, such as those in the polymorphic type 1 HBGAs may occur in the course of RV evolution, explaining the complex P[II] genogroup that mainly causes diseases in humans but also in some animals.

  20. Diversity in the protein N-glycosylation pathways among campylobacter species

    USDA-ARS?s Scientific Manuscript database

    The foodborne bacterial pathogen, Campylobacter jejuni, possesses an N-linked protein glycosylation (pgl) pathway involved in adding conserved heptasaccharides to asparaginecontaining motifs of >60 proteins, and releasing the same glycan into its periplasm as free oligosaccharides. In this study, co...

  1. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans.

    PubMed

    Ceroni, Alessio; Maass, Kai; Geyer, Hildegard; Geyer, Rudolf; Dell, Anne; Haslam, Stuart M

    2008-04-01

    Mass spectrometry is the main analytical technique currently used to address the challenges of glycomics as it offers unrivalled levels of sensitivity and the ability to handle complex mixtures of different glycan variations. Determination of glycan structures from analysis of MS data is a major bottleneck in high-throughput glycomics projects, and robust solutions to this problem are of critical importance. However, all the approaches currently available have inherent restrictions to the type of glycans they can identify, and none of them have proved to be a definitive tool for glycomics. GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the manual interpretation of MS data. The main task of GlycoWorkbench is to evaluate a set of structures proposed by the user by matching the corresponding theoretical list of fragment masses against the list of peaks derived from the spectrum. The tool provides an easy to use graphical interface, a comprehensive and increasing set of structural constituents, an exhaustive collection of fragmentation types, and a broad list of annotation options. The aim of GlycoWorkbench is to offer complete support for the routine interpretation of MS data. The software is available for download from: http://www.eurocarbdb.org/applications/ms-tools.

  2. Restricted HIV-1 Env glycan engagement by lectin-reengineered DAVEI protein chimera is sufficient for lytic inactivation of the virus

    PubMed Central

    Parajuli, Bibek; Acharya, Kriti; Bach, Harry C.; Parajuli, Bijay; Zhang, Shiyu; Smith, Amos B.; Abrams, Cameron F.; Chaiken, Irwin

    2018-01-01

    We previously reported a first-generation recombinant DAVEI construct, a dual action virus entry inhibitor composed of cyanovirin-N (CVN) fused to a membrane proximal external region or its derivative peptide Trp3. DAVEI exhibits potent and irreversible inactivation of HIV-1 (human immunodeficiency virus) viruses by dual engagement of gp120 and gp41. However, the promiscuity of CVN to associate with multiple glycosylation sites in gp120 and its multivalency limit current understanding of the molecular arrangement of the DAVEI molecules on trimeric spike. Here, we constructed and investigated the virolytic function of second-generation DAVEI molecules using a simpler lectin, microvirin (MVN). MVN is a monovalent lectin with a single glycan-binding site in gp120, is structurally similar to CVN and exhibits no toxicity or mitogenicity, both of which are liabilities with CVN. We found that, like CVN-DAVEI-L2-3Trp (peptide sequence DKWASLWNW), MVN-DAVEI2-3Trp exploits a similar mechanism of action for inducing HIV-1 lytic inactivation, but by more selective gp120 glycan engagement. By sequence redesign, we significantly increased the potency of MVN-DAVEI2-3Trp protein. Unlike CVN-DAVEI2-3Trp, re-engineered MVN-DAVEI2-3Trp(Q81K/M83R) virolytic activity and its interaction with gp120 were both competed by 2G12 antibody. That the lectin domain in DAVEIs can utilize MVN without loss of virolytic function argues that restricted HIV-1 Env (envelope glycoprotein) glycan engagement is sufficient for virolysis. It also shows that DAVEI lectin multivalent binding with gp120 is not required for virolysis. MVN-DAVEI2-3Trp(Q81K/M83R) provides an improved tool to elucidate productive molecular arrangements of Env-DAVEI enabling virolysis and also opens the way to form DAVEI fusions made up of gp120-binding small molecules linked to Trp3 peptide. PMID:29343613

  3. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections.

    PubMed

    Xiong, Xiaoli; Tortorici, M Alejandra; Snijder, Joost; Yoshioka, Craig; Walls, Alexandra C; Li, Wentao; McGuire, Andrew T; Rey, Félix A; Bosch, Berend-Jan; Veesler, David

    2017-11-01

    decorated with 78 N-linked glycans obstructing the protein surface to limit accessibility to neutralizing antibodies in a way reminiscent of what has recently been described for a human respiratory coronavirus. PDCoV S is largely protease-resistant which distinguishes it from most other characterized coronavirus S glycoproteins and suggests that enteric coronaviruses have evolved to fine-tune fusion activation in the protease-rich environment of the small intestine of infected hosts. Copyright © 2017 American Society for Microbiology.

  4. Modifications of Glycans: Biological Significance and Therapeutic Opportunities

    PubMed Central

    Muthana, Saddam M.; Campbell, Christopher; Gildersleeve, Jeffrey C.

    2012-01-01

    Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate’s overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as postglycosylational modifications. PMID:22195988

  5. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  6. The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.

    PubMed

    Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng

    2009-12-01

    Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.

  7. Infection's Sweet Tooth: How Glycans Mediate Infection and Disease Susceptibility.

    PubMed

    Taylor, Steven L; McGuckin, Michael A; Wesselingh, Steve; Rogers, Geraint B

    2018-02-01

    Glycans form a highly variable constituent of our mucosal surfaces and profoundly affect our susceptibility to infection and disease. The diversity and importance of these surface glycans can be seen in individuals who lack a functional copy of the fucosyltransferase gene, FUT2. Representing around one-fifth of the population, these individuals have an altered susceptibility to many bacterial and viral infections and diseases. The mediation of host-pathogen interactions by mucosal glycans, such as those added by FUT2, is poorly understood. We highlight, with specific examples, important mechanisms by which host glycans influence infection dynamics, including by: acting as pathogen receptors (or receptor-decoys), promoting microbial stability, altering the physical characteristics of mucus, and acting as immunological markers. We argue that the effect glycans have on infection dynamics has profound implications for many aspects of healthcare and policy, including clinical management, outbreak control, and vaccination policy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Binding affinities of NKG2D and CD94 to sialyl Lewis X-expressing N-glycans and heparin.

    PubMed

    Higai, Koji; Suzuki, Chiho; Imaizumi, Yuzo; Xin, Xin; Azuma, Yutaro; Matsumoto, Kojiro

    2011-01-01

    Lectin-like receptors natural killer group 2D (NKG2D) and CD94 on natural killer (NK) cells bind to α2,3-NeuAc-containing N-glycans and heparin/heparan sulfate (HS). Using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rGST-NKG2Dlec) and CD94 (rGST-CD94lec), we evaluated their binding affinities (K(d)) to high sialyl Lewis X (sLeX)-expressing transferrin secreted by HepG2 cells (HepTf) and heparin-conjugated bovine serum albumin (Heparin-BSA), using quartz crystal microbalance (QCM) and enzyme immunoassay (EIA) microplate methods. K(d) values obtained by linear reciprocal plots revealed good coincidence between the two methods. K(d) values of rGST-NKG2Dlec obtained by QCM and EIA, respectively, were 1.19 and 1.11 µM for heparin-BSA >0.30 and 0.20 µM for HepTf, while those of rGST-CD94lec were 1.31 and 1.45 µM for HepTf >0.37 and 0.36 µM for heparin-BSA. These results suggested that these glycans can interact with NKG2D and CD94 to modulate NK cell-dependent cytotoxicity.

  9. Synthetic Human NOTCH1 EGF Modules Unraveled Molecular Mechanisms for the Structural and Functional Roles of Calcium Ions and O-Glycans in the Ligand-Binding Region.

    PubMed

    Hayakawa, Shun; Koide, Ryosuke; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2016-02-09

    The Notch signaling pathway is an evolutionarily highly conserved mechanism that operates across multicellular organisms and is critical for cell-fate decisions during development and homeostasis in most tissues. Notch signaling is modified by posttranslational glycosylations of the Notch extracellular EGF-like domain. To evaluate the structural and functional roles of various glycoforms at multiple EGF domains in the human Notch transmembrane receptor, we established a universal method for the construction of NOTCH1 EGF modules displaying the desired O-glycans at the designated glycosylation sites. The versatility of this strategy was demonstrated by the rapid and highly efficient synthesis of NOTCH1 EGF12 concurrently having a β-D-glucopyranose-initiated glycan (Xylα1 → 3Xylα1 → 3Glcβ1 →) at Ser458 and α-L-fucopyranose-initiated glycan (Neu5Acα2 → 3Galβ1 → 4GlcNAcβ1 → 3Fucα1 →) at Thr466. The efficiency of the proper folding of the glycosylated EGF12 was markedly enhanced in the presence of 5 mM CaCl2. A nuclear magnetic resonance study revealed the existence of strong nuclear Overhauser effects between key sugar moieties and neighboring amino acid residues, indicating that both O-glycans contribute independently to the intramolecular stabilization of the antiparallel β-sheet structure in the ligand-binding region of EGF12. A preliminary test using synthetic human NOTCH1 EGF modules showed significant inhibitory effects on the proliferation and adhesiveness of human breast cancer cell line MCF-7 and lung adenocarcinoma epithelial cell line A549, demonstrating for the first time evidence that exogenously applied synthetic EGF modules have the ability to interact with intrinsic Notch ligands on the surface of cancer cells.

  10. Neuro-Compatible Metabolic Glycan Labeling of Primary Hippocampal Neurons in Noncontact, Sandwich-Type Neuron-Astrocyte Coculture.

    PubMed

    Choi, Ji Yu; Park, Matthew; Cho, Hyeoncheol; Kim, Mi-Hee; Kang, Kyungtae; Choi, Insung S

    2017-12-20

    Glycans are intimately involved in several facets of neuronal development and neuropathology. However, the metabolic labeling of surface glycans in primary neurons is a difficult task because of the neurotoxicity of unnatural monosaccharides that are used as a metabolic precursor, hindering the progress of metabolic engineering in neuron-related fields. Therefore, in this paper, we report a neurosupportive, neuron-astrocyte coculture system that neutralizes the neurotoxic effects of unnatural monosaccharides, allowing for the long-term observation and characterization of glycans in primary neurons in vitro. Polysialic acids in neurons are selectively imaged, via the metabolic labeling of sialoglycans with peracetylated N-azidoacetyl-d-mannosamine (Ac 4 ManNAz), for up to 21 DIV. Two-color labeling shows that neuronal activities, such as neurite outgrowth and recycling of membrane components, are highly dynamic and change over time during development. In addition, the insertion sites of membrane components are suggested to not be random, but be predominantly localized in developing neurites. This work provides a new research platform and also suggests advanced 3D systems for metabolic-labeling studies of glycans in primary neurons.

  11. GlycoDeNovo - an Efficient Algorithm for Accurate de novo Glycan Topology Reconstruction from Tandem Mass Spectra

    NASA Astrophysics Data System (ADS)

    Hong, Pengyu; Sun, Hui; Sha, Long; Pu, Yi; Khatri, Kshitij; Yu, Xiang; Tang, Yang; Lin, Cheng

    2017-08-01

    A major challenge in glycomics is the characterization of complex glycan structures that are essential for understanding their diverse roles in many biological processes. We present a novel efficient computational approach, named GlycoDeNovo, for accurate elucidation of the glycan topologies from their tandem mass spectra. Given a spectrum, GlycoDeNovo first builds an interpretation-graph specifying how to interpret each peak using preceding interpreted peaks. It then reconstructs the topologies of peaks that contribute to interpreting the precursor ion. We theoretically prove that GlycoDeNovo is highly efficient. A major innovative feature added to GlycoDeNovo is a data-driven IonClassifier which can be used to effectively rank candidate topologies. IonClassifier is automatically learned from experimental spectra of known glycans to distinguish B- and C-type ions from all other ion types. Our results showed that GlycoDeNovo is robust and accurate for topology reconstruction of glycans from their tandem mass spectra. [Figure not available: see fulltext.

  12. Regulation of Complement and Contact System Activation via C1 Inhibitor Potentiation and Factor XIIa Activity Modulation by Sulfated GlycansStructure-Activity Relationships

    PubMed Central

    Schoenfeld, Ann-Kathrin; Lahrsen, Eric; Alban, Susanne

    2016-01-01

    The serpin C1 inhibitor (C1-INH) is the only regulator of classical complement activation as well as the major regulator of the contact system. Its importance is demonstrated by hereditary angioedema (HAE), a severe disease with potentially life-threatening attacks due to deficiency or dysfunction of C1-INH. C1-INH replacement is the therapy of choice in HAE. In addition, C1-INH showed to have beneficial effects in other diseases characterized by inappropriate complement and contact system activation. Due to some limitations of its clinical application, there is a need for improving the efficacy of therapeutically applied C1-INH or to enhance the activity of endogenous C1-INH. Given the known potentiating effect of heparin on C1-INH, sulfated glycans (SG) may be such candidates. The aim of this study was to characterize suitable SG by evaluating structure-activity relationships. For this, more than 40 structurally distinct SG were examined for their effects on C1-INH, C1s and FXIIa. The SG turned out to potentiate the C1s inhibition by C1-INH without any direct influence on C1s. Their potentiating activity proved to depend on their degree of sulfation, molecular mass as well as glycan structure. In contrast, the SG had no effect on the FXIIa inhibition by C1-INH, but structure-dependently modulated the activity of FXIIa. Among the tested SG, β-1,3-glucan sulfates with a Mr ≤ 10 000 were identified as most promising lead candidates for the development of a glycan-based C1-INH amplifier. In conclusion, the obtained information on structural characteristics of SG favoring C1-INH potentiation represent an useful elementary basis for the development of compounds improving the potency of C1-INH in diseases and clinical situations characterized by inappropriate activation of complement and contact system. PMID:27783665

  13. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects

    PubMed Central

    Vasta, Gerardo R.; Ahmed, Hafiz; Bianchet, Mario A.; Fernández-Robledo, José A.; Amzel, L. Mario

    2013-01-01

    Although lectins are “hard-wired” in the germline, the presence of tandemly arrayed carbohydrate recognition domains (CRDs), of chimeric structures displaying distinct CRDs, of polymorphic genes resulting in multiple isoforms, and in some cases, of a considerable recognition plasticity of their carbohydrate binding sites, significantly expand the lectin ligand-recognition spectrum and lectin functional diversification. Analysis of structural/functional aspects of galectins and F-lectins—the most recently identified lectin family characterized by a unique CRD sequence motif (a distinctive structural fold) and nominal specificity for l-Fuc—has led to a greater understanding of self/nonself recognition by proteins with tandemly arrayed CRDs. For lectins with a single CRD, however, recognition of self and nonself glycans can only be rationalized in terms of protein oligomerization and ligand clustering and presentation. Spatial and temporal changes in lectin expression, secretion, and local concentrations in extracellular microenvironments, as well as structural diversity and spatial display of their carbohydrate ligands on the host or microbial cell surface, are suggestive of a dynamic interplay of their recognition and effector functions in development and immunity. PMID:22973821

  14. GlycReSoft: A Software Package for Automated Recognition of Glycans from LC/MS Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Evan; Tan, Yan; Tan, Yuxiang

    2012-09-26

    Glycosylation modifies the physicochemical properties and protein binding functions of glycoconjugates. These modifications are biosynthesized in the endoplasmic reticulum and Golgi apparatus by a series of enzymatic transformations that are under complex control. As a result, mature glycans on a given site are heterogeneous mixtures of glycoforms. This gives rise to a spectrum of adhesive properties that strongly influences interactions with binding partners and resultant biological effects. In order to understand the roles glycosylation plays in normal and disease processes, efficient structural analysis tools are necessary. In the field of glycomics, liquid chromatography/mass spectrometry (LC/MS) is used to profile themore » glycans present in a given sample. This technology enables comparison of glycan compositions and abundances among different biological samples, i.e. normal versus disease, normal versus mutant, etc. Manual analysis of the glycan profiling LC/MS data is extremely time-consuming and efficient software tools are needed to eliminate this bottleneck. In this work, we have developed a tool to computationally model LC/MS data to enable efficient profiling of glycans. Using LC/MS data deconvoluted by Decon2LS/DeconTools, we built a list of unique neutral masses corresponding to candidate glycan compositions summarized over their various charge states, adducts and range of elution times. Our work aims to provide confident identification of true compounds in complex data sets that are not amenable to manual interpretation. This capability is an essential part of glycomics work flows. We demonstrate this tool, GlycReSoft, using an LC/MS dataset on tissue derived heparan sulfate oligosaccharides. The software, code and a test data set are publically archived under an open source license.« less

  15. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags.

    PubMed

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-06-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in "Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans" (Kang et al., 2016 [1]).

  16. Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase.

    PubMed

    Suits, Michael D L; Zhu, Yanping; Taylor, Edward J; Walton, Julia; Zechel, David L; Gilbert, Harry J; Davies, Gideon J

    2010-02-03

    The enzymatic hydrolysis of alpha-mannosides is catalyzed by glycoside hydrolases (GH), termed alpha-mannosidases. These enzymes are found in different GH sequence-based families. Considerable research has probed the role of higher eukaryotic "GH38" alpha-mannosides that play a key role in the modification and diversification of hybrid N-glycans; processes with strong cellular links to cancer and autoimmune disease. The most extensively studied of these enzymes is the Drosophila GH38 alpha-mannosidase II, which has been shown to be a retaining alpha-mannosidase that targets both alpha-1,3 and alpha-1,6 mannosyl linkages, an activity that enables the enzyme to process GlcNAc(Man)(5)(GlcNAc)(2) hybrid N-glycans to GlcNAc(Man)(3)(GlcNAc)(2). Far less well understood is the observation that many bacterial species, predominantly but not exclusively pathogens and symbionts, also possess putative GH38 alpha-mannosidases whose activity and specificity is unknown. Here we show that the Streptococcus pyogenes (M1 GAS SF370) GH38 enzyme (Spy1604; hereafter SpGH38) is an alpha-mannosidase with specificity for alpha-1,3 mannosidic linkages. The 3D X-ray structure of SpGH38, obtained in native form at 1.9 A resolution and in complex with the inhibitor swainsonine (K(i) 18 microM) at 2.6 A, reveals a canonical GH38 five-domain structure in which the catalytic "-1" subsite shows high similarity with the Drosophila enzyme, including the catalytic Zn(2+) ion. In contrast, the "leaving group" subsites of SpGH38 display considerable differences to the higher eukaryotic GH38s; features that contribute to their apparent specificity. Although the in vivo function of this streptococcal GH38 alpha-mannosidase remains unknown, it is shown to be an alpha-mannosidase active on N-glycans. SpGH38 lies on an operon that also contains the GH84 hexosaminidase (Spy1600) and an additional putative glycosidase. The activity of SpGH38, together with its genomic context, strongly hints at a function in

  17. Association of Anti-glycan Antibodies and Inflammatory Bowel Disease Course.

    PubMed

    Paul, S; Boschetti, G; Rinaudo-Gaujous, M; Moreau, A; Del Tedesco, E; Bonneau, J; Presles, E; Mounsef, F; Clavel, L; Genin, C; Flourié, B; Phelip, J-M; Nancey, S; Roblin, X

    2015-06-01

    The usefulness of anti-glycan antibodies alone or combined with anti-Saccharomyces cerevisiae [ASCA] or perinuclear antineutrophil cytoplasmic [pANCA] antibodies for diagnosis of inflammatory bowel disease [IBD], differentiation between Crohn's disease [CD] and ulcerative colitis [UC], disease stratification including IBD phenotype, and also for determination of the course of the disease, remain unclear. A large panel of serological anti-glycan carbohydrate antibodies, including anti-mannobioside IgG antibodies [AMCA], anti-chitobioside IgA [ACCA], anti-laminaribioside IgG antibodies [ALCA], anti-laminarin [anti-L] and anti-chitine [anti-C] were measured in the serum from a cohort of 195 patients with IBD] [107 CD and 88 UC]. The respective accuracy of isolated or combined markers for diagnosis, disease differentiation, stratification disease phenotype, and severity of the disease course, defined by a wide panel of criteria obtained from the past medical history, was assessed. The positivity of at least one anti-glycan antibody was detected in a significant higher proportion of CD and UC compared with healthy controls [p < 0.0001 and p < 0.0007, respectively]. Whereas ASCA and ANCA antibody status had the highest efficacy to be associated with CD in comparison with UC (area under receiver operating characteristic curve [AUROC] = 0.70 for each], the adjunction of anti-laminarin antibody substantially improved the differentiation between CD and UC [AUROC = 0.77]. Titres of ACCA [> 51U/ml] and anti-laminarin [> 31U/ml] were significantly linked with a higher association with steroid dependency (odds ratio [OR] =2.0 [1.0-4.0], p = 0.03 and OR = 2.4 [1.1-5.2], p = 0.02, respectively]. We further defined the respective performance of anti-glycan antibodies to discriminate between patients with severe or not severe CD and UC course and determined the associated optimal cut-off values: severe CD course was significantly more likely in case of AMCA > 77U/ml [OR = 4.3; p = 0

  18. Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk.

    PubMed

    Sheng, Long; He, Zhenjiao; Liu, Yaping; Ma, Meihu; Cai, Zhaoxia

    2018-03-01

    Immunoglobulin Y (IgY) is a new therapeutic antibody that exists in hen egg yolk. It is a glycoprotein, not much is known about its N-glycan structures, site occupancy and site-specific N-glycosylation. In this study, purified protein from hen egg yolk was identified as IgY based on SDS-PAGE and MALDI-TOF/TOF MS. N-glycan was released from IgY using peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase treatment, and the molecular weight of IgY was calculated using the difference between the molecular weight of IgY and deglycosylated IgY. Two potential N-Glycosylation sites (ASN 308 and ASN 409 ) were detected on IgY by nanoLC-ESI MS. Sugar chains were separated using normal phase liquid chromatography after fluorescence labeling, and 17 N-glycan structures were confirmed using ESI-MS. The sugar chain pattern contained high-mannose oligosaccharide, hybrid oligosaccharide and complex oligosaccharide. These results could lead to other important information regarding IgY glycosylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Collision cross sections of high-mannose N-glycans in commonly observed adduct states--identification of gas-phase conformers unique to [M-H](-) ions.

    PubMed

    Struwe, W B; Benesch, J L; Harvey, D J; Pagel, K

    2015-10-21

    We report collision cross sections (CCS) of high-mannose N-glycans as [M + Na](+), [M + K](+), [M + H](+), [M + Cl](-), [M + H2PO4](-) and [M - H](-) ions, measured by drift tube (DT) ion mobility-mass spectrometry (IM-MS) in helium and nitrogen gases. Further analysis using traveling wave (TW) IM-MS reveal the existence of distinct conformers exclusive to [M - H](-) ions.

  20. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity

    PubMed Central

    Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.

    2014-01-01

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425