These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Antioxidative properties of pyrrolidinium and piperidinium salts.  

PubMed

Two series of pyrrolidinium (PYA-n) and piperidinium (PPPA-n) bromides with incorporated antioxidant function were synthesized. Both have hydrocarbon chains with odd number of the carbon atoms (n) ranging between 7 and 15. Pig erythrocytes (RBC) were used to study antioxidant activity of these compounds. They were incorporated into RBC membranes in sublytic (micromolar) concentrations and RBC were then subjected to UV radiation. It was found that all the salts used protected erythrocyte membranes against oxidation of membrane lipids. This protection increased with hydrocarbon chain length. Such effect may be the result of an incorporation of particular compounds to different depths into the lipid phase of RBC membrane depending on their chain length. Such possibility was checked by studies on fluidity changes induced by the compounds studied in ghost membranes by fluorimetric measurements. The measurements showed that pyrrolidinium bromides were slightly more effective in a protection of erythrocytes than the corresponding piperidinium ones. The possible reason of such behaviour may be the difference in lipophilicity between piperidine and pyrrolidine rings. PMID:12064738

Kleszczy?ska, Halina; O?wiecimska, Ma?gorzata; Bonarska, Dorota; Sarapuk, Janusz

2002-01-01

2

Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid  

NASA Astrophysics Data System (ADS)

Recent studies have clearly demonstrated that cyclic and linear carbonates are unstable when used in rechargeable Li-air batteries employing aprotic solvents mostly due to the cathodic formation of superoxide during the oxygen reduction reaction. In particular, it has been ascertained that nucleophilic attack by superoxide anion radical, O2-rad , at O-alkyl carbon is a common mechanism of decomposition of organic carbonates. Moreover, theoretical calculations showed that ether chemical functionalities are stable against nucleophilic substitution induced by superoxide. Aim of this study is to report on a new electrolyte solution for Li-air battery formed by a mixture of an ether-based aprotic solvent with an ionic liquid (IL). The IL-based electrolyte was obtained by mixing the pure ionic liquid N-methyl-(n-butyl) pyrrolidinium bis(trifluoromethane sulfonyl) imide (here denoted as PYR14TFSI) to a 0.91 M solution of lithium triflate (LiCF3SO3) in tetra ethylene glycol dimethyl etcher (TEGDME). We observed that the presence of IL beneficially affects the kinetics and the reversibility of the oxygen reactions involved at the cathode. The most significant result being a lower overvoltage for the charge reaction, compared to a Li/air cell containing the same electrolyte solution without IL.

Cecchetto, Laura; Salomon, Mark; Scrosati, Bruno; Croce, Fausto

2012-09-01

3

Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids  

SciTech Connect

Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

2007-06-25

4

cis-2,5-Bis(2-fluoro-5-meth­oxy­pheneth­yl)pyrrolidinium formate  

PubMed Central

In the title compound, C22H28F2NO2 +·CHO2 ?, there are three independent pyrrolidinium formate salt mol­ecules. In each cation, the central pyrrolidinium ring is not planar and the 2,5-disubstituted phenyl­ethyl groups are in equatorial positions. In the crystal, the ions are linked into a pair of chains parallel to the c axis by N—H?O hydrogen bonds between the NH group of the pyrrolidinium ring and the formate O atoms. PMID:21522476

Ponugoti, Purushothama Rao; Penthala, Narsimha Reddy; Dwoskin, Linda P.; Parkin, Sean; Crooks, Peter A.

2011-01-01

5

Effect of Titanium Substitution on the Compatiblity of Electrodeswith Pyrrolidinium-Based Ionic Liquid Electrolytes  

SciTech Connect

The quest for the development of rechargeable lithium-metal batteries has attracted vigorous worldwide research efforts because this system offers the highest theoretical specific energy [1]. For this to be achieved, the repetitive deposition and stripping of lithium must be close to fully reversible. Thus, alternative electrolytes have been investigated, such as the room-temperature ionic liquid (RTILs). Lithium can be cycled with a high degree of reversibility with efficiencies exceeding 99% using systems based on N-methyl N-alkyl pyrrolidinium (P{sub 1X}{sup +}) combined with the TFSI anion [2]. More recent efforts have been directed towards systems based on P{sub 1X}{sup +} cations with the FSI anion and appear to be even more promising [3,4]. In this work, we discuss to what extent RTILs based on P{sub 1X}{sup +} cations with TFSI or FSI anions can be used as electrolytes for rechargeable Li batteries. In particular, their physical and chemical properties are thoroughly discussed so as to explain the difference observed in their electrochemical behavior. Although these two systems seem to be stable against lithium, their compatibilities with cathode materials require full assessment as well. Thus, various manganese oxide cathodes are investigated in this study. Strategies to minimize cathode dissolution are also debated, such as the substitution of part of the manganese for titanium.

Saint, Juliette A.; Shin, Joon-Ho; Best, Adam; Hollenkamp,Anthony; Kerr, John; Doeff, Marca M.

2007-05-16

6

A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors.  

PubMed

This study describes the use of the pyrrolidinium nitrate ([Pyrr][NO3]) protic ionic liquid (PIL) in a mixture with gamma butyrolactone (?-BL) as an electrolyte for carbon-based supercapacitors with an operating voltage of 2.0 V and at very low temperature. Thermal and transport properties of this electrolyte were firstly evaluated from -40 °C to 80 °C. The evolution of conductivity with the addition of ?-BL rendered it possible to determine the optimal composition for electrochemical application, with a molar fraction of ?-BL of 0.6. This mixture shows a Newtonian behavior with a low viscosity value of 5 mPa s at 25 °C, and exhibits high conductivity values of up to 65 mS cm(-1) at 80 °C. At the same time, exceptional residual conductivity was measured for this composition at -40 °C (9 mS cm(-1)), thanks to the superionic character of pyrrolidinium nitrate PIL. Electrochemical characterization of this electrolyte demonstrated, at first, a passivation on the aluminum collector, secondly good cycling performances with an activated carbon electrode from 50 °C to -40 °C with capacitance up to 132 F g(-1) at room temperature and a wide voltage window (2.0 V). Finally at very low temperature (-40 °C), this system demonstrates an unprecedented combination of high specific capacitance (up to 117 F g(-1)), and rapid charging-discharging even at high current density, which is very promising for the progress of energy storage systems with environmentally friendly electrolytes at such very low temperatures. PMID:23532057

Anouti, Mérièm; Timperman, Laure

2013-05-01

7

Does the influence of substituents impact upon the surface composition of pyrrolidinium-based ionic liquids? An angle resolved XPS study.  

PubMed

The surface chemistry of a series of four pyrrolidinium based ionic liquids, [C(n)C(1)Pyrr][Tf(2)N] where n = 4-10, is investigated by angle resolved X-ray photoelectron spectroscopy (ARXPS). The importance of sample purity is demonstrated and the stability of the ionic liquids under X-ray irradiation investigated. It is apparent that the surface chemistry and orientation is broadly analogous to that of similar imidazolium-based systems. PMID:22419165

Men, Shuang; Hurisso, Bitu Birru; Lovelock, Kevin R J; Licence, Peter

2012-04-21

8

A novel pyrrolidinium ionic liquid with 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoroethoxy)ethanesulfonate anion as a recyclable reaction medium and efficient catalyst for Friedel–Crafts alkylations of indoles with nitroalkenes  

Microsoft Academic Search

A series of pyrrolidinium-based salts with new fluorine-containing anions were synthesized. Different melting points could be obtained by changing the length of the fluoroalkyl chain of the anions. The pyrrolidinium 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoroethoxy)ethanesulfonate ([C4H8NH2][H(CF2)4O(CF2)2SO3]) is highly fluid even below room temperature. It can be used both as a recyclable solvent and as an efficient catalyst for Friedel–Crafts alkylations of indoles with nitroalkenes.

Jin-Hong Lin; Cheng-Pan Zhang; Zhi-Qiang Zhu; Qing-Yun Chen; Ji-Chang Xiao

2009-01-01

9

Growth of Gold Nanosheets and Nanopolyhedra in Pyrrolidinium-Based Ionic Liquids: Investigation of the Cation Effect on the Resulting Morphologies  

SciTech Connect

Large gold nanosheets and small gold polyhedra have been successfully synthesized in room-temperature ionic liquids (ILs) by an ionothermal reduction of HAuCl{sub 4} under N{sub 2} atmosphere, without using any additives. The effect of the organic cation on the final morphologies of the gold particles has been studied, and a series of pyrrolidinium-, imidazolium-, and quaternary amine-based ionic liquids have been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements. Our results show that these ILs favor the anisotropic growth of gold by acting as template agents and that only gold microspheres can be obtained with the IL containing a reductive functionality.

Bouvy, Claire [ORNL; Baker, Gary A [ORNL; Yin, Hongfeng [ORNL; Dai, Sheng [ORNL

2010-01-01

10

Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries.  

PubMed

We present a promising electrolyte candidate, Mg(TFSI)2 dissolved in glyme/diglyme, for future design of advanced magnesium (Mg) batteries. This electrolyte shows high anodic stability on an aluminum current collector and allows Mg stripping at the Mg electrode and Mg deposition on the stainless steel or the copper electrode. It is clearly shown that nondendritic and agglomerated Mg secondary particles composed of ca. 50 nm primary particles alleviating safety concern are formed in glyme/diglyme with 0.3 M Mg(TFSI)2 at a high rate of 1C. Moreover, a Mg(TFSI)2-based electrolyte presents the compatibility toward a Chevrel phase Mo6S8, a radical polymer charged up to a high voltage of 3.4 V versus Mg/Mg(2+) and a carbon-sulfur composite as cathodes. PMID:24559269

Ha, Se-Young; Lee, Yong-Won; Woo, Sang Won; Koo, Bonjae; Kim, Jeom-Soo; Cho, Jaephil; Lee, Kyu Tae; Choi, Nam-Soon

2014-03-26

11

Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors  

NASA Astrophysics Data System (ADS)

This work provides a first-time-study of Azepanium-based ionic liquids (ILs) as electrolyte components for electrochemical double layer capacitors (EDLCs). Herein, two Azepanium-based ILs, namely N-methyl, N-butyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp14TFSI) and N-methyl, N-hexyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp16TFSI) were compared with the established IL N-butyl, N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) in terms of viscosity, conductivity, thermal stability and electrochemical behavior in EDLC systems. The ILs' operative potentials were found to be comparable, leading to operative voltages up to 3.5 V without significant electrolyte degradation.

Pohlmann, S.; Olyschläger, T.; Goodrich, P.; Alvarez Vicente, J.; Jacquemin, J.; Balducci, A.

2015-01-01

12

AGING EFFECTS ON THE PROPERTIES OF IMIDAZOLIUM, QUATERNARY AMMONIUM, PYRIDINIUM AND PYRROLIDINIUM-BASED IONIC LIQUIDS USED IN FUEL AND ENERGY PRODUCTION  

SciTech Connect

Ionic liquids are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long term aging effect of temperature on these materials. Imizadolium, quaternary ammonium, pyridinium, and pyrrolidnium-based ionic liquids with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 hours (15 weeks) at 200?C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time.

Fox, E.

2013-08-13

13

X-ray photoelectron spectroscopy of pyrrolidinium-based ionic liquids: cation-anion interactions and a comparison to imidazolium-based analogues.  

PubMed

We investigate seven 1-alkyl-1-methylpyrrolidinium-based ionic liquids, [C(n)C(1)Pyrr][X], using X-ray photoelectron spectroscopy (XPS). The electronic environment for each element is analysed and a robust fitting model is developed for the C 1s region that applies to each of the ionic liquids studied. This model allows accurate charge correction and the determination of reliable and reproducible binding energies for each ionic liquid studied. The electronic interaction between the cation and anion is investigated for ionic liquids with one and also two anions. i.e., mixtures. Comparisons are made to imidazolium-based ionic liquids; in particular, a detailed comparison is made between [C(8)C(1)Pyrr][X] and [C(8)C(1)Im][X](-), where X(¬) is common to both ionic liquids. PMID:21779587

Men, Shuang; Lovelock, Kevin R J; Licence, Peter

2011-09-01

14

FTIR and Raman Study of the LixTiyMn1-yO2 (y = 0, 0.11) Cathodes in Methylpropyl Pyrrolidinium Bis(fluoro-sulfonyl)imide, LiTFSI Electrolyte  

SciTech Connect

This work demonstrates the protective effect of partial titanium substitution in Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2} against surface decomposition in room-temperature ionic liquid (RTILs) cells. Raman microscopy and reflectance Fourier transform IR (FTIR) spectroscopy were used to analyze electrodes recovered from cycled Li/Li{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (y=0, 0.11) cells containing the 0.5 mol/kg LiTFSI in P{sub 13}FSI RTIL electrolyte. [TFSI=bis(trifluoromethanesulfonyl)imide.] Raman and FTIR spectra of cycled Li{sub x}MnO{sub 2} cathodes showed many distinct bands that can be attributed to both the electrolyte and electrode decomposition products. The thickness of the amorphous porous layer on the Li{sub x}MnO{sub 2} cathode increased during cycling. The surface degradation of Li{sub x}MnO{sub 2} and precipitation of electrolyte decomposition products contributed to the film growth. Improved cycling behavior was observed in cells containing Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2}, yet Raman spectroscopy also showed possible surface degradation. The FTIR spectra of cycled Li{sub x}MnO{sub 2} and Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2} cathodes displayed bands characteristic for LiSO{sub 3}CF{sub 3} and Li{sub 2}NSO{sub 2}CF{sub 3}, which originate from the reaction of the TFSI anion with traces of water present in the cell.

Hardwick, L.J.; Lucas, I.T.; Doeff, M.M.; Kostecki, R.; Saint, J.A.

2009-02-02

15

Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries  

Microsoft Academic Search

A novel room temperature molten salt (RTMS) electrolyte composed of lithium bis(trifluoromethane sulfone)imide (LiN(SO2CF3)2, LiTFSI) and acetamide was found. Both LiTFSI and acetamide are solid at room temperature, but their mixture is a liquid at room temperature with a eutectic temperature of ?67 °C at a molar ratio of 1:4 (LiTFSI:Acetamide). The room temperature ionic conductivities of some compositions of

Yongsheng Hu; Hong Li; Xuejie Huang; Liquan Chen

2004-01-01

16

Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries  

SciTech Connect

A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

Liao, Chen [ORNL; Shao, Nan [ORNL; Bell, Jason R [ORNL; Guo, Bingkun [ORNL; Luo, Huimin [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

2013-01-01

17

In situ FTIR spectroscopy of the Zn–Br battery bromine storage complex at glassy carbon electrodes  

Microsoft Academic Search

In situ reflection absorption FTIR spectroscopy (in situ FTIR) and small spot X-ray electron emission spectroscopy (XPS) of emersed electrodes were used to examine the electrochemical double layer on glassy carbon (GC) and the anodic storage reactions of the zinc bromine battery which are the formation of a non-aqueous N-methyl-ethyl-pyrrolidinium (MEP+) and\\/or N-methyl-ethyl-morpholinium (MEM+) polybromide phase. Oxidative conversion of the

W Kautek; A Conradi; Ch Fabjan; G Bauer

2001-01-01

18

Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films.  

PubMed

The confinement of liquids to thin films can lead to dramatic changes in their structural arrangement and dynamic properties. Ionic liquids display nano-structures in the bulk of the liquid, consisting of polar and non-polar domains, whereas a solid surface can induce layered structures in the near-surface liquid. Here we compare and contrast the layer structures in a series of imidazolium and pyrrolidinium-based ionic liquids upon confinement of the liquids to films of approximately 0-20 nm between two negatively charged mica surfaces. Using a surface force balance (SFB) we measured the force between the two atomically smooth mica surfaces with ionic liquid between, directly revealing the ion packing and dimensions of layered structures for each liquid. The ionic liquids with shorter alkyl chain substituents form alternating cation-anion monolayer structures on confinement, whilst a longer alkyl chain leads to alignment of the cations in bilayer formation. The crossover from monolayers to bilayers, however, occurs at different alkyl chain lengths for imidazolium- and pyrrolidinium-based ionic liquids with a common anion. In addition, we find that imidazolium cation bilayers are arranged in toe-to-toe orientation, whereas pyrrolidinium cations form bilayers consisting of fully interdigitated alkyl chains. Results for a mixture of monolayer-preferring (i.e. short alkyl chain) and bilayer-preferring (i.e. long alkyl chain) liquids indicate alkyl chain segregation and bilayer-like structures. We discuss the driving forces for these self-assembly effects, and the contrasting behaviour of the imidazolium and pyrrolidinium-type ionic liquids. PMID:24640496

Smith, Alexander M; Lovelock, Kevin R J; Perkin, Susan

2013-01-01

19

Development and characterization of poly(1-vinylpyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes.  

PubMed

Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10(-6) S cm(-1) for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781

Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh

2014-01-01

20

B?O?-added lithium aluminium germanium phosphate solid electrolyte for Li-O? rechargeable batteries.  

PubMed

B2O3-added Li(1.5)Al(0.5)Ge(1.5)(PO4)3 (LAGP) glass ceramics showing a room temperature ionic conductivity of 0.67 mS cm(-1) have been synthesized by using a melt-quenching method. The prepared glass ceramics are observed to be stable in tetraethylene glycol dimethyl ether containing lithium bis(trifluoromethane) sulfonamide. The augmented conductivity of the B2O3-added LAGP glass ceramic has improved the plateau potential during discharge. Furthermore, the B2O3-added LAGP glass ceramics are successfully employed as a solid electrolyte in a Li-O2 battery to obtain a stable cycling lifetime of up to 15 cycles with the limited capacity protocol. PMID:24953185

Jadhav, Harsharaj S; Kalubarme, Ramchandra S; Jang, Seong-Yong; Jung, Kyu-Nam; Shin, Kyoung-Hee; Park, Chan-Jin

2014-08-14

21

The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte  

NASA Astrophysics Data System (ADS)

A room temperature ionic liquid consisting of N, N, N, N-cyanomethyl trimethyl ammonium (CTMA) cation and bis(trifluoromethane sulfone)imide (TFSI) anion was newly synthesized, and its electrochemical properties were investigated. This ionic liquid has a melting point of 35 °C and an order of conductivity of 10 -4 S cm -1. Lithium deposition/dissolution tests in 0.2 mol dm -3 LiTFSI/CTMATFSI electrolytes showed an improved cycle behavior compared with that of a Li electrolyte based on a tetraalkylammonium ionic liquid without a cyano group. It is suggested that such an improvement may be associated with the formation of a protective film on the lithium surface. Introducing a proper functional group is suggested to be effective to improve the interfacial properties of ionic liquid.

Egashira, Minato; Okada, Shigeto; Yamaki, Jun-ichi; Dri, Diego Alejandro; Bonadies, Francesco; Scrosati, Bruno

22

Studies on the effect of dispersoid(ZrO2) in PVdF-co-HFP based gel polymer electrolytes  

NASA Astrophysics Data System (ADS)

Gel polymer electrolytes containing poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) / Lithium bis(trifluoromethane sulfon)imide (LiTFSI) / mixture of ethylene carbonate and propylene carbonate (EC+PC) with different concendration of ZrO2 has been prepared using the solution casting technique. The conductivity of the prepared electrolyte sample has been determined by AC impedance technique in the range 303-353K. The temperature dependent ionic conductivity plot seems to obey VTF relation. The maximum ionic conductivity value of 4.46 × 10-3S/cm has been obtained for PVdF-co-HFP(32%) - LiTFSI(8%) - EC+PC (60%) + ZrO2(6wt%) based polymer electrolyte. The surface morphology of the prepared electrolyte sample has been studied using SEM.

Sivakumar, M.; Subadevi, R.; Muthupradeepa, R.

2013-06-01

23

Environmentally-friendly lithium recycling from a spent organic li-ion battery.  

PubMed

A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium. PMID:25170568

Renault, Stéven; Brandell, Daniel; Edström, Kristina

2014-10-01

24

Enhanced Intravenous Transgene Expression in Mouse Lung Using Cyclic-Head Cationic Lipids  

Microsoft Academic Search

Herein, we report enhanced intravenous mouse lung transfection using novel cyclic-head-group analogs of usually open-head cationic transfection lipids. Design and synthesis of the new cyclic-head lipid N,N-di-n-tetradecyl-3,4-dihydroxy-pyrrolidinium chloride (lipid 1) and its higher alkyl-chain analogs (lipids 2–4) and relative in vitro and in vivo gene transfer efficacies of cyclic-head lipids 1–4 to their corresponding open-head analogs [lipid 5, namely N,N-di-n-tetradecyl-N,N-(2-hydroxyethyl)ammonium

Bharat Kumar Majeti; Rajkumar Sunil Singh; Sudheer Kumar Yadav; Surendar Reddy Bathula; Sistla Ramakrishna; Prakash Vamanrao Diwan; Surkara Sakunthala Madhavendra; Arabinda Chaudhuri

2004-01-01

25

The initial stages of radiation damage in ionic liquids and ionic liquid-based extraction systems.  

PubMed

Radical intermediates generated in radiolysis and photoionization of ionic liquids (ILs) composed of ammonium, phosphonium, pyrrolidinium, and imidazolium cations and bis(triflyl)amide, dicyanamide, and bis(oxalato)borate anions have been studied using magnetic resonance spectroscopy. Large yields of terminal and penultimate C-centered radicals are observed in the aliphatic chains of the phosphonium, ammonium, and pyrrolidinium cations, but not for imidazolium cation. This pattern is indicative of efficient deprotonation of a hole trapped on the parent cation (the radical dication) that competes with rapid electron transfer from a nearby anion. This charge transfer leads to the formation of stable N- or O-centered radicals; the dissociation of parent anions is a minor pathway. Addition of 10-40 wt % of trialkyl phosphate (a common extraction agent) has relatively little effect on the fragmentation of the ILs. The yield of the alkyl radical fragment generated by dissociative electron attachment to the trialkyl phosphate is <4% of the yield of the radical fragments derived from the IL solvent. The import of these observations for radiation stability of the prospective nuclear cycle extraction systems based upon the ILs is discussed. PMID:17877387

Shkrob, Ilya A; Chemerisov, Sergey D; Wishart, James F

2007-10-11

26

In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.  

PubMed

In situ Raman spectroscopy and cyclic voltammetry were used to investigate the mechanism of sulfur reduction in lithium-sulfur battery slurry cathodes with 1 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) and tetraethylene glycol dimethyl ether (TEGDME)/1,3-dioxolane (DIOX) (1/1, v/v). Raman spectroscopy shows that long-chain polysulfides (S8(2-)) were formed via S8 ring opening in the first reduction process at ?2.4 V vs Li/Li(+) and short-chain polysulfides such as S4(2-), S4(-), S3(•-), and S2O4(2-) were observed with continued discharge at ?2.3 V vs Li/Li(+) in the second reduction process. Elemental sulfur can be reformed in the end of the charge process. Rate constants obtained for the appearance and disappearance polysulfide species shows that short-chain polysulfides are directly formed from S8 decomposition. The rate constants for S8 reappearance and polysulfide disappearance on charge were likewise similar. The formation of polysulfide mixtures at partial discharge was found to be quite stable. The CS2 additive was found to inhibit the sulfur reduction mechanism allowing the formation of long-chain polysulfides during discharge only and stabilizing the S8(2-) product. PMID:25543831

Wu, Heng-Liang; Huff, Laura A; Gewirth, Andrew A

2015-01-28

27

Role of Succinonitrile in a Poly(ethylene oxide)/LiTFSI membrane for lithium batteries  

NASA Astrophysics Data System (ADS)

In designing novel flexible lithium battery membranes, high conductivity, peel strength and processability are the main targets for a successful product. Crystallinity of poly(ethylene oxide) (PEO) and lithium salts represent an obstacle to accomplish each of these specifications. We present a systematic study of ternary phase diagrams of PEO, bis(trifluoromethane) sulfonimide (LiTFSI) and succinonitrile (SCN) (i.e., solid plasticizer/co-solvent) mixtures by using DSC and polarized optical microscopy and map out various coexistence regions bound by the liquidus and solidus lines. The eutectic phase diagram of PEO/SCN system was calculated self-consistently using Flory-Huggins theory in conjunction with Landau-type phase field free energy for crystal solidification. Specific interactions such as hydrogen bonding were examined by FTIR. In lieu of PEO, poly(ethylene glycol) diacrylate (PEGDA) were used to completely eliminate all crystals. Further, photopolymerization of PEGDA affords a solid network containing LiTFSI and SCN that shows promising improvements with a conductivity value of 10-4S/cm at 25 C.

Echeverri, Mauricio; Kyu, Thein

2011-03-01

28

Gas Permeation through Polystyrene-Poly(ethylene oxide) Block Copolymers  

NASA Astrophysics Data System (ADS)

Lithium air batteries are a potential technology for affordable energy storage. They consist of a lithium metal anode and a porous air cathode separated by a solid polymer electrolyte membrane, such as PEO/LiTFSI (PEO = poly(ethylene oxide), LiTFSI = lithium bis-trifluoromethane sulfonimide). For extended operation of such a battery, the polymer electrolyte must conduct lithium ions while blocking electrons and gases present in air. In order to maintain a pressure difference the membrane must be mechanically robust, which can be achieved by incorporating the PEO into a block copolymer with a glassy block such as PS (PS = polystyrene). To protect the lithium electrode, the membrane must have low permeability to gases in air such as CO2, N2, and O2. We have therefore studied the permeation of pure gases through a PS-PEO block copolymer. A high molecular weight, symmetric block copolymer with a lamellar morphology was used to cast free-standing membranes. Gas permeability was measured through these membranes with a standard, pressure-based technique. A model was developed to account for transport through the polymer membrane consisting of semi-crystalline PEO lamellae and amorphous PS lamellae. PEO crystallinity was extracted from the permeation model and compares well with values from differential scanning calorimetry measurements.

Hallinan, Daniel, Jr.; Minelli, Matteo; Giacinti-Baschetti, Marco; Balsara, Nitash

2013-03-01

29

Ionic liquids as lubricants or lubrication additives: an ecotoxicity and biodegradability assessment.  

PubMed

This paper reports on the (eco)toxicity and biodegradability of ionic liquids considered for application as lubricants or lubrication additives. Ammonium- and pyrrolidinium-based cations combined with methylsulphate, methylsulphonate and/or (CF(3)SO(2))(2)N(-) anions were investigated in tests to determine their aquatic toxicity using water fleas Daphnia magna, green algae Selenastrum capricornutum and marine bacteria (Vibrio fischeri). Additional test systems with an isolated enzyme (acetylcholinesterase) and isolated leukaemia cells from rats (IPC-81) were used to assess the biological activity of the ionic liquids. These compounds generally exhibit low acute toxicity and biological activity. Their biodegradability was screened according to OECD test procedures 301 B and 301 F. For choline and methoxy-choline ionic liquids ready biodegradability was observed within 5 or 10 d, respectively. Some of the compounds selected have a considerable potential to contribute to the development of more sustainable products and processes. PMID:22749125

Stolte, Stefan; Steudte, Stephanie; Areitioaurtena, Olatz; Pagano, Francesco; Thöming, Jorg; Stepnowski, Piotr; Igartua, Amaya

2012-11-01

30

Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations  

SciTech Connect

Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.

Jin, Hui [Pennsylvania State University, University Park, PA; O'Hare, Bernie [Pennsylvania State University, University Park, PA; Dong, Jing [Pennsylvania State University, University Park, PA; Arzhantsev, Sergei [Pennsylvania State University, University Park, PA; Baker, Gary A [ORNL; Wishart, James F. [Brookhaven National Laboratory (BNL); Benesi, Alan [Pennsylvania State University, University Park, PA; Maroncelli, Mark [Pennsylvania State University, University Park, PA

2008-01-01

31

Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries.  

PubMed

In this study we investigated the chemical-physical properties of mixtures containing the protic ionic liquid (PIL) N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRH4TFSI), propylene carbonate (PC) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in view of their use as electrolytes for lithium-ion batteries (LIBs). We showed that these electrolytic solutions might display conductivity and viscosity comparable to those of conventional electrolytes. Depending on the amount of PIL present inside the mixtures, such mixtures might also display the ability to suppress the anodic dissolution of Al. Furthermore, we showed that the coordination of lithium ions by TFSI in PIL-PC mixtures appears to be different than the one observed for mixtures of PC and aprotic ionic liquids (AILs). When used in combination with a battery electrode, e.g. lithium iron phosphate (LFP), these mixtures allow the achievement of high performance also at a very high C-rate. PMID:25328075

Vogl, T; Menne, S; Balducci, A

2014-12-01

32

Synthesis and characterization of 5-cyanotetrazolide-based ionic liquids.  

PubMed

New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5-cyanotetrazolide anion [C2 N5 ](-) are reported. Depending on the nature of cation-anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230?°C, an electrochemical window of 4.5?V, a viscosity of 25?mPa?s at 20?°C, and an ionic conductivity of 5.4?mS?cm(-1) at 20?°C for the IL 1-butyl-1-methylpyrrolidinium 5-cyanotetrazolide [BMPyr][C2 N5 ]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium-ion batteries. PMID:25504790

Bergholz, Timm; Oelkers, Benjamin; Huber, Benedikt; Roling, Bernhard; Sundermeyer, Jörg

2015-02-01

33

Selective quenching of 2-naphtholate fluorescence by imidazolium ionic liquids.  

PubMed

The effect of addition of water-miscible ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]), and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ([bmpyrr][OTf]), on photophysical properties of 2-naphthol in water at various pHs is reported. Electronic absorbance behavior of 2-naphthol dissolved in aqueous mixtures of ILs is observed to be similar to that found in water at different pHs. The excited-state properties, however, are changed dramatically as the IL is added to the milieu. The presence of imidazolium IL results in significant quenching of the fluorescence emission from 2-naphtholate. On the contrary, pyrrolidinium IL does not quench the fluorescence from the anionic species. The quenching of 2-naphtholate fluorescence by aromatic imidazolium cations in aqueous IL mixtures is found to follow simple Stern-Volmer behavior. The aromatic imidazolium cation acts as an electron/charge acceptor during the quenching process where formation of a weakly fluorescent complex between the imidazolium cation and the excited 2-naphtholate anion possibly involving the acidic C2 proton of imidazolium is proposed. Because of the absence of such an acidic proton, the nonaromatic pyrrolidinium cation is not able to form a complex with the excited 2-naphtholate and cannot act as an electron/charge acceptor. Excited-state emission intensity decay data further corroborate this hypothesis as the intensity decay fits well to a single-exponential decay with no change in recovered lifetimes as [bmpyrr][OTf] is added; a double-exponential decay is required to satisfactorily fit the decay data in the presence of [bmim][BF(4)], hinting at the presence of a weakly fluorescent complex. The uniqueness of ILs in affecting excited-state properties of the 2-naphthol system is demonstrated through comparison with NaBF(4), NaCl, and polyethylene glycol with an average molecular weight of 200, respectively, as additives. PMID:22953779

Kumar, Vinod; Pandey, Siddharth

2012-10-01

34

Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition.  

PubMed

Experimental studies on the novel compositions of gel polymer electrolytes, comprised of plastic crystal succinonitrile (SN) dispersed with pyrrolidinium and imidazolium-based ionic liquids (ILs) entrapped in a host polymer poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), are reported. The gel electrolytes are in the form of free-standing films with excellent mechanical, thermal, and electrochemical stability. The introduction of even a small content (~1 wt %) of ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)imide (BMPTFSI) or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf) in the PVdF-HFP/SN system (1:4 w/w) enhances the electrical conductivity by 4 orders of magnitude, that is, from ~10(-7) to ~10(-3) S cm(-1) at room temperature. The structural changes due to the entrapment of SN or SN/ILs mixtures and ion-SN-polymer interactions are examined by Fourier transform infrared (FTIR)/Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimmetry (DSC). Various physicochemical properties and fast ion conduction in the gel polymer membranes show their promising characteristics as electrolytes in different ionic devices including supercapacitors. PMID:23758408

Suleman, Mohd; Kumar, Yogesh; Hashmi, S A

2013-06-20

35

Factors stabilizing the gas-phase ionic species of crystals of organic salts - Experimental and theoretical study  

NASA Astrophysics Data System (ADS)

The paper studied factors of the gas phase (GP) ionic stabilization of molecular organic crystals of salts. The single crystal X-ray diffraction, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) methods are employed. The GP phenomena are explained by the comprehensive quantum-chemical theoretical models, providing significant information for the electronic structures and thermodynamics of the observed MS species. The n-chloro-alkyl aliphatic heterocyclic 5-sulfosalicylates i.e. 1-(2-chloroethyl) pyrrolidinium 5-sulfosalicylicilate (1), 1-(2-chloroethyl)-piperidinium 5-sulfosalicylicilate (2), and 1-(3-chloropropyl) piperidinium 5-sulfosalicylicilate (3) are examined. The ionic systems that contain N+H-heterocyclic fragments, a complex MS image variety of monocations, quaternary ammonium dications and hydrogen bonded molecular complexes revealed. Their stabilization is explained by proton transfer (PT), charge-transfer (CT) and Jahn-Teller (JT) effects. The 4-(2-chloroethyl) morpholinium hydrochloride crystals (4) yielded quaternary ammonium adduct which structure is crystallographically determined. In parallel the GP stabilized ions of 4 are analyzed. The complementary application of the single-crystal X-ray diffraction and MS methods provided unique structural evidences in condenses and in the GP able to understand the competitive intramolecular and environmental factors contributing to the thermodynamics stability of the ionic species. Therefore, the data reported are helped for more comprehensive knowledge of the basic mass spectrometric GP and phase transition phenomena with both its methodological development and used robust analytical technique application.

Ivanova, Bojidarka B.; Spiteller, Michael

2013-03-01

36

Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases.  

PubMed

The extraction separation of rare earth elements is one of the most challenging separation processes in hydrometallurgy and advanced nuclear fuel cycles. The TALSPEAK process (trivalent actinide lanthanide separations by phosphorus-reagent extraction from aqueous komplexes) is a prime example of these separation processes. The objective of this paper is to explore the use of ionic liquids (ILs) for the TALSPEAK-like process, to further enhance its extraction efficiencies for lanthanides, and to investigate the potential of using this modified TALSPEAK process for separation of lanthanides among themselves. Eight imidazolium ILs ([C(n)mim][NTf(2)] and [C(n)mim][BETI], n = 4,6,8,10) and one pyrrolidinium IL ([C(4)mPy][NTf(2)]) were investigated as diluents using di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant for the separation of lanthanide ions from aqueous solutions of 50 mM glycolic acid or citric acid and 5 mM diethylenetriamine pentaacetic acid (DTPA). The extraction efficiencies were studied in comparison with diisopropylbenzene (DIPB), an organic solvent used as a diluent for the conventional TALSPEAK extraction system. Excellent extraction efficiencies and selectivities were found for a number of lanthanide ions using HDEHP as an extractant in these ILs. The effects of different alkyl chain lengths in the cations of ILs and of different anions on extraction efficiencies and selectivities of lanthanide ions are also presented in this paper. PMID:21735029

Sun, Xiaoqi; Bell, Jason R; Luo, Huimin; Dai, Sheng

2011-08-21

37

Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids.  

PubMed

Ionic liquids are molten salts with melting temperatures below the boiling point of water, and their qualification for applications in potential industrial processes does depend on their fundamental physical properties such as density, viscosity and electrical conductivity. This study aims to investigate the structure-property relationship of 15 ILs that are primarily composed of alkanolammonium cations and organic acid anions. The influence of both the nature and number of alkanol substituents on the cation and the nature of the anion on the densities, viscosities and electrical conductivities at ambient and elevated temperatures are discussed. Walden rule plots are used to estimate the ionic nature of these ionic liquids, and comparison with other studies reveals that most of the investigated ionic liquids show Walden rule values similar to many non-protic ionic liquids containing imidazolium, pyrrolidinium, tetraalkylammonium, or tetraalkylphosphonium cations. Comparison of literature data reveals major disagreements in the reported properties for the investigated ionic liquids. A detailed analysis of the reported experimental procedures suggests that inappropriate drying methods can account for some of the discrepancies. Furthermore, an example for the improved presentation of experimental data in scientific literature is presented. PMID:21298175

Pinkert, André; Ang, Keng L; Marsh, Kenneth N; Pang, Shusheng

2011-03-21

38

Effect of cationic head group on micellization behavior of new amide-functionalized surface active ionic liquids.  

PubMed

Amide-functionalized surface active ionic liquids (SAILs), 1-methyl-1-dodecyl piperidinium chloride, [C12APip][Cl]; 1-methyl-1-dodecyl pyrrolidinium chloride, [C12APyrr][Cl]; 1-methyl-3-dodecyl imidazolium chloride, [C12Amim][Cl], and 1-methyl-1-dodecyl morpholinium chloride, [C12AMorph][Cl], have been synthesized, characterized and investigated for thermal stability, and micellization behavior in aqueous medium. The introduction of an amide moiety in the alkyl chain decreased the thermal stability of the functionalized SAILs compared to non-functionalized SAILs bearing a simple alkyl chain. A variety of state of the art techniques, viz. tensiometry, conductometry, steady-state fluorescence, isothermal titration calorimetry (ITC), dynamic light scattering (DLS) and atomic force microscopy (AFM), have been employed to investigate the micellization behavior. Amide-functionalized SAILs have shown much lower critical micelle concentration, cmc, and better surface active properties as compared to homologous non-functionalized SAILs. Steady-state fluorescence has provided information about cmc, aggregation number (Nagg) and polarity of the cybotactic region of the micelles, whereas ITC has provided insights into the thermodynamics of micellization. Furthermore, the size and shape of the micelles have been investigated using DLS and AFM techniques. PMID:25361232

Kamboj, Raman; Bharmoria, Pankaj; Chauhan, Vinay; Singh, Gurbir; Kumar, Arvind; Singh, Sukhprit; Kang, Tejwant Singh

2014-12-21

39

Probing HSA-ionic liquid interactions by spectroscopic and molecular docking methods.  

PubMed

Herein, we report the interaction of synthesized pyrrolidinium based ionic liquid, N-butyl-N-methyl-2-oxopyrrolidinium bromide (BMOP) with human serum albumin (HSA). The BMOP was characterized by using (1)H NMR, (13)C NMR and FT-IR techniques. The critical micelle concentration (cmc) of BMOP was confirmed by surface tension, conductivity and contact angle measurements. The interactions between HSA and BMOP were studied by steady-state and time-resolved fluorescence, UV-visible, FT-IR spectroscopic and molecular docking methods. The steady-state fluorescence spectra showed that BMOP quenched the fluorescence of HSA through combined quenching mechanism. Corresponding thermodynamic parameters viz. Gibbs free energy change (?G), entropy change (?S) and enthalpy change (?H) illustrated that the binding process was spontaneous and entropy driven. It is also suggested that hydrophobic forces play a key role in the binding of BMOP to HSA. In addition, the pyrene probe analysis again suggests the involvement of hydrophobic interaction in HSA-BMOP complex formation. Surface tension profile showed that the cmc value of BMOP in the presence of HSA is higher than the cmc value of pure BMOP. The FT-IR results show a conformational change in the secondary structure of HSA upon the addition of BMOP. The molecular docking result indicated that BMOP binds with HSA at hydrophobic pocket domain IIA with hydrophobic and hydrogen bond interactions in which hydrophobic interactions are dominating. PMID:24911269

Kumari, Meena; Maurya, Jitendra Kumar; Tasleem, Munazzah; Singh, Prashant; Patel, Rajan

2014-09-01

40

Nonaborane and decaborane cluster anions can enhance the ignition delay in hypergolic ionic liquids and induce hypergolicity in molecular solvents.  

PubMed

The dissolution of nido-decaborane, B10H14, in ionic liquids that are hypergolic (fuels that spontaneously ignite upon contact with an appropriate oxidizer), 1-butyl-3-methylimidazolium dicyanamide, 1-methyl-4-amino-1,2,4-triazolium dicyanamide, and 1-allyl-3-methylimidazolium dicyanamide, led to the in situ generation of a nonaborane cluster anion, [B9H14](-), and reductions in ignition delays for the ionic liquids suggesting salts of borane anions could enhance hypergolic properties of ionic liquids. To explore these results, four salts based on [B10H13](-) and [B9H14](-), triethylammonium nido-decaborane, tetraethylammonium nido-decaborane, 1-ethyl-3-methylimidazolium arachno-nonaborane, and N-butyl-N-methyl-pyrrolidinium arachano-nonaborane were synthesized from nido-decaborane by reaction of triethylamine or tetraethylammonium hydroxide with nido-decaborane in the case of salts containing the decaborane anion or via metathesis reactions between sodium nonaborane (Na[B9H14]) and the corresponding organic chloride in the case of the salts containing the nonaborane anion. These borane cluster anion salts form stable solutions in some combustible polar aprotic solvents such as tetrahydrofuran and ethyl acetate and trigger hypergolic reactivity of these solutions. Solutions of these salts in polar protic solvents are not hypergolic. PMID:24716643

McCrary, Parker D; Barber, Patrick S; Kelley, Steven P; Rogers, Robin D

2014-05-01

41

Ionic liquids for rechargeable lithium batteries  

SciTech Connect

We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

2005-09-29

42

Composition and structural effects on the adsorption of ionic liquids onto activated carbon.  

PubMed

The applications and variety of ionic liquids (ILs) have increased during the last few years, and their use at a large scale will require their removal/recovery from wastewater streams. Adsorption on activated carbons (ACs) has been recently proposed for this aim and this work presents a systematic analysis of the influence of the IL chemical structures (cation side chain, head group, anion type and the presence of functional groups) on their adsorption onto commercial AC from water solution. Here, the adsorption of 21 new ILs, which include imidazolium-, pyridinium-, pyrrolidinium-, piperidinium-, phosphonium- and ammonium-based cations and different hydrophobic and hydrophilic anions, has been experimentally measured. This contribution allows an expansion of the range of IL compounds studied in previous works, and permits a better understanding of the influence of the IL structures through the adsorption on AC. In addition, the COSMO-RS method was used to analyze the measured adsorption isotherms, allowing the understanding of the role of the cationic and anionic structures in the adsorption process, in terms of the different interactions between the IL compound and AC surface/water solvent. The results of this work provide new insights for the development of adsorption as an effective operation to remove/recover ILs with very different chemical nature from water solution. PMID:23896624

Lemus, Jesús; Neves, Catarina M S S; Marques, Carlos F C; Freire, Mara G; Coutinho, João A P; Palomar, Jose

2013-09-01

43

One-step hydrothermal synthesis of mesoporous anatase TiO? microsphere and interfacial control for enhanced lithium storage performance.  

PubMed

Mesoporous TiO(2) anatase microspheres consisting of self-assembled nanocrystals have been synthesized by a one-step hydrothermal method at 120 (o)C using titanium-peroxo complex, without a post-calcination process. Transmission and scanning electron microscopic imaging reveal that diamond-shaped nanocrystals as primary particles, which are 20 nm in average width and 50 nm in length and oriented with (101) plane of anatase phase, are aggregated to form a secondary microsphere particle with 0.5-1 ?m in diameter. BET analysis data show that the TiO(2) anatase particles possess significantly large surface area of 254 m(2) g(-1) with the pore size of ?14 nm. Mesoporous TiO(2) anatase anode shows an enhanced lithium storage performance in pyrrolidinium-based ionic liquid electrolyte diluted with ethyl methyl carbonate, delivering 195 - 150 mAhg(-1) at the C/2 rate with 77 % capacity retention and 98-99 % Coulombic efficiencies over 50 cycles despite the absence of surface carbon-coating. AC impedance analysis results reveal that the formation of a stable solid electrolyte interphase (SEI) layer in diluted ionic liquid electrolyte induces the enhanced cycling performance. Control of electrode-electrolyte interfacial compatibility enables the enhancement of cycling performance and the preservation of microstructure. The data contribute to provide cost-efficient synthetic method for the TiO(2) and the interfacial control aspect of performance control for safer batteries. PMID:21848346

Lee, Kyung-Ho; Song, Seung-Wan

2011-09-01

44

Comparative effects of bepridil, its quaternary derivative CERM 11888 and verapamil on caffeine-induced contracture in ferret hearts.  

PubMed Central

1. The effects of bepridil, its quaternary derivative: CERM 11888 (methyl-pyrrolidinium bromide) (10(-7)-10(-5) M), and verapamil (10(-7)-10(-6) M) were compared on caffeine-induced contracture of isolated ventricular trabeculae of the ferret. 2. Bepridil diminished the amplitude of contracture in a concentration-dependent fashion, and this effect was significantly different from that of CERM 11888 which, like verapamil, only reduced the amplitude at the highest concentration used. 3. Bepridil (10(-6) M) significantly shortened the time to peak tension and accelerated the relaxation phase of contracture. This latter effect was different from that of CERM 11888. Verapamil (10(-6) M) also tended to accelerate the relaxation phase. At 10(-5) M these actions of bepridil on the time to peak and relaxation tended to reverse. 4. At all concentrations bepridil and verapamil reduced the rate of repriming of contracture and this effect of bedpridil was significantly different from that of its quaternary derivative which only showed a significant effect at 10(-5) M. 5. These results demonstrate a clear intracellular effect of bepridil in the ferret heart. Verapamil and CERM 11888 had only weak intracellular effects even at high concentrations. 6. Analysis of the results suggests that the main sites of action of bepridil in this model are the sarcoplasmic reticulum and one or two calcium compartments in the sarcolemma. PMID:2804541

Leboeuf, J.; Leoty, C.; Lamar, J. C.; Massingham, R.

1989-01-01

45

Effects of ionic liquids on membrane fusion and lipid aggregation of egg-PC liposomes.  

PubMed

In this study we have explored the effects of different groups of ionic liquids (ILs) on membrane fusion. The ILs used contain different head groups: N-methylimidazolium, 3-methylpyridinium and N-methylpyrrolidinium; short alkyl or ether functionalized side chains (with one or two ethoxy functionalities), paired with chloride anion. These ILs have been compared with 1-dodecyl-3-methylimidazolium bromide as example of a highly lipophilic IL. The effect of ILs on membrane fusion was investigated through pyrene steady state fluorescence probing, using the IE factor and excimer/monomer ratio (IE/IM) as parameters. The ratio between the vibronic bands of pyrene (I1/I3 ratio) has been used to monitor the effect of ILs on the aggregation properties of egg-PC liposomes. The effect of different ILs' families was evident; the pyridinium ILs induced a greater extent of fusion than pyrrolidinium and imidazolium ILs having the same side chain. Marginal effect could be attributed to different anions. ILs with short alkyl chains were usually more effective than ether functionalized ones. The aggregation behaviors of ILs having dioxygenated chains have been measured in buffer solution. PMID:25483843

Galletti, Paola; Malferrari, Danilo; Samorì, Chiara; Sartor, Giorgio; Tagliavini, Emilio

2015-01-01

46

Extraction Separation of Rare-Earth Ions via Competitive Ligand Complexations between Aqueous and Ionic-Liquid Phases  

SciTech Connect

The extraction separation of rare earth elements is the most challenging separation processes in hydrometallurgy and advanced nuclear fuel cycles. The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) is a prime example of these separation processes. The objective of this paper is to explore the use of ionic liquids (ILs) for the TALSPEAK-like process, to further enhance its extraction efficiencies for lanthanides, and to investigate the potential of using this modified TALSPEAK process for separation of lanthanides among themselves. Eight imidazolium ILs ([Cnmim][NTf2] and [Cnmim][BETI], n=4,6,8,10) and one pyrrolidinium IL ([C4mPy][NTf2]) were investigated as diluents using di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant for separation of lanthanide ions from aqueous solutions of 50 mM glycolic acid or citric acid and 5 mM diethylenetriamine pentaacetic acid (DTPA). The extraction efficiencies were studied in comparison with diisopropylbenzene (DIPB), an organic solvent used as diluent for the conventional TALSPEAK extraction system. Excellent extraction efficiencies and selectivities were found for a number of lanthanide ions using HDEHP as an extractant in these ILs. The effects of different alkyl chain lengths in the cations of ILs and anions on extraction efficiencies and selectivities of lanthanide ions are also presented in this paper.

Luo, Huimin [ORNL; Sun, Xiaoqi [ORNL; Bell, Jason R [ORNL; Dai, Sheng [ORNL

2011-01-01

47

Recognition of achiral and chiral ammonium salts by neutral ditopic receptors based on chiral salen-UO2 macrocycles.  

PubMed

A mononuclear (M20) and a dinuclear (M40) uranyl chiral macrocyclic complex, incorporating both a salen unit containing two phenyl rings linked to a chiral diimine bridge and the (R)-BINOL unit, behaves as an efficient ditopic receptor for achiral and chiral quaternary ammonium salts. Binding affinities in chloroform solution have been measured for 1:1 complexes of many quaternary salts encompassing tetramethylammonium (TMA), tetraethylammonium (TEA), tetrabutylammonium (TBA), and acetylcholine (ACh), as well as trimethylanilinium (TriMAn), benzyltrimethylammonium (BnTriMA), (alpha-methylbenzyl)trimethylammonium and pyrrolidinium cations. The anion of the salt is bound by the hard Lewis acidic uranyl site, with an increasing binding efficiency on increasing the anion hardness (I(-) < Br(-) < Cl(-)), whereas CH-pi or pi-pi attractions by binapthyl moiety, or the salicylaldehyde unit, or the phenyl rings of diimine bridge ensure the recognition of the cation partner. Optimized structures of receptor-anion-cation ternary complexes obtained by MM calculations are supported by 2D-ROESY NMR measurements. PMID:20143850

Amato, Maria E; Ballistreri, Francesco P; Gentile, Salvatore; Pappalardo, Andrea; Tomaselli, Gaetano A; Toscano, Rosa M

2010-03-01

48

Effects of some isomers and analogues of nicotine on junctional transmission  

PubMed Central

A number of isomers and homologues of nicotine, (2-, 3- and 4-pyridylmethyl)- and [2-(2-, 3- and 4-pyridyl)ethyl]- dialkylamines and trialkylammonium salts, have been prepared. They have been tested for their ability to act like acetylcholine in causing contracture of the chick biventer-cervicis and, some of them, for their ability to stimulate the superior cervical ganglion of the cat, causing contracture of the nictitating membrane. All the compounds have been tested for their ability to block transmission on the superior cervical ganglion of the cat and on the rat diaphragm preparation, and most of them for ability to inhibit the enzymatic hydrolysis of acetylcholine, using an acetone-powder of dog caudate nucleus as a source of acetylcholinesterase. The dissociation constants of the compounds have been measured by electrometric titration. The dissociation constants were used to compute the amount of monovalent ion present in the conditions of the biological tests, and the activities of the compounds have, accordingly, been compared on an ionic, as well as on a molecular, basis. The two sets of figures do not differ greatly. Trimethyl[2-(3-pyridyl)ethyl]ammonium (23) was the most potent compound on the chick and cat preparations. On an ionic basis (that is, compared with the monovalent nicotinium ion) this was 2.6 times as active as nicotine on the chick biventer and 11 times as active on the cat superior cervical ganglion. On the rat diaphragm it was 7.1 times as active as nicotine and less active than 1-methyl-1-(3-pyridylmethyl)-pyrrolidinium (26) (9.5 times the nicotinium ion) and trimethyl(4-pyridylmethyl)-ammonium (21) (11 times). The relationships between structure and dissociation constant, anticholinesterase activity, and activity in the pharmacological tests have been discussed. PMID:19108160

Barlow, R. B.; Hamilton, J. T.

1962-01-01

49

Phase behaviour, transport properties, and interactions in Li-salt doped ionic liquids.  

PubMed

We report on the influence of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) doping on the glass transition temperature (Tg), the ionic conductivity, and Li-ion coordination of two dicationic ionic liquids (DILs) based on the TFSI anion. The results are compared to the behaviour of traditional mono-cationic ionic liquids. The cations of the DILs contain two imidazolium rings, connected by a decane hydrocarbon chain. Homogeneous mixtures of these ILs and LiTFSI can be obtained in a large concentration range. With increasing Li-salt concentration the ionic conductivity decreases whereas the glass transition temperature increases in both systems. However, the influence of the salt doping on the ionic conductivity and the glass transition temperature is low compared to typical mono-cationic ionic liquids, based on for example the pyrrolidinium cation and the TFSI anion. This behaviour is mirrored in the average coordination number of TFSI anions around Li-ions, determined by Raman spectroscopy. The coordination number is systematically lower in the DILs, suggesting a connection between the difference in the Li-ion environment and the behaviour of the glass transition and the ionic conductivity. A Tg-scaled Arrhenius plot of the ionic conductivity shows that the ionic conductivity for all LiTFSI concentrations has the same temperature dependence, i.e., the fragility of the liquid is the same. This implies that the conduction process is dominated by the viscous properties of the liquids over the entire concentration range. This provides further support for linking the local environment of the Li-ions to the glass transition and conduction process in the ionic liquid/salt mixtures. PMID:22455015

Pitawala, Jagath; Kim, Jae-Kwang; Jacobsson, Per; Koch, Victor; Croce, Fausto; Matic, Aleksandar

2012-01-01

50

Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline.  

PubMed

Aqueous biphasic systems (ABS) using ionic liquids (ILs) offer an alternative approach for the extraction, recovery, and purification of biomolecules through their partitioning between two aqueous liquid phases. In this work, the ability of a wide range of ILs to form ABS with aqueous solutions of Na2 CO3 was evaluated. The ABS formed by IL?+?water?+?Na2 CO3 were determined at 25°C, and the respective solubility curves, tie-lines, and tie-line lengths are reported. The studied ILs share the common chloride anion, allowing the IL cation core, the cation isomerism, the presence of functionalized groups, and alkyl side chain length effects to be evaluated. An increase in the cation side alkyl chain length leads to a higher ability for liquid-liquid demixing whereas different positional isomers and the presence of an allyl group have no major influence in the phase diagrams behavior. Quaternary phosphonium- and ammonium-based fluids are more able to form an ABS when compared with imidazolium-, pyridinium-, pyrrolidinium-, and piperidium-based ILs. Moreover, the presence of an aromatic cation core has no major contribution to the formation of ABS when compared to the respective nonaromatic counterparts. Finally, to appraise on the systems applicability in downstream processing, selected systems were used for the partitioning of tetracyclines (neutral and salt forms) - a class of antibiotics produced by bacteria fermentation. Single-step extraction efficiencies for the IL-rich phase were always higher than 99% and confirm the great potential of ILs to be applied in the biotechnological field. PMID:23420737

Marques, Carlos F C; Mourão, Teresa; Neves, Catarina M S S; Lima, Alvaro S; Boal-Palheiros, Isabel; Coutinho, João A P; Freire, Mara G

2013-01-01

51

Measuring and predicting Delta(vap)H298 values of ionic liquids.  

PubMed

We report the enthalpies of vaporisation (measured using temperature programmed desorption by mass spectrometry) of twelve ionic liquids (ILs), covering four imidazolium, [C(m)C(n)Im]+, five pyrrolidinium, [C(n)C(m)Pyrr]+, two pyridinium, [C(n)Py]+, and a dication, [C3(C1Im)2]2+ based IL. These cations were paired with a range of anions: [BF4]-, [FeCl4]-, [N(CN)2]-, [PF3(C2F5)3]- ([FAP]-), [(CF3SO2)2N]- ([Tf2N]-) and [SCN]-. Using these results, plus those for a further eight imidazolium based ILs published earlier (which include the anions [CF3SO3]- ([TfO]-), [PF6]- and [EtSO4]-), we show that the enthalpies of vaporisation can be decomposed into three components. The first component is the Coulombic interaction between the ions, DeltaU(Cou,R), which is a function of the IL molar volume, V(m), and a parameter R(r) which quantifies the relative change in anion-cation distance on evaporation from the liquid phase to the ion pair in the gas phase. The second and third components are the van der Waals contributions from the anion, DeltaH(vdw,A), and the cation, DeltaH(vdw,C). We derive a universal value for R(r), and individual values of DeltaH(vdw,A) and DeltaH(vdw,C) for each of the anions and cations considered in this study. Given the molar volume, it is possible to estimate the enthalpies of vaporisation of ILs composed of any combination of the ions considered here; values for fourteen ILs which have not yet been studied experimentally are given. PMID:19774286

Deyko, Alexey; Lovelock, Kevin R J; Corfield, Jo-Anne; Taylor, Alasdair W; Gooden, Peter N; Villar-Garcia, Ignacio J; Licence, Peter; Jones, Robert G; Krasovskiy, Vladimir G; Chernikova, Elena A; Kustov, Leonid M

2009-10-14

52

Substrate-Dependent Inhibition of Human MATE1 by Cationic Ionic Liquids  

PubMed Central

The multidrug and toxin extruders 1- and 2-K (MATE1 and MATE2-K) are expressed in the luminal membrane of renal proximal tubule cells and provide the active step in the secretion of molecules that carry a net positive charge at physiologic pH, so-called organic cations. The present study tested whether structurally distinct MATE substrates can display different quantitative profiles of inhibition when interacting with structurally distinct ligands. The tested ligands were three structurally similar cationic ionic liquids (ILs, salts in the liquid state: N-butylpyridinium, NBuPy; 1-methyl-3-butylimidazolium, Bmim; and N-butyl-N-methylpyrrolidinium, BmPy). Uptake was measured using Chinese hamster ovary cells that stably expressed MATE1 or MATE2-K. By trans-stimulation, all three ILs were transported by both MATE transporters. The three ILs also inhibited uptake of three structurally distinct MATE substrates: 1-methyl-4-phenylpyridinium (MPP), triethylmethylammonium (TEMA), and N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA). MATE1 displayed a higher affinity for the pyridinium-based NBuPy (IC50 values, 2–4 µM) than for either the pyrrolidinium- (BmPy; 20–70 µM) or imidazolium-based ILs (Bmim; 15–60 µM). Inhibition of MPP, TEMA, and NBD-MTMA transport by NBuPy was competitive, with comparable Ki values against all substrates. Bmim also competitively blocked the three substrates but with Ki values that differed significantly (20 µM against MPP and 30 µM against NBD-MTMA versus 60 µM against TEMA). Together, these data indicate that renal secretion of ILs by the human kidney involves MATE transporters and suggest that the mechanism of transport inhibition is ligand-dependent, supporting the hypothesis that the binding of substrates to MATE transporters involves interaction with a binding surface with multiple binding sites. PMID:23785176

Martínez-Guerrero, Lucy J.

2013-01-01

53

Crystal structures and hydrogen bonding in the proton-transfer salts of nicotine with 3,5-di-nitro-salicylic acid and 5-sulfosalicylic acid.  

PubMed

The structures of the 1:1 anhydrous salts of nicotine (NIC) with 3,5-di-nitro-salicylic acid (DNSA) and 5-sulfosalicylic acid (5-SSA), namely (1R,2S)-1-methyl-2-(pyridin-3-yl)-1H-pyrrolidin-1-ium 2-carb-oxy-4,6-di-nitro-phenolate, C10H15N2 (+)·C7H3N2O7 (-), (I), and (1R,2S)-1-methyl-2-(pyridin-3-yl)-1H-pyrrolidin-1-ium 3-carb-oxy-4-hy-droxy-benzene-sulfonate, C10H15N2 (+)·C7H5O6S(-), (II), are reported. The asymmetric units of both (I) and (II) comprise two independent nicotinium cations (C and D) and either two DNSA or two 5-SSA anions (A and B), respectively. One of the DNSA anions shows a 25% rotational disorder in the benzene ring system. In the crystal of (I), inter-unit pyrrolidinium N-H?Npyridine hydrogen bonds generate zigzag NIC cation chains which extend along a, while the DNSA anions are not involved in any formal inter-species hydrogen bonding but instead form ?-?-associated stacks which are parallel to the NIC cation chains along a [ring-centroid separation = 3.857?(2)?Å]. Weak C-H?O inter-actions between chain substructures give an overall three-dimensional structure. In the crystal of (II), A and B anions form independent zigzag chains with C and D cations, respectively, through carb-oxy-lic acid O-H?Npyridine hydrogen bonds. These chains, which extend along b, are pseudocentrosymmetrically related and give ?-? inter-actions between the benzene rings of anions A and B and the pyridine rings of the NIC cations C and D, respectively [ring centroid separations = 3.6422?(19) and 3.7117?(19)?Å]. Also present are weak C-H?O hydrogen-bonding inter-actions between the chains, giving an overall three-dimensional structure. PMID:25484766

Smith, Graham; Wermuth, Urs D

2014-11-01

54

Crystal structures and hydrogen bonding in the proton-transfer salts of nicotine with 3,5-di­nitro­salicylic acid and 5-sulfosalicylic acid  

PubMed Central

The structures of the 1:1 anhydrous salts of nicotine (NIC) with 3,5-di­nitro­salicylic acid (DNSA) and 5-sulfosalicylic acid (5-SSA), namely (1R,2S)-1-methyl-2-(pyridin-3-yl)-1H-pyrrolidin-1-ium 2-carb­oxy-4,6-di­nitro­phenolate, C10H15N2 +·C7H3N2O7 ?, (I), and (1R,2S)-1-methyl-2-(pyridin-3-yl)-1H-pyrrolidin-1-ium 3-carb­oxy-4-hy­droxy­benzene­sulfonate, C10H15N2 +·C7H5O6S?, (II), are reported. The asymmetric units of both (I) and (II) comprise two independent nicotinium cations (C and D) and either two DNSA or two 5-SSA anions (A and B), respectively. One of the DNSA anions shows a 25% rotational disorder in the benzene ring system. In the crystal of (I), inter-unit pyrrolidinium N—H?Npyridine hydrogen bonds generate zigzag NIC cation chains which extend along a, while the DNSA anions are not involved in any formal inter-species hydrogen bonding but instead form ?–?-associated stacks which are parallel to the NIC cation chains along a [ring-centroid separation = 3.857?(2)?Å]. Weak C—H?O inter­actions between chain substructures give an overall three-dimensional structure. In the crystal of (II), A and B anions form independent zigzag chains with C and D cations, respectively, through carb­oxy­lic acid O—H?Npyridine hydrogen bonds. These chains, which extend along b, are pseudocentrosymmetrically related and give ?–? inter­actions between the benzene rings of anions A and B and the pyridine rings of the NIC cations C and D, respectively [ring centroid separations = 3.6422?(19) and 3.7117?(19)?Å]. Also present are weak C—H?O hydrogen-bonding inter­actions between the chains, giving an overall three-dimensional structure. PMID:25484766

Smith, Graham; Wermuth, Urs D.

2014-01-01

55

Effects of Aromaticity in Cations and Their Functional Groups on the Low-Frequency Spectra and Physical Properties of Ionic Liquids.  

PubMed

We have critically investigated the low-frequency spectra of six ionic liquids (ILs) consisting of systematically different cations having benzyl moieties or comparable-sized saturated cyclohexylmethyl groups, by means of femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES). The target ionic liquids are bis(trifluoromethylsulfonyl)amide ([NTf2](-)) salts of the 1-benzyl-3-methylimidazolium ([BzMIm](+)), 1-benzyl-1-methylpyrrolidinium ([BzMPyrr](+)), 1-benzylpyridinium ([BzPy](+)), 1-cyclohexylmethyl-3-methylimidazolium ([CHxmMIm](+)), 1-cyclohexylmethyl-1-methylpyrrolidinium ([CHxmMPyrr](+)), and 1-cyclohexylmethylpyridinium ([CHxmPy](+)) cations. The primary purpose of this study is to clarify the effects of charged and neutral aromatic moieties on the low-frequency spectrum and bulk properties such as liquid density, surface tension, shear viscosity, glass transition temperature, and melting point. We found that ILs with benzyl groups have larger surface tensions than those with the same cation bearing the cyclohexylmethyl group. The trend in the glass transition temperatures, comparing ILs having the same side group, is pyridinium > imidazolium > pyrrolidinium. The effects of a single aromatic moiety on the shear viscosity are inconclusive, although the viscosities of the ILs with aromatic moieties on both the cation and the benzyl group, i.e., [BzMIm][NTf2] and [BzPy][NTf2], are substantially lower than those of the other ILs at room temperature, as a consequence of their higher fragilities. In the low-frequency Kerr spectra in the frequency range of approximately 0.1 to 200 cm(-1) measured by fs-RIKES, the ILs possessing two aromatic groups show the largest relative intensity of the nuclear response to the electronic response. Both the charged and neutral aromatic rings show signals due to the ring libration; the neutral one appears at a lower frequency than the charged one. The relationship between the first moment of the broad low-frequency spectrum band and the bulk parameter consisting of the square root of the surface tension divided by the liquid density is obeyed by the cyclohexylmethyl derivatives whether the cation is aromatic or not, but not by the ILs with the neutral aromatic benzyl group. Quantum chemistry calculations have been also performed to understand the vibrational modes of the ionic species in the ILs. PMID:25389916

Shirota, Hideaki; Matsuzaki, Hironori; Ramati, Sharon; Wishart, James F

2014-12-01

56

Influence of structural variations in cationic and anionic moieties on the polarity of ionic liquids.  

PubMed

The polarity of a series of ionic liquids (ILs) arising from the quaternarization of N-methylmorpholine, N-methylpyrrolidine, N-methylpiperidine, N-methylazepane, 4-hydroxy-1-methylpiperidine, 1,2-dimethylimidazole, and 1-methylimidazole with simple alkyl chains and/or hydroxyl (mono- or dihydroxyl) functionalized alkyl chains and having bistriflimide, dicyanamide, or nitrate as counteranions has been investigated using solvatochromic dyes and expressed in terms of E(T)(N) and Kamlet-Taft parameters (dipolarity/polarizability (?*), hydrogen bond donor acidity (?), and hydrogen bond basicity (?)). Significant variations of polarity were observed on changing the anion and cation combination. The resulting E(T)(N) and ? values were strongly anion dependent; on going from bistriflimide to dicyanamide, a significant decrease in E(T)(N) and ? values was observed. On the other hand, the alkyl chain length has only a moderate effect on these parameters; either an increase or decrease in E(T)(N) and ? values was observed on increasing the alkyl chain length, depending on the cation core. In the case of cyclic onium salts, the size of the cation ring affected the ? parameter; the ILs based on the seven-membered ring system N-methyl-N-butylazepanium (also named N-methyl-N-butylhexamethyleneiminium, [HME(1,4)](+)) have high polarity values, comparatively to the ILs based on analogous five- and six-membered cyclic cations (pyrrolidinium and piperidinium). The introduction of the OH groups on the cation alkyl chain increases the polarity; the effect is substantial for the first OH group and more moderate for the second. Also, the thermosolvatochromism (changes in solvatochromic properties with the change in temperature) was studied for four dihydroxyl functionalized ILs. Finally, the principal component analysis (PCA) carried out on 67 ILs has shown that there are only two statistically relevant parameters: PC1, a weighted sum of E(T)(N) and ?, which is able to discern between the cation core structure, functionalization, and cation-anion association, and PC2, very close to ?, which is related principally to the anion nature. PMID:21721537

Chiappe, Cinzia; Pomelli, Christian Silvio; Rajamani, Sunita

2011-08-11