Sample records for n-myc le role

  1. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants

    PubMed Central

    2014-01-01

    Background Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants. PMID:24483714

  2. N-myc regulates growth and fiber cell differentiation in lens development

    PubMed Central

    Cavalheiro, Gabriel R.; Matos-Rodrigues, Gabriel E.; Zhao, Yilin; Gomes, Anielle L.; Anand, Deepti; Predes, Danilo; de Lima, Silmara; Abreu, Jose G.; Zheng, Deyou; Lachke, Salil A.; Cvekl, Ales; Martins, Rodrigo A. P.

    2017-01-01

    Myc proto-oncogenes regulate diverse cellular processes during development, but their roles during morphogenesis of specific tissues are not fully understood. We found that c-myc regulates cell proliferation in mouse lens development and previous genome-wide studies suggested functional roles for N-myc in developing lens. Here, we examined the role of N-myc in mouse lens development. Genetic inactivation of N-myc in the surface ectoderm or lens vesicle impaired eye and lens growth, while "late" inactivation in lens fibers had no effect. Unexpectedly, defective growth of N-myc--deficient lenses was not associated with alterations in lens progenitor cell proliferation or survival. Notably, N-myc-deficient lens exhibited a delay in degradation of DNA in terminally differentiating lens fiber cells. RNA-sequencing analysis of N-myc--deficient lenses identified a cohort of down-regulated genes associated with fiber cell differentiation that included DNaseIIβ. Further, an integrated analysis of differentially expressed genes in N-myc-deficient lens using normal lens expression patterns of iSyTE, N-myc-binding motif analysis and molecular interaction data from the String database led to the derivation of an N-myc-based gene regulatory network in the lens. Finally, analysis of N-myc and c-myc double-deficient lens demonstrated that these Myc genes cooperate to drive lens growth prior to lens vesicle stage. Together, these findings provide evidence for exclusive and cooperative functions of Myc transcription factors in mouse lens development and identify novel mechanisms by which N-myc regulates cell differentiation during eye morphogenesis. PMID:28716713

  3. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification

    PubMed Central

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2013-01-01

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. PMID:23941992

  4. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification.

    PubMed

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2013-10-15

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. © 2013 Elsevier B.V. All rights reserved.

  5. Episome-generated N-myc antisense RNA restricts the differentiation potential of primitive neuroectodermal cell lines.

    PubMed Central

    Whitesell, L; Rosolen, A; Neckers, L M

    1991-01-01

    Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc. Images PMID:1996098

  6. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis.

    PubMed

    Annibali, Daniela; Whitfield, Jonathan R; Favuzzi, Emilia; Jauset, Toni; Serrano, Erika; Cuartas, Isabel; Redondo-Campos, Sara; Folch, Gerard; Gonzàlez-Juncà, Alba; Sodir, Nicole M; Massó-Vallés, Daniel; Beaulieu, Marie-Eve; Swigart, Lamorna B; Mc Gee, Margaret M; Somma, Maria Patrizia; Nasi, Sergio; Seoane, Joan; Evan, Gerard I; Soucek, Laura

    2014-08-18

    Gliomas are the most common primary tumours affecting the adult central nervous system and respond poorly to standard therapy. Myc is causally implicated in most human tumours and the majority of glioblastomas have elevated Myc levels. Using the Myc dominant negative Omomyc, we previously showed that Myc inhibition is a promising strategy for cancer therapy. Here, we preclinically validate Myc inhibition as a therapeutic strategy in mouse and human glioma, using a mouse model of spontaneous multifocal invasive astrocytoma and its derived neuroprogenitors, human glioblastoma cell lines, and patient-derived tumours both in vitro and in orthotopic xenografts. Across all these experimental models we find that Myc inhibition reduces proliferation, increases apoptosis and remarkably, elicits the formation of multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in the proficient division of glioma cells.

  7. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma1

    PubMed Central

    Armstrong, Michael B; Mody, Rajen J; Ellis, D Christian; Hill, Adam B; Erichsen, David A; Wechsler, Daniel S

    2013-01-01

    Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation. PMID:24403858

  8. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia.

    PubMed

    Eberhart, Charles G; Kratz, John; Wang, Yunyue; Summers, Krista; Stearns, Duncan; Cohen, Kenneth; Dang, Chi V; Burger, Peter C

    2004-05-01

    Several molecular and histopathological prognostic markers have been proposed for the therapeutic stratification of medulloblastoma patients. Amplification of the c-myc oncogene, elevated levels of c-myc mRNA, or tumor anaplasia have been associated with worse clinical outcomes. In contrast, high TrkC mRNA expression generally presages longer survival. The goal of this study was to evaluate the prognostic value of c-myc, N-myc and TrkC expression in medulloblastomas and compare them to histopathological classification. We used in situ hybridization to measure expression of these molecular markers. c-myc mRNA was detected in 18 of 59 (31%) cases, and was significantly associated with shorter patient survival times on both univariate and multivariate analyses (p = 0.04). The presence of c-myc mRNA was also significantly associated with tumor anaplasia. While survival rates were higher for patients with low N-myc or high TrkC expression, these differences were not statistically significant. The group of patients with either moderate or severely anaplastic tumors showed only a trend towards shorter survival (p = 0.11). However, severe anaplasia alone was significantly prognostic (p = 0.002). Given the prognostic import of c-myc, we investigated 2 potential mechanisms by which its expression might be regulated: Wnt signaling and Mxi-1 mutation. Nuclear translocation of beta-catenin, a marker of Wnt pathway activation, was more common in medulloblastomas with high c-myc than in tumors overall, but the difference was not statistically significant. No Mxi-1 mutations were detected in the 22 cases examined. The association we describe between c-myc expression, tumor anaplasia, and worse clinical outcomes provides further evidence for the importance of this oncogene in medulloblastoma pathobiology.

  9. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  10. Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation.

    PubMed

    De Falco, Giulia; Ambrosio, Maria Raffaella; Fuligni, Fabio; Onnis, Anna; Bellan, Cristiana; Rocca, Bruno Jim; Navari, Mohsen; Etebari, Maryam; Mundo, Lucia; Gazaneo, Sara; Facchetti, Fabio; Pileri, Stefano A; Leoncini, Lorenzo; Piccaluga, Pier Paolo

    2015-10-09

    The oncogenic transcription factor MYC is pathologically activated in many human malignancies. A paradigm for MYC dysregulation is offered by Burkitt lymphoma, where chromosomal translocations leading to Immunoglobulin gene-MYC fusion are the crucial initiating oncogenic events. However, Burkitt lymphoma cases with no detectable MYC rearrangement but maintaining MYC expression have been identified and alternative mechanisms can be involved in MYC dysregulation in these cases. We studied the microRNA profile of MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases in order to uncover possible differences at the molecular level. Data was validated at the mRNA and protein level by quantitative Real-Time polymerase chain reaction and immunohistochemistry, respectively. We identified four microRNAs differentially expressed between the two groups. The impact of these microRNAs on the expression of selected genes was then investigated. Interestingly, in MYC translocation-negative cases we found over-expression of DNA-methyl transferase family members, consistent to hypo-expression of the hsa-miR-29 family. This finding suggests an alternative way for the activation of lymphomagenesis in these cases, based on global changes in methylation landscape, aberrant DNA hypermethylation, lack of epigenetic control on transcription of targeted genes, and increase of genomic instability. In addition, we observed an over-expression of another MYC family gene member, MYCN that may therefore represent a cooperating mechanism of MYC in driving the malignant transformation in those cases lacking an identifiable MYC translocation but expressing the gene at the mRNA and protein levels. Collectively, our results showed that MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases are slightly different in terms of microRNA and gene expression. MYC translocation-negative Burkitt lymphoma, similarly to other aggressive B-cell non Hodgkin

  11. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.

    PubMed

    Lee, John K; Phillips, John W; Smith, Bryan A; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Shokat, Kevan M; Gustafson, W Clay; Huang, Jiaoti; Witte, Owen N

    2016-04-11

    MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3.

    PubMed

    Potvin, Eric; Beuret, Laurent; Cadrin-Girard, Jean-François; Carter, Marcelle; Roy, Sophie; Tremblay, Michel; Charron, Jean

    2010-11-01

    The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.

  13. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors.

    PubMed

    Jung, L A; Gebhardt, A; Koelmel, W; Ade, C P; Walz, S; Kuper, J; von Eyss, B; Letschert, S; Redel, C; d'Artista, L; Biankin, A; Zender, L; Sauer, M; Wolf, E; Evan, G; Kisker, C; Eilers, M

    2017-04-06

    MYC genes have both essential roles during normal development and exert oncogenic functions during tumorigenesis. Expression of a dominant-negative allele of MYC, termed OmoMYC, can induce rapid tumor regression in mouse models with little toxicity for normal tissues. How OmoMYC discriminates between physiological and oncogenic functions of MYC is unclear. We have solved the crystal structure of OmoMYC and show that it forms a stable homodimer and as such recognizes DNA in the same manner as the MYC/MAX heterodimer. OmoMYC attenuates both MYC-dependent activation and repression by competing with MYC/MAX for binding to chromatin, effectively lowering MYC/MAX occupancy at its cognate binding sites. OmoMYC causes the largest decreases in promoter occupancy and changes in expression on genes that are invaded by oncogenic MYC levels. A signature of OmoMYC-regulated genes defines subgroups with high MYC levels in multiple tumor entities and identifies novel targets for the eradication of MYC-driven tumors.

  14. Regulation of c- and N-myc expression during induced differentiation of murine neuroblastoma cells.

    PubMed

    Larcher, J C; Vayssière, J L; Lossouarn, L; Gros, F; Croizat, B

    1991-04-01

    Using clones N1E-115 and N1A-103 from mouse neuroblastoma C1300, a comparative analysis of c- and N-myc gene expression was undertaken both in proliferating cells and in cultures exposed to conditions which induce differentiation. Under the latter conditions, while N1E-115 cells extend abundant neurites and express many biochemical features of mature neurons, clone N1A-103 stops dividing and expresses certain neurospecific markers but is unable to differentiate morphologically. In both clones, chemical agents, i.e. 1-methyl cyclohexane carboxylic acid (CCA) or dimethyl sulfoxide (DMSO), induce a decrease in c-myc expression. Similar results were found for N-myc gene in N1E-115 cells, but in contrast, in clone N1A-103, N-myc expression is increased with CCA and not modified with DMSO. Globally, this study favours the hypothesis that changes in c-myc expression would correspond to cell division blockade and differentiation, while modulations in N-myc are more closely related to an early phase of terminal differentiation.

  15. The role of Myc-induced protein synthesis in cancer

    PubMed Central

    Ruggero, Davide

    2009-01-01

    Deregulation in different steps of translational control is an emerging mechanism for cancer formation. One example of an oncogene with a direct role in control of translation is the Myc transcription factor. Myc directly increases protein synthesis rates by controlling the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III and rDNA. However, the contribution of Myc-dependent increases in protein synthesis towards the multi-step process leading to cancer has remained unknown. Recent evidence strongly suggests that Myc oncogenic signaling may monopolize the translational machinery to elicit cooperative effects on cell growth, cell cycle progression, and genome instability as a mechanism for cancer initiation. Moreover, new genetic tools to restore aberrant increases in protein synthesis control are now available, which should enable the dissection of important mechanisms in cancer that rely on the translational machinery. PMID:19934336

  16. Conditional Deletion of N-Myc Disrupts Neurosensory and Non-sensory Development of the Ear

    PubMed Central

    Kopecky, Benjamin; Santi, Peter; Johnson, Shane; Schmitz, Heather; Fritzsch, Bernd

    2011-01-01

    Ear development requires interactions of transcription factors for proliferation and differentiation. The proto-oncogene N-Myc is a member of the Myc family that regulate proliferation. To investigate the function of N-Myc, we conditionally knocked out N-Myc in the ear using Tg(Pax2-Cre) and Foxg 1KiCre. N-Myc CKOs had reduced growth of the ear, abnormal morphology including fused sensory epithelia, disrupted histology, and disorganized neuronal innervation. Using Thin-Sheet Laser Imaging Microscopy (TSLIM), 3D reconstruction and quantification of the cochlea revealed a greater than fifty percent size reduction. Immunochemistry and in situ hybridization showed a gravistatic organ-cochlear fusion and a “circularized” apex with no clear inner and outer hair cells. Furthermore, the abnormally developed cochlea had cross innervation from the vestibular ganglion near the basal tip. These findings are put in the context of the possible functional relationship of N-Myc with a number of other cell proliferative and fate determining genes during ear development. PMID:21448975

  17. The MYC Road to Hearing Restoration

    PubMed Central

    Kopecky, Benjamin; Fritzsch, Bernd

    2012-01-01

    Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti. PMID:24710525

  18. Structure and expression of canary myc family genes.

    PubMed Central

    Collum, R G; Clayton, D F; Alt, F W

    1991-01-01

    We found that the canary N-myc gene is highly related to mammalian N-myc genes in both the protein-coding region and the long 3' untranslated region. Examined coding regions of the canary c-myc gene were also highly related to their mammalian counterparts, but in contrast to N-myc, the canary and mammalian c-myc genes were quite divergent in their 3' untranslated regions. We readily detected N-myc and c-myc expression in the adult canary brain and found N-myc expression both at sites of proliferating neuronal precursors and in mature neurons. Images PMID:1996121

  19. c-MYC—Making Liver Sick: Role of c-MYC in Hepatic Cell Function, Homeostasis and Disease

    PubMed Central

    Zheng, Kang; Cubero, Francisco Javier; Nevzorova, Yulia A.

    2017-01-01

    Over 35 years ago, c-MYC, a highly pleiotropic transcription factor that regulates hepatic cell function, was identified. In recent years, a considerable increment in the number of publications has significantly shifted the way that the c-MYC function is perceived. Overexpression of c-MYC alters a wide range of roles including cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion and differentiation. The purpose of this review is to broaden the understanding of the general functions of c-MYC, to focus on c-MYC-driven pathogenesis in the liver, explain its mode of action under basal conditions and during disease, and discuss efforts to target c-MYC as a plausible therapy for liver disease. PMID:28422055

  20. Prognostic impact of MYC protein expression in central nervous system diffuse large B-cell lymphoma: comparison with MYC rearrangement and MYC mRNA expression.

    PubMed

    Son, Seung-Myoung; Ha, Sang-Yun; Yoo, Hae-Yong; Oh, Dongryul; Kim, Seok-Jin; Kim, Won-Seog; Ko, Young-Hyeh

    2017-01-01

    The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.

  1. MINCR is a MYC-induced lncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells.

    PubMed

    Doose, Gero; Haake, Andrea; Bernhart, Stephan H; López, Cristina; Duggimpudi, Sujitha; Wojciech, Franziska; Bergmann, Anke K; Borkhardt, Arndt; Burkhardt, Birgit; Claviez, Alexander; Dimitrova, Lora; Haas, Siegfried; Hoell, Jessica I; Hummel, Michael; Karsch, Dennis; Klapper, Wolfram; Kleo, Karsten; Kretzmer, Helene; Kreuz, Markus; Küppers, Ralf; Lawerenz, Chris; Lenze, Dido; Loeffler, Markus; Mantovani-Löffler, Luisa; Möller, Peter; Ott, German; Richter, Julia; Rohde, Marius; Rosenstiel, Philip; Rosenwald, Andreas; Schilhabel, Markus; Schneider, Markus; Scholz, Ingrid; Stilgenbauer, Stephan; Stunnenberg, Hendrik G; Szczepanowski, Monika; Trümper, Lorenz; Weniger, Marc A; Hoffmann, Steve; Siebert, Reiner; Iaccarino, Ingram

    2015-09-22

    Despite the established role of the transcription factor MYC in cancer, little is known about the impact of a new class of transcriptional regulators, the long noncoding RNAs (lncRNAs), on MYC ability to influence the cellular transcriptome. Here, we have intersected RNA-sequencing data from two MYC-inducible cell lines and a cohort of 91 B-cell lymphomas with or without genetic variants resulting in MYC overexpression. We identified 13 lncRNAs differentially expressed in IG-MYC-positive Burkitt lymphoma and regulated in the same direction by MYC in the model cell lines. Among them, we focused on a lncRNA that we named MYC-induced long noncoding RNA (MINCR), showing a strong correlation with MYC expression in MYC-positive lymphomas. To understand its cellular role, we performed RNAi and found that MINCR knockdown is associated with an impairment in cell cycle progression. Differential gene expression analysis after RNAi showed a significant enrichment of cell cycle genes among the genes down-regulated after MINCR knockdown. Interestingly, these genes are enriched in MYC binding sites in their promoters, suggesting that MINCR acts as a modulator of the MYC transcriptional program. Accordingly, MINCR knockdown was associated with a reduction in MYC binding to the promoters of selected cell cycle genes. Finally, we show that down-regulation of Aurora kinases A and B and chromatin licensing and DNA replication factor 1 may explain the reduction in cellular proliferation observed on MINCR knockdown. We, therefore, suggest that MINCR is a newly identified player in the MYC transcriptional network able to control the expression of cell cycle genes.

  2. MYC and gastric adenocarcinoma carcinogenesis

    PubMed Central

    Calcagno, Danielle Queiroz; Leal, Mariana Ferreira; Assumpção, Paulo Pimentel; Smith, Marília de Arruda Cardoso; Burbano, Rommel Rodríguez

    2008-01-01

    MYC is an oncogene involved in cell cycle regulation, cell growth arrest, cell adhesion, metabolism, ribosome biogenesis, protein synthesis, and mitochondrial function. It has been described as a key element of several carcinogenesis processes in humans. Many studies have shown an association between MYC deregulation and gastric cancer. MYC deregulation is also seen in gastric preneoplastic lesions and thus it may have a role in early gastric carcinogenesis. Several studies have suggested that amplification is the main mechanism of MYC deregulation in gastric cancer. In the present review, we focus on the deregulation of the MYC oncogene in gastric adenocarcinoma carcinogenesis, including its association with Helicobacter pylori (H pylori) and clinical applications. PMID:18932273

  3. Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer.

    PubMed

    Zhao, Na; Cao, Jin; Xu, Longyong; Tang, Qianzi; Dobrolecki, Lacey E; Lv, Xiangdong; Talukdar, Manisha; Lu, Yang; Wang, Xiaoran; Hu, Dorothy Z; Shi, Qing; Xiang, Yu; Wang, Yunfei; Liu, Xia; Bu, Wen; Jiang, Yi; Li, Mingzhou; Gong, Yingyun; Sun, Zheng; Ying, Haoqiang; Yuan, Bo; Lin, Xia; Feng, Xin-Hua; Hartig, Sean M; Li, Feng; Shen, Haifa; Chen, Yiwen; Han, Leng; Zeng, Qingping; Patterson, John B; Kaipparettu, Benny Abraham; Putluri, Nagireddy; Sicheri, Frank; Rosen, Jeffrey M; Lewis, Michael T; Chen, Xi

    2018-04-02

    The unfolded protein response (UPR) is a cellular homeostatic mechanism that is activated in many human cancers and plays pivotal roles in tumor progression and therapy resistance. However, the molecular mechanisms for UPR activation and regulation in cancer cells remain elusive. Here, we show that oncogenic MYC regulates the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) branch of the UPR in breast cancer via multiple mechanisms. We found that MYC directly controls IRE1 transcription by binding to its promoter and enhancer. Furthermore, MYC forms a transcriptional complex with XBP1, a target of IRE1, and enhances its transcriptional activity. Importantly, we demonstrate that XBP1 is a synthetic lethal partner of MYC. Silencing of XBP1 selectively blocked the growth of MYC-hyperactivated cells. Pharmacological inhibition of IRE1 RNase activity with small molecule inhibitor 8866 selectively restrained the MYC-overexpressing tumor growth in vivo in a cohort of preclinical patient-derived xenograft models and genetically engineered mouse models. Strikingly, 8866 substantially enhanced the efficacy of docetaxel chemotherapy, resulting in rapid regression of MYC-overexpressing tumors. Collectively, these data establish the synthetic lethal interaction of the IRE1/XBP1 pathway with MYC hyperactivation and provide a potential therapy for MYC-driven human breast cancers.

  4. Targeting c-Myc: JQ1 as a promising option for c-Myc-amplified esophageal squamous cell carcinoma.

    PubMed

    Wang, Jingyuan; Liu, Zhentao; Wang, Ziqi; Wang, Shubin; Chen, Zuhua; Li, Zhongwu; Zhang, Mengqi; Zou, Jianling; Dong, Bin; Gao, Jing; Shen, Lin

    2018-04-10

    c-Myc amplification-induced cell cycle dysregulation is a common cause for esophageal squamous cell carcinoma (ESCC), but no approved targeted drug is available so far. The bromodomain inhibitor JQ1, which targets c-Myc, exerts anti-tumor activity in multiple cancers. However, the role of JQ1 in ESCC remains unknown. In this study, we reported that JQ1 had potent anti-proliferative effects on ESCC cells in both time- and dose-dependent manners by inducing cell cycle arrest at G1 phase, cell apoptosis, and the mesenchymal-epithelial transition. Follow-up studies revealed that both c-Myc/cyclin/Rb and PI3K/AKT signaling pathways were inactivated by JQ1, as indicated by the downregulation of c-Myc, cyclin A/E, and phosphorylated Rb, AKT and S6. Tumor suppression induced by JQ1 in c-Myc amplified or highly expressed xenografts was higher than that in xenografts with low expression, suggesting its potential role in prediction. In conclusion, targeting c-Myc by JQ1 could cause significant tumor suppression in ESCC both in vitro and in vivo. Also, c-Myc amplification or high expression might serve as a potential biomarker and provide a promising therapeutic option for ESCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Mechanisms for c-myc Induced Mouse Mammary Gland Carcinogenesis and for the Synergistic Role of TGF(alpha) in the Process

    DTIC Science & Technology

    2001-07-01

    1997 Glucose deprivation- induced cytotoxicity in drug resistant genomic status of the c-myc locus in infiltrating ductal human breast carcinoma MCF-7...AD Award Number: DAMD17-00-1-0270 TITLE: Mechanisms for c-myc Induced Mouse Mammary Gland Carcinogenesis and for the Synergistic Role of TGFOX in the...AND SUBTITLE 5. FUNDING NUMBERS Mechanisms for c-myc Induced Mouse Mammary Gland DAMD17-00-1-0270 Carcinogenesis and for the Synergistic Role of TGFa in

  6. N-Myc Interactor Inhibits Prototype Foamy Virus by Sequestering Viral Tas Protein in the Cytoplasm

    PubMed Central

    Hu, Xiaomei; Yang, Wei; Liu, Ruikang; Geng, Yunqi; Qiao, Wentao

    2014-01-01

    ABSTRACT Foamy viruses (FVs) are complex retroviruses that establish lifelong persistent infection without evident pathology. However, the roles of cellular factors in FV latency are poorly understood. This study revealed that N-Myc interactor (Nmi) could inhibit the replication of prototype foamy virus (PFV). Overexpression of Nmi reduced PFV replication, whereas its depletion by small interfering RNA increased PFV replication. The Nmi-mediated impairment of PFV replication resulted from the diminished transactivation by PFV Tas of the viral long terminal repeat (LTR) and an internal promoter (IP). Nmi was determined to interact with Tas and abrogate its function by sequestration in the cytoplasm. In addition, human and bovine Nmi proteins were found to inhibit the replication of bovine foamy virus (BFV) and PFV. Together, these results indicate that Nmi inhibits both human and bovine FVs by interfering with the transactivation function of Tas and may have a role in the host defense against FV infection. IMPORTANCE From this study, we report that the N-Myc interactor (Nmi), an interferon-induced protein, can interact with the regulatory protein Tas of the prototype foamy virus and sequester it in the cytoplasm. The results of this study suggest that Nmi plays an important role in maintaining foamy virus latency and may reveal a new pathway in the interferon-mediated antiviral barrier against viruses. These findings are important for understanding virus-host relationships not only with FVs but potentially for other retroviruses as well. PMID:24719420

  7. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers.

    PubMed

    La Rosa, Stefano; Bernasconi, Barbara; Vanoli, Alessandro; Sciarra, Amedeo; Notohara, Kenji; Albarello, Luca; Casnedi, Selenia; Billo, Paola; Zhang, Lizhi; Tibiletti, Maria Grazia; Sessa, Fausto

    2018-05-02

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.

  8. MYC and the Control of DNA Replication

    PubMed Central

    Dominguez-Sola, David; Gautier, Jean

    2014-01-01

    The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC’s diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer. PMID:24890833

  9. Distinct Neural Stem Cell Populations Give Rise to Disparate Brain Tumors in Response to N-MYC

    PubMed Central

    Swartling, Fredrik J.; Savov, Vasil; Persson, Anders I.; Chen, Justin; Hackett, Christopher S.; Northcott, Paul A.; Grimmer, Matthew R.; Lau, Jasmine; Chesler, Louis; Perry, Arie; Phillips, Joanna J.; Taylor, Michael D.; Weiss, William A.

    2012-01-01

    SUMMARY The proto-oncogene MYCN is mis-expressed in various types of human brain tumors. To clarify how developmental and regional differences influence transformation, we transduced wild-type or mutationally-stabilized murine N-mycT58A into neural stem cells (NSCs) from perinatal murine cerebellum, brain stem and forebrain. Transplantation of N-mycWT NSCs was insufficient for tumor formation. N-mycT58A cerebellar and brain stem NSCs generated medulloblastoma/primitive neuroectodermal tumors, whereas forebrain NSCs developed diffuse glioma. Expression analyses distinguished tumors generated from these different regions, with tumors from embryonic versus postnatal cerebellar NSCs demonstrating SHH-dependence and SHH-independence, respectively. These differences were regulated in-part by the transcription factor SOX9, activated in the SHH subclass of human medulloblastoma. Our results demonstrate context-dependent transformation of NSCs in response to a common oncogenic signal. PMID:22624711

  10. Targeting oncogenic Myc as a strategy for cancer treatment.

    PubMed

    Chen, Hui; Liu, Hudan; Qing, Guoliang

    2018-01-01

    The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

  11. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizoshiri, N.; Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto; Kishida, T.

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genesmore » and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.« less

  12. c-myc overexpression causes anaplasia in medulloblastoma.

    PubMed

    Stearns, Duncan; Chaudhry, Aneeka; Abel, Ty W; Burger, Peter C; Dang, Chi V; Eberhart, Charles G

    2006-01-15

    Both anaplasia and increased c-myc gene expression have been shown to be negative prognostic indicators for survival in medulloblastoma patients. myc gene amplification has been identified in many large cell/anaplastic medulloblastoma, but no causative link between c-myc and anaplastic changes has been established. To address this, we stably overexpressed c-myc in two medulloblastoma cell lines, DAOY and UW228, and examined the changes in growth characteristics. When analyzed in vitro, cell lines with increased levels of c-myc had higher rates of growth and apoptosis as well as significantly improved ability to form colonies in soft agar compared with control. When injected s.c. into nu/nu mice, flank xenograft tumors with high levels of c-myc in DAOY cell line background were 75% larger than those derived from control. Overexpression of c-myc was required for tumor formation by UW228 cells. Most remarkably, the histopathology of the Myc tumors was severely anaplastic, with large areas of necrosis/apoptosis, increased nuclear size, and macronucleoli. Indices of proliferation and apoptosis were also significantly higher in Myc xenografts. Thus, c-myc seems to play a causal role in inducing anaplasia in medulloblastoma. Because anaplastic changes are often observed in recurrent medulloblastoma, we propose that c-myc dysregulation is involved in the progression of these malignant embryonal neoplasms.

  13. Effects of alcohol on c-Myc protein in the brain

    PubMed Central

    Akinyeke, Tunde; Weber, Sydney J; Davenport, April T; Baker, Erich J; Daunais, James B; Raber, Jacob

    2018-01-01

    Alcoholism is a disorder categorized by significant impairment that is directly related to persistent and extreme use of alcohol. The effects of alcoholism on c-Myc protein expression in the brain have been scarcely studied. This is the first study to investigate the role of different characteristics of alcoholism in c-Myc protein levels in the brain. We analyzed c-Myc protein in the hypothalamus and amygdala from four different animal models of alcohol abuse. c-Myc protein was increased following alcohol exposure in acute, chronic and withdrawal models. We also observed increases in c-Myc protein exposure in animals that are genetically predisposed to alcohol and methamphetamine abuse. Lastly, c-Myc protein was increased in animals that were acutely exposed to methamphetamine when compared to control treated animals. These results suggest that in substance abuse c-Myc plays an important role in the brain’s response. PMID:27832980

  14. Sin3b interacts with Myc and decreases Myc levels.

    PubMed

    Garcia-Sanz, Pablo; Quintanilla, Andrea; Lafita, M Carmen; Moreno-Bueno, Gema; García-Gutierrez, Lucia; Tabor, Vedrana; Varela, Ignacio; Shiio, Yuzuru; Larsson, Lars-Gunnar; Portillo, Francisco; Leon, Javier

    2014-08-08

    Myc expression is deregulated in many human cancers. A yeast two-hybrid screen has revealed that the transcriptional repressor Sin3b interacts with Myc protein. Endogenous Myc and Sin3b co-localize and interact in the nuclei of human and rat cells, as assessed by co-immunoprecipitation, immunofluorescence, and proximity ligation assay. The interaction is Max-independent. A conserved Myc region (amino acids 186-203) is required for the interaction with Sin3 proteins. Histone deacetylase 1 is recruited to Myc-Sin3b complexes, and its deacetylase activity is required for the effects of Sin3b on Myc. Myc and Sin3a/b co-occupied many sites on the chromatin of human leukemia cells, although the presence of Sin3 was not associated with gene down-regulation. In leukemia cells and fibroblasts, Sin3b silencing led to Myc up-regulation, whereas Sin3b overexpression induced Myc deacetylation and degradation. An analysis of Sin3b expression in breast tumors revealed an association between low Sin3b expression and disease progression. The data suggest that Sin3b decreases Myc protein levels upon Myc deacetylation. As Sin3b is also required for transcriptional repression by Mxd-Max complexes, our results suggest that, at least in some cell types, Sin3b limits Myc activity through two complementary activities: Mxd-dependent gene repression and reduction of Myc levels. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif.

    PubMed

    Thomas, L R; Foshage, A M; Weissmiller, A M; Popay, T M; Grieb, B C; Qualls, S J; Ng, V; Carboneau, B; Lorey, S; Eischen, C M; Tansey, W P

    2016-07-07

    The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein-protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC.

  16. MYC Immunohistochemistry to Identify MYC-Driven B-Cell Lymphomas in Clinical Practice.

    PubMed

    Kluk, Michael J; Ho, Caleb; Yu, Hongbo; Chen, Benjamin J; Neuberg, Donna S; Dal Cin, Paola; Woda, Bruce A; Pinkus, Geraldine S; Rodig, Scott J

    2016-02-01

    Immunohistochemistry with anti-MYC antibody (MYC IHC) detects MYC protein in fixed samples of aggressive B-cell lymphomas and, according to the number of positive staining tumor nuclei, facilitates tumor subclassification, predicts underlying MYC rearrangements, and stratifies patient outcome. We aimed to determine the performance of MYC IHC in clinical practice. We reviewed MYC IHC performed on control specimens and 256 aggressive B-cell lymphomas and compared clinically reported IHC scores with experts' review. Control tissues showed less than 5% variation in daily IHC staining. Reported and expert IHC scores were well correlated (r = 0.86) with an SD of 14.2%. Reported IHC scores 30% or less and 70% or more were accurate (94.5%) compared with experts in categorizing tumors as "MYC IHC-Low" and "MYC IHC-High," respectively, but scores 40% to 60% were not (60.3%). The mean IHC score among lymphomas with MYC rearrangements was 80%, but with a large range of scores (20%-100%). There was no statistically significant association between IHC score and MYC copy number. Under optimal conditions, clinically reported MYC IHC scores are concordant with expert scores within 15%. MYC IHC does not capture all B-cell lymphomas with MYC rearrangements, however. MYC IHC and MYC fluorescence in situ hybridization are both recommended to identify MYC-driven B-cell lymphomas. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Clinical relevance of TRKA expression on neuroblastoma: comparison with N-MYC amplification and CD44 expression.

    PubMed Central

    Combaret, V.; Gross, N.; Lasset, C.; Balmas, K.; Bouvier, R.; Frappaz, D.; Beretta-Brognara, C.; Philip, T.; Favrot, M. C.; Coll, J. L.

    1997-01-01

    TRKA expression was evaluated on 122 untreated neuroblastomas by immunohistochemistry using an antibody with predetermined specificity. This procedure is simple and reliable for protein detection at cellular level in a routine clinical setting. Fourteen tumours were classified as benign ganglioneuroma with a restricted expression of TRKA on ganglion cells; these patients were excluded from the following analysis. A total of 108 tumours were classified as neuroblastoma or ganglioneuroblastoma; 74 expressed TRKA protein, which strongly correlated with low stage, absence of N-MYC amplification, age (<1 year), CD44 expression and favourable clinical outcome. In a univariate analysis including tumour stage, age, histology, N-MYC amplification, CD44 and TRKA expression, all parameters had significant prognostic value. The absence of TRKA expression on CD44-positive or N-MYC non-amplified tumours permits the characterization of a subgroup of patients with intermediate prognosis. However, in a multivariate analysis taking into consideration the prognostic factors mentioned above, CD44 and tumour stage were the only independent prognostic factors for the prediction of patients' event-free survival. PMID:9099963

  18. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling

    DOE PAGES

    Zhang, Feng; Yao, Jian; Ke, Jiyuan; ...

    2015-08-10

    The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase. The hormone-dependent formation of the COI1–JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins frommore » transcriptional repression. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. In this paper, we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete α-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Finally, our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.« less

  19. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma.

    PubMed

    Xu-Monette, Zijun Y; Deng, Qipan; Manyam, Ganiraju C; Tzankov, Alexander; Li, Ling; Xia, Yi; Wang, Xiao-Xiao; Zou, Dehui; Visco, Carlo; Dybkær, Karen; Li, Jun; Zhang, Li; Liang, Han; Montes-Moreno, Santiago; Chiu, April; Orazi, Attilio; Zu, Youli; Bhagat, Govind; Richards, Kristy L; Hsi, Eric D; Choi, William W L; van Krieken, J Han; Huh, Jooryung; Ponzoni, Maurilio; Ferreri, Andrés J M; Parsons, Ben M; Møller, Michael B; Wang, Sa A; Miranda, Roberto N; Piris, Miguel A; Winter, Jane N; Medeiros, L Jeffrey; Li, Yong; Young, Ken H

    2016-07-15

    MYC is a critical driver oncogene in many cancers, and its deregulation in the forms of translocation and overexpression has been implicated in lymphomagenesis and progression of diffuse large B-cell lymphoma (DLBCL). The MYC mutational profile and its roles in DLBCL are unknown. This study aims to determine the spectrum of MYC mutations in a large group of patients with DLBCL, and to evaluate the clinical significance of MYC mutations in patients with DLBCL treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) immunochemotherapy. We identified MYC mutations in 750 patients with DLBCL using Sanger sequencing and evaluated the prognostic significance in 602 R-CHOP-treated patients. The frequency of MYC mutations was 33.3% at the DNA level (mutations in either the coding sequence or the untranslated regions) and 16.1% at the protein level (nonsynonymous mutations). Most of the nonsynonymous mutations correlated with better survival outcomes; in contrast, T58 and F138 mutations (which were associated with MYC rearrangements), as well as several mutations occurred at the 3' untranslated region, correlated with significantly worse survival outcomes. However, these mutations occurred infrequently (only in approximately 2% of DLBCL). A germline SNP encoding the Myc-N11S variant (observed in 6.5% of the study cohort) was associated with significantly better patient survival, and resulted in reduced tumorigenecity in mouse xenografts. Various types of MYC gene mutations are present in DLBCL and show different impact on Myc function and clinical outcomes. Unlike MYC gene translocations and overexpression, most MYC gene mutations may not have a role in driving lymphomagenesis. Clin Cancer Res; 22(14); 3593-605. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis[W

    PubMed Central

    Dombrecht, Bruno; Xue, Gang Ping; Sprague, Susan J.; Kirkegaard, John A.; Ross, John J.; Reid, James B.; Fitt, Gary P.; Sewelam, Nasser; Schenk, Peer M.; Manners, John M.; Kazan, Kemal

    2007-01-01

    The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2–regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway. PMID:17616737

  1. Myc

    PubMed Central

    Wasylishen, Amanda R.; Penn, Linda Z.

    2010-01-01

    The iconic history of the Myc oncoprotein encompasses 3 decades of intense scientific discovery. There is no question that Myc has been a pioneer, advancing insight into the molecular basis of cancer as well as functioning as a critical control center for several diverse biological processes and regulatory mechanisms. This narrative chronicles the journey and milestones that have defined the understanding of Myc, and it provides an opportunity to consider future directions in this challenging yet rewarding field. PMID:21779457

  2. Tripeptidyl Peptidase II Is Required for c-MYC-Induced Centriole Overduplication and a Novel Therapeutic Target in c-MYC-Associated Neoplasms.

    PubMed

    Duensing, Stefan; Darr, Sebastian; Cuevas, Rolando; Melquiot, Nadja; Brickner, Anthony G; Duensing, Anette; Münger, Karl

    2010-09-01

    Centrosome aberrations are frequently detected in c-MYC-associated human malignancies. Here, we show that c-MYC-induced centrosome and centriole overduplication critically depend on the protease tripeptidyl peptidase II (TPPII). We found that TPPII localizes to centrosomes and that overexpression of TPPII, similar to c-MYC, can disrupt centriole duplication control and cause centriole multiplication, a process during which maternal centrioles nucleate the formation of more than a single daughter centriole. We report that inactivation of TPPII using chemical inhibitors or siRNA-mediated protein knockdown effectively reduced c-MYC-induced centriole overduplication. Remarkably, the potent and selective TPPII inhibitor butabindide not only potently suppressed centriole aberrations but also caused significant cell death and growth suppression in aggressive human Burkitt lymphoma cells with c-MYC overexpression. Taken together, these results highlight the role of TPPII in c-MYC-induced centriole overduplication and encourage further studies to explore TPPII as a novel antineoplastic drug target.

  3. The Action Mechanism of the Myc Inhibitor Termed Omomyc May Give Clues on How to Target Myc for Cancer Therapy

    PubMed Central

    Savino, Mauro; Annibali, Daniela; Carucci, Nicoletta; Favuzzi, Emilia; Cole, Michael D.; Evan, Gerard I.; Soucek, Laura; Nasi, Sergio

    2011-01-01

    Recent evidence points to Myc – a multifaceted bHLHZip transcription factor deregulated in the majority of human cancers – as a priority target for therapy. How to target Myc is less clear, given its involvement in a variety of key functions in healthy cells. Here we report on the action mechanism of the Myc interfering molecule termed Omomyc, which demonstrated astounding therapeutic efficacy in transgenic mouse cancer models in vivo. Omomyc action is different from the one that can be obtained by gene knockout or RNA interference, approaches designed to block all functions of a gene product. This molecule – instead – appears to cause an edge-specific perturbation that destroys some protein interactions of the Myc node and keeps others intact, with the result of reshaping the Myc transcriptome. Omomyc selectively targets Myc protein interactions: it binds c- and N-Myc, Max and Miz-1, but does not bind Mad or select HLH proteins. Specifically, it prevents Myc binding to promoter E-boxes and transactivation of target genes while retaining Miz-1 dependent binding to promoters and transrepression. This is accompanied by broad epigenetic changes such as decreased acetylation and increased methylation at H3 lysine 9. In the presence of Omomyc, the Myc interactome is channeled to repression and its activity appears to switch from a pro-oncogenic to a tumor suppressive one. Given the extraordinary therapeutic impact of Omomyc in animal models, these data suggest that successfully targeting Myc for cancer therapy might require a similar twofold action, in order to prevent Myc/Max binding to E-boxes and, at the same time, keep repressing genes that would be repressed by Myc. PMID:21811581

  4. Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma.

    PubMed

    Tateishi, Kensuke; Iafrate, A John; Ho, Quan; Curry, William T; Batchelor, Tracy T; Flaherty, Keith T; Onozato, Maristela L; Lelic, Nina; Sundaram, Sudhandra; Cahill, Daniel P; Chi, Andrew S; Wakimoto, Hiroaki

    2016-09-01

    Deregulated Myc drives an oncogenic metabolic state, including pseudohypoxic glycolysis, adapted for the constitutive production of biomolecular precursors to feed rapid tumor cell growth. In glioblastoma, Myc facilitates renewal of the tumor-initiating cell reservoir contributing to tumor maintenance. We investigated whether targeting the Myc-driven metabolic state could be a selectively toxic therapeutic strategy for glioblastoma. The glycolytic dependency of Myc-driven glioblastoma was tested using (13)C metabolic flux analysis, glucose-limiting culture assays, and glycolysis inhibitors, including inhibitors of the NAD(+) salvage enzyme nicotinamide phosphoribosyl-transferase (NAMPT), in MYC and MYCN shRNA knockdown and lentivirus overexpression systems and in patient-derived glioblastoma tumorspheres with and without MYC/MYCN amplification. The in vivo efficacy of glycolyic inhibition was tested using NAMPT inhibitors in MYCN-amplified patient-derived glioblastoma orthotopic xenograft mouse models. Enforced Myc overexpression increased glucose flux and expression of glycolytic enzymes in glioblastoma cells. Myc and N-Myc knockdown and Myc overexpression systems demonstrated that Myc activity determined sensitivity and resistance to inhibition of glycolysis. Small-molecule inhibitors of glycolysis, particularly NAMPT inhibitors, were selectively toxic to MYC/MYCN-amplified patient-derived glioblastoma tumorspheres. NAMPT inhibitors were potently cytotoxic, inducing apoptosis and significantly extended the survival of mice bearing MYCN-amplified patient-derived glioblastoma orthotopic xenografts. Myc activation in glioblastoma generates a dependency on glycolysis and an addiction to metabolites required for glycolysis. Glycolytic inhibition via NAMPT inhibition represents a novel metabolically targeted therapeutic strategy for MYC or MYCN-amplified glioblastoma and potentially other cancers genetically driven by Myc. Clin Cancer Res; 22(17); 4452-65. ©2016 AACR

  5. Sparstolonin B, a Novel Plant Derived Compound, Arrests Cell Cycle and Induces Apoptosis in N-Myc Amplified and N-Myc Nonamplified Neuroblastoma Cells

    PubMed Central

    Kumar, Ambrish; Fan, Daping; DiPette, Donald J.; Singh, Ugra S.

    2014-01-01

    Neuroblastoma is one of the most common solid tumors and accounts for ∼15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed. Here we examined the anticancer activity of a novel plant-derived compound, sparstolonin B (SsnB; 8,5′-dihydroxy-4-phenyl-5,2′-oxidoisocoumarin) using neuroblastoma cell lines of different genetics. SsnB was recently isolated from an aquatic Chinese herb, Sparganium stoloniferum, and tubers of this herb have been used in traditional Chinese medicine for the treatment of several inflammatory diseases and cancers. Our cell viability and morphological analysis indicated that SsnB at 10 µM concentration significantly inhibited the growth of both N-myc amplified (SK-N-BE(2), NGP, and IMR-32 cells) and N-myc nonamplified (SH-SY5Y and SKNF-1 cells) neuroblastoma cells. The flow cytometric analyses suggested that SsnB arrests the cell cycle progression at G2-M phase in all neuroblastoma cell lines tested. Exposure of SsnB inhibited the compact spheroid formation and reduced the tumorigenicity of SH-SY5Y cells and SK-N-BE(2) cells in in vitro 3-D cell culture assays (anchorage-independent colony formation assay and hanging drop assay). SsnB lowers the cellular level of glutathione (GSH), increases generation of reactive oxygen species and activates the cleavage of caspase-3 whereas co-incubation of a GSH precursor, N-acetylcysteine, along with SsnB attenuates the inhibitory effects of SsnB and increases the neuroblastoma cell viability. Our results for the first time demonstrate that SsnB possesses anticancer activity indicating that SsnB-induced reactive oxygen species generation promotes apoptotic cell death in neuroblastoma cells of different genetic background. Thus these data suggest that SsnB can be a promising drug candidate in

  6. Cellular MYCro economics: Balancing MYC function with MYC expression.

    PubMed

    Levens, David

    2013-11-01

    The expression levels of the MYC oncoprotein have long been recognized to be associated with the outputs of major cellular processes including proliferation, cell growth, apoptosis, differentiation, and metabolism. Therefore, to understand how MYC operates, it is important to define quantitatively the relationship between MYC input and expression output for its targets as well as the higher-order relationships between the expression levels of subnetwork components and the flow of information and materials through those networks. Two different views of MYC are considered, first as a molecular microeconomic manager orchestrating specific positive and negative responses at individual promoters in collaboration with other transcription and chromatin components, and second, as a macroeconomic czar imposing an overarching rule onto all active genes. In either case, c-myc promoter output requires multiple inputs and exploits diverse mechanisms to tune expression to the appropriate levels relative to the thresholds of expression that separate health and disease.

  7. Domain-specific c-Myc ubiquitylation controls c-Myc transcriptional and apoptotic activity

    PubMed Central

    Zhang, Qin; Spears, Erick; Boone, David N.; Li, Zhaoliang; Gregory, Mark A.; Hann, Stephen R.

    2013-01-01

    The oncogenic transcription factor c-Myc causes transformation and tumorigenesis, but it can also induce apoptotic cell death. Although tumor suppressors are necessary for c-Myc to induce apoptosis, the pathways and mechanisms are unclear. To further understand how c-Myc switches from an oncogenic protein to an apoptotic protein, we examined the mechanism of p53-independent c-Myc–induced apoptosis. We show that the tumor suppressor protein ARF mediates this switch by inhibiting ubiquitylation of the c-Myc transcriptional domain (TD). Whereas TD ubiquitylation is critical for c-Myc canonical transcriptional activity and transformation, inhibition of ubiquitylation leads to the induction of the noncanonical c-Myc target gene, Egr1, which is essential for efficient c-Myc–induced p53-independent apoptosis. ARF inhibits the interaction of c-Myc with the E3 ubiquitin ligase Skp2. Overexpression of Skp2, which occurs in many human tumors, inhibits the recruitment of ARF to the Egr1 promoter, leading to inhibition of c-Myc–induced apoptosis. Therapeutic strategies could be developed to activate this intrinsic apoptotic activity of c-Myc to inhibit tumorigenesis. PMID:23277542

  8. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation.

    PubMed

    Conacci-Sorrell, Maralice; Ngouenet, Celine; Eisenman, Robert N

    2010-08-06

    The Myc oncoprotein family comprises transcription factors that control multiple cellular functions and are widely involved in oncogenesis. Here we report the identification of Myc-nick, a cytoplasmic form of Myc generated by calpain-dependent proteolysis at lysine 298 of full-length Myc. Myc-nick retains conserved Myc box regions but lacks nuclear localization signals and the bHLHZ domain essential for heterodimerization with Max and DNA binding. Myc-nick induces alpha-tubulin acetylation and altered cell morphology by recruiting histone acetyltransferase GCN5 to microtubules. During muscle differentiation, while the levels of full-length Myc diminish, Myc-nick and acetylated alpha-tubulin levels are increased. Ectopic expression of Myc-nick accelerates myoblast fusion, triggers the expression of myogenic markers, and permits Myc-deficient fibroblasts to transdifferentiate in response to MyoD. We propose that the cleavage of Myc by calpain abrogates the transcriptional inhibition of differentiation by full-length Myc and generates Myc-nick, a driver of cytoplasmic reorganization and differentiation. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Resetting cancer stem cell regulatory nodes upon MYC inhibition.

    PubMed

    Galardi, Silvia; Savino, Mauro; Scagnoli, Fiorella; Pellegatta, Serena; Pisati, Federica; Zambelli, Federico; Illi, Barbara; Annibali, Daniela; Beji, Sara; Orecchini, Elisa; Alberelli, Maria Adele; Apicella, Clara; Fontanella, Rosaria Anna; Michienzi, Alessandro; Finocchiaro, Gaetano; Farace, Maria Giulia; Pavesi, Giulio; Ciafrè, Silvia Anna; Nasi, Sergio

    2016-12-01

    MYC deregulation is common in human cancer and has a role in sustaining the aggressive cancer stem cell populations. MYC mediates a broad transcriptional response controlling normal biological programmes, but its activity is not clearly understood. We address MYC function in cancer stem cells through the inducible expression of Omomyc-a MYC-derived polypeptide interfering with MYC activity-taking as model the most lethal brain tumour, glioblastoma. Omomyc bridles the key cancer stemlike cell features and affects the tumour microenvironment, inhibiting angiogenesis. This occurs because Omomyc interferes with proper MYC localization and itself associates with the genome, with a preference for sites occupied by MYC This is accompanied by selective repression of master transcription factors for glioblastoma stemlike cell identity such as OLIG2, POU3F2, SOX2, upregulation of effectors of tumour suppression and differentiation such as ID4, MIAT, PTEN, and modulation of the expression of microRNAs that target molecules implicated in glioblastoma growth and invasion such as EGFR and ZEB1. Data support a novel view of MYC as a network stabilizer that strengthens the regulatory nodes of gene expression networks controlling cell phenotype and highlight Omomyc as model molecule for targeting cancer stem cells. © 2016 The Authors.

  10. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal

    PubMed Central

    Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N.; Trumpp, Andreas; Shinohara, Takashi

    2016-01-01

    Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. PMID:28007786

  11. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo.

    PubMed

    Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola

    2011-09-27

    Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways

  12. SALL4 as an Epithelial-Mesenchymal Transition and Drug Resistance Inducer through the Regulation of c-Myc in Endometrial Cancer

    PubMed Central

    Yang, Xiaoming; Fang, Chi; Xu, Huali; Xi, Xiaowei

    2015-01-01

    SALL4 plays important roles in the development and progression of many cancers. However, the role and molecular mechanism of SALL4 in endometrial cancer remain elusive. In the present research, we have demonstrated that the expression of SALL4 was upregulated in endometrial cancer and correlated positively with tumor stage, metastases and poor survival of patients. The overexpression of SALL4 promoted the invasiveness in endometrial cancer cells, as indicated by the upregulation of mesenchymal cell marker N-cadherin and downregulation of the epithelial marker E-cadherin, and invasion assays in vitro. Additionally, there was also an increase in drug resistance in these cell models due to the upregulation of ATP-binding cassette multidrug transporter ABCB1 expression. Moreover, we also found that ABCB1 was critical for SALL4-induced drug resistance. In contrast, SALL4 knockdown restored drug sensitivity, reversed EMT, diminished cell metastasis and suppressed the downregulation of E-cadherin and the upregulation of N-cadherin and ABCB1. Furthermore, we showed that SALL4 upregulated c-Myc expression and c-Myc was a direct target for SALL4 by ChIP assay, depletion of c-Myc with siRNA abolished the SALL4-induced downregulation of E-cadherin, upregulation of N-cadherin and ABCB1, suggesting that c-Myc was a downstream target for SALL4 and required for SALL4-induced EMT, invasion and drugs resistance in endometrial cancer cells. These results indicated that SALL4 could induce EMT and resistance to antineoplastic drugs through the regulation of c-Myc. SALL4 and c-Myc may be novel therapeutic targets for endometrial cancer. PMID:26407074

  13. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.

    PubMed

    Muthalagu, Nathiya; Junttila, Melissa R; Wiese, Katrin E; Wolf, Elmar; Morton, Jennifer; Bauer, Barbara; Evan, Gerard I; Eilers, Martin; Murphy, Daniel J

    2014-09-11

    MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. MYC association with cancer risk and a new model of MYC-mediated repression.

    PubMed

    Cole, Michael D

    2014-07-01

    MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal.

    PubMed

    Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N; Trumpp, Andreas; Shinohara, Takashi

    2016-12-01

    Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. © 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Myc requires RhoA/SRF to reprogram glutamine metabolism.

    PubMed

    Haikala, Heidi M; Marques, Elsa; Turunen, Mikko; Klefström, Juha

    2018-05-04

    RhoA regulates actin cytoskeleton but recent evidence suggest a role for this conserved Rho GTPase also in other cellular processes, including transcriptional control of cell proliferation and survival. Interestingy, loss of RhoA is synthetic lethal with oncogenic Myc, a master transcription factor that turns on anabolic metabolism to promote cell growth in many cancers. We show evidence indicating that the synthetic lethal interaction between RhoA loss and Myc arises from deficiency in glutamine utilization, resulting from impaired co-regulation of glutaminase expression and anaplerosis by Myc and RhoA - serum response factor (SRF) pathway. The results suggest metabolic coordination between Myc and RhoA/SRF in sustaining cancer cell viability and indicate RhoA/SRF as a potential vulnerability in cancer cells for therapeutic targeting.

  17. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D.; Sung, Derek C.; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D.; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-01-01

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3′UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation. PMID:27764804

  18. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells.

    PubMed

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D; Sung, Derek C; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-11-29

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3'UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation.

  19. Hydra myc2, a unique pre-bilaterian member of the myc gene family, is activated in cell proliferation and gametogenesis

    PubMed Central

    Hartl, Markus; Glasauer, Stella; Valovka, Taras; Breuker, Kathrin; Hobmayer, Bert; Bister, Klaus

    2014-01-01

    ABSTRACT The myc protooncogene encodes the Myc transcription factor which is the essential part of the Myc–Max network controlling fundamental cellular processes. Deregulation of myc leads to tumorigenesis and is a hallmark of many human cancers. We have recently identified homologs of myc (myc1, myc2) and max in the early diploblastic cnidarian Hydra and have characterized myc1 in detail. Here we show that myc2 is transcriptionally activated in the interstitial stem cell system. Furthermore, in contrast to myc1, myc2 expression is also detectable in proliferating epithelial stem cells throughout the gastric region. myc2 but not myc1 is activated in cycling precursor cells during early oogenesis and spermatogenesis, suggesting that the Hydra Myc2 protein has a possible non-redundant function in cell cycle progression. The Myc2 protein displays the principal design and properties of vertebrate Myc proteins. In complex with Max, Myc2 binds to DNA with similar affinity as Myc1–Max heterodimers. Immunoprecipitation of Hydra chromatin revealed that both Myc1 and Myc2 bind to the enhancer region of CAD, a classical Myc target gene in mammals. Luciferase reporter gene assays showed that Myc1 but not Myc2 transcriptionally activates the CAD promoter. Myc2 has oncogenic potential when tested in primary avian fibroblasts but to a lower degree as compared to Myc1. The identification of an additional myc gene in Cnidaria, a phylum that diverged prior to bilaterians, with characteristic expression patterns in tissue homeostasis and developmental processes suggests that principle functions of myc genes have arisen very early in metazoan evolution. PMID:24771621

  20. Inhibitor of MYC identified in a Kröhnke pyridine library

    PubMed Central

    Hart, Jonathan R.; Garner, Amanda L.; Yu, Jing; Ito, Yoshihiro; Sun, Minghao; Ueno, Lynn; Rhee, Jin-Kyu; Baksh, Michael M.; Stefan, Eduard; Hartl, Markus; Bister, Klaus; Vogt, Peter K.; Janda, Kim D.

    2014-01-01

    In a fluorescence polarization screen for the MYC–MAX interaction, we have identified a novel small-molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The Kd of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM, as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC–MAX complex formation in the cell, as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-amplified human cancer cells. PMID:25114221

  1. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells.

    PubMed

    Yu, Zhenlong; Li, Tao; Wang, Chao; Deng, Sa; Zhang, Baojing; Huo, Xiaokui; Zhang, Bo; Wang, Xiaobo; Zhong, Yuping; Ma, Xiaochi

    2016-03-29

    Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM.

  2. cMYC Expression in Infiltrating Gliomas: Associations with IDH1 Mutations, Clinicopathologic Features and Outcome

    PubMed Central

    Odia, Yazmin; Orr, Brent A.; Bell, W. Robert; Eberhart, Charles G.; Rodriguez, Fausto J.

    2013-01-01

    Gliomas are among the most frequent adult primary brain tumors. Mutations in IDH1, a metabolic enzyme, strongly correlate with secondary glioblastomas and increased survival. cMYC is an oncogene also implicated in aberrant metabolism, but its prognostic impact remains unclear. Recent genotyping studies also showed SNP variants near the cMYC gene locus, associate with an increased risk for development of IDH1/2 mutant gliomas suggesting a possible interaction between cMYC and IDH1. We evaluated nuclear cMYC protein levels and IDH1 (R132H) by immunohistochemistry in patients with oligodendroglioma/oligoastrocytomas (n=20), astrocytomas (grade II) (n=19), anaplastic astrocytomas (n=21) or glioblastomas (n=111). Of 158 tumors with sufficient tissue, 110 (70%) showed nuclear cMYC immunopositivity – most frequent (95%, χ2 p=0.0248) and intense (mean 1.33, ANOVA p=0.0179) in anaplastic astrocytomas versus glioblastomas (63%) or low grade gliomas (74%). cMYC expression associated with younger age as well as p53 immunopositivity (OR=3.6, p=0.0332) and mutant IDH1 (R132H) (OR=7.4, p=0.06) among malignant gliomas in our cohort. Independent analysis of the publically available TCGA glioblastoma dataset confirmed our strong association between cMYC and mutant IDH1 expression. Both IDH1 (R132H) and cMYC protein expression were associated with improved overall survival by univariate analysis. However, cMYC co-expression associated with shortened time to malignant transformation and overall survival among IDH1 (R132H) mutants in both univariate and multivariate analyses. In summary, our findings suggest that cMYC may be associated with a unique clinicopathologic and biologic group of infiltrating gliomas and help mediate the malignant transformation of IDH1 mutant gliomas. PMID:23934175

  3. High levels of p19/nm23 protein in neuroblastoma are associated with advanced stage disease and with N-myc gene amplification.

    PubMed Central

    Hailat, N; Keim, D R; Melhem, R F; Zhu, X X; Eckerskorn, C; Brodeur, G M; Reynolds, C P; Seeger, R C; Lottspeich, F; Strahler, J R

    1991-01-01

    The gene encoding a novel protein designated nm23-H1, which was recently identified as identical to the A subunit of nucleotide diphosphate kinase from human erythrocytes, has been proposed to play a role in tumor metastasis suppression. We report that untreated neuroblastoma tumors contain a cellular polypeptide (Mr = 19,000) designated p19, identified in two-dimensional electrophoretic gels, which occurs at significantly higher levels (P = 0.0001) in primary tumors containing amplified N-myc gene. The partial amino acid sequence obtained for p19 is identical to the sequence of the human nm23-H1 protein. An antibody to the A subunit of erythrocyte nucleotide diphosphate kinase reacted exclusively with p19. In this study, significantly higher levels of p19/nm23 occurred in primary neuroblastoma tumors from patients with advanced stages (III and IV) relative to tumors from patients with limited stages (I and II) of the disease. Even among patients with a single copy of the N-myc gene, tumors from patients with stages III and IV had statistically significantly higher levels of p19/nm23 than tumors from patients with stages I and II. Our findings indicate that, in contrast to a proposed role for nm23-H1 as a tumor metastasis suppressor, increased p19/nm23 protein in neuroblastoma is correlated with features of the disease that are associated with aggressive tumors. Therefore, nm23-H1 may have distinct if not opposite roles in different tumors. Images PMID:2056128

  4. Driver or passenger effects of augmented c-Myc and Cdc20 in gliomagenesis.

    PubMed

    Ji, Ping; Zhou, Xinhui; Liu, Qun; Fuller, Gregory N; Phillips, Lynette M; Zhang, Wei

    2016-04-26

    Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. Both c-Myc and Cdc20 induced the proliferation of primary glial progenitor cells. c-Myc also promoted the formation of soft agar anchorage-independent colonies. In the RCAS/Ntv-a glia-specific transgenic mouse model, c-Myc increased the GBM incidence from 19.1% to 47.4% by 12 weeks of age when combined with kRas and Akt3 in Ntv-a INK4a-ARF (also known as CDKN2A)-null mice. In contrast, Cdc20 decreased the GBM incidence from 19.1% to 9.1%. Moreover, cell differentiation was modulated by c-Myc in kRas/Akt3-induced GBM on the basis of Nestin/GFAP expression (glial progenitor cell differentiation), while Cdc20 had no effect on primary glial progenitor cell differentiation. We used glial progenitor cells from Ntv-a newborn mice to evaluate the role of c-Myc and Cdc20 in the proliferation and transformation of GBM in vitro and in vivo. We further determined whether c-Myc and Cdc20 have a driver or passenger role in GBM development using kRas/Akt3 signals in a RCAS/Ntv-a mouse model. These results suggest that the driver or passenger of oncogene signaling is dependent on cellular status. c-Myc is a driver when combined with kRas/Akt3 oncogenic signals in gliomagenesis, whereas Cdc20 overexpression is a passenger. Inhibition of cell differentiation of c-Myc may be a target for anti-glioma therapy.

  5. Glutathione Depletion Induced by c-Myc Downregulation Triggers Apoptosis on Treatment with Alkylating Agents1

    PubMed Central

    Biroccio, Annamaria; Benassi, Barbara; Fiorentino, Francesco; Zupi, Gabriella

    2004-01-01

    Abstract Here we investigate the mechanism(s) involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis to the same extent regardless of c-Myc expression. Because we previously demonstrated that c-Myc downregulation decreases glutathione (GSH) content, we evaluated the role of GSH in the apoptosis induced by the different drugs. In control cells treated with one of the alkylating agents or the others, GSH depletion achieved by l-buthionine-sulfoximine preincubation opens the apoptotic pathway. The apoptosis proceeded through early Bax relocalization, cytochrome c release, and concomitant caspase-9 activation, whereas reactive oxygen species production and alteration of mitochondria membrane potential were late events. That GSH was determining in the c-Myc-dependent drug-induced apoptosis was demonstrated by altering the intracellular GSH content of the c-Myc low-expressing cells up to the level of controls. Indeed, GSH ethyl ester-mediated increase of GSH abrogated apoptosis induced by cisplatin and melphalan by inhibition of Bax/cytochrome c redistribution. The relationship among c-Myc, GSH content, and the response to alkylating agent has been also evaluated in the M14 Myc overexpressing clones as well as in the melanoma JR8 c-Myc antisense transfectants. All together, these results demonstrate that GSH plays a key role in governing c-Myc-dependent drug-induced apoptosis. PMID:15153331

  6. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity

    PubMed Central

    Fagnocchi, Luca; Cherubini, Alessandro; Hatsuda, Hiroshi; Fasciani, Alessandra; Mazzoleni, Stefania; Poli, Vittoria; Berno, Valeria; Rossi, Riccardo L.; Reinbold, Rolland; Endele, Max; Schroeder, Timm; Rocchigiani, Marina; Szkarłat, Żaneta; Oliviero, Salvatore; Dalton, Stephen; Zippo, Alessio

    2016-01-01

    Stem cell identity depends on the integration of extrinsic and intrinsic signals, which directly influence the maintenance of their epigenetic state. Although Myc transcription factors play a major role in stem cell self-renewal and pluripotency, their integration with signalling pathways and epigenetic regulators remains poorly defined. We addressed this point by profiling the gene expression and epigenetic pattern in ESCs whose growth depends on conditional Myc activity. Here we show that Myc potentiates the Wnt/β-catenin signalling pathway, which cooperates with the transcriptional regulatory network in sustaining ESC self-renewal. Myc activation results in the transcriptional repression of Wnt antagonists through the direct recruitment of PRC2 on these targets. The consequent potentiation of the autocrine Wnt/β-catenin signalling induces the transcriptional activation of the endogenous Myc family members, which in turn activates a Myc-driven self-reinforcing circuit. Thus, our data unravel a Myc-dependent self-propagating epigenetic memory in the maintenance of ESC self-renewal capacity. PMID:27301576

  7. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity.

    PubMed

    Fagnocchi, Luca; Cherubini, Alessandro; Hatsuda, Hiroshi; Fasciani, Alessandra; Mazzoleni, Stefania; Poli, Vittoria; Berno, Valeria; Rossi, Riccardo L; Reinbold, Rolland; Endele, Max; Schroeder, Timm; Rocchigiani, Marina; Szkarłat, Żaneta; Oliviero, Salvatore; Dalton, Stephen; Zippo, Alessio

    2016-06-15

    Stem cell identity depends on the integration of extrinsic and intrinsic signals, which directly influence the maintenance of their epigenetic state. Although Myc transcription factors play a major role in stem cell self-renewal and pluripotency, their integration with signalling pathways and epigenetic regulators remains poorly defined. We addressed this point by profiling the gene expression and epigenetic pattern in ESCs whose growth depends on conditional Myc activity. Here we show that Myc potentiates the Wnt/β-catenin signalling pathway, which cooperates with the transcriptional regulatory network in sustaining ESC self-renewal. Myc activation results in the transcriptional repression of Wnt antagonists through the direct recruitment of PRC2 on these targets. The consequent potentiation of the autocrine Wnt/β-catenin signalling induces the transcriptional activation of the endogenous Myc family members, which in turn activates a Myc-driven self-reinforcing circuit. Thus, our data unravel a Myc-dependent self-propagating epigenetic memory in the maintenance of ESC self-renewal capacity.

  8. Myc and Omomyc functionally associate with the Protein Arginine Methyltransferase 5 (PRMT5) in glioblastoma cells

    PubMed Central

    Mongiardi, Maria Patrizia; Savino, Mauro; Bartoli, Laura; Beji, Sara; Nanni, Simona; Scagnoli, Fiorella; Falchetti, Maria Laura; Favia, Annarita; Farsetti, Antonella; Levi, Andrea; Nasi, Sergio; Illi, Barbara

    2015-01-01

    The c-Myc protein is dysregulated in many human cancers and its function has not been fully elucitated yet. The c-Myc inhibitor Omomyc displays potent anticancer properties in animal models. It perturbs the c-Myc protein network, impairs c-Myc binding to the E-boxes, retaining transrepressive properties and inducing histone deacetylation. Here we have employed Omomyc to further analyse c-Myc activity at the epigenetic level. We show that both Myc and Omomyc stimulate histone H4 symmetric dimethylation of arginine (R) 3 (H4R3me2s), in human glioblastoma and HEK293T cells. Consistently, both associated with protein Arginine Methyltransferase 5 (PRMT5)—the catalyst of the reaction—and its co-factor Methylosome Protein 50 (MEP50). Confocal experiments showed that Omomyc co-localized with c-Myc, PRMT5 and H4R3me2s-enriched chromatin domains. Finally, interfering with PRMT5 activity impaired target gene activation by Myc whereas it restrained Omomyc-dependent repression. The identification of a histone-modifying complex associated with Omomyc represents the first demonstration of an active role of this miniprotein in modifying chromatin structure and adds new information regarding its action on c-Myc targets. More importantly, the observation that c-Myc may recruit PRMT5-MEP50, inducing H4R3 symmetric di-methylation, suggests previously unpredictable roles for c-Myc in gene expression regulation and new potential targets for therapy. PMID:26563484

  9. MYC Deregulation in Primary Human Cancers

    PubMed Central

    Kalkat, Manpreet; De Melo, Jason; Hickman, Katherine Ashley; Lourenco, Corey; Redel, Cornelia; Resetca, Diana; Tamachi, Aaliya; Tu, William B.; Penn, Linda Z.

    2017-01-01

    MYC regulates a complex biological program by transcriptionally activating and repressing its numerous target genes. As such, MYC is a master regulator of many processes, including cell cycle entry, ribosome biogenesis, and metabolism. In cancer, the activity of the MYC transcriptional network is frequently deregulated, contributing to the initiation and maintenance of disease. Deregulation often leads to constitutive overexpression of MYC, which can be achieved through gross genetic abnormalities, including copy number alterations, chromosomal translocations, increased enhancer activity, or through aberrant signal transduction leading to increased MYC transcription or increased MYC mRNA and protein stability. Herein, we summarize the frequency and modes of MYC deregulation and describe both well-established and more recent findings in a variety of cancer types. Notably, these studies have highlighted that with an increased appreciation for the basic mechanisms deregulating MYC in cancer, new therapeutic vulnerabilities can be discovered and potentially exploited for the inhibition of this potent oncogene in cancer. PMID:28587062

  10. Drosophila Myc is oncogenic in mammalian cells and plays a role in the diminutive phenotype

    PubMed Central

    Schreiber-Agus, Nicole; Stein, David; Chen, Ken; Goltz, Jason S.; Stevens, Leslie; DePinho, Ronald A.

    1997-01-01

    Biochemical and biological activities of Myc oncoproteins are highly dependent upon their association with another basic region helix–loop–helix/leucine zipper (bHLH/LZ) protein, Max. Our previous observation that the DNA-binding/dimerization region of Max is absolutely conserved throughout vertebrate evolution provided the basis for a yeast two-hybrid interaction screen that led to the isolation of the Drosophila Myc (dMyc1) protein. Structural conservation in regions of known functional significance is consistent with the ability of dMyc1 to interact with vertebrate Max, to transactivate gene expression in yeast cells, and to cooperate with activated H-RAS to effect the malignant transformation of primary mammalian cells. The ability of P-element-mediated ectopic expression of dmyc1 to reverse a subset of the phenotypic alterations associated with the diminutive mutation suggests that diminutive may correspond to dmyc1. This finding, along with the localization of dmyc1 expression to zones of high proliferative activity in the embryo, implicates dMyc1 as an integral regulator of Drosophila growth and development. PMID:9037036

  11. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism.

    PubMed

    Schuijers, Jurian; Manteiga, John Colonnese; Weintraub, Abraham Selby; Day, Daniel Sindt; Zamudio, Alicia Viridiana; Hnisz, Denes; Lee, Tong Ihn; Young, Richard Allen

    2018-04-10

    Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. New MYC IHC Classifier Integrating Quantitative Architecture Parameters to Predict MYC Gene Translocation in Diffuse Large B-Cell Lymphoma

    PubMed Central

    Dong, Wei-Feng; Canil, Sarah; Lai, Raymond; Morel, Didier; Swanson, Paul E.; Izevbaye, Iyare

    2018-01-01

    A new automated MYC IHC classifier based on bivariate logistic regression is presented. The predictor relies on image analysis developed with the open-source ImageJ platform. From a histologic section immunostained for MYC protein, 2 dimensionless quantitative variables are extracted: (a) relative distance between nuclei positive for MYC IHC based on euclidean minimum spanning tree graph and (b) coefficient of variation of the MYC IHC stain intensity among MYC IHC-positive nuclei. Distance between positive nuclei is suggested to inversely correlate MYC gene rearrangement status, whereas coefficient of variation is suggested to inversely correlate physiological regulation of MYC protein expression. The bivariate classifier was compared with 2 other MYC IHC classifiers (based on percentage of MYC IHC positive nuclei), all tested on 113 lymphomas including mostly diffuse large B-cell lymphomas with known MYC fluorescent in situ hybridization (FISH) status. The bivariate classifier strongly outperformed the “percentage of MYC IHC-positive nuclei” methods to predict MYC+ FISH status with 100% sensitivity (95% confidence interval, 94-100) associated with 80% specificity. The test is rapidly performed and might at a minimum provide primary IHC screening for MYC gene rearrangement status in diffuse large B-cell lymphomas. Furthermore, as this bivariate classifier actually predicts “permanent overexpressed MYC protein status,” it might identify nontranslocation-related chromosomal anomalies missed by FISH. PMID:27093450

  13. Clinicopathological significance of c-MYC in esophageal squamous cell carcinoma.

    PubMed

    Lian, Yu; Niu, Xiangdong; Cai, Hui; Yang, Xiaojun; Ma, Haizhong; Ma, Shixun; Zhang, Yupeng; Chen, Yifeng

    2017-07-01

    Esophageal squamous cell carcinoma is one of the most common malignant tumors. The oncogene c-MYC is thought to be important in the initiation, promotion, and therapy resistance of cancer. In this study, we aim to investigate the clinicopathologic roles of c-MYC in esophageal squamous cell carcinoma tissue. This study is aimed at discovering and analyzing c-MYC expression in a series of human esophageal tissues. A total of 95 esophageal squamous cell carcinoma samples were analyzed by the western blotting and immunohistochemistry techniques. Then, correlation of c-MYC expression with clinicopathological features of esophageal squamous cell carcinoma patients was statistically analyzed. In most esophageal squamous cell carcinoma cases, the c-MYC expression was positive in tumor tissues. The positive rate of c-MYC expression in tumor tissues was 61.05%, obviously higher than the adjacent normal tissues (8.42%, 8/92) and atypical hyperplasia tissues (19.75%, 16/95). There was a statistical difference among adjacent normal tissues, atypical hyperplasia tissues, and tumor tissues. Overexpression of the c-MYC was detected in 61.05% (58/95) esophageal squamous cell carcinomas, which was significantly correlated with the degree of differentiation (p = 0.004). The positive rate of c-MYC expression was 40.0% in well-differentiated esophageal tissues, with a significantly statistical difference (p = 0.004). The positive rate of c-MYC was 41.5% in T1 + T2 esophageal tissues and 74.1% in T3 + T4 esophageal tissues, with a significantly statistical difference (p = 0.001). The positive rate of c-MYC was 45.0% in I + II esophageal tissues and 72.2% in III + IV esophageal tissues, with a significantly statistical difference (p = 0.011). The c-MYC expression strongly correlated with clinical staging (p = 0.011), differentiation degree (p = 0.004), lymph node metastasis (p = 0.003), and invasion depth (p = 0.001) of patients with esophageal squamous cell carcinoma. The c-MYC was

  14. Characterization of the colorectal cancer-associated enhancer MYC-335 at 8q24: the role of rs67491583.

    PubMed

    Tuupanen, Sari; Yan, Jian; Turunen, Mikko; Gylfe, Alexandra E; Kaasinen, Eevi; Li, Li; Eng, Charis; Culver, Daniel A; Kalady, Matthew F; Pennison, Michael J; Pasche, Boris; Manne, Upender; de la Chapelle, Albert; Hampel, Heather; Henderson, Brian E; Marchand, Loic Le; Hautaniemi, Sampsa; Askhtorab, Hassan; Smoot, Duane; Sandler, Robert S; Keku, Temitope; Kupfer, Sonia S; Ellis, Nathan A; Haiman, Christopher A; Taipale, Jussi; Aaltonen, Lauri A

    2012-01-01

    Recent genome-wide association studies have identified multiple regions at 8q24 that confer susceptibility to many cancers. In our previous work, we showed that the colorectal cancer (CRC) risk variant rs6983267 at 8q24 resides within a TCF4 binding site at the MYC-335 enhancer, with the risk allele G having a stronger binding capacity and Wnt responsiveness. Here, we searched for other potential functional variants within MYC-335. Genetic variation within MYC-335 was determined in samples from individuals of European, African, and Asian descent, with emphasis on variants in putative transcription factor binding sites. A 2-bp GA deletion rs67491583 was found to affect a growth factor independent (GFI) binding site and was present only in individuals with African ancestry. Chromatin immunoprecipitation performed in heterozygous cells showed that the GA deletion had an ability to reduce binding of the transcriptional repressors GFI1 and GFI1b. Screening of 1,027 African American colorectal cancer cases and 1,773 healthy controls did not reveal evidence for association (odds ratio: 1.17, 95% confidence interval: 0.97-1.41, P = 0.095). In this study, rs67491583 was identified as another functional variant in the CRC-associated enhancer MYC-335, but further studies are needed to establish the role of rs67491583 in the colorectal cancer predisposition of African Americans. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas.

    PubMed

    Schaub, Franz X; Dhankani, Varsha; Berger, Ashton C; Trivedi, Mihir; Richardson, Anne B; Shaw, Reid; Zhao, Wei; Zhang, Xiaoyang; Ventura, Andrea; Liu, Yuexin; Ayer, Donald E; Hurlin, Peter J; Cherniack, Andrew D; Eisenman, Robert N; Bernard, Brady; Grandori, Carla

    2018-03-28

    Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation

    PubMed Central

    Stojanova, Angelina; Tu, William B.; Ponzielli, Romina; Kotlyar, Max; Chan, Pak-Kei; Boutros, Paul C.; Khosravi, Fereshteh; Jurisica, Igor; Raught, Brian; Penn, Linda Z.

    2016-01-01

    ABSTRACT MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions. PMID:27267444

  17. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    PubMed

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  18. MYC gene amplification is a rare event in atypical fibroxanthoma and pleomorphic dermal sarcoma

    PubMed Central

    Bach, Marisa; Kind, Peter; Helbig, Doris; Quaas, Alexander; Utikal, Jochen; Marx, Alexander; Gaiser, Maria Rita

    2018-01-01

    Atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) are rare malignancies typically occurring in elderly patients and predominantly located in skin regions exposed to UV-light. Thus, a role of UV-radiation-induced damage for AFX and PDS tumorigenesis has been postulated. MYC gene amplification has been demonstrated as a distinctive feature of radiation-induced angiosarcoma. In order to investigate whether chronic exposure to UV-light might also lead to MYC copy number changes, 51 AFX and 24 PDS samples were retrospectively analyzed for MYC amplification by fluorescence in situ hybridization using a MYC and a CEP8 gene probe. Of the 44 analyzable AFX samples, one case showed MYC amplification (defined as a MYC/CEP8 ratio ≥2.0), whereas 13 cases demonstrated low level copy number gains (defined as MYC/CEP8 ratio ≥ 1.2−< 2.0). MYC amplification was seen in an AFX sample of extraordinary tumor thickness of 17.5 mm (vs. median 3.25 mm for all samples). Of the 24 PDS cases, five specimen demonstrated MYC low level copy number gains. Immunohistochemically, neither the AFX nor the PDS cases showed MYC protein expression. In summary, these findings rule out that MYC amplification is a major genetic driver in the process of AFX or PDS tumorigenesis. However, MYC amplification may occur as a late event during AFX development and hence might only be detectable in advanced, thick lesions. PMID:29765529

  19. MYC gene amplification is a rare event in atypical fibroxanthoma and pleomorphic dermal sarcoma.

    PubMed

    Gaiser, Timo; Hirsch, Daniela; Orouji, Azadeh; Bach, Marisa; Kind, Peter; Helbig, Doris; Quaas, Alexander; Utikal, Jochen; Marx, Alexander; Gaiser, Maria Rita

    2018-04-20

    Atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS) are rare malignancies typically occurring in elderly patients and predominantly located in skin regions exposed to UV-light. Thus, a role of UV-radiation-induced damage for AFX and PDS tumorigenesis has been postulated. MYC gene amplification has been demonstrated as a distinctive feature of radiation-induced angiosarcoma. In order to investigate whether chronic exposure to UV-light might also lead to MYC copy number changes, 51 AFX and 24 PDS samples were retrospectively analyzed for MYC amplification by fluorescence in situ hybridization using a MYC and a CEP8 gene probe. Of the 44 analyzable AFX samples, one case showed MYC amplification (defined as a MYC /CEP8 ratio ≥2.0), whereas 13 cases demonstrated low level copy number gains (defined as MYC /CEP8 ratio ≥ 1.2-< 2.0). MYC amplification was seen in an AFX sample of extraordinary tumor thickness of 17.5 mm (vs. median 3.25 mm for all samples). Of the 24 PDS cases, five specimen demonstrated MYC low level copy number gains. Immunohistochemically, neither the AFX nor the PDS cases showed MYC protein expression. In summary, these findings rule out that MYC amplification is a major genetic driver in the process of AFX or PDS tumorigenesis. However, MYC amplification may occur as a late event during AFX development and hence might only be detectable in advanced, thick lesions.

  20. The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit.

    PubMed

    Clipson, Alexandra; Barrans, Sharon; Zeng, Naiyan; Crouch, Simon; Grigoropoulos, Nicholas F; Liu, Hongxiang; Kocialkowski, Sylvia; Wang, Ming; Huang, Yuanxue; Worrillow, Lisa; Goodlad, John; Buxton, Jenny; Neat, Michael; Fields, Paul; Wilkins, Bridget; Grant, John W; Wright, Penny; Ei-Daly, Hesham; Follows, George A; Roman, Eve; Watkins, A James; Johnson, Peter W M; Jack, Andrew; Du, Ming-Qing

    2015-07-01

    A proportion of MYC translocation positive diffuse large B-cell lymphomas (DLBCL) harbour a BCL2 and/or BCL6 translocation, known as double-hit DLBCL, and are clinically aggressive. It is unknown whether there are other genetic abnormalities that cooperate with MYC translocation and form double-hit DLBCL, and whether there is a difference in clinical outcome between the double-hit DLBCL and those with an isolated MYC translocation. We investigated TP53 gene mutations along with BCL2 and BCL6 translocations in a total of 234 cases of DLBCL, including 81 with MYC translocation. TP53 mutations were investigated by PCR and sequencing, while BCL2 and BCL6 translocation was studied by interphase fluorescence in situ hybridization. The majority of MYC translocation positive DLBCLs (60/81 = 74%) had at least one additional genetic hit. In MYC translocation positive DLBCL treated by R-CHOP ( n  = 67), TP53 mutation and BCL2, but not BCL6 translocation had an adverse effect on patient overall survival. In comparison with DLBCL with an isolated MYC translocation, cases with MYC/TP53 double-hits had the worst overall survival, followed by those with MYC/BCL2 double-hits. In MYC translocation negative DLBCL treated by R-CHOP ( n  = 101), TP53 mutation, BCL2 and BCL6 translocation had no impact on patient survival. The prognosis of MYC translocation positive DLBCL critically depends on the second hit, with TP53 mutations and BCL2 translocation contributing to an adverse prognosis. It is pivotal to investigate both TP53 mutations and BCL2 translocations in MYC translocation positive DLBCL, and to distinguish double-hit DLBCLs from those with an isolated MYC translocation.

  1. Distinct patterns of alteration of myc genes associated with integration of human papillomavirus type 16 or type 45 DNA in two genital tumours.

    PubMed

    Sastre-Garau, X; Favre, M; Couturier, J; Orth, G

    2000-08-01

    We previously described two genital carcinomas (IC2, IC4) containing human papillomavirus type 16 (HPV-16)- or HPV-18-related sequences integrated in chromosomal bands containing the c-myc (8q24) or N-myc (2p24) gene, respectively. The c-myc gene was rearranged and amplified in IC2 cells without evidence of overexpression. The N-myc gene was amplified and highly transcribed in IC4 cells. Here, the sequence of an 8039 bp IC4 DNA fragment containing the integrated viral sequences and the cellular junctions is reported. A 3948 bp segment of the genome of HPV-45 encompassing the upstream regulatory region and the E6 and E7 ORFs was integrated into the untranslated part of N-myc exon 3, upstream of the N-myc polyadenylation signal. Both N-myc and HPV-45 sequences were amplified 10- to 20-fold. The 3' ends of the major N-myc transcript were mapped upstream of the 5' junction. A minor N-myc/HPV-45 fusion transcript was also identified, as well as two abundant transcripts from the HPV-45 E6-E7 region. Large amounts of N-myc protein were detected in IC4 cells. A major alteration of c-myc sequences in IC2 cells involved the insertion of a non-coding sequence into the second intron and their co-amplification with the third exon, without any evidence for the integration of HPV-16 sequences within or close to the gene. Different patterns of myc gene alterations may thus be associated with integration of HPV DNA in genital tumours, including the activation of the protooncogene via a mechanism of insertional mutagenesis and/or gene amplification.

  2. Overproduction of v-Myc in the nucleus and its excess over Max are not required for avian fibroblast transformation.

    PubMed Central

    Tikhonenko, A T; Hartman, A R; Linial, M L

    1993-01-01

    The cellular proto-oncogene c-myc can acquire transforming potential by a number of different means, including retroviral transduction. The transduced allele generally contains point mutations relative to c-myc and is overexpressed in infected cells, usually as a v-Gag-Myc fusion protein. Upon synthesis, v-Gag-Myc enters the nucleus, forms complexes with its heterodimeric partner Max, and in this complex binds to DNA in a sequence-specific manner. To delineate the role for each of these events in fibroblast transformation, we introduced several mutations into the myc gene of the avian retrovirus MC29. We observed that Gag-Myc with a mutated nuclear localization signal is confined predominantly in the cytoplasm and only about 5% of the protein could be detected in the nucleus (less than the amount of endogenous c-Myc). Consequently, only a small fraction of Max is associated with Myc. However, cells infected with this mutant exhibit a completely transformed phenotype in vitro, suggesting that production of enough v-Gag-Myc to tie up all cellular Max is not needed for transformation. While the nuclear localization signal is dispensable for transformation, minimal changes in the v-Gag-Myc DNA-binding domain completely abolish its transforming potential, consistent with a role of Myc as a transcriptional regulator. One of its potential targets might be the endogenous c-myc, which is repressed in wild-type MC29-infected cells. Our experiments with MC29 mutants demonstrate that c-myc down-regulation depends on the integrity of the v-Myc DNA-binding domain and occurs at the RNA level. Hence, it is conceivable that v-Gag-Myc, either directly or circuitously, regulates c-myc transcription. Images PMID:8497274

  3. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    PubMed

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  4. Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer.

    PubMed

    Martínez-Bosch, Neus; Iglesias, Mar; Munné-Collado, Jessica; Martínez-Cáceres, Carlos; Moreno, Mireia; Guerra, Carmen; Yélamos, Jose; Navarro, Pilar

    2014-10-01

    Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light

  5. MYC, FBXW7 and TP53 copy number variation and expression in Gastric Cancer

    PubMed Central

    2013-01-01

    Background MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. Methods We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. Results MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. Conclusion In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful

  6. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer

    PubMed Central

    Rebello, Richard J.; Pearson, Richard B.; Hannan, Ross D.; Furic, Luc

    2017-01-01

    The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential. PMID:28212321

  7. Haploinsufficiency of the Myc regulator Mtbp extends survival and delays tumor development in aging mice.

    PubMed

    Grieb, Brian C; Boyd, Kelli; Mitra, Ramkrishna; Eischen, Christine M

    2016-10-30

    Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp +/- mice also had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic system, and an altered tumor spectrum compared to Mtbp +/+ mice. Therefore, the data suggest Mtbp is a regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging.

  8. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

    PubMed Central

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.

    2015-01-01

    Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538

  9. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression

    PubMed Central

    Chu, Dake; Wei, Li; Li, Xia; Yang, Guodong; Liu, Xinping; Yao, Libo; Zhang, Jian; Shen, Lan

    2015-01-01

    Cancer cells use glucose and glutamine as the major sources of energy and precursor intermediates, and enhanced glycolysis and glutamimolysis are the major hallmarks of metabolic reprogramming in cancer. Oncogene activation and tumor suppressor gene inactivation alter multiple intracellular signaling pathways that affect glycolysis and glutaminolysis. N-Myc downstream regulated gene 2 (NDRG2) is a tumor suppressor gene inhibiting cancer growth, metastasis and invasion. However, the role and molecular mechanism of NDRG2 in cancer metabolism remains unclear. In this study, we discovered the role of the tumor suppressor gene NDRG2 in aerobic glycolysis and glutaminolysis of cancer cells. NDRG2 inhibited glucose consumption and lactate production, glutamine consumption and glutamate production in colorectal cancer cells. Analysis of glucose transporters and the catalytic enzymes involved in glycolysis revealed that glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase M2 isoform (PKM2) and lactate dehydrogenase A (LDHA) was significantly suppressed by NDRG2. Analysis of glutamine transporter and the catalytic enzymes involved in glutaminolysis revealed that glutamine transporter ASC amino-acid transporter 2 (ASCT2) and glutaminase 1 (GLS1) was also significantly suppressed by NDRG2. Transcription factor c-Myc mediated inhibition of glycolysis and glutaminolysis by NDRG2. More importantly, NDRG2 inhibited the expression of c-Myc by suppressing the expression of β-catenin, which can transcriptionally activate C-MYC gene in nucleus. In addition, the growth and proliferation of colorectal cancer cells were suppressed significantly by NDRG2 through inhibition of glycolysis and glutaminolysis. Taken together, these findings indicate that NDRG2 functions as an essential regulator in glycolysis and glutaminolysis via repression of c-Myc, and acts as a suppressor of carcinogenesis through coordinately targeting glucose and glutamine transporter, multiple catalytic

  10. Regulation of the sphingosine-recycling pathway for ceramide generation by oxidative stress, and its role in controlling c-Myc/Max function

    PubMed Central

    Sultan, Iyad; Senkal, Can E.; Ponnusamy, Suriyan; Bielawski, Jacek; Szulc, Zdzislaw; Bielawska, Alicja; Hannun, Yusuf A.; Ogretmen, Besim

    2005-01-01

    In the present study, the regulation of the sphingosine-recycling pathway in A549 human lung adenocarcinoma cells by oxidative stress was investigated. The generation of endogenous long-chain ceramide in response to exogenous C6-cer (C6-ceramide), which is FB1 (fumonisin B1)-sensitive, was employed to probe the sphingosine-recycling pathway. The data showed that ceramide formation via this pathway was significantly blocked by GSH and NAC (N-acetylcysteine) whereas it was enhanced by H2O2, as detected by both palmitate labelling and HPLC/MS. Similar data were also obtained using a novel approach that measures the incorporation of 17Sph (sphingosine containing 17 carbons) of 17C6-cer (C6-cer containing a 17Sph backbone) into long-chain 17C16-cer in cells by HPLC/MS, which was significantly decreased and increased in response to GSH and H2O2 respectively. TNF (tumour necrosis factor)-α, which decreases the levels of endogenous GSH, increased the generation of C16-cer in response to C6-cer, and this was blocked by exogenous GSH or NAC, or by the overexpression of TPx I (thioredoxin peroxidase I), an enzyme that reduces the generation of intracellular ROS (reactive oxygen species). Additional data showed that ROS regulated both the deacylation and reacylation steps of C6-cer. At a functional level, C6-cer inhibited the DNA-binding function of the c-Myc/Max oncogene. Inhibition of the generation of longchain ceramide in response to C6-cer by FB1 or NAC significantly blocked the modulation of the c-Myc/Max function. These data demonstrate that the sphingosine-recycling pathway for the generation of endogenous long-chain ceramide in response to exogenous C6-cer is regulated by ROS, and plays an important biological role in controlling c-Myc function. PMID:16201965

  11. MYC Amplification as a Predictive Factor of Complete Pathologic Response to Docetaxel-based Neoadjuvant Chemotherapy for Breast Cancer.

    PubMed

    Pereira, Cynthia Brito Lins; Leal, Mariana Ferreira; Abdelhay, Eliana Saul Furquim Werneck; Demachki, Sâmia; Assumpção, Paulo Pimentel; de Souza, Mirian Carvalho; Moreira-Nunes, Caroline Aquino; Tanaka, Adriana Michiko da Silva; Smith, Marília Cardoso; Burbano, Rommel Rodríguez

    2017-06-01

    Neoadjuvant chemotherapy is a standard treatment for stage II and III breast cancer. The identification of biomarkers that may help in the prediction of response to neoadjuvant therapies is necessary for a more precise definition of the best drug or drug combination to induce a better response. We assessed the role of Ki67, hormone receptors expression, HER2, MYC genes and their protein status, and KRAS codon 12 mutations as predictor factors of pathologic response to anthracycline-cyclophosphamide (AC) followed by taxane docetaxel (T) neoadjuvant chemotherapy (AC+T regimen) in 51 patients with invasive ductal breast cancer. After neoadjuvant chemotherapy, 82.4% of patients showed pathologic partial response, with only 9.8% showing pathologic complete response. In multivariate analysis, MYC immunoreactivity and high MYC gain defined as MYC/nucleus ≥ 5 were significant predictor factors for pathologic partial response. Using the receiver operating characteristic curve analysis, the ratio of 2.5 MYC/CEP8 (sensitivity of 80% and specificity of 89.1%) or 7 MYC/nuclei copies (sensitivity of 80% and specificity of 73.9%) as the best cutoff in predicting a pathologic complete response was identified. Thus, MYC may have a role in chemosensitivity to AC and/or docetaxel drugs. Additionally, MYC amplification may be a predictor factor of pathologic response to the AC+T regimen in patients with breast cancer. Moreover, patients with an increased number of MYC copies showed pathologic complete response to this neoadjuvant treatment more frequently. The analysis of MYC amplification may help in the identification of patients that may have a better response to AC+T treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Phosphorylation promotes activation-induced cytidine deaminase activity at the Myc oncogene

    PubMed Central

    2017-01-01

    Activation-induced cytidine deaminase (AID) is a mutator enzyme that targets immunoglobulin (Ig) genes to initiate antibody somatic hypermutation (SHM) and class switch recombination (CSR). Off-target AID association also occurs, which causes oncogenic mutations and chromosome rearrangements. However, AID occupancy does not directly correlate with DNA damage, suggesting that factors beyond AID association contribute to mutation targeting. CSR and SHM are regulated by phosphorylation on AID serine38 (pS38), but the role of pS38 in off-target activity has not been evaluated. We determined that lithium, a clinically used therapeutic, induced high AID pS38 levels. Using lithium and an AID-S38 phospho mutant, we compared the role of pS38 in AID activity at the Ig switch region and off-target Myc gene. We found that deficient pS38 abated AID chromatin association and CSR but not mutation at Myc. Enhanced pS38 elevated Myc translocation and mutation frequency but not CSR or Ig switch region mutation. Thus, AID activity can be differentially targeted by phosphorylation to induce oncogenic lesions. PMID:29122947

  13. A novel form of the RelA nuclear factor kappaB subunit is induced by and forms a complex with the proto-oncogene c-Myc.

    PubMed Central

    Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D

    2002-01-01

    Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803

  14. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies

    PubMed Central

    Chesi, Marta; Robbiani, Davide F.; Sebag, Michael; Chng, Wee Joo; Affer, Maurizio; Tiedemann, Rodger; Valdez, Riccardo; Palmer, Stephen E.; Haas, Stephanie S.; Stewart, A. Keith; Fonseca, Rafael; Kremer, Richard; Cattoretti, Giorgio; Bergsagel, P. Leif

    2008-01-01

    Summary By misdirecting the activity of Activation-Induced Deaminase (AID) to a conditional MYC transgene, we have achieved sporadic, AID-dependent MYC activation in germinal center B-cells of Vk*MYC mice. Whereas control C57BL/6 mice develop benign monoclonal gammopathy with age, all Vk*MYC mice progress to an indolent multiple myeloma associated with the biological and clinical features highly characteristic of the human disease. Furthermore, antigen-dependent myeloma could be induced by immunization with a T-dependent antigen. Consistent with these findings in mice, more frequent MYC rearrangements, elevated levels of MYC mRNA and MYC target genes distinguish human patients with multiple myeloma from individuals with monoclonal gammopathy, implicating a causal role for MYC in the progression of monoclonal gammopathy to multiple myeloma in man. PMID:18242516

  15. C-Myc Protein-Protein and Protein-DNA Interactions: Targets for Therapeutic Intervention.

    DTIC Science & Technology

    1997-09-01

    including those of the Myc family. In fact, members of different bHLH protein subgroups, including the Myc proteins, are characterized by conserved BR...important functional consequences, and they provide insights into how different bHLH proteins can act on different targets. The zinc finger protein...roles for a number of BR residues which do not contact bases, yet are conserved within different bHLH protein sub- families (Benezra et al. 1990), and

  16. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    PubMed Central

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V.

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression. PMID:24152439

  17. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    PubMed

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  18. The Quest for Targets Executing MYC-Dependent Cell Transformation.

    PubMed

    Hartl, Markus

    2016-01-01

    MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of

  19. The Quest for Targets Executing MYC-Dependent Cell Transformation

    PubMed Central

    Hartl, Markus

    2016-01-01

    MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of

  20. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs.

    PubMed

    Luo, Wen; Chen, Jiahui; Li, Limin; Ren, Xueyi; Cheng, Tian; Lu, Shiyi; Lawal, Raman Akinyanju; Nie, Qinghua; Zhang, Xiquan; Hanotte, Olivier

    2018-05-21

    The transcription factor c-Myc is an important regulator of cellular proliferation, differentiation and embryogenesis. While c-Myc can inhibit myoblast differentiation, the underlying mechanisms remain poorly understood. Here, we found that c-Myc does not only inhibits myoblast differentiation but also promotes myoblast proliferation and muscle fibre hypertrophy. By performing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we identified the genome-wide binding profile of c-Myc in skeletal muscle cells. c-Myc achieves its regulatory effects on myoblast proliferation and differentiation by targeting the cell cycle pathway. Additionally, c-Myc can regulate cell cycle genes by controlling miRNA expression of which dozens of miRNAs can also be regulated directly by c-Myc. Among these c-Myc-associated miRNAs (CAMs), the roles played by c-Myc-induced miRNAs in skeletal muscle cells are similar to those played by c-Myc, whereas c-Myc-repressed miRNAs play roles that are opposite to those played by c-Myc. The cell cycle, ERK-MAPK and Akt-mediated pathways are potential target pathways of the CAMs during myoblast differentiation. Interestingly, we identified four CAMs that can directly bind to the c-Myc 3' UTR and inhibit c-Myc expression, suggesting that a negative feedback loop exists between c-Myc and its target miRNAs during myoblast differentiation. c-Myc also potentially regulates many long intergenic noncoding RNAs (lincRNAs). Linc-2949 and linc-1369 are directly regulated by c-Myc, and both lincRNAs are involved in the regulation of myoblast proliferation and differentiation by competing for the binding of muscle differentiation-related miRNAs. Our findings do not only provide a genome-wide overview of the role the c-Myc plays in skeletal muscle cells but also uncover the mechanism of how c-Myc and its target genes regulate myoblast proliferation and differentiation, and muscle fibre hypertrophy.

  1. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules.

    PubMed

    Kiessling, Anke; Sperl, Bianca; Hollis, Angela; Eick, Dirk; Berg, Thorsten

    2006-07-01

    bZip and bHLHZip protein family members comprise a large fraction of eukaryotic transcription factors and need to bind DNA in order to exert most of their fundamental biological roles. Their binding to DNA requires homo- or heterodimerization via alpha-helical domains, which generally do not contain obvious binding sites for small molecules. We have identified two small molecules, dubbed Mycro1 and Mycro2, which inhibit the protein-protein interactions between the bHLHZip proteins c-Myc and Max. Mycros are the first inhibitors of c-Myc/Max dimerization, which have been demonstrated to inhibit DNA binding of c-Myc with preference over other dimeric transcription factors in vitro. Mycros inhibit c-Myc-dependent proliferation, gene transcription, and oncogenic transformation in the low micromolar concentration range. Our data support the idea that dimeric transcription factors can be druggable even in the absence of obvious small-molecule binding pockets.

  2. Myc: the beauty and the beast.

    PubMed

    Wasylishen, Amanda R; Penn, Linda Z

    2010-06-01

    The iconic history of the Myc oncoprotein encompasses 3 decades of intense scientific discovery. There is no question that Myc has been a pioneer, advancing insight into the molecular basis of cancer as well as functioning as a critical control center for several diverse biological processes and regulatory mechanisms. This narrative chronicles the journey and milestones that have defined the understanding of Myc, and it provides an opportunity to consider future directions in this challenging yet rewarding field.

  3. Regulation of c–myc expression by IFN–γ through Stat1-dependent and -independent pathways

    PubMed Central

    Ramana, Chilakamarti V.; Grammatikakis, Nicholas; Chernov, Mikhail; Nguyen, Hannah; Goh, Kee Chuan; Williams, Bryan R.G.; Stark, George R.

    2000-01-01

    Interferons (IFNs) inhibit cell growth in a Stat1-dependent fashion that involves regulation of c–myc expression. IFN–γ suppresses c–myc in wild-type mouse embryo fibroblasts, but not in Stat1-null cells, where IFNs induce c–myc mRNA rapidly and transiently, thus revealing a novel signaling pathway. Both tyrosine and serine phosphorylation of Stat1 are required for suppression. Induced expression of c–myc is likely to contribute to the proliferation of Stat1-null cells in response to IFNs. IFNs also suppress platelet-derived growth factor (PDGF)-induced c–myc expression in wild-type but not in Stat1-null cells. A gamma-activated sequence element in the promoter is necessary but not sufficient to suppress c–myc expression in wild-type cells. In PKR-null cells, the phosphorylation of Stat1 on Ser727 and transactivation are both defective, and c–myc mRNA is induced, not suppressed, in response to IFN–γ. A role for Raf–1 in the Stat1-independent pathway is revealed by studies with geldanamycin, an HSP90-specific inhibitor, and by expression of a mutant of p50cdc37 that is unable to recruit HSP90 to the Raf–1 complex. Both agents abrogated the IFN–γ-dependent induction of c–myc expression in Stat1-null cells. PMID:10637230

  4. MYC/BCL2/BCL6 triple hit lymphoma: a study of 40 patients with a comparison to MYC/BCL2 and MYC/BCL6 double hit lymphomas.

    PubMed

    Huang, Wenting; Medeiros, L Jeffrey; Lin, Pei; Wang, Wei; Tang, Guilin; Khoury, Joseph; Konoplev, Sergej; Yin, C Cameron; Xu, Jie; Oki, Yasuhiro; Li, Shaoying

    2018-05-21

    High-grade B-cell lymphomas with MYC, BCL2, and BCL6 rearrangements (triple hit lymphoma) are uncommon. We studied the clinicopathologic features of 40 patients with triple hit lymphoma and compared them to 157 patients with MYC/BCL2 double hit lymphoma and 13 patients with MYC/BCL6 double hit lymphoma. The triple hit lymphoma group included 25 men and 15 women with a median age of 61 years (range, 34-85). Nine patients had a history of B-cell lymphoma. Histologically, 23 (58%) cases were diffuse large B-cell lymphoma and 17 cases had features of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Most cases of triple hit lymphoma were positive for CD10 (100%), BCL2 (95%), BCL6 (82%), MYC (74%), and 71% with MYC and BCL2 coexpression. P53 was overexpressed in 29% of triple hit lymphoma cases. The clinicopathological features of triple hit lymphoma patients were similar to patients with MYC/BCL2 and MYC/BCL6 double hit lymphoma, except that triple hit lymphoma cases were more often CD10 positive compared with MYC/BCL6 double hit lymphoma (p < 0.05). Induction chemotherapy used was similar for patients with triple hit lymphoma and double hit lymphoma and overall survival in triple hit lymphoma patients was 17.6 months, similar to the overall survival of patients with double hit lymphoma (p = 0.67). Patients with triple hit lymphoma showing P53 overexpression had significantly worse overall survival compared with those without P53 overexpression (p = 0.04). On the other hand, double expressor status and prior history of B-cell lymphoma did not correlate with overall survival. In conclusion, most patients with triple hit lymphoma have an aggressive clinical course and poor prognosis and these tumors have a germinal center B-cell immunophenotype, similar to patients with double hit lymphomas. P53 expression is a poor prognostic factor in patients with triple hit lymphoma.

  5. Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo.

    PubMed

    Ciccarelli, Carmela; Di Rocco, Agnese; Gravina, Giovanni Luca; Mauro, Annunziata; Festuccia, Claudio; Del Fattore, Andrea; Berardinelli, Paolo; De Felice, Francesca; Musio, Daniela; Bouché, Marina; Tombolini, Vincenzo; Zani, Bianca Maria; Marampon, Francesco

    2018-06-29

    Prostate cancer (PCa) cell radioresistance causes the failure of radiation therapy (RT) in localized or locally advanced disease. The aberrant accumulation of c-Myc oncoprotein, known to promote PCa onset and progression, may be due to the control of gene transcription and/or MEK/ERK-regulated protein stabilization. Here, we investigated the role of MEK/ERK signaling in PCa. LnCAP, 22Rv1, DU145, and PC3 PCa cell lines were used in in vitro and in vivo experiments. U0126, trametinib MEK/ERK inhibitors, and c-Myc shRNAs were used. Radiation was delivered using an x-6 MV photon linear accelerator. U0126 in vivo activity alone or in combination with irradiation was determined in murine xenografts. Inhibition of MEK/ERK signaling down-regulated c-Myc protein in PCa cell lines to varying extents by affecting expression of RNA and protein, which in turn determined radiosensitization in in vitro and in vivo xenograft models of PCa cells. The crucial role played by c-Myc in the MEK/ERK pathways was demonstrated in 22Rv1 cells by the silencing of c-Myc by means of short hairpin mRNA, which yielded effects resembling the targeting of MEK/ERK signaling. The clinically approved compound trametinib used in vitro yielded the same effects as U0126 on growth and C-Myc expression. Notably, U0126 and trametinib induced a drastic down-regulation of BMX, which is known to prevent apoptosis in cancer cells. The results of our study suggest that signal transduction-based therapy can, by disrupting the MEK/ERK/c-Myc axis, reduce human PCa radioresistance caused by increased c-Myc expression in vivo and in vitro and restores apoptosis signals.

  6. Preoperative chemoradiotherapy for rectal cancer: the sensitizer role of the association between miR-375 and c-Myc

    PubMed Central

    Conde-Muiño, Raquel; Cano, Carlos; Sánchez-Martín, Victoria; Herrera, Antonio; Comino, Ana; Medina, Pedro P.; Palma, Pablo; Cuadros, Marta

    2017-01-01

    Administration of chemoradiation before tumor resection has revolutionized the management of locally advanced rectal cancer, but many patients have proven resistant to this preoperative therapy. Our group recently reported a negative correlation between c-Myc gene expression and this resistance. In the present study, integrated analysis of miRNA and mRNA expression profiles was conducted in 45 pre-treatment rectal tumors in order to analyze the expressions of miRNAs and c-Myc and their relationship with clinicopathological factors and patient survival. Twelve miRNAs were found to be differentially expressed by responders and non-responders to the chemoradiation. Functional classification revealed an association between the differentially expressed miRNAs and c-Myc. Quantitative real-time PCR results showed that miRNA-148 and miRNA-375 levels were both significantly lower in responders than in non-responders. Notably, a significant negative correlation was found between miRNA-375 expression and c-Myc expression. According to these findings, miRNA-375 and its targeted c-Myc may be useful as a predictive biomarker of the response to neoadjuvant treatment in patients with locally advanced rectal cancer. PMID:29137264

  7. OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice.

    PubMed

    Ogawa, Satoshi; Kawahara-Miki, Ryouka; Miyamoto, Koji; Yamane, Hisakazu; Nojiri, Hideaki; Tsujii, Yoshimasa; Okada, Kazunori

    2017-05-06

    Jasmonic acid (JA) plays central roles in various events in plants, especially defence against pathogens and insects. The basic helix-loop-helix (bHLH) transcription factor MYC2 has attracted attention as a master regulator of JA signalling in dicotyledonous plants. However, how MYC2 functions in monocotyledonous plants, including agriculturally important crops such as cultivated rice, has been poorly understood. To elucidate the comprehensive effects of rice MYC2 (OsMYC2) on the JA-inducible transcriptional modifications, we performed RNA-sequencing by using OsMYC2-knockdown plants (osmyc2RNAi). In osmyc2RNAi, JA-inducible expression of many defence-related genes, for example chitinases and proteinase inhibitors, was compromised. Decrease in JA-dependent activation of the biosynthetic pathways of specialised metabolites, especially defence compounds, was also evident in the osmyc2RNAi line. Furthermore, a substantial change was noted in the expression of distinct types of transcription factors, such as MYB-type factors, likely depicting the importance of OsMYC2 in not only defence responses but also other morphogenetic events. Our findings provide fundamental information to understand the overall functions of MYC2 in JA signalling in monocotyledonous plants, which might yield agricultural benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.

    PubMed

    Nilsson, Jonas A; Keller, Ulrich B; Baudino, Troy A; Yang, Chunying; Norton, Sara; Old, Jennifer A; Nilsson, Lisa M; Neale, Geoffrey; Kramer, Debora L; Porter, Carl W; Cleveland, John L

    2005-05-01

    Checkpoints that control Myc-mediated proliferation and apoptosis are bypassed during tumorigenesis. Genes encoding polyamine biosynthetic enzymes are overexpressed in B cells from E mu-Myc transgenic mice. Here, we report that disabling one of these Myc targets, Ornithine decarboxylase (Odc), abolishes Myc-induced suppression of the Cdk inhibitors p21(Cip1) and p27(Kip1), thereby impairing Myc's proliferative, but not apoptotic, response. Moreover, lymphoma development was markedly delayed in E mu-Myc;Odc(+/-) transgenic mice and in E mu-Myc mice treated with the Odc inhibitor difluoromethylornithine (DFMO). Strikingly, tumors ultimately arising in E mu-Myc;Odc(+/-) transgenics lacked deletions of Arf, suggesting that targeting Odc forces other routes of transformation. Therefore, Odc is a critical Myc transcription target that regulates checkpoints that guard against tumorigenesis and is an effective target for cancer chemoprevention.

  9. High expression of N-myc (and STAT) interactor predicts poor prognosis and promotes tumor growth in human glioblastoma

    PubMed Central

    Yun, Dapeng; Zhao, Yingjie; Wang, Jingkun; Xu, Tao; Li, Xiaoying; Wang, Yuqi; Yuan, Li; Sun, Ruochuan; Song, Xiao; Huai, Cong; Hu, Lingna; Yang, Song; Min, Taishan; Chen, Juxiang; Chen, Hongyan; Lu, Daru

    2015-01-01

    Glioma is the most malignant brain tumor and glioblastoma (GBM) is the most aggressive type. The involvement of N-myc (and STAT) interactor (NMI) in tumorigenesis was sporadically reported but far from elucidation. This study aims to investigate roles of NMI in human glioma. Three independent cohorts, the Chinese tissue microarray (TMA) cohort (N = 209), the Repository for Molecular Brain Neoplasia Data (Rembrandt) cohort (N = 371) and The Cancer Genome Atlas (TCGA) cohort (N = 528 or 396) were employed. Transcriptional or protein levels of NMI expression were significantly increased according to tumor grade in all three cohorts. High expression of NMI predicted significantly unfavorable clinical outcome for GBM patients, which was further determined as an independent prognostic factor. Additionally, expression and prognostic value of NMI were associated with molecular features of GBM including PTEN deletion and EGFR amplification in TCGA cohort. Furthermore, overexpression or depletion of NMI revealed its regulation on G1/S progression and cell proliferation (both in vitro and in vivo), and this effect was partially dependent on STAT1, which interacted with and was regulated by NMI. These data demonstrate that NMI may serve as a novel prognostic biomarker and a potential therapeutic target for glioblastoma. PMID:25669971

  10. High expression of N-myc (and STAT) interactor predicts poor prognosis and promotes tumor growth in human glioblastoma.

    PubMed

    Meng, Delong; Chen, Yuanyuan; Yun, Dapeng; Zhao, Yingjie; Wang, Jingkun; Xu, Tao; Li, Xiaoying; Wang, Yuqi; Yuan, Li; Sun, Ruochuan; Song, Xiao; Huai, Cong; Hu, Lingna; Yang, Song; Min, Taishan; Chen, Juxiang; Chen, Hongyan; Lu, Daru

    2015-03-10

    Glioma is the most malignant brain tumor and glioblastoma (GBM) is the most aggressive type. The involvement of N-myc (and STAT) interactor (NMI) in tumorigenesis was sporadically reported but far from elucidation. This study aims to investigate roles of NMI in human glioma. Three independent cohorts, the Chinese tissue microarray (TMA) cohort (N = 209), the Repository for Molecular Brain Neoplasia Data (Rembrandt) cohort (N = 371) and The Cancer Genome Atlas (TCGA) cohort (N = 528 or 396) were employed. Transcriptional or protein levels of NMI expression were significantly increased according to tumor grade in all three cohorts. High expression of NMI predicted significantly unfavorable clinical outcome for GBM patients, which was further determined as an independent prognostic factor. Additionally, expression and prognostic value of NMI were associated with molecular features of GBM including PTEN deletion and EGFR amplification in TCGA cohort. Furthermore, overexpression or depletion of NMI revealed its regulation on G1/S progression and cell proliferation (both in vitro and in vivo), and this effect was partially dependent on STAT1, which interacted with and was regulated by NMI. These data demonstrate that NMI may serve as a novel prognostic biomarker and a potential therapeutic target for glioblastoma.

  11. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    PubMed

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. E-box-independent regulation of transcription and differentiation by MYC.

    PubMed

    Uribesalgo, Iris; Buschbeck, Marcus; Gutiérrez, Arantxa; Teichmann, Sophia; Demajo, Santiago; Kuebler, Bernd; Nomdedéu, Josep F; Martín-Caballero, Juan; Roma, Guglielmo; Benitah, Salvador Aznar; Di Croce, Luciano

    2011-10-23

    MYC proto-oncogene is a key player in cell homeostasis that is commonly deregulated in human carcinogenesis(1). MYC can either activate or repress target genes by forming a complex with MAX (ref. 2). MYC also exerts MAX-independent functions that are not yet fully characterized(3). Cells possess an intrinsic pathway that can abrogate MYC-MAX dimerization and E-box interaction, by inducing phosphorylation of MYC in a PAK2-dependent manner at three residues located in its helix-loop-helix domain(4). Here we show that these carboxy-terminal phosphorylation events switch MYC from an oncogenic to a tumour-suppressive function. In undifferentiated cells, MYC-MAX is targeted to the promoters of retinoic-acid-responsive genes by its direct interaction with the retinoic acid receptor-α (RARα). MYC-MAX cooperates with RARα to repress genes required for differentiation, in an E-box-independent manner. Conversely, on C-terminal phosphorylation of MYC during differentiation, the complex switches from a repressive to an activating function, by releasing MAX and recruiting transcriptional co-activators. Phospho-MYC synergizes with retinoic acid to eliminate circulating leukaemic cells and to decrease the level of tumour invasion. Our results identify an E-box-independent mechanism for transcriptional regulation by MYC that unveils previously unknown functions for MYC in differentiation. These may be exploited to develop alternative targeted therapies.

  13. MYC and metabolism on the path to cancer

    PubMed Central

    Hsieh, Annie L.; Walton, Zandra E.; Altman, Brian J.; Stine, Zachary E.; Dang, Chi V.

    2015-01-01

    The MYC proto-oncogene is frequently deregulated in human cancers, activating genetic programs that orchestrate biological processes to promote growth and proliferation. Altered metabolism characterized by heightened nutrients uptake, enhanced glycolysis and glutaminolysis and elevated fatty acid and nucleotide synthesis is the hallmark of MYC-driven cancer. Recent evidence strongly suggests that Myc-dependent metabolic reprogramming is critical for tumorigenesis, which could be attenuated by targeting specific metabolic pathways using small drug-like molecules. Understanding the complexity of MYC-mediated metabolic re-wiring in cancers as well as how MYC cooperates with other metabolic drivers such as mammalian target of rapamycin (mTOR) will provide translational opportunities for cancer therapy. PMID:26277543

  14. Direct and indirect targeting of MYC to treat acute myeloid leukemia.

    PubMed

    Brondfield, Sam; Umesh, Sushma; Corella, Alexandra; Zuber, Johannes; Rappaport, Amy R; Gaillard, Coline; Lowe, Scott W; Goga, Andrei; Kogan, Scott C

    2015-07-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults and is often resistant to conventional therapies. The MYC oncogene is commonly overexpressed in AML but has remained an elusive target. We aimed to examine the consequences of targeting MYC both directly and indirectly in AML overexpressing MYC/Myc due to trisomy 8/15 (human/mouse), FLT3-ITD mutation, or gene amplification. We performed in vivo knockdown of Myc (shRNAs) and both in vitro and in vivo experiments using four drugs with indirect anti-MYC activity: VX-680, GDC-0941, artemisinin, and JQ1. shRNA knockdown of Myc in mice prolonged survival, regardless of the mechanism underlying MYC overexpression. VX-680, an aurora kinase inhibitor, demonstrated in vitro efficacy against human MYC-overexpressing AMLs regardless of the mechanism of MYC overexpression, but was weakest against a MYC-amplified cell line. GDC-0941, a PI3-kinase inhibitor, demonstrated efficacy against several MYC-overexpressing AMLs, although only in vitro. Artemisinin, an antimalarial, did not demonstrate consistent efficacy against any of the human AMLs tested. JQ1, a bromodomain and extra-terminal bromodomain inhibitor, demonstrated both in vitro and in vivo efficacy against several MYC-overexpressing AMLs. We also confirmed a decrease in MYC levels at growth inhibitory doses for JQ1, and importantly, sensitivity of AML cell lines to JQ1 appeared independent of the mechanism of MYC overexpression. Our data support growing evidence that JQ1 and related compounds may have clinical efficacy in AML treatment regardless of the genetic abnormalities underlying MYC deregulation.

  15. Gene expression profiling of MYC-driven tumor signatures in porcine liver stem cells by transcriptome sequencing

    USDA-ARS?s Scientific Manuscript database

    It is now well-established that cancer stem cells (CSCs) drive tumor growth and that the cancer gene, c-Myc, plays a critical role in converting cells to CSCs. However, little is known about the genes that are induced and regulated by c-Myc to generate tumors, and, in particular, tumors of the live...

  16. Krüppel-Like Factor 1 (KLF1), KLF2, and Myc Control a Regulatory Network Essential for Embryonic Erythropoiesis

    PubMed Central

    Pang, Christopher J.; Lemsaddek, Wafaa; Alhashem, Yousef N.; Bondzi, Cornelius; Redmond, Latasha C.; Ah-Son, Nicolas; Dumur, Catherine I.; Archer, Kellie J.; Haar, Jack L.

    2012-01-01

    The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic β-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1−/− KLF2−/− double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1−/−, and KLF1−/− KLF2−/− mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1−/− KLF2−/− embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in α- and β-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program. PMID:22566683

  17. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    PubMed

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  18. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration

    PubMed Central

    Obholzer, Nikolaus D.; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A.; Megason, Sean G.; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration. PMID:27351484

  19. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  20. c-Myc alters substrate utilization and O-GlcNAc protein posttranslational modifications without altering cardiac function during early aortic constriction

    DOE PAGES

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; ...

    2015-08-12

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (TAC; n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated workingmore » hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (predominately glucose) contribution. The changes in free fatty acid and unlabeled fractional contributions were abrogated by Myc inactivation during TAC (MycKO-TAC). Additionally, protein posttranslational modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. Lastly, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy.« less

  1. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch.

    PubMed

    Yin, Jing; Li, Xin; Zhan, Yaguang; Li, Ying; Qu, Ziyue; Sun, Lu; Wang, Siyao; Yang, Jie; Xiao, Jialei

    2017-11-21

    Birch (Betula platyphylla Suk.) contains triterpenoids with anti-HIV and anti-tumor pharmacological activities. However, the natural abundance of these triterpenoids is low, and their chemical synthesis is costly. Transcription factors have the ability to regulate the metabolite pathways of triterpenoids via multi-gene control, thereby improving metabolite yield. Thus, transcription factors have the potential to facilitate the production of birch triterpenoids. Plant bHLH (basic helix-loop-helix) transcription factors play important roles in stress response and secondary metabolism. In this study, we cloned two genes, BpMYC4 and BpbHLH9, that encode bHLH transcription factors in Betula platyphylla Suk. The open reading frame (ORF) of BpMYC4 was 1452 bp and encoded 483 amino acids, while the ORF of BpbHLH9 was 1140 bp and encoded 379 amino acids. The proteins of BpMYC4 and BpbHLH9 were localized in the cell membrane and nucleus. The tissue-specific expression patterns revealed that BpMYC4 expression in leaves was similar to that in the stem and higher than in the roots. The expression of BpbHLH9 was higher in the leaves than in the root and stem. The expressions of BpMYC4 and BpbHLH9 increased after treatment with abscisic acid, methyl jasmonate, and gibberellin and decreased after treatment with ethephon. The promoters of BpMYC4 and BpbHLH9 were isolated using a genome walking approach, and 900-bp and 1064-bp promoter sequences were obtained for BpMYC4 and BpbHLH9, respectively. The ORF of BpbHLH9 was ligated into yeast expression plasmid pYES3 and introduced into INVScl and INVScl1-pYES2-SS yeast strains. The squalene and total triterpenoid contents in the different INVScl1 transformants decreased in the following order INVScl1-pYES-SS-bHLH9 > INVScl1-pYES3-bHLH9 > INVScl1-pYES2- BpSS > INVScl-pYES2. In BpbHLH9 transgenic birch, the relative expression of the genes that encodes for enzymes critical for triterpenoid synthesis showed a different level of up

  2. Amphibians and Reptiles of the state of Nuevo León, Mexico.

    PubMed

    Lemos-Espinal, Julio A; Smith, Geoffrey R; Cruz, Alexander

    2016-01-01

    We compiled a check list of the herpetofauna of Nuevo León. We documented 132 species (23 amphibians, 109 reptiles), representing 30 families (11 amphibians, 19 reptiles) and 73 genera (17 amphibians, 56 reptiles). Only two species are endemic to Nuevo León. Nuevo León contains a relatively high richness of lizards in the genus Sceloporus. Overlap in the herpetofauna of Nuevo León and states it borders is fairly extensive. Of 130 native species, 102 are considered species of Least Concern in the IUCN red list, four are listed as Vulnerable, five are listed as Near Threatened, and four are listed as Endangered. According to SEMARNAT, 78 species are not of conservation concern, 25 are subject to Special Protection, 27 are Threatened, and none are listed as in Danger of Extinction. Given current threats to the herpetofauna, additional efforts to understand the ecology and status of populations in Nuevo León are needed.

  3. Amphibians and Reptiles of the state of Nuevo León, Mexico

    PubMed Central

    Lemos-Espinal, Julio A.; Smith, Geoffrey R.; Cruz, Alexander

    2016-01-01

    Abstract We compiled a check list of the herpetofauna of Nuevo León. We documented 132 species (23 amphibians, 109 reptiles), representing 30 families (11 amphibians, 19 reptiles) and 73 genera (17 amphibians, 56 reptiles). Only two species are endemic to Nuevo León. Nuevo León contains a relatively high richness of lizards in the genus Sceloporus. Overlap in the herpetofauna of Nuevo León and states it borders is fairly extensive. Of 130 native species, 102 are considered species of Least Concern in the IUCN red list, four are listed as Vulnerable, five are listed as Near Threatened, and four are listed as Endangered. According to SEMARNAT, 78 species are not of conservation concern, 25 are subject to Special Protection, 27 are Threatened, and none are listed as in Danger of Extinction. Given current threats to the herpetofauna, additional efforts to understand the ecology and status of populations in Nuevo León are needed. PMID:27408562

  4. Transforming Growth Factor-β1 activates ΔNp63/c-Myc to promote Oral Squamous cell carcinoma

    PubMed Central

    Hu, Lihua; Li, Zhi; Liu, Jingpeng; Wang, Chunling; Nawshad, Ali

    2016-01-01

    Objective During the development of oral squamous cell carcinoma (OSCC), the transformed epithelial cells undergo increased proliferation resulting in tumor growth and invasion. Interestingly, throughout all phases of differentiation and progression of OSCC, TGFβ1 induces cell cycle arrest/apoptosis, however; the role of TGFβ1 in promoting cancer cell proliferation has not been explored in detail. The purpose of this study was to identify the effect of TGFβ1 on OSCC cell proliferation. Methods Using both human OSCC samples and cell lines (UMSCC38 and UMSCC 11B), we employed biochemical experiments to show protein, mRNA, gene expression and protein-DNA interactions during OSCC progression. Results Our results showed that TGFβ1 increased OSCC cell proliferation by up-regulating the expression of ΔNp63 and c-Myc oncogenes. While the basal OSCC cell proliferation is sustained by activating ΔNp63, increased induction of c-Myc causes unregulated OSCC cell proliferation. Following induction of the cell cycle by ΔNp63 and c-Myc, cancer cells that halt c-Myc activity undergo EMT/invasion while those that continue to express ΔNp63/c-Myc undergo unlimited progression through the cell cycle. Conclusion We conclude that OSCC proliferation is manifested by the induction of c-Myc in response to TGFβ1 signaling, which is essential for OSCC growth. Our data highlights the potential role of TGFβ1 in the induction of cancer progression and invasion of OSCC. PMID:27567435

  5. Canonical Initiation Factor Requirements of the Myc Family of Internal Ribosome Entry Segments▿ †

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Jopling, Catherine L.; Cooper, Rebecca E.; Wilson, Lindsay A.; Stoneley, Mark; Coldwell, Mark J.; Poncet, Didier; Shen, Ya-Ching; Morley, Simon J.; Bushell, Martin; Willis, Anne E.

    2009-01-01

    Initiation of protein synthesis in eukaryotes requires recruitment of the ribosome to the mRNA and its translocation to the start codon. There are at least two distinct mechanisms by which this process can be achieved; the ribosome can be recruited either to the cap structure at the 5′ end of the message or to an internal ribosome entry segment (IRES), a complex RNA structural element located in the 5′ untranslated region (5′-UTR) of the mRNA. However, it is not well understood how cellular IRESs function to recruit the ribosome or how the 40S ribosomal subunits translocate from the initial recruitment site on the mRNA to the AUG initiation codon. We have investigated the canonical factors that are required by the IRESs found in the 5′-UTRs of c-, L-, and N-myc, using specific inhibitors and a tissue culture-based assay system, and have shown that they differ considerably in their requirements. The L-myc IRES requires the eIF4F complex and the association of PABP and eIF3 with eIF4G for activity. The minimum requirements of the N- and c-myc IRESs are the C-terminal domain of eIF4G to which eIF4A is bound and eIF3, although interestingly this protein does not appear to be recruited to the IRES RNA via eIF4G. Finally, our data show that all three IRESs require a ternary complex, although in contrast to c- and L-myc IRESs, the N-myc IRES has a lesser requirement for a ternary complex. PMID:19124605

  6. Anti-apoptotic A1 is not essential for lymphoma development in Eµ-Myc mice but helps sustain transplanted Eµ-Myc tumour cells.

    PubMed

    Mensink, Mark; Anstee, Natasha S; Robati, Mikara; Schenk, Robyn L; Herold, Marco J; Cory, Suzanne; Vandenberg, Cassandra J

    2018-03-01

    The transcription factor c-MYC regulates a multiplicity of genes involved in cellular growth, proliferation, metabolism and DNA damage response and its overexpression is a hallmark of many tumours. Since MYC promotes apoptosis under conditions of stress, such as limited availability of nutrients or cytokines, MYC-driven cells are very much dependent on signals that inhibit cell death. Stress signals trigger apoptosis via the pathway regulated by opposing fractions of the BCL-2 protein family and previous genetic studies have shown that the development of B lymphoid tumours in Eµ-Myc mice is critically dependent on expression of pro-survival BCL-2 relatives MCL-1, BCL-W and, to a lesser extent, BCL-X L , but not BCL-2 itself, and that sustained growth of these lymphomas is dependent on MCL-1. Using recently developed mice that lack expression of all three functional pro-survival A1 genes, we show here that the kinetics of lymphoma development in Eµ-Myc mice and the competitive repopulation capacity of Eµ-Myc haemopoietic stem and progenitor cells is unaffected by the absence of A1. However, conditional loss of a single remaining functional A1 gene from transplanted A1-a -/- A1-b fl/fl A1-c -/- Eµ-Myc lymphomas slowed their expansion, significantly extending the life of the transplant recipients. Thus, A1 contributes to the survival of malignant Eµ-Myc-driven B lymphoid cells. These results strengthen the case for BFL-1, the human homologue of A1, being a valid target for drug development for MYC-driven tumours.

  7. Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seong-Su; Tompkins, Van S.; Son, Dong-Ju

    2013-07-12

    Highlights: •Mouse model of human Burkitt lymphoma revealed cancer inhibition by PL. •Treatment with PL led to apoptosis of malignant but not normal B cells. •PL inhibited LMP1–NF-κB–Myc-dependent target genes including p21-encoding Cdkn1a. •PL holds promise for new interventions approaches to hematologic malignancies. -- Abstract: Piperlongumine (PL), isolated from the fruit of Long pepper, Piper longum, is a cancer-inhibiting compound that selectively kills tumor cells while sparing their normal counterparts. Here we evaluated the efficacy with which PL suppresses malignant B cells derived from a newly developed, double-transgenic mouse model of human endemic Burkitt lymphoma (BL), designated mCD40-LMP1/iMyc{sup Eμ}. PLmore » inhibited tumor cell proliferation in a concentration-dependent manner and induced apoptosis of neoplastic but not normal B cells. Treatment with PL resulted in downregulation of EBV-encoded LMP1, cellular Myc, constitutive NF-κB activity, and a host of LMP1-Myc-NF-κB-regulated target genes including Aurka, Bcat1, Bub1b, Ccnb1, Chek1, Fancd2, Tfrc and Xrcc6. Of note, p21{sup Cip1}-encoding Cdkn1a was suppressed independent of changes in Trp53 mRNA levels and p53 DNA-binding activity. Considering the central role of the LMP1–NF-κB–Myc axis in B-lineage neoplasia, these findings further our understanding of the mechanisms by which PL inhibits B-lymphoma and provide a preclinical rationale for the inclusion of PL in new interventions in blood cancers.« less

  8. Tumor-associated macrophages promote neuroblastoma via STAT3 phosphorylation and up-regulation of c-MYC

    PubMed Central

    Hadjidaniel, Michael D.; Muthugounder, Sakunthala; Hung, Long T.; Sheard, Michael A.; Shirinbak, Soheila; Chan, Randall Y.; Nakata, Rie; Borriello, Lucia; Malvar, Jemily; Kennedy, Rebekah J.; Iwakura, Hiroshi; Akamizu, Takashi; Sposto, Richard; Shimada, Hiroyuki; DeClerck, Yves A.; Asgharzadeh, Shahab

    2017-01-01

    Tumor-associated macrophages (TAMs) are strongly associated with poor survival in neuroblastomas that lack MYCN amplification. To study TAM action in neuroblastomas, we used a novel murine model of spontaneous neuroblastoma lacking MYCN amplification, and observed recruitment and polarization of TAMs, which in turn enhanced neuroblastoma proliferation and growth. In both murine and human neuroblastoma cells, we found that TAMs increased STAT3 activation in neuroblastoma cells and transcriptionally up-regulated the MYC oncogene. Analysis of human neuroblastoma tumor specimens revealed that MYC up-regulation correlates with markers of TAM infiltration. In an IL6ko neuroblastoma model, the absence of IL-6 protein had no effect on tumor development and prevented neither STAT3 activation nor MYC up-regulation. In contrast, inhibition of JAK-STAT activation using AZD1480 or the clinically admissible inhibitor ruxolitinib significantly reduced TAM-mediated growth of neuroblastomas implanted subcutaneously in NOD scid gamma mice. Our results point to a unique mechanism in which TAMs promote tumor cells that lack amplification of an oncogene common to the malignancy by up-regulating transcriptional expression of a distinct oncogene from the same gene family, and underscore the role of IL-6-independent activation of STAT3 in this mechanism. Amplification of MYCN or constitutive up-regulation of MYC protein is observed in approximately half of high-risk tumors; our findings indicate a novel role of TAMs as inducers of MYC expression in neuroblastomas lacking independent oncogene activation. PMID:29207662

  9. MYC Mediates mRNA Cap Methylation of Canonical Wnt/β-catenin Signaling Transcripts by Recruiting CDK7 and RNA Methyltransferase

    PubMed Central

    Posternak, Valeriya; Ung, Matthew H.; Cheng, Chao; Cole, Michael D.

    2016-01-01

    MYC is a pleiotropic transcription factor that activates and represses a wide range of target genes and is frequently deregulated in human tumors. While much is known about the role of MYC in transcriptional activation and repression, MYC can also regulate mRNA cap methylation through a mechanism that has remained poorly understood. Here it is reported that MYC enhances mRNA cap methylation of transcripts globally, specifically increasing mRNA cap methylation of genes involved in Wnt/β-catenin signaling. Elevated mRNA cap methylation of Wnt signaling transcripts in response to MYC leads to augmented translational capacity, elevated protein levels, and enhanced Wnt signaling activity. Mechanistic evidence indicates that MYC promotes recruitment of RNA methyltransferase (RNMT) to Wnt signaling gene promoters by enhancing phosphorylation of serine 5 on the RNA Polymerase II Carboxy-Terminal Domain, mediated in part through an interaction between the TIP60 acetyltransferase complex and TFIIH. Implications MYC enhances mRNA cap methylation above and beyond transcriptional induction. PMID:27899423

  10. The effect of Glut1 and c-myc on prognosis in esophageal squamous cell carcinoma of Kazakh and Han patients.

    PubMed

    Zhou, Ya-Xing; Zhou, Ke-Ming; Liu, Qian; Wang, Hui; Wang, Wen; Shi, Yi; Ma, Yu-Qing

    2018-04-09

    Glucose transporter type 1 (Glut1) plays a crucial role in cancer-specific metabolism. We explored the expression of Glut1 and c-myc, the relationship between them and the effect of Glut1, c-myc on prognosis in esophageal squamous cell carcinoma. Immunohistochemistry was used to examine the expression of Glut1 and c-myc. χ 2 test analyzes the relationship between c-myc, Glut1 and pathological parameters. Spearman correlation analyzes the relationship between c-myc and Glut1. Survival analysis was used to investigate the effect of Glut1 and c-myc on prognosis. Glut1 positivity was associated with tumor size (p < 0.01), depth of invasion (p = 0.021), tumor, node, metastasis (TNM) stage (IA+IB,II+IIB,IIIA+IIIB,IVA+IVB ; p = 0.004), lymph node metastasis (p = 0.002) and nerve invasion (p = 0.050). C-myc positivity was associated with tumor location (p = 0.015), depth of invasion (p = 0.022) and lymph node metastasis (p = 0.035). There was a positive correlation between c-myc and Glut1 (r = 0.321). Patients with Glut1 c-myc co-expression had poorer prognosis. Inhibiting Glut1 c-myc co-expression may improve the prognosis of esophageal squamous cell carcinoma.

  11. Pre-clinical analysis of changes in intra-cellular biochemistry of glioblastoma multiforme (GBM) cells due to c-Myc silencing.

    PubMed

    Rajagopalan, Vishal; Vaidyanathan, Muthukumar; Janardhanam, Vanisree Arambakkam; Bradner, James E

    2014-10-01

    Glioblastoma Multiforme (GBM) is an aggressive form of brain Tumor that has few cures. In this study, we analyze the anti-proliferative effects of a new molecule JQ1 against GBMs induced in Wistar Rats. JQ1 is essentially a Myc inhibitor. c-Myc is also known for altering the biochemistry of a tumor cell. Therefore, the study is intended to analyze certain other oncogenes associated with c-Myc and also the change in cellular biochemistry upon c-Myc inhibition. The quantitative analysis of gene expression gave a co-expressive pattern for all the three genes involved namely; c-Myc, Bcl-2, and Akt. The cellular biochemistry analysis by transmission electron microscopy revealed high glycogen and lipid aggregation in Myc inhibited cells and excessive autophagy. The study demonstrates the role of c-Myc as a central metabolic regulator and Bcl-2 and Akt assisting in extending c-Myc half-life as well as in regulation of autophagy, so as to regulate cell survival on the whole. The study also demonstrates that transient treatment by JQ1 leads to aggressive development of tumor and therefore, accelerating death, emphasizing the importance of dosage fixation, and duration for clinical use in future.

  12. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  13. Preparation and evaluation of nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene.

    PubMed

    Ma, Tao; Jiang, Jin-Ling; Liu, Ying; Ye, Zheng-Bao; Zhang, Jun

    2014-09-01

    c-Myc plays a key role in glioma cancer stem cell maintenance. A drug delivery system, nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene (NPs-c-Myc-siRNA-pDNAs), for the treatment of glioma, has not previously been reported. NPs-c-Myc-siRNA-pDNAs were prepared and evaluated in vitro. Three kinds of c-Myc-siRNA fragments were separately synthesized and linked with empty siRNA expression vectors in the mole ratio of 3:1 by T4 DNA ligase. The linked products were then separately transfected into Escherichia coli. DH5α followed by extraction with Endofree plasmid Mega kit (Qiagen, Hilden, Germany) obtained c-Myc-siRNA-pDNAs. Finally, the recombinant c-Myc-siRNA3-pDNAs, generating the highest transfection efficiency and the greatest apoptotic ability, were chosen for encapsulation into NPs by the double-emulsion solvent-evaporation procedure, followed by stability, transfection efficiency, as well as qualitative and quantitative apoptosis evaluation. NPs-c-Myc-siRNA3-pDNAs were obtained with spherical shape in uniform size below 150 nm, with the zeta potential about -18 mV, the encapsulation efficiency and loading capacity as 76.3 ± 5.4% and 1.91 ± 0.06%, respectively. The stability results showed that c-Myc-siRNA3-pDNAs remained structurally and functionally stable after encapsulated into NPs, and NPs could prevent the loaded c-Myc-siRNA3-pDNAs from DNase degradation. The transfection efficiency of NPs-c-Myc-siRNA3-pDNAs was proven to be positive. Furthermore, NPs-c-Myc-siRNA3-pDNAs produced significant apoptosis with the apoptotic rate at 24.77 ± 5.39% and early apoptosis cells observed. Methoxy-poly-(ethylene-glycol)-poly-(lactide-co-glycolide) nanoparticles (MPEG-PLGA-NPs) are potential delivery carriers for c-Myc-siRNA3-pDNAs.

  14. N-Myc down regulation induced differentiation, early cell cycle exit, and apoptosis in human malignant neuroblastoma cells having wild type or mutant p53.

    PubMed

    Janardhanan, Rajiv; Banik, Naren L; Ray, Swapan K

    2009-11-01

    Neuroblastomas, which mostly occur in children, are aggressive metastatic tumors of the sympathetic nervous system. The failure of the previous therapeutic regimens to target multiple components of N-Myc pathway resulted in poor prognosis. The present study investigated the efficacy of the combination of N-(4-hydroxyphenyl) retinamide (4-HPR, 0.5 microM) and genistein (GST, 25 microM) to control the growth of human neuroblastoma cells (SH-SY5Y and SK-N-BE2) harboring divergent molecular attributes. Combination of 4-HPR and GST down regulated N-Myc, Notch-1, and Id2 to induce neuronal differentiation. Transition to neuronal phenotype was accompanied by increase in expression of e-cadherin. Induction of neuronal differentiation was associated with decreased expression of hTERT, PCNA, survivin, and fibronectin. This is the first report that combination of 4-HPR and GST mediated reactivation of multiple tumor suppressors (p53, p21, Rb, and PTEN) for early cell cycle exit (due to G1/S phase arrest) in neuroblastoma cells. Reactivation of tumor suppressor(s) repressed N-Myc driven growth factor mediated angiogenic and invasive pathways (VEGF, b-FGF, MMP-2, and MMP-9) in neuroblastoma. Repression of angiogenic factors led to the blockade of components of mitogenic pathways [phospho-Akt (Thr 308), p65 NF-kappaB, and p42/44 Erk 1/2]. Taken together, the combination of 4-HPR and GST effectively blocked survival, mitogenic, and angiogenic pathways and activated proteases for apoptosis in neuroblastoma cells. These results suggested that combination of 4-HPR and GST could be effective for controlling the growth of heterogeneous human neuroblastoma cell populations.

  15. MYC-induced cancer cell energy metabolism and therapeutic opportunities.

    PubMed

    Dang, Chi V; Le, Anne; Gao, Ping

    2009-11-01

    Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which links altered cellular metabolism to tumorigenesis. c-Myc regulates genes involved in the biogenesis of ribosomes and mitochondria, and regulation of glucose and glutamine metabolism. With E2F1, c-Myc induces genes involved in nucleotide metabolism and DNA replication, and microRNAs that homeostatically attenuate E2F1 expression. With the hypoxia inducible transcription factor HIF-1, ectopic c-Myc cooperatively induces a transcriptional program for hypoxic adaptation. Myc regulates gene expression either directly, such as glycolytic genes including lactate dehydrogenase A (LDHA), or indirectly, such as repression of microRNAs miR-23a/b to increase glutaminase (GLS) protein expression and glutamine metabolism. Ectopic MYC expression in cancers, therefore, could concurrently drive aerobic glycolysis and/or oxidative phosphorylation to provide sufficient energy and anabolic substrates for cell growth and proliferation in the context of the tumor microenvironment. Collectively, these studies indicate that Myc-mediated altered cancer cell energy metabolism could be translated for the development of new anticancer therapies.

  16. The Role of c-Myc and miRNAs on EMT and the TGF-betaSwitch in Primary Intermediate Basal Cells Isolated From Prostate Cancer

    DTIC Science & Technology

    2013-03-01

    beta alone and suggested that we attempt to understand the role of ras signaling, as myc is known to be activated downstream of ras( Compere et al...epithelial-mesenchymal transition and invasion in prostate cancer. Carcinogenesis 33, 1965-1975. Compere , S.J., Baldacci, P., Sharpe, A.H., Thompson

  17. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme

    PubMed Central

    Falchetti, Maria Laura; Illi, Barbara; Bozzo, Francesca; Valle, Cristiana; Helmer-Citterich, Manuela; Ferrè, Fabrizio; Nasi, Sergio; Levi, Andrea

    2016-01-01

    The c-MYC oncoprotein is a DNA binding transcription factor that enhances the expression of many active genes. c-MYC transcriptional signatures vary according to the transcriptional program defined in each cell type during differentiation. Little is known on the involvement of c-MYC in regulation of gene expression programs that are induced by extracellular cues such as a changing microenvironment. Here we demonstrate that inhibition of c-MYC in glioblastoma multiforme cells blunts hypoxia-dependent glycolytic reprogramming and mitochondria fragmentation in hypoxia. This happens because c-MYC inhibition alters the cell transcriptional response to hypoxia and finely tunes the expression of a subset of Hypoxia Inducible Factor 1-regulated genes. We also show that genes whose expression in hypoxia is affected by c-MYC inhibition are able to distinguish the Proneural subtype of glioblastoma multiforme, thus potentially providing a molecular signature for this class of tumors that are the least tractable among glioblastomas. PMID:27119353

  18. c-myc, c-fos, and c-jun regulation in the regenerating livers of normal and H-2K/c-myc transgenic mice.

    PubMed Central

    Morello, D; Fitzgerald, M J; Babinet, C; Fausto, N

    1990-01-01

    We investigated the mechanisms of regulation of c-myc, c-fos, and c-jun at the early stages of liver regeneration in mice. We show that the transient increase in steady-state levels of c-myc mRNA at the start of liver regeneration is most probably regulated by posttranscriptional mechanisms. Although there was a marked increase in c-myc transcriptional initiation shortly after partial hepatectomy, a block in elongation prevented the completion of most transcripts. To gain further information on the mechanism of regulation of c-myc expression during liver regeneration, we used transgenic mice harboring the human c-myc gene driven by the H-2K promoter. In these animals, the murine c-myc responded to the growth stimulus generated by partial hepatectomy, whereas the expression of the transgene was constitutive and did not change in the regenerating liver. However, the mRNA from both genes increased markedly after cycloheximide injection, suggesting that the regulation of c-myc mRNA abundance in the regenerating liver differs from that occurring after protein synthesis inhibition. Furthermore, we show that in normal mice c-fos and c-jun mRNA levels and transcriptional rates increase within 30 min after partial hepatectomy. c-fos transcriptional elongation was restricted in nongrowing liver, but the block was partially relieved in the regenerating liver. Nevertheless, for both c-fos and c-jun, changes in steady-state mRNA detected after partial hepatectomy were much greater than the transcriptional increase. In the regenerating liver of H-2K/c-myc mice, c-fos and c-jun expression was diminished, whereas mouse c-myc expression was enhanced in comparison with that in nontransgenic animals. Images PMID:2111449

  19. Ad E1A 243R oncoprotein promotes association of proto-oncogene product MYC with the NuA4/Tip60 complex via the E1A N-terminal repression domain.

    PubMed

    Zhao, Ling-Jun; Loewenstein, Paul M; Green, Maurice

    2016-12-01

    The adenovirus E1A 243R oncoprotein targets TRRAP, a scaffold protein that assembles histone acetyltransferase (HAT) complexes, such as the NuA4/Tip60 complex which mediates transcriptional activity of the proto-oncogene MYC and helps determine the cancer cell phenotype. How E1A transforms cells through TRRAP remains obscure. We performed proteomic analysis with the N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) and showed that E1A 1-80 interacts with TRRAP, p400, and three other members of the NuA4 complex - DMAP1, RUVBL1 and RUVBL2 - not previously shown to associate with E1A 243R. E1A 1-80 interacts with these NuA4 components and MYC through the E1A TRRAP-targeting domain. E1A 243R association with the NuA4 complex was demonstrated by co-immunoprecipitation and analysis with DMAP1, Tip60, and MYC. Significantly, E1A 243R promotes association of MYC/MAX with the NuA4/Tip60 complex, implicating the importance of the MYC/NuA4 pathway in cellular transformation by both MYC and E1A. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ultrafast intramolecular charge transfer with N-(4-cyanophenyl)carbazole. Evidence for a LE precursor and dual LE + ICT fluorescence.

    PubMed

    Galievsky, Victor A; Druzhinin, Sergey I; Demeter, Attila; Mayer, Peter; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2010-12-09

    The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE

  1. MYC activation is a hallmark of cancer initiation and maintenance.

    PubMed

    Gabay, Meital; Li, Yulin; Felsher, Dean W

    2014-06-02

    The MYC proto-oncogene has been implicated in the pathogenesis of most types of human tumors. MYC activation alone in many normal cells is restrained from causing tumorigenesis through multiple genetic and epigenetically controlled checkpoint mechanisms, including proliferative arrest, apoptosis, and cellular senescence. When pathologically activated in a permissive epigenetic and/or genetic context, MYC bypasses these mechanisms, enforcing many of the "hallmark" features of cancer, including relentless tumor growth associated with DNA replication and transcription, cellular proliferation and growth, protein synthesis, and altered cellular metabolism. MYC mandates tumor cell fate, by inducing stemness and blocking cellular senescence and differentiation. Additionally, MYC orchestrates changes in the tumor microenvironment, including the activation of angiogenesis and suppression of the host immune response. Provocatively, brief or even partial suppression of MYC back to its physiological levels of activation can result in the restoration of intrinsic checkpoint mechanisms, resulting in acute and sustained tumor regression, associated with tumor cells undergoing proliferative arrest, differentiation, senescence, and apoptosis, as well as remodeling of the tumor microenvironment, recruitment of an immune response, and shutdown of angiogenesis. Hence, tumors appear to be "addicted" to MYC because of both tumor cell-intrinsic, cell-autonomous and host-dependent, immune cell-dependent mechanisms. Both the trajectory and persistence of many human cancers require sustained MYC activation. Multiscale mathematical modeling may be useful to predict when tumors will be addicted to MYC. MYC is a hallmark molecular feature of both the initiation and maintenance of tumorigenesis. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Le pompage optique naturel dans le milieu astrophysique

    NASA Astrophysics Data System (ADS)

    Pecker, J.-C.

    The title of this lecture abstracts only a part of it : the importance in astrophysics of the study of non-LTE situations has become considerable, as well in the stellar atmospheres as, still more, in the study of fortuitous coincidences as a mechanism of formation of emission line nebular spectra, or of molecular interstellar « masers ». Another part of this talk underlines the role of Kastler in his time, and describes his warm personality through his public reactions in front of the nuclear armement, of the Viet-Nam and Algerian wars, of the problems of political refugees... Kastler was a great scientist ; he was also a courageous humanist. 1976 : Les accords nucléaires du Brésil : allocution d'ouverture (19 mars). Colloque sur le sujet ci-dessus. 1976 : La promotion de la culture dans le nouvel ordre économique international, allocution à l'occasion d'une table ronde sur ce thème par l'UNESCO (23-27 juin 1976) ; « Sciences et Techniques », octobre 1976. 1979 : La bête immonde (avec J.-C. Pecker), « Le Matin », 20 mars. 1979 : Appel à nos ministres (avec J.-C. Pecker), « Le Monde », 13 décembre. 1979 : Le flou, lenébreux, l'irrationnel (avec J.-C. Pecker), « Le Monde », 14 septembre. 1980 : Education à la paix, Préface, in : Publ. UNESCO. 1981 : Le vrai danger, « Le Monde », 6 août 1981. 1982 : Nucléaire civil et militaire, « Le Monde », 1er juin 1982. 1982 : Les scientifiques face à la perspective d'holocauste nucléaire (texte inédit). Le titre de cette communication en résume seulement une partie : l'importance prise en astrophysique par l'analyse des situations hors ETL est devenue considérable, qu'il s'agisse des atmosphères stellaires, ou plus encore, des coïncidences fortuites de la formation des spectres d'émission nébulaires, ou des « masers » moléculaires interstellaires. Une autre partie de cet exposé souligne lele de Kastler dans son époque, et décrit sa personnalité généreuse à travers ses r

  3. Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster.

    PubMed

    Nagy, Péter; Varga, Agnes; Pircs, Karolina; Hegedűs, Krisztina; Juhász, Gábor

    2013-01-01

    Autophagy, a lysosomal self-degradation and recycling pathway, plays dual roles in tumorigenesis. Autophagy deficiency predisposes to cancer, at least in part, through accumulation of the selective autophagy cargo p62, leading to activation of antioxidant responses and tumor formation. While cell growth and autophagy are inversely regulated in most cells, elevated levels of autophagy are observed in many established tumors, presumably mediating survival of cancer cells. Still, the relationship of autophagy and oncogenic signaling is poorly characterized. Here we show that the evolutionarily conserved transcription factor Myc (dm), a proto-oncogene involved in cell growth and proliferation, is also a physiological regulator of autophagy in Drosophila melanogaster. Loss of Myc activity in null mutants or in somatic clones of cells inhibits autophagy. Forced expression of Myc results in cell-autonomous increases in cell growth, autophagy induction, and p62 (Ref2P)-mediated activation of Nrf2 (cnc), a transcription factor promoting antioxidant responses. Mechanistically, Myc overexpression increases unfolded protein response (UPR), which leads to PERK-dependent autophagy induction and may be responsible for p62 accumulation. Genetic or pharmacological inhibition of UPR, autophagy or p62/Nrf2 signaling prevents Myc-induced overgrowth, while these pathways are dispensable for proper growth of control cells. In addition, we show that the autophagy and antioxidant pathways are required in parallel for excess cell growth driven by Myc. Deregulated expression of Myc drives tumor progression in most human cancers, and UPR and autophagy have been implicated in the survival of Myc-dependent cancer cells. Our data obtained in a complete animal show that UPR, autophagy and p62/Nrf2 signaling are required for Myc-dependent cell growth. These novel results give additional support for finding future approaches to specifically inhibit the growth of cancer cells addicted to oncogenic

  4. Early induction of c-Myc is associated with neuronal cell death.

    PubMed

    Lee, Hyun-Pil; Kudo, Wataru; Zhu, Xiongwei; Smith, Mark A; Lee, Hyoung-gon

    2011-11-14

    Neuronal cell cycle activation has been implicated in neurodegenerative diseases such as Alzheimer's disease, while the initiating mechanism of cell cycle activation remains to be determined. Interestingly, our previous studies have shown that cell cycle activation by c-Myc (Myc) leads to neuronal cell death which suggests Myc might be a key regulator of cell cycle re-entry mediated neuronal cell death. However, the pattern of Myc expression in the process of neuronal cell death has not been addressed. To this end, we examined Myc induction by the neurotoxic agents camptothecin and amyloid-β peptide in a differentiated SH-SY5Y neuronal cell culture model. Myc expression was found to be significantly increased following either treatment and importantly, the induction of Myc preceded neuronal cell death suggesting it is an early event of neuronal cell death. Since ectopic expression of Myc in neurons causes the cell cycle activation and neurodegeneration in vivo, the current data suggest that induction of Myc by neurotoxic agents or other disease factors might be a key mediator in cell cycle activation and consequent cell death that is a feature of neurodegenerative diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks.

    PubMed

    Barfeld, Stefan J; Urbanucci, Alfonso; Itkonen, Harri M; Fazli, Ladan; Hicks, Jessica L; Thiede, Bernd; Rennie, Paul S; Yegnasubramanian, Srinivasan; DeMarzo, Angelo M; Mills, Ian G

    2017-04-01

    Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Fluorescence Characterization of Gold Modified Liposomes with Antisense N-myc DNA Bound to the Magnetisable Particles with Encapsulated Anticancer Drugs (Doxorubicin, Ellipticine and Etoposide).

    PubMed

    Skalickova, Sylvie; Nejdl, Lukas; Kudr, Jiri; Ruttkay-Nedecky, Branislav; Jimenez, Ana Maria Jimenez; Kopel, Pavel; Kremplova, Monika; Masarik, Michal; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-02-25

    Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL(-1), respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene.

  7. Wnt/Myc interactions in intestinal cancer: partners in crime.

    PubMed

    Myant, Kevin; Sansom, Owen J

    2011-11-15

    Loss of the APC (adenomatous polyposis coli) gene in colorectal cancer leads to a rapid deregulation of TCF/LEF target genes. Of all these target genes, the transcription factor c-MYC appears the most critical. In this review we will discuss the interplay of Wnt and c-MYC signaling during intestinal homeostasis and transformation. Furthermore, we will discuss recent data showing that further deregulation of c-MYC levels during colorectal carcinogenesis may drive tumor progression. Moreover, understanding these additional control mechanisms may allow targeting of c-MYC during colorectal carcinogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. A Nucleus-Imaging Probe That Selectively Stabilizes a Minor Conformation of c-MYC G-quadruplex and Down-regulates c-MYC Transcription in Human Cancer Cells

    PubMed Central

    Panda, Deepanjan; Debnath, Manish; Mandal, Samir; Bessi, Irene; Schwalbe, Harald; Dash, Jyotirmayee

    2015-01-01

    The c-MYC proto-oncogene is a regulator of fundamental cellular processes such as cell cycle progression and apoptosis. The development of novel c-MYC inhibitors that can act by targeting the c-MYC DNA G-quadruplex at the level of transcription would provide potential insight into structure-based design of small molecules and lead to a promising arena for cancer therapy. Herein we report our finding that two simple bis-triazolylcarbazole derivatives can inhibit c-MYC transcription, possibly by stabilizing the c-MYC G-quadruplex. These compounds are prepared using a facile and modular approach based on Cu(I) catalysed azide and alkyne cycloaddition. A carbazole ligand with carboxamide side chains is found to be microenvironment-sensitive and highly selective for “turn-on” detection of c-MYC quadruplex over duplex DNA. This fluorescent probe is applicable to visualize the cellular nucleus in living cells. Interestingly, the ligand binds to c-MYC in an asymmetric fashion and selects the minor-populated conformer via conformational selection. PMID:26286633

  9. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice.

    PubMed

    Loftus, Róisín M; Assmann, Nadine; Kedia-Mehta, Nidhi; O'Brien, Katie L; Garcia, Arianne; Gillespie, Conor; Hukelmann, Jens L; Oefner, Peter J; Lamond, Angus I; Gardiner, Clair M; Dettmer, Katja; Cantrell, Doreen A; Sinclair, Linda V; Finlay, David K

    2018-06-14

    Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system L-amino acid transport is blocked. We identify SLC7A5 as the predominant system L-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.

  10. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc

    PubMed Central

    Sun, Xiao-Xin; He, Xia; Yin, Li; Komada, Masayuki; Sears, Rosalie C.; Dai, Mu-Shui

    2015-01-01

    c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCFFbw7 (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc’s nucleolar degradation pathway. PMID:25775507

  11. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis

    PubMed Central

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-01-01

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development. PMID:28492553

  12. p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA

    PubMed Central

    Xu, L-Z; Li, S-S; Zhou, W; Kang, Z-J; Zhang, Q-X; Kamran, M; Xu, J; Liang, D-P; Wang, C-L; Hou, Z-J; Wan, X-B; Wang, H-J; Lam, E W-F; Zhao, Z-W; Liu, Q

    2017-01-01

    Aberrant p62 overexpression has been implicated in breast cancer development. Here, we found that p62 expression was elevated in breast cancer stem cells (BCSCs), including CD44+CD24− fractions, mammospheres, ALDH1+ populations and side population cells. Indeed, short-hairpin RNA (shRNA)-mediated knockdown of p62 impaired breast cancer cells from self-renewing under anchorage-independent conditions, whereas ectopic overexpression of p62 enhanced the self-renewal ability of breast cancer cells in vitro. Genetic depletion of p62 robustly inhibited tumor-initiating frequencies, as well as growth rates of BCSC-derived tumor xenografts in immunodeficient mice. Consistently, immunohistochemical analysis of clinical breast tumor tissues showed that high p62 expression levels were linked to poorer clinical outcome. Further gene expression profiling analysis revealed that p62 was positively correlated with MYC expression level, which mediated the function of p62 in promoting breast cancer stem-like properties. MYC mRNA level was reduced upon p62 deletion by siRNA and increased with p62 overexpression in breast cancer cells, suggesting that p62 positively regulated MYC mRNA. Interestingly, p62 did not transactivate MYC promoter. Instead, p62 delayed the degradation of MYC mRNA by repressing the expression of let-7a and let-7b, thus promoting MYC mRNA stabilization at the post-transcriptional level. Consistently, let-7a and let-7b mimics attenuated p62-mediated MYC mRNA stabilization. Together, these findings unveiled a previously unappreciated role of p62 in the regulation of BCSCs, assigning p62 as a promising therapeutic target for breast cancer treatments. PMID:27345399

  13. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previouslymore » identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.« less

  14. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum

    PubMed Central

    Chen, Wenjie; Zhang, Bo; Wang, Daowen; Liu, Dengcai; Zhang, Huaigang

    2017-01-01

    Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1) transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH) transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like) of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding. PMID:28704468

  15. Cis activation of the c-myc gene in bovine papilloma virus type 1/human c-myc hybrid plasmids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modjtahedi, N.; Feunteun, J.; Brison, O.

    1988-01-01

    The c-myc gene amplification observed in human tumors is likely to represent an activation mechanism aiming at an increased transcription level. In order to evaluate the biological significance of this amplification in the malignant transformation the authors designed an experimental model that could possibly mimic this situation in vitro. They have constructed a series of plasmids which physically link the human c-myc gene to the bovine papilloma virus type 1 genome (BPV1) and therefore should be maintained as amplified episomes upon transformation of rodent cells. Anticipating that the high copy number will bring about the immortalizing capacity of the c-mycmore » gene, the constructions were introduced into primary rat embryo cells. Immortal cell lines were established by transfection of the hybrid plasmids carrying either the complete BPV1 genome or the transforming region of the viral genome. The BPV1 DNA alone or the c-myc gene alone has no activity in this assay. The analysis of the established cell lines demonstrates that the transfected plasmids are present not as free copies as anticipated but rather integrated as tandem repeats. They present data which strongly suggest that the immortalization capacity of the hybrid plasmids reflects the activation of the c-myc gene by the transactivable BPV1 enhancer. Although both the BPV1 early genes and the c-myc gene are actively transcribed, most of the cell lines do not display a transformed phenotype.« less

  16. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency

    PubMed Central

    Barna, Maria; Pusic, Aya; Zollo, Ornella; Costa, Maria; Kondrashov, Nadya; Rego, Eduardo; Rao, Pulivarthi H; Ruggero, Davide

    2008-01-01

    The Myc oncogene regulates the expression of multiple components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, Pol III, and rDNA1,2. An outstanding question is whether and how increasing the cellular protein synthesis capacity can affect the multi-step process leading to cancer. We utilized ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Eμ–Myc/+ transgenic mice to normal levels and show that in this context Myc's oncogenic potential is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a novel paradigm that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation employed to regulate the expression of selective mRNAs. We show that an aberrant increase in cap-dependent translation downstream Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (p58-PITSLRE)3-5, which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Eμ–Myc/+ mice. When accurate translational control is re-established in Eμ–Myc/+ mice, genome instability is suppressed. Our findings reveal how perturbations in translational control provide a highly specific outcome on gene expression, genome stability, and

  17. The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis.

    PubMed

    Gangappa, Sreeramaiah N; Maurya, Jay P; Yadav, Vandana; Chattopadhyay, Sudip

    2013-01-01

    Although many transcription factors and regulatory proteins have been identified and functionally characterized in light signaling pathways, photoperception to transcription remains largely fragmented. The Z-box is one of the LREs (Light responsive elements) that plays important role in the regulation of transcription during light-controlled Arabidopsis seedling development. The involvement of photoreceptors in the modulation of the activity of the Z-box containing promoters has been demonstrated. However, the role of downstream signaling components such as SPA1 and MYC2/ZBF1, which are functionally interrelated, remains unknown. In this study, we have investigated the regulation of the Z-box containing synthetic and native promoters by SPA1 and MYC2 by using stable transgenic lines. Our studies suggest that SPA1 negatively regulates the expression of CAB1 native promoter. MYC2 negatively regulates the activity of Z- and/or G-box containing synthetic as well as native promoters irrespective of light quality. Moreover, MYC2 negatively regulates the expression of Z/G-NOS101-GUS even in the darkness. Furthermore, analyses of tissue specific expression in adult plants suggest that MYC2 strongly regulates the activity of Z- and G-box containing promoters specifically in leaves and stems. In roots, whereas MYC2 positively regulates the activity of the Z-box containing synthetic promoter, it does not seem to control the activity of the G-box containing promoters. Taken together, these results provide insights into SPA1- and MYC2-mediated transcriptional regulation of the Z- and G-box containing promoters in light signaling pathways.

  18. Low expression of N-myc downstream-regulated gene 2 (NDRG2) correlates with poor prognosis in hepatoblastoma.

    PubMed

    Gödeke, Jan; Luxenburger, Elke; Trippel, Franziska; Becker, Kristina; Häberle, Beate; Müller-Höcker, Josef; von Schweinitz, Dietrich; Kappler, Roland

    2016-03-01

    Despite tremendous progress in therapy, about 30% of patients with hepatoblastoma still succumb to the disease. Thus, the development of improved therapies as well as the identification of prognostic factors are urgently needed. In the present study, expression and promoter methylation of the N-myc downstream-regulated gene (NDRG2), a tumor suppressor gene contributing to the regulation of the Wnt signalling pathway, was analysed in 38 hepatoblastoma samples by real-time reverse transcription-PCR and pyrosequencing, respectively. The NDRG2 gene was highly expressed in normal pediatric liver tissue, but was significantly downregulated in heptoblastoma primary tumors. Detailed methylation analysis of CpG sites in the NDRG2 promoter region revealed a general high degree of DNA methylation in hepatoblastoma, which correlated with the suppression of NDRG2. By analyzing clinicopathological features we could demonstrate a strong association between low NDRG2 expression and tumor metastasis. Importantly, the overall survival analysis by Kaplan-Meier revealed that high NDRG2 expression was correlated with a higher survival rate in hepatoblastoma patients. Our data show that downregulation of NDRG2 may play an important role in advanced hepatoblastomas.

  19. N-myc Downstream-Regulated Gene 1 Is Mutated in Hereditary Motor and Sensory Neuropathy–Lom

    PubMed Central

    Kalaydjieva, Luba; Gresham, David; Gooding, Rebecca; Heather, Lisa; Baas, Frank; de Jonge, Rosalein; Blechschmidt, Karin; Angelicheva, Dora; Chandler, David; Worsley, Penelope; Rosenthal, Andre; King, Rosalind H. M.; Thomas, P. K.

    2000-01-01

    Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy–Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival. PMID:10831399

  20. Airborne pollen and spores of León (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Delia; Suarez-Cervera, María; Díaz-González, Tomás; Valencia-Barrera, Rosa María

    1993-06-01

    A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter, Pinus and Quercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores ( Penicillium, Aspergillus and Cladosporium) as well as Dictyospores ( Alternaria) were the most abundant; Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.

  1. p53 and c-myc activation by Pasteurella haemolytica leukotoxin is correlated with bovine mononuclear cells apoptosis.

    PubMed

    Marcatili, A; D'Isanto, M; Vitiello, M; Galdiero, R; Galdiero, M

    2002-04-01

    To analyse the role of Pasteurella haemolytica Leukotoxin (LKT) in the mechanism of apoptotic cell death of bovine lymphocytes, we evaluated DNA fragmentation and p53 and c-myc expression. P. haemolytica strain ATCC 14003 was cultivated for LKT production. DNA fragmentation was analysed by electrophoresis on Agarose gel. DNA strand breaks in individual apoptotic cells were also detected by an in situ Terminal deoxy nucleotidyl Transferase (TdT). The Polymerase Chain Reaction (PCR) procedure was used for verified p53 and c-myc activation by P. haemolytica LKT. LKT was able to induce DNA fragmentation in a dose and time-dependent fashion. The greatest apoptotic effect was obtained using LKT at a concentration of 0.25 U. The results show that p53 and c-myc activation by LKT is correlated with apoptosis of bovine lymphocytes and monocytes. Our data suggest that LKT may have an important role in the bacterial virulence of Pasteurella haemolytica.

  2. Definition of MYC genetic heteroclonality in diffuse large B-cell lymphoma with 8q24 rearrangement and its impact on protein expression.

    PubMed

    Valera, Alexandra; Epistolio, Samantha; Colomo, Lluis; Riva, Alice; Balagué, Olga; Dlouhy, Ivan; Tzankov, Alexandar; Bühler, Marco; Haralambieva, Eugenia; Campo, Elias; Soldini, Davide; Mazzucchelli, Luca; Martin, Vittoria

    2016-08-01

    MYC rearrangement can be detected in a subgroup of diffuse large B-cell lymphoma characterized by unfavorable prognosis. In contrast to Burkitt lymphoma, the correlation between MYC rearrangement and MYC protein expression in diffuse large B-cell lymphoma is less clear, as approximately one-third of rearranged cases show negative or low expression by immunohistochemistry. To better understand whether specific characteristics of the MYC rearrangement may influence its protein expression, we investigated 43 de novo diffuse large B-cell lymphoma positive for 8q24 rearrangement by FISH, using 14 Burkitt lymphoma for comparison. Different cell populations (clones), breakpoints (classical vs non-classical FISH patterns), partner genes (IGH vs non-IGH) and immunostaining were detected and analyzed using computerized image systems. In a subgroup of diffuse large B-cell lymphoma, we observed different clones within the same tumor distinguishing the founder clone with MYC rearrangement alone from other subclones, carrying MYC rearrangement coupled with loss/extra copies of derivatives/normal alleles. This picture, which we defined MYC genetic heteroclonality, was found in 42% of cases and correlated to negative MYC expression (P=0.026). Non-classical FISH breakpoints were detected in 16% of diffuse large B-cell lymphoma without affecting expression (P=0.040). Non-IGH gene was the preferential partner of rearrangement in those diffuse large B-cell lymphoma showing MYC heteroclonality (P=0.016) and/or non-classical FISH breakpoints (P=0.058). MYC heteroclonality was not observed in Burkitt lymphoma and all cases had positive MYC expression. Non-classical FISH MYC breakpoint and non-IGH partner were found in 29 and 20% of Burkitt lymphoma, respectively. In conclusion, MYC genetic heteroclonality is a frequent event in diffuse large B-cell lymphoma and may have a relevant role in modulating MYC expression.

  3. Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc.

    PubMed

    Ruan, Yan; He, Jianrong; Wu, Wei; He, Ping; Tian, Yanping; Xiao, Lan; Liu, Gaoke; Wang, Jiali; Cheng, Yuda; Zhang, Shuo; Yang, Yi; Xiong, Jiaxiang; Zhao, Ke; Wan, Ying; Huang, He; Zhang, Junlei; Jian, Rui

    2017-07-18

    The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network. However, previous studies have predominantly focused on the role of Nac1 in psychomotor stimulant response and cancer pathogenesis. In this study, we report that Nac1 is a self-renewal promoting factor, but is not required for maintaining pluripotency of ESCs. Loss of function of Nac1 in ESCs results in a reduced proliferation rate and an enhanced differentiation propensity. Nac1 overexpression promotes ESC proliferation and delays ESC differentiation in the absence of leukemia inhibitory factor (LIF). Furthermore, we demonstrated that Nac1 directly binds to the c-Myc promoter and regulates c-Myc transcription. The study also revealed that the function of Nac1 in promoting ESC self-renewal appears to be partially mediated by c-Myc. These findings establish a functional link between the core and c-Myc-centered networks and provide new insights into mechanisms of stemness regulation in ESCs and cancer.

  4. Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics.

    PubMed

    Udager, Aaron M; DeMarzo, Angelo M; Shi, Yang; Hicks, Jessica L; Cao, Xuhong; Siddiqui, Javed; Jiang, Hui; Chinnaiyan, Arul M; Mehra, Rohit

    2016-06-01

    Recurrent ERG gene fusions, the most common genetic alterations in prostate cancer, drive overexpression of the nuclear transcription factor ERG, and are early clonal events in prostate cancer progression. The nuclear transcription factor MYC is also frequently overexpressed in prostate cancer and may play a role in tumor initiation and/or progression. The relationship between nuclear ERG and MYC protein overexpression in prostate cancer, as well as the clinicopathologic characteristics and prognosis of ERG-positive/MYC high tumors, is not well understood. Immunohistochemistry (IHC) for ERG and MYC was performed on formalin-fixed, paraffin-embedded tissue from prostate cancer tissue microarrays (TMAs), and nuclear staining was scored semi-quantitatively (IHC product score range = 0-300). Correlation between nuclear ERG and MYC protein expression and association with clinicopathologic parameters and biochemical recurrence after radical prostatectomy was assessed. 29.1% of all tumor nodules showed concurrent nuclear ERG and MYC protein overexpression (i.e., ERG-positive/MYC high), including 35.0% of secondary nodules. Overall, there was weak positive correlation between ERG and MYC expression across all tumor nodules (rpb  = 0.149, P = 0.045), although this correlation was strongest in secondary nodules (rpb  = 0.520, P = 0.019). In radical prostatectomy specimens, ERG-positive/MYC high tumors were positively associated with the presence of extraprostatic extension (EPE), relative to all other ERG/MYC expression subgroups, however, there was no significant association between concurrent nuclear ERG and MYC protein overexpression and time to biochemical recurrence. Concurrent nuclear ERG and MYC protein overexpression is common in prostate cancer and defines a subset of locally advanced tumors. Recent data indicates that BET bromodomain proteins regulate ERG gene fusion and MYC gene expression in prostate cancer, suggesting possible synergistic

  5. Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature

    PubMed Central

    Vazquez-Martin, Alejandro; Anatskaya, Olga V.; Giuliani, Alessandro; Erenpreisa, Jekaterina; Huang, Sui; Salmina, Kristine; Inashkina, Inna; Huna, Anda; Nikolsky, Nikolai N.; Vinogradov, Alexander E.

    2016-01-01

    The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer. PMID:27655693

  6. LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence

    PubMed Central

    Lin, Zhefeng; Alexander, Lucy; Hackett, Rachel; Grierson, Don

    2008-01-01

    Arabidopsis AtCTR1 is a Raf-like protein kinase that interacts with ETR1 and ERS and negatively regulates ethylene responses. In tomato, several CTR1-like proteins could perform this role. We have characterized LeCTR2, which has similarity to AtCTR1 and also to EDR1, a CTR1-like Arabidopsis protein involved in defence and stress responses. Protein–protein interactions between LeCTR2 and six tomato ethylene receptors indicated that LeCTR2 interacts preferentially with the subfamily I ETR1-type ethylene receptors LeETR1 and LeETR2, but not the NR receptor or the subfamily II receptors LeETR4, LeETR5 and LeETR6. The C-terminus of LeCTR2 possesses serine/threonine kinase activity and is capable of auto-phosphorylation and phosphorylation of myelin basic protein in vitro. Overexpression of the LeCTR2 N-terminus in tomato resulted in altered growth habit, including reduced stature, loss of apical dominance, highly branched inflorescences and fruit trusses, indeterminate shoots in place of determinate flowers, and prolific adventitious shoot development from the rachis or rachillae of the leaves. Expression of the ethylene-responsive genes E4 and chitinase B was upregulated in transgenic plants, but ethylene production and the level of mRNA for the ethylene biosynthetic gene ACO1 was unaffected. The leaves and fruit of transgenic plants also displayed enhanced susceptibility to infection by the fungal pathogen Botrytis cinerea, which was associated with much stronger induction of pathogenesis-related genes such as PR1b1 and chitinase B compared with the wild-type. The results suggest that LeCTR2 plays a role in ethylene signalling, development and defence, probably through its interactions with the ETR1-type ethylene receptors of subfamily I. PMID:18346193

  7. Expression of p27 and c-Myc by immunohistochemistry in breast ductal cancers in African American women.

    PubMed

    Khan, Farhan; Ricks-Santi, Luisel J; Zafar, Rabia; Kanaan, Yasmine; Naab, Tammey

    2018-06-01

    Proteins p27 and c-Myc are both key players in the cell cycle. While p27, a tumor suppressor, inhibits progression from G1 to S phase, c-Myc, a proto-oncogene, plays a key role in cell cycle regulation and apoptosis. The objective of our study was to determine the association between expression of c-Myc and the loss of p27 by immunohistochemistry (IHC) in the four major subtypes of breast cancer (BC) (Luminal A, Luminal B, HER2, and Triple Negative) and with other clinicopathological factors in a population of 202 African-American (AA) women. Tissue microarrays (TMAs) were constructed from FFPE tumor blocks from primary ductal breast carcinomas in 202 AA women. Five micrometer sections were stained with a mouse monoclonal antibody against p27 and a rabbit monoclonal antibody against c-Myc. The sections were evaluated for intensity of nuclear reactivity (1-3) and percentage of reactive cells; an H-score was derived from the product of these measurements. Loss of p27 expression and c-Myc overexpression showed statistical significance with ER negative (p < 0.0001), PR negative (p < 0.0001), triple negative (TN) (p < 0.0001), grade 3 (p = 0.038), and overall survival (p = 0.047). There was no statistical significant association between c-Myc expression/p27 loss and luminal A/B and Her2 overexpressing subtypes. In our study, a statistically significant association between c-Myc expression and p27 loss and the triple negative breast cancers (TNBC) was found in AA women. A recent study found that constitutive c-Myc expression is associated with inactivation of the axin 1 tumor suppressor gene. p27 inhibits cyclin dependent kinase2/cyclin A/E complex formation. Axin 1 and CDK inhibitors may represent possible therapeutic targets for TNBC. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway.

    PubMed

    Subramaniam, Kavita S; Omar, Intan Sofia; Kwong, Soke Chee; Mohamed, Zahurin; Woo, Yin Ling; Mat Adenan, Noor Azmi; Chung, Ivy

    2016-01-01

    Cancer-associated fibroblasts (CAFs) secrete various pro-tumorigenic cytokines, yet the role of these cytokines in the progression of endometrial cancer remains unclear. We found that CAFs isolated from human endometrial cancer (EC) tissues secreted high levels of interleukin-6 (IL-6), which promotes EC cell proliferation in vitro. Neutralizing IL-6 in CAF-conditioned media reduced (47% inhibition) while IL-6 recombinant protein increased cell proliferation (~2.4 fold) of both EC cell lines and primary cultures. IL-6 receptors (IL-6R and gp130) were expressed only in EC epithelial cells but not in CAF, indicating a one-way paracrine signaling. In the presence of CAF-conditioned media, Janus kinase/signal transducers and activators of transcription (JAK/STAT3) pathway was activated in EC cells. Treatment with JAK and STAT3 specific inhibitors, AD412 and STATTIC, respectively, significantly abrogated CAF-mediated cell proliferation, indicating the role of IL-6 activation in EC cell proliferation. We further showed that one of STAT-3 target genes, c-Myc, was highly induced in EC cells after exposure to CAF-conditioned medium at both mRNA (>105-fold vs. control) and protein level (>2-fold vs. control). EC cell proliferation was dependent on c-Myc expression, as RNAi-mediated c-Myc down-regulation led to a significant 46% reduction in cell viability when compared with scrambled control. Interestingly, CAF-conditioned media failed to promote proliferation in EC cells with reduced c-Myc expression, suggesting that CAF-mediated cell proliferation was also dependent on c-Myc expression. Subcutaneous tumor xenograft model showed that EC cells grew at least 1.4 times larger when co-injected with CAF, when compared to those injected with EC cells alone. Mice injected with EC cells with down-regulated c-Myc expression, however, showed at least 2.5 times smaller tumor compared to those in control group. Notably, there was no increase of tumor size when co-injected with CAFs

  9. Myeloblastic leukemia cells conditionally blocked by myc-estrogen receptor chimeric transgenes for terminal differentiation coupled to growth arrest and apoptosis.

    PubMed

    Selvakumaran, M; Liebermann, D; Hoffman-Liebermann, B

    1993-05-01

    Conditional mutants of the myeloblastic leukemic M1 cell line, expressing the chimeric mycer transgene, have been established. It is shown that M1 mycer cells, like M1, undergo terminal differentiation coupled to growth arrest and programmed cell death (apoptosis) after treatment with the physiologic differentiation inducer interleukin-6. However, when beta-estradiol is included in the culture medium, M1 mycer cells respond to differentiation inducers like M1 myc cell lines, where the differentiation program is blocked at an intermediate stage. By manipulating the function of the mycer transgene product, it is shown that there is a 10-hour window during myeloid differentiation, from 30 to 40 hours after the addition of the differentiation inducer, when the terminal differentiation program switches from being dependent on c-myc suppression to becoming c-myc suppression independent, where activation of c-myc has no apparent effect on mature macrophages. M1 mycer cell lines provide a powerful tool to increase our understanding of the role of c-myc in normal myelopoiesis and in leukemogenesis, also providing a strategy to clone c-myc target genes.

  10. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    PubMed

    Allevato, Michael; Bolotin, Eugene; Grossman, Mark; Mane-Padros, Daniel; Sladek, Frances M; Martinez, Ernest

    2017-01-01

    The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX) bind Enhancer box (E-box) DNA elements (CANNTG) and have the greatest affinity for the canonical MYC E-box (CME) CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87%) of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  11. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−}more » HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.« less

  12. Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer

    PubMed Central

    Dai, Donghai; Meng, Xiangbing; Thiel, Kristina W.; Leslie, Kimberly K.; Yang, Shujie

    2016-01-01

    Endometrial cancer, the most common gynecologic malignancy, is a hormonally-regulated disease. Response to progestin therapy positively correlates with hormone receptor expression, in particular progesterone receptor (PR). However, many advanced tumors lose PR expression. We recently reported that the efficacy of progestin therapy can be significantly enhanced by combining progestin with epigenetic modulators, which we term “molecularly enhanced progestin therapy.” What remained unclear was the mechanism of action and if estrogen receptor α (ERα), the principle inducer of PR, is necessary to restore functional expression of PR via molecularly enhanced progestin therapy. Therefore, we modeled advanced endometrial tumors that have lost both ERα and PR expression by generating ERα-null endometrial cancer cell lines. CRISPR-Cas9 technology was used to delete ERα at the genomic level. Our data demonstrate that treatment with a histone deacetylase inhibitor (HDACi) was sufficient to restore functional PR expression, even in cells devoid of ERα. Our studies also revealed that HDACi treatment results in marked downregulation of the oncogene Myc. We established that PR is a negative transcriptional regulator of Myc in endometrial cancer in the presence or absence of ERα, which is in contrast to studies in breast cancer cells. First, estrogen stimulation augmented PR expression and decreased Myc in endometrial cancer cell lines. Second, progesterone increased PR activity yet blunted Myc mRNA and protein expression. Finally, overexpression of PR by adenoviral transduction in ERα-null endometrial cancer cells significantly decreased expression of Myc and Myc-regulated genes. Analysis of the Cancer Genome Atlas (TCGA) database of endometrial tumors identified an inverse correlation between PR and Myc mRNA levels, with a corresponding inverse correlation between PR and Myc downstream transcriptional targets SRD5A1, CDK2 and CCNB1. Together, these data reveal a

  13. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC

    PubMed Central

    Liu, Wei; Le, Anne; Hancock, Chad; Lane, Andrew N.; Dang, Chi V.; Fan, Teresa W.-M.; Phang, James M.

    2012-01-01

    In addition to glycolysis, the oncogenic transcription factor c-MYC (MYC) stimulates glutamine catabolism to fuel growth and proliferation of cancer cells through up-regulating glutaminase (GLS). Glutamine is converted to glutamate by GLS, entering the tricarboxylic acid cycle as an important energy source. Less well-recognized, glutamate can also be converted to proline through Δ1-pyrroline-5-carboxylate (P5C) and vice versa. This study suggests that some MYC-induced cellular effects are due to MYC regulation of proline metabolism. Proline oxidase, also known as proline dehydrogenase (POX/PRODH), the first enzyme in proline catabolism, is a mitochondrial tumor suppressor that inhibits proliferation and induces apoptosis. MiR-23b* mediates POX/PRODH down-regulation in human kidney tumors. MiR-23b* is processed from the same transcript as miR-23b; the latter inhibits the translation of GLS. Using MYC-inducible human Burkitt lymphoma model P493 and PC3 human prostate cancer cells, we showed that MYC suppressed POX/PRODH expression primarily through up-regulating miR-23b*. The growth inhibition in the absence of MYC was partially reversed by POX/PRODH knockdown, indicating the importance of suppression of POX/PRODH in MYC-mediated cellular effects. Interestingly, MYC not only inhibited POX/PRODH, but also markedly increased the enzymes of proline biosynthesis from glutamine, including P5C synthase and P5C reductase 1. MYC-induced proline biosynthesis from glutamine was directly confirmed using 13C,15N-glutamine as a tracer. The metabolic link between glutamine and proline afforded by MYC emphasizes the complexity of tumor metabolism. Further studies of the relationship between glutamine and proline metabolism should provide a deeper understanding of tumor metabolism while enabling the development of novel therapeutic strategies. PMID:22615405

  14. Infection by Toxoplasma gondii Specifically Induces Host c-Myc and the Genes This Pivotal Transcription Factor Regulates

    PubMed Central

    Franco, Magdalena; Shastri, Anjali J.

    2014-01-01

    Toxoplasma gondii infection has previously been described to cause dramatic changes in the host transcriptome by manipulating key regulators, including STATs, NF-κB, and microRNAs. Here, we report that Toxoplasma tachyzoites also mediate rapid and sustained induction of another pivotal regulator of host cell transcription, c-Myc. This induction is seen in cells infected with all three canonical types of Toxoplasma but not the closely related apicomplexan parasite Neospora caninum. Coinfection of cells with both Toxoplasma and Neospora still results in an increase in the level of host c-Myc, showing that c-Myc is actively upregulated by Toxoplasma infection (rather than repressed by Neospora). We further demonstrate that this upregulation may be mediated through c-Jun N-terminal protein kinase (JNK) and is unlikely to be a nonspecific host response, as heat-killed Toxoplasma parasites do not induce this increase and neither do nonviable parasites inside the host cell. Finally, we show that the induced c-Myc is active and that transcripts dependent on its function are upregulated, as predicted. Hence, c-Myc represents an additional way in which Toxoplasma tachyzoites have evolved to specifically alter host cell functions during intracellular growth. PMID:24532536

  15. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells.

    PubMed

    Shin, Jae-Moon; Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Bae, Young-Seuk; Chang, Young-Chae

    2016-05-01

    4-O-Methyl-ascochlorin (MAC) is a methylated derivative of the prenyl-phenol antibiotic ascochlorin, which was isolated from an incomplete fungus, Ascochyta viciae. Although the effects of MAC on apoptosis have been reported, the underlying mechanisms remain unknown. Here, we show that MAC promoted apoptotic cell death and downregulated c-Myc expression in K562 human leukemia cells. The effect of MAC on apoptosis was similar to that of 10058-F4 (a c-Myc inhibitor) or c-Myc siRNA, suggesting that the downregulation of c-Myc expression plays a role in the apoptotic effect of MAC. Further investigation showed that MAC downregulated c-Myc by inhibiting protein synthesis. MAC promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins, including p70S6 K and 4E-BP-1. Treatment of cells with AICAR (an AMPK activator), rapamycin (an mTOR inhibitor), or mTOR siRNA downregulated c-Myc expression and induced apoptosis to a similar extent to that of MAC. These results suggest that the effect of MAC on apoptosis induction in human leukemia cells is mediated by the suppression of c-Myc protein synthesis via an AMPK/mTOR-dependent mechanism.

  16. Effect of c-myc on the ultrastructural structure of cochleae in guinea pigs with noise induced hearing loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yu; Zhong, Cuiping; Hong, Liu

    2009-12-18

    Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110more » dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.« less

  17. MYC copy number gains are associated with poor outcome in penile squamous cell carcinoma.

    PubMed

    Masferrer, Emili; Ferrándiz-Pulido, Carla; Lloveras, Belén; Masferrer-Niubò, Magalí; Espinet, Blanca; Salido, Marta; Rodríguez-Rivera, María; Alemany, Laia; Placer, Jose; Gelabert, Antoni; Servitje, Octavi; García-Patos, Vicenç; Pujol, Ramon M; Toll, Agustí

    2012-11-01

    We determined MYC gene numerical aberrations and protein expression at different stages of penile squamous cell carcinoma carcinogenesis. We correlated these findings with clinicopathological parameters and HPV infection. We evaluated 79 cases of penile squamous cell carcinoma, including 11 in situ and 68 invasive carcinomas. The MYC cytogenetic profile was evaluated by fluorescence in situ hybridization. HPV was detected by polymerase chain reaction amplification. MYC gains were identified in 4 of 11 in situ carcinomas (36%) and 50 of 68 invasive penile squamous cell carcinomas (73%). A significant association between MYC gains, and tumor progression and poor outcome was demonstrated (p <0.05). HPV DNA was detected in 32 of 79 penile squamous cell carcinomas (39%). High risk type 16 was the most prevalent type. MYC numerical aberrations did not correlate with HPV status. A significant association between HPV and MYC protein over expression was noted. In HPV negative cases MYC gains correlated with MYC over expression. MYC gains progressively increased during penile squamous cell carcinoma progression from in situ samples to metastases. MYC gains were an independent factor for poor prognosis. These findings were independent of HPV infection. MYC expression was increased in samples with HPV infection, probably reflecting direct activation of MYC. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. c-Myc oncogene expression in selected odontogenic cysts and tumors: An immunohistochemical study

    PubMed Central

    Moosvi, Zama; Rekha, K

    2013-01-01

    Aim: To investigate the role of c-Myc oncogene in selected odontogenic cysts and tumors. Materials and Methods: Ten cases each of ameloblastoma, adenomatoid odontogenic tumor (AOT), odontogenic keratocyst (OKC), dentigerous cyst, and radicular cyst were selected and primary monoclonal mouse anti-human c-Myc antibody was used in a dilution of 1: 50. Statistical Analysis was performed using Mann Whitney U test. Results: 80% positivity was observed in ameloblastoma, AOT and OKC; 50% positivity in radicular cyst and 20% positivity in dentigerous cyst. Comparison of c-Myc expression between ameloblastoma and AOT did not reveal significant results. Similarly, no statistical significance was observed when results of OKC were compared with ameloblastoma and AOT. In contrast, significant differences were seen on comparison of dentigerous cyst with ameloblastoma and AOT and radicular cyst with AOT. Conclusion: From the above data we conclude that (1) Ameloblastoma and AOT have similar proliferative potential and their biologic behavior cannot possibly be attributed to it. (2) OKC has an intrinsic growth potential which is absent in other cysts and reinforces its classification as keratocystic odontogenic tumor. PMID:23798830

  19. Large-scale identification of c-MYC-associated proteins using a combined TAP/MudPIT approach.

    PubMed

    Koch, Heike B; Zhang, Ru; Verdoodt, Berlinda; Bailey, Aaron; Zhang, Chang-Dong; Yates, John R; Menssen, Antje; Hermeking, Heiko

    2007-01-15

    The c-MYC oncogene encodes a transcription factor, which is sufficient and necessary for the induction of cellular proliferation. However, the c-MYC protein is a relatively weak transactivator suggesting that it may have other functions. To identify protein interactors which may reveal new functions or represent regulators of c-MYC we systematically identified proteins associated with c-MYC in vivo using a proteomic approach. We combined tandem affinity purification (TAP) with the mass spectral multidimensional protein identification technology (MudPIT). Thereby, 221 c-MYC-associated proteins were identified. Among them were 17 previously known c-MYC-interactors. Selected new c-MYC-associated proteins (DBC-1, FBX29, KU70, MCM7, Mi2-beta/CHD4, RNA Pol II, RFC2, RFC3, SV40 Large T Antigen, TCP1alpha, U5-116kD, ZNF281) were confirmed independently. For association with MCM7, SV40 Large T Antigen and DBC-1 the functionally important MYC-box II region was required, whereas FBX29 and Mi2-beta interacted via MYC-box II and the BR-HLH-LZ motif. In addition, regulators of c-MYC activity were identified: ectopic expression of FBX29, an E3 ubiquitin ligase, decreased c-MYC protein levels and inhibited c-MYC transactivation, whereas knock-down of FBX29 elevated the concentration of c-MYC. Furthermore, sucrose gradient analysis demonstrated that c-MYC is present in numerous complexes with varying size and composition, which may accommodate the large number of new c-MYC-associated proteins identified here and mediate the diverse functions of c-MYC. Our results suggest that c-MYC, besides acting as a mitogenic transcription factor, regulates cellular proliferation by direct association with protein complexes involved in multiple synthetic processes required for cell division, as for example DNA-replication/repair and RNA-processing. Furthermore, this first comprehensive description of the c-MYC-associated sub-proteome will facilitate further studies aimed to elucidate the biology

  20. [Alterations of c-Myc and c-erbB-2 genes in ovarian tumours].

    PubMed

    Pastor, Tibor; Popović, Branka; Gvozdenović, Ana; Boro, Aleksandar; Petrović, Bojana; Novaković, Ivana; Puzović, Dragana; Luković, Ljiljana; Milasin, Jelena

    2009-01-01

    According to clinical and epidemiological studies, ovarian cancer ranks fifth in cancer deaths among women. The causes of ovarian cancer remain largely unknown but various factors may increase the risk of developing it, such as age, family history of cancer, childbearing status etc. This cancer results from a succession of genetic alterations involving oncogenes and tumour suppressor genes, which have a critical role in normal cell growth regulation. Mutations and/or overexpression of three oncogenes, c-erbB-2, c-Myc and K-ras, and of the tumour suppressor gene p53, have been frequently observed in a sporadic ovarian cancer. The aim of the present study was to analyse c-Myc and c-erbB-2 oncogene alterations, specifically amplification, as one of main mechanisms of their activation in ovarian cancers and to establish a possible association with the pathogenic process. DNA was isolated from 15 samples of malignant and 5 benign ovarian tumours, using proteinase K digestion, followed by phenol-chloroform isoamyl extraction and ethanol precipitation. C-Myc and c-erbB-2 amplification were detected by differential PCR. The level of gene copy increase was measured using the Scion image software. The amplification of both c-Myc and c-erbB-2 was detected in 26.7% of ovarian epithelial carcinoma specimens. Only one tumour specimen concomitantly showed increased gene copy number for both studied genes. Interestingly, besides amplification, gene deletion was also detected (26.7% for c-erbB-2). Most of the ovarian carcinomas with alterations in c-Myc and c-erbB-2 belonged to advanced FIGO stages. The amplification of c-Myc and c-erbB-2 oncogenes in ovarian epithelial carcinomas is most probably a late event in the pathogenesis conferring these tumours a more aggressive biological behaviour. Similarly, gene deletions point to genomic instability in epithelial carcinomas in higher clinical stages as the result of clonal evolution and selection.

  1. Cytoplasmic expression of C-MYC protein is associated with risk stratification of mantle cell lymphoma.

    PubMed

    Gong, Yi; Zhang, Xi; Chen, Rui; Wei, Yan; Zou, Zhongmin; Chen, Xinghua

    2017-01-01

    To investigate the association of C-MYC protein expression and risk stratification in mantle cell lymphoma (MCL), and to evaluate the utility of C-MYC protein as a prognostic biomarker in clinical practice. We conducted immunohistochemical staining of C-MYC, Programmed cell death ligand 1 (PD-L1), CD8, Ki-67, p53 and SRY (sex determining region Y) -11 (SOX11) to investigate their expression in 64 patients with MCL. The staining results and other clinical data were evaluated for their roles in risk stratification of MCL cases using ANOVA, Chi-square, and Spearman's Rank correlation coefficient analysis. Immunohistochemical staining in our study indicated that SOX11, Ki-67 and p53 presented nuclear positivity of tumor cells, CD8 showed membrane positivity in infiltrating T lymphocytes while PD-L1 showed membrane and cytoplasmic positivity mainly in macrophage cells and little in tumor cells. We observed positive staining of C-MYC either in the nucleus or cytoplasm or in both subcellular locations. There were significant differences in cytoplasmic C-MYC expression, Ki-67 proliferative index of tumor cells, and CD8 positive tumor infiltrating lymphocytes (CD8+TIL) among three risk groups ( P  = 0.000, P  = 0.037 and P =0.020, respectively). However, no significant differences existed in the expression of nuclear C-MYC, SOX11, p53, and PD-L1 in MCL patients with low-, intermediate-, and high risks. In addition, patient age and serum LDH level were also significantly different among 3 groups of patients ( P  = 0.006 and P  = 0.000, respectively). Spearman's rank correlation coefficient analysis indicated that cytoplasmic C-MYC expression, Ki-67 index, age, WBC, as well as LDH level had significantly positive correlations with risk stratification ( P  = 0.000, 0.015, 0.000, 0.029 and 0.000, respectively), while CD8+TIL in tumor microenvironment negatively correlated with risk stratification of patients ( P  = 0.006). Patients with increased positive

  2. cdc25 cell cycle-activating phosphatases and c-myc expression in human non-Hodgkin's lymphomas.

    PubMed

    Hernández, S; Hernández, L; Beà, S; Cazorla, M; Fernández, P L; Nadal, A; Muntané, J; Mallofré, C; Montserrat, E; Cardesa, A; Campo, E

    1998-04-15

    cdc25A, cdc25B, and cdc25C are a family of human phosphatases that activate the cyclin-dependent kinases at different points of the cell cycle. cdc25A and cdc25B have been shown to have oncogenic potential, and they have been identified as transcriptional targets of c-myc. To determine the role of cdc25 genes in the pathogenesis of human lymphomas and their possible correlation with c-myc deregulation, we have analyzed the expression of cdc25A, cdc25B, and cdc25C and c-myc genes in a series of 63 non-Hodgkin's lymphomas and 8 nonneoplastic lymphoid tissues. The mRNA levels of the three phosphatases in the nonneoplastic tissues were negative or negligible. cdc25B overexpression was detected in 35 tumors (56%). This overexpression was more frequently found in aggressive (81%) than in indolent lymphomas (36%; P < 0.01). cdc25B overexpression was also significantly associated with a higher proliferative activity of the tumors. No cdc25B gene amplification or rearrangements were detected by Southern blot analysis. A biallelic EcoRI polymorphism of cdc25B gene was identified with a similar distribution in patients with lymphoma and in a normal population. cdc25A was overexpressed in three aggressive lymphomas. No detectable cdc25C mRNA levels were seen in any of the tumors. c-myc was overexpressed in 43% of tumors, and it correlated significantly with the presence of cdc25B up-regulation. Twenty-six of 35 (74%) lymphomas with high levels of cdc25B mRNA also showed c-myc overexpression, whereas 27 of 28 (96%) tumors without detectable or with very low cdc25B expression also had undetectable c-myc levels (P < 0.0001). In addition, a significant linear correlation was found between the cdc25B and c-myc mRNA levels (r = 0.575, P < 0.001). These findings suggest that cdc25B overexpression in non-Hodkin's lymphoma may participate in the pathogenesis of aggressive variants, and it may cooperate with c-myc oncogene in the development of these tumors.

  3. Evaluation of NKX3.1 and C-MYC expression in canine prostatic cancer.

    PubMed

    Fonseca-Alves, Carlos Eduardo; Kobayashi, Priscila Emiko; Laufer-Amorim, Renée

    2018-06-01

    NKX3.1/C-MYC cross-regulation has been reported in the normal human prostate, and loss of NKX3.1 and gain of C-MYC seem to be important events in prostate cancer development and progression. The dog can be an interesting model for human prostatic disease, and yet only one previous research study has shown deregulation of NKX3.1 and MYC in the canine prostate. To address the expression of NKX3.1 and C-MYC in different canine prostatic lesions, this study verified the gene and protein expression of NKX3.1 and C-MYC in normal canine prostatic tissues. We identified a 26 kDa band that corresponded to the NKX3.1 protein, while C-MYC showed a 50 kDa band on Western blotting analysis of all prostatic tissues. We observed that NKX3.1 protein and transcript were down-regulated in prostate cancer (PC) samples compared with non-neoplastic samples. We also observed that C-MYC protein was overexpressed in PC samples compared with normal (P = .001) and proliferative inflammatory atrophy (PIA) samples (P = .003). We found a positive correlation between NKX3.1 and C-MYC protein expression in normal and PIA samples. Interestingly, a negative correlation (NKX3.1 downregulation and MYC overexpression) was observed between NKX3.1 and MYC transcripts in PC. Thus, samples with higher C-MYC expression also exhibited higher NKX3.1 expression, which indicates the regulation of C-MYC by NKX3.1 protein. As in humans, these two genes and proteins were found to be related to canine prostate cancer. However, in contrast from what is observed in humans, in canine PC samples, the downregulation of NKX3.1 cannot be explained by DNA hypermethylation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Loss of MYC and E-box3 binding contributes to defective MYC-mediated transcriptional suppression of human MC-let-7a-1~let-7d in glioblastoma

    PubMed Central

    Wang, Zifeng; Lin, Sheng; Zhang, Ji; Xu, Zhenhua; Xiang, Yu; Yao, Hong; Ge, Lei; Xie, Dan; Kung, Hsiang-fu; Lu, Gang; Poon, Wai Sang; Liu, Quentin; Lin, Marie Chia-mi

    2016-01-01

    Previously, we reported that MYC oncoprotein down-regulates the transcription of human MC-let-7a-1~let-7d microRNA cluster in hepatocarcinoma (HCC). Surprisingly, in silico analysis indicated that let-7 miRNA expression levels are not reduced in glioblastoma (GBM). Here we investigated the molecular basis of this differential expression. Using human GBM U87 and U251 cells, we first demonstrated that forced over-expression of MYC indeed could not down-regulate the expression of human MC-let-7a-1~let-7d microRNA cluster in GBM. Furthermore, analysis of MC-let-7a-1~let-7d promoter in GBM indicated that MYC failed to inhibit the promoter activity. Pearson's correlation and Linear Regression analysis using the expression data from GSE55092 (HCC) and GSE4290 (GBM) demonstrated a converse relationship of MC-let-7a-1~let-7d and MYC only in HCC but not in GBM. To understand the underlying mechanisms, we examined whether MYC could bind to the non-canonical E-box 3 located in the promoter of MC-let-7a-1~let-7d. Results from both chromatin immune-precipitation (ChIP) and super-shift assays clearly demonstrated the loss of MYC and E-box 3 binding in GBM, suggesting for the first time that a defective MYC and E-box3 binding in GBM is responsible for the differential MYC mediated transcriptional inhibition of MC-let-7a-1~let-7d and potentially other tumor suppressors. MYC and let-7 are key oncoprotein and tumor suppressor, respectively. Understanding the molecular mechanisms of their regulations will provide new insight and have important implications in the therapeutics of GBM as well as other cancers. PMID:27409345

  5. Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice.

    PubMed

    Liao, Dezhong Joshua; Wang, Yong; Wu, Jiusheng; Adsay, Nazmi Volkan; Grignon, David; Khanani, Fayyaz; Sarkar, Fazlul H

    2006-07-05

    In order to identify good animal models for investigating therapeutic and preventive strategies for pancreatic cancer, we analyzed pancreatic lesions from several transgenic models and made a series of novel findings. Female MT-tgf alpha mice of the MT100 line developed pancreatic proliferation, acinar-ductal metaplasia, multilocular cystic neoplasms, ductal adenocarcinomas and prominent fibrosis, while the lesions in males were less severe. MT-tgf alpha-ES transgenic lines of both sexes developed slowly progressing lesions that were similar to what was seen in MT100 males. In both MT100 and MT-tgf alpha-ES lines, TGF alpha transgene was expressed mainly in proliferating ductal cells. Ela-myc transgenic mice with a mixed C57BL/6, SJL and FVB genetic background developed pancreatic tumors at 2-7 months of age, and half of the tumors were ductal adenocarcinomas, similar to what was reported originally by Sandgren et al 1. However, in 20% of the mice, the tumors metastasized to the liver. MT100/Ela-myc and MT-tgf alpha-ES/Ela-myc double transgenic mice developed not only acinar carcinomas and mixed carcinomas as previously reported but also various ductal-originated lesions, including multilocular cystic neoplasms and ductal adenocarcinomas. The double transgenic tumors were more malignant and metastasized to the liver at a higher frequency (33%) compared with the Ela-myc tumors. Sequencing of the coding region of p16ink4, k-ras and Rb cDNA in small numbers of pancreatic tumors did not identify mutations. The short latency for tumor development, the variety of tumor morphology and the liver metastases seen in Ela-myc and MT-tgf alpha/Ela-myc mice make these animals good models for investigating new therapeutic and preventive strategies for pancreatic cancer.

  6. Drosophila Growth and Development in the Absence of dMyc and dMnt

    PubMed Central

    Pierce, Sarah B.; Yost, Cynthia; Anderson, Sarah A. R.; Flynn, Erin M.; Delrow, Jeffrey; Eisenman, Robert N.

    2008-01-01

    Myc oncoproteins are essential regulators of the growth and proliferation of mammalian cells. In Drosophila the single ortholog of Myc (dMyc), encoded by the dm gene, influences organismal size and the growth of both mitotic and endoreplicating cells. A null mutation in dm results in attenuated endoreplication and growth arrest early in larval development. Drosophila also contains a single ortholog of the mammalian Mad/Mnt transcriptional repressor proteins (dMnt), which is thought to antagonize dMyc function. Here we show that animals lacking both dMyc and dMnt display increased viability and grow significantly larger and develop further than dMyc single mutants. We observe increased endoreplication and growth of larval tissues in these double mutants and disproportionate growth of the imaginal discs. Gene expression analysis indicates that loss of dMyc leads to decreased expression of genes required for ribosome biogenesis and protein synthesis. The additional loss of dMnt partially rescues expression of a small number of dMyc and dMnt genes that are primarily involved in rRNA synthesis and processing. Our results indicate that dMnt repression is normally overridden by dMyc activation during larval development. Therefore the severity of the dm null phenotype is likely due to unopposed repression by dMnt on a subset of genes critical for cell and organismal growth. Surprisingly, considerable growth and development can occur in the absence of both dMyc and dMnt. PMID:18241851

  7. A multicolour flow cytometric assay for c-MYC protein in B-cell lymphoma.

    PubMed

    Alayed, Khaled; Schweitzer, Karen; Awadallah, Amad; Shetty, Shashirekha; Turakhia, Samir; Meyerson, Howard

    2018-05-16

    Develop an objective assay to detect c-MYC protein expression using multiparametric flow cytometry (FCM) as an alternative to immunohistochemistry (IHC). 57 patient samples and 11 cell line samples were evaluated. Cell suspensions were obtained and c-MYC staining was performed in combination with CD45 and CD19 and, in some samples, CD10. The percentage of c-MYC+ cells by FCM was correlated with the percentage determined by IHC. The relationship between c-MYC protein expression and the presence of a c-MYC gene rearrangement in aggressive and high-grade lymphomas was also assessed. c-MYC expression by FCM and IHC demonstrated a high degree of correlation in a training set of 33 patient cases, r=0.92, 11 cell line samples, r=0.81 and in a validation set of 24 aggressive and high-grade B-cell lymphomas, r=0.85. c-MYC gene was rearranged by fluorescence in situ hybridisation in 6/9 samples with high c-MYC expression (>40%) by FCM and 6/14 by IHC. We have developed a reliable multicolour FCM assay to detect c-MYC expression suitable for clinical laboratories that should be helpful to accurately quantify c-MYC expression in B-cell lymphomas. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Striking Similarity in the Gene Expression Levels of Individual Myc Module Members among ESCs, EpiSCs, and Partial iPSCs

    PubMed Central

    Hirasaki, Masataka; Hiraki-Kamon, Keiko; Kamon, Masayoshi; Suzuki, Ayumu; Katano, Miyuki; Nishimoto, Masazumi; Okuda, Akihiko

    2013-01-01

    Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs). Epiblast stem cells (EpiSCs) are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs) and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties. PMID:24386274

  9. SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition*

    PubMed Central

    Abdesselem, Houari; Madani, Aisha; Hani, Ahmad; Al-Noubi, Muna; Goswami, Neha; Ben Hamidane, Hisham; Billing, Anja M.; Pasquier, Jennifer; Bonkowski, Michael S.; Halabi, Najeeb; Dalloul, Rajaa; Sheriff, Mohamed Z.; Mesaeli, Nasrin; ElRayess, Mohamed; Sinclair, David A.; Graumann, Johannes; Mazloum, Nayef A.

    2016-01-01

    The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity. PMID:26655722

  10. SRC-2-mediated coactivation of anti-tumorigenic target genes suppresses MYC-induced liver cancer

    PubMed Central

    Zhou, Xiaorong; Comerford, Sarah A.; York, Brian; O’Donnell, Kathryn A.

    2017-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid tumor in the world and the third leading cause of cancer-associated deaths. A Sleeping Beauty-mediated transposon mutagenesis screen previously identified mutations that cooperate with MYC to accelerate liver tumorigenesis. This revealed a tumor suppressor role for Steroid Receptor Coactivator 2/Nuclear Receptor Coactivator 2 (Src-2/Ncoa2) in liver cancer. In contrast, SRC-2 promotes survival and metastasis in prostate cancer cells, suggesting a tissue-specific and context-dependent role for SRC-2 in tumorigenesis. To determine if genetic loss of SRC-2 is sufficient to accelerate MYC-mediated liver tumorigenesis, we bred Src-2-/- mice with a MYC-induced liver tumor model and observed a significant increase in liver tumor burden. RNA sequencing of liver tumors and in vivo chromatin immunoprecipitation assays revealed a set of direct target genes that are bound by SRC-2 and exhibit downregulated expression in Src-2-/- liver tumors. We demonstrate that activation of SHP (Small Heterodimer Partner), DKK4 (Dickkopf-4), and CADM4 (Cell Adhesion Molecule 4) by SRC-2 suppresses tumorigenesis in vitro and in vivo. These studies suggest that SRC-2 may exhibit oncogenic or tumor suppressor activity depending on the target genes and nuclear receptors that are expressed in distinct tissues and illuminate the mechanisms of tumor suppression by SRC-2 in liver. PMID:28273073

  11. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma.

    PubMed

    Aukema, Sietse M; Kreuz, Markus; Kohler, Christian W; Rosolowski, Maciej; Hasenclever, Dirk; Hummel, Michael; Küppers, Ralf; Lenze, Dido; Ott, German; Pott, Christiane; Richter, Julia; Rosenwald, Andreas; Szczepanowski, Monika; Schwaenen, Carsten; Stein, Harald; Trautmann, Heiko; Wessendorf, Swen; Trümper, Lorenz; Loeffler, Markus; Spang, Rainer; Kluin, Philip M; Klapper, Wolfram; Siebert, Reiner

    2014-04-01

    Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC(+)) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC(+) lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC(+)-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6(+)/MYC(+) and BCL2(+)/MYC(+) double-hit lymphomas. BCL2(+)/MYC(+) double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC(+) lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC(+) lymphomas sharing various molecular characteristics.

  12. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30II accessory protein and the induction of oncogenic cellular transformation by p30II/c-MYC

    PubMed Central

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden; Ratner, Lee; Lairmore, Michael D.; Martinez, Ernest; Lüscher, Bernhard; Robson, Craig N.; Henriksson, Marie; Harrod, Robert

    2014-01-01

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30II protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30II interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30II and c-MYC remain to be completely understood. Herein we demonstrate that p30II induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30II in c-myc−/− HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30II is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30II inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30II/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. PMID:25569455

  13. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis.

    PubMed

    Muhar, Matthias; Ebert, Anja; Neumann, Tobias; Umkehrer, Christian; Jude, Julian; Wieshofer, Corinna; Rescheneder, Philipp; Lipp, Jesse J; Herzog, Veronika A; Reichholf, Brian; Cisneros, David A; Hoffmann, Thomas; Schlapansky, Moritz F; Bhat, Pooja; von Haeseler, Arndt; Köcher, Thomas; Obenauf, Anna C; Popow, Johannes; Ameres, Stefan L; Zuber, Johannes

    2018-05-18

    Defining direct targets of transcription factors and regulatory pathways is key to understanding their roles in physiology and disease. We combined SLAM-seq [thiol(SH)-linked alkylation for the metabolic sequencing of RNA], a method for direct quantification of newly synthesized messenger RNAs (mRNAs), with pharmacological and chemical-genetic perturbation in order to define regulatory functions of two transcriptional hubs in cancer, BRD4 and MYC, and to interrogate direct responses to BET bromodomain inhibitors (BETis). We found that BRD4 acts as general coactivator of RNA polymerase II-dependent transcription, which is broadly repressed upon high-dose BETi treatment. At doses triggering selective effects in leukemia, BETis deregulate a small set of hypersensitive targets including MYC. In contrast to BRD4, MYC primarily acts as a selective transcriptional activator controlling metabolic processes such as ribosome biogenesis and de novo purine synthesis. Our study establishes a simple and scalable strategy to identify direct transcriptional targets of any gene or pathway. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Profiling and bioinformatic analysis of circular RNA expression regulated by c-Myc.

    PubMed

    Gou, Qiheng; Wu, Ke; Zhou, Jian-Kang; Xie, Yuxin; Liu, Lunxu; Peng, Yong

    2017-09-22

    The c-Myc transcription factor is involved in cell proliferation, cell cycle and apoptosis by activating or repressing transcription of multiple genes. Circular RNAs (circRNAs) are widely expressed non-coding RNAs participating in the regulation of gene expression. Using a high-throughput microarray assay, we showed that Myc regulates the expression of certain circRNAs. A total of 309 up- and 252 down-regulated circRNAs were identified. Among them, randomly selected 8 circRNAs were confirmed by real-time PCR. Subsequently, Myc-binding sites were found to generally exist in the promoter regions of differentially expressed circRNAs. Based on miRNA sponge mechanism, we constructed circRNAs/miRNAs network regulated by Myc, suggesting that circRNAs may widely regulate protein expression through miRNA sponge mechanism. Lastly, we took advantage of Gene Ontology and KEGG analyses to point out that Myc-regulated circRNAs could impact cell proliferation through affecting Ras signaling pathway and pathways in cancer. Our study for the first time demonstrated that Myc transcription factor regulates the expression of circRNAs, adding a novel component of the Myc tumorigenic program and opening a window to investigate the function of certain circRNAs in tumorigenesis.

  15. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studiesmore » indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.« less

  16. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G/sub 0//G/sub 1/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freytag, S.O.

    1988-04-01

    A broad base of data has implicated a role for the c-myc proto-oncogene in the control of the cell cycle and cell differentiation. To further define the role of myc in these processes, the authors examined the effect of enforced myc expression on several events that are thought to be important steps leading to the terminally differentiated state: (i) the ability to arrest growth in G/sub 0//G/sub 1/, (ii) the ability to replicate the genome upon initiation of the differentiation program, and (iii) the ability to loose responsiveness to mitogens and withdraw from the cell cycle. 3T3-L1 preadipocyte cell linesmore » expressing various levels of myc mRNA were established by transfection with a recombinant myc gene under the transcriptional control of the Rous sarcoma virus (RSV) promoter. Cells that expressed high constitutive levels of pRSV myc mRNA arrested in G/sub 0//G/sub 1/ at densities similar to those of normal cells at confluence. Upon initiation of the differentiation program, such cells traversed the cell cycle with kinetics similar to those of normal cells and subsequently arrested in G/sub 0//G/sub 1/. Thus, enforced expression of myc had no effect on the ability of cells to arrest growth in G/sub 0//G/sub 1/ or to replicate the genome upon initiation of the differentiation program. Cells were then tested for their ability to reenter the cell cycle upon exposure to high concentrations of serum and for their capacity to differentiate. In contrast to normal cells, cells expressing high constitutive levels of myc RNA reentered the cell cycle when challenged with 30% serum and failed to terminally differentiate.« less

  17. Tyrosine kinase oncogenes abrogate interleukin-3 dependence of murine myeloid cells through signaling pathways involving c-myc: conditional regulation of c-myc transcription by temperature-sensitive v-abl.

    PubMed Central

    Cleveland, J L; Dean, M; Rosenberg, N; Wang, J Y; Rapp, U R

    1989-01-01

    Retroviral expression vectors carrying the tyrosine kinase oncogenes abl, fms, src, and trk abrogate the requirements of murine myeloid FDC-P1 cells for interleukin-3 (IL-3). Factor-independent clones constitutively express c-myc in the absence of IL-3, whereas in parental cultures c-myc transcription requires the presence of the ligand. To directly test the effect of a tyrosine kinase oncogene on c-myc expression, retroviral constructs containing three different temperature-sensitive mutants of v-abl were introduced into myeloid IL-3-dependent FDC-P1 and 32D cells. At the permissive temperature, clones expressing temperature-sensitive abl behaved like wild-type abl-containing cells in their growth properties and expressed c-myc constitutively. Temperature shift experiments demonstrated that both IL-3 abrogation and the regulation of c-myc expression correlated with the presence of functional v-abl. Induction of c-myc expression by reactivation of temperature-sensitive v-abl mimicked c-myc induction by IL-3 in that it did not require protein synthesis and occurred at the level of transcription, with effects on both initiation and a transcription elongation block. However, v-abl-regulated FDC-P1 cell growth differed from IL-3-regulated growth in that c-fos and junB, which are normally induced by IL-3, were not induced by activation of v-abl. Images PMID:2555703

  18. Acute Myeloid Leukemia with MYC Rearrangement and JAK2 V617F Mutation

    PubMed Central

    Ohanian, Maro; Bueso-Ramos, Carlos; Ok, Chi Young; Lin, Pei; Patel, Keyur; Alattar, Mona Lisa; Khoury, Joseph D.; Rozovski, Uri; Estrov, Zeev; Huh, Yang O.; Cortes, Jorge; Abruzzo, Lynne V.

    2016-01-01

    Little is known about MYC dysregulation in myeloid malignancies, and we can find no published studies that have evaluated MYC protein expression in primary cases of myelodysplastic syndromes (MDS) or acute myeloid leukemias (AML). We describe the clinical, morphologic, immunophenotypic, cytogenetic, and molecular genetic findings in two MDS/AML cases that contained both MYC rearrangement and JAK2-V617F mutation. We demonstrate MYC protein expression by immunohistochemistry in both patients. PMID:26382622

  19. Transcriptional integration of mitogenic and mechanical signals by Myc and YAP

    PubMed Central

    Croci, Ottavio; De Fazio, Serena; Biagioni, Francesca; Donato, Elisa; Caganova, Marieta; Curti, Laura; Doni, Mirko; Sberna, Silvia; Aldeghi, Deborah; Biancotto, Chiara; Verrecchia, Alessandro; Olivero, Daniela; Amati, Bruno

    2017-01-01

    Mammalian cells must integrate environmental cues to determine coherent physiological responses. The transcription factors Myc and YAP–TEAD act downstream from mitogenic signals, with the latter responding also to mechanical cues. Here, we show that these factors coordinately regulate genes required for cell proliferation. Activation of Myc led to extensive association with its genomic targets, most of which were prebound by TEAD. At these loci, recruitment of YAP was Myc-dependent and led to full transcriptional activation. This cooperation was critical for cell cycle entry, organ growth, and tumorigenesis. Thus, Myc and YAP–TEAD integrate mitogenic and mechanical cues at the transcriptional level to provide multifactorial control of cell proliferation. PMID:29141911

  20. Cooperative interplay of let-7 mimic and HuR with MYC RNA

    PubMed Central

    Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R; Yoon, Je-Hyun; Gorospe, Myriam; Wilce, Matthew Cj; Wilce, Jacqueline A

    2015-01-01

    Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of single-stranded (ss)DNA complementary to the let-7 binding site, enhanced the affinity of HuR for a 122-nt MYC RNA encompassing both binding sites. This finding supports the biophysical principle of cooperative binding by an RBP and miRNA purely through interactions at distal mRNA binding sites. PMID:26177105

  1. Cooperative interplay of let-7 mimic and HuR with MYC RNA.

    PubMed

    Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R; Yoon, Je-Hyun; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A

    2015-01-01

    Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of single-stranded (ss)DNA complementary to the let-7 binding site, enhanced the affinity of HuR for a 122-nt MYC RNA encompassing both binding sites. This finding supports the biophysical principle of cooperative binding by an RBP and miRNA purely through interactions at distal mRNA binding sites.

  2. MYC RNAi-PT Combination Nanotherapy for Metastatic Prostate Cancer Treatment

    DTIC Science & Technology

    2016-10-01

    We further demonstrate MYC silencing in BMPC cell line-based allograft tumors by the hybrid NPs. 15. SUBJECT TERMS Nanotechnology , nanoparticle...3 2. KEYWORDS Nanotechnology , lipid, polymer, hybrid nanoparticle, siRNA delivery, platinum, MYC, prostate cancer, drug resistance, mouse

  3. MYC RNAi-PT Combination Nanotherapy for Metastatic Prostate Cancer Treatment

    DTIC Science & Technology

    2016-10-01

    MYC silencing in BMPC cell line-based allograft tumors by the hybrid NPs. 15. SUBJECT TERMS Nanotechnology , nanoparticle, siRNA delivery, platinum...KEYWORDS Nanotechnology , lipid, polymer, hybrid nanoparticle, siRNA delivery, platinum, MYC, prostate cancer, drug resistance, mouse model, pathology

  4. Interferon modulation of c-myc expression in cloned Daudi cells: relationship to the phenotype of interferon resistance.

    PubMed

    Dron, M; Modjtahedi, N; Brison, O; Tovey, M G

    1986-05-01

    Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells.

  5. Transcriptional integration of mitogenic and mechanical signals by Myc and YAP.

    PubMed

    Croci, Ottavio; De Fazio, Serena; Biagioni, Francesca; Donato, Elisa; Caganova, Marieta; Curti, Laura; Doni, Mirko; Sberna, Silvia; Aldeghi, Deborah; Biancotto, Chiara; Verrecchia, Alessandro; Olivero, Daniela; Amati, Bruno; Campaner, Stefano

    2017-10-15

    Mammalian cells must integrate environmental cues to determine coherent physiological responses. The transcription factors Myc and YAP-TEAD act downstream from mitogenic signals, with the latter responding also to mechanical cues. Here, we show that these factors coordinately regulate genes required for cell proliferation. Activation of Myc led to extensive association with its genomic targets, most of which were prebound by TEAD. At these loci, recruitment of YAP was Myc-dependent and led to full transcriptional activation. This cooperation was critical for cell cycle entry, organ growth, and tumorigenesis. Thus, Myc and YAP-TEAD integrate mitogenic and mechanical cues at the transcriptional level to provide multifactorial control of cell proliferation. © 2017 Croci et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Detecting and Targeting Oncogenic Myc in Breast Cancer

    DTIC Science & Technology

    2006-06-01

    expression in lung tumor samples. Real-time quantitative PCR amplification was conducted using the SYBR Green assay in the ABI PRISM 7900-HT (Applied...Methylation-sensitive se- quence-specific DNA binding by the c-Myc basic region. Science 1991;251:186–9. 37. Perini G, Diolaiti D, Porro A, et al. In...using nuclear magnetic resonance and circular dichroism. We show that several Myc NTD polypeptides are largely disordered in solution, which is

  7. Polymerase chain reaction-based detection of myc transduction in feline leukemia virus-infected cats.

    PubMed

    Sumi, Ryosuke; Miyake, Ariko; Endo, Taiji; Ohsato, Yoshiharu; Ngo, Minh Ha; Nishigaki, Kazuo

    2018-04-01

    Feline lymphomas are associated with the transduction and activation of cellular proto-oncogenes, such as c-myc, by feline leukemia virus (FeLV). We describe a polymerase chain reaction assay for detection of myc transduction usable in clinical diagnosis. The assay targets c-myc exons 2 and 3, which together result in a FeLV-specific fusion gene following c-myc transduction. When this assay was conducted on FeLV-infected feline tissues submitted for clinical diagnosis of tumors, myc transduction was detected in 14% of T-cell lymphoma/leukemias. This newly established system could become a useful diagnostic tool in veterinary medicine.

  8. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer.

    PubMed

    Yeung, S J; Pan, J; Lee, M-H

    2008-12-01

    Despite diversity in genetic events in oncogenesis, cancer cells exhibit a common set of functional characteristics. Otto Warburg discovered that cancer cells have consistently higher rates of glycolysis than normal cells. The underlying mechanisms leading to the Warburg phenomenon include mitochondrial changes, upregulation of rate-limiting enzymes/proteins in glycolysis and intracellular pH regulation, hypoxia-induced switch to anaerobic metabolism, and metabolic reprogramming after loss of p53 function. The regulation of energy metabolism can be traced to a "triad" of transcription factors: c-MYC, HIF-1 and p53. Oncogenetic changes involve a nonrandom set of gene deletions, amplifications and mutations, and many oncogenes and tumor suppressor genes cluster along the signaling pathways that regulate c-MYC, HIF-1 and p53. Glycolysis in cancer cells has clinical implications in cancer diagnosis, treatment and interaction with diabetes mellitus. Many drugs targeting energy metabolism are in development. Future advances in technology may bring about transcriptome and metabolome-guided chemotherapy.

  9. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function

    PubMed Central

    Edmunds, Lia R.; Sharma, Lokendra; Wang, Huabo; Kang, Audry; d’Souza, Sonia; Lu, Jie; McLaughlin, Michael; Dolezal, James M.; Gao, Xiaoli; Weintraub, Susan T.; Ding, Ying; Zeng, Xuemei; Yates, Nathan; Prochownik, Edward V.

    2015-01-01

    The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions. PMID:26230505

  10. RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC

    PubMed Central

    Selvarajan, V; Osato, M; Nah, G S S; Yan, J; Chung, T-H; Voon, D C-C; Ito, Y; Ham, M F; Salto-Tellez, M; Shimizu, N; Choo, S-N; Fan, S; Chng, W-J; Ng, S-B

    2017-01-01

    RUNX3, runt-domain transcription factor, is a master regulator of gene expression in major developmental pathways. It acts as a tumor suppressor in many cancers but is oncogenic in certain tumors. We observed upregulation of RUNX3 mRNA and protein expression in nasal-type extranodal natural killer (NK)/T-cell lymphoma (NKTL) patient samples and NKTL cell lines compared to normal NK cells. RUNX3 silenced NKTL cells showed increased apoptosis and reduced cell proliferation. Potential binding sites for MYC were identified in the RUNX3 enhancer region. Chromatin immunoprecipitation–quantitative PCR revealed binding activity between MYC and RUNX3. Co-transfection of the MYC expression vector with RUNX3 enhancer reporter plasmid resulted in activation of RUNX3 enhancer indicating that MYC positively regulates RUNX3 transcription in NKTL cell lines. Treatment with a small-molecule MYC inhibitor (JQ1) caused significant downregulation of MYC and RUNX3, leading to apoptosis in NKTL cells. The growth inhibition resulting from depletion of MYC by JQ1 was rescued by ectopic MYC expression. In summary, our study identified RUNX3 overexpression in NKTL with functional oncogenic properties. We further delineate that MYC may be an important upstream driver of RUNX3 upregulation and since MYC is upregulated in NKTL, further study on the employment of MYC inhibition as a therapeutic strategy is warranted. PMID:28119527

  11. Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer

    PubMed Central

    Beglyarova, Natalya; Banina, Eugenia; Zhou, Yan; Mukhamadeeva, Ramilia; Andrianov, Grigorii; Bobrov, Egor; Lysenko, Elena; Skobeleva, Natalya; Gabitova, Linara; Restifo, Diana; Pressman, Max; Serebriiskii, Ilya G.; Hoffman, John P.; Paz, Keren; Behrens, Diana; Khazak, Vladimir; Jablonski, Sandra A.; Golemis, Erica A.; Weiner, Louis M.; Astsaturov, Igor

    2016-01-01

    Purpose Even when diagnosed prior to metastasis, pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with almost 90% lethality, emphasizing the need for new therapies optimally targeting the tumors of individual patients. Experimental Design We first developed a panel of new physiological models for study of PDAC, expanding surgical PDAC tumor samples in culture using short-term culture and conditional reprogramming with the Rho kinase inhibitor Y-27632, and creating matched patient-derived xenografts (PDX). These were evaluated for sensitivity to a large panel of clinical agents, and promising leads further evaluated mechanistically. Results Only a small minority of tested agents was cytotoxic in minimally passaged PDAC cultures in vitro. Drugs interfering with protein turnover and transcription were among most cytotoxic. Among transcriptional repressors, triptolide, a covalent inhibitor of ERCC3, was most consistently effective in vitro and in vivo causing prolonged complete regression in multiple PDX models resistant to standard PDAC therapies. Importantly, triptolide showed superior activity in MYC-amplified PDX models, and elicited rapid and profound depletion of the oncoprotein MYC, a transcriptional regulator. Expression of ERCC3 and MYC was interdependent in PDACs, and acquired resistance to triptolide depended on elevated ERCC3 and MYC expression. TCGA analysis indicates ERCC3 expression predicts poor prognosis, particularly in CDKN2A-null, highly proliferative tumors. Conclusion This provides initial preclinical evidence for an essential role of MYC-ERCC3 interactions in PDAC, and suggests a new mechanistic approach for disruption of critical survival signaling in MYC-dependent cancers. PMID:27384421

  12. Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts

    PubMed Central

    Graves, J. Anthony; Rothermund, Kristi; Wang, Tao; Qian, Wei; Van Houten, Bennett; Prochownik, Edward V.

    2010-01-01

    Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state. PMID:21060841

  13. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling.

    PubMed

    Su, Rui; Dong, Lei; Li, Chenying; Nachtergaele, Sigrid; Wunderlich, Mark; Qing, Ying; Deng, Xiaolan; Wang, Yungui; Weng, Xiaocheng; Hu, Chao; Yu, Mengxia; Skibbe, Jennifer; Dai, Qing; Zou, Dongling; Wu, Tong; Yu, Kangkang; Weng, Hengyou; Huang, Huilin; Ferchen, Kyle; Qin, Xi; Zhang, Bin; Qi, Jun; Sasaki, Atsuo T; Plas, David R; Bradner, James E; Wei, Minjie; Marcucci, Guido; Jiang, Xi; Mulloy, James C; Jin, Jie; He, Chuan; Chen, Jianjun

    2018-01-11

    R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N 6 -methyladenosine (m 6 A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m 6 A/MYC/CEBPA signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex.

    PubMed

    Liao, J-M; Zhou, X; Gatignol, A; Lu, H

    2014-10-09

    Oncogene MYC is highly expressed in many human cancers and functions as a global regulator of ribosome biogenesis. Previously, we reported that ribosomal protein (RP) L11 binds to c-Myc and inhibits its transcriptional activity in response to ribosomal stress. Here, we show that RPL5, co-operatively with RPL11, guides the RNA-induced silencing complex (RISC) to c-Myc mRNA and mediates the degradation of the mRNA, consequently leading to inhibition of c-Myc activity. Knocking down of RPL5 induced c-Myc expression at both mRNA and protein levels, whereas overexpression of RPL5 suppressed c-Myc expression and activity. Immunoprecipitation revealed that RPL5 binds to 3'UTR of c-Myc mRNA and two subunits of RISC, TRBP (HIV-1 TAR RNA-binding protein) and Ago2, mediating the targeting of c-Myc mRNA by miRNAs. Interestingly, RPL5 and RPL11 co-resided on c-Myc mRNA and suppressed c-Myc expression co-operatively. These findings uncover a mechanism by which these two RPs can co-operatively suppress c-Myc expression, allowing a tightly controlled ribosome biogenesis in cells.

  15. Sequential treatment with aurora B inhibitors enhances cisplatin-mediated apoptosis via c-Myc.

    PubMed

    Ma, Yaxi; Cao, Handi; Lou, Siyue; Shao, Xuejing; Lv, Wen; Qi, Xiaotian; Liu, Yujia; Ying, Meidan; He, Qiaojun; Yang, Xiaochun

    2015-04-01

    Platinum compound such as cisplatin is the first-line chemotherapy of choice in most patients with ovarian carcinoma. However, patients with inherent or acquired cisplatin resistance often experience relapse. Therefore, novel therapies are urgently required to treat drug-resistant ovarian carcinoma. Here, we showed that compared to the non-functional traditional simultaneous treatment, sequential combination of Aurora B inhibitors followed by cisplatin synergistically enhanced apoptotic response in cisplatin-resistant OVCAR-8 cells. This effect was accompanied by the induction of polyploidy in a c-Myc-dependent manner, as c-Myc knockdown reduced the efficacy of the combination by suppressing the expression of Aurora B and impairing cellular response to Aurora B inhibitor, as indicated by the decreased polyploidy and hyperphosphorylation of histone H1. In c-Myc-deficient SKOV3 cells, c-Myc overexpression restored Aurora B expression, induced polyploidy after inhibition of Aurora B, and sensitized cells to this combination therapy. Thus, our report reveals for the first time that sequential treatment of Aurora B inhibitors and cisplatin is essential to inhibit ovarian carcinoma by inducing polyploidy and downregulating c-Myc and that c-Myc is identified as a predictive biomarker to select cells responsive to chemotherapeutical combinations targeting Aurora B. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer. Pretreatment of Aurora B inhibitors augment apoptotic effects of cisplatin. The synergy of Aurora B inhibitor with cisplatin is dependent on c-Myc expression. c-Myc-dependent induction of polyploidy sensitizes cells to cisplatin.

  16. Interferon modulation of c-myc expression in cloned Daudi cells: relationship to the phenotype of interferon resistance.

    PubMed Central

    Dron, M; Modjtahedi, N; Brison, O; Tovey, M G

    1986-01-01

    Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells. Images PMID:3785169

  17. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Major, Ian T.; Yoshida, Yuki; Campos, Marcelo L.

    The plant hormone jasmonate (JA) promotes the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins to relieve repression on diverse transcription factors (TFs) that execute JA responses. However, little is known about how combinatorial complexity among JAZ–TF interactions maintains control over myriad aspects of growth, development, reproduction, and immunity. We used loss-of-function mutations to define epistatic interactions within the core JA signaling pathway and to investigate the contribution of MYC TFs to JA responses in Arabidopsis thaliana. Constitutive JA signaling in a jaz quintuple mutant (jazQ) was largely eliminated by mutations that block JA synthesis or perception. Comparison of jazQ and amore » jazQ myc2 myc3 myc4 octuple mutant validated known functions of MYC2/3/4 in root growth, chlorophyll degradation,and susceptibility to the pathogen Pseudomonas syringae. We found that MYC TFs also control both the enhanced resistance of jazQ leaves to insect herbivory and restricted leaf growth of jazQ. Epistatic transcriptional profiles mirrored these phenotypes and further showed that triterpenoid biosynthetic and glucosinolate catabolic genes are up-regulated in jazQ independently of MYC TFs. Lastly, our study highlights the utility of genetic epistasis to unravel the complexities of JAZ–TF interactions and demonstrates that MYC TFs exert master control over a JAZ-repressible transcriptional hierarchy that governs growth–defense balance.« less

  18. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module

    DOE PAGES

    Major, Ian T.; Yoshida, Yuki; Campos, Marcelo L.; ...

    2017-06-26

    The plant hormone jasmonate (JA) promotes the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins to relieve repression on diverse transcription factors (TFs) that execute JA responses. However, little is known about how combinatorial complexity among JAZ–TF interactions maintains control over myriad aspects of growth, development, reproduction, and immunity. We used loss-of-function mutations to define epistatic interactions within the core JA signaling pathway and to investigate the contribution of MYC TFs to JA responses in Arabidopsis thaliana. Constitutive JA signaling in a jaz quintuple mutant (jazQ) was largely eliminated by mutations that block JA synthesis or perception. Comparison of jazQ and amore » jazQ myc2 myc3 myc4 octuple mutant validated known functions of MYC2/3/4 in root growth, chlorophyll degradation,and susceptibility to the pathogen Pseudomonas syringae. We found that MYC TFs also control both the enhanced resistance of jazQ leaves to insect herbivory and restricted leaf growth of jazQ. Epistatic transcriptional profiles mirrored these phenotypes and further showed that triterpenoid biosynthetic and glucosinolate catabolic genes are up-regulated in jazQ independently of MYC TFs. Lastly, our study highlights the utility of genetic epistasis to unravel the complexities of JAZ–TF interactions and demonstrates that MYC TFs exert master control over a JAZ-repressible transcriptional hierarchy that governs growth–defense balance.« less

  19. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacentmore » to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.« less

  20. Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF.

    PubMed

    Lee, T C; Ziff, E B

    1999-01-08

    The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation. We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/+10), where it reversed transactivation by the constitutive transcription factor, USF. We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.

  1. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal

    PubMed Central

    Liu, Lan; Ouyang, Miao; Rao, Jaladanki N.; Zou, Tongtong; Xiao, Lan; Chung, Hee Kyoung; Wu, Jing; Donahue, James M.; Gorospe, Myriam; Wang, Jian-Ying

    2015-01-01

    The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth. PMID:25808495

  2. Id2 leaves the chromatin of the E2F4–p130-controlled c-myc promoter during hepatocyte priming for liver regeneration

    PubMed Central

    Rodríguez, José L.; Sandoval, Juan; Serviddio, Gaetano; Sastre, Juan; Morante, María; Perrelli, Maria-Giulia; Martínez-Chantar, María L.; Viña, José; Viña, Juan R.; Mato, José M.; Ávila, Matías A.; Franco, Luis; López-Rodas, Gerardo; Torres, Luis

    2006-01-01

    The Id (inhibitor of DNA binding or inhibitor of differentiation) helix–loop–helix proteins are involved in the regulation of cell growth, differentiation and cancer. The fact that the molecular mechanisms of liver regeneration are not completely understood prompted us to study the fate of Id2 in proliferating liver. Id2 increases in liver regeneration after partial hepatectomy, following the early induction of its gene. Co-immunoprecipitation shows that Id2 forms a complex with E2F4, p130 and mSin3A in quiescent liver and all these components are present at the c-myc promoter as shown using ChIP (chromatin immunoprecipitation). Activation of c-myc during hepatocyte priming (G0–G1 transition) correlates with the dissociation of Id2 and HDAC (histone deacetylase), albeit p130 remains bound at least until 6 h. Moreover, as the G0–G1 transition progresses, Id2 and HDAC again bind the c-myc promoter concomitantly with the repression of this gene. The time course of c-myc binding to the Id2 promoter, as determined by ChIP assays is compatible with a role of the oncoprotein as a transcriptional inducer of Id2 in liver regeneration. Immunohistochemical analysis shows that Id2 also increases in proliferating hepatocytes after bile duct ligation. In this case, the pattern of Id2 presence in the c-myc promoter parallels that found in regenerating liver. Our results may suggest a control role for Id2 in hepatocyte priming, through a p130 dissociation-independent regulation of c-myc. PMID:16776654

  3. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy

    PubMed Central

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Íñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-01-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters. PMID:23716551

  4. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy.

    PubMed

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L; Salamero, Olga; Sancho, Juan M; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-10-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.

  5. Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells.

    PubMed

    Wang, Yiping; Cheng, Xiangdong; Samma, Muhammad Kaleem; Kung, Sam K P; Lee, Clement M; Chiu, Sung Kay

    2018-06-01

    c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.

  6. Snow in Castile-León: trends and variability

    NASA Astrophysics Data System (ADS)

    Merino, A.; Campos, L.; López, L.; García-Ortega, E.; Sánchez, J. L.; Marcos, J. L.; Guerrero-Higueras, A. M.

    2012-04-01

    The location of Castile and León, inside the Iberian Peninsula, in the Northwestern quadrant, determines, in large measure, the climatic conditions of its territory, granting it very characteristic traits, mostly in the mountainous areas. It is important to note that during a large part of the year, the region is under the influence of Jet Stream, and thus, gives way to very diverse dynamic situations, which turn into different and heterogeneous types of weather. So, in many areas of the region, especially in the most elevated areas, these synoptic and mesoscale situations generate snow precipitation. We should point out that snowfall is one of the principal meteorological risks of Castile and León. Thus, on average, in some mountainous areas there are more than 40 events of snowfall registered annually, with the month of January being the month in which the highest frequency of snowfall appears. The social repercussions of this snowfall are represented in the isolation of places, essentially mountainous, highways being blocked, increase in traffic accidents, etc. As proof of this, it is this type of episode that receives ample coverage by the media, which has a linear relationship with the social perception of risk. As such, the objective of the current work is to analyze the annual trend of days with snow in the different meteorological stations pertaining to AEMET placed in the Community. The period of study is from 1960-2010. Additionally, we have also evaluated trends in annual days of freezing temperature and annual absolute minimum temperature, with the objective of facilitating a meteorological interpretation of the trends obtained on days with snowfall. Finally, the results show that in the majority of stations, a significant negative trend in days with snowfall and annual days with freezing temperatures, and a positive trend in annual absolute minimum temperatures. However, we observed variability in the different regions in the area of study

  7. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma

    PubMed Central

    Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara

    2018-01-01

    Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies. PMID:29507693

  8. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma.

    PubMed

    Porcu, Cristiana; Antonucci, Laura; Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara

    2018-02-06

    Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies.

  9. Effects of C-myc gene silencing on interleukin-1β-induced rat chondrocyte cell proliferation, apoptosis and cytokine expression.

    PubMed

    Zou, Jian; Li, Xiao-Lin; Shi, Zhong-Min; Xue, Jian-Feng

    2018-05-01

    This study explores the effects of C-myc gene silencing on cell proliferation, apoptosis and cytokine expression in interleukin (IL)-1β-induced rat chondrocytes. Primary chondrocytes were obtained from 40 Sprague-Dawley rats. For in vitro C-myc3-shRNA transfection, chondrocytes were assigned to a blank 1, model 1, IL-1β + C-myc3-shRNA, C-myc3-shRNA, (IL-1β + C-myc3-shRNA) + C-myc overexpression, C-myc3-shRNA + C-myc overexpression or IL-1β + C-myc-Con group. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to detect C-myc, PCNA and cyclin D1 mRNA and protein expression. Cell proliferation was analyzed via CCK-8 assay and cell cycle while apoptosis was measured through flow cytometry. ELISA was utilized to assess the levels of metallopeptidase 13 (MMP-13), IL-6 and tumor necrosis factor-α (TNF-α). Both the qRT-PCR and Western blotting results demonstrated that C-myc3-shRNA transfection inhibits C-myc expression and promotes PCNA and cyclin D1 expression. In comparison to the model 1 group, all groups except the (IL-1β + C-myc3-shRNA) + C-myc overexpression and IL-1β + C-myc-Con groups showed increases in cell proliferation and S phase cell count and decreases in G 0 /G 1 phase cell count, cell apoptosis and MMP-13, IL-6 and TNF-α levels. The model 1, C-myc3-shRNA and C-myc3-shRNA + C-myc overexpression groups displayed higher cell proliferation and S phase cell count and reduced G 0 /G 1 phase cell count, cell apoptosis and MMP-13, IL-6 and TNF-α levels than the IL-1β + C-myc3-shRNA group. In comparison to the model 1 and C-myc3-shRNA + C-myc overexpression groups, the C-myc3-shRNA group promoted cell proliferation and S phase cell counts but suppressed G 0 /G 1 phase cell count, cell apoptosis and MMP-13, IL-6 and TNF-α levels. In conclusion, the study demonstrates that C-myc gene silencing can promote cell proliferation and inhibit cell apoptosis and cytokine expression in IL-1

  10. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids,more » acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change

  11. 8q24 allelic imbalance and MYC gene copy number in primary prostate cancer.

    PubMed

    Chen, H; Liu, W; Roberts, W; Hooker, S; Fedor, H; DeMarzo, A; Isaacs, W; Kittles, R A

    2010-09-01

    Four independent regions within 8q24 near the MYC gene are associated with risk for prostate cancer (Pca). Here, we investigated allelic imbalance (AI) at 8q24 risk variants and MYC gene DNA copy number (CN) in 27 primary Pcas. Heterozygotes were observed in 24 of 27 patients at one or more 8q24 markers and 27% of the loci exhibited AI in tumor DNA. The 8q24 risk alleles were preferentially favored in the tumors. Increased MYC gene CN was observed in 33% of tumors, and the co-existence of increased MYC gene CN with AI at risk loci was observed in 86% (P<0.004 exact binomial test) of the informative tumors. No AI was observed in tumors, which did not reveal increased MYC gene CN. Higher Gleason score was associated with tumors exhibiting AI (P=0.04) and also with increased MYC gene CN (P=0.02). Our results suggest that AI at 8q24 and increased MYC gene CN may both be related to high Gleason score in Pca. Our findings also suggest that these two somatic alterations may be due to the same preferential chromosomal duplication event during prostate tumorigenesis.

  12. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    PubMed

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  13. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    PubMed Central

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735

  14. Bardoxolone Methyl and a Related Triterpenoid Downregulate cMyc Expression in Leukemia Cells

    PubMed Central

    Jin, Un-Ho; Cheng, Yating; Zhou, Beiyan

    2017-01-01

    Structurally related pentacyclic triterpenoids methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate [bardoxolone-methyl (Bar-Me)] and methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me) contain 2-cyano-1-en-3-one and 2-trifluoromethyl-1-en-3-one moieties, respectively, in their A-rings and differ in the position of their en-one structures in ring C. Only Bar-Me forms a Michael addition adduct with glutathione (GSH) and inhibits IKKβ phosphorylation. These differences may be due to steric hindrance by the 11-keto group in CF3DODA-Me, which prevents Michael addition by the conjugated en-one in the A-ring. In contrast, both Bar-Me and CF3DODA-Me induce reactive oxygen species in HL-60 and Jurkat leukemia cells, inhibit cell growth, induce apoptosis and differentiation, and decrease expression of specificity proteins (Sp) 1, 3, and 4, and cMyc, and these effects are significantly attenuated after cotreatment with the antioxidant GSH. In contrast to solid tumor–derived cells, cMyc and Sp transcriptions are regulated independently and cMyc plays a more predominant role than Sp transcription factors in regulating HL-60 or Jurkat cell proliferation and differentiation compared with that observed in cells derived from solid tumors. PMID:28275049

  15. Bardoxolone Methyl and a Related Triterpenoid Downregulate cMyc Expression in Leukemia Cells.

    PubMed

    Jin, Un-Ho; Cheng, Yating; Zhou, Beiyan; Safe, Stephen

    2017-05-01

    Structurally related pentacyclic triterpenoids methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate [bardoxolone-methyl (Bar-Me)] and methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF 3 DODA-Me) contain 2-cyano-1-en-3-one and 2-trifluoromethyl-1-en-3-one moieties, respectively, in their A-rings and differ in the position of their en-one structures in ring C. Only Bar-Me forms a Michael addition adduct with glutathione (GSH) and inhibits IKK β phosphorylation. These differences may be due to steric hindrance by the 11-keto group in CF 3 DODA-Me, which prevents Michael addition by the conjugated en-one in the A-ring. In contrast, both Bar-Me and CF 3 DODA-Me induce reactive oxygen species in HL-60 and Jurkat leukemia cells, inhibit cell growth, induce apoptosis and differentiation, and decrease expression of specificity proteins (Sp) 1, 3, and 4, and cMyc, and these effects are significantly attenuated after cotreatment with the antioxidant GSH. In contrast to solid tumor-derived cells, cMyc and Sp transcriptions are regulated independently and cMyc plays a more predominant role than Sp transcription factors in regulating HL-60 or Jurkat cell proliferation and differentiation compared with that observed in cells derived from solid tumors. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation.

    PubMed

    Xi, Z; Yao, M; Li, Y; Xie, C; Holst, J; Liu, T; Cai, S; Lao, Y; Tan, H; Xu, H-X; Dong, Q

    2016-06-02

    Cell cycle re-entry by quiescent cancer cells is an important mechanism for cancer progression. While high levels of c-MYC expression are sufficient for cell cycle re-entry, the modality to block c-MYC expression, and subsequent cell cycle re-entry, is limited. Using reversible quiescence rendered by serum withdrawal or contact inhibition in PTEN(null)/p53(WT) (LNCaP) or PTEN(null)/p53(mut) (PC-3) prostate cancer cells, we have identified a compound that is able to impede cell cycle re-entry through c-MYC. Guttiferone K (GUTK) blocked resumption of DNA synthesis and preserved the cell cycle phase characteristics of quiescent cells after release from the quiescence. In vehicle-treated cells, there was a rapid increase in c-MYC protein levels upon release from the quiescence. However, this increase was inhibited in the presence of GUTK with an associated acceleration in c-MYC protein degradation. The inhibitory effect of GUTK on cell cycle re-entry was significantly reduced in cells overexpressing c-MYC. The protein level of FBXW7, a subunit of E3 ubiquitin ligase responsible for degradation of c-MYC, was reduced upon the release from the quiescence. In contrast, GUTK stabilized FBXW7 protein levels during release from the quiescence. The critical role of FBXW7 was confirmed using siRNA knockdown, which impaired the inhibitory effect of GUTK on c-MYC protein levels and cell cycle re-entry. Administration of GUTK, either in vitro prior to transplantation or in vivo, suppressed the growth of quiescent prostate cancer cell xenografts. Furthermore, elevation of FBXW7 protein levels and reduction of c-MYC protein levels were found in the xenografts of GUTK-treated compared with vehicle-treated mice. Hence, we have identified a compound that is capable of impeding cell cycle re-entry by quiescent PTEN(null)/p53(WT) and PTEN(null)/p53(mut) prostate cancer cells likely by promoting c-MYC protein degradation through stabilization of FBXW7. Its usage as a clinical modality to

  17. A c-Myc and surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice.

    PubMed

    Poe, Jonathan C; Minard-Colin, Veronique; Kountikov, Evgueni I; Haas, Karen M; Tedder, Thomas F

    2012-09-01

    Malignant B cells responding to external stimuli are likely to gain a growth advantage in vivo. These cells may therefore maintain surface CD19 expression to amplify transmembrane signals and promote their expansion and survival. To determine whether CD19 expression influences this process, Eμ-Myc transgenic (c-Myc(Tg)) mice that develop aggressive and lethal B cell lymphomas were made CD19 deficient (c-Myc(Tg)CD19⁻/⁻). Compared with c-Myc(Tg) and c-Myc(Tg)CD19⁺/⁻ littermates, the median life span of c-Myc(Tg)CD19⁻/⁻ mice was prolonged by 81-83% (p < 0.0001). c-Myc(Tg)CD19⁻/⁻ mice also lived 42% longer than c-Myc(Tg) littermates following lymphoma detection (p < 0.01). Tumor cells in c-Myc(Tg) and c-Myc(Tg)CD19⁻/⁻ mice were B lineage derived, had a similar phenotype with a large blastlike appearance, invaded multiple lymphoid tissues, and were lethal when adoptively transferred into normal recipient mice. Importantly, reduced lymphomagenesis in c-Myc(Tg)CD19⁻/⁻ mice was not due to reductions in early B cell numbers prior to disease onset. In mechanistic studies, constitutive c-Myc expression enhanced CD19 expression and phosphorylation on active sites. Reciprocally, CD19 expression in c-Myc(Tg) B cells enhanced c-Myc phosphorylation at regulatory sites, sustained higher c-Myc protein levels, and maintained a balance of cyclin D2 expression over that of cyclin D3. These findings define a new and novel c-Myc:CD19 regulatory loop that positively influences B cell transformation and lymphoma progression.

  18. Exon 2-mediated c-myc mRNA decay in vivo is independent of its translation.

    PubMed Central

    Pistoi, S; Roland, J; Babinet, C; Morello, D

    1996-01-01

    We have previously shown that the steady-state level of c-myc mRNA in vivo is primarily controlled by posttranscriptional regulatory mechanisms. To identify the sequences involved in this process, we constructed a series of H-2/myc transgenic lines in which various regions of the human c-MYC gene were placed under the control of the quasi-ubiquitous H-2K class I regulatory sequences. We demonstrated that the presence of one of the two coding exons, exon 2 or exon 3, is sufficient to confer a level of expression of transgene mRNA similar to that of endogenous c-myc in various adult tissues as well as after partial hepatectomy or after protein synthesis inhibition. We now focus on the molecular mechanisms involved in modulation of expression of mRNAs containing c-myc exon 2 sequences, with special emphasis on the coupling between translation and c-myc mRNA turnover. We have undertaken an analysis of expression, both at the mRNA level and at the protein level, of new transgenic constructs in which the translation is impaired either by disruption of the initiation codon or by addition of stop codons upstream of exon 2. Our results show that the translation of c-myc exon 2 is not required for regulated expression of the transgene in the different situations analyzed, and therefore they indicate that the mRNA destabilizing function of exon 2 is independent of translation by ribosomes. Our investigations also reveal that, in the thymus, some H-2/myc transgenes express high levels of mRNA but low levels of protein. Besides the fact that these results suggest the existence of tissue-specific mechanisms that control c-myc translatability in vivo, they also bring another indication of the uncoupling of c-myc mRNA translation and degradation. PMID:8756668

  19. IG/MYC rearrangements are the main cytogenetic alteration in plasmablastic lymphomas.

    PubMed

    Valera, Alexandra; Balagué, Olga; Colomo, Luis; Martínez, Antonio; Delabie, Jan; Taddesse-Heath, Lekidelu; Jaffe, Elaine S; Campo, Elías

    2010-11-01

    Plasmablastic lymphoma (PBL) is an aggressive lymphoma characterized by a terminally differentiated B-cell phenotype that usually occurs in the immunocompromised or elderly patients. Although the clinical and pathologic characteristics of these tumors have been defined, the genetic alterations involved in their pathogenesis are not well known. In this study, we have investigated the chromosomal alterations of MYC, BCL2, BCL6, MALT1, PAX5, and IGH loci using fluorescence in situ hybridization in 42 PBL and 3 extracavitary primary effusion lymphomas. MYC rearrangements were identified in 20 of 41 (49%) PBL and the immunoglobulin (IG) genes were the partners in most tumors. MYC rearrangements were more common in Epstein-Barr virus (EBV)-positive (14 of 19, 74%) than EBV-negative (9 of 21, 43%) tumors (P<0.05). No rearrangements of BCL2, BCL6, MALT1, or PAX5 were detected in any PBL but gains of these loci were observed in 31% to 41% of the cases examined. Twelve of the 40 PBL in which 3 or more loci could be investigated had multiple simultaneous gains in 3 or more loci. No differences in the survival of the patients according to MYC were observed but the 4 patients with the longest survival (>50 mo) had no or low number of gains (<3). No rearrangements of any of these loci were seen in the primary effusion lymphomas. In conclusion, PBL are genetically characterized by frequent IG/MYC translocations and gains in multiple chromosomal loci. The oncogenic activation of MYC in these lymphomas may be an important pathogenetic element associated with EBV infection.

  20. Enhanced epithelial to mesenchymal transition (EMT) and upregulated MYC in ectopic lesions contribute independently to endometriosis.

    PubMed

    Proestling, Katharina; Birner, Peter; Gamperl, Susanne; Nirtl, Nadine; Marton, Erika; Yerlikaya, Gülen; Wenzl, Rene; Streubel, Berthold; Husslein, Heinrich

    2015-07-22

    Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose polarity and cell-to-cell contacts and acquire the migratory and invasive abilities of mesenchymal cells. These abilities are thought to be prerequisites for the establishment of endometriotic lesions. A hallmark of EMT is the functional loss of E-cadherin (CDH1) expression in epithelial cells. TWIST1, a transcription factor that represses E-cadherin transcription, is among the EMT inducers. SNAIL, a zinc-finger transcription factor, and its close relative SLUG have similar properties to TWIST1 and are thus also EMT inducers. MYC, which is upregulated by estrogens in the uterus by an estrogen response cis-acting element (ERE) in its promoter, is associated with proliferation in endometriosis. The role of EMT and proliferation in the pathogenesis of endometriosis was evaluated by analyzing TWIST1, CDH1 and MYC expression. CDH1, TWIST1, SNAIL and SLUG mRNA expression was analyzed by qRT-PCR from 47 controls and 74 patients with endometriosis. Approximately 42 ectopic and 62 eutopic endometrial tissues, of which 30 were matched samples, were collected during the same surgical procedure. We evaluated TWIST1 and MYC protein expression by immunohistochemistry (IHC) in the epithelial and stromal tissue of 69 eutopic and 90 ectopic endometrium samples, of which 49 matched samples were analyzed from the same patient. Concordant expression of TWIST1/SNAIL/SLUG and CDH1 but also of TWIST1 and MYC was analyzed. We found that TWIST1, SNAIL and SLUG are overexpressed (p < 0.001, p = 0.016 and p < 0.001) in endometriosis, while CDH1 expression was concordantly reduced in these samples (p < 0.001). Similar to TWIST1, the epithelial expression of MYC was also significantly enhanced in ectopic endometrium compared to eutopic tissues (p = 0.008). We found exclusive expression of either TWIST1 or MYC in the same samples (p = 0.003). Epithelial TWIST1 is overexpressed in

  1. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis.

    PubMed

    Liu, Pin; Ge, Mengmeng; Hu, Junjie; Li, Xiaolei; Che, Li; Sun, Kun; Cheng, Lili; Huang, Yuedong; Pilo, Maria G; Cigliano, Antonio; Pes, Giovanni M; Pascale, Rosa M; Brozzetti, Stefania; Vidili, Gianpaolo; Porcu, Alberto; Cossu, Antonio; Palmieri, Giuseppe; Sini, Maria C; Ribback, Silvia; Dombrowski, Frank; Tao, Junyan; Calvisi, Diego F; Chen, Ligong; Chen, Xin

    2017-07-01

    Amplification and/or activation of the c-Myc proto-oncogene is one of the leading genetic events along hepatocarcinogenesis. The oncogenic potential of c-Myc has been proven experimentally by the finding that its overexpression in the mouse liver triggers tumor formation. However, the molecular mechanism whereby c-Myc exerts its oncogenic activity in the liver remains poorly understood. Here, we demonstrate that the mammalian target of rapamycin complex 1 (mTORC1) cascade is activated and necessary for c-Myc-dependent hepatocarcinogenesis. Specifically, we found that ablation of Raptor, the unique member of mTORC1, strongly inhibits c-Myc liver tumor formation. Also, the p70 ribosomal S6 kinase/ribosomal protein S6 and eukaryotic translation initiation factor 4E-binding protein 1/eukaryotic translation initiation factor 4E signaling cascades downstream of mTORC1 are required for c-Myc-driven tumorigenesis. Intriguingly, microarray expression analysis revealed up-regulation of multiple amino acid transporters, including solute carrier family 1 member A5 (SLC1A5) and SLC7A6, leading to robust uptake of amino acids, including glutamine, into c-Myc tumor cells. Subsequent functional studies showed that amino acids are critical for activation of mTORC1 as their inhibition suppressed mTORC1 in c-Myc tumor cells. In human hepatocellular carcinoma specimens, levels of c-Myc directly correlate with those of mTORC1 activation as well as of SLC1A5 and SLC7A6. Our current study indicates that an intact mTORC1 axis is required for c-Myc-driven hepatocarcinogenesis; thus, targeting the mTOR pathway or amino acid transporters may be an effective and novel therapeutic option for the treatment of hepatocellular carcinoma with activated c-Myc signaling. (Hepatology 2017;66:167-181). © 2017 by the American Association for the Study of Liver Diseases.

  2. Long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele‐specific MYC expression in HeLa cells

    PubMed Central

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Lu, Fengmin

    2017-01-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis‐activate the expression of proto‐oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV‐integrated haplotype, and a long‐range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long‐range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence‐associated acidic β‐gal activity in HeLa cells. These data indicate a long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. PMID:28470669

  3. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    PubMed

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  4. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

    PubMed Central

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K.; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris; Lechpammer, Mirna; Archer, Tenley C.; Tran, Phuoc; Reimer, Richard J.; Cook, James M.; Lim, Michael; Jensen, Frances E.; Pomeroy, Scott L.; Cho, Yoon-Jae

    2013-01-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors, and importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABR5, which encodes the α-subunit of the GABAA receptor complex, in aggressive MYC-driven, “Group 3” medulloblastomas. We hypothesized that modulation of α-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABR5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABR5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOX5 target gene expression. siRNA-mediated knockdown of HOX5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABR5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOX5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor. PMID:24196163

  5. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc

    NASA Technical Reports Server (NTRS)

    Chen, C.; Sytkowski, A. J.

    2001-01-01

    Erythropoietin (Epo) stimulation of erythroid cells results in the activation of several kinases and a rapid induction of c-myc expression. Protein kinase C is necessary for Epo up-regulation of c-myc by promoting elongation at the 3'-end of exon 1. PKCepsilon mediates this signal. We now show that Epo triggers two signaling pathways to c-myc. Epo rapidly up-regulated Myc protein in BaF3-EpoR cells. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 blocked Myc up-regulation in a concentration-dependent manner but had no effect on the Epo-induced phosphorylation of ERK1 and ERK2. LY294002 also had no effect on Epo up-regulation of c-fos. MEK1 inhibitor PD98059 blocked both the c-myc and the c-fos responses to Epo. PD98059 and the PKC inhibitor H7 also blocked the phosphorylation of ERK1 and ERK2. PD98059 but not LY294002 inhibited Epo induction of ERK1 and ERK2 phosphorylation in normal erythroid cells. LY294002 blocked transcription of c-myc at exon 1. PD98059 had no effect on transcription from exon 1 but, rather, blocked Epo-induced c-myc elongation at the 3'-end of exon 1. These results identify two Epo signaling pathways to c-myc, one of which is PI3K-dependent operating on transcriptional initiation, whereas the other is mitogen-activated protein kinase-dependent operating on elongation.

  6. Le syndrome néphrotique idiopathique (SNI) de l’enfant à Dakar: à propos de 40 cas

    PubMed Central

    Keita, Younoussa; Lemrabott, Ahmed Tall; Sylla, Assane; Niang, Babacar; Ka, El Hadji Fary; Dial, Chérif Mohamed; Ndongo, Aliou Abdoulaye; Sow, Amadou; Moreira, Claude; Niang, Abdou; Ndiaye, Ousmane; Diouf, Boucar; Sall, Mouhamadou Guélaye

    2017-01-01

    Introduction L’objectif de ce travail était d’analyser les caractéristiques diagnostiques, thérapeutiques et évolutives de l’enfant atteint de néphrose dans un service de pédiatrie de Dakar. Méthodes L’étude était réalisée au service de pédiatrie de l’hôpital Aristide Le Dantec. Il s’agissait d’une étude rétrospective sur une période de 03 ans allant du 1er janvier 2012 au 31 décembre 2014. Ont été inclus tous les patients âgés de 02 ans à 12 ans présentant un tableau de Syndrome néphrotique idiopathique. Résultats Quarante cas de néphrose étaient colligés soit une prévalence de 23% parmi les néphropathies prises en charge dans le service. L’âge moyen était de 7,11± 3,14 ans. Le syndrome néphrotique était pur chez 72,5% (n=29) des patients. Les œdèmes des membres inférieurs étaient présents chez 100% des patients, l’oligurie dans 55% (n=22) et l’HTA dans 5% (n=2) des cas. La protéinurie moyenne était de 145,05 ± 85,54 mg/kg/24heures. La protidémie moyenne était de 46,42 ±7,88 g/L et l’albuminémie moyenne de 17,90 ± 7,15 g/L. Trente-neuf patients avaient reçu une corticothérapie à base de prednisone. La corticosensibilité était retenue chez 77% (n=30) des patients et la corticorésistance chez 13% (n=5) des cas. Le facteur de mauvaise réponse à la corticothérapie était un niveau de protéinurie initiale supérieure à 150 mg/kg/jour (p = 0,024). La biopsie rénale était réalisée chez 18% (n=7) des patients et retrouvait dans 57,2% (n=4) des cas une hyalinose segmentaire et focale. Le cyclophosphamide et l’azathioprine étaient associés aux corticoïdes dans 10% (n=4) des cas chacun. Le taux de rémission globale était de 89,8%. L’évolution vers l’insuffisance rénale chronique était notée chez trois (03) des patients. Conclusion La néphrose représentait près du quart des néphropathies prises en charge dans notre service. Le taux de rémission globale était élevé. Le

  7. In silico identification of novel ligands for G-quadruplex in the c- MYC promoter

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Jin; Park, Hyun-Ju

    2015-04-01

    G-quadruplex DNA formed in NHEIII1 region of oncogene promoter inhibits transcription of the genes. In this study, virtual screening combining pharmacophore-based search and structure-based docking screening was conducted to discover ligands binding to G-quadruplex in promoter region of c- MYC. Several hit ligands showed the selective PCR-arresting effects for oligonucleotide containing c- MYC G-quadruplex forming sequence. Among them, three hits selectively inhibited cell proliferation and decreased c- MYC mRNA level in Ramos cells, where NHEIII1 is included in translocated c- MYC gene for overexpression. Promoter assay using two kinds of constructs with wild-type and mutant sequences showed that interaction of these ligands with the G-quadruplex resulted in turning-off of the reporter gene. In conclusion, combined virtual screening methods were successfully used for discovery of selective c- MYC promoter G-quadruplex binders with anticancer activity.

  8. Small Molecule Anti-cancer Agents that Stabilize the MYC-G-Quadruplex | NCI Technology Transfer Center | TTC

    Cancer.gov

    The proto-oncogene c-Myc is deregulated and overexpressed in ~70% of all cancers. Thus, c-Myc is an attractive therapeutic target. Beyond cancer, Myc is also a positive effector of tissue inflammation, and its function has been implicated in the pathophysiology of heart failure. Researchers at the National Cancer Institute (NCI) developed novel small molecules that target c-Myc at the transcriptional level, thus enabling a potential pan-cancer therapeutic. Specifically, these compounds stabilize the transcription repressing quadruplex in the c-Myc gene promoter region. The National Cancer Institute seeks parties interested in licensing or collaborative research to co-develop these therapeutic targets.'

  9. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Kyung-Soo; Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan; Park, Jun-Ik

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-cateninmore » expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in

  10. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines.

    PubMed Central

    Harrington, E A; Bennett, M R; Fanidi, A; Evan, G I

    1994-01-01

    We have investigated the mechanism by which deregulated expression of c-Myc induces death by apoptosis in serum-deprived fibroblasts. We demonstrate that Myc-induced apoptosis in low serum is inhibited by a restricted group of cytokines, principally the insulin-like growth factors and PDGF. Cytokine-mediated protection from apoptosis is not linked to the cytokines' abilities to promote growth. Protection from apoptosis is evident in the post-commitment (mitogen-independent) S/G2/M phases of the cell cycle and also in cells that are profoundly blocked in cell cycle progression by drugs. Moreover, IGF-I inhibition of apoptosis occurs in the absence of protein synthesis, and so does not require immediate early gene expression. We conclude that c-Myc-induced apoptosis does not result from a conflict of growth signals but appears to be a normal physiological aspect of c-Myc function whose execution is regulated by the availability of survival factors. We discuss the possible implications of these findings for models of mammalian cell growth in vivo. Images PMID:8045259

  11. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells.

    PubMed

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Chen, Xiangmei; Lu, Fengmin

    2017-08-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis-activate the expression of proto-oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV-integrated haplotype, and a long-range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long-range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence-associated acidic β-gal activity in HeLa cells. These data indicate a long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  12. Le ciment brûle toujours

    PubMed Central

    Lebreton, T.; Fontaine, M.; Le Floch, R.

    2017-01-01

    Summary Les brûlures chimiques par ciment représentent une cause fréquente de corrosion cutanée en France. Elles nécessitent fréquemment un traitement chirurgical. Notre étude rétrospective concerne tous les patients admis pour une brûlure par ciment dans le service entre 2004 et 2016. Quarante-neuf patients âgés de 21 à 71 ans ont été pris en charge dans le centre des brûlés du Centre Hospitalier Saint Joseph Saint Luc à Lyon entre 2004 et 2016. La population concernée était majoritairement masculine, relativement jeune (44 ans en moyenne) et professionnellement active. Les brûlures survenaient principalement dans le cadre d’accidents domestiques (78%). Elles étaient profondes et atteignaient majoritairement les membres inférieurs, de façon bilatérale. La surface brûlée représentait 3% de la surface cutanée totale. Presque tous les patients (98%) ont nécessité une prise en charge chirurgicale pour excision et autogreffe de peau mince. Un seul patient a bénéficié d’une cicatrisation dirigée. Le délai moyen entre la brûlure et la chirurgie était de 13 jours et la durée moyenne d’hospitalisation de 8 jours. Sept patients ont nécessité une prise en charge en centre de rééducation à leur sortie du service. Cette étude confirme la sévérité des brûlures chimiques par ciment. Elle met également en avant l’impact que peut avoir ce type de brûlure en terme de retentissement socio-économique dans une population de patients majoritairement jeune et active. Elle insiste sur le fait que des mesures doivent être prises afin d’informer cette population rarement professionnelle sur les risques encourus lors du mésusage du ciment. La réglementation actuelle, classant le ciment comme irritant, ne prend pas en compte son caractère corrosif et devrait être amendée. PMID:28592929

  13. Socializing with MYC: cell competition in development and as a model for premalignant cancer.

    PubMed

    Johnston, Laura A

    2014-04-01

    Studies in Drosophila and mammals have made it clear that genetic mutations that arise in somatic tissues are rapidly recognized and eliminated, suggesting that cellular fitness is tightly monitored. During development, damaged, mutant, or otherwise unfit cells are prevented from contributing to the tissue and are instructed to die, whereas healthy cells benefit and populate the animal. This cell selection process, known as cell competition, eliminates somatic genetic heterogeneity and promotes tissue fitness during development. Yet cell competition also has a dark side. Super competition can be exploited by incipient cancers to subvert cellular cooperation and promote selfish behavior. Evidence is accumulating that MYC plays a key role in regulation of social behavior within tissues. Given the high number of tumors with deregulated MYC, studies of cell competition promise to yield insight into how the local environment yields to and participates in the early stages of tumor formation.

  14. The mTORC1 inhibitor everolimus prevents and treats Eμ-Myc lymphoma by restoring oncogene-induced senescence

    PubMed Central

    Wall, Meaghan; Poortinga, Gretchen; Stanley, Kym L; Lindemann, Ralph K; Bots, Michael; Chan, Christopher J; Bywater, Megan J; Kinross, Kathryn M; Astle, Megan V; Waldeck, Kelly; Hannan, Katherine M; Shortt, Jake; Smyth, Mark J; Lowe, Scott W; Hannan, Ross D; Pearson, Richard B; Johnstone, Ricky W; McArthur, Grant A

    2012-01-01

    MYC deregulation is common in human cancer. IG-MYC translocations that are modeled in Eμ-Myc mice occur in almost all cases of Burkitt lymphoma as well as in other B-cell lymphoproliferative disorders. Deregulated expression of MYC results in increased mTORC1 signaling. As tumors with mTORC1 activation are sensitive to mTORC1 inhibition, we used everolimus, a potent and specific mTORC1 inhibitor, to test the requirement for mTORC1 in the initiation and maintenance of Eμ-Myc lymphoma. Everolimus selectively cleared premalignant B-cells from the bone marrow and spleen, restored a normal pattern of B-cell differentiation and strongly protected against lymphoma development. Established Eμ-Myc lymphoma also regressed after everolimus therapy. Therapeutic response correlated with a cellular senescence phenotype and induction of p53 activity. Therefore mTORC1-dependent evasion of senescence is critical for cellular transformation and tumor maintenance by MYC in B-lymphocytes. PMID:23242809

  15. Acute myeloid leukaemia: expression of MYC protein and its association with cytogenetic risk profile and overall survival.

    PubMed

    Mughal, Muhammad Kashif; Akhter, Ariz; Street, Lesley; Pournazari, Payam; Shabani-Rad, Meer-Taher; Mansoor, Adnan

    2017-09-01

    Acute myeloid leukaemia (AML) is a clinically aggressive disease with marked genetic heterogeneity. Cytogenetic abnormalities provide the basis for risk stratification into clinically favourable, intermediate, and unfavourable groups. There are additional genetic mutations, which further influence the prognosis of patients with AML. Most of these result in molecular aberrations whose downstream target is MYC. It is therefore logical to study the relationship between MYC protein expression and cytogenetic risk groups. We studied MYC expression by immunohistochemistry in a large cohort (n = 199) of AML patients and correlated these results with cytogenetic risk profile and overall survival (OS). We illustrated differential expression of MYC protein across various cytogenetic risk groups (p = 0.03). Highest expression of MYC was noted in AML patients with favourable cytogenetic risk group. In univariate analysis, MYC expression showed significant negative influence of OS in favourable and intermediate cytogenetic risk group (p = 0.001). Interestingly, MYC expression had a protective effect in the unfavourable cytogenetic risk group. In multivariate analysis, while age and cytogenetic risk group were significant factors influencing survival, MYC expression by immunohistochemistry methods also showed some marginal impact (p = 0.069). In conclusion, we have identified differential expression of MYC protein in relation to cytogenetic risk groups in AML patients and documented its possible impact on OS in favourable and intermediate cytogenetic risk groups. These preliminary observations mandate additional studies to further investigate the routine clinical use of MYC protein expression in AML risk stratification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately.

    PubMed

    Shi, Yan; Shu, Bin; Yang, Ronghua; Xu, Yingbin; Xing, Bangrong; Liu, Jian; Chen, Lei; Qi, Shaohai; Liu, Xusheng; Wang, Peng; Tang, Jinming; Xie, Julin

    2015-06-16

    Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What's more, interaction between the above two pathways might act as a vital role in regulation of wound healing.

  17. Blocking Lactate Export by Inhibiting the Myc Target MCT1 Disables Glycolysis and Glutathione Synthesis

    PubMed Central

    Doherty, Joanne R.; Yang, Chunying; Scott, Kristen E. N.; Cameron, Michael D.; Fallahi, Mohammad; Li, Weimin; Hall, Mark A.; Amelio, Antonio L.; Mishra, Jitendra K.; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J.; Lu, Yunqi; Dang, Chi. V.; Kumar, K. Ganesh; Butler, Andrew A.; Bannister, Thomas D.; Hooper, Andrea T.; Unsal-Kacmaz, Keziban; Roush, William R.; Cleveland, John L.

    2014-01-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1, and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, and reductions in glucose transport, and in levels of ATP, NADPH and glutathione. Reductions in glutathione then lead to increases in hydrogen peroxide, mitochondrial damage and, ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies. PMID:24285728

  18. Blocking lactate export by inhibiting the Myc target MCT1 Disables glycolysis and glutathione synthesis.

    PubMed

    Doherty, Joanne R; Yang, Chunying; Scott, Kristen E N; Cameron, Michael D; Fallahi, Mohammad; Li, Weimin; Hall, Mark A; Amelio, Antonio L; Mishra, Jitendra K; Li, Fangzheng; Tortosa, Mariola; Genau, Heide Marika; Rounbehler, Robert J; Lu, Yunqi; Dang, Chi V; Kumar, K Ganesh; Butler, Andrew A; Bannister, Thomas D; Hooper, Andrea T; Unsal-Kacmaz, Keziban; Roush, William R; Cleveland, John L

    2014-02-01

    Myc oncoproteins induce genes driving aerobic glycolysis, including lactate dehydrogenase-A that generates lactate. Here, we report that Myc controls transcription of the lactate transporter SLC16A1/MCT1 and that elevated MCT1 levels are manifest in premalignant and neoplastic Eμ-Myc transgenic B cells and in human malignancies with MYC or MYCN involvement. Notably, disrupting MCT1 function leads to an accumulation of intracellular lactate that rapidly disables tumor cell growth and glycolysis, provoking marked alterations in glycolytic intermediates, reductions in glucose transport, and in levels of ATP, NADPH, and ultimately, glutathione (GSH). Reductions in GSH then lead to increases in hydrogen peroxide, mitochondrial damage, and ultimately, cell death. Finally, forcing glycolysis by metformin treatment augments this response and the efficacy of MCT1 inhibitors, suggesting an attractive combination therapy for MYC/MCT1-expressing malignancies.

  19. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth.

    PubMed

    Mukhopadhyay, Archana; Hanold, Laura E; Thayele Purayil, Hamsa; Gisemba, Solomon A; Senadheera, Sanjeewa N; Aldrich, Jane V

    2017-08-03

    The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC 50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.

  20. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato.

    PubMed

    Du, Minmin; Zhao, Jiuhai; Tzeng, David T W; Liu, Yuanyuan; Deng, Lei; Yang, Tianxia; Zhai, Qingzhe; Wu, Fangming; Huang, Zhuo; Zhou, Ming; Wang, Qiaomei; Chen, Qian; Zhong, Silin; Li, Chang-Bao; Li, Chuanyou

    2017-08-01

    The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato ( Solanum lycopersicum ) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea , MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes. © 2017 American Society of Plant Biologists. All rights reserved.

  1. Inhibition of N-Myc down regulated gene 1 in in vitro cultured human glioblastoma cells

    PubMed Central

    Said, Harun M; Polat, Buelent; Stein, Susanne; Guckenberger, Mathias; Hagemann, Carsten; Staab, Adrian; Katzer, Astrid; Anacker, Jelena; Flentje, Michael; Vordermark, Dirk

    2012-01-01

    AIM: To study short dsRNA oligonucleotides (siRNA) as a potent tool for artificially modulating gene expression of N-Myc down regulated gene 1 (NDRG1) gene induced under different physiological conditions (Normoxia and hypoxia) modulating NDRG1 transcription, mRNA stability and translation. METHODS: A cell line established from a patient with glioblastoma multiforme. Plasmid DNA for transfections was prepared with the Endofree Plasmid Maxi kit. From plates containing 5 × 107 cells, nuclear extracts were prepared according to previous protocols. The pSUPER-NDRG1 vectors were designed, two sequences were selected from the human NDRG1 cDNA (5’-GCATTATTGGCATGGGAAC-3’ and 5’-ATGCAGAGTAACGTGGAAG-3’. reverse transcription polymerase chain reaction was performed using primers designed using published information on β-actin and hypoxia-inducible factor (HIF)-1α mRNA sequences in GenBank. NDRG1 mRNA and protein level expression results under different conditions of hypoxia or reoxygenation were compared to aerobic control conditions using the Mann-Whitney U test. Reoxygenation values were also compared to the NDRG1 levels after 24 h of hypoxia (P < 0.05 was considered significant). RESULTS: siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements bound by nuclear HIF-1 in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. CONCLUSION: NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human

  2. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation.

    PubMed

    Shostak, Anton; Ruppert, Bianca; Ha, Nati; Bruns, Philipp; Toprak, Umut H; Eils, Roland; Schlesner, Matthias; Diernfellner, Axel; Brunner, Michael

    2016-06-24

    The circadian clock and the cell cycle are major cellular systems that organize global physiology in temporal fashion. It seems conceivable that the potentially conflicting programs are coordinated. We show here that overexpression of MYC in U2OS cells attenuates the clock and conversely promotes cell proliferation while downregulation of MYC strengthens the clock and reduces proliferation. Inhibition of the circadian clock is crucially dependent on the formation of repressive complexes of MYC with MIZ1 and subsequent downregulation of the core clock genes BMAL1 (ARNTL), CLOCK and NPAS2. We show furthermore that BMAL1 expression levels correlate inversely with MYC levels in 102 human lymphomas. Our data suggest that MYC acts as a master coordinator that inversely modulates the impact of cell cycle and circadian clock on gene expression.

  3. HSP-70, C-myc and HLA-DR expression in patients with cutaneous malignant melanoma metastatic in lymph nodes.

    PubMed

    Kalogeraki, A; Garbagnati, F; Darivianaki, K; Delides, G S; Santinami, M; Stathopoulos, E N; Zoras, O

    2006-01-01

    HSP-70, C-myc and HLA-DR were examined in patients with cutaneous malignant melanoma metastatic to lymph nodes. Lymph-nodal fine-needle aspiration biopsies (FNABs) were analyzed and the results were correlated to other variables, such as the gender of the patients, Clark level and Breslow thickness of the primary tumor. Thirty cases of metastatic melanoma in lymph nodes from 30 patients with cutaneous malignant melanoma were studied. All patients (100%) had microscopic regional nodal metastasis and a recurrence of the lesion during the first two years. The HSP-70, C-myc and HLA-DR expressions were investigated immunocytologically, using the APAAP (alkaline phosphatase) method on the FNAB samples. The immunocytochemical expressions of HSP-70 protein, C-myc oncogene, and HLA-DR antigen were found in 18 cases (60%), in 14 cases (43.3%) and in 12 cases (40%), respectively. Clark levels were significantly associated with HSP-70 protein (< 0.01), C-myc oncogene expression (< 0.05) and HLA-DR antigen (< 0.01) expression. The HLA-DR antigen was also found to be related (< 0.05) to higher Breslow thickness (> 1.5 mm). The clinical course of malignant cutaneous melanoma is related to the expression of these indices, which seem to play a significant role in the metastasis and prognosis of this aggressive tumor. The immunocytochemical expression of HSP-70 in the malignant melanoma tumor could be of particular value in the identification of patients with poor prognosis.

  4. MYC immunohistochemical and cytogenetic analysis are required for identification of clinically relevant aggressive B cell lymphoma subtypes.

    PubMed

    Raess, Philipp W; Moore, Stephen R; Cascio, Michael J; Dunlap, Jennifer; Fan, Guang; Gatter, Ken; Olson, Susan B; Braziel, Rita M

    2018-06-01

    Accurate subclassification of aggressive B cell lymphomas (ABCLs) requires integration of morphologic, immunohistochemical (IHC), and cytogenetic information. Optimal strategies have not been well defined for diagnosis of high grade B cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (HGBLwR) and double expressor lymphomas with MYC and BCL2 protein overexpression. One hundred and eighty seven ABCLs were investigated with complete IHC and FISH analysis. Morphologic and IHC analysis was insufficient to identify clinically relevant HGBLwR. Approximately, 75% of cases classified as HGBLwR showed conventional DLBCL morphologic features. Fourteen percent of MYC-rearranged cases were negative by IHC. Conversely, 60% of cases positive for MYC by IHC did not demonstrate a MYC rearrangement. Analysis by FISH without MYC and BCL2 IHC would miss 41 cases of double expressor lymphoma. Complete IHC and FISH analysis is recommended in the evaluation of all ABCLs.

  5. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vališ, Karel, E-mail: karel.valis@biomed.cas.cz; Faculty of Science, Charles University, Prague; Talacko, Pavel

    The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complexmore » with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway. - Highlights: • Shikonin inhibits C-MYC and GLUT1 expression in MST1 and YAP1 dependent manner. • YAP1-TEAD1 interaction activates C-MYC and GLUT1 expression. • MST1 in cooperation with YAP1 inhibits C-MYC and GLUT1 expression. • MST1-YAP1-TEAD1 axis regulates lactate production by leukemic cells. • MST1 and YAP1 proteins block proliferation of leukemic cells.« less

  6. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas

    PubMed Central

    Westermann, Frank; Muth, Daniel; Benner, Axel; Bauer, Tobias; Henrich, Kai-Oliver; Oberthuer, André; Brors, Benedikt; Beissbarth, Tim; Vandesompele, Jo; Pattyn, Filip; Hero, Barbara; König, Rainer; Fischer, Matthias; Schwab, Manfred

    2008-01-01

    Background Amplified MYCN oncogene resulting in deregulated MYCN transcriptional activity is observed in 20% of neuroblastomas and identifies a highly aggressive subtype. In MYCN single-copy neuroblastomas, elevated MYCN mRNA and protein levels are paradoxically associated with a more favorable clinical phenotype, including disseminated tumors that subsequently regress spontaneously (stage 4s-non-amplified). In this study, we asked whether distinct transcriptional MYCN or c-MYC activities are associated with specific neuroblastoma phenotypes. Results We defined a core set of direct MYCN/c-MYC target genes by applying gene expression profiling and chromatin immunoprecipitation (ChIP, ChIP-chip) in neuroblastoma cells that allow conditional regulation of MYCN and c-MYC. Their transcript levels were analyzed in 251 primary neuroblastomas. Compared to localized-non-amplified neuroblastomas, MYCN/c-MYC target gene expression gradually increases from stage 4s-non-amplified through stage 4-non-amplified to MYCN amplified tumors. This was associated with MYCN activation in stage 4s-non-amplified and predominantly c-MYC activation in stage 4-non-amplified tumors. A defined set of MYCN/c-MYC target genes was induced in stage 4-non-amplified but not in stage 4s-non-amplified neuroblastomas. In line with this, high expression of a subset of MYCN/c-MYC target genes identifies a patient subtype with poor overall survival independent of the established risk markers amplified MYCN, disease stage, and age at diagnosis. Conclusions High MYCN/c-MYC target gene expression is a hallmark of malignant neuroblastoma progression, which is predominantly driven by c-MYC in stage 4-non-amplified tumors. In contrast, moderate MYCN function gain in stage 4s-non-amplified tumors induces only a restricted set of target genes that is still compatible with spontaneous regression. PMID:18851746

  7. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300.

    PubMed

    Tikhanovich, Irina; Zhao, Jie; Bridges, Brian; Kumer, Sean; Roberts, Ben; Weinman, Steven A

    2017-08-11

    Protein arginine methyltransferase 1 (PRMT1) is an essential enzyme controlling about 85% of the total cellular arginine methylation in proteins. We have shown previously that PRMT1 is an important regulator of innate immune responses and that it is required for M2 macrophage differentiation. c-Myc is a transcription factor that is critical in regulating cell proliferation and also regulates the M2 transcriptional program in macrophages. Here, we sought to determine whether c-Myc in myeloid cells is regulated by PRMT1-dependent arginine methylation. We found that PRMT1 activity was necessary for c-Myc binding to the acetyltransferase p300. PRMT1 inhibition decreased p300 recruitment to c-Myc target promoters and increased histone deacetylase 1 (HDAC1) recruitment, thereby decreasing transcription at these sites. Moreover, PRMT1 inhibition blocked c-Myc-mediated induction of several of its target genes, including peroxisome proliferator-activated receptor γ ( PPARG ) and mannose receptor C-type 1 ( MRC1 ), suggesting that PRMT1 is necessary for c-Myc function in M2 macrophage differentiation. Of note, in primary human blood monocytes, p300-c-Myc binding was strongly correlated with PRMT1 expression, and in liver sections, PRMT1, c-Myc, and M2 macrophage levels were strongly correlated with each other. Both PRMT1 levels and M2 macrophage numbers were significantly lower in livers from individuals with a history of spontaneous bacterial peritonitis, known to have defective cellular immunity. In conclusion, our findings demonstrate that PRMT1 is an important regulator of c-Myc function in myeloid cells. PRMT1 loss in individuals with cirrhosis may contribute to their immune defects. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Distinct nuclear arrangement of active and inactive c-myc genes in control and differentiated colon carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnicarova, Andrea; Kozubek, Stanislav; Pachernik, Jiri

    2006-12-10

    Using sequential RNA-DNA fluorescence in situ hybridization, the nuclear arrangement of both the active and inactive c-myc gene as well as its transcription was investigated in colon cancer HT-29 cells induced to differentiate into enterocytes. Cytogenetic studies revealed the presence of two chromosomes 8 in HT-29 cells, of which the one containing c-myc gene amplicons was substantially larger and easily distinguished from the normal chromosome. This observation enabled detection of both activity and nuclear localization of c-myc genes in single cells and in individual chromosome territories. Similar transcriptional activity of the c-myc gene was observed in both the normal andmore » derivative chromosome 8 territories showing no influence of the amplification on the c-myc gene expression. Our experiments demonstrate strikingly specific nuclear and territorial arrangements of active genes as compared with inactive ones: on the periphery of their territories facing to the very central region of the cell nucleus. Nuclear arrangement of c-myc genes and transcripts was conserved during cell differentiation and, therefore, independent of the level of differentiation-specific c-myc gene expression. However, after the induction of differentiation, a more internal territorial location was found for the single copy c-myc gene of normal chromosome 8, while amplicons conserved their territorial topography.« less

  9. PIM kinase inhibition presents a novel targeted therapy against triple-negative breast tumors with elevated MYC expression

    PubMed Central

    Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y.; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N.; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A.; Marsh, Lindsey A.; Anderton, Brittany N.; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V.; Yaswen, Paul; McManus, Michael T.; Rugo, Hope S.; Werb, Zena; Goga, Andrei

    2017-01-01

    Triple-negative breast cancer (TNBC), which lacks the expression of the estrogen, progesterone, and HER2 receptors, represents the breast cancer subtype with the poorest outcome1. No targeted therapy is available against this subtype due to lack of validated molecular targets. We previously reported that MYC signaling is disproportionally elevated in triple-negative (TN) tumors compared to receptor-positive (RP) tumors2. MYC is an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes3. Direct inhibition of oncogenic MYC transcriptional activity has remained challenging4,5. The present study conducted an shRNA screen against all kinases to uncover novel MYC-dependent synthetic lethal combinations, and identified PIM1, a non-essential kinase. Here we demonstrate that PIM1 expression was elevated in TN tumors and was associated with poor prognosis in patients with hormone and HER2 receptor-negative tumors. Small molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic breast cancer models by inhibiting oncogenic transcriptional activity of MYC while simultaneously restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that exhibit elevated MYC expression. PMID:27775705

  10. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    PubMed

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  11. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication

    PubMed Central

    Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2015-01-01

    Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297

  12. Non-transmissible Sendai virus vector encoding c-myc suppressor FBP-interacting repressor for cancer therapy

    PubMed Central

    Matsushita, Kazuyuki; Shimada, Hideaki; Ueda, Yasuji; Inoue, Makoto; Hasegawa, Mamoru; Tomonaga, Takeshi; Matsubara, Hisahiro; Nomura, Fumio

    2014-01-01

    AIM: To investigate a novel therapeutic strategy to target and suppress c-myc in human cancers using far up stream element (FUSE)-binding protein-interacting repressor (FIR). METHODS: Endogenous c-Myc suppression and apoptosis induction by a transient FIR-expressing vector was examined in vivo via a HA-tagged FIR (HA-FIR) expression vector. A fusion gene-deficient, non-transmissible, Sendai virus (SeV) vector encoding FIR cDNA, SeV/dF/FIR, was prepared. SeV/dF/FIR was examined for its gene transduction efficiency, viral dose dependency of antitumor effect and apoptosis induction in HeLa (cervical squamous cell carcinoma) cells and SW480 (colon adenocarcinoma) cells. Antitumor efficacy in a mouse xenograft model was also examined. The molecular mechanism of the anti-tumor effect and c-Myc suppression by SeV/dF/FIR was examined using Spliceostatin A (SSA), a SAP155 inhibitor, or SAP155 siRNA which induce c-Myc by increasing FIR∆exon2 in HeLa cells. RESULTS: FIR was found to repress c-myc transcription and in turn the overexpression of FIR drove apoptosis through c-myc suppression. Thus, FIR expressing vectors are potentially applicable for cancer therapy. FIR is alternatively spliced by SAP155 in cancer cells lacking the transcriptional repression domain within exon 2 (FIR∆exon2), counteracting FIR for c-Myc protein expression. Furthermore, FIR forms a complex with SAP155 and inhibits mutual well-established functions. Thus, both the valuable effects and side effects of exogenous FIR stimuli should be tested for future clinical application. SeV/dF/FIR, a cytoplasmic RNA virus, was successfully prepared and showed highly efficient gene transduction in in vivo experiments. Furthermore, in nude mouse tumor xenograft models, SeV/dF/FIR displayed high antitumor efficiency against human cancer cells. SeV/dF/FIR suppressed SSA-activated c-Myc. SAP155 siRNA, potentially produces FIR∆exon2, and led to c-Myc overexpression with phosphorylation at Ser62. HA-FIR suppressed

  13. Aggressive B cell Lymphoma: Optimal Therapy for MYC-positive, Double-Hit, and Triple-Hit DLBCL.

    PubMed

    Dunleavy, Kieron

    2015-12-01

    Approximately 10% of cases of diffuse large B cell lymphoma (DLBCL) harbor a MYC rearrangement and this has been associated with an inferior outcome following standard therapy across many different studies. Double-hit and triple-hit lymphomas harbor concurrent rearrangements of MYC and BCL2 and/or BCL6 and are also associated with a very aggressive course and poor clinical outcome. It is unclear and there is lack of consensus on how these diseases should be approached therapeutically. They are characterized typically by high tumor proliferation and likely require Burkitt lymphoma-type strategies and several retrospective studies suggest that more intensive approaches than rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) may be beneficial. One challenge in this respect is that most patients with these diseases are older than 60 years and generally have poor tolerability of regimens typically used in Burkitt lymphoma. Dose-adjusted EPOCH-R is an alternative effective immunochemotherapy platform for DLBCL and is effective in Burkitt lymphoma, and retrospective studies suggest that it is effective and feasible in patients with DLBCL that harbors a MYC rearrangement with or without a BCL-2 translocation (double-hit). A multicenter study of this approach in MYC-rearranged DLBCL is ongoing and preliminary results are very encouraging. There is a lack of consensus on the role of consolidation stem cell transplantation in patients who achieve a good response to initial therapy but at this point in time, no (retrospective) studies have demonstrated any benefit. These diseases are also associated with a high rate of CNS involvement and progression and checking for cerebrospinal fluid by cytology and flow cytometry at initial diagnosis should be considered. In summary, based on retrospective data and preliminary prospective data (as more mature data is awaited), while Burkitt-type regimens may be feasible in young patients, DA-EPOCH-R is a

  14. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato[OPEN

    PubMed Central

    Liu, Yuanyuan; Deng, Lei; Wu, Fangming; Huang, Zhuo; Zhou, Ming; Chen, Qian; Zhong, Silin

    2017-01-01

    The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes. PMID:28733419

  15. Transactivation Domain of Human c-Myc Is Essential to Alleviate Poly(Q)-Mediated Neurotoxicity in Drosophila Disease Models.

    PubMed

    Raj, Kritika; Sarkar, Surajit

    2017-05-01

    Polyglutamine (poly(Q)) disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, represent a group of neurological disorders which arise due to an atypically expanded poly(Q) tract in the coding region of the affected gene. Pathogenesis of these disorders inside the cells begins with the assembly of these mutant proteins in the form of insoluble inclusion bodies (IBs), which progressively sequester several vital cellular transcription factors and other essential proteins, and finally leads to neuronal dysfunction and apoptosis. We have shown earlier that targeted upregulation of Drosophila myc (dmyc) dominantly suppresses the poly(Q) toxicity in Drosophila. The present study examines the ability of the human c-myc proto-oncogene and also identifies the specific c-Myc isoform which drives the mitigation of poly(Q)-mediated neurotoxicity, so that it could be further substantiated as a potential drug target. We report for the first time that similar to dmyc, tissue-specific induced expression of human c-myc also suppresses poly(Q)-mediated neurotoxicity by an analogous mechanism. Among the three isoforms of c-Myc, the rescue potential was maximally manifested by the full-length c-Myc2 protein, followed by c-Myc1, but not by c-MycS which lacks the transactivation domain. Our study suggests that strategies focussing on the transactivation domain of c-Myc could be a very useful approach to design novel drug molecules against poly(Q) disorders.

  16. MYC and Human Telomerase Gene (TERC) Copy Number Gain in Early-stage Non–small Cell Lung Cancer

    PubMed Central

    Flacco, Antonella; Ludovini, Vienna; Bianconi, Fortunato; Ragusa, Mark; Bellezza, Guido; Tofanetti, Francesca R.; Pistola, Lorenza; Siggillino, Annamaria; Vannucci, Jacopo; Cagini, Lucio; Sidoni, Angelo; Puma, Francesco; Varella-Garcia, Marileila; Crinò, Lucio

    2015-01-01

    Objectives We investigated the frequency of MYC and TERC increased gene copy number (GCN) in early-stage non–small cell lung cancer (NSCLC) and evaluated the correlation of these genomic imbalances with clinicopathologic parameters and outcome. Materials and Methods Tumor tissues were obtained from 113 resected NSCLCs. MYC and TERC GCNs were tested by fluorescence in situ hybridization (FISH) according to the University of Colorado Cancer Center (UCCC) criteria and based on the receiver operating characteristic (ROC) classification. Results When UCCC criteria were applied, 41 (36%) cases for MYC and 41 (36%) cases for TERC were considered FISH-positive. MYC and TERC concurrent FISH-positive was observed in 12 cases (11%): 2 (17%) cases with gene amplification and 10 (83%) with high polysomy. By using the ROC analysis, high MYC (mean ≥2.83 copies/cell) and TERC (mean ≥2.65 copies/cell) GCNs were observed in 60 (53.1%) cases and 58 (51.3%) cases, respectively. High TERC GCN was associated with squamous cell carcinoma (SCC) histology (P = 0.001). In univariate analysis, increased MYC GCN was associated with shorter overall survival (P = 0.032 [UCCC criteria] or P = 0.02 [ROC classification]), whereas high TERC GCN showed no association. In multivariate analysis including stage and age, high MYC GCN remained significantly associated with worse overall survival using both the UCCC criteria (P = 0.02) and the ROC classification (P = 0.008). Conclusions Our results confirm MYC as frequently amplified in early-stage NSCLC and increased MYC GCN as a strong predictor of worse survival. Increased TERC GCN does not have prognostic impact but has strong association with squamous histology. PMID:25806711

  17. The E3 ligase Mule protects the heart against oxidative stress and mitochondrial dysfunction through Myc-dependent inactivation of Pgc-1α and Pink1.

    PubMed

    Dadson, Keith; Hauck, Ludger; Hao, Zhenyue; Grothe, Daniela; Rao, Vivek; Mak, Tak W; Billia, Filio

    2017-02-02

    Cardiac homeostasis requires proper control of protein turnover. Protein degradation is principally controlled by the Ubiquitin-Proteasome System. Mule is an E3 ubiquitin ligase that regulates cellular growth, DNA repair and apoptosis to maintain normal tissue architecture. However, Mule's function in the heart has yet to be described. In a screen, we found reduced Mule expression in left ventricular samples from end-stage heart failure patients. Consequently, we generated conditional cardiac-specific Mule knockout (Mule  fl/fl(y) ;mcm) mice. Mule ablation in adult Mule  fl/fl(y) ;mcm mice prevented myocardial c-Myc polyubiquitination, leading to c-Myc accumulation and subsequent reduced expression of Pgc-1α, Pink1, and mitochondrial complex proteins. Furthermore, these mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction, and early mortality. Co-deletion of Mule and c-Myc rescued this phenotype. Our data supports an indispensable role for Mule in cardiac homeostasis through the regulation of mitochondrial function via maintenance of Pgc-1α and Pink1 expression and persistent negative regulation of c-Myc.

  18. Mechanism of estrogen activation of c-myc oncogene expression.

    PubMed

    Dubik, D; Shiu, R P

    1992-08-01

    The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.

  19. Hyper-O-GlcNAcylation induces cisplatin resistance via regulation of p53 and c-Myc in human lung carcinoma.

    PubMed

    Luanpitpong, Sudjit; Angsutararux, Paweorn; Samart, Parinya; Chanthra, Nawin; Chanvorachote, Pithi; Issaragrisil, Surapol

    2017-09-06

    Aberrant metabolism in hexosamine biosynthetic pathway (HBP) has been observed in several cancers, affecting cellular signaling and tumor progression. However, the role of O-GlcNAcylation, a post-translational modification through HBP flux, in apoptosis remains unclear. Here, we found that hyper-O-GlcNAcylation in lung carcinoma cells by O-GlcNAcase inhibition renders the cells to apoptosis resistance to cisplatin (CDDP). Profiling of various key regulatory proteins revealed an implication of either p53 or c-Myc in the apoptosis regulation by O-GlcNAcylation, independent of p53 status. Using co-immunoprecipitation and correlation analyses, we found that O-GlcNAcylation of p53 under certain cellular contexts, i.e. high p53 activation, promotes its ubiquitin-mediated proteasomal degradation, resulting in a gain of oncogenic and anti-apoptotic functions. By contrast, O-GlcNAcylation of c-Myc inhibits its ubiquitination and subsequent proteasomal degradation. Gene manipulation studies revealed that O-GlcNAcylation of p53/c-Myc is in part a regulator of CDDP-induced apoptosis. Accordingly, we classified CDDP resistance by hyper-O-GlcNAcylation in lung carcinoma cells as either p53 or c-Myc dependence based on their molecular targets. Together, our findings provide novel mechanisms for the regulation of lung cancer cell apoptosis that could be important in understanding clinical drug resistance and suggest O-GlcNAcylation as a potential target for cancer therapy.

  20. Les conjonctivites néonatales dans le canton de Glidji au Sud du Togo: une étude transversale à propos de 159 nouveau-nés

    PubMed Central

    Kokou, Vonor; Nidain, Maneh; Kassoula, Nononsaa Batomguela; Kwassi, Fiaty- Amenouvor; Meba, Banla; Patrice, Balo Komi

    2016-01-01

    Introduction Le but de l’étude était décrire les aspects épidémiologiques des conjonctivites néonatales dans le canton de Glidji au Sud du Togo. Methodes Nous avons mené une étude transversale dans les 4 Unités Sanitaires Périphériques du canton de Glidji du 19 Mars au 13 Mai 2009 soit 8 semaines. Tous les nouveau-nés ont été inclus et la conjonctivite néonatale était définie par la présence chez un nouveau-né d'au moins deux des signes suivants: hyperhémie conjonctivale, œdème palpébral, chémosis, sécrétions purulentes, larmoiement. Les paramètres étudiés étaient l’âge, le sexe, les facteurs de risque, les antécédents, la présence ou non de conjonctivite, les germes en causes et l’évolution sous traitement. Resultats Sur la période, 159 nouveau-nés ont été examinés. L’âge moyen était de 10,9 jours avec des extrêmes de 0 à 28 jours. Il y avait 80 garçons pour 79 filles soit un sex-ratio de 1,01. Sur les 159 nouveau-nés, 7 cas de conjonctivite ont été diagnostiqués soit une prévalence de 4,4%. Les facteurs de risque identifiés étaient l'accouchement par voie basse et la présence d'IST chez la mère pendant la grossesse. Sur les 7 cas de conjonctivite, l'examen cytobactériologique a permis d'isoler le staphylococcus aureus dans 2 cas. L’évolution des cas de conjonctivite sous traitement était favorable avec régression des signes dès le 3è jour. Conclusion Les conjonctivites néonatales avaient une prévalence de 4,4% dans le canton de Glidji au sud du Togo et le staphylocoque doré était le germe en cause. Leur prévention passe par un bon suivi lors de la consultation prénatale et l'instillation de collyre antibiotique à la naissance PMID:27642383

  1. Cooperative Targets of Combined mTOR/HDAC Inhibition Promote MYC Degradation.

    PubMed

    Simmons, John K; Michalowski, Aleksandra M; Gamache, Benjamin J; DuBois, Wendy; Patel, Jyoti; Zhang, Ke; Gary, Joy; Zhang, Shuling; Gaikwad, Snehal; Connors, Daniel; Watson, Nicholas; Leon, Elena; Chen, Jin-Qiu; Kuehl, W Michael; Lee, Maxwell P; Zingone, Adriana; Landgren, Ola; Ordentlich, Peter; Huang, Jing; Mock, Beverly A

    2017-09-01

    Cancer treatments often require combinations of molecularly targeted agents to be effective. mTORi (rapamycin) and HDACi (MS-275/entinostat) inhibitors have been shown to be effective in limiting tumor growth, and here we define part of the cooperative action of this drug combination. More than 60 human cancer cell lines responded synergistically (CI<1) when treated with this drug combination compared with single agents. In addition, a breast cancer patient-derived xenograft, and a BCL-XL plasmacytoma mouse model both showed enhanced responses to the combination compared with single agents. Mice bearing plasma cell tumors lived an average of 70 days longer on combination treatment compared with single agents. A set of 37 genes cooperatively affected (34 downregulated; 3 upregulated) by the combination responded pharmacodynamically in human myeloma cell lines, xenografts, and a P493 model, and were both enriched in tumors, and correlated with prognostic markers in myeloma patient datasets. Genes downregulated by the combination were overexpressed in several untreated cancers (breast, lung, colon, sarcoma, head and neck, myeloma) compared with normal tissues. The MYC/E2F axis, identified by upstream regulator analyses and validated by immunoblots, was significantly inhibited by the drug combination in several myeloma cell lines. Furthermore, 88% of the 34 genes downregulated have MYC-binding sites in their promoters, and the drug combination cooperatively reduced MYC half-life by 55% and increased degradation. Cells with MYC mutations were refractory to the combination. Thus, integrative approaches to understand drug synergy identified a clinically actionable strategy to inhibit MYC/E2F activity and tumor cell growth in vivo Mol Cancer Ther; 16(9); 2008-21. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Targeting of the MYCN Protein with Small Molecule c-MYC Inhibitors

    PubMed Central

    Müller, Inga; Larsson, Karin; Frenzel, Anna; Oliynyk, Ganna; Zirath, Hanna; Prochownik, Edward V.; Westwood, Nicholas J.; Henriksson, Marie Arsenian

    2014-01-01

    Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tumors. Since patients with MYCN-amplified neuroblastoma have a poor prognosis, targeting MYCN using small molecule inhibitors could represent a promising therapeutic approach. We have previously demonstrated that the small molecule 10058-F4, known to bind to the c-MYC bHLHZip dimerization domain and inhibiting the c-MYC/MAX interaction, also interferes with the MYCN/MAX dimerization in vitro and imparts anti-tumorigenic effects in neuroblastoma tumor models with MYCN overexpression. Our previous work also revealed that MYCN-inhibition leads to mitochondrial dysfunction resulting in accumulation of lipid droplets in neuroblastoma cells. To expand our understanding of how small molecules interfere with MYCN, we have now analyzed the direct binding of 10058-F4, as well as three of its analogs; #474, #764 and 10058-F4(7RH), one metabolite C-m/z 232, and a structurally unrelated c-MYC inhibitor 10074-G5, to the bHLHZip domain of MYCN. We also assessed their ability to induce apoptosis, neurite outgrowth and lipid accumulation in neuroblastoma cells. Interestingly, all c-MYC binding molecules tested also bind MYCN as assayed by surface plasmon resonance. Using a proximity ligation assay, we found reduced interaction between MYCN and MAX after treatment with all molecules except for the 10058-F4 metabolite C-m/z 232 and the non-binder 10058-F4(7RH). Importantly, 10074-G5 and 10058-F4 were the most efficient in inducing neuronal differentiation and lipid accumulation in MYCN-amplified neuroblastoma cells. Together our data demonstrate MYCN-binding properties for a selection of small molecules, and provide functional information that could be of importance for future development of targeted therapies against MYCN-amplified neuroblastoma. PMID:24859015

  3. Clinicopathological and genomic analysis of double-hit follicular lymphoma: comparison with high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements.

    PubMed

    Miyaoka, Masashi; Kikuti, Yara Y; Carreras, Joaquim; Ikoma, Haruka; Hiraiwa, Shinichiro; Ichiki, Akifumi; Kojima, Minoru; Ando, Kiyoshi; Yokose, Tomoyuki; Sakai, Rika; Hoshikawa, Masahiro; Tomita, Naoto; Miura, Ikuo; Takata, Katsuyoshi; Yoshino, Tadashi; Takizawa, Jun; Bea, Silvia; Campo, Elias; Nakamura, Naoya

    2018-02-01

    Most high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements are aggressive B-cell lymphomas. Occasional double-hit follicular lymphomas have been described but the clinicopathological features of these tumors are not well known. To clarify the characteristics of double-hit follicular lymphomas, we analyzed 10 cases of double-hit follicular lymphomas and 15 cases of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements for clinicopathological and genome-wide copy-number alterations and copy-neutral loss-of-heterozygosity profiles. For double-hit follicular lymphomas, the median age was 67.5 years (range: 48-82 years). The female/male ratio was 2.3. Eight patients presented with advanced clinical stage. The median follow-up time was 20 months (range: 1-132 months). At the end of the follow-up, 8 patients were alive, 2 patients were dead including 1 patient with diffuse large B-cell lymphoma transformation. Rearrangements of MYC/BCL2, MYC/BCL6, and MYC/BCL2/BCL6 were seen in 8, 1, and 1 cases, respectively. The partner of MYC was IGH in 6 cases. There were no cases of histological grade 1, 4 cases of grade 2, 5 cases of grade 3a, and 1 case of grade 3b. Two cases of grade 3a exhibited immunoblast-like morphology. Immunohistochemistry demonstrated 9 cases with ≥50% MYC-positive cells. There was significant difference in MYC intensity (P=0.00004) and MIB-1 positivity (P=0.001) between double-hit follicular lymphomas and high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. The genome profile of double-hit follicular lymphomas was comparable with conventional follicular lymphomas (GSE67385, n=198) with characteristic gains of 2p25.3-p11.1, 7p22.3-q36.3, 12q11-q24.33, and loss of 18q21.32-q23 (P<0.05). In comparison with high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements, double-hit follicular lymphomas had fewer copy-number alterations and minimal common region of gain at 2p16.1 (70%), locus

  4. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

    PubMed Central

    Oran, Amanda R.; Adams, Clare M.; Zhang, Xiao-yong; Gennaro, Victoria J.; Pfeiffer, Harla K.; Mellert, Hestia S.; Seidel, Hans E.; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R.; Shen, Chen; Rigoutsos, Isidore; King, Michael P.; Cotney, Justin L.; Arnold, Jamie J.; Sharma, Suresh D.; Martinez, Ubaldo E.; Vakoc, Christopher R.; Chodosh, Lewis A.; Thompson, James E.; Bradner, James E.; Cameron, Craig E.; Shadel, Gerald S.; Eischen, Christine M.; McMahon, Steven B.

    2016-01-01

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors. PMID:27590350

  5. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer.

    PubMed

    Oran, Amanda R; Adams, Clare M; Zhang, Xiao-Yong; Gennaro, Victoria J; Pfeiffer, Harla K; Mellert, Hestia S; Seidel, Hans E; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R; Shen, Chen; Rigoutsos, Isidore; King, Michael P; Cotney, Justin L; Arnold, Jamie J; Sharma, Suresh D; Martinez-Outschoorn, Ubaldo E; Vakoc, Christopher R; Chodosh, Lewis A; Thompson, James E; Bradner, James E; Cameron, Craig E; Shadel, Gerald S; Eischen, Christine M; McMahon, Steven B

    2016-11-08

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.

  6. LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect

    PubMed Central

    Xiang, Shaoxun; Gu, Hao; Thorne, Rick F.; Zhang, Xu Dong; Wu, Mian

    2018-01-01

    The oncoprotein c-Myc plays an important role in regulating glycolysis under normoxia; yet, in cancer cells, HIF1α, which is essential for driving glycolysis under hypoxia, is often up-regulated even in the presence of oxygen. The relationship between these two major regulators of the Warburg effect remains to be fully defined. Here we demonstrate that regulation of a long noncoding RNA (lncRNA), named IDH1-AS1, enables c-Myc to collaborate with HIF1α in activating the Warburg effect under normoxia. c-Myc transcriptionally repressed IDH1-AS1, which, upon expression, promoted homodimerization of IDH1 and thus enhanced its enzymatic activity. This resulted in increased α-KG and decreased ROS production and subsequent HIF1α down-regulation, leading to attenuation of glycolysis. Hence, c-Myc repression of IDH1-AS1 promotes activation of the Warburg effect by HIF1α. As such, IDH1-AS1 overexpression inhibited cell proliferation, whereas silencing of IDH1-AS1 promoted cell proliferation and cancer xenograft growth. Restoring IDH1-AS1 expression may therefore represent a potential metabolic approach for cancer treatment. PMID:29378948

  7. Carbazole ligands as c-myc G-quadruplex binders.

    PubMed

    Głuszyńska, Agata; Juskowiak, Bernard; Kuta-Siejkowska, Martyna; Hoffmann, Marcin; Haider, Shozeb

    2018-07-15

    The interactions of c-myc G-quadruplex with three carbazole derivatives were investigated by UV-Vis spectrophotometry, fluorescence, CD spectroscopy, and molecular modeling. The results showed that a combination of carbazole scaffold functionalized with ethyl, triazole and imidazole groups resulted in stabilization of the intramolecular G-quadruplex formed by the DNA sequence derived from the NHE III 1 region of c-myc oncogene (Pu22). Binding to the G-quadruplex Pu22 resulted in the significant increase in fluorescence intensity of complexed ligands 1-3. All ligands were capable of interacting with G4 DNA with binding stoichiometry indicating that two ligand molecules bind to G-quadruplex with comparable affinity, which agrees with binding model of end-stacking on terminal G-tetrads. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Development of a Time-Resolved Fluorescence Resonance Energy Transfer Ultrahigh-Throughput Screening Assay for Targeting the NSD3 and MYC Interaction. | Office of Cancer Genomics

    Cancer.gov

    Epigenetic modulators play critical roles in reprogramming of cellular functions, emerging as a new class of promising therapeutic targets. Nuclear receptor binding SET domain protein 3 (NSD3) is a member of the lysine methyltransferase family. Interestingly, the short isoform of NSD3 without the methyltransferase fragment, NSD3S, exhibits oncogenic activity in a wide range of cancers. We recently showed that NSD3S interacts with MYC, a central regulator of tumorigenesis, suggesting a mechanism by which NSD3S regulates cell proliferation through engaging MYC.

  9. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression.

    PubMed

    Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A; Marsh, Lindsey A; Anderton, Brittany N; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V; Yaswen, Paul; McManus, Michael T; Rugo, Hope S; Werb, Zena; Goga, Andrei

    2016-11-01

    Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.

  10. Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening.

    PubMed

    Garrido-Bigotes, Adrián; Figueroa, Nicolás E; Figueroa, Pablo M; Figueroa, Carlos R

    2018-01-01

    Jasmonates (JAs) are signalling molecules involved in stress responses, development and secondary metabolism biosynthesis, although their roles in fleshy-fruit development and ripening processes are not well known. In strawberry fruit, it has been proposed that JAs could regulate the early development through the activation of the JAs biosynthesis. Moreover, it has been reported that JA treatment increases anthocyanin content in strawberry fruit involving the bioactive jasmonate biosynthesis. Nevertheless, JA signalling pathway, of which main components are the COI1-JAZ co-receptor and the MYC transcription factors (TFs), has not been characterized in strawberry until now. Here we identified and characterized the woodland strawberry (Fragaria vesca) JAZ and MYC genes as well as studied their expression during development and ripening stages in commercial strawberry (Fragaria × ananassa) fruit. We described twelve putative JAZ proteins and two MYC TFs, which showed high conservation with respect to their orthologs in Arabidopsis thaliana and in other fleshy-fruit species such as Malus × domestica, Vitis vinifera and Solanum lycopersicum as revealed by gene synteny and phylogenetic analyses. Noteworthy, their expression levels exhibited a significant decrease from fruit development to ripening stages in F. × ananassa, along with others of the JA signalling-related genes such as FaNINJA and FaJAMs, encoding for negative regulators of JA responses. Moreover, we found that main JA signalling-related genes such as FaMYC2, and FaJAZ1 are promptly induced by JA treatment at early times in F. × ananassa fruit. These results suggest the conservation of the canonical JA signalling pathway in strawberry and a possible role of this pathway in early strawberry fruit development, which also correlates negatively with the beginning of the ripening process.

  11. Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening

    PubMed Central

    Figueroa, Nicolás E.; Figueroa, Pablo M.

    2018-01-01

    Jasmonates (JAs) are signalling molecules involved in stress responses, development and secondary metabolism biosynthesis, although their roles in fleshy-fruit development and ripening processes are not well known. In strawberry fruit, it has been proposed that JAs could regulate the early development through the activation of the JAs biosynthesis. Moreover, it has been reported that JA treatment increases anthocyanin content in strawberry fruit involving the bioactive jasmonate biosynthesis. Nevertheless, JA signalling pathway, of which main components are the COI1-JAZ co-receptor and the MYC transcription factors (TFs), has not been characterized in strawberry until now. Here we identified and characterized the woodland strawberry (Fragaria vesca) JAZ and MYC genes as well as studied their expression during development and ripening stages in commercial strawberry (Fragaria × ananassa) fruit. We described twelve putative JAZ proteins and two MYC TFs, which showed high conservation with respect to their orthologs in Arabidopsis thaliana and in other fleshy-fruit species such as Malus × domestica, Vitis vinifera and Solanum lycopersicum as revealed by gene synteny and phylogenetic analyses. Noteworthy, their expression levels exhibited a significant decrease from fruit development to ripening stages in F. × ananassa, along with others of the JA signalling-related genes such as FaNINJA and FaJAMs, encoding for negative regulators of JA responses. Moreover, we found that main JA signalling-related genes such as FaMYC2, and FaJAZ1 are promptly induced by JA treatment at early times in F. × ananassa fruit. These results suggest the conservation of the canonical JA signalling pathway in strawberry and a possible role of this pathway in early strawberry fruit development, which also correlates negatively with the beginning of the ripening process. PMID:29746533

  12. Downregulation of N‑Myc inhibits neuroblastoma cell growth via the Wnt/β‑catenin signaling pathway.

    PubMed

    Wang, Yingge; Gao, Shan; Wang, Weiguang; Xia, Yuting; Liang, Jingyan

    2018-05-03

    Neuroblastoma, one of the most common types of cancer in childhood, is commonly treated with surgery, radiation and chemotherapy. However, prognosis and survival remain poor for children with high‑risk neuroblastoma. Therefore, the identification of novel, effective therapeutic targets is necessary. N‑Myc, a proto‑oncogene protein encoded by the v‑myc avial myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) gene, is associated with tumorigenesis. In the present study, the effect of N‑Myc silencing on MYCN‑amplified CHP134 and BE‑2C neuroblastoma cells was evaluated, and the underlying molecular mechanism was investigated. N‑Myc was successfully knocked down using an N‑Myc‑specific small interfering RNA, the efficacy of interference efficiency confirmed by reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell viability was evaluated by MTT assay and apoptosis was measured by ELISA assay. The results indicated that MYCN silencing significantly decreased cell viability and promoted apoptosis. Subsequently, the expression levels of key Wnt/β‑catenin signaling pathway proteins were detected by western blotting, and MYCN silencing was demonstrated to inhibit Wnt/β‑catenin signaling, decreasing the expression ofanti‑apoptosis proteins and increasing the expression of pro‑apoptosis protein. This suggested that N‑Myc regulated survival and growth of CHP134 and BE‑2C neuroblastoma cells, potentially through Wnt/β‑catenin signaling. Furthermore, associated proteins, N‑Myc and STAT interactor and dickkopf Wnt signaling pathway inhibitor 1, were demonstrated to be involved in this regulation. Therefore, N‑Myc and its downstream targets may provide novel therapeutic targets for the treatment of neuroblastoma.

  13. c-Myc-Induced Survivin Is Essential for Promoting the Notch-Dependent T Cell Differentiation from Hematopoietic Stem Cells

    PubMed Central

    Haque, Rizwanul; Song, Jianyong; Haque, Mohammad; Lei, Fengyang; Sandhu, Praneet; Ni, Bing; Zheng, Songguo; Fang, Deyu; Yang, Jin-Ming; Song, Jianxun

    2017-01-01

    Notch is indispensable for T cell lineage commitment, and is needed for thymocyte differentiation at early phases. During early stages of T cell development, active Notch prevents other lineage potentials including B cell lineage and myeloid cell (e.g., dendritic cell) lineage. Nevertheless, the precise intracellular signaling pathways by which Notch promotes T cell differentiation remain unclear. Here we report that the transcription factor c-Myc is a key mediator of the Notch signaling–regulated T cell differentiation. In a well-established in vitro differentiation model of T lymphocytes from hematopoietic stem cells, we showed that Notch1 and 4 directly promoted c-Myc expression; dominant-negative (DN) c-Myc inhibited early T cell differentiation. Moreover, the c-Myc expression activated by Notch signaling increased the expression of survivin, an inhibitor of apoptosis (IAP) protein. We further demonstrated that over-expression of c-Myc increased the abundance of survivin and the T cell differentiation thereof, whereas dn c-Myc reduced survivin levels and concomitantly retarded the differentiation. The c-Myc–dependent survivin induction is functionally germane, because Notch-dependent T cell differentiation was canceled by the depletion of survivin. These results identify both c-Myc and survivin as important mediators of the Notch signaling–regulated differentiation of T lymphocytes from hematopoietic stem cells. PMID:28272325

  14. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    PubMed

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  15. Le satellite Encelade source d'ions N+ dans la magnétosphère de Saturne

    NASA Astrophysics Data System (ADS)

    Bouhram, Mehdi; Berthelier, Jean-Jacques; Illiano, Jean-Marie; Smith, Howard T.; Sittler, Edward C.; Crary, Frank J.; Young, Dave T.

    2005-12-01

    xml:lang="fr">RésuméLe premier passage de la sonde Cassini dans l'environnement de Saturne, au dessus de l'anneau E, a mis en évidence l'existence d'un plasma composé d'un mélange d'ions issus des produits de l'eau (H+, O+, OH+, H2O+) avec une faible composante en ions N+ (3 %). A partir d'un modèle simple du transport des ions dans la magnétosphère, nous montrons que la source de ces ions N+ coïncide avec le satellite Encelade. Un tel résultat peut s'expliquer par la présence de composés volatiles tels que l'ammoniac NH3 sur ce satellite de glace, supposé encore actif géologiquement, ou par la présence d'ions N+ d'origine externe préalablement implantés sur sa surface. Pour citer cet article : M. Bouhram et al., C. R. Physique 6 (2005).

  16. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib

    PubMed Central

    Wirth, Matthias; Stojanovic, Natasa; Christian, Jan; Paul, Mariel C.; Stauber, Roland H.; Schmid, Roland M.; Häcker, Georg; Krämer, Oliver H.; Saur, Dieter; Schneider, Günter

    2014-01-01

    The c-MYC (MYC afterward) oncogene is well known for driving numerous oncogenic programs. However, MYC can also induce apoptosis and this function of MYC warrants further clarification. We report here that a clinically relevant proteasome inhibitor significantly increases MYC protein levels and that endogenous MYC is necessary for the induction of apoptosis. This kind of MYC-induced cell death is mediated by enhanced expression of the pro-apoptotic BCL2 family members NOXA and BIM. Quantitative promoter-scanning chromatin immunoprecipitations (qChIP) further revealed binding of MYC to the promoters of NOXA and BIM upon proteasome inhibition, correlating with increased transcription. Both promoters are further characterized by the presence of tri-methylated lysine 4 of histone H3, marking active chromatin. We provide evidence that in our apoptosis models cell death occurs independently of p53 or ARF. Furthermore, we demonstrate that recruitment of MYC to the NOXA as well as to the BIM gene promoters depends on MYC's interaction with the zinc finger transcription factor EGR1 and an EGR1-binding site in both promoters. Our study uncovers a novel molecular mechanism by showing that the functional cooperation of MYC with EGR1 is required for bortezomib-induced cell death. This observation may be important for novel therapeutic strategies engaging the inherent pro-death function of MYC. PMID:25147211

  17. Deptor Is a Novel Target of Wnt/β-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth.

    PubMed

    Wang, Qingding; Zhou, Yuning; Rychahou, Piotr; Harris, Jennifer W; Zaytseva, Yekaterina Y; Liu, Jinpeng; Wang, Chi; Weiss, Heidi L; Liu, Chunming; Lee, Eun Y; Evers, B Mark

    2018-06-15

    Activation of the Wnt/β-catenin signaling pathway drives colorectal cancer growth by deregulating expression of downstream target genes, including the c-myc proto-oncogene. The critical targets that mediate the functions of oncogenic c-Myc in colorectal cancer have yet to be fully elucidated. Previously, we showed that activation of PI3K/Akt/mTOR contributes to colorectal cancer growth and metastasis. Here, we show that Deptor, a suppressor of mTOR, is a direct target of Wnt/β-catenin/c-Myc signaling in colorectal cancer cells. Inhibition of Wnt/β-catenin or knockdown of c-Myc decreased, while activation of Wnt/β-catenin or overexpression of c-Myc increased the expression of Deptor. c-Myc bound the promoter of Deptor and transcriptionally regulated Deptor expression. Inhibition of Wnt/β-catenin/c-Myc signaling increased mTOR activation, and the combination of Wnt and Akt/mTOR inhibitors enhanced inhibition of colorectal cancer cell growth in vitro and in vivo Deptor expression was increased in colorectal cancer cells; knockdown of Deptor induced differentiation, decreased expression of B lymphoma Mo-MLV insertion region 1 (Bmi1), and decreased proliferation in colorectal cancer cell lines and primary human colorectal cancer cells. Importantly, our work identifies Deptor as a downstream target of the Wnt/β-catenin/c-Myc signaling pathway, acting as a tumor promoter in colorectal cancer cells. Moreover, we provide a molecular basis for the synergistic combination of Wnt and mTOR inhibitors in treating colorectal cancer with elevated c-Myc. Significance: The mTOR inhibitor DEPTOR acts as a tumor promoter and could be a potential therapeutic target in colorectal cancer. Cancer Res; 78(12); 3163-75. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. Le continu contre l'espace

    NASA Astrophysics Data System (ADS)

    Salanskis, Jean-Michel

    Disons pour conclure que, en tout état de cause, la façon de concevoir philosophiquement le conflit du continu et de l'espace que nous avons trouvée chez Hegel n'est pas homogène avec le style et les modalités de la pensée mathématique: 1) d'une part, le lien classique, le lien de référence entre continu et espace en mathématiques n'est pas que l'espace serait premier et privé de pensée, et le continu second, venant dissoudre l'espace en apportant la qualité, l'infini et la pensée, mais tout au contraire, il consiste en ce que l'espace est fondé sur l'abîme infinitaire du continu ; 2) d'autre part, l'éventuel divorce entre l'espace et le continu dans l'aire mathématique n'est pas celui d'une réflexivité purement conceptuelle du continu avec un positivisme géométrique, n'équivaut pas à une rupture disciplinaire ; il est plutôt le symptôme de la dérive d'une herméneutique à l'égard d'une autre, au sein d'un continent juridique commun définissant la discipline (la mathématique ensembliste), cette dérive pouvant, à la limite, induire une refonte de ce sol juridique, sans que jamais il soit question pour autant de nier l'unité des mathématiques, à comprendre ici comme l'unité ultime de responsabilité de la communauté mathématique à l'égard des trois questions Qu'est-ce que l'espace?”, “Qu'est-ce que le continu?” et “Qu'est-ce que l'infini?”.

  19. c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells

    PubMed Central

    Martinez-Fernandez, Almudena; Nelson, Timothy J.; Ikeda, Yasuhiro; Terzic, Andre

    2010-01-01

    Induced pluripotent stem cell (iPS) technology has launched a new platform in regenerative medicine aimed at deriving unlimited replacement tissue from autologous sources through somatic cell reprogramming using stemness factor sets. In this way, authentic cardiomyocytes have been obtained from iPS and recently demonstrated in proof-of-principle studies to repair infarcted heart. Optimizing the cardiogenic potential of iPS progeny would ensure a maximized yield of bioengineered cardiac tissue. Here, we reprogrammed fibroblasts in the presence or absence of c-MYC to determine if the acquired cardiogenicity is sensitive to the method of nuclear reprogramming. Using lentiviral constructs that expressed stemness factors SOX2, OCT4, and KLF4 with or without c-MYC, iPS clones generated through fibroblast reprogramming demonstrated indistinguishable characteristics for 5 days of differentiation with similar cell morphology, growth rates, and chimeric embryo integration. However, 4-factor c-MYC dependent nuclear reprogramming produced iPS progeny that consistently prolonged the expression of pluripotent Oct-4 and Fgf4 genes and repressed cardiac differentiation. In contrast, 3-factor c-MYC-less iPS clones efficiently up-regulated pre-cardiac (CXCR4, Flk-1, and Mesp1/2) and cardiac (Nkx2.5, Mef2c, and Myocardin) gene expression patterns. In fact, 3-factor iPS progeny demonstrated early and robust cardiogenesis during in vitro differentiation with consistent beating activity, sarcomere maturation, and rhythmical intracellular calcium dynamics. Thus, nuclear reprogramming independent of c-MYC enhances production of pluripotent stem cells with innate cardiogenic potential. PMID:20221419

  20. Multistage modeling of protein dynamics with monomeric Myc oncoprotein as an example.

    PubMed

    Liu, Jiaojiao; Dai, Jin; He, Jianfeng; Niemi, Antti J; Ilieva, Nevena

    2017-03-01

    We propose to combine a mean-field approach with all-atom molecular dynamics (MD) into a multistage algorithm that can model protein folding and dynamics over very long time periods yet with atomic-level precision. As an example, we investigate an isolated monomeric Myc oncoprotein that has been implicated in carcinomas including those in colon, breast, and lungs. Under physiological conditions a monomeric Myc is presumed to be an example of intrinsically disordered proteins that pose a serious challenge to existing modeling techniques. We argue that a room-temperature monomeric Myc is in a dynamical state, it oscillates between different conformations that we identify. For this we adopt the Cα backbone of Myc in a crystallographic heteromer as an initial ansatz for the monomeric structure. We construct a multisoliton of the pertinent Landau free energy to describe the Cα profile with ultrahigh precision. We use Glauber dynamics to resolve how the multisoliton responds to repeated increases and decreases in ambient temperature. We confirm that the initial structure is unstable in isolation. We reveal a highly degenerate ground-state landscape, an attractive set towards which Glauber dynamics converges in the limit of vanishing ambient temperature. We analyze the thermal stability of this Glauber attractor using room-temperature molecular dynamics. We identify and scrutinize a particularly stable subset in which the two helical segments of the original multisoliton align in parallel next to each other. During the MD time evolution of a representative structure from this subset, we observe intermittent quasiparticle oscillations along the C-terminal α helix, some of which resemble a translating Davydov's Amide-I soliton. We propose that the presence of oscillatory motion is in line with the expected intrinsically disordered character of Myc.

  1. Destabilization of MYC/MYCN by the mitochondrial inhibitors, metaiodobenzylguanidine, metformin and phenformin

    PubMed Central

    WANG, STEPHANIE S.; HSIAO, RUTH; LIMPAR, MARIKO M.; LOMAHAN, SARAH; TRAN, TUAN-ANH; MALONEY, NOLAN J.; IKEGAKI, NAOHIKO; TANG, XAO X.

    2014-01-01

    In the present study, we investigated the anticancer effects of the mitochondrial inhibitors, metaiodobenzylguanidine (MIBG), metformin and phenformin. 131I-MIBG has been used for scintigraphic detection and the targeted radiotherapy of neuroblastoma (NB), a pediatric malignancy. Non-radiolabeled MIBG has been reported to be cytotoxic to NB cells in vitro and in vivo. However, the mechanisms behind its growth suppressive effects have not yet been fully elucidated. Metformin and phenformin are diabetes medications that are being considered in anticancer therapeutics. We investigated the anticancer mechanisms of action of MIBG and metformin in NB. Our data revealed that both drugs suppressed NB cell growth and that the combination drug treatment was more potent. MIBG reduced MYCN and MYC expression in MYCN-amplified and non-MYCN-amplified NB cells in a dose- and time-dependent manner. Metformin was less effective than MIBG in destabilizing MYC/MYCN. The treatment of NB cells with metformin or MIBG resulted in an increased expression of genes encoding biomarkers for favorable outcome in NB [(ephrin (EFN)B2, EFNB3, EPH receptor B6 (EPHB6), neurotrophic tyrosine kinase, receptor, type 1 (NTRK1), CD44 and Myc-interacting zinc finger protein (MIZ-1)] and tumor suppressor genes [(early growth response 1 (EGR1), EPH receptor A2 (EPHA2), growth arrest and DNA-damage-inducible, beta (GADD45B), neuregulin 1 (NRG1), TP53 apoptosis effector (PERP) and sel-1 suppressor of lin-12-like (C. elegans) (SEL1L)]. Accordingly, metformin and MIBG augmented histone H3 acetylation in these cells. Phenformin also exhibited histone modification and was more effective than metformin in destabilizing MYC/MYCN in NB cells. Our data suggest that the destabilization of MYC/MYCN by MIBG, metformin and phenformin and their effects on histone modification are important mechanisms underlying their anticancer effects. PMID:24190252

  2. Destabilization of MYC/MYCN by the mitochondrial inhibitors, metaiodobenzylguanidine, metformin and phenformin.

    PubMed

    Wang, Stephanie S; Hsiao, Ruth; Limpar, Mariko M; Lomahan, Sarah; Tran, Tuan-Anh; Maloney, Nolan J; Ikegaki, Naohiko; Tang, Xao X

    2014-01-01

    In the present study, we investigated the anticancer effects of the mitochondrial inhibitors, metaiodobenzylguanidine (MIBG), metformin and phenformin. 131I-MIBG has been used for scintigraphic detection and the targeted radiotherapy of neuroblastoma (NB), a pediatric malignancy. Non-radiolabeled MIBG has been reported to be cytotoxic to NB cells in vitro and in vivo. However, the mechanisms behind its growth suppressive effects have not yet been fully elucidated. Metformin and phenformin are diabetes medications that are being considered in anticancer therapeutics. We investigated the anticancer mechanisms of action of MIBG and metformin in NB. Our data revealed that both drugs suppressed NB cell growth and that the combination drug treatment was more potent. MIBG reduced MYCN and MYC expression in MYCN-amplified and non-MYCN-amplified NB cells in a dose- and time-dependent manner. Metformin was less effective than MIBG in destabilizing MYC/MYCN. The treatment of NB cells with metformin or MIBG resulted in an increased expression of genes encoding biomarkers for favorable outcome in NB [(ephrin (EFN)B2, EFNB3, EPH receptor B6 (EPHB6), neurotrophic tyrosine kinase, receptor, type 1 (NTRK1), CD44 and Myc-interacting zinc finger protein (MIZ-1)] and tumor suppressor genes [(early growth response 1 (EGR1), EPH receptor A2 (EPHA2), growth arrest and DNA-damage-inducible, beta (GADD45B), neuregulin 1 (NRG1), TP53 apoptosis effector (PERP) and sel-1 suppressor of lin-12-like (C. elegans) (SEL1L)]. Accordingly, metformin and MIBG augmented histone H3 acetylation in these cells. Phenformin also exhibited histone modification and was more effective than metformin in destabilizing MYC/MYCN in NB cells. Our data suggest that the destabilization of MYC/MYCN by MIBG, metformin and phenformin and their effects on histone modification are important mechanisms underlying their anticancer effects.

  3. RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer

    PubMed Central

    Knudsen, Erik S; McClendon, A Kathleen; Franco, Jorge; Ertel, Adam; Fortina, Paolo; Witkiewicz, Agnieszka K

    2015-01-01

    Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNBC. PMID:25602521

  4. MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels.

    PubMed

    Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S; Stine, Zachary E; Hu, Xiaowen; Jiang, Dahai; Xiang, Yan; Zhang, Youyou; Pradeep, Sunila; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; DeMarzo, Angelo M; Sood, Anil K; Zhang, Lin; Dang, Chi V

    2018-01-01

    The MYC oncogene broadly promotes transcription mediated by all nuclear RNA polymerases, thereby acting as a positive modifier of global gene expression. Here, we report that MYC stimulates the transcription of DANCR, a long noncoding RNA (lncRNA) that is widely overexpressed in human cancer. We identified DANCR through its overexpression in a transgenic model of MYC-induced lymphoma, but found that it was broadly upregulated in many human cancer cell lines and cancers, including most notably in prostate and ovarian cancers. Mechanistic investigations indicated that DANCR limited the expression of cell-cycle inhibitor p21 (CDKN1A) and that the inhibitory effects of DANCR loss on cell proliferation could be partially rescued by p21 silencing. In a xenograft model of human ovarian cancer, a nanoparticle-mediated siRNA strategy to target DANCR in vivo was sufficient to strongly inhibit tumor growth. Our observations expand knowledge of how MYC drives cancer cell proliferation by identifying DANCR as a critical lncRNA widely overexpressed in human cancers. Significance: These findings expand knowledge of how MYC drives cancer cell proliferation by identifying an oncogenic long noncoding RNA that is widely overexpressed in human cancers. Cancer Res; 78(1); 64-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways

    PubMed Central

    Meng, X; Carlson, NR; Dong, J; Zhang, Y

    2016-01-01

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly similar paces with median survival around 10 and 11 weeks, respectively, compared to 20 weeks for Eμ-myc transgenic mice. Because p19Arf can inhibit ribosomal biogenesis through its interaction with nucleophosmin (NPM/B23), RNA helicase DDX5 and RNA polymerase I transcription termination factor (TTF-I), it has been speculated that the p19Arf–Mdm2–p53 and the RP–Mdm2–p53 pathways might be a single p19Arf–RP–Mdm2–p53 pathway, in which p19Arf activates p53 by inhibiting RP biosynthesis; thus, p19Arf deletion or Mdm2C305F mutation would result in similar consequences. Here, we generated mice with concurrent p19Arf deletion and Mdm2C305F mutation and investigated the compound mice for tumorigenesis in the absence and the presence of oncogenic c-Myc overexpression. In the absence of Eμ-myc transgene, the Mdm2C305F mutation did not elicit spontaneous tumors in mice, nor did it accelerate spontaneous tumors in mice with p19Arf deletion. In the presence of Eμ-myc transgene, however, Mdm2C305F mutation significantly accelerated p19Arf deletion-induced lymphomagenesis and promoted rapid metastasis. We found that when p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways are independently disrupted, oncogenic c-Myc-induced p53 stabilization and activation is only partially attenuated. When both pathways are concurrently disrupted, however, c-Myc-induced p53 stabilization and activation are essentially obliterated. Thus, the p19Arf–Mdm2–p53 and the RP–Mdm2–p53

  6. Direct regulation of RNA polymerase III transcription by RB, p53 and c-Myc.

    PubMed

    Felton-Edkins, Zoë A; Kenneth, Niall S; Brown, Timothy R P; Daly, Nicole L; Gomez-Roman, Natividad; Grandori, Carla; Eisenman, Robert N; White, Robert J

    2003-01-01

    The synthesis of tRNA and 5S rRNA by RNA polymerase (pol) III is cell cycle regulated in higher organisms. Overexpression of pol III products is a general feature of transformed cells. These observations may be explained by the fact that a pol III-specific transcription factor, TFIIIB, is strongly regulated by the tumor suppressors RB and p53, as well as the proto-oncogene product c-Myc. RB and p53 repress TFIIIB, but this restraint can be lost in tumors through a variety of mechanisms. In contrast, c-Myc binds and activates TFIIIB, causing potent induction of pol III transcription. Using chromatin immunoprecipitation and RNA interference, we show that c-Myc interacts with tRNA and 5S rRNA genes in transformed cervical cells, stimulating their expression. Availability of pol III products may be an important determinant of a cell's capacity to grow. The ability to regulate pol III output may therefore be integral to the growth control functions of RB, p53 and c-Myc.

  7. Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma.

    PubMed

    Zhang, Meng; Fan, Hai-Yan; Li, Sheng-Chao

    2015-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a formidable medical challenge due to its malignancies and the absence of effective treatment. c-Myc, as an important transcription factor, plays crucial roles in cell cycle progression, apoptosis and cellular transformation. The c-Myc inhibitor, 10058-F4, has been reported act as a tumor suppressor in several different tumors. In current study, the tumor-suppressive roles of 10058-F4 was observed in human pancreatic cancer cells in vitro as demonstrated by decreased cell viability, cell cycle arrest at the G1/S transition and increased caspase3/7 activity. And tumor responses to gemcitabine were also significantly enhanced by 10058-F4 in PANC-1 and SW1990 cells. In a subcutaneous xenograft model, however, 10058-F4 showed no significant influence on pancreatic tumorigenesis. When combined with gemcitabine, tumorigenesis was drastically attenuated compared with gemcitabine group or 10058-F4 group; this synergistic effect was accompanied with decreased PCNA-positive cells and reduced TUNEL-positive cells in the combined treated group. Subsequent studies revealed that decreased glycolysis may be involved in the inhibitory effect of 10058-F4 on PDAC. Taken together, this study demonstrates the roles of 10058-F4 in PDAC and provides evidence that 10058-F4 in combination with gemcitabine showed significant clinical benefit over the usage of gemcitabine alone. Copyright © 2015. Published by Elsevier Masson SAS.

  8. Regulation of c-Myc mRNA by L11 in Response to UV and Gamma irradiation

    DTIC Science & Technology

    2011-10-01

    release of L11 from the nucleolus to the nucleoplasm, where it binds to c-Myc protein, and to the cytoplasm, where it binds to c-myc mRNA. We also found...rRNA and ribosomal proteins (RPs), rRNA processing, and the as- sembly of the mature ribosome subunits in the nucleolus fol- lowed by their transport...from the nucleolus or from intact ribosomes to suppress MDM2 (68). However, whether L11 suppresses c-Myc in response to ribosomal stress is not known

  9. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells

    PubMed Central

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987

  10. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells.

    PubMed

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.

  11. AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay. | Office of Cancer Genomics

    Cancer.gov

    The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.

  12. Myeloma-derived macrophage inhibitory factor regulates bone marrow stromal cell-derived IL-6 via c-MYC.

    PubMed

    Piddock, Rachel E; Marlein, Christopher R; Abdul-Aziz, Amina; Shafat, Manar S; Auger, Martin J; Bowles, Kristian M; Rushworth, Stuart A

    2018-05-16

    Multiple myeloma (MM) remains an incurable malignancy despite the recent advancements in its treatment. The protective effects of the niche in which it develops has been well documented; however, little has been done to investigate the MM cell's ability to 're-program' cells within its environment to benefit disease progression. Here, we show that MM-derived macrophage migratory inhibitory factor (MIF) stimulates bone marrow stromal cells to produce the disease critical cytokines IL-6 and IL-8, prior to any cell-cell contact. Furthermore, we provide evidence that this IL-6/8 production is mediated by the transcription factor cMYC. Pharmacological inhibition of cMYC in vivo using JQ1 led to significantly decreased levels of serum IL-6-a highly positive prognostic marker in MM patients. Our presented findings show that MM-derived MIF causes BMSC secretion of IL-6 and IL-8 via BMSC cMYC. Furthermore, we show that the cMYC inhibitor JQ1 can reduce BMSC secreted IL-6 in vivo, irrespective of tumor burden. These data provide evidence for the clinical evaluation of both MIF and cMYC inhibitors in the treatment of MM.

  13. Deregulated Methionine Adenosyltransferase α1, c-Myc and Maf Proteins Interplay Promotes Cholangiocarcinoma Growth in Mice and Humans

    PubMed Central

    Yang, Heping; Liu, Ting; Wang, Jiaohong; Li, Tony W.H.; Fan, Wei; Peng, Hui; Krishnan, Anuradha; Gores, Gregory J.; Mato, Jose M.; Lu, Shelly C.

    2016-01-01

    We reported c-Myc induction drives cholestatic liver injury and cholangiocarcinoma (CCA) in mice. We also showed induction of Maf proteins (MafG and c-Maf) contributed to cholestatic liver injury, whereas S-adenosylmethionine (SAMe) administration was protective. Here we determined whether there is interplay between c-Myc, Maf proteins and methionine adenosyltransferase α1 (MATα1), which is responsible for SAMe biosynthesis in liver. We used bile duct ligation (BDL) and lithocholic acid (LCA) treatment in mice as chronic cholestasis models, a murine CCA model, human CCA cell lines KMCH and Huh-28, human liver cancer HepG2, and human CCA specimens to study gene and protein expression, protein-protein interactions, molecular mechanisms and functional outcomes. We found c-Myc, MATα1 (encoded by MAT1A), MafG and c-Maf interact with each other directly. MAT1A expression fell in hepatocytes and bile duct epithelial cells during chronic cholestasis and in murine and human CCA. The opposite occurred with c-Myc, MafG and c-Maf expression. MATα1 interacts mainly with Mnt in normal liver but this switches to c-Maf, MafG and c-Myc in cholestatic livers and CCA. Promoter regions of these genes have E-boxes that are bound by MATα1 and Mnt in normal liver and benign bile duct epithelial cells that switched to c-Myc, c-Maf and MafG in cholestasis and CCA cells. E-box positively regulates c-Myc, MafG and c-Maf, but it negatively regulates MAT1A. MATα1 represses whereas c-Myc, MafG and c-Maf enhance E-box-driven promoter activity. Knocking down MAT1A or overexpressing MafG or c-Maf enhanced CCA growth and invasion in vivo. Conclusion We have uncovered a novel interplay between MATα1, c-Myc and Maf proteins and their deregulation during chronic cholestasis may facilitate CCA oncogenesis. PMID:26969892

  14. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    PubMed

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia.

    PubMed

    Reynolds, C; Roderick, J E; LaBelle, J L; Bird, G; Mathieu, R; Bodaar, K; Colon, D; Pyati, U; Stevenson, K E; Qi, J; Harris, M; Silverman, L B; Sallan, S E; Bradner, J E; Neuberg, D S; Look, A T; Walensky, L D; Kelliher, M A; Gutierrez, A

    2014-09-01

    Treatment resistance in T-cell acute lymphoblastic leukemia (T-ALL) is associated with phosphatase and tensin homolog (PTEN) deletions and resultant phosphatidylinositol 3'-kinase (PI3K)-AKT pathway activation, as well as MYC overexpression, and these pathways repress mitochondrial apoptosis in established T-lymphoblasts through poorly defined mechanisms. Normal T-cell progenitors are hypersensitive to mitochondrial apoptosis, a phenotype that is dependent on the expression of proapoptotic BIM. In a conditional zebrafish model, MYC downregulation induced BIM expression in T-lymphoblasts, an effect that was blunted by expression of constitutively active AKT. In human T-ALL cell lines and treatment-resistant patient samples, treatment with MYC or PI3K-AKT pathway inhibitors each induced BIM upregulation and apoptosis, indicating that BIM is repressed downstream of MYC and PI3K-AKT in high-risk T-ALL. Restoring BIM function in human T-ALL cells using a stapled peptide mimetic of the BIM BH3 domain had therapeutic activity, indicating that BIM repression is required for T-ALL viability. In the zebrafish model, where MYC downregulation induces T-ALL regression via mitochondrial apoptosis, T-ALL persisted despite MYC downregulation in 10% of bim wild-type zebrafish, 18% of bim heterozygotes and in 33% of bim homozygous mutants (P=0.017). We conclude that downregulation of BIM represents a key survival signal downstream of oncogenic MYC and PI3K-AKT signaling in treatment-resistant T-ALL.

  16. Increased N-myc downstream-regulated gene 1 expression is associated with breast atypia-to-carcinoma progression.

    PubMed

    Mao, Xiao-Yun; Fan, Chui-Feng; Wei, Jing; Liu, Cong; Zheng, Hua-Chuan; Yao, Fan; Jin, Feng

    2011-12-01

    N-myc downstream-regulated gene-1 (NDRG1) has been identified as a protein involved in the differentiation of epithelial cells. As a newly metastasis suppressor gene, whether it contributes to carcinogenesis of breast cancer is still unknown. This study aimed to clarify the possible role of NDRG1 for breast cancer carcinogenesis, and further to investigate its clinicopathological significance in invasive breast cancer. We examined the expression of NDRG1 in normal epithelium of breast (n = 35), usual ductal hyperplasia (n = 22), atypical ductal hyperplasia (n = 33), atypical lobular hyperplasia (n = 8), ductal carcinoma in situ (n = 16), lobular carcinoma in situ (n = 6), invasive ductal carcinoma (n = 50), and invasive lobular carcinoma (n = 45) by immunohistochemistry and analyzed the correlation between NDRG expression and clinicopathological features of invasive breast cancer. Western blot analysis was carried out to investigate the expression of NDRG1 in 20 invasive ductal breast cancer and the paired non-tumor portion of the same case. NDRG1 expression in invasive breast cancer (70/95, 73.7%) was higher than that in noninvasive breast lesions (29/85, 34.1%; p < 0.05) which was higher than that in normal breast epithelium (5/35, 14.3%; p < 0.05). Statistical analysis revealed a significant correlation between NDRG1 expression with tumor stage in invasive breast cancer, and its expression in invasive ductal carcinoma is significantly higher than invasive lobular carcinoma (p < 0.05). It was not associated with age, menopausal status, tumor size, and lymph node metastasis. NDRG1 protein levels were significantly higher in invasive ductal breast cancer compared to the paired non-tumor portion of the same case by Western blot analysis (p < 0.05). Increased NDRG-1 expression is associated with breast atypia-to-carcinoma progression. NDRG1 expression might participate in the carcinogenesis and progression of invasive

  17. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    PubMed

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  18. Interleukin-1β Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis.

    PubMed

    Lemos, Dario R; McMurdo, Michael; Karaca, Gamze; Wilflingseder, Julia; Leaf, Irina A; Gupta, Navin; Miyoshi, Tomoya; Susa, Koichiro; Johnson, Bryce G; Soliman, Kirolous; Wang, Guanghai; Morizane, Ryuji; Bonventre, Joseph V; Duffield, Jeremy S

    2018-06-01

    Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined. Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1 α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo , in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids. Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro , stimulation of purified human kidney SCs and human kidney organoids with IL-1 β recapitulated the molecular events observed in vivo , inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1 β stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury. Conclusions Our findings define a connection between IL-1 β and metabolic switch in fibrosis initiation and progression and highlight IL-1 β and MYC as potential therapeutic targets in tubulointerstitial diseases. Copyright © 2018 by the American Society of Nephrology.

  19. Atypical rearrangement involving 3′-IGH@ and a breakpoint at least 400 Kb upstream of an intact MYC in a CLL patient with an apparently balanced t(8;14)(q24.1;q32) and negative MYC expression

    PubMed Central

    2013-01-01

    The t(8;14)(q24.1;q32), the cytogenetic hallmark of Burkitt’s lymphoma, is also found, but rarely, in cases of chronic lymphocytic leukemia (CLL). Such translocation typically results in a MYC-IGH@ fusion subsequently deregulating and overexpressing MYC on der 14q32. In CLL, atypical rearrangements resulting in its gain or loss, within or outside of IGH@ or MYC locus, have been reported, but their clinical significance remains uncertain. Herein, we report a 67 year-old male with complex cytogenetic findings of apparently balanced t(8;14) and unreported complex rearrangements of IGH@ and MYC loci. His clinical, morphological and immunophenotypic features were consistent with the diagnosis of CLL. Interphase FISH studies revealed deletions of 11q22.3 and 13q14.3, and an extra copy of IGH@, indicative of rearrangement. Karyotype analysis showed an apparently balanced t(8;14)(q24.1;q32). Sequential GPG-metaphase FISH studies revealed abnormal signal patterns: rearrangement of IGH break apart probe with the 5’-IGH@ on derivative 8q24.1 and the 3’-IGH@ retained on der 14q; absence of MYC break apart-specific signal on der 8q; and, the presence of unsplit 5’-MYC-3’ break apart probe signals on der 14q. The breakpoint on 8q24.1 was found to be at least 400 Kb upstream of 5’ of MYC. In addition, FISH studies revealed two abnormal clones; one with 13q14.3 deletion, and the other, with concurrent 11q deletion and atypical rearrangements. Chromosome microarray analysis (CMA) detected a 7.1 Mb deletion on 11q22.3-q23.3 including ATM, a finding consistent with FISH results. While no significant copy number gain or loss observed on chromosomes 8, 12 and 13, a 455 Kb microdeletion of uncertain clinical significance was detected on 14q32.33. Immunohistochemistry showed co-expression of CD19, CD5, and CD23, positive ZAP-70 expression and absence of MYC expression. Overall findings reveal an apparently balanced t(8;14) and atypical complex rearrangements involving 3

  20. HPV positive neuroendocrine cervical cancer cells are dependent on Myc but not E6/E7 viral oncogenes.

    PubMed

    Yuan, Hang; Krawczyk, Ewa; Blancato, Jan; Albanese, Christopher; Zhou, Dan; Wang, Naidong; Paul, Siddartha; Alkhilaiwi, Faris; Palechor-Ceron, Nancy; Dakic, Aleksandra; Fang, Shuang; Choudhary, Sujata; Hou, Tung-Wei; Zheng, Yun-Ling; Haddad, Bassem R; Usuda, Yukari; Hartmann, Dan; Symer, David; Gillison, Maura; Agarwal, Seema; Wangsa, Danny; Ried, Thomas; Liu, Xuefeng; Schlegel, Richard

    2017-04-05

    Using conditional cell reprogramming, we generated a stable cell culture of an extremely rare and aggressive neuroendocrine cervical cancer. The cultured cells contained HPV-16, formed colonies in soft agar and rapidly produced tumors in immunodeficient mice. The HPV-16 genome was integrated adjacent to the Myc gene, both of which were amplified 40-fold. Analysis of RNA transcripts detected fusion of the HPV/Myc genes, arising from apparent microhomologous recombination. Spectral karyotyping (SKY) and fluorescent-in-situ hybridization (FISH) demonstrated coordinate localization and translocation of the amplified Myc and HPV genes on chromosomes 8 and 21. Similar to the primary tumor, tumor cell cultures expressed very high levels of the Myc protein and, in contrast to all other HPV-positive cervical cancer cell lines, they harbored a gain-of-function mutation in p53 (R273C). Unexpectedly, viral oncogene knockdown had no effect on the growth of the cells, but it did inhibit the proliferation of a conventional HPV-16 positive cervical cancer cell line. Knockdown of Myc, but not the mutant p53, significantly inhibited tumor cell proliferation. On the basis of these data, we propose that the primary driver of transformation in this aggressive cervical cancer is not HPV oncogene expression but rather the overexpression of Myc.

  1. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Pin; Nie, Quanmin; Lan, Jin

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM),more » the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.« less

  2. Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells

    PubMed Central

    Takayama, Naoya; Nishimura, Satoshi; Nakamura, Sou; Shimizu, Takafumi; Ohnishi, Ryoko; Endo, Hiroshi; Yamaguchi, Tomoyuki; Otsu, Makoto; Nishimura, Ken; Nakanishi, Mahito; Sawaguchi, Akira; Nagai, Ryozo; Takahashi, Kazutoshi; Yamanaka, Shinya; Nakauchi, Hiromitsu

    2010-01-01

    Human (h) induced pluripotent stem cells (iPSCs) are a potentially abundant source of blood cells, but how best to select iPSC clones suitable for this purpose from among the many clones that can be simultaneously established from an identical source is not clear. Using an in vitro culture system yielding a hematopoietic niche that concentrates hematopoietic progenitors, we show that the pattern of c-MYC reactivation after reprogramming influences platelet generation from hiPSCs. During differentiation, reduction of c-MYC expression after initial reactivation of c-MYC expression in selected hiPSC clones was associated with more efficient in vitro generation of CD41a+CD42b+ platelets. This effect was recapitulated in virus integration-free hiPSCs using a doxycycline-controlled c-MYC expression vector. In vivo imaging revealed that these CD42b+ platelets were present in thrombi after laser-induced vessel wall injury. In contrast, sustained and excessive c-MYC expression in megakaryocytes was accompanied by increased p14 (ARF) and p16 (INK4A) expression, decreased GATA1 expression, and impaired production of functional platelets. These findings suggest that the pattern of c-MYC expression, particularly its later decline, is key to producing functional platelets from selected iPSC clones. PMID:21098095

  3. 27-Hydroxycholesterol increases Myc protein stability via suppressing PP2A, SCP1 and FBW7 transcription in MCF-7 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Li-Ming; Liang, Zi-Rui; Zhou, Ke-Ren

    27-hydroxycholesterol (27-HC), the most abundant metabolite of cholesterol, is a risk factor for breast cancer. It can increase the proliferation of breast cancer cells and promote the metastasis of breast tumours in mouse models. Myc is a critical oncoprotein overexpressed in breast cancer. However, whether 27-HC affects Myc expression has not been reported. In the current study, we aimed to investigate the effects of 27-HC on Myc and the underlying mechanisms in MCF-7 breast cancer cells. Our data demonstrated that 27-HC activated Myc via increasing its protein stability. Three key negative modulators of Myc protein stability, PP2A, SCP1 and FBW7,more » were suppressed by 27-HC at the transcriptional level. We performed a data-mining analysis of the chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) data in the ChIPBase, and discovered that a number of putative transcription factors (TFs), including Myc itself, were involved in the transcriptional regulation of PP2A, SCP1 and FBW7. Our results provide a novel mechanistic insight into the activation of Myc by 27-HC via transcriptional repression of PP2A, SCP1 and FBW7 to increase Myc protein stability in breast cancer cells. - Highlights: • 27-Hydroxycholesterol (27-HC) activates Myc via increasing its protein stability. • 27-HC inhibits PP2A and SCP1 transcription to block pS62-Myc dephosphorylation. • 27-HC suppresses FBW7 transcription to prevent pT58-Myc degradation.« less

  4. Strong-coupling analysis of two-dimensional O({ital N}) {sigma} models with {ital N}{le}2 on square, triangular, and honeycomb lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campostrini, M.; Pelissetto, A.; Rossi, P.

    1996-09-01

    The critical behavior of two-dimensional (2D) O({ital N}) {sigma} models with {ital N}{le}2 on square, triangular, and honeycomb lattices is investigated by an analysis of the strong-coupling expansion of the two-point fundamental Green{close_quote}s function {ital G}({ital x}), calculated up to 21st order on the square lattice, 15th order on the triangular lattice, and 30th order on the honeycomb lattice. For {ital N}{lt}2 the critical behavior is of power-law type, and the exponents {gamma} and {nu} extracted from our strong-coupling analysis confirm exact results derived assuming universality with solvable solid-on-solid models. At {ital N}=2, i.e., for the 2D {ital XY} model,more » the results from all lattices considered are consistent with the Kosterlitz-Thouless exponential approach to criticality, characterized by an exponent {sigma}=1/2, and with universality. The value {sigma}=1/2 is confirmed within an uncertainty of few percent. The prediction {eta}=1/4 is also roughly verified. For various values of {ital N}{le}2, we determine some ratios of amplitudes concerning the two-point function {ital G}({ital x}) in the critical limit of the symmetric phase. This analysis shows that the low-momentum behavior of {ital G}({ital x}) in the critical region is essentially Gaussian at all values of {ital N}{le}2. Exact results for the long-distance behavior of {ital G}({ital x}) when {ital N}=1 (Ising model in the strong-coupling phase) confirm this statement. {copyright} {ital 1996 The American Physical Society.}« less

  5. Prevalence of Trypanosoma cruzi infection in dogs and small mammals in Nuevo León, Mexico.

    PubMed

    Galaviz-Silva, Lucio; Mercado-Hernández, Roberto; Zárate-Ramos, José J; Molina-Garza, Zinnia J

    Chagas disease, caused by the protozoan Trypanosoma cruzi, is an important public health concern in areas extending from South America northward into the southern United States of America. Although this hemoflagellate has many wild and domestic mammalians reported as reservoir hosts, studies on this subject are scarce in Nuevo León state, a region located in northeastern Mexico. This cross-sectional study showed that the general prevalence of T. cruzi infection in Nuevo León state was 14.5% (35/241), this percentage matching the ones determined by PCR and traditional diagnostics. Localities and infected mammals did not significantly differ (χ 2 =6.098, p=0.192); however the number of infected animals was highly correlated with mammalian species (p=0.009). Striped skunks (Mephitis mephitis) were found to be the most infected overall (11/34, 32.3%), while dogs (Canis familiaris) had the lowest prevalence. In conclusion, although the prevalence of T. cruzi infection in small mammals was lower in Nuevo León than in other states of Mexico, our results provide new locality records, including striped skunks, opossums (Didelphis marsupialis) and dogs, and extend the recorded area to woodrats (Neotoma micropus). Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Nowcasting of meteorological risks during the winter season using the "Integrated Meteorological Observation Network in Castilla y León, (Spain)"

    NASA Astrophysics Data System (ADS)

    Guerrero-Higueras, Ángel Manuel; López, Laura; Merino, Andrés; Sánchez, José Luis; Matía, Pedro; Lorente, José Manuel; Hermida, Lucía; Nafría, David; Ortiz de Galisteo, José Pablo; Marcos, José Luis; García-Ortega, Eduardo

    2013-04-01

    The location of Castilla y León within the Iberian Peninsula and its territorial extension make its meteorological risks diverse. The integration of various observation networks, both public and private, in the Observation Network of Castilla y León, allows us to follow the risks in real-time. One of the most frequent risks in the winter season is snow precipitation. In the present paper, we compared WRF numerical model predictions of snowfall for Castilla y León with data from the meteorological observation network and observations from the MSG satellite. Furthermore, frosts were more frequent in the area, to the point that there are parts of the study area with frost during the entire year. Thus, the data from the network allows us to determine the area where frost was registered. Finally, the situations with fog, especially with advective and radiative characteristics, are frequent in the center and south of the plateau, especially in the winter season. Additionally, the Observation Network allows us to know the areas with fog in real-time. The Observation Network is managed using a new platform, developed by Group for Atmospheric Physics, known as MeteoNet, which allows for the prompt extraction of a concrete parameter in a specific location, or, the spatial representation of a parameter determined for the entire study area. Furthermore, the management system developed for the data allows for the total representation of data from the WRF prediction model, with satellite images, observation network, radar data, etc., which is converted into a very useful tool for following risks and validating algorithms in Castilla y León. Acknowledgements The authors would like to thank the Regional Government of Castilla y León for its financial support through the project LE220A11-2.

  7. Efficient method to create integration-free, virus-free, Myc and Lin28-free human induced pluripotent stem cells from adherent cells.

    PubMed

    Kamath, Anant; Ternes, Sara; McGowan, Stephen; English, Anthony; Mallampalli, Rama; Moy, Alan B

    2017-08-01

    Nonviral induced pluripotent stem cell (IPSC) reprogramming is not efficient without the oncogenes, Myc and Lin28 . We describe a robust Myc and Lin28 -free IPSC reprogramming approach using reprogramming molecules. IPSC colony formation was compared in the presence and absence of Myc and Lin28 by the mixture of reprogramming molecules and episomal vectors. While more colonies were observed in cultures transfected with the aforementioned oncogenes, the Myc and Lin28 -free method achieved the same reprogramming efficiency as reports that used these oncogenes. Further, all colonies were fully reprogrammed based on expression of SSEA4, even in the absence of Myc and Lin28 . This approach satisfies an important regulatory pathway for developing IPSC cell therapies with lower clinical risk.

  8. Telomerase activation by c-Myc in human mammary epithelial cells requires additional genomic changes.

    PubMed

    Bazarov, Alexey V; Hines, William C; Mukhopadhyay, Rituparna; Beliveau, Alain; Melodyev, Sonya; Zaslavsky, Yuri; Yaswen, Paul

    2009-10-15

    A central question in breast cancer biology is how cancer cells acquire telomerase activity required for unlimited proliferation. According to one model, proliferation of telomerase(-) pre-malignant cells leads to telomere dysfunction and increased genomic instability. Such instability leads in rare cases to reactivation of telomerase and immortalization. The mechanism of telomerase reactivation remains unknown. We have studied immortalization of cultured human mammary epithelial cells by c-Myc, a positive transcriptional regulator of the hTERT gene encoding the catalytic subunit of telomerase. Retrovirally introduced c-Myc cDNA resulted in immortalization of human mammary epithelial cells in which the cyclin dependent kinase inhibitor, p16(INK4A), was inactivated by an shRNA-encoding retrovirus. However, while c-Myc introduction immediately resulted in increased activity of transiently transfected hTERT promoter reporter constructs, endogenous hTERT mRNA levels did not change until about 60 population doublings after c-Myc introduction. Increased endogenous hTERT transcripts and stabilization of telomeric DNA in cells expressing exogenous c-Myc coincided with telomere dysfunction-associated senescence in control cultures. Genome copy number analyses of immortalized cells indicated amplifications of some or all of chromosome 5, where hTERT genes are located. hTERT gene copy number, however, was not increased in one case. The results are consistent with the hypothesis that changes in chromosome 5, while not necessarily increasing hTERT gene copy number, resulted in removal of repressive chromatin structures around hTERT loci, allowing induction of hTERT transcription. These in vitro results model one possible sequence of events leading to immortalization of breast epithelial cells during cancer progression.

  9. N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2.

    PubMed

    Yang, Xiao; Zhu, Fan; Yu, Chaoran; Lu, Jiaoyang; Zhang, Luyang; Lv, Yanfeng; Sun, Jing; Zheng, Minhua

    2017-07-18

    N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion,NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.

  10. Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma

    PubMed Central

    Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P. Leif; Camaschella, Clara; Campanella, Alessandro

    2015-01-01

    Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. PMID:25715406

  11. Erythroblast apoptosis and microenvironmental iron restriction trigger anemia in the VK*MYC model of multiple myeloma.

    PubMed

    Bordini, Jessica; Bertilaccio, Maria Teresa Sabrina; Ponzoni, Maurilio; Fermo, Isabella; Chesi, Marta; Bergsagel, P Leif; Camaschella, Clara; Campanella, Alessandro

    2015-06-01

    Multiple myeloma is a malignant disorder characterized by bone marrow proliferation of plasma cells and by overproduction of monoclonal immunoglobulin detectable in the sera (M-spike). Anemia is a common complication of multiple myeloma, but the underlying pathophysiological mechanisms have not been completely elucidated. We aimed to identify the different determinants of anemia using the Vk*MYC mouse, which spontaneously develops an indolent bone marrow localized disease with aging. Affected Vk*MYC mice develop a mild normochromic normocytic anemia. We excluded the possibility that anemia results from defective erythropoietin production, inflammation or increased hepcidin expression. Mature erythroid precursors are reduced in Vk*MYC bone marrow compared with wild-type. Malignant plasma cells express the apoptogenic receptor Fas ligand and, accordingly, active caspase 8 is detected in maturing erythroblasts. Systemic iron homeostasis is not compromised in Vk*MYC animals, but high expression of the iron importer CD71 by bone marrow plasma cells and iron accumulation in bone marrow macrophages suggest that iron competition takes place in the local multiple myeloma microenvironment, which might contribute to anemia. In conclusion, the mild anemia of the Vk*MYC model is mainly related to the local effect of the bone marrow malignant clone in the absence of an overt inflammatory status. We suggest that this reproduces the initial events triggering anemia in patients. Copyright© Ferrata Storti Foundation.

  12. CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial.

    PubMed

    Oki, Yasuhiro; Kelly, Kevin R; Flinn, Ian; Patel, Manish R; Gharavi, Robert; Ma, Anna; Parker, Jefferson; Hafeez, Amir; Tuck, David; Younes, Anas

    2017-11-01

    CUDC-907 is a first-in-class, oral small molecule inhibitor of both HDAC (class I and II) and PI3K (class Iα, β, and δ) enzymes, with demonstrated anti-tumor activity in multiple pre-clinical models, including MYC-driven ones. In this report, we present the safety and preliminary activity results of CUDC-907, with and without rituximab, in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), with a particular focus on those with MYC-altered disease. Thirty-seven DLBCL patients were enrolled, 14 with confirmed MYC-altered disease. Twenty-five patients received monotherapy treatment, and 12 received the combination of CUDC-907 with rituximab. CUDC-907 monotherapy and combination demonstrated similar safety profiles consisting primarily of Grade 1/2 hematologic and gastrointestinal events. The most frequently reported Grade ≥3 treatment-related events were thrombocytopenia, neutropenia, diarrhea, fatigue, and anemia. Eleven responses (5 complete responses and 6 partial responses) were reported, for a response rate of 37% (11 out of 30) in evaluable patients [30% (11 out of 37) including all patients]. The objective response rate in evaluable MYC-altered DLBCL patients was 64% (7 out of 11; 4 complete responses and 3 partial responses), while it was 29% (2 out of 7) in MYC unaltered, and 17% (2 out of 12) in those with unknown MYC status. Median duration of response was 11.2 months overall; 13.6 months in MYC-altered patients, 6.0 months in MYC unaltered, and 7.8 months in those with MYC status unknown. The tolerable safety profile and encouraging evidence of durable anti-tumor activity, particularly in MYC-altered patients, support the continued development of CUDC-907 in these populations of high unmet need. ( clinicaltrials.gov identifier: 01742988 ). Copyright© Ferrata Storti Foundation.

  13. Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells.

    PubMed

    Wang, Xinyu; Ren, Yanli; Wang, Zhiqiong; Xiong, Xiangyu; Han, Sichong; Pan, Wenting; Chen, Hongwei; Zhou, Liqing; Zhou, Changchun; Yuan, Qipeng; Yang, Ming

    2015-12-21

    5S rRNA plays an important part in ribosome biology and is over-expression in multiple cancers. In this study, we found that 5S rRNA is a direct target of miR-150 and miR-383 in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-150 and miR-383 inhibited ESCC cell proliferation in vitro and in vivo. Moreover, 5S rRNA silencing by miR-150 and miR-383 might intensify rpL11-c-Myc interaction, which attenuated role of c-Myc as an oncogenic transcriptional factor and dysregulation of multiple c-Myc target genes. Taken together, our results highlight the involvement of miRNAs in ribosomal regulation during tumorigenesis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Progesterone Receptor-Mediated Regulation of N-Acetylneuraminate Pyruvate Lyase (NPL) in Mouse Uterine Luminal Epithelium and Nonessential Role of NPL in Uterine Function

    PubMed Central

    Xiao, Shuo; Li, Rong; Diao, Honglu; Zhao, Fei; Ye, Xiaoqin

    2013-01-01

    N-acetylneuraminate pyruvate lyase (NPL) catalyzes N-acetylneuraminic acid, the predominant sialic acid. Microarray analysis of the periimplantation mouse uterine luminal epithelium (LE) revealed Npl being the most downregulated (35×) gene in the LE upon embryo implantation. In natural pregnant mouse uterus, Npl expression increased 56× from gestation day 0.5 (D0.5) to D2.5. In ovariectomized mouse uterus, Npl was significantly upregulated by progesterone (P4) but downregulated by 17β-estradiol (E2). Progesterone receptor (PR) antagonist RU486 blocked the upregulation of Npl in both preimplantation uterus and P4-treated ovariectomized uterus. Npl was specifically localized in the preimplantation D2.5 and D3.5 uterine LE. Since LE is essential for establishing uterine receptivity, it was hypothesized that NPL might play a critical role in uterine function, especially during embryo implantation. This hypothesis was tested in the Npl (−/−) mice. No significant differences were observed in the numbers of implantation sites on D4.5, gestation periods, litter sizes, and postnatal offspring growth between wild type (WT) and Npl (−/−) females from mating with WT males. Npl (−/−)xNpl (−/−) crosses produced comparable little sizes as that from WTxWT crosses. Comparable mRNA expression levels of several genes involved in sialic acid metabolism were observed in D3.5 uterus and uterine LE between WT and Npl (−/−), indicating no compensatory upregulation in the D3.5 Npl (−/−) uterus and LE. This study demonstrates PR-mediated dynamic expression of Npl in the periimplantation uterus and dispensable role of Npl in uterine function and embryo development. PMID:23741500

  15. Differential Requirements for c-Myc in Chronic Hematopoietic Hyperplasia and Acute Hematopoietic Malignancies in Pten-null Mice

    PubMed Central

    Zhang, Jun; Xiao, Yechen; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Wei, Wei; Zhang, Zhou; Zhang, Jiwang

    2011-01-01

    Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten-knockout (Pten−/−) mice. The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten−/− mice, we generated inducible Pten/Myc double-knockout mice (Pten−/−/Myc−/−). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten−/− mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs which developed in Pten−/− mice which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten−/−/Myc−/− mice. Our study suggests that the deregulation of PI3K/Akt signaling in Pten−/− hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. But due to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten−/− MPDs from granulocyte-dominated to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies. PMID:21926961

  16. Nuclear C-MYC expression level is associated with disease progression and potentially predictive of two year overall survival in prostate cancer.

    PubMed

    Zeng, Wen; Sun, Hanying; Meng, Fankai; Liu, Zeming; Xiong, Jing; Zhou, Sheng; Li, Fan; Hu, Jia; Hu, Zhiquan; Liu, Zheng

    2015-01-01

    Upregulation of nuclear C-MYC protein has been reported to be an early event in prostate cancer (PCa); however, its clinicopathological and prognostic significance remain controversial. We determined the association of nuclear C-MYC protein expression with clinicopathological parameters, prognosis, ETS-related gene (ERG) expression, and TMPRSS2-ERG status in PCa. Nuclear C-MYC and ERG expression by immunohistochemistry and TMPRSS2-ERG status by triple-color probe fluorescence in situ hybridization assay were determined in 50 hormone-naïve PCa patients and 31 radical prostatectomy specimens. Nuclear C-MYC immunostaining was negative, positive, and strong positive in 27.5%, 32.5%, and 40.0% of cases, respectively. C-MYC immunostaining was significantly associated with clinical T stage (P < 0.001), distant metastasis at the time of diagnosis (P < 0.001) and TMPRSS2-ERG status (P = 0.001) but not with ERG immunostaining (P = 0.818). In the Kaplan-Meier analysis, C-MYC positive cases were found to have worse 2-year OS compared with C-MYC negative cases (P = 0.027). However, in the univariate Cox analysis, only TMPRSS2-ERG status (hazard ratio [HR] 0.189, 95% CI 0.057-0.629; P = 0.007) and distant metastasis (HR 3.545, 95% CI 1.056-11.894; P = 0.040) were significantly associated with 2-year OS. After adjusting for these two factors, TMPRSS2-ERG status still impacted 2-year OS (HR 0.196, 95% CI 0.049-0.778; P = 0.020). Nuclear C-MYC overexpression may be associated with disease progression and potentially predictive of 2-year OS in PCa. This is the first study to demonstrate an association between nuclear C-MYC immunostaining and TMPRSS2-ERG status in PCa.

  17. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3

    PubMed Central

    Sutherland, Kate D; Vaillant, François; Alexander, Warren S; Wintermantel, Tim M; Forrest, Natasha C; Holroyd, Sheridan L; McManus, Edward J; Schutz, Gunther; Watson, Christine J; Chodosh, Lewis A; Lindeman, Geoffrey J; Visvader, Jane E

    2006-01-01

    Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution. PMID:17139252

  18. Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells.

    PubMed

    Wang, Jiandong; Ma, Xiaoli; Jones, Hannah M; Chan, Leo Li-Ying; Song, Fang; Zhang, Weiyuan; Bae-Jump, Victoria L; Zhou, Chunxiao

    2014-08-21

    Epithelial ovarian carcinoma is the most lethal gynecological cancer due to its silent onset and recurrence with resistance to chemotherapy. Overexpression of oncogene c-Myc is one of the most frequently encountered events present in ovarian carcinoma. Disrupting the function of c-Myc and its downstream target genes is a promising strategy for cancer therapy. Our objective was to evaluate the potential effects of small-molecule c-Myc inhibitor, 10058-F4, on ovarian carcinoma cells and the underlying mechanisms by which 10058-F4 exerts its actions. Using MTT assay, colony formation, flow cytometry and Annexin V FITC assays, we found that 10058-F4 significantly inhibited cell proliferation of both SKOV3 and Hey ovarian cancer cells in a dose dependent manner through induction of apoptosis and cell cycle G1 arrest. Treatment with 10058-F4 reduced cellular ATP production and ROS levels in SKOV3 and Hey cells. Consistently, primary cultures of ovarian cancer treated with 10058-F4 showed induction of caspase-3 activity and inhibition of cell proliferation in 15 of 18 cases. The response to 10058-F4 was independent the level of c-Myc protein over-expression in primary cultures of ovarian carcinoma. These novel findings suggest that the growth of ovarian cancer cells is dependent upon c-MYC activity and that targeting c-Myc-Max heterodimerization could be a potential therapeutic strategy for ovarian cancer.

  19. A New Structural Form in the SAM/Metal-Dependent O;#8209;Methyltransferase Family: MycE from the Mycinamicin Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akey, David L.; Li, Shengying; Konwerski, Jamie R.

    2012-08-01

    O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is amore » tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-L-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.« less

  20. Dual expression of MYC and BCL2 proteins predicts worse outcomes in diffuse large B-cell lymphoma.

    PubMed

    Clark Schneider, Kelli M; Banks, Peter M; Collie, Angela M B; Lanigan, Christopher P; Manilich, Elena; Durkin, Lisa M; Hill, Brian T; Hsi, Eric D

    2016-07-01

    Recent studies suggested that MYC and BCL2 protein co-expression is an independent indicator of poor prognosis in diffuse large B-cell lymphoma. However, the immunohistochemistry protocols for dual-expression staining and the scoring cut-offs vary by study. Sixty-nine cases of diffuse large B-cell lymphoma were evaluated for MYC and BCL2 protein expression using various cut-offs that have been recommended in prior studies. Independent of the International Prognostic Index risk group, cases with dual protein expression of BCL2 and MYC using ≥50%/40% cut-offs and ≥70%/40% had significantly shorter overall survival than cases without. It was verified in this patient population that the use of BCL2 and MYC immunohistochemistry, performed with available in vitro diagnostic-cleared antibodies, provides rapid prognostic information in patients with de novo diffuse large B-cell lymphoma. This study has practical implications for diagnostic laboratories and serves as a guide for implementation in the setting of future clinical trials.

  1. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication

    PubMed Central

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K.; McCormick, Frank; Graeber, Thomas G.; Christofk, Heather R.

    2014-01-01

    SUMMARY Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. While recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. PMID:24703700

  2. Acute Dietary Restriction Acts via TOR, PP2A, and Myc Signaling to Boost Innate Immunity in Drosophila.

    PubMed

    Lee, Jung-Eun; Rayyan, Morsi; Liao, Allison; Edery, Isaac; Pletcher, Scott D

    2017-07-11

    Dietary restriction promotes health and longevity across taxa through mechanisms that are largely unknown. Here, we show that acute yeast restriction significantly improves the ability of adult female Drosophila melanogaster to resist pathogenic bacterial infections through an immune pathway involving downregulation of target of rapamycin (TOR) signaling, which stabilizes the transcription factor Myc by increasing the steady-state level of its phosphorylated forms through decreased activity of protein phosphatase 2A. Upregulation of Myc through genetic and pharmacological means mimicked the effects of yeast restriction in fully fed flies, identifying Myc as a pro-immune molecule. Short-term dietary or pharmacological interventions that modulate TOR-PP2A-Myc signaling may provide an effective method to enhance immunity in vulnerable human populations. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc

    PubMed Central

    Kim, Eun-Jung; Kim, Sung-Hak; Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-01-01

    Cullin3 E3 ubiquitin ligase ubiquitinates a wide range of substrates through substrate-specific adaptors Bric-a-brac, Tramtrack, and Broad complex (BTB) domain proteins. These E3 ubiquitin ligase complexes are involved in diverse cellular functions. Our recent study demonstrated that decreased Cullin3 expression induces glioma initiation and correlates with poor prognosis of patients with malignant glioma. However, the substrate recognition mechanism associated with tumorigenesis is not completely understood. Through yeast two-hybrid screening, we identified potassium channel tetramerization domain-containing 2 (KCTD2) as a BTB domain protein that binds to Cullin3. The interaction of Cullin3 and KCTD2 was verified using immunoprecipitation and immunofluorescence. Of interest, KCTD2 expression was markedly decreased in patient-derived glioma stem cells (GSCs) compared with non-stem glioma cells. Depletion of KCTD2 using a KCTD2-specific short-hairpin RNA in U87MG glioma cells and primary Ink4a/Arf-deficient murine astrocytes markedly increased self-renewal activity in addition with an increased expression of stem cell markers, and mouse in vivo intracranial tumor growth. As an underlying mechanism for these KCTD2-mediated phenotypic changes, we demonstrated that KCTD2 interacts with c-Myc, which is a key stem cell factor, and causes c-Myc protein degradation by ubiquitination. As a result, KCTD2 depletion acquires GSC features and affects aerobic glycolysis via expression changes in glycolysis-associated genes through c-Myc protein regulation. Of clinical significance was our finding that patients having a profile of KCTD2 mRNA-low and c-Myc gene signature-high, but not KCTD2 mRNA-low and c-Myc mRNA-high, are strongly associated with poor prognosis. This study describes a novel regulatory mode of c-Myc protein in malignant gliomas and provides a potential framework for glioma therapy by targeting c-Myc function. PMID:28060381

  4. Integrated Meteorological Observation Network in Castile-León (Spain)

    NASA Astrophysics Data System (ADS)

    Merino, A.; Guerrero-Higueras, A. M.; Ortiz de Galisteo, J. P.; López, L.; García-Ortega, E.; Nafría, D. A.; Sánchez, J. L.

    2012-04-01

    In the region of Castile-Leon, in the northwest of Spain, the study of weather risks is extremely complex because of the topography, the large land area of the region and the variety of climatic features involved. Therefore, as far as the calibration and validation of the necessary tools for the identification and nowcasting of these risks are concerned, one of the most important difficulties is the lack of observed data. The same problem arises, for example, in the analysis of particularly relevant case studies. It was hence deemed necessary to create an INTEGRATED METEOROLOGICAL OBSERVATION NETWORK FOR CASTILE-LEON. The aim of this network is to integrate within one single platform all the ground truth data available. These data enable us to detect a number of weather risks in real time. The various data sources should include the networks from the weather stations run by different public institutions - national and regional ones (AEMET, Junta de Castilla y León, Universities, etc.) -, as well as the stations run by voluntary observers. The platform will contain real or cuasi-real time data from the ground weather stations, but it will also have applications to enable voluntary observers to indicate the presence or absence of certain meteors (snow, hail) or even provide detailed information about them (hailstone size, graupel, etc.). The data managed by this network have a high scientific potential, as they may be used for a number of different purposes: calibration and validation of remote sensing tools, assimilation of observation data from numerical models, study of extreme weather events, etc. An additional aim of the network is the drawing of maps of weather risks in real time. These maps are of great importance for the people involved in risk management in each region, as well as for the general public. Finally, one of the first applications developed has been the creation of observation maps in real time. These applications have been constructed using NCL

  5. Le syndrome du canal d’Alcock ou névralgie pudendale : un diagnostic à ne pas méconnaître

    PubMed Central

    Ziouziou, Imad; Bennani, Hassan; Zizi, Mohamed; Karmouni, Tarik; Khader, Khalid El; Koutani, Abdellatif; Andaloussi, Ahmed Iben Attya

    2013-01-01

    Résumé Le syndrome du canal d’Alcock – ou névralgie pudendale – est lié à la compression chronique du nerf pudendal dans la fossette ischiorectale ou au niveau du ligament sacroépineux. Le diagnostic du syndrome d’Alcock est surtout clinique. Les examens complémentaires sont dominés par les explorations électrophysiologiques et le test de bloc anesthésique. Le diagnostic repose sur des critères bien précis, soit les critères de Nantes. La prise en charge doit être globale, comprenant un traitement médicamenteux, des infiltrations, des techniques de neuromodulation, et dans les cas graves ou résistants, un traitement chirurgical qui consiste à libérer le nerf pudendal. Les névralgies pudendales peuvent être rencontrées après traitement d’une incontinence urinaire d’effort par bande-lettes sous-urétrales (TVT). Ce syndrome motive des consultations en urologie, car la douleur intéresse le territoire du périnée et des organes génitaux. Des signes urinaires peuvent aussi accompagner cette douleur. Il est donc judicieux de connaître cette pathologie. PMID:23914265

  6. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture

    PubMed Central

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P.H.

    2014-01-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. PMID:24609384

  7. MIR7-3HG, a MYC-dependent modulator of cell proliferation, inhibits autophagy by a regulatory loop involving AMBRA1.

    PubMed

    Capizzi, Mariacristina; Strappazzon, Flavie; Cianfanelli, Valentina; Papaleo, Elena; Cecconi, Francesco

    2017-03-04

    Macroautophagy/autophagy is a tightly regulated intracellular catabolic pathway involving the lysosomal degradation of cytoplasmic organelles and proteins to be recycled into metabolic precursors. AMBRA1 (autophagy and Beclin 1 regulator 1) has a central role in the autophagy signaling network; it acts upstream of MTORC1-dependent autophagy by stabilizing the kinase ULK1 (unc-51 like autophagy activating kinase 1) and by favoring autophagosome core complex formation. AMBRA1 also regulates the cell cycle by modulating the activity of the phosphatase PPP2/PP2A (protein phosphatase 2) and degradation of MYC. Of note, post-transcriptional regulation mediated by noncoding microRNAs (MIRNAs) contributes significantly to control autophagy. Here we describe a new role for the microRNA MIR7-3HG/MIR-7 as a potent autophagy inhibitor. Indeed, MIR7-3HG targets the 3' untranslated region (UTR) of AMBRA1 mRNA, inducing a decrease of both AMBRA1 mRNA and protein levels, and thus causing a block in autophagy. Furthermore, MIR7-3HG, through AMBRA1 downregulation, prevents MYC dephosphorylation, establishing a positive feedback for its own transcription. These data suggest a new and interesting role of MIR7-3HG as an anti-autophagic MIRNA that may affect oncogenesis through the regulation of the tumor suppressor AMBRA1.

  8. Androgen Receptor (AR) Suppresses Normal Human Prostate Epithelial Cell Proliferation via AR/β-catenin/TCF-4 Complex Inhibition of c-MYC Transcription

    PubMed Central

    Antony, Lizamma; van der Schoor, Freek; Dalrymple, Susan L.; Isaacs, John T.

    2016-01-01

    INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5′ and 3′ c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3′ c-MYC enhancer, but now suppresses c-MYC transcription. PMID:24913829

  9. Cooperative transforming activities of ras, myc, and src viral oncogenes in nonestablished rat adrenocortical cells.

    PubMed Central

    MacAuley, A; Pawson, T

    1988-01-01

    Early-passage rat adrenocortical cells were infected with Kirsten murine sarcoma virus and MMCV mouse myc virus, two retroviruses carrying the v-Ki-ras and v-myc oncogenes, respectively. Efficient morphological transformation required coinfection with the two viruses, was dependent on the presence of high serum concentrations, and was not immediately accompanied by growth in soft agar. The doubly infected cells coordinately acquired the capacity for anchorage- and serum-independent growth during passage in culture. The appearance of such highly transformed cells was correlated with the emergence of a dominant clone, as suggested by an analysis of retrovirus integration sites. These results indicate that the concerted expression of v-Ki-ras and v-myc could induce rapid morphological transformation of nonestablished adrenocortical cells but that an additional genetic or epigenetic event was required to permit full transformation by these two oncogenes. In contrast, v-src, introduced by retrovirus infection in conjunction with v-myc, rapidly induced serum- and anchorage-independent growth. Therefore, the p60v-src protein-tyrosine kinase, unlike p21v-ras, is apparently not restricted in the induction of a highly transformed phenotype in adrenocortical cells. This system provides an in vitro model for the progressive transformation of epithelial cells by dominantly acting oncogenes. Images PMID:2846881

  10. Roles of EDR1 in non-host resistance of Arabidopsis.

    PubMed

    Hiruma, Kei; Takano, Yoshitaka

    2011-11-01

    Entry control of Arabidopsis thaliana against non-adapted powdery mildews largely depends on the PEN1 secretion pathway and the PEN2-PEN3 antifungal metabolite pathway, and is critical for non-host resistance. In a recent study, we reported that ENHANCED DISEASE RESISTANCE 1 (EDR1) plays a role in entry control against a non-adapted anthracnose fungus, which exhibits an infection style distinct from that of powdery mildews. Results obtained using edr1 pen2 double mutants indicate that the contribution of EDR1 to non-host resistance is independent of that of the PEN2-mediated defence pathway. Comparative transcript profiling revealed that EDR1 is critical for expression of four plant defensin genes. The MYC2-encoded transcription factor represses defensin expression. Inactivation of MYC fully restored defensin expression in edr1 mutants, implying that EDR1 cancels MYC2 function to regulate defensin expression. These findings indicate that EDR1 exerts a critical role in non-host resistance, in part by inducing antifungal peptide expression via interference in MYC2-mediated repressor function.

  11. MYC RNAi-Pt Combination Nanotherapy for Metastatic Prostate Cancer Treatment

    DTIC Science & Technology

    2016-10-01

    cell line-based allograft tumors by the hybrid NPs. 15. SUBJECT TERMS Nanotechnology , nanoparticle, siRNA delivery, platinum, MYC, prostate cancer...co-investigators (Dr. Srinivasan Yegnasubramanian from JHU and Dr. Jinjun Shi from BWH/HMS). 3 2. KEYWORDS Nanotechnology , lipid, polymer

  12. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma

    PubMed Central

    Balakrishnan, Ilango; Harris, Peter; Birks, Diane K; Griesinger, Andrea; Amani, Vladimir; Cristiano, Brian; Remke, Marc; Taylor, Michael D; Handler, Michael; Foreman, Nicholas K; Vibhakar, Rajeev

    2014-01-01

    Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo. PMID:24796395

  13. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    PubMed

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Annotating MYC Status in Treatment-Resistant Metastatic Castration-Resistant Prostate Cancer With Gallium-68 Citrate PET

    DTIC Science & Technology

    2017-09-01

    ongoing and interim analysis is planned within the next 6 months. Planned analyses include: 1) correlation of gallium citrate uptake on PET with MYC...utility of Gallium citrate PET as a pharmacodynamic and predictive biomarker of MYC pathway inhibition in mCRPC. Correlative pre- and post-treatment...completed Milestone Achieved: Last patient completes study follow up scan 36 Not yet completed Assess correlation between SUVmax on gallium

  15. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells.

    PubMed

    Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei

    2017-05-02

    Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.

  16. Novel Mycosin Protease MycP1 Inhibitors Identified by Virtual Screening and 4D Fingerprints

    PubMed Central

    2015-01-01

    The rise of drug-resistant Mycobacterium tuberculosis lends urgency to the need for new drugs for the treatment of tuberculosis (TB). The identification of a serine protease, mycosin protease-1 (MycP1), as the crucial agent in hydrolyzing the virulence factor, ESX-secretion-associated protein B (EspB), potentially opens the door to new tuberculosis treatment options. Using the crystal structure of mycobacterial MycP1 in the apo form, we performed an iterative ligand- and structure-based virtual screening (VS) strategy to identify novel, nonpeptide, small-molecule inhibitors against MycP1 protease. Screening of ∼485 000 ligands from databases at the Genomics Research Institute (GRI) at the University of Cincinnati and the National Cancer Institute (NCI) using our VS approach, which integrated a pharmacophore model and consensus molecular shape patterns of active ligands (4D fingerprints), identified 81 putative inhibitors, and in vitro testing subsequently confirmed two of them as active inhibitors. Thereafter, the lead structures of each VS round were used to generate a new 4D fingerprint that enabled virtual rescreening of the chemical libraries. Finally, the iterative process identified a number of diverse scaffolds as lead compounds that were tested and found to have micromolar IC50 values against the MycP1 target. This study validated the efficiency of the SABRE 4D fingerprints as a means of identifying novel lead compounds in each screening round of the databases. Together, these results underscored the value of using a combination of in silico iterative ligand- and structure-based virtual screening of chemical libraries with experimental validation for the identification of promising structural scaffolds, such as the MycP1 inhibitors. PMID:24628123

  17. Both coding exons of the c-myc gene contribute to its posttranscriptional regulation in the quiescent liver and regenerating liver and after protein synthesis inhibition.

    PubMed Central

    Lavenu, A; Pistoi, S; Pournin, S; Babinet, C; Morello, D

    1995-01-01

    In vivo, the steady-state level of c-myc mRNA is mainly controlled by posttranscriptional mechanisms. Using a panel of transgenic mice in which various versions of the human c-myc proto-oncogene were under the control of major histocompatibility complex H-2Kb class I regulatory sequences, we have shown that the 5' and the 3' noncoding sequences are dispensable for obtaining a regulated expression of the transgene in adult quiescent tissues, at the start of liver regeneration, and after inhibition of protein synthesis. These results indicated that the coding sequences were sufficient to ensure a regulated c-myc expression. In the present study, we have pursued this analysis with transgenes containing one or the other of the two c-myc coding exons either alone or in association with the c-myc 3' untranslated region. We demonstrate that each of the exons contains determinants which control c-myc mRNA expression. Moreover, we show that in the liver, c-myc exon 2 sequences are able to down-regulate an otherwise stable H-2K mRNA when embedded within it and to induce its transient accumulation after cycloheximide treatment and soon after liver ablation. Finally, the use of transgenes with different coding capacities has allowed us to postulate that the primary mRNA sequence itself and not c-Myc peptides is an important component of c-myc posttranscriptional regulation. PMID:7623834

  18. [Relationship between the expression of beta-cat, cyclin D1 and c-myc and the occurance and biological behavior of pancreatic cancer].

    PubMed

    Li, Yu-jun; Ji, Xiang-rui

    2003-06-01

    the high expressions of cyclin D1 and c-myc had a parallel relationship with the pancreatic intraepithelial neoplasia and pancreatic cancer (both P < 0.05, gamma = 1.000, 0.845, 0.437, 0.452). The abnormal expression of beta-cat activates cyclin D1 and c-myc, and results in the unchecked proliferation and differentiation, which may play an important role in the genesis of the pancreatic cancer. The abnormal expression of beta-cat is one of the mechanisms for the spread of pancreatic cancer and an index in the molecular biology to determine the metastasis and prognosis of pancreatic cancer.

  19. DNA Methylation Mediated Downregulation of miR-449c Controls Osteosarcoma Cell Cycle Progression by Directly Targeting Oncogene c-Myc

    PubMed Central

    Li, Qing; Li, Hua; Zhao, Xueling; Wang, Bing; Zhang, Lin; Zhang, Caiguo; Zhang, Fan

    2017-01-01

    MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis. PMID:28924385

  20. Syntaxin1a variants lacking an N-peptide or bearing the LE mutation bind to Munc18a in a closed conformation

    DOE PAGES

    Colbert, Karen N.; Hattendorf, Douglas A.; Weiss, Thomas M.; ...

    2013-07-15

    In neurons, soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) proteins drive the fusion of synaptic vesicles to the plasma membrane through the formation of a four-helix SNARE complex. Members of the Sec1/Munc18 protein family regulate membrane fusion through interactions with the syntaxin family of SNARE proteins. The neuronal protein Munc18a interacts with a closed conformation of the SNARE protein syntaxin1a (Syx1a) and with an assembled SNARE complex containing Syx1a in an open conformation. The N-peptide of Syx1a (amino acids 1–24) has been implicated in the transition of Munc18a-bound Syx1a to Munc18a-bound SNARE complex, but the underlying mechanism is not understood. Inmore » addition, we report the X-ray crystal structures of Munc18a bound to Syx1a with and without its native N-peptide (Syx1aΔN), along with small-angle X-ray scattering (SAXS) data for Munc18a bound to Syx1a, Syx1aΔN, and Syx1a L165A/E166A (LE), a mutation thought to render Syx1a in a constitutively open conformation. We show that all three complexes adopt the same global structure, in which Munc18a binds a closed conformation of Syx1a. We also identify a possible structural connection between the Syx1a N-peptide and SNARE domain that might be important for the transition of closed-to-open Syx1a in SNARE complex assembly. Although the role of the N-peptide in Munc18a-mediated SNARE complex assembly remains unclear, our results demonstrate that the N-peptide and LE mutation have no effect on the global conformation of the Munc18a–Syx1a complex.« less

  1. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells.

    PubMed

    Chen, L; Smith, L; Johnson, M R; Wang, K; Diasio, R B; Smith, J B

    2000-10-13

    Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.

  2. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    PubMed

    Mahadevan, Daruka; Morales, Carla; Cooke, Laurence S; Manziello, Ann; Mount, David W; Persky, Daniel O; Fisher, Richard I; Miller, Thomas P; Qi, Wenqing

    2014-01-01

    Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL), while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932) mouse model showed tumor growth inhibition (TGI) of ∼ 10-20% (p = 0.001) for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001). M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras) play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  3. Spectrometric investigation of the weathering process affecting historical glasses of León Cathedral, Spain

    NASA Astrophysics Data System (ADS)

    Castro, M. A.; Pereira, F. J.; Aller, A. J.; Littlejohn, D.

    2014-12-01

    Atmospheric pollution plays important roles in the weathering of the historical buildings and glass windows. Samples of white powdered weathering products, recovered during restoration of the stained-glass windows of León Cathedral in Spain, were characterised using a combination of scanning electron microscopy (SEM) with energy dispersive-X ray spectrometry (ED-XRS), Fourier transform-infrared (FT-IR) spectroscopy and Raman spectrometry. The presence of sulphates, and to a lesser extent carbonates, in the white powdered product is clear indication of the participation of atmospheric acidifying gases, particularly SOx, in the weathering process. It is interesting to note that there was no indication of the participation of NOx gases. There was, however, evidence that the putty and mortar used to seal/join the glasses were major sources of the weathering products. In this way, this study suggests sealants more resistant to oxidation, such as silicone- and zirconia-based materials, should be considered for repairing glass windows in historic buildings to avoid exacerbating degradation.

  4. Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression

    PubMed Central

    Kozono, David; Li, Jie; Nitta, Masayuki; Sampetrean, Oltea; Gonda, David; Kushwaha, Deepa S.; Merzon, Dmitry; Ramakrishnan, Valya; Zhu, Shan; Zhu, Kaya; Matsui, Hiroko; Harismendy, Olivier; Hua, Wei; Mao, Ying; Kwon, Chang-Hyuk; Saya, Hideyuki; Nakano, Ichiro; Pizzo, Donald P.; VandenBerg, Scott R.; Chen, Clark C.

    2015-01-01

    The available evidence suggests that the lethality of glioblastoma is driven by small subpopulations of cells that self-renew and exhibit tumorigenicity. It remains unclear whether tumorigenicity exists as a static property of a few cells or as a dynamically acquired property. We used tumor-sphere and xenograft formation as assays for tumorigenicity and examined subclones isolated from established and primary glioblastoma lines. Our results indicate that glioblastoma tumorigenicity is largely deterministic, yet the property can be acquired spontaneously at low frequencies. Further, these dynamic transitions are governed by epigenetic reprogramming through the lysine-specific demethylase 1 (LSD1). LSD depletion increases trimethylation of histone 3 lysine 4 at the avian myelocytomatosis viral oncogene homolog (MYC) locus, which elevates MYC expression. MYC, in turn, regulates oligodendrocyte lineage transcription factor 2 (OLIG2), SRY (sex determining region Y)-box 2 (SOX2), and POU class 3 homeobox 2 (POU3F2), a core set of transcription factors required for reprogramming glioblastoma cells into stem-like states. Our model suggests epigenetic regulation of key transcription factors governs transitions between tumorigenic states and provides a framework for glioblastoma therapeutic development. PMID:26159421

  5. Colocalization of somatic and meiotic double strand breaks near the Myc oncogene on mouse chromosome 15.

    PubMed

    Ng, Siemon H; Maas, Sarah A; Petkov, Petko M; Mills, Kevin D; Paigen, Kenneth

    2009-10-01

    Both somatic and meiotic recombinations involve the repair of DNA double strand breaks (DSBs) that occur at preferred locations in the genome. Improper repair of DSBs during either mitosis or meiosis can lead to mutations, chromosomal aberration such as translocations, cancer, and/or cell death. Currently, no model exists that explains the locations of either spontaneous somatic DSBs or programmed meiotic DSBs or relates them to each other. One common class of tumorigenic translocations arising from DSBs is chromosomal rearrangements near the Myc oncogene. Myc translocations have been associated with Burkitt lymphoma in humans, plasmacytoma in mice, and immunocytoma in rats. Comparing the locations of somatic and meiotic DSBs near the mouse Myc oncogene, we demonstrated that the placement of these DSBs is not random and that both events clustered in the same short discrete region of the genome. Our work shows that both somatic and meiotic DSBs tend to occur in proximity to each other within the Myc region, suggesting that they share common originating features. It is likely that some regions of the genome are more susceptible to both somatic and meiotic DSBs, and the locations of meiotic hotspots may be an indicator of genomic regions more susceptible to DNA damage. (c) 2009 Wiley-Liss, Inc.

  6. Anti-tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability.

    PubMed

    Iwai, Kenichi; Yaguchi, Masahiro; Nishimura, Kazuho; Yamamoto, Yukiko; Tamura, Toshiya; Nakata, Daisuke; Dairiki, Ryo; Kawakita, Yoichi; Mizojiri, Ryo; Ito, Yoshiteru; Asano, Moriteru; Maezaki, Hironobu; Nakayama, Yusuke; Kaishima, Misato; Hayashi, Kozo; Teratani, Mika; Miyakawa, Shuichi; Iwatani, Misa; Miyamoto, Maki; Klein, Michael G; Lane, Wes; Snell, Gyorgy; Tjhen, Richard; He, Xingyue; Pulukuri, Sai; Nomura, Toshiyuki

    2018-06-01

    The modulation of pre-mRNA splicing is proposed as an attractive anti-neoplastic strategy, especially for the cancers that exhibit aberrant pre-mRNA splicing. Here, we discovered that T-025 functions as an orally available and potent inhibitor of Cdc2-like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T-025 reduced CLK-dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive-associated biomarker of T-025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T-025 treatment. MYC activation, which altered pre-mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti-tumor efficacy of T-025 in an allograft model of spontaneous, MYC-driven breast cancer, at well-tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC-driven cancer patients. © 2018 Takeda Pharmaceutical Company Published under the terms of the CC BY 4.0 license.

  7. Combined use of nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 for hepatocellular carcinoma detection in high-risk chronic hepatitis C patients.

    PubMed

    Attallah, A M; El-Far, M; Abdelrazek, M A; Omran, M M; Attallah, A A; Elkhouly, A A; Elkenawy, H M; Farid, K

    2017-10-01

    Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (<5 cm) tumour) were recruited. The gene products of c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p < 0.0001) in the positivity rate of c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.

  8. Rho kinase inhibition drives megakaryocyte polyploidization and proplatelet formation through MYC and NFE2 downregulation.

    PubMed

    Avanzi, Mauro P; Goldberg, Francine; Davila, Jennifer; Langhi, Dante; Chiattone, Carlos; Mitchell, William Beau

    2014-03-01

    The processes of megakaryocyte polyploidization and demarcation membrane system (DMS) formation are crucial for platelet production, but the mechanisms controlling these processes are not fully determined. Inhibition of Rho kinase (ROCK) signalling leads to increased polyploidization in umbilical cord blood-derived megakaryocytes. To extend these findings we determined the effect of ROCK inhibition on development of the DMS and on proplatelet formation. The underlying mechanisms were explored by analysing the effect of ROCK inhibition on the expression of MYC and NFE2, which encode two transcription factors critical for megakaryocyte development. ROCK inhibition promoted DMS formation, and increased proplatelet formation and platelet release. Rho kinase inhibition also downregulated MYC and NFE2 expression in mature megakaryocytes, and this down-regulation correlated with increased proplatelet formation. Our findings suggest a model whereby ROCK inhibition drives polyploidization, DMS growth and proplatelet formation late in megakaryocyte maturation through downregulation of MYC and NFE2 expression. © 2014 John Wiley & Sons Ltd.

  9. Energy levels, wavelengths, and radiative transition probabilities for the Na-like ions with 38 [le] Z [le] 45

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying Zhang; Qiren Zhu; Shoufu Pan

    1992-11-01

    The investigation by Z.-Q Zhang et al. (Acta Optica Sinica 11, 193, 1991) shows that it is possible to realize soft X-ray lasing in the water window 23.3-43.8 [Angstrom] with the Na-like recombination scheme, which requires a lower pumping power at a high-power laser facility than that with other schemes. The fine-structure levels with n [le] 15 and l [le] 6 in Na-like ions with 38 [le] Z [le] 45 and the probabilities for radiative transitions between these levels are calculated using the multiconfiguration Dirac-Fock approach. The calculations show that the wavelengths of the anticipated laser transitions 6 f-4d andmore » 6g-4f in the Na-like ions with 38 [le] Z [le] 43 and 5f-4d and 5g-4f in the Na-like ions with 40 [le] Z [le] 45 lie in the region of the water window.« less

  10. Detecting and Targeting Oncogenic Myc in Breast Cancer

    DTIC Science & Technology

    2007-06-01

    through an MBII- dependent interaction with TRRAP [40,41]. Inhibition of TRRAP synthesis or function blocks Myc-mediated oncogenesis, establishing an...transcribed by RNAP I and III. In fact, the various components of the ribosomal machinery are synthesised by all three RNA polymerases, RNAP I, II and III... synthesis . Remarkably, the nucleoli are en- larged in cancer cells and several ribosomal proteins are overexpressed in tumours, suggesting a

  11. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture.

    PubMed

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P H

    2014-05-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].

  12. A benzindole substituted carbazole cyanine dye: a novel targeting fluorescent probe for parallel c-myc G-quadruplexes.

    PubMed

    Lin, Dayong; Fei, Xuening; Gu, Yingchun; Wang, Cuihong; Tang, Yalin; Li, Ran; Zhou, Jianguo

    2015-08-21

    Many organic ligands were synthesized to recognize G-quadruplexes. However, different kinds of G-quadruplexes (G4s) possess different structures and functions. Therefore, selective recognition of certain types of G4s is important for the study of G4s. In this paper, a novel cyanine dye, 3-(2-(4-vinylpyridine))-6-(2-((1-(4-sulfobutyl))-3,3-dimethyl-2-vinylbenz[e]indole)-9-ethyl-carbazole (9E PBIC), composed of benzindole and carbazole was designed and synthesised. The studies on UV-vis and fluorescence properties of the dye with different DNA forms showed that the dye exhibits almost no fluorescence under aqueous buffer conditions, but it increased over 100 fold in the presence of c-myc G4 and 10-30 fold in the presence of other G4s, while little in the presence of single/double-stranded DNA, indicating that it has excellent selectivity to c-myc 2345 G4. For the binding studies the dye is interacted with the c-myc 2345 G-quadruplex by using the end-stack binding model. It can be said that the dye is an excellent targeting fluorescent probe for c-myc G-quadruplexes.

  13. BUD31 and Lipid Metabolism: A New Potential Therapeutic Entry Point for Myc-Driven Breast Cancer

    DTIC Science & Technology

    2016-02-01

    AWARD NUMBER: W81XWH-14-1-0039 TITLE: BUD31 and Lipid Metabolism: A New Potential Therapeutic Entry Point for Myc-Driven Breast Cancer...TITLE AND SUBTITLE 5a. CONTRACT NUMBER BUD31 and Lipid Metabolism: A New Potential Therapeutic Entry Point for Myc-Driven Breast Cancer 5b. GRANT...To directly test the hypothesis above, we propose the following specific aims. AIM1: To determine if BUD31 interactions with lipid metabolism

  14. Elevation of c-MYC Disrupts HLA Class II-mediated Immune Recognition of Human B-cell Tumors1

    PubMed Central

    God, Jason M.; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W.; Stuart, Robert K.; Blum, Janice S.; Haque, Azizul

    2014-01-01

    Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B-cell lymphomas. While many of c-MYC’s functions have been elucidated, its effect on the presentation of antigen (Ag) through the HLA class II pathway has not previously been reported. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report here that increased c-MYC expression has a negative effect on the ability of B-cell lymphomas to functionally present Ags/peptides to CD4+ T cells. This defect was associated with alterations in the expression of distinct co-factors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt’s lymphoma (BL) tumors and transformed cells, we show that compared to B-lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation which contribute to the immunoevasive properties of BL tumors. PMID:25595783

  15. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPIImore » expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.« less

  16. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts.

    PubMed

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone; Huai, Jisen; Mandal, Pankaj Kumar; Niedermann, Gabriele

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.

  17. Sexual Dimorphism of Body Size Is Controlled by Dosage of the X-Chromosomal Gene Myc and by the Sex-Determining Gene tra in Drosophila.

    PubMed

    Mathews, Kristina Wehr; Cavegn, Margrith; Zwicky, Monica

    2017-03-01

    Drosophila females are larger than males. In this article, we describe how X -chromosome dosage drives sexual dimorphism of body size through two means: first, through unbalanced expression of a key X -linked growth-regulating gene, and second, through female-specific activation of the sex-determination pathway. X -chromosome dosage determines phenotypic sex by regulating the genes of the sex-determining pathway. In the presence of two sets of X -chromosome signal elements (XSEs), Sex-lethal ( Sxl ) is activated in female ( XX ) but not male ( XY ) animals. Sxl activates transformer ( tra ), a gene that encodes a splicing factor essential for female-specific development. It has previously been shown that null mutations in the tra gene result in only a partial reduction of body size of XX animals, which shows that other factors must contribute to size determination. We tested whether X dosage directly affects animal size by analyzing males with duplications of X -chromosomal segments. Upon tiling across the X chromosome, we found four duplications that increase male size by >9%. Within these, we identified several genes that promote growth as a result of duplication. Only one of these, Myc , was found not to be dosage compensated. Together, our results indicate that both Myc dosage and tra expression play crucial roles in determining sex-specific size in Drosophila larvae and adult tissue. Since Myc also acts as an XSE that contributes to tra activation in early development, a double dose of Myc in females serves at least twice in development to promote sexual size dimorphism. Copyright © 2017 by the Genetics Society of America.

  18. Characterization of genome-wide copy number aberrations in colonic mixed adenoneuroendocrine carcinoma and neuroendocrine carcinoma reveals recurrent amplification of PTGER4 and MYC genes.

    PubMed

    Sinha, Namita; Gaston, Daniel; Manders, Daniel; Goudie, Marissa; Matsuoka, Makoto; Xie, Tao; Huang, Weei-Yuarn

    2018-03-01

    Colonic mixed adenoneuroendocrine carcinoma (MANEC) is an aggressive neoplasm with worse prognosis compared with adenocarcinoma. To gain a better understanding of the molecular features of colonic MANEC, we characterized the genome-wide copy number aberrations of 14 MANECs and 5 neuroendocrine carcinomas using the OncoScan FFPE (Affymetrix, Santa Clara, CA) assay. Compared with 269 colonic adenocarcinomas, 19 of 42 chromosomal arms of MANEC exhibited a similar frequency of major aberrant events as adenocarcinomas, and 13 chromosomal arms exhibited a higher frequency of copy number gains. Among them, the most significant chromosomal arms were 5p (77% versus 13%, P = .000012) and 8q (85% versus 33%, P = .0018). The Genomic Identification of Significant Targets in Cancers algorithm identified 7 peaks that drive the tumorgenesis of MANEC. For all except 5p13.1, the peaks largely overlapped with those of adenocarcinoma. Two tumors exhibited MYC amplification localized in 8q24.21, and 2 tumors exhibited PTGER4 amplification localized in 5p13.1. A total of 8 tumors exhibited high copy number gain of PTGER4 and/or MYC. Whereas the frequency of MYC amplification was similar to adenocarcinoma (10.5% versus 4%, P = .2), the frequency of PTGER4 amplification was higher than adenocarcinoma (10.5% versus 0.3%, P = .01). Our study demonstrates similar, but also distinct, copy number aberrations in MANEC compared with adenocarcinoma and suggests an important role for the MYC pathway of colonic carcinoma with neuroendocrine differentiation. The discovery of recurrent PTGER4 amplification implies a potential of exploring targeting therapy to the prostaglandin synthesis pathways in a subset of these tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Antigen-dependent fluorescence response of anti-c-Myc Quenchbody studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mori, Yoshiharu; Okumura, Hisashi; Watanabe, Takayoshi; Hohsaka, Takahiro

    2018-04-01

    We performed metadynamics molecular dynamics simulations to reveal mechanism of antigen-dependent fluorescence response observed for site-specifically fluorescent-labeled single-chain antibody against c-Myc peptide antigen. We found that VH and VL bind with each other only when the antigen exists and that the fluorophore labeled at the N-terminus of VH interacts with Trp103 most stably. These results support the mechanism proposed from previous experiments: In the absence of antigen, Trp residues are partially exposed at the interface of VH and quench the fluorophore. In the presence of antigen, the Trp residues are buried between VH and VL , and the quenching is eliminated.

  20. Therapeutic synergy between tigecycline and venetoclax in a preclinical model of MYC/BCL2 double-hit B cell lymphoma.

    PubMed

    Ravà, Micol; D'Andrea, Aleco; Nicoli, Paola; Gritti, Ilaria; Donati, Giulio; Doni, Mirko; Giorgio, Marco; Olivero, Daniela; Amati, Bruno

    2018-01-31

    High-grade B cell lymphomas with concurrent activation of the MYC and BCL2 oncogenes, also known as double-hit lymphomas (DHL), show dismal prognosis with current therapies. MYC activation sensitizes cells to inhibition of mitochondrial translation by the antibiotic tigecycline, and treatment with this compound provides a therapeutic window in a mouse model of MYC -driven lymphoma. We now addressed the utility of this antibiotic for treatment of DHL. BCL2 activation in mouse Eμ- myc lymphomas antagonized tigecycline-induced cell death, which was specifically restored by combined treatment with the BCL2 inhibitor venetoclax. In line with these findings, tigecycline and two related antibiotics, tetracycline and doxycycline, synergized with venetoclax in killing human MYC/BCL2 DHL cells. Treatment of mice engrafted with either DHL cell lines or a patient-derived xenograft revealed strong antitumoral effects of the tigecycline/venetoclax combination, including long-term tumor eradication with one of the cell lines. This drug combination also had the potential to cooperate with rituximab, a component of current front-line regimens. Venetoclax and tigecycline are currently in the clinic with distinct indications: Our preclinical results warrant the repurposing of these drugs for combinatorial treatment of DHL. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. MYC and MYCN amplification can be reliably assessed by aCGH in medulloblastoma.

    PubMed

    Bourdeaut, Franck; Grison, Camille; Maurage, Claude-Alain; Laquerriere, Annie; Vasiljevic, Alexandre; Delisle, Marie-Bernadette; Michalak, Sophie; Figarella-Branger, Dominique; Doz, François; Richer, Wilfrid; Pierron, Gaelle; Miquel, Catherine; Delattre, Olivier; Couturier, Jérôme

    2013-04-01

    As prognostic factors, MYC and MYCN amplifications are routinely assessed in medulloblastomas. Fluorescence in situ hybridization (FISH) is currently considered as the technique of reference. Recently, array comparative genomic hybridization (aCGH) has been developed as an alternative technique to evaluate genomic abnormalities in other tumor types; however, this technique has not been widely adopted as a replacement for FISH in medulloblastoma. In this study, 34 tumors were screened by both FISH and aCGH. In all cases showing amplification by FISH, aCGH also unambiguously revealed the abnormality. The aCGH technique was also performed on tumors showing no amplification by FISH, and the absence of amplification was confirmed in all cases. Interestingly, one tumor showed a subclonal MYC amplification by FISH. This subclonal amplification was observed in approximately 20% of tumor cells and was clearly evident on aCGH. In conclusion, our analysis confirms that aCGH is as safe as FISH for the detection of MYC/MYCN gene amplification. Given its cost efficiency in comparison to two FISH tests and the global genomic information additionally provided by an aCGH experiment, this reproducible technique can be safely retained as an alternative to FISH for routine investigation of medulloblastoma. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Connaissances des médecins généralistes de Mohammedia (Maroc) concernant le dépistage du cancer du sein

    PubMed Central

    Zine, Karima; Nani, Samira; Lahmadi, Imad Ait; Maaroufi, Abderrahmane

    2016-01-01

    Introduction Le cancer du sein représente un problème de santé publique majeur au Maroc. C'est le premier cancer chez la femme. L'objectif de ce travail était d'évaluer les connaissances des médecins généralistes (MG) en matière de dépistage du cancer du sein dans la préfecture de Mohammedia Maroc. Méthodes Nous avons mené une étude transversale, descriptive, exhaustive incluant les 97 MG exerçant dans les établissements de soins de santé de base du secteur public et privé de la province de Mohammedia. Résultats Le taux de participation était de 87%. L'âge moyen des MG était de 49,6 ± 8,1. Quatre-vingt pour cent (n=55) des MG ont donné une incidence incorrecte, 77,6% (n=85) ont reconnu l'existence d'un plan national de prévention et de contrôle du cancer (PNPCC) au Maroc, et 67,1 des MG ont rapporté l'existence d'un registre du cancer au Maroc. Le secteur d'activité était associé significativement avec les connaissances des MG sur le PNPCC et sur l'existence d'un guide de détection précoce du cancer du sein avec respectivement (p=0,003 et p=0,001). Une association significative entre l'ancienneté et l'existence d'un guide de détection précoce du cancer du sein et d'un registre du cancer du sein a été retrouvée avec (respectivement p=0,005 et p=0.002). Conclusion À la lumière de ces résultats il faudra renforcer les connaissances et les pratiques des MG par la promotion de la formation initiale et continue sur le dépistage. PMID:27800098

  3. Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance[C][W

    PubMed Central

    Li, Ran; Weldegergis, Berhane T.; Li, Jie; Jung, Choonkyun; Qu, Jing; Sun, Yanwei; Qian, Hongmei; Tee, ChuanSia; van Loon, Joop J.A.; Dicke, Marcel; Chua, Nam-Hai; Liu, Shu-Sheng

    2014-01-01

    A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified βC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. βC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector. PMID:25490915

  4. Two populations of double minute chromosomes harbor distinct amplicons, the MYC locus at 8q24.2 and a 0.43-Mb region at 14q24.1, in the SW613-S human carcinoma cell line.

    PubMed

    Guillaud-Bataille, M; Brison, O; Danglot, G; Lavialle, C; Raynal, B; Lazar, V; Dessen, P; Bernheim, A

    2009-01-01

    High-level amplifications observed in tumor cells are usually indicative of genes involved in oncogenesis. We report here a high resolution characterization of a new amplified region in the SW613-S carcinoma cell line. This cell line contains tumorigenic cells displaying high-level MYC amplification in the form of double minutes (DM(+) cells) and non tumorigenic cells exhibiting low-level MYC amplification in the form of homogeneously staining regions (DM(-) cells). Both cell types were studied at genomic and functional levels. The DM(+) cells display a second amplification, corresponding to the 14q24.1 region, in a distinct population of DMs. The 0.43-Mb amplified and overexpressed region contains the PLEK2, PIGH, ARG2, VTI1B, RDH11, and ZFYVE26 genes. Both amplicons were stably maintained upon in vitro and in vivo propagation. However, the 14q24.1 amplicon was not found in cells with high-level MYC amplification in the form of HSRs, either obtained after spontaneous integration of endogenous DM MYC copies or after transfection of DM(-) cells with a MYC gene expression vector. These HSR-bearing cells are highly tumorigenic. The 14q24.1 amplification may not play a role in malignancy per se but might contribute to maintaining the amplification in the form of DMs. Copyright 2009 S. Karger AG, Basel.

  5. MicroRNA-26a is a key regulon that inhibits progression and metastasis of c-Myc/EZH2 double high advanced hepatocellular carcinoma.

    PubMed

    Zhang, Xiang; Zhang, Xiao; Wang, Ting; Wang, Lei; Tan, Zhijun; Wei, Wei; Yan, Bo; Zhao, Jing; Wu, Kaichun; Yang, Angang; Zhang, Rui; Jia, Lintao

    2018-07-10

    The transcription factor c-Myc is a key driver for hepatocellular carcinomas (HCCs), while the polycombrepressive complex 2 (PRC2) subunit EZH2 is an essential biomarker of HCC. c-Myc epigenetically silences tumor suppressors by recruiting PRC2 and inducing methylation of histone H3 lysine 27. However, it remains elusive how they are regulated in HCC. We found here that microRNA-26a (miR-26a) suppresses c-Myc, a classical Wnt pathway target gene, by targeting the Wnt pathway coactivator, cyclin-dependent kinase 8 (CDK8); miR-26a also directly targets and inhibits EZH2. The expression of MIR26A2, a predominant origin of miR-26a transcripts in hepatic cells, is repressed by c-Myc/PRC2, thereby forming a c-Myc/miR-26a/CDK8 regulatory circuit in HCC. Meanwhile, miR-26a suppresses migration of HCC by targeting p21-activated kinase 2 (PAK2), a critical kinase linking Rho GTPases to cytoskeleton reorganization. Consequently, in vivo delivery of miR-26a remarkably suppressed the development of xenograft HCC and metastasis of orthotopic HCC by downregulating c-Myc, CDK8 and PAK2. These findings unraveled a novel mechanism of c-Myc and Wnt/β-catenin interplay that dictates HCC pathogenesis, and have implications for the potential applicability of miRNA delivery in targeting the newly identified signaling axis and treating metastatic HCCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies.

    PubMed

    Deng, Changchun; Lipstein, Mark R; Scotto, Luigi; Jirau Serrano, Xavier O; Mangone, Michael A; Li, Shirong; Vendome, Jeremie; Hao, Yun; Xu, Xiaoming; Deng, Shi-Xian; Realubit, Ronald B; Tatonetti, Nicholas P; Karan, Charles; Lentzsch, Suzanne; Fruman, David A; Honig, Barry; Landry, Donald W; O'Connor, Owen A

    2017-01-05

    Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc. © 2017 by The American Society of Hematology.

  7. Quantum dots (QDs) restrain human cervical carcinoma HeLa cell proliferation through inhibition of the ROCK-c-Myc signaling.

    PubMed

    Chen, Liqun; Qu, Guangbo; Zhang, Changwen; Zhang, Shuping; He, Jiuyang; Sang, Nan; Liu, Sijin

    2013-03-01

    Cancers often cause significant morbidity and even death to patients. To date, conventional therapies, such as chemotherapy, radiation and surgery, are often limited; meanwhile, novel anticancer therapeutics are urgently needed to improve clinical treatments. Rapid application of nanotechnology and nanomaterials represents a promising vista for the development of anti-cancer therapeutics. However, how to integrate the novel properties of nanotechnology and nanomaterials into cancer treatment warrants close investigation. In the current study, we report a novel finding about the inhibitory effect of CdSe quantum dots (QDs) on Rho-associated kinase (ROCK) activity in cervical carcinoma HeLa cells associated with the attenuation of the ROCK-c-Myc signaling. We mechanistically demonstrated that QD-conducted ROCK inhibition greatly diminished c-Myc protein stability due to reduced phosphorylation, and also suppressed its activity in transcribing target genes (e.g. HSPC111). Thus, the treatment of QDs greatly restrained HeLa cell growth by inducing cell cycle arrest at G1 phase due to the reduced ability of c-Myc in driving cell proliferation. Additionally, since HSPC111, one of the c-Myc targets, is involved in regulating cell growth through ribosomal biogenesis and assembly, the downregulation of HSPC111 could also contribute to diminished proliferation in HeLa cells upon QD treatment. These results together suggested that inhibition of ROCK activity or ROCK-mediated c-Myc signaling in tumor cells upon QD treatment might represent a promising strategy to restrain tumor progression for human cervical carcinoma.

  8. Le bégaiement

    PubMed Central

    Perez, Hector R.; Stoeckle, James H.

    2016-01-01

    Résumé Objectif Fournir une mise à jour sur l’épidémiologie, l’hérédité, la physiopathologie, le diagnostic et le traitement du bégaiement développemental. Qualité des données Une recherche d’études récentes ou non portant sur l’épidémiologie, l’hérédité, la physiopathologie, le diagnostic et le traitement du bégaiement développemental a été effectuée dans les bases de données MEDLINE et Cochrane. La plupart des recommandations s’appuient sur des études de petite envergure, des données probantes de qualité limitée ou des consensus. Message principal Le bégaiement est un trouble d’élocution fréquent chez les personnes de tous âges, il altère la fluidité verbale normale et l’enchaînement du discours. Le bégaiement a été lié à des différences de l’anatomie, du fonctionnement et de la régulation dopaminergique du cerveau qui seraient de source génétique. Il importe de poser le diagnostic avec attention et de faire les recommandations qui conviennent chez les enfants, car de plus en plus, le consensus veut que l’intervention précoce par un traitement d’orthophonie soit cruciale chez les enfants bègues. Chez les adultes, le bégaiement est lié à une morbidité psychosociale substantielle, dont l’anxiété sociale et une piètre qualité de vie. Les traitements pharmacologiques ont soulevé l’intérêt depuis quelques années, mais les données cliniques sont limitées. Le traitement des enfants et des adultes repose sur l’orthophonie. Conclusion De plus en plus de recherches ont tenté de lever le voile sur la physiopathologie du bégaiement. La meilleure solution pour les enfants et les adultes bègues demeure la recommandation à un traitement d’orthophonie.

  9. [Differences in the health and disease conditions in the rural and urban-suburban populations in Nuevo León state].

    PubMed

    Kroeger, A; Malo, F; Pérez Samaniego, C; Berg, H

    1991-01-01

    This work shows the results of two surveys taken in the state of Nuevo León, Mexico during 1985. The first survey, which covered morbidity and health service use, was taken from 759 households in urban/suburban Monterrey (a city of two million inhabitants and capital of the state of Nuevo León) and from 751 households from a stratified sample from the rest of the state. The second survey, which had to do with the different aspects of quality health services available, was given to 752 patients in 93 distinct health units in Monterrey and all over the state. The objectives of this publication are: 1) to describe the morbidity of the populations in question, as well as to describe the different aspects of the supply and demand of health services; 2) to compare the conditions of life reflected in the state of health between the rural and urban/suburban zones of Nuevo León. The results obtained show that those in the urban/suburban zones of Monterrey possess certain advantages over those in the rural areas in the state of Nuevo León such as: a higher level of schooling, lower emigration to the U.S.A., a lower fertility index, lower morbidity from severe illnesses and a lower death rate in children, wider coverage from health insurance, better communication between doctor and patient, more frequent use of health services, and greater participation in prevention programs. Rural area life has the following advantages: a lower number of cesarean sections, and a prolonged period of maternal suckling. In this work, we present the opinion that the primary health care currently centered in the urban zones, where the population is much greater, should not impair the required attention in the rural areas (areas that are more extensive and often unattended).

  10. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, wemore » generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.« less

  11. Investigating actinomycin D binding to G-quadruplex, i-motif and double-stranded DNA in 27-nt segment of c-MYC gene promoter.

    PubMed

    Niknezhad, Zhila; Hassani, Leila; Norouzi, Davood

    2016-01-01

    c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Around 90% of c-MYC transcription is controlled by NHE III1, whose 27-nt purine-rich strand has the ability to form G-quadruplex structure. In this investigation, interaction of ActD with 27-nt G-rich strand (G/c-MYC) and its equimolar mixture with the complementary sequence, (GC/c-MYC) as well as related C-rich oligonucleotide (C/c-MYC) was evaluated. Molecular dynamic simulations showed that phenoxazine and lactone rings of ActD come close to the outer G-tetrad nucleotides indicating that ActD binds through end-stacking to the quadruplex DNA. RMSD and RMSF revealed that fluctuation of the quadruplex DNA increases upon interaction with the drug. The results of spectrophotometry and spectrofluorometry indicated that ActD most probably binds to the c-MYC quadruplex and duplex DNA via end-stacking and intercalation, respectively and polarity of ActD environment decreases due to the interaction. It was also found that binding of ActD to the GC-rich DNA is stronger than the two other forms of DNA. Circular dichroism results showed that the type of the three forms of DNA structures doesn't change, but their compactness alters due to their interaction with ActD. Finally, it can be concluded that ActD binds differently to double stranded DNA, quadruplex DNA and i-motif. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    PubMed

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Zap70 functions to maintain stemness of mouse embryonic stem cells by negatively regulating Jak1/Stat3/c-Myc signaling

    PubMed Central

    Cha, Young; Moon, Bo-Hyun; Lee, Mi-Ok; Ahn, Hee-Jin; Lee, Hye-Jin; Lee, Kyung-Ah; Fornace, Albert J.; Kim, Kwang-Soo; Cha, Hyuk-Jin; Park, Kyung-Soon

    2011-01-01

    Zeta-chain associated protein kinase-70 (Zap70), a Syk family tyrosine kinase, has been reported to be present exclusively in normal T cells, Natural Killer (NK) cells, and B cells, serving as a pivotal regulator of antigen-mediated receptor signaling and development. In this study, we report that Zap70 is expressed in undifferentiated mouse embryonic stem cells (mESCs) and may critically regulate self-renewal and pluripotency in mESCs. We found that Zap70 knocked-down mESCs (Zap70KD) show sustained self-renewal and defective differentiation. In addition, we present evidence that the sustained self-renewal in Zap70KD is associated with enhanced Jak/Stat3 signaling and c-Myc induction. These altered signaling appears to result from up-regulated LIFR and down-regulated SHP-1 phosphatase activity. Based on these results, we propose that, in undifferentiated mESCs, Zap70 plays important roles in modulating the balance between self-renewal capacity and pluripotent differentiation ability as a key regulator of the Jak/Stat3/c-Myc signaling pathway. PMID:20641039

  14. Spondylodiscite granulomateuse: surtout la tuberculose mais ne pas omettre le lymphome

    PubMed Central

    Zinebi, Ali; Rkiouak, Adil; Akhouad, Yousef; Reggad, Ahmed; Kasmy, Zohour; Boudlal, Mostafa; Lho, Abdelhamid Nait; Rabhi, Moncef; Sinaa, Mohamed; Ennibi, Khalid; Chaari, Jilali

    2016-01-01

    Les douleurs lombaires relèvent d'étiologies multiples dont le diagnostic peut être source de grandes difficultés. Le lymphome rachidien primitif est rare et son diagnostic nécessite une biopsie souvent scanoguidée. Un homme de 30 ans, était hospitalisé pour lombalgies inflammatoires évoluant dans un contexte d'altération de l'état général avec à l'examen des douleurs à la palpation des apophyses épineux L2L3, sans syndrome tumoral périphérique. Le bilan biologique montrait un syndrome inflammatoire. Le bilan morphologique était en faveur d'une spondylodiscite. La première biopsie montrait une ostéite granulomateuse. L'aggravation clinique et radiologique sous anti bacillaire a mené à reconsidérer le diagnostic et la deuxième biopsie confirme le diagnostic du lymphome. Le diagnostic de tuberculose osseuse en particulier vertébrale nécessite une confirmation bactériologique et ou histologique pour ne pas méconnaître un lymphome osseux primitif. PMID:28292061

  15. CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc

    PubMed Central

    Pu, Hu; Zheng, Qidi; Li, Haiyan; Wu, Mengying; An, Jiahui; Gui, Xin; Li, Tianming; Lu, Dongdong

    2015-01-01

    Cancer up-regulated drug resistant (CUDR) is a novel non-coding RNA gene. Herein, we demonstrate excessive CUDR cooperates with excessive CyclinD1 or PTEN depletion to accelerate liver cancer stem cells growth and liver stem cell malignant transformation in vitro and in vivo. Mechanistically, we reveal the decrease of PTEN in cells may lead to increase binding capacity of CUDR to CyclinD1. Therefore, CUDR-CyclinD1 complex loads onto the long noncoding RNA H19 promoter region that may lead to reduce the DNA methylation on H19 promoter region and then to enhance the H19 expression. Strikingly, the overexpression of H19 increases the binding of TERT to TERC and reduces the interplay between TERT with TERRA, thus enhancing the cell telomerase activity and extending the telomere length. On the other hand, insulator CTCF recruits the CUDR-CyclinD1 complx to form the composite CUDR-CyclinD1-insulator CTCF complex which occupancied on the C-myc gene promoter region, increasing the outcome of oncogene C-myc. Ultimately, excessive TERT and C-myc lead to liver cancer stem cell and hepatocyte-like stem cell malignant proliferation. To understand the novel functions of long noncoding RNA CUDR will help in the development of new liver cancer therapeutic and diagnostic approaches. PMID:26513297

  16. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach.

    PubMed

    Musso, Loana; Mazzini, Stefania; Rossini, Anna; Castagnoli, Lorenzo; Scaglioni, Leonardo; Artali, Roberto; Di Nicola, Massimo; Zunino, Franco; Dallavalle, Sabrina

    2018-03-01

    Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Prognostic significance of MYC, BCL2, and BCL6 rearrangements in patients with diffuse large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab.

    PubMed

    Akyurek, Nalan; Uner, Aysegul; Benekli, Mustafa; Barista, Ibrahim

    2012-09-01

    Diffuse large B-cell lymphomas (DLBCLs) are a biologically heterogeneous group in which various gene alterations have been reported. The aim of this study was to investigate the frequency and prognostic impact of BCL2, BCL6, and MYC rearrangements in cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab (R-CHOP)-treated DLBCL cases. Tissue microarrays were constructed from 239 cases of DLBCL, and the expressions of CD10, BCL6, MUM1/IRF4, and BCL2 were evaluated by immunohistochemistry. MYC, BCL2, and BCL6 rearrangements were investigated by interphase fluorescence in situ hybridization on tissue microarrays. Survival analysis was constructed from 145 R-CHOP-treated patients. MYC, BCL2, and BCL6 rearrangements were detected in 14 (6%), 36 (15%), and 69 (29%) of 239 DLBCL patients. Double or triple rearrangements were detected in 7 (3%) of 239 DLBCL cases. Of these, 4 had BCL2 and MYC, 2 had BCL6 and MYC, and 1 had BCL2, BCL6, and MYC rearrangements. The prognosis of these cases was extremely poor, with a median survival of 9 months. MYC rearrangement was associated with significantly worse overall survival (P = .01), especially for the cases with GC phenotype (P = .009). BCL6 rearrangement also predicted significantly shorter overall survival (P = .04), especially for the non-GC phenotype (P = .03). BCL2 rearrangement had no prognostic impact on outcome. International Prognostic Index (P = .004) and MYC rearrangement (P = .009) were independent poor prognostic factors. Analysis of MYC gene rearrangement along with BCL2 and BCL6 is critical in identifying high-risk patients with poor prognosis. Copyright © 2011 American Cancer Society.

  18. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, P<.05) and circadian locomotor output cycles kaput (Clock, P<.05), period 2 (Per2, P<.05), cyclin E (P<.05), and c-Myc (P<.05) were directly increased by melatonin in adipose tissue. Melatonin also promoted cell cycle and increased cell numbers (P<.05), which was correlated with the Clock expression (P<.05). Further analysis demonstrated that Clock bound to the E-box elements in the promoter region of c-Myc and then directly stimulated c-Myc transcription. Moreover, Clock physically interacted with histone deacetylase 3 (HDAC3) and formed a complex with c-Myc to promote adipocyte proliferation. Melatonin also attenuated circadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. LeCPK1, a Calcium-Dependent Protein Kinase from Tomato. Plasma Membrane Targeting and Biochemical Characterization1

    PubMed Central

    Rutschmann, Frank; Stalder, Urs; Piotrowski, Markus; Oecking, Claudia; Schaller, Andreas

    2002-01-01

    The cDNA of LeCPK1, a calcium-dependent protein kinase, was cloned from tomato (Lycopersicon esculentum Mill.). LeCPK1 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using a synthetic peptide as the substrate (syntide-2, Km = 85 μm). Autophosphorylation of LeCPK1 was observed on threonine and serine residues, one of which was identified as serine-439. Kinase activity was shown to be Ca2+ dependent and required the C-terminal, calmodulin-like domain of LeCPK1. Two classes of high- and low-affinity Ca2+-binding sites were observed, exhibiting dissociation constants of 0.6 and 55 μm, respectively. LeCPK1 was found to phosphorylate the regulatory C-terminal domain of the plasma membrane H+-ATPase in vitro. A potential role in the regulation of proton pump activity is corroborated by the apparent colocalization of the plasma membrane H+-ATPase and LeCPK1 in vivo. Upon transient expression in suspension-cultured cells, a C-terminal fusion of LeCPK1 with the green fluorescent protein was targeted to the plasma membrane. Myristoylation of the LeCPK1 N terminus was found to be required for plasma membrane targeting. PMID:12011347

  20. [Diffuse large B-cell lymphoma with concomitant c-MYC and BCL6 gene rearrangements with primary skin involvement: A case report and a review of literature].

    PubMed

    Gabeeva, N G; Koroleva, D A; Belyaeva, A V; Chernova, N G; Kuzmina, L A; Sudarikov, A B; Obukhova, T N; Kovrigina, A M; Zvonkov, E E; Savchenko, V G

    Double-hit lymphoma (DHL) is a rare aggressive B-cell lymphoma with concomitant c-MYC, BCL2 or BCL6 gene rearrangements, which is characterized by the high frequency of extranodal lesions and by resistance to chemotherapy. The median survival does not exceed 18 months in patients with this disease. The majority of DHL is represented by с-MYC/BCL2 cases. The combination of c-MYC/BCL6 occurs rarely (5-8%). The paper describes a case of DHL with concomitant c-MYC and BCL6 gene rearrangements, which mimics diffuse large B-cell lymphoma, leg-type.

  1. Fisetin Enhances the Cytotoxicity of Gemcitabine by Down-regulating ERK-MYC in MiaPaca-2 Human Pancreatic Cancer Cells.

    PubMed

    Kim, Nayoung; Kang, Min-Jung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Ji Eun; Paik, Woo Hyun; Ryu, Ji Kon; Kim, Yong-Tae

    2018-06-01

    Pancreatic cancer is a highly lethal malignancy with a poor prognosis. This study was set up to investigate the combined effect of gemcitabine and fisetin, a natural flavonoid from plants, on human pancreatic cancer cells. Meterials and Methods: Cytotoxic effect of fisetin in combination with gemcitabine on MiaPaca-2 cells was evaluated by the MTT assay, caspase 3/7 assay and propidium iodide/Annexin V. Extracellular signal-regulated kinase (ERK)-v-myc avian myelocytomatosis viral oncogene homolog (MYC) pathway was investigated by western blotting and quantitative real-time polymerase chain reaction. Combination treatment with fisetin and gemcitabine inhibited the proliferation of pancreatic cancer cells within 72 h and induced apoptosis, as indicated by activation of caspase 3/7. Fisetin down-regulated ERK at the protein and mRNA levels, and reduced ERK-induced MYC instability at the protein level. Fisetin sensitized human pancreatic cancer cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling. These results suggest that the combination of fisetin and gemcitabine could be developed as a novel potent therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas

    PubMed Central

    Lwin, Tint; Zhao, Xiaohong; Cheng, Fengdong; Zhang, Xinwei; Huang, Andy; Shah, Bijal; Zhang, Yizhuo; Moscinski, Lynn C.; Choi, Yong Sung; Kozikowski, Alan P.; Bradner, James E.; Dalton, William S.; Sotomayor, Eduardo; Tao, Jianguo

    2013-01-01

    A dynamic interaction occurs between the lymphoma cell and its microenvironment, with each profoundly influencing the behavior of the other. Here, using a clonogenic coculture growth system and a xenograft mouse model, we demonstrated that adhesion of mantle cell lymphoma (MCL) and other non-Hodgkin lymphoma cells to lymphoma stromal cells confers drug resistance, clonogenicity, and induction of histone deacetylase 6 (HDAC6). Furthermore, stroma triggered a c-Myc/miR-548m feed-forward loop, linking sustained c-Myc activation, miR-548m downregulation, and subsequent HDAC6 upregulation and stroma-mediated cell survival and lymphoma progression in lymphoma cell lines, primary MCL and other B cell lymphoma cell lines. Treatment with an HDAC6-selective inhibitor alone or in synergy with a c-Myc inhibitor enhanced cell death, abolished cell adhesion–mediated drug resistance, and suppressed clonogenicity and lymphoma growth ex vivo and in vivo. Together, these data suggest that the lymphoma-stroma interaction in the lymphoma microenvironment directly impacts the biology of lymphoma through genetic and epigenetic regulation, with HDAC6 and c-Myc as potential therapeutic targets. PMID:24216476

  3. Identification and Characterization of MYC Regulatory Elements: Links to Prostate Cancer

    DTIC Science & Technology

    2011-06-01

    cell proliferation and growth,MYC is up-regulated at both the mRNA and protein levels in aggressive prostate cancers ( DeMarzo et al. 2003). In...evolutionary synthesis: A genetic theory of morphological evolution. Cell 134: 25–36. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI. 2003. Pathological and

  4. miR-34a increases cisplatin sensitivity of osteosarcoma cells in vitro through up-regulation of c-Myc and Bim signal.

    PubMed

    Li, Qi-Cai; Xu, Haiyan; Wang, Xiaohui; Wang, Ting; Wu, Jiang

    2017-12-12

    Osteosarcoma is the most common primary malignancy in bone. Patients who respond poorly to induction chemotherapy are at higher risk of adverse prognosis. The molecular basis for such poor prognosis remains unclear. Recently, increasing evidence has suggested decreased expression of miR-34a is observed in a number of cancer types, including human osteosarcoma, and decreased miR-34a is involved in drug resistance. However, the underlying molecular mechanisms of decreased miR-34a on cisplatin chemoresistance in osteosarcoma has not been reported. Osteosarcoma U2OS cells were transfected with miR-34a mimics for 48 h, then the cells were treated with 3.0 μm cisplatin for 24 h. Using siRNA targeting c-Myc and Bim to examine the relation between miR-34a, c-Myc and Bim expression exposure to cisplatin on cisplatin-induced apoptosis. Treatment of U2OS cells with cisplatin induced cell apoptosis by upregulation of c-Myc -dependent Bim expression; Osteosarcoma U2OS cells transfected with miR-34a mimics (miR-34a/U2OS) induced cell apoptosis and inhibited cell survival, and increased the sensitivity of U2OS cells to cisplatin. U2OS cells transfected with miR-34a mimics upregulated the protein expression of c-Myc and Bim. Targeting c-Myc downregulated the expression of Bim in the miR-34a/U2OS cells. In addition, Targeting Bim reversed the chemeresistance of miR-34a/U2OS cells to cisplatin. Our data indicated that miR-34a enhanced the sensitivity to cisplatin by upregulation of c-Myc and Bim pathway.

  5. Induction of the c-myc protooncogene following antigen binding to hapten-specific B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, E.C.; Fetherston, J.; Zimmer, S.

    1986-03-01

    Considerable controversy has centered on the role that the surface immunoglobulin (sIg) receptor for antigen plays during the induction of B cell activation. Stimulation by anti-Ig reagents has been shown to activate G/sub 0/ B cells to enter the cell cycle. The binding of thymus-dependent antigens to hapten-specific B cell populations apparently does not result in the movement of the antigen-binding cells (ABC) into the G/sub 1/ stage of the cell cycle. However, the authors have recently demonstrated that antigen binding to such hapten-specific B cells does result in the initiation of the membrane phosphatidylinositol cycle. In the present experiments,more » hapten-specific B cells (80-90% ABC, 99% in G/sub 0/) were incubated with either the correct hapten-carrier conjugate, with the carrier protein, or only media for 2 hours at 37/sup 0/C. At that time, total cellular RNA was isolated and subsequently analyzed by either dot blots or Northern gel techniques. The blots were probed with a (/sup 32/P)-c-myc SstI-Xhol fragment. The results indicate that hapten carrier stimulation of the hapten-specific B cells induces enhanced transcription of the c-myc gene. These observations lend further support to the premise that antigen binding to the sIg receptor results in the transduction to the cell of important signals and implicates the active participation of sIg during the process of antigen-mediated B cell activation.« less

  6. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes.

    PubMed

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir; Noritake, Hidenao; Kimura, Wataru; Wu, Yi-Xin; Kobayashi, Yoshimasa; Uezato, Tadayoshi; Miura, Naoyuki

    2012-01-06

    The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with ∼50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  8. The enforced expression of c-Myc in pig fibroblasts triggers mesenchymal-epithelial transition (MET) via F-actin reorganization and RhoA/Rock pathway inactivation.

    PubMed

    Shi, Jun-Wen; Liu, Wei; Zhang, Ting-Ting; Wang, Sheng-Chun; Lin, Xiao-Lin; Li, Jing; Jia, Jun-Shuang; Sheng, Hong-Fen; Yao, Zhi-Fang; Zhao, Wen-Tao; Zhao, Zun-Lan; Xie, Rao-Ying; Yang, Sheng; Gao, Fei; Fan, Quan-Rong; Zhang, Meng-Ya; Yue, Min; Yuan, Jin; Gu, Wei-Wang; Yao, Kai-Tai; Xiao, Dong

    2013-04-01

    In previous studies from other labs it has been well demonstrated that the ectopic expression of c-Myc in mammary epithelial cells can induce epithelial-mesenchymal transition (EMT), whereas in our pilot experiment, epithelial-like morphological changes were unexpectedly observed in c-Myc-expressing pig fibroblasts [i.e., porcine embryonic fibroblasts (PEFs) and porcine dermal fibroblasts (PDFs)] and pig mesenchymal stem cells, suggesting that the same c-Myc gene is entitled to trigger EMT in epithelial cells and mesenchymal-epithelial transition (MET) in fibroblasts. This prompted us to characterize the existence of a MET in c-Myc-expressing PEFs and PDFs at the molecular level. qRT-PCR, immunofluorescence and western blot analysis illustrated that epithelial-like morphological changes were accompanied by the increased expression of epithelial markers [such as cell adhesion proteins (E-cadherin, α-catenin and Bves), tight junction protein occludin and cytokeratins (Krt8 and Krt18)], the reduced expression of mesenchymal markers [vimentin, fibronectin 1 (FN1), snail1, collagen family of proteins (COL1A1, COL5A2) and matrix metalloproteinase (MMP) family (MMP12 and MMP14)] and the decreased cell motility and increased cell adhesion in c-Myc-expressing PEFs and PDFs. Furthermore, the ectopic expression of c-Myc in pig fibroblasts disrupted the stress fiber network, suppressed the formation of filopodia and lamellipodia, and resulted in RhoA/Rock pathway inactivation, which finally participates in epithelial-like morphological conversion. Taken together, these findings demonstrate, for the first time, that the enforced expression of c-Myc in fibroblasts can trigger MET, to which cytoskeleton depolymerization and RhoA/Rock pathway inactivation contribute.

  9. Participation des médecins généralistes de la province de Benimellal (Maroc) dans le dépistage du cancer du col

    PubMed Central

    Nani, Samira; Benallal, Mohamed; Hassoune, Samira; Kissi, Dounia; Maaroufi, Abderrahmane

    2013-01-01

    Introduction Au Maroc, chaque année il y aurait environ 2000 nouveaux cas de cancer du col et les 2/3 des cas sont pris en charge à un stade très avancé. Nous avons mené une étude transversale, exhaustive incluant les 71 médecins généralistes exerçant dans les établissements de soins de santé de base du secteur public et privé de la province de Benimellal. Le but était d’évaluer leurs connaissances et leur participation au dépistage du cancer du col. Méthodes Nous avons mené une étude transversale, exhaustive incluant les 71 médecins généralistes exerçant dans les établissements de soins de santé de base du secteur public et privé de la province de Benimellal. Le but était d’évaluer leurs connaissances et leur participation au dépistage du cancer du col. Résultats Le niveau de connaissance était relativement modeste, 22 médecins généraliste avaient répondu à la question sur l'incidence du cancer du col au Maroc, Parmi eux (81,8%) avaient donné une réponse incorrecte. L'Herpes Papilloma virus comme facteur de risque du cancer du col a été identifié par seulement 21% des médecins généralistes. La participation au dépistage était également défaillante, 92,8% n'avaient jamais pratiqué le FCV chez leurs patientes à cause principalement du manque de formation (95,5%). Conclusion Les résultats montrent la nécessité d'améliorer les connaissances théoriques et pratique des médecins généralistes concernant le dépistage du cancer du col. PMID:23785557

  10. Lele de métrologie de SOLEIL

    NASA Astrophysics Data System (ADS)

    Idir, M.; Brochet, S.; Delmotte, A.; Lagarde, B.; Mercere, P.; Moreno, T.; Polack, F.; Thomasset, M.

    2006-12-01

    Lele de METROLOGIE de SOLEIL a pour objet de créer sur le synchrotron SOLEIL, une plateforme constituée : - une ligne de lumière utilisant le rayonnement synchrotron (métrologie dite à la longueur d'onde) - d'un laboratoire de métrologie associé (métrologie dite ll classique gg ) Ces deux types de Métrologie sont l'une et l'autre indispensables pour soutenir l'activité de recherche instrumentale en optique X et X-UV. Ce projet de pôle de METROLOGIE ne répondra pas seulement aux besoins des groupes chargés de l'équipement du synchrotron SOLEIL en optiques et détecteurs mais aussi pour préparer, tester et mettre au point les postes expérimentaux, ce qui concerne déjà une large communauté d'utilisateurs. Il sera aussi largement ouvert, dès sa mise en service, à l'ensemble de la communauté scientifique concernée par l'instrumentation X et XUV en Ile de France, en France, voire même en Europe si la demande continue de croître plus vite que l'offre dans ce domaine. Ligne de lumière Métrologie à la longueur d'onde La ligne de lumière sera équipée de plusieurs stations permettant de mesurer, dans la plus grande partie du spectre couvert par le synchrotron, les paramètres photométriques qui caractérisent les éléments optiques, tels que : la réflectivité de surfaces, l'efficacité de diffraction des réseaux, la diffusion des surfaces ou l'efficacité des détecteurs X et X-UV et la calibration absolue. Cette installation pourra servir également à développer des instruments et des diagnostics nécessaires à la caractérisation des faisceaux de rayons X (intensité, taille, degré de cohérence, polarisation etc.) Métrologie Classique La métrologie des surfaces optiques est devenue une nécessité critique pour les laboratoires et les industries qui utilisent les photons X et X-UV (synchrotrons, centres laser, etc. .). En effet, les progrès de calcul et de conception des systèmes optiques pour ces longueurs d'onde (optiques

  11. APTO-253 Stabilizes G-quadruplex DNA, Inhibits MYC Expression, and Induces DNA Damage in Acute Myeloid Leukemia Cells.

    PubMed

    Local, Andrea; Zhang, Hongying; Benbatoul, Khalid D; Folger, Peter; Sheng, Xia; Tsai, Cheng-Yu; Howell, Stephen B; Rice, William G

    2018-06-01

    APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G 0 -G 1 cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253) 3 ]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) 3 stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) 3 and APTO-253 on G-quadruplex DNA motifs. Mol Cancer Ther; 17(6); 1177-86. ©2018 AACR . ©2018 American Association for Cancer Research.

  12. Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras.

    PubMed

    Podsypanina, Katrina; Politi, Katerina; Beverly, Levi J; Varmus, Harold E

    2008-04-01

    Most, if not all, cancers are composed of cells in which more than one gene has a cancer-promoting mutation. Although recent evidence has shown the benefits of therapies targeting a single mutant protein, little attention has been given to situations in which experimental tumors are induced by multiple cooperating oncogenes. Using combinations of doxycycline-inducible and constitutive Myc and mutant Kras transgenes expressed in mouse mammary glands, we show that tumors induced by the cooperative actions of two oncogenes remain dependent on the activity of a single oncogene. Deinduction of either oncogene individually, or both oncogenes simultaneously, led to partial or complete tumor regression. Prolonged remission followed deinduction of Kras(G12D) in the context of continued Myc expression, deinduction of a MYC transgene with continued expression of mutant Kras produced modest effects on life extension, whereas simultaneous deinduction of both MYC and Kras(G12D) transgenes further improved survival. Disease relapse after deinduction of both oncogenes was associated with reactivation of both oncogenic transgenes in all recurrent tumors, often in conjunction with secondary somatic mutations in the tetracycline transactivator transgene, MMTV-rtTA, rendering gene expression doxycycline-independent. These results demonstrate that tumor viability is maintained by each gene in a combination of oncogenes and that targeted approaches will also benefit from combination therapies.

  13. Myc Dynamically and Preferentially Relocates to a Transcription Factory Occupied by Igh

    PubMed Central

    Osborne, Cameron S; Chakalova, Lyubomira; Mitchell, Jennifer A; Horton, Alice; Wood, Andrew L; Bolland, Daniel J; Corcoran, Anne E; Fraser, Peter

    2007-01-01

    Transcription in mammalian nuclei is highly compartmentalized in RNA polymerase II-enriched nuclear foci known as transcription factories. Genes in cis and trans can share the same factory, suggesting that genes migrate to preassembled transcription sites. We used fluorescent in situ hybridization to investigate the dynamics of gene association with transcription factories during immediate early (IE) gene induction in mouse B lymphocytes. Here, we show that induction involves rapid gene relocation to transcription factories. Importantly, we find that the Myc proto-oncogene on Chromosome 15 is preferentially recruited to the same transcription factory as the highly transcribed Igh gene located on Chromosome 12. Myc and Igh are the most frequent translocation partners in plasmacytoma and Burkitt lymphoma. Our results show that transcriptional activation of IE genes involves rapid relocation to preassembled transcription factories. Furthermore, the data imply a direct link between the nonrandom interchromosomal organization of transcribed genes at transcription factories and the incidence of specific chromosomal translocations. PMID:17622196

  14. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice.

    PubMed

    Thakur, Archana; Bollig, Aliccia; Wu, Jiusheng; Liao, Dezhong J

    2008-01-24

    Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT) and liver metastatic lesions (LM) compared to normal pancreas (NP). In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1) and Serine proteinase inhibitor A1 (Serpina1), and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  15. Eya1 Interacts with Six2 and Myc to Regulate Expansion of the Nephron Progenitor Pool during Nephrogenesis

    PubMed Central

    Xu, Jinshu; Wong, Elaine Y.M.; Cheng, Chunming; Li, Jun; Sharkar, Mohammad T.K.; Xu, Chelsea Y.; Chen, Binglai; Sun, Jianbo; Jing, Dongzhu; Xu, Pin-Xian

    2014-01-01

    SUMMARY Self-renewal and proliferation of nephron progenitor cells and the decision to initiate nephrogenesis are crucial events directing kidney development. Despite recent advancements in defining lineage and regulators for the progenitors, fundamental questions about mechanisms driving expansion of the progenitors remain unanswered. Here we show that Eya1 interacts with Six2 and Myc to control self-renewing cell activity. Cell fate tracing reveals a developmental restriction of the Eya1+ population within the intermediate mesoderm to nephron-forming cell fates and a common origin shared between caudal mesonephric and metanephric nephrons. Conditional inactivation of Eya1 leads to loss of Six2 expression and premature epithelialization of the progenitors. Six2 mediates translocation of Eya1 to the nucleus, where Eya1 uses its threonine phosphatase activity to control Myc phosphorylation/dephosphorylation and function in the progenitor cells. Our results reveal a functional link between Eya1, Six2, and Myc in driving the expansion and maintenance of the multipotent progenitors during nephrogenesis. PMID:25458011

  16. Les aspects des frottis cervico-vaginaux chez les femmes vivants avec le VIH suivies à Thiès/Sénégal et association avec le degré d'immunodépression

    PubMed Central

    Bammo, Mariama; Dioussé, Pauline; Thiam, Marietou; Diop, Madoky Maguatte; Berthe, Adama; Faye, Flugence Abdou; Diallo, Thierno Abdoul Aziz; Sarr, Fatou Seck; Dione, Haby; Toure, Papa Souleymane; Diop, Bernard Marcel; Ka, Mamadou Mortalla

    2015-01-01

    De nombreuses études ont démontré que les femmes infectées par le VIH ont un risque accru de survenue de néoplasies cervicales intra épithéliales. L'association entre les deux affections étant bidirectionnelle, l'objectif était de décrire les anomalies cervicales chez les femmes séropositives au virus de l'immunodéficience humaine (VIH), de rechercher des facteurs associés et de proposer des recommandations en termes de suivi de ces femmes. Il s'agissait d'une étude transversale, multicentrique recensant l'ensemble des frottis cervico-vaginaux (FCV) et des colposcopies des patientes infectées par le VIH entre 2012 et 2014 dans les services de dermatologie de Thiès et de Mbour. Les données étaient recueillies et analysées par le logiciel EPI Info 2012 version 3.5.4. Les tests statistiques ont été effectués avec un seuil de significativité p <0,05. Etaient inclus 125 patientes. L’âge moyen était de 38,98 ± 10.2 ans [20-77]. Il n'y avait aucun signe d'appels dans 82.4%. Le FCV était normal dans 32.8%, inflammatoire dans 44.8%. Les anomalies cytologiques concernaient 22,4% dont, ASC-H (suspicion de lésions de haut grade: 2.4%), LSIL (lésions de bas grade: 8.8%), HSIL (lésions de haut grade: 4%). Leur majorité (60.7%) avaient un taux de CD4 < 500 et étaient au stade 3 de l'OMS dans 64.3%; la biopsie montrait une dysplasie sévère chez 37.5% des patientes ayant pu réaliser cet examen. Deux patientes ont bénéficié d'un traitement curatif notamment l'exérèse chirurgicale. La survenue de dysplasies cervicales même précoces semble être associée à un stade avancé de l'infection VIH. Un dépistage et un traitement précoces sont absolument nécessaires. PMID:26834915

  17. Conserved features of cancer cells define their sensitivity of HAMLET-induced death; c-Myc and glycolysis

    PubMed Central

    Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James; Svanborg, Catharina

    2014-01-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic and metabolomic technology we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted the sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, the HAMLET sensitivity was modified by the glycolytic state of the tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen Hexokinase 1, PFKFB1 and HIF1α modified HAMLET sensitivity. Hexokinase 1 was shown to bind HAMLET in a protein array containing approximately 8000 targets and Hexokinase activity decreased within 15 minutes of HAMLET treatment, prior to morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. The glycolytic machinery was modified and glycolysis was shifted towards the pentose phosphate pathway. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 minutes. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene-addiction or the Warburg effect. PMID:21643007

  18. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    PubMed

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  19. MYC RNAi-PT Combination Nanotherapy for Metastatic Prostate Cancer Treatment

    DTIC Science & Technology

    2017-10-01

    Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No ...Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to...of the NPs loaded with MYC siRNA and cisplatin prodrug (synthesized in Year 1 of this project) against the Pt-resistant PCa cells. In parallel, we

  20. Profil anatomopathologique du cancer du sein dans le cap bon tunisien

    PubMed Central

    Sahraoui, Ghada; Khanchel, Fatma; Chelbi, Emna

    2017-01-01

    Le cancer du sein est le cancer le plus fréquent de la femme en Tunisie et dans le monde. Dans le Cap Bon tunisien, les particularités anatomopathologiques de ce cancer n'ont pas été précisées auparavant. Leur connaissance est nécessaire pour l'adaptation des systèmes de prévention et de soins dans la région. Le but de notre étude était de déterminer le profil anatomopathologique des carcinomes mammaires dans l'unique laboratoire d'anatomie pathologique publique de la région. Il s'agissait d'une étude descriptive rétrospective des carcinomes mammaires diagnostiqués chez 116 malades dans notre laboratoire sur une période de 5 ans de Juillet 2010 à Juillet 2015. Notre étude a inclus 116 patientes. L'âge moyen était de 51 ans. La taille tumorale histologique moyenne était de 31 mm. Le diagnostic initial était posé sur pièce de tumorectomie dans 83% des cas. Le carcinome infiltrant de type non spécifique était le type histologique le plus fréquent. Le grade SBR III était majoritaire. L'invasion lympho-vasculaire était présente dans 33% des cas. Le curage axillaire était positif dans 72% des cas. Les récepteurs hormonaux étaient positifs dans 73% des cas. Les récepteurs de l'Her2-Neu étaient surexprimés dans 19% des cas. Le ki67 était ≥ 14% dans 38%. Le sous-type moléculaire le plus fréquent était le luminal A. Le carcinome mammaire dans la région du Cap Bon se caractérise par sa survenue à un âge jeune, son importante taille tumorale et la fréquence de facteurs histopronostiques péjoratifs. PMID:28450990

  1. Le syndrome d'embolie graisseuse post traumatique

    PubMed Central

    Berdai, Adnane Mohamed; Shimi, Abdelkarim; Khatouf, Mohammed

    2014-01-01

    Le syndrome d'embolie graisseuse est une complication grave des fractures des os longs, il est la conséquence de la dissémination des particules graisseuses dans la microcirculation. L'objectif de ce travail est de déterminer le profil épidémiologique, la présentation clinique et paraclinique de ce syndrome et sa prise en charge thérapeutique. Notre étude porte sur 11 cas de syndrome d'embolie graisseuse colligés au service de réanimation A1 au centre hospitalier universitaire Hassan II de Fès, de Janvier 2009 à Juin 2012. Le diagnostic positif est basé sur les critères de Gurd. Les cas collectés se caractérisent par la prédominance du sexe masculin, d'un âge inférieur à 40 ans, présentant une fracture fémorale. Ce syndrome survient souvent dans les 72 heures après le traumatisme. La présentation clinique est dominée par l'hypoxémie et les troubles de conscience. Sur le plan biologique: l'anémie et la thrombopénie sont les manifestations les plus fréquentes. La prise en charge est symptomatique, 63% des patients ont nécessité l'intubation et la ventilation. L’évolution n'est pas toujours bénigne. Nos résultats confirme le polymorphisme de la présentation clinique et paraclinique du syndrome d'embolie graisseuse. Le diagnostic de ce syndrome se base sur des critères cliniques, mais reste essentiellement un diagnostic d’élimination. La prise en charge est symptomatique. La prévention de ce syndrome est essentielle et se base sur une fixation précoce des fractures des os longs. PMID:25452829

  2. Municipal distribution and trends in bladder cancer incidence in health area of León, Spain (1996-2010).

    PubMed

    del Canto, M; García-Martínez, L; Fernández-Villa, T; Molina, A J; Campanario, F; García-Sanz, M; López-Abente, G; Honrado, E; Martín-Sánchez, V

    2015-01-01

    Spain is a country where bladder cancer incidence and mortality rates are some of the highest in the world. The aim of this study is to know the incidence, trends and geographical distribution of bladder cancer in the health area of León. the new cases of bladder cancer (CIE-188) in patients residing in the health area of León and registered in the Hospital Tumor Registry of the Centro Asistencial Universitario in León (Spain) between 1996-2010 were included in this study. Triennial crude incidence and adjusted incidence rates to the worldwide and European population were calculated. Population data of the municipalities of Leon (Spain) were obtained from National Institute of Statistic of Spain (INE, Instituto Nacional de Estadística). Data were disaggregated by sex-groups and five-year age groups. Spatial distribution of smoothed municipal relative risks (RR) of bladder cancer was carried out using a Besag, York and Mollié model. Bayesian model were used to calculate the posterior probability (PP) of RR greater than one. 1.573 cases were included. Incidence rates standardized to European population increased among men from 20,8/100.000 (1996-98) to 33,1/100.000 (2006-2008) and among women these rates increased from 1,9/100.000 to 5,9/100.000 for the same period of time. No relevant differences were found in the municipal distribution of the incidences. bladder cancer incidence rates are high in the European context. Rising trends in incidence in both sexs, particularly in women are observed. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Expression of c-myc and c-fos and binding sites for estradiol and progesterone in human pituitary tumors.

    PubMed

    Machiavelli, G A; Rivolta, C M; Artese, R; Basso, A; Burdman, J A

    1998-12-01

    We studied the concentration of mRNA from the oncogenes c-myc and c-fos in human pituitary adenomas by Northern blot hybridization (35 somatotrophinomas, 9 prolactinomas, 21 nonsecreting and 3 adrenocorticotrophinomas). The concentration of estrogens and progesterone receptors was also investigated. The levels of c-myc and c-fos mRNA was higher in nonsecreting tumors which were generally the largest and had a higher percentage of recurrence after surgery than the other groups. High concentration of estrogen receptors was observed in tumors derived from cells which are normally the target of this hormone, mainly prolactinomas. They were also present in somatotrophic and nonsecreting adenomas, related to the presence of prolactin or gonadotrophin cells in these tumors. The presence of estrogen receptors indicates that the tumor cells maintain their differentiation and a good prognosis as is the case for prolactinomas. We did not find any relationship between estrogen receptors and the concentration of c-myc and c-fos oncogenes. Larger adenomas (mainly nonsecreting) had higher levels of c-myc and c-fos mRNA than the other tumors and they had an important percentage of recurrence after surgery. It is clear that tumor size is related to the outcome after surgery and that nonsecreting adenomas are usually large because of the late diagnosis. However two large somatotrophinomas with extrasellar expansion also had overexpression of both oncogenes and both relapsed after surgery.

  4. Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control.

    PubMed

    Dong, Peng; Maddali, Manoj V; Srimani, Jaydeep K; Thélot, François; Nevins, Joseph R; Mathey-Prevot, Bernard; You, Lingchong

    2014-09-01

    A body of evidence has shown that the control of E2F transcription factor activity is critical for determining cell cycle entry and cell proliferation. However, an understanding of the precise determinants of this control, including the role of other cell-cycle regulatory activities, has not been clearly defined. Here, recognizing that the contributions of individual regulatory components could be masked by heterogeneity in populations of cells, we model the potential roles of individual components together with the use of an integrated system to follow E2F dynamics at the single-cell level and in real time. These analyses reveal that crossing a threshold amplitude of E2F accumulation determines cell cycle commitment. Importantly, we find that Myc is critical in modulating the amplitude, whereas cyclin D/E activities have little effect on amplitude but do contribute to the modulation of duration of E2F activation, thereby affecting the pace of cell cycle progression.

  5. Course of c-myc mRNA expression in the regenerating mouse testis determined by competitive reverse transcriptase polymerase chain reaction.

    PubMed

    Amendola, R

    1994-11-01

    The c-myc proto-oncogene is a reliable marker of the "G0-early G1" transition, and its down-regulation is believed to be necessary to obtain cellular differentiation. In murine spermatogenesis, the level of c-myc transcripts does not correlate with the rate of cellular division. Proliferation of supposed staminal spermatogonia to reproduce themselves is induced with a local 5 Gy X-ray dose in 90-day-old C57Bl/6 mice. c-myc quantification by a newly developed competitive reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to follow the expression course of this proto-oncogene. Damage and restoration of spermatogenesis were analyzed at days 3, 6, 9, 10, 13, 30, and 60 after injury by relative testes/body weight determination and histological examination. Proliferative status was determined by histone H3 Northern blot analysis. c-myc mRNA level was 10 times higher after 3 days in the irradiated animals compared to the controls. An increasing number of copies were noted up to 10 days, but promptly decreased to the base level found for irradiated mice from 13 to 60 days. Interestingly, the expression of histone H3 detected S phase only in testes at 60 days from damage.

  6. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway.

    PubMed

    Mudgil, Yashwanti; Uhrig, Joachm F; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M

    2009-11-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gbetagamma dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single beta (AGB1) or the two gamma (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops.

  7. Specific role of LeMAN2 in the control of seed germination exposed by overexpression of the LeMAN3 gene in tomato plants.

    PubMed

    Belotserkovsky, Harel; Berger, Yael; Shahar, Ron; Wolf, Shmuel

    2007-12-01

    Endo-beta-mannanase is one of the key enzymes involved in the hydrolysis of the mannan-rich cell walls of tomato (Solanum lycopersicon) seeds. Two isoforms of endo-beta-mannanase have been characterized in tomato seeds: LeMAN2 is active in the micropylar area prior to germination and LeMAN1 is active after germination in all endosperm cells surrounding the cotyledons. To explore whether general mannanase activity in the endosperm cap is sufficient to promote germination, the gene encoding LeMAN3 was inserted into transgenic tomato plants under the control of a CaMV-35S promoter. Expression of LeMAN3 was evident in the endosperm cap and in the lateral endosperm of the transgenic seeds 10 min after imbibition. An activity test indicated increased activity of endo-beta-mannanase in the transgenic lines relative to the control line in all seed parts, during the first 20 h of imbibition. However, overexpression of LeMAN3 in transgenic seeds inhibited seed germination at both optimal and suboptimal temperatures. Detailed RT-PCR analyses revealed the transcription patterns of the genes encoding the various mannanase isoforms, and indicated a delay in LeMAN2 transcription in the endosperm cap of the transgenic seeds. Interestingly, tissue-print assays indicated similar mannanase activity in the micropylar areas for both transgenic and control seeds. These results indicate that overexpression of active endo-beta-mannanase in the endosperm cap is not sufficient to enable hydrolysis of the cell walls or to promote germination of tomato seeds. Cell-wall hydrolysis in these endosperm cells is under tight control and requires the specific activity of LeMAN2.

  8. A Proteogenomic Approach to Understanding MYC Function in Metastatic Medulloblastoma Tumors.

    PubMed

    Staal, Jerome A; Pei, Yanxin; Rood, Brian R

    2016-10-19

    Brain tumors are the leading cause of cancer-related deaths in children, and medulloblastoma is the most prevalent malignant childhood/pediatric brain tumor. Providing effective treatment for these cancers, with minimal damage to the still-developing brain, remains one of the greatest challenges faced by clinicians. Understanding the diverse events driving tumor formation, maintenance, progression, and recurrence is necessary for identifying novel targeted therapeutics and improving survival of patients with this disease. Genomic copy number alteration data, together with clinical studies, identifies c-MYC amplification as an important risk factor associated with the most aggressive forms of medulloblastoma with marked metastatic potential. Yet despite this, very little is known regarding the impact of such genomic abnormalities upon the functional biology of the tumor cell. We discuss here how recent advances in quantitative proteomic techniques are now providing new insights into the functional biology of these aggressive tumors, as illustrated by the use of proteomics to bridge the gap between the genotype and phenotype in the case of c-MYC -amplified/associated medulloblastoma. These integrated proteogenomic approaches now provide a new platform for understanding cancer biology by providing a functional context to frame genomic abnormalities.

  9. Endoscopic appearance of AIDS-related gastrointestinal lymphoma with c-MYC rearrangements: case report and literature review.

    PubMed

    Tanaka, Shohei; Nagata, Naoyoshi; Mine, Sohtaro; Igari, Toru; Kobayashi, Taiichiro; Sugihara, Jun; Honda, Haruhito; Teruya, Katsuji; Kikuchi, Yoshimi; Oka, Shinichi; Uemura, Naomi

    2013-08-07

    Acquired immune deficiency syndrome (AIDS)-related lymphoma (ARL) remains the main cause of AIDS-related deaths in the highly active anti-retroviral therapy (HAART) era. Recently, rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma. Here, we report a rare case of gastrointestinal (GI)-ARL with MYC rearrangements and coinfected with Epstein-Barr virus (EBV) infection presenting with various endoscopic findings. A 38-year-old homosexual man who presented with anemia and was diagnosed with an human immunodeficiency virus infection for the first time. GI endoscopy revealed multiple dish-like lesions, ulcerations, bloody spots, nodular masses with active bleeding in the stomach, erythematous flat lesions in the duodenum, and multiple nodular masses in the colon and rectum. Magnified endoscopy with narrow band imaging showed a honeycomb-like pattern without irregular microvessels in the dish-like lesions of the stomach. Biopsy specimens from the stomach, duodenum, colon, and rectum revealed diffuse large B-cell lymphoma concomitant with EBV infection that was detected by high tissue EBV-polymerase chain reaction levels and Epstein-Barr virus small RNAs in situ hybridization. Fluorescence in situ hybridization analysis revealed a fusion between the immunoglobulin heavy chain (IgH) and c-MYC genes, but not between the IgH and BCL2 loci. After 1-mo of treatment with HAART and R-CHOP, endoscopic appearance improved remarkably, and the histological features of the biopsy specimens revealed no evidence of lymphoma. However, he died from multiple organ failure on the 139(th) day after diagnosis. The cause of his poor outcome may be related to MYC rearrangement. The GI tract involvement in ARL is rarely reported, and its endoscopic findings are various and may be different from those in non-AIDS GI lymphoma; thus, we also conducted a literature review of GI-ARL cases.

  10. Endoscopic appearance of AIDS-related gastrointestinal lymphoma with c-MYC rearrangements: Case report and literature review

    PubMed Central

    Tanaka, Shohei; Nagata, Naoyoshi; Mine, Sohtaro; Igari, Toru; Kobayashi, Taiichiro; Sugihara, Jun; Honda, Haruhito; Teruya, Katsuji; Kikuchi, Yoshimi; Oka, Shinichi; Uemura, Naomi

    2013-01-01

    Acquired immune deficiency syndrome (AIDS)-related lymphoma (ARL) remains the main cause of AIDS-related deaths in the highly active anti-retroviral therapy (HAART) era. Recently, rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma. Here, we report a rare case of gastrointestinal (GI)-ARL with MYC rearrangements and coinfected with Epstein-Barr virus (EBV) infection presenting with various endoscopic findings. A 38-year-old homosexual man who presented with anemia and was diagnosed with an human immunodeficiency virus infection for the first time. GI endoscopy revealed multiple dish-like lesions, ulcerations, bloody spots, nodular masses with active bleeding in the stomach, erythematous flat lesions in the duodenum, and multiple nodular masses in the colon and rectum. Magnified endoscopy with narrow band imaging showed a honeycomb-like pattern without irregular microvessels in the dish-like lesions of the stomach. Biopsy specimens from the stomach, duodenum, colon, and rectum revealed diffuse large B-cell lymphoma concomitant with EBV infection that was detected by high tissue EBV-polymerase chain reaction levels and Epstein-Barr virus small RNAs in situ hybridization. Fluorescence in situ hybridization analysis revealed a fusion between the immunoglobulin heavy chain (IgH) and c-MYC genes, but not between the IgH and BCL2 loci. After 1-mo of treatment with HAART and R-CHOP, endoscopic appearance improved remarkably, and the histological features of the biopsy specimens revealed no evidence of lymphoma. However, he died from multiple organ failure on the 139th day after diagnosis. The cause of his poor outcome may be related to MYC rearrangement. The GI tract involvement in ARL is rarely reported, and its endoscopic findings are various and may be different from those in non-AIDS GI lymphoma; thus, we also conducted a literature review of GI-ARL cases. PMID:23922484

  11. Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer

    PubMed Central

    2014-01-01

    Background Protein coding genes account for only about 2% of the human genome, whereas the vast majority of transcripts are non-coding RNAs including long non-coding RNAs. A growing volume of literature has proposed that lncRNAs are important players in cancer. HOTAIR was previously shown to be an oncogene and negative prognostic factor in a variety of cancers. However, the factors that contribute to its upregulation and the interaction between HOTAIR and miRNAs are largely unknown. Methods A computational screen of HOTAIR promoter was conducted to search for transcription-factor-binding sites. HOTAIR promoter activities were examined by luciferase reporter assay. The function of the c-Myc binding site in the HOTAIR promoter region was tested by a promoter assay with nucleotide substitutions in the putative E-box. The association of c-Myc with the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay and Electrophoretic mobility shift assay. A search for miRNAs with complementary base paring with HOTAIR was performed utilizing online software program. Gain and loss of function approaches were employed to investigate the expression changes of HOTAIR or miRNA-130a. The expression levels of HOTAIR, c-Myc and miRNA-130a were examined in 65 matched pairs of gallbladder cancer tissues. The effects of HOTAIR and miRNA-130a on gallbladder cancer cell invasion and proliferation was tested using in vitro cell invasion and flow cytometric assays. Results We demonstrate that HOTAIR is a direct target of c-Myc through interaction with putative c-Myc target response element (RE) in the upstream region of HOTAIR in gallbladder cancer cells. A positive correlation between c-Myc and HOTAIR mRNA levels was observed in gallbladder cancer tissues. We predicted that HOTAIR harbors a miRNA-130a binding site. Our data showed that this binding site is vital for the regulation of miRNA-130a by HOTAIR. Moreover, a negative correlation between HOTAIR and miRNA-130a was

  12. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1

    PubMed Central

    Kwan, Suet-Ying; Chen, Limo; Chen, Jin-Hong; Ying, Zuo-Lin; Zhou, Ye; Gu, Wei; Wang, Li-Hua; Cheng, Wei-Wei; Zeng, Jianfang; Wan, Xiao-Ping; Mok, Samuel C.; Wong, Kwong-Kwok; Bao, Wei

    2015-01-01

    Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity. PMID:26397136

  13. Le patrimoine astronomique provençal

    NASA Astrophysics Data System (ADS)

    Rous, M.; Figon, P.; Guyot, S.

    2012-12-01

    L'OSU OAMP/Institut Pythéas porte les missions de conservation, inventaire et valorisation du patrimoine. Suite à la fusion de l'Observatoire de Marseille et du Laboratoire d'Astronomie Spatiale en 2000 pour créer le Laboratoire d'Astrophysique de Marseille, le déménagement des équipes sur le site de Château-Gombert en 2008 a soulevé le problème du devenir des collections des deux sites d'origine. Nous ferons le bilan des actions passées en matière de conservation et de valorisation de ce riche patrimoine : versement à l'inventaire général du Ministère de la Culture, classement de 22 instruments au titre des Monuments Historiques, inventaire et numérisation des archives anciennes, montage d'expositions et réalisation du catalogue Telescopium, 400 ans de lunettes et de télescopes. Nous présenterons les actions en cours: mesures de conservation préventive, inventaire des archives et des instruments. Nous parlerons enfin des projets: création d'un espace d'exposition permanente, participation à des expositions temporaires.

  14. BRD4-targeted therapy induces Myc-independent cytotoxicity in Gnaq/11-mutatant uveal melanoma cells.

    PubMed

    Ambrosini, Grazia; Sawle, Ashley D; Musi, Elgilda; Schwartz, Gary K

    2015-10-20

    Uveal melanoma (UM) is an aggressive intraocular malignancy with limited therapeutic options. Both primary and metastatic UM are characterized by oncogenic mutations in the G-protein alpha subunit q and 11. Furthermore, nearly 40% of UM has amplification of the chromosomal arm 8q and monosomy of chromosome 3, with consequent anomalies of MYC copy number. Chromatin regulators have become attractive targets for cancer therapy. In particular, the bromodomain and extra-terminal (BET) inhibitor JQ1 has shown selective inhibition of c-Myc expression with antiproliferative activity in hematopoietic and solid tumors. Here we provide evidence that JQ1 had cytotoxic activity in UM cell lines carrying Gnaq/11 mutations, while in cells without the mutations had little effects. Using microarray analysis, we identified a large subset of genes modulated by JQ1 involved in the regulation of cell cycle, apoptosis and DNA repair. Further analysis of selected genes determined that the concomitant silencing of Bcl-xL and Rad51 represented the minimal requirement to mimic the apoptotic effects of JQ1 in the mutant cells, independently of c-Myc. In addition, administration of JQ1 to mouse xenograft models of Gnaq-mutant UM resulted in significant inhibition of tumor growth.Collectively, our results define BRD4 targeting as a novel therapeutic intervention against UM with Gnaq/Gna11 mutations.

  15. Double-hit or dual expression of MYC and BCL2 in primary cutaneous large B-cell lymphomas.

    PubMed

    Menguy, Sarah; Frison, Eric; Prochazkova-Carlotti, Martina; Dalle, Stephane; Dereure, Olivier; Boulinguez, Serge; Dalac, Sophie; Machet, Laurent; Ram-Wolff, Caroline; Verneuil, Laurence; Gros, Audrey; Vergier, Béatrice; Beylot-Barry, Marie; Merlio, Jean-Philippe; Pham-Ledard, Anne

    2018-03-26

    In nodal diffuse large B-cell lymphoma, the search for double-hit with MYC and BCL2 and/or BCL6 rearrangements or for dual expression of BCL2 and MYC defines subgroups of patients with altered prognosis that has not been evaluated in primary cutaneous large B-cell lymphoma. Our objectives were to assess the double-hit and dual expressor status in a cohort of 44 patients with primary cutaneous large B-cell lymphoma according to the histological subtype and to evaluate their prognosis relevance. The 44 cases defined by the presence of more than 80% of large B-cells in the dermis corresponded to 21 primary cutaneous follicle centre lymphoma with large cell morphology and 23 primary cutaneous diffuse large B-cell lymphoma, leg type. Thirty-one cases (70%) expressed BCL2 and 29 (66%) expressed MYC. Dual expressor profile was observed in 25 cases (57%) of either subtypes (n = 6 or n = 19, respectively). Only one primary cutaneous follicle centre lymphoma, large-cell case had a double-hit status (2%). Specific survival was significantly worse in primary cutaneous diffuse large B-cell lymphoma, leg type than in primary cutaneous follicle centre lymphoma, large cell (p = 0.021) and for the dual expressor primary cutaneous large B-cell lymphoma group (p = 0.030). Both overall survival and specific survival were worse for patients belonging to the dual expressor primary cutaneous diffuse large B-cell lymphoma, leg type subgroup (p = 0.001 and p = 0.046, respectively). Expression of either MYC and/or BCL2 negatively impacted overall survival (p = 0.017 and p = 0.018 respectively). As the differential diagnosis between primary cutaneous follicle centre lymphoma, large cell and primary cutaneous diffuse large B-cell lymphoma, leg type has a major impact on prognosis, dual-expression of BCL2 and MYC may represent a new diagnostic criterion for primary cutaneous diffuse large B-cell lymphoma, leg type subtype and further identifies patients with

  16. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis.

    PubMed

    Xu, Jinshu; Wong, Elaine Y M; Cheng, Chunming; Li, Jun; Sharkar, Mohammad T K; Xu, Chelsea Y; Chen, Binglai; Sun, Jianbo; Jing, Dongzhu; Xu, Pin-Xian

    2014-11-24

    Self-renewal and proliferation of nephron progenitor cells and the decision to initiate nephrogenesis are crucial events directing kidney development. Despite recent advancements in defining lineage and regulators for the progenitors, fundamental questions about mechanisms driving expansion of the progenitors remain unanswered. Here we show that Eya1 interacts with Six2 and Myc to control self-renewing cell activity. Cell fate tracing reveals a developmental restriction of the Eya1(+) population within the intermediate mesoderm to nephron-forming cell fates and a common origin shared between caudal mesonephric and metanephric nephrons. Conditional inactivation of Eya1 leads to loss of Six2 expression and premature epithelialization of the progenitors. Six2 mediates translocation of Eya1 to the nucleus, where Eya1 uses its threonine phosphatase activity to control Myc phosphorylation/dephosphorylation and function in the progenitor cells. Our results reveal a functional link between Eya1, Six2, and Myc in driving the expansion and maintenance of the multipotent progenitors during nephrogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. LeMAPK1, LeMAPK2, and LeMAPK3 are associated with nitric oxide-induced defense response against Botrytis cinerea in the Lycopersicon esculentum fruit.

    PubMed

    Zheng, Yanyan; Hong, Hui; Chen, Lin; Li, Jingyuan; Sheng, Jiping; Shen, Lin

    2014-02-12

    Nitric oxide (NO) and mitogen-activated protein kinases (MAPKs) are signal molecules involved in the disease resistance of plants. To investigate the role of tomato MAPKs in the NO-mediated defense response, mature green tomatoes (Lycopersicon esculentum Mill. cv. Qian-xi) were treated with a MAPKs inhibitor (1,4-diamino-2,3-dicyano-1,4-bis(o-amino-phenylmercapto) butadiene (U0126)), NO donor sodium nitroprusside (SNP), and SNP plus U0126. Treatment with U0126 increased the incidence of disease and size of lesion areas in the tomato fruits after being inoculated with Botrytis cinerea. NO enhanced the resistance of the tomato fruits against Botrytis cinerea invasion and the activities of nitric oxide synthase, Chitinase, β-1,3-glucanase, polyphenol oxidase, and phenylalanine ammonia-lyase. However, the effects of NO on disease resistance were weakened by the MAPKs inhibitor. Meanwhile, the relative expression of LeMAPK1, LeMAPK2, and LeMAPK3 in the (SNP + U0126)-treated fruits was lower than that in the SNP-treated fruits. The results suggest that LeMAPK1/2/3 are involved in NO-induced disease resistance of tomato fruits against Botrytis cinerea.

  18. Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and Chemoresistance of Prostate Cancer

    DTIC Science & Technology

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0162 TITLE: Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and...DATES COVERED 15Sept2013 - 14Sept2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic...for concisely studying castration response and CRPC. However, most mice never developed significant tumors. Here, we showed that ablation of p53 in this

  19. Structural Basis of Substrate Specificity and Regiochemistry in the MycF/TylF Family of Sugar O -Methyltransferases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Steffen M.; Akey, David L.; Tripathi, Ashootosh

    Sugar moieties in natural products are frequently modified by O-methylation. In the biosynthesis of the macrolide antibiotic mycinamicin, methylation of a 6'-deoxyallose substituent occurs in a stepwise manner first at the 2'- and then the 3'-hydroxyl groups to produce the mycinose moiety in the final product. The timing and placement of the O-methylations impact final stage C-H functionalization reactions mediated by the P450 monooxygenase MycG. The structural basis of pathway ordering and substrate specificity is unknown. A series of crystal structures of MycF, the 3'-O-methyltransferase, including the free enzyme and complexes with S-adenosyl homocysteine (SAH), substrate, product, and unnatural substrates,more » show that SAM binding induces substantial ordering that creates the binding site for the natural substrate, and a bound metal ion positions the substrate for catalysis. A single amino acid substitution relaxed the 2'-methoxy specificity but retained regiospecificity. The engineered variant produced a new mycinamicin analog, demonstrating the utility of structural information to facilitate bioengineering approaches for the chemoenzymatic synthesis of complex small molecules containing modified sugars. Using the MycF substrate complex and the modeled substrate complex of a 4'-specific homolog, active site residues were identified that correlate with the 3'- or 4'- specificity of MycF family members and define the protein and substrate features that direct the regiochemistry of methyltransfer. Lastly, this classification scheme will be useful in the annotation of new secondary metabolite pathways that utilize this family of enzymes.« less

  20. Structural Basis of Substrate Specificity and Regiochemistry in the MycF/TylF Family of Sugar O -Methyltransferases.

    DOE PAGES

    Bernard, Steffen M.; Akey, David L.; Tripathi, Ashootosh; ...

    2015-02-18

    Sugar moieties in natural products are frequently modified by O-methylation. In the biosynthesis of the macrolide antibiotic mycinamicin, methylation of a 6'-deoxyallose substituent occurs in a stepwise manner first at the 2'- and then the 3'-hydroxyl groups to produce the mycinose moiety in the final product. The timing and placement of the O-methylations impact final stage C-H functionalization reactions mediated by the P450 monooxygenase MycG. The structural basis of pathway ordering and substrate specificity is unknown. A series of crystal structures of MycF, the 3'-O-methyltransferase, including the free enzyme and complexes with S-adenosyl homocysteine (SAH), substrate, product, and unnatural substrates,more » show that SAM binding induces substantial ordering that creates the binding site for the natural substrate, and a bound metal ion positions the substrate for catalysis. A single amino acid substitution relaxed the 2'-methoxy specificity but retained regiospecificity. The engineered variant produced a new mycinamicin analog, demonstrating the utility of structural information to facilitate bioengineering approaches for the chemoenzymatic synthesis of complex small molecules containing modified sugars. Using the MycF substrate complex and the modeled substrate complex of a 4'-specific homolog, active site residues were identified that correlate with the 3'- or 4'- specificity of MycF family members and define the protein and substrate features that direct the regiochemistry of methyltransfer. Lastly, this classification scheme will be useful in the annotation of new secondary metabolite pathways that utilize this family of enzymes.« less

  1. Entrevue avec le Dr Charley Zeanah

    PubMed Central

    2013-01-01

    Le Dr Charles Zeanah est titulaire de la chaire de psychiatrie Mary K. Sellars-Polchow, professeur de pédiatrie clinique et vice-président de la pédopsychiatrie au département de psychiatrie et des sciences du comportement de la faculté de médecine de l’Université Tulane, à la Nouvelle-Orléans. Il est également directeur général de l’institut de la santé mentale des nourrissons et des jeunes enfants de Tulane. Il est récipiendaire de nombreux prix, notamment le prix de prévention Irving Phillips (AACAP), la mention élogieuse présidentielle pour sa recherche et son leadership exceptionnels en santé mentale des nourrissons (American Orthopsychiatric Association), le prix d’excellence clinique Sarah Haley Memorial (International Society for Traumatic Stress Studies), le prix de recherche en pédopsychiatrie Blanche F. Ittelson (APA), et le prix Serge Lebovici Award soulignant les contributions internationales à la santé mentale des nourrissons (World Association for Infant Mental Health). Le Dr Zeanah est fellow distingué de l’AACAP, fellow distingué de l’APA et membre du conseil d’administration de Zero to Three. Il est l’éditeur scientifique de Handbook of Infant Mental Health (3e édition) qui est considéré comme étant le manuel de pointe et la référence de base du domaine de la santé mentale des nourrissons.

  2. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma.

    PubMed

    Salaverria, Itziar; Martin-Guerrero, Idoia; Wagener, Rabea; Kreuz, Markus; Kohler, Christian W; Richter, Julia; Pienkowska-Grela, Barbara; Adam, Patrick; Burkhardt, Birgit; Claviez, Alexander; Damm-Welk, Christine; Drexler, Hans G; Hummel, Michael; Jaffe, Elaine S; Küppers, Ralf; Lefebvre, Christine; Lisfeld, Jasmin; Löffler, Markus; Macleod, Roderick A F; Nagel, Inga; Oschlies, Ilske; Rosolowski, Maciej; Russell, Robert B; Rymkiewicz, Grzegorz; Schindler, Detlev; Schlesner, Matthias; Scholtysik, René; Schwaenen, Carsten; Spang, Rainer; Szczepanowski, Monika; Trümper, Lorenz; Vater, Inga; Wessendorf, Swen; Klapper, Wolfram; Siebert, Reiner

    2014-02-20

    The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q.

  3. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening[OPEN

    PubMed Central

    Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui

    2017-01-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple (Malus domestica). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1, an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2, encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3, encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1. This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1. Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. PMID:28550149

  4. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening.

    PubMed

    Li, Tong; Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui; Wang, Aide

    2017-06-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple ( Malus domestica ). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1 , an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2 , encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3 , encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1 This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1 Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. © 2017 American Society of Plant Biologists. All rights reserved.

  5. H2-P, a honokiol derivative, exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma.

    PubMed

    Wang, Ting; Chen, Wei; Wu, Jialin

    2018-04-01

    H2-P, a derivative of honokiol, was first synthesized in our laboratory. Compared with honokiol, H2-P has even high anti-tumor activity. In the present study, we evaluated the ability of H2-P to inhibit the survival rate in four gliomas cell lines. The result showed that H2-P could significantly inhibit proliferation of gliomas cells in a dose-dependent manner (IC50 U251  = 9.03, IC50 SHG-44  = 10.74, IC50 U78  = 19.87, and IC50 c6  = 22.56 nM). Furthermore, to determine the mechanism underlying the anti-gliomas effects of H2-P, six kinase activities was detected by Z'-LYTE™ system. The high-throughput screening shown that effect targets of H2-P were MEK and VEGFR2. We also studied the inhibition of H2-P vascular endothelial cells (EA.HY926). The data shown that H2-P could increase endothelial cells apoptosis rate, while inhibiting endothelial cell proliferation (IC50 EA.hy926  = 16.11 nM) and migration. Besides, we investigated anti-angiogenesis of H2-P in the rat thoracic aorta rings, chicken chorioallantoic membrane (CAM), and capillary tube formation models. H2-P showed strong inhibition of angiogenesis. Moreover, we found that H2-P also could reduce tumor volume in mice significantly (P < 0.01), and downregulate gene expression level of VEGFR2, MEK, and c-MYC in tumor. These data suggest that H2-P have an excellent anti-tumor activity by exerting anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma (GBM). © 2017 Wiley Periodicals, Inc.

  6. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yan; Lv, Liyang; Du, Juan

    2013-09-20

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizationsmore » may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.« less

  7. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom.

    PubMed

    Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli

    2004-11-01

    Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.

  8. Transgenic studies reveal the positive role of LeEIL-1 in regulating shikonin biosynthesis in Lithospermum erythrorhizon hairy roots.

    PubMed

    Fang, Rongjun; Zou, Ailan; Zhao, Hua; Wu, Fengyao; Zhu, Yu; Zhao, Hu; Liao, Yonghui; Tang, Ren-Jie; Pang, Yanjun; Yang, Rongwu; Wang, Xiaoming; Qi, Jinliang; Lu, Guihua; Yang, Yonghua

    2016-05-26

    The phytohormone ethylene (ET) is a key signaling molecule for inducing the biosynthesis of shikonin and its derivatives, which are secondary metabolites in Lithospermum erythrorhizon. Although ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like proteins (EILs) are crucial transcription factors in ET signal transduction pathway, the possible function of EIN3/EIL1 in shikonin biosynthesis remains unknown. In this study, by targeting LeEIL-1 (L. erythrorhizon EIN3-like protein gene 1) at the expression level, we revealed the positive regulatory effect of LeEIL-1 on shikonin formation. The mRNA level of LeEIL-1 was significantly up-regulated and down-regulated in the LeEIL-1-overexpressing hairy root lines and LeEIL-1-RNAi hairy root lines, respectively. Specifically, LeEIL-1 overexpression resulted in increased transcript levels of the downstream gene of ET signal transduction pathway (LeERF-1) and a subset of genes for shikonin formation, excretion and/or transportation (LePAL, LeC4H-2, Le4CL-1, HMGR, LePGT-1, LeDI-2, and LePS-2), which was consistent with the enhanced shikonin contents in the LeEIL-1-overexpressing hairy root lines. Conversely, LeEIL-1-RNAi dramatically repressed the expression of the above genes and significantly reduced shikonin production. The results revealed that LeEIL-1 is a positive regulator of the biosynthesis of shikonin and its derivatives in L. erythrorhizon hairy roots. Our findings gave new insights into the molecular regulatory mechanism of ET in shikonin biosynthesis. LeEIL-1 could be a crucial target gene for the genetic engineering of shikonin biosynthesis.

  9. An efficient way of studying protein-protein interactions involving HIF-α, c-Myc, and Sp1.

    PubMed

    To, Kenneth K-W; Huang, L Eric

    2013-01-01

    Protein-protein interaction is an essential biochemical event that mediates various cellular processes including gene expression, intracellular signaling, and intercellular interaction. Understanding such interaction is key to the elucidation of mechanisms of cellular processes in biology and diseases. The hypoxia-inducible transcription factor HIF-1α possesses a non-transcriptional activity that competes with c-Myc for Sp1 binding, whereas its isoform HIF-2α lacks Sp1-binding activity due to phosphorylation. Here, we describe the use of in vitro translation to effectively investigate the dynamics of protein-protein interactions among HIF-1α, c-Myc, and Sp1 and to demonstrate protein phosphorylation as a molecular determinant that functionally distinguishes HIF-2α from HIF-1α.

  10. Patterns of genomic aberrations suggest that Burkitt lymphomas with complex karyotype are distinct from other aggressive B-cell lymphomas with MYC rearrangement.

    PubMed

    Havelange, Violaine; Ameye, Geneviève; Théate, Ivan; Callet-Bauchu, Evelyne; Mugneret, Francine; Michaux, Lucienne; Dastugue, Nicole; Penther, Dominique; Barin, Carole; Collonge-Rame, Marie-Agnès; Baranger, Laurence; Terré, Christine; Nadal, Nathalie; Lippert, Eric; Laï, Jean-Luc; Cabrol, Christine; Tigaud, Isabelle; Herens, Christian; Hagemeijer, Anne; Raphael, Martine; Libouton, Jeanne-Marie; Poirel, Hélène A

    2013-01-01

    We previously showed that complex karyotypes (CK) and chromosome 13q abnormalities have an adverse prognostic impact in childhood Burkitt lymphomas/leukemias (BL) and diffuse large B-cell lymphomas (DLBCL). The aim of our study was to identify recurrent alterations associated with MYC rearrangements in aggressive B-cell lymphomas with CK. Multicolor fluorescence in situ hybridization (M-FISH) was performed in 84 patient samples (59 adults and 25 children), including 37 BL (13 lymphomas and 24 acute leukemias), 12 DLBCL, 28 B-cell lymphomas with intermediate features (DLBCL/BL), 4 B-cell precursor acute lymphoblastic leukemias (BCP-ALL), and 3 unclassifiable B-cell lymphomas. New (cytogenetically undetected) abnormalities were identified in 80% of patients. We also refined one-third of the chromosomal aberrations detected by karyotyping. M-FISH proved to be more useful in identifying chromosomal partners involved in unbalanced translocations and in revealing greater complexity of 13q rearrangements. Most of the newly identified or refined recurrent alterations involved 1q, 13q and 3q (gains/losses), 7q and 18q (gains), or 6q (losses), suggesting that these secondary aberrations may play a role in lymphomagenesis. Several patterns of genomic aberrations were identified: 1q gains in BL, trisomies 7 in DLBCL, and 18q-translocations in adult non-BL. BCP-ALL usually displayed an 18q21 rearrangement. BL karyotypes were less complex and aneuploid than those of other MYC-rearranged lymphomas. BCP-ALL and DLBCL/BL were associated with a higher rate of early death than BL and DLBCL. These findings support the categorization of DLBCL/BL as a distinct entity and suggest that BL with CK are indeed different from other aggressive MYC-rearranged lymphomas, which usually show greater genetic complexity. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  11. Oncogenic MicroRNA-20a is downregulated by the HIF-1α/c-MYC pathway in IDH1 R132H-mutant glioma.

    PubMed

    Xu, Qingfu; Ahmed, A Karim; Zhu, Yan; Wang, Kimberly; Lv, Shengqing; Li, Yunqing; Jiang, Yugang

    2018-05-23

    Mutations in the isocitrate dehydrogenase 1 (IDH1) gene have been identified as one of the earliest events in gliomagenesis, occurring in over 70% of low grade gliomas and are present in the vast majority of secondary glioblastoma (GBM) that develop from these low-grade lesions. The aim of this study was to investigate whether the IDH1 R132H mutation influences the expression of oncogenic miR-20a and shed light on the underlying molecular mechanisms. The findings of the current study demonstrate presence of the IDH1 R132H mutation in primary human glioblastoma cell lines with upregulated HIF-1α expression, downregulating c-MYC activity and resulting in a consequential decrease in miR-20a, which is responsible for cell proliferation and resistance to standard temozolomide treatment. Elucidating the mechanism of oncogenic miR-20a activity introduces its role among well-established signaling pathways (i.e. HIF/c-MYC) and may be a meaningful prognostic biomarker or target for novel therapies among patients with IDH1-mutant glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways*

    PubMed Central

    Kovacevic, Zaklina; Menezes, Sharleen V.; Sahni, Sumit; Kalinowski, Danuta S.; Bae, Dong-Hun; Lane, Darius J. R.; Richardson, Des R.

    2016-01-01

    N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963

  13. Human amniotic epithelial cell feeder layers maintain mouse embryonic stem cell pluripotency via epigenetic regulation of the c-Myc promoter.

    PubMed

    Liu, Te; Cheng, Weiwei; Liu, Tianjin; Guo, Lihe; Huang, Qin; Jiang, Lizhen; Du, Xiling; Xu, Fuhui; Liu, Zhixue; Lai, Dongmei

    2010-02-01

    Mouse embryonic stem cells (ESCs) are typically cultured on a feeder layer of mouse embryonic fibroblasts (MEFs), with leukemia inhibitory factor (LIF) added to maintain them in an undifferentiated state. We have previously shown that human amniotic epithelial cells (hAECs) can be used as feeder cells to maintain mouse ESC pluripotency, but the mechanism for this is unknown. In the present study, we found that CpG islands 5' of the c-Myc gene remain hypomethylated in mouse ESCs cultured on hAECs. In addition, levels of acetylation of histone H3 and trimethylation of histone H3K4 in the c-Myc gene promoter were higher in ES cells cultured on hAECs than those in ES cells cultured on MEFs. These data suggested that hAECs can alter mouse ESC gene expression via epigenetic modification of c-Myc, providing a possible mechanism for the hAEC-induced maintenance of ESCs in an undifferentiated state.

  14. Comparing progress toward the millennium development goal for under-five mortality in León and Cuatro Santos, Nicaragua, 1990–2008

    PubMed Central

    2014-01-01

    Background Social inequality in child survival hampers the achievement of Millennium Development Goal 4 (MDG4). Monitoring under-five mortality in different social strata may contribute to public health policies that strive to reduce social inequalities. This population-based study examines the trends, causes, and social inequality of mortality before the age of five years in rural and urban areas in Nicaragua. Methods The study was conducted in one rural (Cuatro Santos) and one urban/rural area (León) based on data from Health and Demographic Surveillance Systems. We analyzed live births from 1990 to 2005 in the urban/rural area and from 1990 to 2008 in the rural area. The annual average rate reduction (AARR) and social under-five mortality inequality were calculated using the education level of the mother as a proxy for socio-economic position. Causes of child death were based on systematic interviews (verbal autopsy). Results Under-five mortality in all areas is declining at a rate sufficient to achieve MDG4 by 2015. Urban León showed greater reduction (AARR = 8.5%) in mortality and inequality than rural León (AARR = 4.5%) or Cuatro Santos (AARR = 5.4%). Social inequality in mortality had increased in rural León and no improvement in survival was observed among mothers who had not completed primary school. However, the poor and remote rural area Cuatro Santos was on track to reach MDG4 with equitable child survival. Most of the deaths in both areas were due to neonatal conditions and infectious diseases. Conclusions All rural and urban areas in Nicaragua included in this study were on track to reach MDG4, but social stratification in child survival showed different patterns; unfavorable patterns with increasing inequity in the peri-urban rural zone and a more equitable development in the urban as well as the poor and remote rural area. An equitable progress in child survival may also be accelerated in very poor settings. PMID:24428933

  15. Une fistule recto-vaginale rentrant dans le cadre d'un syndrome de Currarino

    PubMed Central

    Idrissi, Mounia Lakhdar; Babakhoya, Abdeladim; Bouabdellah, Youssef; Hida, Mostapha

    2011-01-01

    Le syndrome de Currarino (SC) est défini par une triade rassemblant une malformation ano-rectale, une agénésie sacrée et une tumeur pré-sacrée. Nous rapportons le cas d'une fille de 4 ans et demi ayant été admise en consultation de gastro-entérologie pédiatrique pour constipation avec issue de selle à travers un orifice vulvaire. La radiographie du rachis avait montré une agénésie sacrée. Le fistulo-scanner a mis en évidence une fistule recto-vaginale et l'IRM pelvienne a confirmé l'agénésie sacrée et a retrouvé une méningocèle antérieure. La découverte d'une malformation ano-rectale doit faire chercher une autre anomalie de la triade de Currarino. Cette affection, rare, nécessite une prise en charge médico-chirurgicale assez complexe. PMID:22384297

  16. Effects on micronuclei formation of 60-Hz electromagnetic field exposure with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    PubMed

    Jin, Yeung Bae; Kang, Ga-Young; Lee, Jae Seon; Choi, Jong-Il; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2012-04-01

    Epidemiological studies have demonstrated a possible correlation between exposure to extremely low-frequency magnetic fields (ELF-MF) and cancer. However, this correlation has yet to be definitively confirmed by epidemiological studies. The principal objective of this study was to assess the effects of 60 Hz magnetic fields in a normal cell line system, and particularly in combination with various external factors, via micronucleus (MN) assays. Mouse embryonic fibroblast NIH3T3 cells and human lung fibroblast WI-38 cells were exposed for 4 h to a 60 Hz, 1 mT uniform magnetic field with or without ionizing radiation (IR, 2 Gy), H(2)O(2) (100 μM) and cellular myelocytomatosis oncogene (c-Myc) activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic effects were observed when ELF-MF was combined with IR, H(2)O(2), and c-Myc activation. Our results demonstrate that ELF-MF did not enhance MN frequency by IR, H(2)O(2) and c-Myc activation.

  17. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a Positive Regulator of Auxin Transport in a G Protein–Mediated Pathway[W

    PubMed Central

    Mudgil, Yashwanti; Uhrig, Joachm F.; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M.

    2009-01-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gβγ dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single β (AGB1) or the two γ (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops. PMID:19948787

  18. c-Myc Represses Transcription of Epstein-Barr Virus Latent Membrane Protein 1 Early after Primary B Cell Infection.

    PubMed

    Price, Alexander M; Messinger, Joshua E; Luftig, Micah A

    2018-01-15

    Recent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription. IMPORTANCE EBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us

  19. Generation of Osteosarcomas from a Combination of Rb Silencing and c‐Myc Overexpression in Human Mesenchymal Stem Cells

    PubMed Central

    Wang, Jir‐You; Wu, Po‐Kuei; Chen, Paul Chih‐Hsueh; Lee, Chia‐Wen

    2016-01-01

    Abstract Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c‐Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c‐Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum‐free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS‐like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient‐derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c‐Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS‐like cells by Rb knockdown and c‐Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512–526 PMID:28191765

  20. Outcomes of MYC-associated lymphomas after R-CHOP with and without consolidative autologous stem cell transplant: Subset analysis of randomized trial intergroup SWOG S9704

    PubMed Central

    Puvvada, Soham D.; Stiff, Patrick J.; Leblanc, Michael; Cook, James R.; Couban, Stephen; Leonard, John P.; Kahl, Brad; Marcellus, Deborah; Shea, Thomas C.; Winter, Jane N.; Li, Hongli; Rimsza, Lisa M.; Friedberg, Jonathan W.; Smith, Sonali M.

    2016-01-01

    Summary Double hit lymphoma (DHL) and double protein-expressing (MYC and BCL2) lymphomas (DPL) fare poorly with R-CHOP; consolidative autologous stem cell transplant (ASCT) may improve outcomes. S9704, a phase III randomized study of CHOP +/−R with or without ASCT allows evaluation of intensive consolidation. Immunohistochemical analysis identified 27 of 198 patients (13.6%) with MYC IHC overexpression and 20 (74%) harboring concurrent BCL2 overexpression. Four had DHL and 16 had DPL only. With median follow-up 127 months, there is a trend favoring outcomes after consolidative ASCT in DPL and MYC protein overexpressing patients, whereas all DHL patients have died irrespective of ASCT. PMID:27072903

  1. The inhibition of c-MYC transcription factor modulates the expression of glycolytic and glutaminolytic enzymes in FaDu hypopharyngeal carcinoma cells.

    PubMed

    Kleszcz, Robert; Paluszczak, Jarosław; Krajka-Kuźniak, Violetta; Baer-Dubowska, Wanda

    2018-05-17

    Cancer cells are dependent on aerobic glycolysis for energy production and increased glutamine consumption. HIF-1α and c-MYC transcription factors regulate the expression of glycolytic and glutaminolytic genes. Their activity may be repressed by SIRT6. Head and neck carcinomas show frequent activation of c-MYC function and SIRT6 down-regulation, which contributes to a strong dependence on glucose and glutamine availability. The aim of this study was to compare the influence of HIF-1α and c-MYC inhibitors (KG-548 and 10058-F4, respectively) and potential SIRT6 inducers - resveratrol and its synthetic derivative DMU-212 with the effect of glycolysis and glutaminolysis inhibitors (2-deoxyglucose and aminooxyacetic acid, respectively) on the metabolism and expression of metabolic enzymes in FaDu hypopharyngeal carcinoma cells. Cell viability was assessed by means of an MTT assay. Quantitative PCR was performed to evaluate the expression of SIRT6, HIF-1α, c-MYC, GLUT1, SLC1A5, HK2, PFKM, PKM2, LDHA, GLS, and GDH. The release of glycolysis and glutaminolysis end-products into the culture medium - lactate and ammonia, respectively - was assessed using standard colorimetric assays. Lactate production was significantly inhibited by 10058-F4, KG-548, and 2-deoxyglucose. Moreover, 10058-F4 strongly reduced the amount of ammonia release. The effects of 10058-F4 activity can be attributed to a reduction in the expression of PKM2 and LDHA. On the other hand, the induction of SIRT6 expression by resveratrol and DMU-212 was not associated with significant modulation of the expression of metabolic enzymes. Overall, the results of this study indicate that the inhibition of c-MYC may be considered to be a promising strategy of the modulation of cancer-related metabolic changes in head and neck carcinomas.

  2. GenoMycDB: a database for comparative analysis of mycobacterial genes and genomes.

    PubMed

    Catanho, Marcos; Mascarenhas, Daniel; Degrave, Wim; Miranda, Antonio Basílio de

    2006-03-31

    Several databases and computational tools have been created with the aim of organizing, integrating and analyzing the wealth of information generated by large-scale sequencing projects of mycobacterial genomes and those of other organisms. However, with very few exceptions, these databases and tools do not allow for massive and/or dynamic comparison of these data. GenoMycDB (http://www.dbbm.fiocruz.br/GenoMycDB) is a relational database built for large-scale comparative analyses of completely sequenced mycobacterial genomes, based on their predicted protein content. Its central structure is composed of the results obtained after pair-wise sequence alignments among all the predicted proteins coded by the genomes of six mycobacteria: Mycobacterium tuberculosis (strains H37Rv and CDC1551), M. bovis AF2122/97, M. avium subsp. paratuberculosis K10, M. leprae TN, and M. smegmatis MC2 155. The database stores the computed similarity parameters of every aligned pair, providing for each protein sequence the predicted subcellular localization, the assigned cluster of orthologous groups, the features of the corresponding gene, and links to several important databases. Tables containing pairs or groups of potential homologs between selected species/strains can be produced dynamically by user-defined criteria, based on one or multiple sequence similarity parameters. In addition, searches can be restricted according to the predicted subcellular localization of the protein, the DNA strand of the corresponding gene and/or the description of the protein. Massive data search and/or retrieval are available, and different ways of exporting the result are offered. GenoMycDB provides an on-line resource for the functional classification of mycobacterial proteins as well as for the analysis of genome structure, organization, and evolution.

  3. Incorporating genomic, transcriptomic and clinical data: a prognostic and stem cell-like MYC and PRC imbalance in high-risk neuroblastoma.

    PubMed

    Yang, Xinan Holly; Tang, Fangming; Shin, Jisu; Cunningham, John M

    2017-10-03

    Previous studies suggested that cancer cells possess traits reminiscent of the biological mechanisms ascribed to normal embryonic stem cells (ESCs) regulated by MYC and Polycomb repressive complex 2 (PRC2). Several poorly differentiated adult tumors showed preferentially high expression levels in targets of MYC, coincident with low expression levels in targets of PRC2. This paper will reveal this ESC-like cancer signature in high-risk neuroblastoma (HR-NB), the most common extracranial solid tumor in children. We systematically assembled genomic variants, gene expression changes, priori knowledge of gene functions, and clinical outcomes to identify prognostic multigene signatures. First, we assigned a new, individualized prognostic index using the relative expressions between the poor- and good-outcome signature genes. We then characterized HR-NB aggressiveness beyond these prognostic multigene signatures through the imbalanced effects of MYC and PRC2 signaling. We further analyzed Retinoic acid (RA)-induced HR-NB cells to model tumor cell differentiation. Finally, we performed in vitro validation on ZFHX3, a cell differentiation marker silenced by PRC2, and compared cell morphology changes before and after blocking PRC2 in HR-NB cells. A significant concurrence existed between exons with verified variants and genes showing MYCN-dependent expression in HR-NB. From these biomarker candidates, we identified two novel prognostic gene-set pairs with multi-scale oncogenic defects. Intriguingly, MYC targets over-represented an unfavorable component of the identified prognostic signatures while PRC2 targets over-represented a favorable component. The cell cycle arrest and neuronal differentiation marker ZFHX3 was identified as one of PRC2-silenced tumor suppressor candidates. Blocking PRC2 reduced tumor cell growth and increased the mRNA expression levels of ZFHX3 in an early treatment stage. This hypothesis-driven systems bioinformatics work offered novel insights into

  4. Surface-Enhanced Raman Scattering Surface Selection Rules for the Proteomic Liquid Biopsy in Real Samples: Efficient Detection of the Oncoprotein c-MYC.

    PubMed

    Pazos, Elena; Garcia-Algar, Manuel; Penas, Cristina; Nazarenus, Moritz; Torruella, Arnau; Pazos-Perez, Nicolas; Guerrini, Luca; Vázquez, M Eugenio; Garcia-Rico, Eduardo; Mascareñas, José L; Alvarez-Puebla, Ramon A

    2016-11-02

    Blood-based biomarkers (liquid biopsy) offer extremely valuable tools for the noninvasive diagnosis and monitoring of tumors. The protein c-MYC, a transcription factor that has been shown to be deregulated in up to 70% of human cancers, can be used as a robust proteomic signature for cancer. Herein, we developed a rapid, highly specific, and sensitive surface-enhanced Raman scattering (SERS) assay for the quantification of c-MYC in real blood samples. The sensing scheme relies on the use of specifically designed hybrid plasmonic materials and their bioderivatization with a selective peptidic receptor modified with a SERS transducer. Peptide/c-MYC recognition events translate into measurable alterations of the SERS spectra associated with a molecular reorientation of the transducer, in agreement with the surface selection rules. The efficiency of the sensor is demonstrated in cellular lines, healthy donors and a cancer patient.

  5. Helen Primrose LeVesconte: occupational therapy clinician, educator, and maker of history.

    PubMed

    Friedland, Judith; Rais, Hadassah

    2005-06-01

    The Canadian history of our profession is not well known and our identity is thought to suffer as a result. Helen Primrose LeVesconte (7896-1982) is one pioneer in our development whose story has not been told. Our purpose is to explore LeVesconte's life and work in order to expand knowledge of our roots and thereby strengthen our identity. Using interpretive biography methods we draw on LeVesconte's own writings, articles written about her, and archival documents to describe turning point moments in her life and to display meaningful patterns in her work. LeVesconte's work as a clinician and her role and reputation as an educator, show her to have been a strong and visionary leader. Her views on the client's role, the importance of the therapist-client relationship, prevention, community-based programs, and vocational rehabilitation are of particular interest. Because LeVesconte educated over 1,850 students while director of the occupational therapy program at the University of Toronto, her influence has been felt throughout the country. Her perspective is compared to current practice; and questions are raised as to aspects of her legacy and philosophy that might now be reconsidered.

  6. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC.

    PubMed

    Frank, Sander B; Berger, Penny L; Ljungman, Mats; Miranti, Cindy K

    2017-06-01

    Many pathways dysregulated in prostate cancer are also involved in epithelial differentiation. To better understand prostate tumor initiation, we sought to investigate specific genes and mechanisms required for normal basal to luminal cell differentiation. Utilizing human prostate basal epithelial cells and an in vitro differentiation model, we tested the hypothesis that regulation of NOTCH3 by the p38 MAPK family (hereafter p38-MAPK), via MYC, is required for luminal differentiation. Inhibition (SB202190 and BIRB796) or knockdown of p38α (also known as MAPK14) and/or p38δ (also known as MAPK13) prevented proper differentiation. Additionally, treatment with a γ-secretase inhibitor (RO4929097) or knockdown of NOTCH1 and/or NOTCH3 greatly impaired differentiation and caused luminal cell death. Constitutive p38-MAPK activation through MKK6(CA) increased NOTCH3 (but not NOTCH1) mRNA and protein levels, which was diminished upon MYC inhibition (10058-F4 and JQ1) or knockdown. Furthermore, we validated two NOTCH3 enhancer elements through a combination of enhancer (e)RNA detection (BruUV-seq) and luciferase reporter assays. Finally, we found that the NOTCH3 mRNA half-life increased during differentiation or upon acute p38-MAPK activation. These results reveal a new connection between p38-MAPK, MYC and NOTCH signaling, demonstrate two mechanisms of NOTCH3 regulation and provide evidence for NOTCH3 involvement in prostate luminal cell differentiation. © 2017. Published by The Company of Biologists Ltd.

  7. The efficacy of intra-articularly administered MYC 2095, triamcinolone hexacetonide and placebo in gonarthritis. A combined double-blind clinical trial.

    PubMed

    Cats, A; van IJzerloo, J A; Davinova, Y; Werthauer-Rodrigues Pereira, M; Blakemore, C B; Steiner, F J

    1979-01-01

    We report the results of a double-blind three-centre study, employing a cross-over design, set up to compare the efficacy of intra-articular injections of Myc 2095 (20 mg), triamcinolone hexacetonide (Lederspan) (20 mg) and placebo in 40 patients with synovitis of the knee joint. Each patient included in the study contributed data on 2 of the 3 treatment variables being compared. Seven clinical parameters were assessed every 6 weeks, while the doctor's and the patient's assessments were scored. Intra articular treatment both with Myc 2095 and triamcinolone hexacetonide proved to be effective. Placebo response was also very high. After the first Myc 2095 injection, improvement in "tenderness", "pain under load" and "swelling and hydrops" was significantly superior to that following placebo treatment. The evaluation of the second injections indicated a marked carry-over effect from the first course. This was also evident from the doctor's and patient's assessments. The importance of including a placebo in the evaluation of anti-phlogistic drugs in clinical trials, emerged from this study.

  8. Alternative DNA structure formation in the mutagenic human c-MYC promoter

    PubMed Central

    del Mundo, Imee Marie A.; Zewail-Foote, Maha; Kerwin, Sean M.

    2017-01-01

    Abstract Mutation ‘hotspot’ regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. PMID:28334873

  9. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1.

    PubMed

    Campone, Mario; Noël, Bélinda; Couriaud, Cécile; Grau, Morgan; Guillemin, Yannis; Gautier, Fabien; Gouraud, Wilfried; Charbonnel, Catherine; Campion, Loïc; Jézéquel, Pascal; Braun, Frédérique; Barré, Benjamin; Coqueret, Olivier; Barillé-Nion, Sophie; Juin, Philippe

    2011-09-07

    Anti-apoptotic signals induced downstream of HER2 are known to contribute to the resistance to current treatments of breast cancer cells that overexpress this member of the EGFR family. Whether or not some of these signals are also involved in tumor maintenance by counteracting constitutive death signals is much less understood. To address this, we investigated what role anti- and pro-apoptotic Bcl-2 family members, key regulators of cancer cell survival, might play in the viability of HER2 overexpressing breast cancer cells. We used cell lines as an in vitro model of HER2-overexpressing cells in order to evaluate how anti-apoptotic Bcl-2, Bcl-xL and Mcl-1, and pro-apoptotic Puma and Bim impact on their survival, and to investigate how the constitutive expression of these proteins is regulated. Expression of the proteins of interest was confirmed using lysates from HER2-overexpressing tumors and through analysis of publicly available RNA expression data. We show that the depletion of Mcl-1 is sufficient to induce apoptosis in HER2-overexpressing breast cancer cells. This Mcl-1 dependence is due to Bim expression and it directly results from oncogenic signaling, as depletion of the oncoprotein c-Myc, which occupies regions of the Bim promoter as evaluated in ChIP assays, decreases Bim levels and mitigates Mcl-1 dependence. Consistently, a reduction of c-Myc expression by inhibition of mTORC1 activity abrogates occupancy of the Bim promoter by c-Myc, decreases Bim expression and promotes tolerance to Mcl-1 depletion. Western blot analysis confirms that naïve HER2-overexpressing tumors constitutively express detectable levels of Mcl-1 and Bim, while expression data hint on enrichment for Mcl-1 transcripts in these tumors. This work establishes that, in HER2-overexpressing tumors, it is necessary, and maybe sufficient, to therapeutically impact on the Mcl-1/Bim balance for efficient induction of cancer cell death.

  10. Caffeic Acid Phenethyl Ester Induces N-myc Downstream Regulated Gene 1 to Inhibit Cell Proliferation and Invasion of Human Nasopharyngeal Cancer Cells

    PubMed Central

    Chiang, Kun-Chun; Yang, Shih-Wei; Chang, Kai-Ping; Feng, Tsui-Hsia; Chang, Kang-Shuo; Tsui, Ke-Hung; Shin, Yi-Syuan; Chen, Chiu-Chun; Chao, Mei

    2018-01-01

    Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis, is widely studied due to its anti-cancer effect. Nasopharyngeal carcinoma (NPC) is distinct from other head and neck carcinomas and has a high risk of distant metastases. N-myc downstream regulated gene 1 (NDRG1) is demonstrated as a tumor suppressor gene in several cancers. Our result showed that CAPE treatment could repress NPC cell growth, through induction of S phase cell cycle arrest, and invasion. CAPE treatment stimulated NDRG1 expression in NPC cells. NDRG1 knockdown increased NPC cell proliferation and invasion and rendered NPC cells less responsive to CAPE growth-inhibiting effect, indicating CAPE repressed NPC cell growth partly through NDRG1indcution. CAPE treatment increased phosphorylation of ERK, JNK, and p38 in a dose- and time-dependent manner. Pre-treatments by inhibitors of ERK (PD0325901), JNK (SP600125), or p38 (SB201290), respectively, all could partly inhibit the CAPE effect on NDRG1 induction in NPC cells. Further, STAT3 activity was also repressed by CAPE in NPC cells. In summary, CAPE attenuates NPC cell proliferation and invasion by upregulating NDRG1 expression via MAPK pathway and by inhibiting phosphorylation of STAT3. Considering the poor prognosis of NPC patients with metastasis, CAPE could be a promising agent against NPC. PMID:29738439

  11. Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivo in a human melanoma line.

    PubMed

    Leonetti, C; Biroccio, A; Benassi, B; Stringaro, A; Stoppacciaro, A; Semple, S C; Zupi, G

    2001-06-01

    Phosphorothioate c-myc antisense oligodeoxynucleotides [S]ODNs (free INX-6295) were encapsulated in a new liposome formulation and the antitumor activity was compared to the unencapsulated antisense in a human melanoma xenograft. The systemic administration of INX-6295 encapsulated in stabilized antisense lipid particles (SALP INX-6295) improved plasma AUC (area under the plasma concentration-time curve) and initial half-life of free INX-6295, resulting in a significant enhancement in tumor accumulation and improvement in tumor distribution of antisense oligodeoxynucleotides. Animals treated with SALP INX-6295 exhibited a prolonged reduction of c-myc expression, reduced tumor growth and increased mice survival. When administered in combination with cisplatin (DDP), SALP INX-6295 produced a complete tumor regression in approximately 30% of treated mice, which persisted for at least 60 days following the first cycle of treatment. Finally, the median survival of mice treated with DDP/SALP INX-6295 increased by 105% compared to 84% for animals treated with the combination DDP/free INX-6295. These data indicate that the biological activity and the therapeutic efficacy of c-myc antisense therapy may be improved when these agents are administered in lipid-based delivery systems.

  12. CLL Cells Respond to B-Cell Receptor Stimulation with a MicroRNA/mRNA Signature Associated with MYC Activation and Cell Cycle Progression

    PubMed Central

    Pede, Valerie; Rombout, Ans; Vermeire, Jolien; Naessens, Evelien; Mestdagh, Pieter; Robberecht, Nore; Vanderstraeten, Hanne; Van Roy, Nadine; Vandesompele, Jo; Speleman, Frank; Philippé, Jan; Verhasselt, Bruno

    2013-01-01

    Chronic lymphocytic leukemia (CLL) is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV) mutation status are linked to the B-cell receptor (BCR) complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation. PMID:23560086

  13. [Overexpression of N-myc downstream regulated gene 2 (NDRG2) inhibits proliferation, migration and promotes apoptosis in SW480 rectal cancer cells].

    PubMed

    Li, Zhiqiang; Sun, Yang; Wan, Hongxing; Chai, Fang

    2017-01-01

    Objective To investigate the role of N-myc downstream regulated gene 2 (NDRG2) gene in the proliferation, migration and apoptosis of rectal cancer cells. Methods Human rectal cancer SW480 cells were cultured and transfected with pCDNA3.1-NDRG2 and empty vector (SW480-Ve). SW480 cells were set as a control group. Cell proliferation was detected in SW480 cells, SW480-Ve cells and SW480-NDRG2 cells by MTT assay; cell migration distance in the three groups at 24, 48, 72 hours was tested by wound healing assay; apoptosis rate was determined in the three groups at 48 hours by flow cytometry; the expressions of Bax, caspase-3, Bcl-2 proteins in the three groups were examined by Western blotting. Results After the cells were cultured for 7 days, cell survival rate in SW480-NDRG2 group was significantly lower than that in SW480 cells and SW480-Ve cells; the cell survival rate decreased gradually with the prolongation of the culture time; and it had no significant difference between SW480-Ve group and SW480 group. Cell migration distance in SW480-NDRG2 group was significantly lower than that in SW480-Ve cells and SW480 cells, and it had also no significant difference between SW480-Ve cells and SW480 cells. The apoptosis rate in SW480-NDRG2 group was significantly higher than that in SW480 group and SW480-Ve group, and SW480 cells and SW480-Ve cells had no significant difference in the rate. The expressions of Bax and caspase-3 proteins in SW480-NDRG2 group were significantly higher than those in SW480 cells and SW480-Ve cells; Bcl-2 protein expression was significantly lower in SW480-NDRG2 group than in SW480 cells and SW480-Ve cells; and the expressions of Bax, caspase-3 and Bcl-2 proteins were not significantly different between SW480 cells and SW480-Ve cells. Conclusion Overexpression of NDRG2 can inhibit the proliferation, reduce cell migration, and promote cell apoptosis by regulating the expressions of Bcl-2, Bax and caspase-3 proteins in SW480 cells.

  14. [Epidemiology of type 1 diabetes in children and adolescents aged less than 15 years in the provinces of Castilla y León].

    PubMed

    Bahíllo Curieses, Maria P; Hermoso López, F; García Fernández, J A; Ochoa Sangrador, C; Rodrigo Palacios, J; de la Torre Santos, S I; Marugán de Miguelsanz, J M; Manzano Recio, F; García Velázquez, J; Lema Garret, T J

    2006-07-01

    The incidence of type 1 diabetes shows wide geographical variability and heterogeneity. The aim of this study was to determine the incidence and prevalence of type 1 diabetes in children and adolescents ages less than 15 years in the different provinces of Castilla-León. To determine incidence, all new cases of type 1 diabetes with onset under 15 years of age in 2003-2004 were obtained. Incidence was expressed as the crude value with the corresponding confidence interval and as standardized incidence. The capture-recapture method was used to calculate the completeness of ascertainment. To determine prevalence, all cases of type 1 diabetes in persons ages less than 15 years at 31 December 2004 were obtained. Incidence showed wide variability among the different provinces of Castilla-León. The highest values were found in Segovia (38.77/100,000/year), Valladolid (32.07/100,000/ year) and Avila (23.21/100,000/year) and the lowest in Zamora (8.14/100,000/year). Incidences were highest in the 5-9 years age group in all provinces except Burgos. Prevalence was highest in Segovia (1.54/1,000), Valladolid (1.41/1,000), Avila (1.38/1,000) and Zamora (1.32/1,000) and lowest in Burgos (0.91/1,000). Castilla-León seems to have one of the highest incidences of type 1 diabetes in Spain; several of its provinces have values similar to those in Northern Europe.

  15. Structure post-flambée pour la locomotion d'un microrobot intratubulaire: comparaison modèle-expérience de l'effort de serrage dans le tube

    NASA Astrophysics Data System (ADS)

    Libersa, C.; Arsicault, M.; Lallemand, J.-P.

    2002-12-01

    Ces travaux entrent dans le cadre des études nécessaires à la mise au point d'une structure déformable actionnée par fils en alliage à mémoire de forme. L'application visée est son utilisation comme module de locomotion d'un microrobot intratubulaire autonome de type “ lombric ”. Un module est constitué d'un cadre élastique carré forcé en post-flambement sur un squelette rigide, de manière à obtenir deux configurations symétriques d'équilibre stable correspondant au premier mode de flambage. Le passage d'un état d'équilibre à l'autre est obtenu par la contraction de fils AMF éduqués disposés sur le cadre post-flambé. Un assemblage par juxtaposition de cinq modules identiques compose le corps du microrobot. Suivant un cycle de locomotion adéquat, chacun de ces actionneurs “ tout ou rien ” permet la prise d'appui sur les parois du tube ou l'allongement local nécessaire à l'avance du microrobot. Nous présentons ici les résultats obtenus lors d'un chargement transversal d'un module, et en particulier les courbes reliant l'effort de réaction et le déplacement du point en contact avec le tube. L'influence du serrage subit par le module sur le maintien du microrobot dans un tube vertical est déterminée. Les résultats expérimentaux obtenus sont comparés avec les résultats numériques.

  16. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis.

    PubMed

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-09-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.

  17. [Survival of patients with primary central nervous system diffuse large B-cell lymphoma: impact of gene aberrations and protein overexpression of bcl-2 and C-MYC, and selection of chemotherapy regimens].

    PubMed

    Yin, W J; Zhu, X; Yang, H Y; Sun, W Y; Wu, M J

    2018-01-08

    Objective: To investigate the impact of clinicopathological features, gene rearrangements and protein expression of bcl-6, bcl-2, C-MYC and chemotherapy regime on the prognosis of patients with primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). Methods: Thirty-three cases of PCNS-DLBCL diagnosed from January 2006 to December 2016 at Zhejiang Cancer Hospital were collected. The expression of CD10, bcl-6, bcl-2, MUM1 and MYC were detected by immunohistochemical staining (IHC). The presence of EB virus was detected by in situ hybridization(EBER). Copy number variation (ICN) and translocation status of bcl-6, bcl-2 and C-MYC genes were detected by fluorescence in situ hybridization (FISH). The relationship between the above indexes and the prognosis was analyzed by univariate, bivariate survival analysis and multiple Cox hazard regression analysis. Results: The study included 33 patients of PCNS-DLBCL, without evidence of primary or secondary immunodeficient disease. Male to female ratio was 1.36∶1.00, and the average age was 56 years. Twenty cases had single lesion while 13 had multiple lesions. Deep brain involvement was seen in 12 cases. All patients underwent partial or total tumor resection. Five patients received whole brain post-surgery radiotherapy, nine patients received high-dose methotrexate (HD-MTX) based chemotherapy, and 12 patients received whole-brain radiotherapy combined with HD-MTX based chemotherapy. Severn patients received no further treatment and rituximab was used in 8 patients. According to the Hans model, 27 cases were classified as non-GCB subtypes (81.8%). Bcl-2 was positive in 25 cases (75.8%, 25/33) and highly expressed in 8 (24.2%). MYC was positive in 12 cases (36.4%) and double expression of bcl-2 and MYC was seen in 6 cases. EBER positive rate was 10.0%(3/30), all of which had multiple lesions. Two bcl-6 gene translocations and 3 amplifications were found in 28 patients. Two translocations, 3 ICN or with both

  18. LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling.

    PubMed

    Bar, Maya; Sharfman, Miya; Avni, Adi

    2011-03-01

    The receptors for the fungal elicitor EIX (LeEix1 and LeEix2) belong to a class of leucine-rich repeat cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Both receptors are able to bind the EIX elicitor while only the LeEix2 receptor mediates defense responses. We show that LeEix1 acts as a decoy receptor and attenuates EIX induced internalization and signaling of the LeEix2 receptor. We demonstrate that BAK1 binds LeEix1 but not LeEix2. In plants where BAK1 was silenced, LeEix1 was no longer able to attenuate plant responses to EIX, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires the kinase activity of BAK1.

  19. Lele de l’omalizumab dans le traitement de l’asthme allergique grave

    PubMed Central

    Chapman, Kenneth R; Cartier, André; Hébert, Jacques; McIvor, R Andrew; Schellenberg, R Robert

    2006-01-01

    les patients traités par l’omalizumab que chez les sujets témoins. Des analyses rétrospectives ont permis d’identifier les caractéristiques des patients les plus susceptibles de répondre au traitement par l’omalizumab. RECOMMANDATIONS : L’omalizumab pourrait être envisagé comme traitement d’appoint dans les cas atopiques d’asthme grave non maîtrisé avec des traitements classiques par des doses optimales de CSI et un traitement d’appoint approprié (p. ex. : agonistes bêta-2 à action prolongée). En général, les patients sont classés en fonction de leur recours – traitement court et fréquent ou continu et oral – aux corticostéroïdes. Il ne faut amorcer le traitement qu’après avoir consulté un spécialiste pour confirmer le diagnostic et s’assurer que le traitement classique est optimal.

  20. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    PubMed

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  1. Effets de la taille finie du milieu non-linéaire sur le bruit quantique spatial généré par un oscillateur paramétrique optique confocal

    NASA Astrophysics Data System (ADS)

    Lopez, L.; Gatti, A.; Maitre, A.; Treps, N.; Gigan, S.; Fabre, C.

    2004-11-01

    Nous nous intéressons au comportement spatial des fluctuations quantiques à la sortie d'un oscillateur paramétrique optique dégénéré en modes transverses, sous le seuil. En vue de futures expériences, nous étudions les effets de la diffraction dans le milieu paramétrique sur le bruit quantique spatial. Nous montrons que l'on voit apparaître une aire de cohérence de taille finie pour les effets quantiques transverses.

  2. Double-hit lymphoma demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-hit translocations, MYC/BCL-2 and IRF4/BCL-2.

    PubMed

    Tabata, Rie; Yasumizu, Ryoji; Tabata, Chiharu; Kojima, Masaru

    2013-01-01

    Here, we report a rare case of double-hit lymphoma, demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2. The present case had a rare abnormal chromosome, t(6;14;18)(p25;q32;q21), independently, in addition to known dual-hit chromosomal abnormalities, t(14;18)(q32;q21) and t(8;22)(q24;q11.2). Lymph node was characterized by a follicular and diffuse growth pattern with variously sized neoplastic follicles. The intrafollicular area was composed of centrocytes with a few centroblasts and the interfollicular area was occupied by uniformly spread medium- to large-sized lymphocytes. CD23 immunostaining demonstrated a disrupted follicular dendritic cell meshwork. The intrafollicular tumor cells had a germinal center phenotype with the expression of surface IgM, CD10, Bcl-2, Bcl-6, and MUM1/IRF4. However, the interfollicular larger cells showed plasmacytic differentiation with diminished CD20, Bcl-2, Bcl-6, and positive intracytoplasmic IgM, and co-expression of MUM1/IRF4 and CD138 with increased Ki-67-positive cells (> 90%). MUM1/IRF4 has been found to induce c-MYC expression, and in turn, MYC transactivates MUM1/IRF4, creating a positive autoregulatory feedback loop. On the other hand, MUM1/IRF4 functions as a tumor suppressor in c-MYC-induced B-cell leukemia. The present rare case arouses interest in view of the possible "dual" activation of both c-MYC and MUM1/IRF4 through two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2.

  3. La tuberculose pulmonaire et le tabac: à propos de 100 cas

    PubMed Central

    Janah, Hicham; Souhi, Hicham; Kouissmi, Hatim; Marc, Karima; Zahraoui, Rachida; Benamor, Jouda; Soualhi, Mona; Bourkadi, Jamal Eddine

    2014-01-01

    Le tabagisme et la tuberculose sont deux enjeux majeurs de santé publique au niveau mondial, en particulier dans les pays émergents. Pour déterminer les particularités cliniques, radiologiques, bactériologiques et thérapeutiques de la tuberculose pulmonaire chez les sujets tabagiques nous avons mené une étude prospective au service de phtisiologie de l'hôpital Moulay Youssef sur une période de 10 mois, portant sur 100 nouveaux cas de tuberculose pulmonaire, répartis en 2 groupes, 50 patients tabagiques: Groupe A et 50 patients non tabagiques: Groupe B. Tous nos patients étaient de sexe masculin, l’âge moyen était de 41 ans ± 12 chez le groupe A et de 36 ans ± 16 chez le groupe B. Le délai de consultation était plus long chez les tabagiques, la médiane était de 60j (30; 98) contre 40j (30; 60), la symptomatologie clinique était variable chez les deux groupes, dominée par les expectorations chez les tabagiques 96% contre 60%. Les lésions radiologiques étaient similaires chez les deux groupes ainsi que la charge bacillaire. Tous les patients ont été mis sous traitement antituberculeux. Après un mois du traitement, la Bacilloscopie était négative chez 50% du groupe A contre 66% chez le groupe B. la régression des lésions radiologiques était similaire chez les deux groupes. Le retard diagnostique et le retard de négativation des frottis sont les principales particularités de la tuberculose pulmonaire du sujet tabagique. Le sevrage tabagique doit faire partie intégrante de la prise en charge des patients atteints de tuberculose. PMID:25821545

  4. No 129-L'exercice physique pendant la grossesse et le postpartum.

    PubMed

    Davies, Gregory A L; Wolfe, Larry A; Mottola, Michelle F; MacKinnon, Catherine

    2018-02-01

    Énoncer une directive canadienne visant à informer les fournisseurs de soins obstétricaux des répercussions, pour la mère, le fœtus et le nouveau-né, des exercices de conditionnement aerobique et musculaire pendant la grossesse. RéSULTATS ATTENDUS: Effets sur la morbidité maternelle, fœtale et néonatale et mesures de la forme physique maternelle. Une recherche sur MEDLINE des articles, publiés en anglais de 1966 à 2002, appartenant aux catégories suivantes : études sur le conditionnement aérobique et musculaire chez des femmes ne faisant pas jusque-là d'exercice et chez des femmes actives avant leur grossesse, ainsi que des études sur les répercussions du conditionnement aérobique et musculaire sur les issues précoces et tardives de la grossesse ou sur les issues néonatales; rapports de synthèse et méta-analyses portant sur l'exercice pendant la grossesse. Les résultats recueillis ont été revus par la Société des obstétriciens et gynécologues du Canada (Comité de la pratique clinique - obstétrique), avec la participation de la Société canadienne de physiologie de l'exercice, et ils ont été classés suivant les critères d'évaluation des preuves établis par le Groupe de travail canadien sur l'examen de santé périodique. VALIDATION: Cette directive a été approuvée par le Comité de pratique clinique - obstétrique de la SOGC, par le Comité exécutif et par le Conseil de la SOGC, ainsi que par le Conseil d'administration de la Société canadienne de physiologie de l'exercice. PARRAINé PAR: la Société des obstétriciens et gynécologues du Canada et par la Société canadienne de physiologie de l'exercice. Copyright © 2018. Published by Elsevier Inc.

  5. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation

    PubMed Central

    Oktay, Yavuz; Ülgen, Ege; Can, Özge; Akyerli, Cemaliye B.; Yüksel, Şirin; Erdemgil, Yiğit; Durası, İ. Melis; Henegariu, Octavian Ioan; Nanni, E. Paolo; Selevsek, Nathalie; Grossmann, Jonas; Erson-Omay, E. Zeynep; Bai, Hanwen; Gupta, Manu; Lee, William; Turcan, Şevin; Özpınar, Aysel; Huse, Jason T.; Sav, M. Aydın; Flanagan, Adrienne; Günel, Murat; Sezerman, O. Uğur; Yakıcıer, M. Cengiz; Pamir, M. Necmettin; Özduman, Koray

    2016-01-01

    The single nucleotide polymorphism rs55705857, located in a non-coding but evolutionarily conserved region at 8q24.21, is strongly associated with IDH-mutant glioma development and was suggested to be a causal variant. However, the molecular mechanism underlying this association has remained unknown. With a case control study in 285 gliomas, 316 healthy controls, 380 systemic cancers, 31 other CNS-tumors, and 120 IDH-mutant cartilaginous tumors, we identified that the association was specific to IDH-mutant gliomas. Odds-ratios were 9.25 (5.17–16.52; 95% CI) for IDH-mutated gliomas and 12.85 (5.94–27.83; 95% CI) for IDH-mutated, 1p/19q co-deleted gliomas. Decreasing strength with increasing anaplasia implied a modulatory effect. No somatic mutations were noted at this locus in 114 blood-tumor pairs, nor was there a copy number difference between risk-allele and only-ancestral allele carriers. CCDC26 RNA-expression was rare and not different between the two groups. There were only minor subtype-specific differences in common glioma driver genes. RNA sequencing and LC-MS/MS comparisons pointed to significantly altered MYC-signaling. Baseline enhancer activity of the conserved region specifically on the MYC promoter and its further positive modulation by the SNP risk-allele was shown in vitro. Our findings implicate MYC deregulation as the underlying cause of the observed association. PMID:27282637

  6. Alternative DNA structure formation in the mutagenic human c-MYC promoter.

    PubMed

    Del Mundo, Imee Marie A; Zewail-Foote, Maha; Kerwin, Sean M; Vasquez, Karen M

    2017-05-05

    Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Contribution of microbiology in the diagnosis of tuberculosis in Castile and León (Spain): Findings of the GRUMICALE 2013 study.

    PubMed

    López-Medrano, Ramiro; Nebreda-Mayoral, Teresa; Brezmes-Valdivieso, M Fé; García-de Cruz, Susana; Nogueira-González, Begoña; Sánchez-Arroyo, Rafael; Tinajas-Puertas, Almudena; Gutiérrez-Zufiaurre, Nieves; Labayru-Echeverría, Cristina; Hernando-Real, Susana; López-Urrutia, Luis; Rivero-Lezcano, Octavio; Ullivarri-Francia, Belén; Rodríguez-Tarazona, Raquel; Antolín-Ayala, Isabel

    2018-03-01

    A retrospective study was conducted by collecting microbiological tuberculosis (TB) data in Castile and León during the year 2013 in order to determine the incidence and distribution of TB, and resistance to the tuberculostatic drug, and compare them with the epidemiological data provided by the Department of Epidemiological Surveillance (SIVE). Microbiologists of the 14 hospitals of the Castile and León public health network (GRUMICALE) collected epidemiological, microbiological, and management data from the Microbiology laboratories in the community during the year 2013. A single isolate of Mycobacterium tuberculosis complex (MTC) per patient was considered. The study included a total of 270 MTC isolates (an incidence rate of 11.63 cases/100,000 inhab./year). A total of 288 cases of TB (11.43 cases/100,000 inhab. year) were recovered using epidemiological data, which included 243 confirmed, 29 suspected, and 16 as probable cases. Pulmonary TB was predominant, followed a long way off by the pleural TB and the remaining locations. A total of 27,620 samples were processed for mycobacterial detection. Mycobacterial growth was observed in 3.46% of automated fluid cultures, and 50.37% were positive by direct staining of the smear. Resistance to one tuberculostatic drug, mostly to isoniazid, was observed in 16 (5.92%) isolates of Mycobacterium tuberculosis (MT). The province with greater incidence and number of isolates was León (24.23 cases/100,000 inhab./year), with the highest being observed in El Bierzo health area (30.46 cases/100,000 inhab./year). An adequate collection of microbiological information is essential to determine the epidemiology of TB in our region. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  8. Le surpoids, l’obésité et le contrôle glycémique chez les diabétiques du centre de référence provincial de diabète (CRD), Kénitra, Maroc

    PubMed Central

    Lotfi, Zeghari; Aboussaleh, Youssef; Sbaibi, Rachid; Achouri, Imane; Benguedour, Rachid

    2017-01-01

    Introduction Le diabète est définit comme un trouble de l'assimilation, de l'utilisation et du stockage des sucres apportés par l'alimentation, sa prise en charge est assurée par le suivi du surpoids et l'obésité et le contrôle glycémique régulier. L'objectif de ce travail était l'étude du surpoids, l'obésité et le contrôle glycémique chez 2227 diabétiques de différent type (type 1, 2 et gestationnel), consultants le centre de référence provincial de diabète (CRD), Kénitra-Maroc. Méthodes L'étude s'est déroulée sur une période d'une année du mois janvier au mois décembre 2015, L'évaluation du surpoids et l'obésité a été effectuée par le calcul de l'Indice de Masse Corporelle (IMC=Poids/Taille2 (Kg/m2)), elles sont définit respectivement par IMC > 25 Kg/m2, et IMC > 30 Kg/m2, le poids et la taille ont été mesurés selon les recommandations de l'organisation mondiale de santé (OMS), Le contrôle glycémique a été effectué par l'analyse sanguine de l'Hémoglobine glycosylée et de la Glycémie à jeun. Les normes sont 7% pour l'Hémoglobine glycosylée et 0,70g/l à 1,10g/l pour la Glycémie à jeun. Résultats L'intervalle d'âges des patients est compris entre 8 mois et 80 ans, avec une dominance des diabétiques provenant du milieu urbain (74%) par rapport à ceux provenant du milieu rural (26%). Le surpoids touche l'ensemble de cette population. L'IMC moyen des femmes tends vers l'obésité (IMC≈30): (29,21 Kg/m2 ± 3,1) pour le diabète gestationnel et (29,15 Kg/m2 ± 3,2) pour le diabète de type 2. Les valeurs du contrôle glycémique sont supérieures aux normes: avec 8,5% ± 2,6 > 7% pour l'hémoglobine glycosylée et 1,5 g/l ± 1,3 > 1,10g/l pour la Glycémie à jeun. La différence entre les valeurs de l'hémoglobine glycosylée entre les hommes (8,5 7% ± 2,6) et les femmes (8,1% ± 2,3) n'est pas significative (P > 0,05), même chose pour la Glycémie capillaire à jeun: pour les hommes (1,44 g/l ± 1,1) et les

  9. Le Phénomène Wolf-Rayet au Sein des Etoiles chaudes de Populations I et II: Histoire des Vents stellaires et Impact sur la Structure nébulaire circumstellaire

    NASA Astrophysics Data System (ADS)

    Grosdidier, Yves

    2000-12-01

    Les spectres des étoiles Wolf-Rayet pop. I (WR) présentent de larges raies en émission dues à des vents stellaires chauds en expansion rapide (vitesse terminale de l'ordre de 1000 km/s). Le modèle standard des étoiles WR reproduit qualitativement le profil général et l'intensité des raies observées. Mais la spectroscopie intensive à moyenne résolution de ces étoiles révèle l'existence de variations stochastiques dans les raies (sous-pics mobiles en accélération échelles de temps: environ 10-100 min.). Ces variations ne sont pas comprises dans le cadre du modèle standard et suggèrent une fragmentation intrinsèque des vents. Cette thèse de doctorat présente une étude de la variabilité des raies spectrales en émission des étoiles WR pop. II; la question de l'impact d'un vent WR fragmenté sur le milieu circumstellaire est aussi étudiée: 1) à partir du suivi spectroscopique intensif des raies CIIIl5696 et CIVl5801/12, nous analysons quantitativement (via le calcul des Spectres de Variance Temporelle) les vents issus de 5 étoiles centrales de nébuleuses planétaires (NP) galactiques présentant le phénomène WR; 2) nous étudions l'impact de la fragmentation des vents issus de deux étoiles WR pop. I sur le milieu circumstellaire via: i) l'imagerie IR (NICMOS2/HST) de WR 137, et ii) l'imagerie H-alpha (WFPC2/HST) et l'interférométrie Fabry-Perot H-alpha (SIS-CFHT) de la nébuleuse M 1-67 (étoile centrale: WR 124). Les principaux résultats sont les suivants: VENTS WR POP. II: (1) Nous démontrons la variabilité spectroscopique intrinsèque des vents issus des noyaux de NP HD 826 ([WC 8]), BD +30 3639 ([WC 9]) et LSS 3169 ([WC 9]), observés durant respectivement 22, 15 et 1 nuits, et rapportons des indications de variabilité pour les noyaux [WC 9] HD 167362 et He 2-142. Les variabilités de HD 826 et BD +30 3639 apparaissent parfois plus soutenues (``bursts'' qui se maintiennent durant plusieurs nuits); (2) La cinématique des sous

  10. Provirus Integration at the 3 Region of N‐myc in Cell Lines Established from Thymic Lymphomas Spontaneously Formed in AKR Mice and a [(BALB/c × B6)F1AKR] Bone Marrow Chimera

    PubMed Central

    Yano, Yoko; Kobayashi, Seiichi; Yasumizu, Ryoji; Tamaki, Junko; Kubo, Mitsumasa; Sasaki, Akio; Hasan, Shahid; Okuyama, Harue; Inaba, Muneo; Ikehara, Susumu; Hiai, Hiroshi; Kakinuma, Mitsuaki

    1991-01-01

    Among 18 thymic leukemia cell lines which have been established from spontaneous thymic lym‐phomas in AKR mice as well as in bone marrow chimeras which were constructed by transplanting allogeneic bone marrow cells into irradiated AKR mice, three proviral integration sites were identified; near c‐myc, N‐myc and pim‐l loci. No integration site specific for chimeric leukemia cell lines was found. In three thymic leukemia cell lines which contained rearranged N‐myc, genes, insertions of long terminal repeats (LTRs) of murine leukemia viruses were detected at 18 or 20 bp downstream of the translational termination codon. These results demonstrate that the 3’region of the N‐myc gene is one of the integration targets for murine leukemia viruses in spontaneous thymic lymphomas. In these three cell lines, N‐myc mRNA was stably transcribed and transcription of c‐myc mRNA was down‐regulated. The integrated murine leukemia viruses in AKR thymic leukemia were most likely AKV, though the DNA sequence of the LTR inserted in the genome of a leukemic cell line from [(BALB/c × B6)F1‐AKR], CAK20, was different from LTRs of murine leukemia viruses so far reported. PMID:1900822

  11. A novel capture-ELISA for detection of anti-neutrophil cytoplasmic antibodies (ANCA) based on c-myc peptide recognition in carboxy-terminally tagged recombinant neutrophil serine proteases.

    PubMed

    Lee, Augustine S; Finkielman, Javier D; Peikert, Tobias; Hummel, Amber M; Viss, Margaret A; Specks, Ulrich

    2005-12-20

    Testing for antineutrophil cytoplasmic antibodies (ANCA) reacting with proteinase 3 (PR3) is part of the routine diagnostic evaluation of patients with small vessel vasculitis. For PR3-ANCA detection, capture ELISAs are reported to be superior to direct ELISAs. Standard capture ELISAs, in which PR3 is anchored by anti-PR3 monoclonal antibodies (moAB), have two potential disadvantages. First, the capturing moAB may compete for epitopes recognized by some PR3-ANCA, causing occasional false-negative results. Second, the capture of recombinant PR3 mutant molecules becomes unpredictable as modifications of specific conformational epitopes may not only affect the binding of PR3-ANCA, but also the affinity of the capturing anti-PR3 moAB. Here, we describe a new capture ELISA, and its application for PR3-ANCA detection. This new assay is based on the standardized capture of a variety of different carboxy-terminally c-myc tagged recombinant ANCA target antigens using anti-c-myc coated ELISA plates. Antigen used include c-myc tagged human rPR3 variants (mature and pro-form conformations), mouse mature rPR3 and human recombinant neutrophil elastase. This new anti-c-myc-capture ELISA for PR3-ANCA detection has an intra- and inter-assay coefficient of variation of 3.6% to 7.7%, and 15.8% to 18.4%, respectively. The analytical sensitivity and specificity for PR3-ANCA positive serum samples were 93% and 100%, respectively when rPR3 with mature conformation was used as target antigen, and 83% and 100% when the pro-enzyme conformation was employed. In conclusion, this new anti-c-myc capture ELISA compares favorably to our standard capture ELISA for PR3-ANCA detection, enables the unified capture of different ANCA target antigens through binding to a c-myc tag, and allows capture of rPR3 mutants necessary for PR3-ANCA epitope mapping studies.

  12. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    PubMed Central

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2012-01-01

    SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588

  13. Facteurs de risque de l'infection par le VIH dans le district de santé de Meyomessala au Cameroun

    PubMed Central

    Mbopi-Keou, Francois-Xavier; Nguefack-Tsague, Georges; Kalla, Ginette Claude Mireille; Abessolo, Stéphanie Abo'o; Angwafo, Fru; Muna, Walinjom

    2014-01-01

    Introduction L'objectif de ce travail était de déterminer les facteurs de risque de l'infection par le VIH dans le district de santé de Meyomessala (Région du Sud) au Cameroun. Méthodes Il s'agissait d'une étude transversale, descriptive et analytique qui s'est déroulée de Février à Mai 2011. Pour cette étude, nous avons obtenu une clairance éthique. Résultats L’échantillon était constitué de 315 participants dont 181 (57,46%) hommes et 134 (42,54%) femmes. L’âge moyen était de 24,5±8ans (extrême: 15-45ans). Quarante personnes (40) étaient séropositifs, soit une prévalence de l'infection par le VIH de 12,7%. Cette prévalence augmentait significativement (p = 0) avec le nombre de partenaires occasionnels au cours des douze derniers mois, allant de 2,7% chez ceux n'ayant eu aucun partenaire occasionnel à 21,25% chez ceux ayant plus de trois partenaires occasionnels (RC = 9,72; IC = 1,27-74,14; P = 0,03). le fait d’être âgé entre 20 et 24 ans (RC = 4,88; IC = 1,74-13,67; p = 0), avoir plus de trois partenaires sexuels au cours des douze derniers mois (RC = 9,72; IC = 1,27-74,14; p = 0,03), avoir les rapports sexuels avec les prostitués (RC = 2,86; IC = 1,42-5,76; p = 0), avoir eu le chlamydia (RC = 3,00; IC = 1,07-8,39; p = 0,04), avoir eu la syphilis (RC = 3,35; IC = 1,57-7,14; p = 0), avoir des avantages sociaux lors du premier rapport sexuel (RC = 2,57; IC = 1,03-6,43; p = 0,04) constituaient des potentiels facteurs de risque du VIH. Conclusion Il apparait urgent d'intensifier les campagnes de sensibilisation au risque d'infection par le VIH et les maladies sexuellement transmissibles dans le district de santé de Meyomessala PMID:25419299

  14. Genetic structure of the populations migrating from San Luis Potosi and Zacatecas to Nuevo León in Mexico.

    PubMed

    Cerda-Flores, R M; Kshatriya, G K; Barton, S A; Leal-Garza, C H; Garza-Chapa, R; Schull, W J; Chakraborty, R

    1991-06-01

    The Mexicans residing in the Monterrey metropolitan area in Nuevo León, Mexico, were grouped by generation and birthplace [Monterrey Metropolitan Area (MMA), San Luis Potosi (SLP), and Zacatecas (ZAC)] of the four grandparents to determine the extent of genetic variation within this population and the genetic differences, if any, between the natives living in the MMA and the immigrant populations from SLP and ZAC. Nine genetic marker systems were analyzed. The genetic distance analysis indicates that SLP and ZAC are similar to the MMA, irrespective of birthplace and generation. Gene diversity analysis (GST) suggests that more than 96% of the total gene diversity (HT) can be attributed to individual variation within the population. The genetic admixture analysis suggests that the Mexicans of the MMA, SLP, and ZAC, stratified by birthplace and generation, have received a predominantly Spanish contribution (78.5%), followed by a Mexican Indian contribution (21.5%). Similarly, admixture analysis, conducted on the population of Nuevo León and stratified by generation, indicates a substantial contribution from the MMA (64.6%), followed by ZAC (22.1%) and SLP (13.3%). Finally, we demonstrate that there is no nonrandom association of alleles among the genetic marker systems (i.e., no evidence of gametic disequilibrium) despite the Mestizo origin of this population.

  15. Food insecurity and maternal mental health in León, Nicaragua: Potential limitations on the moderating role of social support.

    PubMed

    Piperata, Barbara A; Schmeer, Kammi K; Rodrigues, Andres Herrera; Salazar Torres, Virgilio Mariano

    2016-12-01

    Poor mental health among those living in poverty is a serious global public health concern. Food insecurity (FI) is recognized as an important, yet critically understudied social determinant of mental health. The relationship between FI and mothers' mental health in low- and middle-income countries (LMIC) is especially important to understand considering the high rates of poverty and associated FI in these settings. For these mothers, social support may serve as a buffer in ameliorating the impact of FI on mental distress. However, data required to understand these relationships in LMIC remain sparse. To address this gap we used quantitative and qualitative data and convergence parallel analysis to assess: the association between FI and maternal mental distress; and, whether three forms of social support - mother's general social network support and family support (spouse/partner living in the home, parents/in-laws living in the home) - moderated the association. A survey that included data on FI (ELCSA) and mental distress (SRQ-20) was administered to a population-based sample of mothers in León, Nicaragua (n = 434) in 2012. The survey was complemented by data from 6 focus groups. Regression models identified a strong positive relationship between household-level FI and maternal distress. Evidence of social support moderation was mixed: while maternal social network and spousal/partner support did not moderate this relationship, parental support did. Our ethnographic data revealed three themes that help explain these findings: FI is embarrassing/shameful, close family is the most appropriate source of social support and, fear of gossip and ridicule limit the buffering capacity of the social support network. Our findings contribute to a growing literature demonstrating that FI is an important social determinant of maternal mental distress in LMIC; and that some forms of social support may reduce (but not eliminate) the impact of FI on mental distress. Copyright

  16. Down-regulation of microRNA-451a facilitates the activation and proliferation of CD4+ T cells by targeting Myc in patients with dilated cardiomyopathy.

    PubMed

    Zeng, Zhipeng; Wang, Ke; Li, Yuanyuan; Xia, Ni; Nie, Shaofang; Lv, Bingjie; Zhang, Min; Tu, Xin; Li, Qianqian; Tang, Tingting; Cheng, Xiang

    2017-04-07

    CD4 + T cells are abnormally activated in patients with dilated cardiomyopathy (DCM) and might be associated with the immunopathogenesis of the disease. However, the underlying mechanisms of CD4 + T cell activation remain largely undefined. Our aim was to investigate whether the dysregulation of microRNAs (miRNAs) was associated with CD4 + T cell activation in DCM. CD4 + T cells from DCM patients showed increased expression levels of CD25 and CD69 and enhanced proliferation in response to anti-CD3/28, indicating an activated state. miRNA profiling analysis of magnetically sorted CD4 + T cells revealed a distinct pattern of miRNA expression in CD4 + T cells from DCM patients compared with controls. The level of miRNA-451a (miR-451a) was significantly decreased in the CD4 + T cells of DCM patients compared with that of the controls. The transfection of T cells with an miR-451a mimic inhibited their activation and proliferation, whereas an miR-451a inhibitor produced the opposite effects. Myc was directly inhibited by miR-451a via interaction with its 3'-UTR, thus identifying it as an miR-451a target in T cells. The knockdown of Myc suppressed the activation and proliferation of T cells, and the expression of Myc was significantly up-regulated at the mRNA level in CD4 + T cells from patients with DCM. A strong inverse correlation was observed between the Myc mRNA expression and miR-451a transcription level. Our data suggest that the down-regulation of miR-451a contributes to the activation and proliferation of CD4 + T cells by targeting the transcription factor Myc in DCM patients and may contribute to the immunopathogenesis of DCM. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Repression of miR-17-5p with elevated expression of E2F-1 and c-MYC in non-metastatic hepatocellular carcinoma and enhancement of cell growth upon reversing this expression pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Tayebi, H.M.; Omar, K.; Hegy, S.

    2013-05-10

    Highlights: •The oncogenic miR-17-5p is downregulated in non-metastatic hepatocellular carcinoma patients. •E2F-1 and c-MYC transcripts are upregulated in non-metastatic HCC patients. •miR-17-5p forced overexpression inhibited E2F-1 and c-MYC expression in HuH-7 cells. •miR-17-5p mimicking increased HuH-7 cell growth, proliferation, migration and colony formation. •miR-17-5p is responsible for HCC progression among the c-MYC/E2F-1/miR-17-5p triad members. -- Abstract: E2F-1, c-MYC, and miR-17-5p is a triad of two regulatory loops: a negative and a positive loop, where c-MYC induces the expression of E2F-1 that induces the expression of miR-17-5p which in turn reverses the expression of E2F-1 to close the loop. In thismore » study, we investigated this triad for the first time in hepatocellular carcinoma (HCC), where miR-17-5p showed a significant down-regulation in 23 non-metastatic HCC biopsies compared to 10 healthy tissues; however, E2F-1 and c-MYC transcripts were markedly elevated. Forced over-expression of miR-17-5p in HuH-7 cells resulted in enhanced cell proliferation, growth, migration and clonogenicity with concomitant inhibition of E2F-1 and c-MYC transcripts expressions, while antagomirs of miR-17-5p reversed these events. In conclusion, this study revealed a unique pattern of expression for miR-17-5p in non-metastatic HCC patients in contrast to metastatic HCC patients. In addition we show that miR-17-5p is the key player among the triad that tumor growth and spread.« less

  18. Simultaneous Drug Targeting of the Promoter MYC G-Quadruplex and BCL2 i-Motif in Diffuse Large B-Cell Lymphoma Delays Tumor Growth.

    PubMed

    Kendrick, Samantha; Muranyi, Andrea; Gokhale, Vijay; Hurley, Laurence H; Rimsza, Lisa M

    2017-08-10

    Secondary DNA structures are uniquely poised as therapeutic targets due to their molecular switch function in turning gene expression on or off and scaffold-like properties for protein and small molecule interaction. Strategies to alter gene transcription through these structures thus far involve targeting single DNA conformations. Here we investigate the feasibility of simultaneously targeting different secondary DNA structures to modulate two key oncogenes, cellular-myelocytomatosis (MYC) and B-cell lymphoma gene-2 (BCL2), in diffuse large B-cell lymphoma (DLBCL). Cotreatment with previously identified ellipticine and pregnanol derivatives that recognize the MYC G-quadruplex and BCL2 i-motif promoter DNA structures lowered mRNA levels and subsequently enhanced sensitivity to a standard chemotherapy drug, cyclophosphamide, in DLBCL cell lines. In vivo repression of MYC and BCL2 in combination with cyclophosphamide also significantly slowed tumor growth in DLBCL xenograft mice. Our findings demonstrate concurrent targeting of different DNA secondary structures offers an effective, precise, medicine-based approach to directly impede transcription and overcome aberrant pathways in aggressive malignancies.

  19. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis1[W][OPEN

    PubMed Central

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-01-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  20. Glycometabolic adaptation mediates the insensitivity of drug-resistant K562/ADM leukaemia cells to adriamycin via the AKT-mTOR/c-Myc signalling pathway.

    PubMed

    Zhang, Xueyan; Ai, Ziying; Chen, Jing; Yi, Juan; Liu, Zhuan; Zhao, Huaishun; Wei, Hulai

    2017-04-01

    In human leukaemia, resistance to chemotherapy leads to treatment ineffectiveness or failure. Previous studies have indicated that cancers with increased levels of aerobic glycolysis are insensitive to numerous forms of chemotherapy and respond poorly to radiotherapy. Whether glycolysis serves a key role in drug resistance of leukaemia cells remains unclear. The present study systematically investigated aerobic glycolytic alterations and regulation in K562/adriamycin (ADM) multidrug‑resistant (MDR) and ADM‑sensitive K562 leukaemia cells in normoxia, and the association between drug resistance and improper glycometabolism. The cell proliferating activity was assessed with an MTT colorimetric assay, glycolysis, including glucose consumption, lactate export and key‑enzyme activity was determined by corresponding commercial testing kits. The expression levels of hexokinase‑II (HK‑II), lactate dehydrogenase A (LDHA), glucose transporter‑4 (GLUT‑4), AKT, p‑AKT473/308, mammalian target of rapamycin (mTOR), p‑mTOR, c‑Myc and hypoxia‑inducible factor‑1α (HIF‑1α) were analyzed by western blot or reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). K562/ADM cells exhibited increased glucose consumption and lactate accumulation, increased lactate dehydrogenase, hexokinase and pyruvate kinase activities, and reduced phosphofructokinase activity. In addition, K562/ADM cells expressed significantly more HK‑II and GLUT‑4. Notably, inhibition of glycolysis effectively killed sensitive and resistant leukaemia cells and potently restored the sensitivity of MDR cells to the anticancer agent ADM. The AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (mTOR) signalling pathway, a crucial regulator of glycometabolic homeostasis, mediated over‑activation and upregulation of c‑Myc expression levels in K562/ADM cells, which directly stimulated glucose consumption and enhanced glycolysis. In conclusion, the present