Science.gov

Sample records for n-pentane n-hexane n-heptane

  1. Binary chromatographic data and estimation of adsorbent porosities. [data for system n-heptane/n-pentane

    NASA Technical Reports Server (NTRS)

    Meisch, A. J.

    1972-01-01

    Data for the system n-pentane/n-heptane on porous Chromosorb-102 adsorbent were obtained at 150, 175, and 200 C for mixtures containing zero to 100% n-pentane by weight. Prior results showing limitations on superposition of pure component data to predict multicomponent chromatograms were verified. The thermodynamic parameter MR0 was found to be a linear function of sample composition. A nonporous adsorbent failed to separate the system because of large input sample dispersions. A proposed automated data processing scheme involving magnetic tape recording of the detector signals and processing by a minicomputer was rejected because of resolution limitations of the available a/d converters. Preliminary data on porosity and pore size distributions of the adsorbents were obtained.

  2. A model of reduced oxidation kinetics using constituents and species: Iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane

    SciTech Connect

    Harstad, Kenneth; Bellan, Josette

    2010-11-15

    A previously described methodology for deriving a reduced kinetic mechanism for alkane oxidation and tested for n-heptane is here shown to be valid, in a slightly modified version, for iso-octane and its mixtures with n-pentane, iso-hexane and n-heptane. The model is still based on partitioning the species into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement in the species ensemble, and mathematically decomposing the heavy species into constituents which are radicals. For the same similarity variable found from examining the n-heptane LLNL mechanism in conjunction with CHEMKIN II, the appropriately scaled total constituent molar density still exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures in the cold ignition regime. When extended to larger initial temperatures than for cold ignition, the self-similar behavior becomes initial temperature dependent, which indicates that rather than using functional fits for the enthalpy generation due to the heavy species' oxidation, an ideal model based on tabular information extracted from the complete LLNL kinetics should be used instead. Similarly to n-heptane, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable, but here their slope variation is no longer fitted and instead, their rate equations are used with the ideal model to calculate them. As in the original model, the light species ensemble is partitioned into quasi-steady and unsteady species; the quasi-steady light species mole fractions are computed using the ideal model and the unsteady species are calculated as progress variables using rates extracted from the ideal model. Results are presented comparing the performance of the model with that of the LLNL mechanism using CHEMKIN II. The model reproduces excellently the temperature and species evolution versus time or versus

  3. n-Heptane

    Integrated Risk Information System (IRIS)

    n - Heptane ; CASRN 142 - 82 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  4. n-Hexane

    Integrated Risk Information System (IRIS)

    n - Hexane ; CASRN 110 - 54 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  5. Subchronic Inhalation Toxicity Study of n-pentane in Rats

    PubMed Central

    Cho, Hae-Won; Han, Jeong-Hee; Lee, Sung-Bae; Chung, Yong-Hyun; Rim, Kyung-Taek; Yang, Jeong-Sun

    2012-01-01

    Objectives This study was conducted in order to obtain information concerning the health hazards that may result from a 13 week inhalation exposure of n-pentane in Sprague-Dawley rats. Methods This study was conducted in accordance with the Organization for Economic Co-operation and Development (OECD) guidelines for the testing of chemicals No. 413 'Subchronic inhalation toxicity: 90-day study (as revised in 2009)'. The rats were divided into 4 groups (10 male and 10 female rats in each group), and were exposed to 0, 340, 1,530, and 6,885 ppm n-pentane in each exposure chamber for 6 hour/day, 5 days/week, for 13 weeks. All of the rats were sacrificed at the end of the treatment period. During the test period, clinical signs, mortality, body weights, food consumption, ophthalmoscopy, locomotion activity, urinalysis, hematology, serum biochemistry, gross findings, organ weights, and histopathology were assessed. Results During the period of testing, there were no treatment related effects on the clinical findings, body weight, food consumption, ophthalmoscopy, urinalysis, hematology, serum biochemistry, gross findings, relative organ weight, and histopathological findings. Conclusion The no-observable-adverse-effect level (NOAEL) of n-pentane is evaluated as being more than 6,885 ppm (20.3 mg/L) in both male and female rats. n-pentane was not a classified specific target organ toxicity in the globally harmonized classification system (GHS). PMID:23019535

  6. Polyneuropathy due to n-hexane.

    PubMed

    Paulson, G W; Waylonis, G W

    1976-08-01

    In 25 years, at least eight of 50 total exposed employees in a small plant developed a mild neuropathy. Studies of urine or blood for lead, arsenic, mercury, cadmium, thallium, and antimony revealed no sign of toxic agents, but the atmosphere in one room contained toxic levels of n-hexane. The sourse was the glue used in the plant. Serum cholinesterase levels were reduced, offering a possible laboratory tests to alert clinicians to the possibility of n-hexane exposure. All patients recovered completely. Mechanical and administrative adjustments should prevent such industrial accidents. PMID:182098

  7. Experimental study of boiling-up kinetics and superheat limit for n-hexane on solid powder-like structures

    NASA Astrophysics Data System (ADS)

    Gurashkin, A. L.; Perminov, S. A.; Ermakov, G. V.

    2006-12-01

    The experimental setup is described and results are presented for measuring average boiling-up lag time for superheated n-hexane mixed with solid structures (activated coal, cellulose, silica gel) as function of temperature under atmospheric pressure. The “aging” of the cell with the filler was carried out before measurements: this was about 600 1000 boiling events. We developed a new method for analysing of “aging” procedure: comparison of average flux (frequency) of boiling-up events (processing of experimental data) and the frequency of nucleation obtained from exponential model. By the end of aging of the cell with silica gel the average empirical flux reduces by factor of four relative to the “exponential” value. But for activated coal and cellulose the difference in these fluxes is about 20 %. In all experiments, the event flux was nonstationary. For n-hexane in tested systems, the margin of superheating was T n/T cr ≅ 0.873 0.875, although it was T n/T cr ≅ ≅ 0.883 for n-pentane in systems filled by nickel powder (sintered porous nickel with grains of 1.5 or 5.0 micron size) and in the presence of a smooth copper plate. The average time of boiling-up lag in n-hexane at low normalized temperatures was also smaller than for n-pentane. For all systems, the lag time is almost the same for the temperature range T n/T cr ≅ 0.860 0.874 (plateau). Thus, a smaller amount of superheated liquid or its division into smaller liquid elements does not result in longer liquid lifetime for superheat liquid and the maximal superheat temperature, as one could expect from the classical theory of homogeneous nucleation.

  8. N-hexane neuropathy in offset printers.

    PubMed Central

    Chang, C M; Yu, C W; Fong, K Y; Leung, S Y; Tsin, T W; Yu, Y L; Cheung, T F; Chan, S Y

    1993-01-01

    In an offset printing factory with 56 workers, 20 (36%) developed symptomatic peripheral neuropathy due to exposure to n-hexane. Another 26 workers (46%) were found to have subclinical neuropathy. The initial change in the nerve conduction study was reduced amplitude of the sensory action potentials, followed by reduced amplitude of the motor action potentials, reduction in motor conduction velocities and increase in distal latencies. These changes indicate primary axonal degeneration with secondary demyelination. Sural nerve biopsy in a severe case showed giant axonal swellings due to accumulation of 10nm neurofilaments, myelin sheath attenuation and widening of nodal gaps. The development of neuropathy bore no direct relationship to the duration of exposure, hence factors such as individual susceptibility may be important. Optic neuropathy and CNS involvement were uncommon and autonomic neuropathy was not encountered. Images PMID:8505647

  9. Extinction and Autoignition of n-Heptane in Counterflow Configuration

    SciTech Connect

    Seiser, R.; Pitsch, H.; Seshadri, K.; Pitz, W.J.; Curran, H.J.

    2000-01-12

    A study is performed to elucidate the mechanisms of extinction and autoignition of n-heptane in strained laminar flows under nonpremixed conditions. A previously developed detailed mechanism made UP of 2540 reversible elementary reactions among 557 species is the starting point for the study. The detailed mechanism was previously used to calculate ignition delay times in homogeneous reactors, and concentration histories of a number of species in plug-flow and jet-stirred reactors. An intermediate mechanism made up of 1282 reversible elementary reactions among 282 species and a short mechanism made up of 770 reversible elementary reactions among 160 species are assembled from this detailed mechanism. Ignition delay times in an isochoric homogeneous reactor calculated using the intermediate and the short mechanism are found to agree well with those calculated using the detailed mechanism. The intermediate and the short mechanism are used to calculate extinction and autoignition of n-heptane in strained laminar flows. Steady laminar flow of two counter flowing Streams toward a stagnation plane is considered. One stream made up of prevaporized n-heptane and nitrogen is injected from the fuel boundary and the other stream made up of air and nitrogen is injected from the oxidizer boundary. Critical conditions of extinction and autoignition given by the strain rate, temperature and concentrations of the reactants at the boundaries, are calculated. The results are found to agree well with experiments. Sensitivity analysis is carried out to evaluate the influence of various elementary reactions on autoignition. At all values of the strain rate investigated here, high temperature chemical processes are found to control autoignition. In general, the influence of low temperature chemistry is found to increase with decreasing strain. A key finding of the present study is that strain has more influence on low temperature chemistry than the temperature of the reactants.

  10. The Burning of Large N-Heptane Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Manzello, Samuel L.; Choi, Mun Young; Kazakov, Andrei; Dryer, Frederick L.; Dobashi, Ritsu; Hirano, Toshisuke; Ferkul, Paul (Technical Monitor)

    2000-01-01

    Experimental results are presented on the burning and sooting behavior of large n-heptane droplets in air at atmospheric pressure under microgravity conditions. The experiments were performed at the Japanese Microgravity Center (JAMIC) 10 sec dropshaft in Hokkaido, Japan. Soot volume fraction, burning rate, flame standoff and luminosity were measured for droplets of 2.6 mm and 2.9 mm in initial diameter. These are the largest droplets for which soot volume fraction measurements have ever been performed. Previous measurements of soot volume fractions for n-heptane droplets, confined to smaller droplet sizes of less than 1.8 mm, indicated that maximum soot volume fraction increased monotonically with initial droplet size. The new results demonstrate for the first time that sooting tendency is reduced for large droplets as it has been speculated previously but never confirmed experimentally. The lower soot volume fractions for the larger droplets were also accompanied by higher burning rates. The observed phenomenon is believed to be caused by the dimensional influence on radiative heat losses from the flame. Numerical calculations confirm that soot radiation affects the droplet burning behavior.

  11. Industrial application of catalytic systems for n-heptane isomerization.

    PubMed

    Alemán-Vázquez, Laura Olivia; Cano-Domínguez, José Luis; Torres-García, Enelio; Villagómez-Ibarra, José Roberto

    2011-01-01

    The ideal gasoline must have a high pump octane number, in the 86 to 94 range, and a low environmental impact. Alkanes, as a family, have much lower photochemical reactivities than aromatics or olefins, but only the highly branched alkanes have adequate octane numbers. The purpose of this work is to examine the possibilities of extending the technological alternative of paraffin isomerization to heavier feedstocks (i.e., n-heptane) using non-conventional catalytic systems which have been previously proposed in the literature: a Pt/sulfated zirconia catalyst and a molybdenum sub-oxide catalyst. Under the experimental conditions at which these catalysts have been evaluated, the molybdenum sub-oxide catalyst maintains a good activity and selectivity to isomerization after 24 h, while the Pt/sulfated zirconia catalyst shows a higher dimethylpentanes/methylhexanes ratio, probably due to a lower operating temperature, but also a high formation of cracking products, and presents signs of deactivation after 8 h. Though much remains to be done, the performance of these catalysts indicates that there are good perspectives for their industrial application in the isomerization of n-heptane and heavier alkanes. PMID:21760573

  12. N-heptane adsorption and desorption in mesoporous materials

    NASA Astrophysics Data System (ADS)

    Zaleski, R.; Gorgol, M.; Błazewicz, A.; Kierys, A.; Goworek, J.

    2015-06-01

    Positron Annihilation Lifetime Spectroscopy (PALS) was used for an in situ monitoring of adsorption and desorption processes. The disordered and ordered porous silica as well as the porous polymer were used as adsorbents, while an adsorbate in all the cases was n-heptane. The lifetimes and particularly the intensities of the ortho-positronium(o-Ps) components depend strongly on the adsorbate pressure. The analysis of these dependencies allows us to identify several processes, which are taking place during sorption. At low pressure, an island-like growth of the first layers of the adsorbate on the silica, in a contrary to a swelling of the polymer, is observed. A size of the pores, which remain empty, is estimated at the subsequent stages of the adsorbate condensation and evaporation. The adsorbate thrusting into micropores is deduced at p/p0 > 0.6 whilst the mesopores are still not completely filled.

  13. n-Hexane polyneuropathy in a ball-manufacturing factory

    SciTech Connect

    Huang, C.C.; Shih, T.S.; Cheng, S.Y.; Chen, S.S.; Tchen, P.H. )

    1991-02-01

    Five overt and two occult cases of n-hexane polyneuropathy occurred in a ball-manufacturing factory in Taiwan. The severity of polyneuropathy was directly related to the index of n-hexane exposure that occurred during the processes of cement coating and nylon fiber winding in a poorly ventilated room. The n-hexane concentrations over eight hours of personal sampling of the air of the cement coating and nylon fiber winding areas were 109 ppm and 86 ppm, respectively. After installation of a new factory ventilation system, these seven patients recovered completely, and there were no new cases in the two-year follow-up.

  14. A New Exploration of the Torsional Energy Surface of N-Pentane Using Molecular Modeling Software

    ERIC Educational Resources Information Center

    Galembeck, Sergio E.; Caramori, Giovanni F.; Romero, Jose Ricardo

    2005-01-01

    The torsional potential energy surface of a chemical compounds, the accessible conformations at a specified temperature and the transition states that connect these confirmations establishes many chemical properties such as dynamic behavior, reactivity and biological activity. A conformational search of n-pentane is presented using computational…

  15. Selective optical detection of n-heptane/iso-octane vapors by polyimide lightguides

    NASA Astrophysics Data System (ADS)

    Podgorsek, R. P.; Franke, H.; Feger, C.

    1995-03-01

    The optical anisotropy of planar polyimide lightguides in an atmosphere of n-heptane / iso-octane is investigated in a transient experiment for pure and several mixed-vapor concentrations. The polymer sensor responds only to n-heptane and not to iso-octane vapors. However, the presence of the latter affects the dynamic behavior of the waveguide anisotropy, which can be fitted by a stretched exponential time dependence. The saturation values of the birefringence are an absolute measure for the n-heptane concentration and are not affected by the presence of the iso-octane vapors.

  16. Strategies for mechanism reduction for large hydrocarbons: n-heptane

    SciTech Connect

    Lu, Tianfeng; Law, Chung K.

    2008-07-15

    A 55-species reduced mechanism for n-heptane oxidation was derived from a 188-species skeletal mechanism, which was previously obtained from a detailed mechanism consisting of 561 species using a directed relation graph (DRG). This reduced mechanism was derived by first obtaining a skeletal mechanism with 78 species using DRG-aided sensitivity analysis. The unimportant reactions were eliminated by using the importance index defined in computational singular perturbation (CSP), with a newly posited restriction to treat each reversible reaction as a single reaction. An isomer lumping approach, also developed in the present study, then groups the isomers with similar thermal and diffusion properties so that the number of species transport equations is reduced. It was found that the intragroup mass fractions of the isomers can be approximated as constants in the present reduced mechanism, leading to a 68-species mechanism with 283 elementary reactions. Finally, 13 global quasi-steady-state species were identified using a CSP-based time-scale analysis, resulting in the 55-species reduced mechanism, with 283 elementary reactions lumped into 51 semiglobal steps. Validation of the reduced mechanism shows good agreement with the detailed mechanism for both ignition and extinction phenomena. The inadequacy of the detailed mechanism in predicting the experimental laminar flame speed is also demonstrated. (author)

  17. On the combustion chemistry of n-heptane and n-butanol blends.

    PubMed

    Karwat, Darshan M A; Wagnon, Scott W; Wooldridge, Margaret S; Westbrook, Charles K

    2012-12-27

    High-speed gas sampling experiments to measure the intermediate products formed during fuel decomposition remain challenging yet important experimental objectives. This article presents new speciation data on two important fuel reference compounds, n-heptane and n-butanol, at practical thermodynamic conditions of 700 K and 9 atm, for stoichiometric fuel-to-oxygen ratios and a dilution of 5.64 (molar ratio of inert gases to O(2)), and at two blend ratios, 80%-20% and 50%-50% by mole of n-heptane and n-butanol, respectively. When compared against 100% n-heptane ignition results, the experimental data show that n-butanol slows the reactivity of n-heptane. In addition, speciation results of n-butanol concentrations show that n-heptane causes n-butanol to react at temperatures where n-butanol in isolation would not be considered reactive. The chemical kinetic mechanism developed for this work accurately predicts the trends observed for species such as carbon monoxide, methane, propane, 1-butene, and others. However, the mechanism predicts a higher amount of n-heptane consumed at the first stage of ignition compared to the experimental data. Consequently, many of the species concentration predictions show a sharp rise at the first stage of ignition, a trend that is not observed experimentally. An important discovery is that the presence of n-butanol reduces the measured concentrations of the large linear alkenes, including heptenes, hexenes, and pentenes, showing that the addition of n-butanol affects the fundamental chemical pathways of n-heptane during ignition. PMID:23206273

  18. Process for the solvent deasphalting of asphaltene-containing hydrocarbons

    SciTech Connect

    Ikematsu, M.; Honzyo, I.; Sakai, K.

    1985-06-25

    A process for the solvent deasphalting of asphaltene-containing hydrocarbons which comprising mixing asphaltene-containing hydrocarbons with a metal compound such as aluminum carbonates or titanium (IV) oxide and also with a solvent such as n-heptane, n-hexane, n-heptane or a mixed n-pentane.n-butanol solvent, to form a mixture which is then allowed to stand still to precipitate and separate the asphaltene therefrom thereby obtaining a deasphalted oil.

  19. Process for the solvent deasphalting of asphaltene containing hydrocarbons

    SciTech Connect

    Ikematsu, M.; Honzyo, I.; Sakai, K.

    1985-04-30

    A process for the solvent deasphalting of asphaltene-containing hydrocarbons which comprising mixing asphaltene-containing hydrocarbons with a metal compound such as aluminum sulfate or titanium (IV) oxide and also with a solvent such as n-heptane, n-hexane, n-heptane or a mixed n-pentane.n-butanol solvent, to form a mixture which is then allowed to stand still to precipitate and separate the asphaltene therefrom thereby obtaining a deasphalted oil.

  20. Neuropathy associated with chronic low level exposure to n-hexane

    SciTech Connect

    Ruff, R.L.; Petito, C.K.; Acheson, L.S.

    1981-05-01

    Concentrations of n-hexane greater than the threshold limit value (TLV) of 500 ppm are known to produce peripheral neuropathy. This report describes the case of a worker who developed peripheral neuropathy, with a histologic pattern characteristic of n-hexane toxicity, after chronic on-the-job exposure to n-hexane at concentrations less than 450 ppm. We suggest that the current TLV for n-hexane be reevaluated.

  1. The simulation of organic rankine cycle power plant with n-pentane working fluid

    NASA Astrophysics Data System (ADS)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  2. Ozone production by a dc corona discharge in air contaminated by n-heptane

    NASA Astrophysics Data System (ADS)

    Pekárek, S.

    2008-01-01

    Beneficial purposes of ozone such as elimination of odours, harmful bacteria and mildew can be used for transportation of food, fruits and vegetables with the aim to extend their storage life. To date the main technique used for this purpose in the transportation of these commodities, e.g. by trucks, was cooling. Here a combination of cooling together with the supply of ozone into containers with these commodities is considered. For these purposes we studied the effect of air contamination by n-heptane (part of automotive fuels) and humidity on ozone production by a dc hollow needle to mesh corona discharge. We found that, for both polarities of the needle electrode, addition of n-heptane to air (a) decreases ozone production; (b) causes discharge poisoning to occur at lower current than for air; (c) does not substantially influence the current for which the ozone production reaches the maximum. Finally the maximum ozone production for the discharge in air occurs for the same current as the maximum ozone production for the discharge contaminated by n-heptane. We also found that humidity decreases ozone production from air contaminated by n-heptane irrespective of the polarity of the coronating needle electrode. This dependence is stronger for the discharge with the needle biased positively.

  3. Elucidating the key role of the fungal mycelium on the biodegradation of n-pentane as a model hydrophobic VOC.

    PubMed

    Vergara-Fernández, Alberto; Scott, Felipe; Moreno-Casas, Patricio; Díaz-Robles, Luis; Muñoz, Raúl

    2016-08-01

    The role of the aerial mycelium of the fungus Fusarium solani in the biodegradation of n-pentane was evaluated in a continuous fungal bioreactor (FB) to determine the contribution of the aerial (hyphae) and non-aerial (monolayer) fungal biomass. The experimental results showed that although the aerial biomass fraction represented only 25.9(±3)% on a dry weight basis, it was responsible for 71.6(±4)% of n-pentane removal. The FB attained a maximum elimination capacity (ECmax) of 680(±30) g m(-3) h(-1) in the presence of fungal hyphae (which supported an interfacial area of 5.5(±1.5) × 10(6) m(2) m(-3)). In addition, a mathematical model capable of describing n-pentane biodegradation by the filamentous fungus was also developed and validated against the experimental data. This model successfully predicted the influence of the aerial biomass fraction and its partition coefficient on the n-pentane removal, with EC decreasing from 680(±30) g m(-3) h(-1) to values of 200(±14) g m(-3) h(-1) when the dimensionless partition coefficient increased from 0.21(±0.09) with aerial biomass to 0.88(±0.06) without aerial biomass. PMID:27209557

  4. A model-free temperature-dependent conformational study of n-pentane in nematic liquid crystals

    SciTech Connect

    Burnell, E. Elliott; Weber, Adrian C. J.; Dong, Ronald Y.; Meerts, W. Leo; Lange, Cornelis A. de

    2015-01-14

    The proton NMR spectra of n-pentane orientationally ordered in two nematic liquid-crystal solvents are studied over a wide temperature range and analysed using covariance matrix adaptation evolutionary strategy. Since alkanes possess small electrostatic moments, their anisotropic intermolecular interactions are dominated by short-range size-and-shape effects. As we assumed for n-butane, the anisotropic energy parameters of each n-pentane conformer are taken to be proportional to those of ethane and propane, independent of temperature. The observed temperature dependence of the n-pentane dipolar couplings allows a model-free separation between conformer degrees of order and conformer probabilities, which cannot be achieved at a single temperature. In this way for n-pentane 13 anisotropic energy parameters (two for trans trans, tt, five for trans gauche, tg, and three for each of gauche{sub +} gauche{sub +}, pp, and gauche{sub +} gauche{sub −}, pm), the isotropic trans-gauche energy difference E{sub tg} and its temperature coefficient E{sub tg}{sup ′} are obtained. The value obtained for the extra energy associated with the proximity of the two methyl groups in the gauche{sub +} gauche{sub −} conformers (the pentane effect) is sensitive to minute details of other assumptions and is thus fixed in the calculations. Conformer populations are affected by the environment. In particular, anisotropic interactions increase the trans probability in the ordered phase.

  5. A model-free temperature-dependent conformational study of n-pentane in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Burnell, E. Elliott; Weber, Adrian C. J.; Dong, Ronald Y.; Meerts, W. Leo; de Lange, Cornelis A.

    2015-01-01

    The proton NMR spectra of n-pentane orientationally ordered in two nematic liquid-crystal solvents are studied over a wide temperature range and analysed using covariance matrix adaptation evolutionary strategy. Since alkanes possess small electrostatic moments, their anisotropic intermolecular interactions are dominated by short-range size-and-shape effects. As we assumed for n-butane, the anisotropic energy parameters of each n-pentane conformer are taken to be proportional to those of ethane and propane, independent of temperature. The observed temperature dependence of the n-pentane dipolar couplings allows a model-free separation between conformer degrees of order and conformer probabilities, which cannot be achieved at a single temperature. In this way for n-pentane 13 anisotropic energy parameters (two for trans trans, tt, five for trans gauche, tg, and three for each of gauche+ gauche+, pp, and gauche+ gauche-, pm), the isotropic trans-gauche energy difference Etg and its temperature coefficient Etg ' are obtained. The value obtained for the extra energy associated with the proximity of the two methyl groups in the gauche+ gauche- conformers (the pentane effect) is sensitive to minute details of other assumptions and is thus fixed in the calculations. Conformer populations are affected by the environment. In particular, anisotropic interactions increase the trans probability in the ordered phase.

  6. Asymptotic analysis with reduced chemistry for the burning of n-heptane droplets

    NASA Technical Reports Server (NTRS)

    Card, J. M.; Williams, F. A.

    1992-01-01

    The method of rate-ratio asymptotics is used with reduced chemistry to analyze the flame structure and extinction of an isolated n-heptane droplet burning under quasisteady, spherically symmetrical conditions. The outer transport zones are described by the classical Burke-Schumann solution. The inner reaction zone consists of a thin layer, on the rich side of the flame, where the fuel is consumed, and on the lean side, a broader but still asymptotically thin oxidation layer, where H2 and CO are consumed. Special attention is given to differences in predictions of extinction conditions, caused by different chemical-kinetic approximations in the reduced chemistry, including fuel-chemistry effects through molecules containing more than one carbon atom. From the analysis, extinction diameters for n-heptane droplets are estimated for different pressures and ambient oxygen concentrations. The results show that extinction diameters are extremely sensitive to the number of radicals consumed in breaking down each fuel molecule.

  7. Elasticity and phase behaviour of n-heptane and n-nonane in nanopores

    NASA Astrophysics Data System (ADS)

    Schappert, Klaus; Gemmel, Laura; Meisberger, Dennis; Pelster, Rolf

    2015-09-01

    Here we present an ultrasonic study on the elasticity of normal alkanes (n-heptane and n-nonane) in the nanopores of porous Vycor glass (average pore radius rP = 2.74 \\text{nm} ). Above the melting temperature we have found a non-zero shear modulus for both n-heptane and n-nonane, which is also typical for the rotator phases of bulk alkanes at temperatures below the melting temperature. This points to the formation of a special molecular order of the adsorbed alkanes. Furthermore, the alkanes undergo a continuous stiffening over a broad temperature range (of Δ T > 60 \\text{K} for heptane or Δ T > 120 \\text{K} for nonane). The results clearly indicate that nanoconfinement induces an extremely broad continuous transition of heptane and nonane into a crystalline low-temperature phase.

  8. Electrical conductivity and permittivity of water-AOT-n-heptane microemulsions

    SciTech Connect

    Arcoleo, V.; Goffredi, M.; Liveri, V.T.

    1995-11-01

    Measurements of the electrical conductivity and of the complex permittivity of water-sodium bis(2-ethylhexyl) sulfosuccinate (AOT)-n-heptane microemulsions are reported. The experimental results are rationalized in terms of a hopping mechanism of AOT anions within clusters of reversed micelles. The dependence of the hopping rate and of the cluster dimensions upon the ratio [water]/[AOT] and temperature is discussed.

  9. Volume properties of reverse micellar systems AOT/ n-heptane/DMSO-water

    NASA Astrophysics Data System (ADS)

    Sargsyan, A. R.; Shahinyan, G. A.; Markarian, S. A.

    2014-05-01

    The volume properties of reverse micellar systems bis(2-ethylhexyl) sulfosuccinate sodium salt/ n-heptane/dimethyl sulfoxide-water are studied via densitometry. The presence of dimethyl sulfoxide and the increase in its amount in a dimethyl sulfoxide-water mixed solvent raise the apparent volume of the polar phase. This increase is also observed when the degree of hydration of the polar core and the temperature are raised.

  10. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    PubMed

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. PMID:26574100

  11. Distribution of pesticides in n-hexane/water and n-hexane/acetonitrile systems and estimation of possibilities of their extraction isolation and preconcentration from various matrices.

    PubMed

    Zayats, M F; Leschev, S M; Petrashkevich, N V; Zayats, M A; Kadenczki, L; Szitás, R; Szemán Dobrik, H; Keresztény, N

    2013-04-24

    Distribution of 150 most widely used pesticides of different chemical classes (amides, anilinopirimidines, aromatics, benzenesulfonates, carbamates, dicarboximides, organophosphorus compounds, phenyl esters, phenylureas, pyrazoles, pyrethroids, pyrimidines, strobilurins, sulfamides, triazines, triazoles, etc.) in n-hexane/water and n-hexane/acetonitrile systems was investigated at 25°C. Distribution constants of pesticides (P) have been calculated as ratio of pesticide concentration in n-hexane to its concentration in water or acetonitrile phase. HPLC and GC methods were used for pesticides determination in phases. It was found that the overwhelming majority of pesticides are hydrophobic, i.e. in n-hexane/water system LgP≫0, and the difference in LgP values can reach 9.1 units. Replacement of water for acetonitrile leads to dramatic fall of LgP values reaching 9.5 units. The majority of LgP values in this case are negative and their differences is strongly leveled in comparison with a hexane/water system. Thus, maximal difference in pesticides LgP values for n-hexane/acetonitrile system is 3.2 units. It is shown that n-hexane can be used for selective and efficient extraction and preconcentration of pesticides from water matrices. On the other hand, acetonitrile is effective for the isolation and preconcentration of pesticides from hydrocarbon and vegetable oil matrices. The distribution constants described in the paper may be effectively used for the estimation of possibilities of extraction isolation, preconcentration and separation of pesticides. PMID:23567114

  12. IRIS Toxicological Review and Summary Documents for N-Hexane (External Review Draft)

    EPA Science Inventory

    EPA's assessment of the noncancer health effects and carcinogenic potential of n-hexane was last prepared and added to the IRIS data base in 1990. The IRIS program is updating the IRIS assessment for n-hexane; this update will incorporate health effects information published sin...

  13. A numerical study of thermal and chemical effects in interactions of n-heptane flames with a single surface

    SciTech Connect

    Owston, Rebecca; Magi, Vinicio; Abraham, John

    2007-02-15

    The thermal and chemical effects of a one-dimensional, premixed flame quenching against a single surface are studied numerically. Fuels considered include n-heptane and molar-based mixtures of 95/5 and 70/30 percent n-heptane and hydrogen, respectively. A reduced gas-phase kinetic mechanism for n-heptane is employed. Wall boundary conditions investigated include both an adiabatic and an isothermal wall with temperatures ranging from 298 to 1200 K. The effects of equivalence ratio variations between 0.7 and 3 are investigated. The computations with n-heptane and n-heptane/hydrogen mixtures show that for wall temperatures greater than 400 K heat release rates have a higher value for the wall-interacting flame than for the freely propagating flame. It is also seen that the peak wall heat flux increases with increasing wall temperatures up to 1000 K. Chemical pathway analysis reveals the importance of radical recombination reactions at the surface to the heat release profiles of this study. The effect of H, O, and OH radical recombination near the inert wall is observed to lower the heat release spike on a 750 K isothermal boundary. The concentrations of intermediate hydrocarbons in the near-wall region are studied and related to unburned hydrocarbon formation in an engine cylinder. It is shown that a simple one-step global reaction rate expression for n-heptane fuel conversion cannot reproduce the flame-wall trends observed with the reduced n-heptane mechanism. (author)

  14. Experiments on combusion in reduced gravity and turbulent vaporization of n-heptane droplets

    NASA Astrophysics Data System (ADS)

    Gökalp, I.; Chauveau, C.; Monsallier, G.

    1990-01-01

    A Droplet Burning Facility which allows the investigation of droplet vaporization and burning under various dynamic and thermal conditions has been constructed. The system has been operated during the parabolic flights of the NASA KC135 aircraft. An important set of data has been collected on the low temperature turbulent vaporization and envelope burning of suspended n-heptane droplets at ground and reduced gravity conditions. From digitized images obtained by a rapid video camera, the time evolution of the droplet and the flame dimensions are determined with great accuracy. The information is used to deduce the vaporization rate constant, the flame diameter and the flame standoff ratio under various conditions.

  15. Experimental and modeling investigation of the low-temperature oxidation of n-heptane

    PubMed Central

    Herbinet, Olivier; Husson, Benoit; Serinyel, Zeynep; Cord, Maximilien; Warth, Valérie; Fournet, René; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Wang, Zhandong; Xie, Mingfeng; Cheng, Zhanjun; Qi, Fei

    2013-01-01

    The low-temperature oxidation of n-heptane, one of the reference species for the octane rating of gasoline, was investigated using a jet-stirred reactor and two methods of analysis: gas chromatography and synchrotron vacuum ultra-violet photo-ionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected using gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of temperature (500-1100K), at a residence time of 2s, at a pressure of 800 torr (1.06 bar) and at stoichiometric conditions. The fuel was diluted in an inert gas (fuel inlet mole fraction of 0.005). Attention was paid to the formation of reaction products involved in the low temperature oxidation of n-heptane, such as olefins, cyclic ethers, aldehydes, ketones, species with two carbonyl groups (diones) and ketohydroperoxides. Diones and ketohydroperoxides are important intermediates in the low temperature oxidation of n-alkanes but their formation have rarely been reported. Significant amounts of organic acids (acetic and propanoic acids) were also observed at low temperature. The comparison of experimental data and profiles computed using an automatically generated detailed kinetic model is overall satisfactory. A route for the formation of acetic and propanoic acids was proposed. Quantum calculations were performed to refine the consumption routes of ketohydroperoxides towards diones. PMID:23712100

  16. Statistical thermodynamics of the isomerization reaction between n-heptane and isoheptane.

    PubMed

    Yu, Tao; Zheng, Jingjing; Truhlar, Donald G

    2012-01-14

    We have employed electronic structure calculations and the recently proposed multi-structural (MS) anharmonicity method to calculate partition functions and thermodynamic quantities, in particular entropy and heat capacity, for n-heptane and isoheptane. We included all structures, of which there are 59 for n-heptane and 37 for isoheptane, and we carried out the calculations both in the local harmonic approximation and by including torsional (T) anharmonicity. In addition, ΔS°, ΔH, and ΔG° for the isomerization reaction between these two species were also calculated. It is found that all calculated thermodynamic quantities based on the MS-T approximation in the temperature range from 298 K to 1500 K agree well with experimental data from the American Petroleum Institute (API) tables or Thermodynamics Research Center (TRC) data series and with values obtained from Benson's empirical parameters fit to experiment. This demonstrates not only the high accuracy of the electronic structure calculations but also that the MS-T method can be used to include both multiple-structure anharmonicity and torsional anharmonicity in the calculation of thermodynamic properties for complex molecules that contain many torsions. It also gives us confidence that we can apply the MS-T statistical thermodynamic method to obtain thermodynamic properties (i) over a broader temperature range than that for which data are available in the API tables, TRC data series, or from empirical estimation and (ii) to the many molecules for which experimental data are not available at any temperature. PMID:22119933

  17. n-Hexane-related peripheral neuropathy among automotive technicians--California, 1999-2000.

    PubMed

    2001-11-16

    Solvents, glues, spray paints, coatings, silicones, and other products contain normal (n-) hexane, a petroleum distillate and simple aliphatic hydrocarbon. n-Hexane is an isomer of hexane and was identified as a peripheral neurotoxin in 1964. Since then, many cases of n-hexane-related neurotoxicity have occurred in printing plants, sandal shops, and furniture factories in Asia, Europe, and the United States. This report describes an investigation of n-hexane-associated peripheral neuropathy in an automotive technician, an occupation in which this condition has not been reported, and summarizes the results of two other case investigations in the automotive repair industry. The findings suggest that solvent manufacturers should avoid using hexane when producing automotive degreasing products, and automotive technicians should avoid regular contact with hexane-based cleaning solvents. PMID:11724159

  18. Rate-ratio asymptotic analysis of autoignition of n-heptane in laminar nonpremixed flows

    SciTech Connect

    Seshadri, K.; Peters, N.; Paczko, G.

    2006-07-15

    A rate-ratio asymptotic analysis is carried out to elucidate the mechanisms of autoignition of n-heptane (C{sub 7}H{sub 16}) in laminar, nonpremixed flows. It has been previously established that autoignition of n-heptane takes place in three distinct regimes. These regimes are called the low-temperature regime, the intermediate-temperature regime, and the high-temperature regime. The present analysis considers the high-temperature regime. A reduced chemical-kinetic mechanism made up of two global steps is used in the analysis. The reduced mechanism is deduced from a skeletal mechanism made up of 16 elementary reactions. The skeletal mechanism is derived from a short mechanism made up of 30 elementary reactions. The short mechanism is deduced from a detailed mechanism made up of 56 elementary reactions. In the reduced mechanism, the first global step represents a sequence of fast reactions starting from the rate-limiting elementary reaction between n-heptane and HO{sub 2}. In this global step C{sub 7}H{sub 16} is consumed and hydrogen peroxide (H{sub 2}O{sub 2}) is formed. The second global step represents a sequence of fast reactions starting from the rate-limiting elementary reaction in which H{sub 2}O{sub 2} is consumed and OH is formed. A key aspect of the second global step is that the sequence of fast reactions gives rise to consumption of fuel only without net consumption of H{sub 2}O{sub 2}. This makes the chemical system autocatalytic. The unsteady flamelet equations are used to predict the onset of autoignition. In the flamelet equations a conserved scalar quantity, Z, is used as the independent variable. On the oxidizer side of the mixing layer Z=0, and on the fuel side Z=1. The practical case where the temperature of the oxidizer stream, T{sub 2}, is much greater than the temperature of the fuel stream is considered. Therefore autoignition is presumed to take place close to Z=0. Balance equations are written for C{sub 7}H{sub 16} and H{sub 2}O{sub 2

  19. Phase equilibrium of sodium bis(2-ethylhexyl) phosphate/water/n-heptane/sodium chloride microemulsion

    SciTech Connect

    Shioi, Akihisada; Harada, Makoto; Matsumoto, Keishi )

    1991-09-19

    The microemulsion phase diagram for the sodium bis(2-ethylhexyl) phosphate (SDEHP)/water/n-heptane/sodium chloride system is reported. The salinity effects on the phase diagram are discussed in detail. Cylindrical aggregates were found to exist in the oil-rich region and disklike aggregates in the brine-rich region. The middle-phase microemulsion in equilibrium with both the excess brine and oil phases was concluded to be composed of these microstructures. Sodium bis(2-ethylhexyl) phosphate has a common hydrocarbon tail with sodium bis(2-ethylhexyl) sulfosuccinate (AOT), but the phase equilibrium and the structures of the microemulsion phases in SDEHP system were much different from those in the AOT case. The differences were attributed to those in the shapes of aggregates for the two cases.

  20. Spray evaporation and dispersion of n-heptane droplets within premixed flame

    NASA Astrophysics Data System (ADS)

    Chrigui, Mouldi; Zghal, Ali; Sadiki, Amsini; Janicka, Johannes

    2010-10-01

    A detailed numerical simulation of n-heptane droplets was carried out on a stationary three-dimensional configuration with complex geometry. The investigations focused on spray evaporation and dispersion within a carrier phase that featured operating conditions similar to those found in industrial applications, i.e. elevated pressure and temperature. The simulations were carried out using the Eulerian-Lagrangian approach with two-way coupling. There were two cases. The first dealt with spray characteristics within the preheated carrier phase without considering combustion. The second investigated the influence of combustion on droplet characteristics. Both cases had the same boundary conditions. The numerical simulations used two models to compute the progress variable mean reaction rate that governs the combustion process, which is captured by the Bray-Moss-Libby model.

  1. Measurement of asphaltene particle size distributions in crude oils diluted with n-heptane

    SciTech Connect

    Ferworn, K.A.; Svrcek, W.Y.; Mehrotra, A.K. )

    1993-05-01

    The formation and growth of asphaltene particles from heavy crude oils diluted with n-heptane at 22 C and atmospheric pressure was studied using a laser particle analyzer. The results obtained with six crude oil samples indicate that the asphaltene precipitation is an instantaneous process leading to a unimodal, log-normal distribution. At typical laboratory conditions, the particles remained essentially unaltered in size and population density. A vast majority of the particles were noted to be far from round in shape, with the mean particle size ranging from 4.5 to 291 [mu]m. It was found that the oil-to-diluent ratio is an important parameter in determining the size of the generated asphaltene particles; higher dilution ratios yielded larger particles. The mean asphaltene particle size was also found to increase with the average molar mass and the asphaltene content of crude oils.

  2. Microgravity combustion of isolated n-decane and n-heptane droplets

    NASA Technical Reports Server (NTRS)

    Choi, Mun Y.; Dryer, Frederick L.; Card, John M.; Williams, Forman A.; Haggard, John B.; Borowski, Brian A.

    1992-01-01

    This paper presents recent experimental results on n-heptane droplet combustion from a 5.0 second Zero-Gravity Facility. For these experiments, droplet sizes from 1 mm to 1.75 mm were studied, oxygen mole fractions in nitrogen ranged from 12 to 21 percent, and the pressure was varied from 0.25 to 1 atm. Disruptive burning mechanisms were observed in some of the experiments conducted in air environments. However, this behavior was inhibited by reducing the oxygen concentration and/or the system pressure. The above results suggest that combinations of lower oxygen indices and reduced ambient pressures are important to reducing the effects of sooting on droplet vaporization-rates.

  3. Quasi-isochoric pπT measurements and second virial coefficient of n-heptane

    NASA Astrophysics Data System (ADS)

    Millat, J.; Hendl, H.; Bich, E.

    1994-09-01

    Quasi-isochoric pπT measurements on n-heptane vapor were carried out in the low density region using an improved apparatus that was originally proposed by Opel and Schaffenger ( Wiss. Z. Univ. Rostock N18:871, 1969). The experimental results extend over the temperature range between 350 and 600 K and the density range between 11.5 and 52.2 mol · m-3. Above 473 K a small but significant influence of decomposition was found. Accordingly, a correction scheme assuming a trace of decomposition products was applied to these data. Second virial coefficients were derived with an assumed maximum uncertainty of ±3%.. The results are compared with others in the literature and used to develop an improved correlation function for the temperature dependence of B( T).

  4. Some Recent Observations on the Burning of Isolated N-Heptane and Alcohol Droplets

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.

    2001-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research on Combustion and Fluid Dynamics, the combustion of liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be studied. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions to the collaborative program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. The complementary UCSD contributions apply asymptotic theoretical analyses and are described in the published literature and in a companion communication in this conference. The combined program continues to focus on analyses of results obtained from Fiber Supported Droplet Combustion (FSDC) experiments (FSDC-2, STS- 94) conducted with the above fuels in shuttle cabin air and Droplet Combustion Experiment (DCE) data obtained for unsupported and fiber supported droplets of n-heptane in Helium-Oxygen mixtures and cabin air (STS-83, STS-94). The program is preparing for a second DCE experimental mission using methanol/methanol-water as fuels and helium-oxygen-nitrogen environments. DCE-2 is to be conducted aboard the International Space Station. Emphases of recent Princeton work are on the study of simple alcohols (methanol, ethanol) and alcohol/water mixtures as fuels, with time-dependent measurements of drop size, flame-standoff, liquid-phase composition, and finally, extinction. Ground based experiments have included bench-scale studies at Princeton and collaborative experimental studies in the 2.2 second drop

  5. EFFECTS OF EQUIVALENCE RATIO ON SPECIES AND SOOT CONCENTRATIONS IN PREMIXED N-HEPTANE FLAMES. (R828193)

    EPA Science Inventory

    The micro-structure of laminar premixed, atmospheric-pressure, fuel-rich flames of n-heptane/oxygen/argon has been studied at two equivalence ratios (C/O = 0.63 and C/O = 0.67). A heated quartz microprobe coupled to an online gas chromatography/mass spectrometry (HP 5890 Serie...

  6. An Experimental Study of n-Heptane and JP-7 Extinction Limits in an Opposed Jet Burner

    NASA Technical Reports Server (NTRS)

    Convery, Janet L.; Pellett, Gerald L.; O'Brien, Walter F., Jr.; Wilson, Lloyd G.; Williams, John

    2005-01-01

    Propulsion engine combustor design and analysis requires experimentally verified data on the chemical kinetics of fuel. Among the important data is the combustion extinction limit as measured by observed maximum flame strain rate. The extinction limit relates to the ability to maintain a flame in a combustor during operation. Extinction limit data can be obtained for a given fuel by means of a laminar flame experiment using an opposed jet burner (OJB). Laminar extinction limit data can be applied to the turbulent application of a combustor via laminar flamelet modeling. The OJB consists of two axi-symmetric tubes (one for fuel and one for oxidizer), which produce a flat, disk-like counter-flow diffusion flame. This paper presents results of experiments to measure extinction limits for n-heptane and the military specification fuel JP-7, obtained from an OJB. JP-7 is an Air Force-developed fuel that continues to be important in the area of hypersonics. Because of its distinct properties it is currently the hydrocarbon fuel of choice for use in Scramjet engines. This study provides much-desired data for JP-7, for which very little information previously existed. The interest in n-heptane is twofold. First, there has been a significant amount of previous extinction limit study and resulting data with this fuel. Second, n-heptane (C7H16) is a pure substance, and therefore does not vary in composition as does JP-7, which is a mixture of several different hydrocarbons. These two facts allow for a baseline to be established by comparing the new OJB results to those previously taken. Additionally, the data set for n-heptane, which previously existed for mixtures up to 26 mole percent in nitrogen, is completed up to 100% n-heptane. The extinction limit data for the two fuels are compared, and complete experimental results are included.

  7. Selective Oxidation of n-Hexane by Cu (II) Nanoclusters Supported on Nanocrystalline Zirconia Catalyst.

    PubMed

    Acharyya, Shankha Shubhra; Ghosh, Shilpi; Adak, Shubhadeep; Singh, Raghuvir; Saran, Sandeep; Bal, Rajaram

    2015-08-01

    Cu (II) nanoclusters supported on nanocrystalline zirconia catalyst (with size ~15 nm), was prepared by using cationic surfactant cetyltrimethylammonium in a hydrothermal synthesis method. The catalyst was characterized by XRD, XPS, TGA, SEM, TEM, FTIR and ICP-AES. The catalyst was found to be efficient in selective oxidation of n-hexane to 2-hexanol. An n-hexane conversion of 55%, with a 2-hexanol selectivity of 70% was achieved over this catalyst in liquid phase, without the use of any solvent. The catalyst can be reused several times without any significant activity loss. PMID:26369156

  8. Effects of temperature and pressure on asphaltene particle size distributions in crude oils diluted with n-pentane

    SciTech Connect

    Nielsen, B.B.; Svrcek, W.Y.; Mehrotra, A.K. . Dept. of Chemical and Petroleum Engineering)

    1994-05-01

    The effects of temperature (0--150 C) and pressure (0--5.6 MPa) on the size distribution of asphaltene particles (or agglomerates), formed as a result of diluting the crude oils with n-pentane, were studied using a modified laser particle analyzer. Four crude oils, ranging from an asphaltic condensate to a heavy oil-sand bitumen, were tested in this investigation. The average size of asphaltene agglomerates ranged from 266 to 495 Am. The results suggest that the mean asphaltene particle size increases with pressure and decreases slightly with temperature; however, no trends were evident with the molar mass of crude oils. Although the particle size distributions in most cases were unimodal and described adequately by the log-normal distribution function, bimodal distributions were also identified in certain cases.

  9. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization.

    PubMed

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  10. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    PubMed Central

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  11. Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli.

    PubMed Central

    Aono, R; Negishi, T; Nakajima, H

    1994-01-01

    A variety of genes are involved in determining the level of organic solvent tolerance of Escherichia coli K-12. Gene ostA is one of the genes contributing to the level of organic solvent tolerance. This gene was cloned from an n-hexane-tolerant strain of E. coli, JA300. A JA300-based n-hexane-sensitive strain, OST4251, was converted to the n-hexane-tolerant phenotype by transformation with DNA containing the ostA gene derived from JA300. Thus, the cloned ostA gene complemented the n-hexane-sensitive phenotype of OST4251. Images PMID:7811102

  12. Numerical investigation of kinetic energy dynamics during autoignition of n-heptane/air mixture

    NASA Astrophysics Data System (ADS)

    Lucena Kreppel Paes, Paulo; Brasseur, James; Xuan, Yuan

    2015-11-01

    Many engineering applications involve complex turbulent reacting flows, where nonlinear, multi-scale turbulence-combustion couplings are important. Direct representation of turbulent reacting flow dynamics is associated with prohibitive computational costs, which makes it necessary to employ turbulent combustion models to account for the effects of unresolved scales on resolved scales. Classical turbulence models are extensively employed in reacting flow simulations. However, they rely on assumptions about the energy cascade, which are valid for incompressible, isothermal homogeneous isotropic turbulence. A better understanding of the turbulence-combustion interactions is required for the development of more accurate, physics-based sub-grid-scale models for turbulent reacting flows. In order to investigate the effects of reaction-induced density, viscosity, and pressure variations on the turbulent kinetic energy, Direct Numerical Simulation (DNS) of autoignition of partially-premixed, lean n-heptane/air mixture in three-dimensional homogeneous isotropic turbulence has been performed. This configuration represents standard operating conditions of Homogeneous-Charge Compression-Ignition (HCCI) engines. The differences in the turbulent kinetic energy balance between the present turbulent reacting flow and incompressible, isothermal homogeneous isotropic turbulence are highlighted at different stages during the autoignition process.

  13. Direct numerical simulation of ignition in turbulent n-heptane liquid-fuel spray jets

    SciTech Connect

    Wang, Y.; Rutland, C.J.

    2007-06-15

    Direct numerical simulation was used for fundamental studies of the ignition of turbulent n-heptane liquid-fuel spray jets. A chemistry mechanism with 33 species and 64 reactions was adopted to describe the chemical reactions. The Eulerian method is employed to solve the carrier-gas flow field and the Lagrangian method is used to track the liquid-fuel droplets. Two-way coupling interaction is considered through the exchange of mass, momentum, and energy between the carrier-gas fluid and the liquid-fuel spray. The initial carrier-gas temperature was 1500 K. Six cases were simulated with different droplet radii (from 10 to 30 {mu}m) and two initial velocities (100 and 150 m/s). From the simulations, it was found that evaporative cooling and turbulence mixing play important roles in the ignition of liquid-fuel spray jets. Ignition first occurs at the edges of the jets where the fuel mixture is lean, and the scalar dissipation rate and the vorticity magnitude are very low. For smaller droplets, ignition occurs later than for larger droplets due to increased evaporative cooling. Higher initial droplet velocity enhances turbulence mixing and evaporative cooling. For smaller droplets, higher initial droplet velocity causes the ignition to occur earlier, whereas for larger droplets, higher initial droplet velocity delays the ignition time. (author)

  14. Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling

    SciTech Connect

    Maroteaux, F.; Noel, L.

    2006-07-15

    Homogeneous charge compression ignition (HCCI) is one of the alternatives to reduce significantly engine emissions for future regulations. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engines. The optimization of the engine over the complete engine operation range requires an accurate analysis of the combustion process under all operating conditions; detailed modeling of the HCCI process is an opportunity to realize the engine optimization at lower cost. The combination of CFD computations with detailed chemistry leads to excessive computation times, and is not achievable with current computer capabilities. In this paper, a reduced chemical model for n-heptane is described, in view of its implementation into a CFD simulation code. In the first part, the reduction process to get to the 61-step mechanism is detailed and then the 26-step mechanism is described; this further reduction is carried out under various conditions that include a range of interest in engine applications. The third part is dedicated to extensive validation work in reference to the original detailed mechanism and two reduced mechanisms published in the literature, focusing on the prediction of ignition delay times under constant as well as variable volume conditions. A good and accurate reproduction of both ignition delay times and heat release can be reached with the 26-step model. (author)

  15. Giant rodlike reversed micelles formed by sodium bis(2-ethylhexyl) phosphate in n-heptane

    SciTech Connect

    Yu, Z.J.; Neuman, R.D. )

    1994-08-01

    The solution behaviors of sodium bis(2-ethylhexyl) phosphate (NaDEHP) in n-heptane were investigated by light-scattering and viscosity measurements. NaDEHP forms giant rodlike reversed micelles, with a radius of gyration as large as 53 nm, which violently contrasts with the literature view that the average micellar aggregation numbers in nonaqueous or apolar media are much smaller (seldom exceeding 20) than those in aqueous media. Significantly, a small amount of water plays the role of an antimicellar growth agent; i.e., the reversed micellar size decreases remarkably when [open quotes]dry[close quotes] solutions are exposed to humid air from which water vapor is absorbed or when bulk water is directly added - a behavior which is distinctly opposite to that for sodium bis(2-ethylhexyl) sulfosuccinate/apolar medium systems. Thus, the literature views that large micelles can only be found in aqueous media and that the surfactant headgroups in reversed micelles are linked together by hydrogen bonds are misleading. It is suggested that the primary contribution to the driving force for the growth of rodlike NaDEHP reversed micelles is long-range electrostatic interactions among the headgroups of the surfactant molecules and their counterions, and a possible mechanism for the effect of water is also discussed. 27 refs., 7 figs., 1 tab.

  16. Process for the solvent deasphalting of asphaltene-containing hydrocarbons

    SciTech Connect

    Ikematsu, M.; Honzyo, I.; Sakai, K.

    1985-03-05

    A continuous process for solvent deasphalting asphaltene-containing hydrocarbons which comprises mixing (A) 100 parts by weight of asphaltene-containing hydrocarbons with (B) 0.005-0.5 parts by weight of an amorphous silicon dioxide and/or a silicate compound and also with (C) 5-2000 parts by weight of a solvent such as n-heptane, n-hexane, n-heptane or a mixed n-pentane.n-butanol solvent, to form a mixture which is then allowed to stand still to precipitate and separate the asphaltene therefrom thereby obtaining a deasphalted oil.

  17. Kinetic modeling of autoignition of higher hydrocarbons: n-heptane, n-octane and iso-octane

    SciTech Connect

    Westbrook, C.K.; Pitz, W.J.

    1986-08-01

    In the present paper, the construction of reaction mechanisms for larger fuel molecules is described, drawing heavily on experience and trends established in previous studies of smaller fuel molecules. Sensitivity analysis shows which classes of reaction steps are likely to have the greatest influence on computed results and for which additional experimental information is needed. This process is illustrated for the cases of n-heptane, n-octane, and iso-octane. N-heptane and iso-octane are of interest since they are the reference fuels defining octane number, having octane numbers of 0 and 100, respectively. N-octane is included since it can be compared with n-heptane to illustrate the importance of fuel molecule size with the structure unchanged, and it can be compared with iso-octane to show the influence of molecular structure with molecular size unchanged. Computed results under shock tube and under internal combustion engine conditions will be described to demonstrate how initial pressure, temperature, fuel type, fuel structure, and other important parameters affect the rates of autoignition. These differences will be interpreted in terms of the detailed kinetic reaction mechanism, and strategies for modifying autoignition rates will be discussed. 27 refs., 4 figs., 1 tab.

  18. Fischer-Tropsch synthesis in near-critical n-hexane: Pressure-tuning effects

    SciTech Connect

    Bochniak, D.J.; Subramaniam, B.

    1998-08-01

    For Fe-catalyzed Fischer-Tropsch (FT) synthesis with near-critical n-hexane (P{sub c} = 29.7 bar; T{sub c} = 233.7 C) as the reaction medium, isothermal pressure tuning from 1.2--2.4 P{sub c} (for n-hexane) at the reaction temperature (240 C) significantly changes syngas conversion and product selectivity. For fixed feed rates of syngas (H{sub 2}/CO = 0.5; 50 std. cm{sup 3}/g catalyst) and n-hexane (1 mL/min), syngas conversion attains a steady state at all pressures, increasing roughly threefold in this pressure range. Effective rate constants, estimated assuming a first-order dependence of syngas conversion on hydrogen, reveal that the catalyst effectiveness increases with pressure implying the alleviation of pore-diffusion limitations. Pore accessibilities increase at higher pressures because the extraction of heavier hydrocarbons from the catalyst pores is enhanced by the liquid-like densities, yet better-than-liquid transport properties, of n-hexane. This explanation is consistent with the single {alpha} (= 0.78) Anderson-Schulz-Flory product distribution, the constant chain termination probability, and the higher primary product (1-olefin) selectivities ({approximately}80%) observed at the higher pressures. Results indicate that the pressure tunability of the density and transport properties of near-critical reaction media offers a powerful tool to optimize catalyst activity and product selectivity during FT reactions on supported catalysts.

  19. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    SciTech Connect

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; Lange, Cornelis A. de; Dong, Ronald Y.; Muccioli, Luca Pizzirusso, Antonio Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  20. KINETICS AND SELECTIVITY OF DEEP CATALYTIC OXIDATION OF N-HEXANE AND BENZENE

    EPA Science Inventory

    Deep (complete) catalytic combustion (oxidation) of volatile organic compounds (VOCs) is emerging as an important emission control technique. A fundamental study was carried out for low-temperature deep oxidation of n-hexane and benzene over a 0.1% Pt, 3% Ni/gamma-Al2O3 catalyst....

  1. A Model of Reduced Kinetics for Alkane Oxidation Using Constituents and Species for N-Heptane

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Bellan, Josette

    2011-01-01

    The reduction of elementary or skeletal oxidation kinetics to a subgroup of tractable reactions for inclusion in turbulent combustion codes has been the subject of numerous studies. The skeletal mechanism is obtained from the elementary mechanism by removing from it reactions that are considered negligible for the intent of the specific study considered. As of now, there are many chemical reduction methodologies. A methodology for deriving a reduced kinetic mechanism for alkane oxidation is described and applied to n-heptane. The model is based on partitioning the species of the skeletal kinetic mechanism into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement of the species ensemble. For modeling purposes, the heavy species are mathematically decomposed into constituents, which are similar but not identical to groups in the group additivity theory. From analysis of the LLNL (Lawrence Livermore National Laboratory) skeletal mechanism in conjunction with CHEMKIN II, it is shown that a similarity variable can be formed such that the appropriately non-dimensionalized global constituent molar density exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures that is of interest for predicting n-heptane oxidation. Furthermore, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable. The light species ensemble is partitioned into quasi-steady and unsteady species. The reduced model is based on concepts consistent with those of Large Eddy Simulation (LES) in which functional forms are used to replace the small scales eliminated through filtering of the governing equations; in LES, these small scales are unimportant as far as the overwhelming part of dynamic energy is concerned. Here, the scales thought unimportant for recovering the thermodynamic energy are removed. The concept is tested by

  2. Some Recent Observations on the Burning of Isolated N-Heptane and Alcohol Droplets

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.

    1999-01-01

    In a joint program involving Prof F.A. Williams of the University of California, San Diego and Dr. Vedha Nayagam of the National Center for Microgravity Research on Fluid and Combustion, the combustion of liquid fuel droplets having initial diameters between about 1 mm and 6 mm is being studied. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics through microgravity experiments and theoretical analyses. The Princeton contributions to the collaborative program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. The complementary UCSD contributions apply asymptotic theoretical analyses and are described in the published literature and in a companion communication in this volume. Emphases of the Princeton work are on the study of simple alcohols (methanol, ethanol), alcohol/water mixtures, and pure alkanes (n-heptane, n-decane) as fuels, with time dependent measurements of drop size, flame-stand-off, liquid-phase composition, and finally, extinction. Ground based experiments have included bench-scale studies at Princeton and collaborative experimental studies in the 2.2 and 5.18 second drop towers at NASA-Glenn Research Center. Spacelab studies have included fiber-supported droplet combustion (FSDC) experiments in the Glovebox facility with accompanying numerical analyses. Experiments include FSDC-1, performed on the USML-2 mission in October, 1995 (STS-73) and FSDC-2, on the second flight of the MSL-1 mission in July, 1997 (STS-94).

  3. Monte Carlo versus molecular dynamics simulations in heterogeneous systems: an application to the n-pentane liquid-vapor interface.

    PubMed

    Goujon, Florent; Malfreyt, Patrice; Simon, Jean-Marc; Boutin, Anne; Rousseau, Bernard; Fuchs, Alain H

    2004-12-22

    The Monte Carlo (MC) and molecular dynamics (MD) methodologies are now well established for computing equilibrium properties in homogeneous fluids. This is not yet the case for the direct simulation of two-phase systems, which exhibit nonuniformity of the density distribution across the interface. We have performed direct MC and MD simulations of the liquid-gas interface of n-pentane using a standard force-field model. We obtained density and pressure components profiles along the direction normal to the interface that can be very different, depending on the truncation and long range correction strategies. We discuss the influence on predicted properties of different potential truncation schemes implemented in both MC and MD simulations. We show that the MD and MC profiles can be made in agreement by using a Lennard-Jones potential truncated via a polynomial function that makes the first and second derivatives of the potential continuous at the cutoff distance. In this case however, the predicted thermodynamic properties (phase envelope, surface tension) deviate from experiments, because of the changes made in the potential. A further readjustment of the potential parameters is needed if one wants to use this method. We conclude that a straightforward use of bulk phase force fields in MD simulations may lead to some physical inconsistencies when computing interfacial properties. PMID:15606277

  4. Effect of Pressure on Absorption Spectra of Lycopene in n-Hexane and CS2 Solvents

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Wei-Long; Zheng, Zhi-Ren; Huo, Ming-Ming; Li, Ai-Hua; Yang, Bin

    2010-01-01

    The absorption spectra of lycopene in n-hexane and CS2 are measured under high pressure and the results are compared with β-carotene. In the lower pressure range, the deviation from the linear dependence on the Bayliss parameter (BP) for β-carotene is more visible than that for lycopene. With the further increase of the solvent BP, the 0-0 bands of lycopene and β-carotene red shift at almost the same rate in n-hexane; however, the 0-0 band of lycopene red shifts slower than that of β-carotene in CS2. The origins of these diversities are discussed taking into account the dispersion interactions and structures of solute and solvent molecules.

  5. Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift.

    PubMed

    Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo

    2016-04-01

    Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes. PMID:25966884

  6. Experimental study and chemical analysis of n-heptane homogeneous charge compression ignition combustion with port injection of reaction inhibitors

    SciTech Connect

    Lue, Xingcai; Ji, Libin; Zu, Linlin; Hou, Yuchun; Huang, Cheng; Huang, Zhen

    2007-05-15

    The control of ignition timing in the homogeneous charge compression ignition (HCCI) of n-heptane by port injection of reaction inhibitors was studied in a single-cylinder engine. Four suppression additives, methanol, ethanol, isopropanol, and methyl tert-butyl ether (MTBE), were used in the experiments. The effectiveness of inhibition of HCCI combustion with various additives was compared under the same equivalence ratio of total fuel and partial equivalence ratio of n-heptane. The experimental results show that the suppression effectiveness increases in the order MTBE < isopropanol << ethanol < methanol. But ethanol is the best additive when the operating ranges, indicated thermal efficiency, and emissions are considered. For ethanol/n-heptane HCCI combustion, partial combustion may be observed when the mole ratio of ethanol to that of total fuel is larger than 0.20; misfires occur when the mole ratio of ethanol to that of total fuel larger than 0.25. Moreover, CO emissions strongly depend on the maximum combustion temperature, while HC emissions are mainly dominated by the mole ratio of ethanol to that of total fuel. To obtain chemical mechanistic informations relevant to the ignition behavior, detailed chemical kinetic analysis was conducted. The simulated results also confirmed the retarding of the ignition timing by ethanol addition. In addition, it can be found from the simulation that HCHO, CO, and C{sub 2}H{sub 5}OH could not be oxidized completely and are maintained at high levels if the partial combustion or misfire occurs (for example, for leaner fuel/air mixture). (author)

  7. Inhalation developmental toxicology studies: Teratology study of n-hexane in rats: Final report

    SciTech Connect

    Mast, T.J.

    1987-12-01

    The straight chain hydrocarbon, n-hexane, is a volatile, ubiquitous solvent used in industrial, academic, and smaller commercial environments. The significant opportunity for women of child-bearing age to be exposed to this chemical prompted the undertaking of a study to assess the developmental toxicity of n-hexane in an animal model. Timed-pregnant (30 animals per group) and virgin (10 animals per group) Sprague-Dawley rats were exposed to 0 (filtered air), 200, 1000, and 5000 ppM n-hexane (99.9% purity) vapor in inhalation chambers for 20 h/day for a period of 14 consecutive days. Sperm-positive females were exposed for 6 to 19 days of gestation (dg) and virgins were exposed concurrently for 14 consecutive days. The day of sperm detection was designated as 0 dg for mated females. Adult female body weights were monitored prior to, throughout the exposure period, and at sacrifice. Uterine, placental, and fetal body weights were obtained for gravid females at sacrifice. Implants were enumerated and their status recorded as live fetus, early or late resorption, or dead. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 16 refs., 3 figs., 7 tabs.

  8. Inhalation developmental toxicology studies: Teratology study of n-hexane in mice: Final report

    SciTech Connect

    Mast, T.J.; Decker, J.R.; Stoney, K.H.; Westerberg, R.B.; Evanoff, J.J.; Rommereim, R.L.; Weigel, R.J.

    1988-05-01

    Gestational exposure to n-hexane resulted in an increase in the number of resorbed fetuses for exposure groups relative to the control group; however, the increases were not directly correlated to exposure concentration. The differences were statistically significant for the 200-ppM with respect to total intrauterine death (early plus late resorptions), and with respect to late resorptions for the 5000-ppM group. A small, but statistically significant, reduction in female (but not male) fetal body weight relative to the control group was observed at the 5000-ppM exposure level. There were no exposure-related increases in any individual fetal malformation or variation, nor was there any increase in the incidence of combined malformations or variations. Gestational exposure of CD-1 mice to n-hexane vapors appeared to cause a degree of concentration-related developmental toxicity in the absence of overt maternal toxicity, but the test material was not found to be teratogenic. This developmental toxicity was manifested as an increase in the number of resorptions per litter for all exposure levels, and as a decrease in the uterine: extra-gestational weight gain ratio at the 5000-ppM exposure level. Because of the significant increase in the number of resorptions at the 200-ppM exposure level, a no observable effect level (NOEL) for developmental toxicity was not established for exposure of mice to 200, 1000 or 5000-ppM n-hexane vapors. 21 refs., 3 figs., 9 tabs.

  9. The oxidation of n-butane and n-heptane in a CFR engine; Isomerization reactions and delay of autoignition

    SciTech Connect

    Sahetchian, K.A.; Blin, N.; Rigny, R.; Seydi, A. ); Murat, M. )

    1990-03-01

    During the oxidation of {ital n}-butane in a flow system and also in a motored CFR engine (600 rpm) hydrogen peroxide, primary and secondary butylhydroperoxides, and peracetic acid are formed. In the CFR engine these peroxides appear only when the compression ratio is larger than 10:1 ({ital T}{sub max} = 650 K). No autoignition has been observed. A comparison of {ital n}-butane and {ital n}-heptane oxidation is presented. Isomerization reactions,which are correlated with the alkane structure and the octane number, account for the differences in the experimental results.

  10. Simulation of auto-ignition of iso-octane and n-heptane in an internal combustion engine

    SciTech Connect

    Basevich, V.Ya.; Belyaev, A.A.; Brandshteter, V.

    1994-05-01

    A detailed kinetic mechanism is proposed for the oxidation of iso-octane, n-heptane, and mixtures of them in air (number of particles 43, number of reactions 284), which satisfactorily describes the distinctive features of low-temperature and high-temperature oxidation at an initial temperature of 1200 K, pressure of 15-40 absolute atmospheres or higher, and a fuel excess ratio of 0.5-2. The abbreviated mechanisms obtained to describe the auto-ignition of fuel with an octane number of 90 involve 27 particles (38 reactions) and 18 particles (22 reactions).

  11. Reversed micellar solution-to-bicontinuous microemulsion transition in sodium bis(2-ethylhexyl) phosphate/n-heptane/water system

    SciTech Connect

    Yu, Z.J.; Neuman, R.D.

    1995-04-01

    The solution structures in the three-component system sodium bis(2-ethylhexyl) phosphate (NaDEHP)/n-heptane/water have been investigated by dynamic and static light-scattering, electrical conductivity, and {sup 31}P-NMR spectroscopic and viscometric measurements. A transition in the physicochemical properties was observed over a rather narrow range of W{sub o} (molar ratio of water to NaDEHP) values. Rodlike reversed micelles and swollen rodlike reversed micelles form when W{sub o}< 4. Beyond this W{sub o} range, phase separation occurs at low NaDEHP concentrations, and homogeneous one-phase microemulsions form at high NaDEHP concentrations. It is suggested that the n-heptane-continuous solution of water-swollen reversed micelles transforms to a bicontinuous microemulsion when W{sub o} increases beyond W{sub o} {approx} 4. The bicontinuous microemulsion region ranges between two local viscosity maxima at W{sub o}{approx} 4 and W{sub o}{approx} 100, and an oil-in-water (O/W) microemulsion exists when W{sub o}> 100. Local dynamic domain structures consistent with the bicontinuous microemulsion behaviors are proposed and discussed. 29 refs., 7 figs., 1 tab.

  12. Asymptotic analysis for the burning of n-heptane droplets using a four-step reduced mechanism

    NASA Technical Reports Server (NTRS)

    Card, J. M.

    1993-01-01

    A four-step reduced mechanism is obtained from a minimal chemical-kinetic description, where the effects of the elementary rates are treated as parameters in the expressions for the global rates. This mechanism is used to analyze the extinction characteristics of a single n-heptane droplet burning under quasi-steady, spherically symmetrical conditions. The reaction layer consists of a merged inner zone, on the fuel-rich side of the flame, where fuel and H atoms are consumed thereby producing H2 and CO along with H2O and CO2, and an oxygen-consumption zone, on the fuel-lean side, where H2 and CO are oxidized to produce additional H2O and CO2 along with H radicals. For the inner zone, a parameter mu is identified which describes the ratio of the thickness of a fuel-consumption layer to that of an H-recombination layer. Analytical solutions for the rate of scalar dissipation at extinction are obtained in the limiting cases of mu tending to 0 and mu tending to infinity. From the results of the analysis, extinction diameters for n-heptane droplets are estimated for different pressures and ambient oxygen concentrations.

  13. In vitro antioxidant activity and HPTLC determination of n-hexane extract of Emilia sonchifolia (L.)DC.

    PubMed Central

    Sophia, D.; Ragavendran, P.; Arulraj, C.; Gopalakrishnan, V. K.

    2011-01-01

    The free radical scavenging activities of n-hexane extract of the whole plant of Emilia sonchifolia was evaluated by employing various in vitro assay systems like DPPH radical scavenging activity, superoxide radical scavenging activity and hydrogen peroxide scavenging activity with IC50 values 180, 160 and 160 μg/ml respectively. The results of the study indicate that the n-hexane extract of the whole plant of Emilia sonchifolia possess a significant scavenging effect with increasing concentrations probably due to its antioxidant potential. High performance thin layer chromatography (HPTLC) analysis in the n-hexane extract of Emilia sonchifolia showed the presence of terpenoids which probably may be responsible for the antioxidant activity. Thus, n-hexane extract of Emilia sonchifolia can be used potentially as a bioactive source of natural antioxidants due to the presence of terpenoids in it PMID:24826021

  14. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface

    SciTech Connect

    Lisal, Martin; Izak, Pavel

    2013-07-07

    Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf{sub 2}N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 {mu}mol/m{sup 2} at 300 K. For [bmim][Tf{sub 2}N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are {+-}0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and its value decreases with increase of the n-hexane surface density. The [bmim][Tf{sub 2}N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers.

  15. Effect of adamantane-containing additives on the isomerization of n-heptane in the ionic liquid trimethylammonium hydrochloride-aluminum chloride

    NASA Astrophysics Data System (ADS)

    Vasina, T. V.; Kustov, L. M.; Novakov, I. A.; Orlinson, B. S.

    2013-01-01

    We study the effect of adamantane-containing additives on the process of isomerization of n-heptane in the ionic liquid trimethylammonium hydrochloride-aluminum chloride (1 : 2 mol). It is shown that introducing 1-cyanomethyl-3-cyanoadamantane (5.0 wt %) into the reaction mixture slows conversion and lowers the yield of iso-products by a factor of more than 1.5, while adding adamantylpolyimide (0.5-5.0 wt %) substantially accelerates the isomerization of n-heptane and increases the yield of iso-products. In addition, this reaction proceeds under mild conditions at 40°C in the absence of hydrogen and precious metals.

  16. Adsorption of N-hexane, methanol and water vapor and binary mixtures of N-hexane/water vapor on super activated carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Prado, Jesus Antonio

    Recent times have seen a large rise in the utilization of engineered nanomaterials (ENMs) within a wide variety of industries due to their unique properties. Consequently, the fabrication, application and disposal of ENMs will inevitably lead to their release to the environment. Once ENMs are in the environment, they may undergo atmospheric transformations, such the sorption of hazardous air pollutants (HAPs) or water vapor. These transformed ENMs may then affect the general public through inhalation -- or other pathways of exposure -- and those employed by the ever-growing nanotechnology sector are of particular vulnerability. As a result, it is important to evaluate the adsorption characteristics of a common carbon-based ENM under the presence of HAPs or water vapor which may adsorb onto them. This study investigated the unary and binary gas-phase adsorption of n-hexane, methanol and water vapor on super activated carbon nanoparticles (SACNPs) with a bench-scale adsorption system. Removal efficiencies, breakthrough tests, throughput ratios, adsorption capacities and kinetics modeling were completed to assess the adsorption behavior of the SACNPs.

  17. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    NASA Technical Reports Server (NTRS)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  18. A molecular ;phase ordering; phase transition leading to a modulated aperiodic composite in n-heptane/urea

    SciTech Connect

    Mariette, C.; Huard, M.; Rabiller, P.; Nichols, Shane M.; Ecolivet, C.; Janssen, Ted; Alquist, III, Keith E.; Hollingsworth, Mark D.; Toudic, B.

    2012-07-11

    n-Heptane/urea is an aperiodic inclusion compound in which the ratio of host and guest repeats along the channel axis is very close to unity and is found to have a constant value (0.981) from 280 K to 90 K. Below 280 K, two phase transitions are observed. The first (T{sub c1} = 145 K) is a ferroelastic phase transition that generates superstructure reflections for the host while leaving the guest with 1D order. The second (T{sub c2} = 130 K) is a 'phase ordering' transition to a four-dimensional structure (P2{sub 1}11(0{beta}{gamma})) with pronounced host-guest intermodulation and a temperature dependent phase shift between guests in adjacent channels.

  19. Ir/KLTL zeolites: Structural characterization and catalysis on n-hexane reforming

    SciTech Connect

    Triantafillou, N.D.; Gates, B.C.

    1996-03-01

    Ir/KLTL zeolite catalysts were prepared by incipient wetness impregnation of LTL zeolites with [Ir(NH{sub 3}){sub 5}Cl]Cl{sub 2}. The catalysts were characterized by extended X-ray absorption fine structure (EX-AFS) spectroscopy, infrared spectroscopy, and H{sub 2} chemisorption. EXAFS data show that the average Ir cluster size (after treatment at 300{degrees}C in H{sub 2}) increased from about 7 to 20 {Angstrom} as the zeolite K:Al atomic ratio increased from 0.34 to 1.56. Infrared spectra of adsorbed CO show that the electron donation to the Ir increased as the K:Al ratio increased. In contrast to the performance reported for Pt/KLTL zeolites with metal clusters as small as those observed in the present experiments, the Ir/KLTL catalyst has a low selectivity for dehydrocyclization of n-hexane at 440-480{degrees}C and 1 atm with a H{sub 2}: n-hexane feed molar ratio of 6. Instead, the catalysts are selective for hydrogenolysis. The selectivity is insensitive to the K:Al ratio, but the activity for dehydrocyclization is a maximum at a K:Al atomic ratio of about 1. The results show that even the smallest Ir clusters to which electron donation is significant still behave essentially like metallic Ir in the catalytic reactions. 49 refs., 4 figs., 7 tabs.

  20. n-Hexane hydro-isomerization over promoted Pd/HZSM-5 catalysts

    NASA Astrophysics Data System (ADS)

    Thoa Dao, Thi Kim; Loc Luu, Cam

    2015-09-01

    A series of Pd/HZSM-5 catalysts modified by various metallic species, including Co, Ni, Fe, Re, and Cu, was prepared by sequential impregnation. Contents of Pd and second metals in modified catalysts were 0.8 and 1.0 wt%, respectively. Physico-chemical characteristics of catalysts were investigated by nitrogen physi-sorption (BET), x-ray diffraction (XRD), transmission electron microscopy (TEM), ammonia temperature programmed desorption (NH3-TPD), temperature programmed reduction (TPR) and hydrogen pulse chemisorption (HPC). Coke formation was studied by the method of thermogravimetric analysis (TGA). The activities of catalysts in n-hexane isomerization were studied in a micro-flow reactor under atmospheric pressure at 250 °C, and molar ratio of H2: n-hexane of 5.92. It was found that Co, Ni, Fe, and Re additives exhibited geometric and electronic effects toward Pd/HZSM-5 catalyst, leading to an enhancement of its activity and stability. On the contrary, Cu additive caused Pd/HZSM-5 to become poorer in activity and stability.

  1. [Effect of Acetonitrile and n-hexane on the Immunoassay of Environmental Representative Pollutants].

    PubMed

    Lou, Xue-ning; Zhou, Li-ping; Song, Dan; Yang, Rong; Long, Feng

    2016-01-15

    Based on indirect competitive immunoassay mechanism, bisphenol A (BPA) was detected by the evanescent wave all-fiber immunosensor previously developed with the detection limit of 0.2 microg x L(-1) and the linear detection range of 0.3-33.4 microg x L(-1). The effects of two commonly used organic solvents, including acetonitrile and n-hexane, on the immunosensing assay of BPA were investigated. The influence mechanism of organic solvents on immunosensing assay was discussed. The experimental results showed that the effect of n-hexane on immunosensing assay was negligible even at a high concentration of up to 10%, whereas the effect of acetonitrile on the immunosensing assay was relatively great. BPA could be detected in solutions containing a low concentration of acetonitrile. However, the specific binding reaction between antibody and antigen in homogeneous solution was completely inhibited by high concentrations of acetonitrile, and the quantitative analysis of BPA was not achieved. This might result from the changes of antibody conformation or binding capability between antibody and antigen because acetonitrile replaced a part of the water molecules on the antibody surface. PMID:27078982

  2. Antifungal activity of methanol and n-hexane extracts of three Chenopodium species against Macrophomina phaseolina.

    PubMed

    Javaid, Arshad; Amin, Muhammad

    2009-01-01

    Antifungal activity of methanol and n-hexane leaf, stem, root and inflorescence extracts (1, 2, 3 and 4% w/v) of three Chenopodium species (family Chenopodiaceae) namely Chenopodium album L., Chenopodium murale L. and Chenopodium ambrosioides L. was investigated against Macrophomina phaseolina (Tassi) G. Goid., a soil-borne fungal plant pathogen that has a broad host range and wide geographical distribution. All the extracts of the three Chenopodium species significantly suppressed the test fungal growth. However, there was marked variation among the various extract treatments. Methanol inflorescence extract of C. album exhibited highest antifungal activity resulting in up to 96% reduction in fungal biomass production. By contrast, methanol leaf extract of the same species exhibited least antifungal activity where 21-44% reduction in fungal biomass was recorded due to various employed extract concentrations. The various methanol extracts of C. murale and C. ambrosioides decreased fungal biomass by 62-90 and 50-84%, respectively. Similarly, various n-hexane extracts of C. album, C. murale and C. ambrosioides reduced fungal biomass by 60-94, 43-90 and 49-86%, respectively. PMID:19662577

  3. Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n -hexane

    NASA Astrophysics Data System (ADS)

    Gruener, Simon; Wallacher, Dirk; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2016-01-01

    We experimentally explore pressure-driven flow of water and n -hexane across nanoporous silica (Vycor glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e., a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at least 70 bar. The absence of a sticking boundary layer quantitatively accounts for an enhanced n -hexane permeability in the hydrophobic compared to the hydrophilic nanopores.

  4. Effects of anionic surfactant on n-hexane removal in biofilters.

    PubMed

    Cheng, Yan; He, Huijun; Yang, Chunping; Yan, Zhou; Zeng, Guangming; Qian, Hui

    2016-05-01

    The biodegradability of three anion surfactants by biofilm microorganisms and the toxicity of the most readily biodegradable surfactant to biofilm microorganisms were examined using batch experiments, and the optimal concentration of SDS for enhanced removal of hexane was investigated using two biotrickling filters (BTFs) for comparison. Results showed that SDS could be biodegraded by microorganisms, and its toxicity to microorganisms within the experimental range was negligible. The best concentration of SDS in biofiltration of n-hexane was 0.1 CMC and the elimination capacity (EC) of 50.4 g m(-3) h(-1) was achieved at a fixed loading rate (LR) of 72 g m(-3) h(-1). When an inlet concentration of n-hexane increased from 600 to 850 mg m(-3), the removal efficiency (RE) decreased from 67% to 41% by BTF2 (with SDS) and from 52% to 42% by BTF1 (without SDS). SDS could enhance hexane removal from 43% (BTF1) to 60% (BTF2) at gas empty-bed residence time (EBRT) of 7.5 s and an inlet concentration of 200 mg m(-3). PMID:26907592

  5. A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction

    SciTech Connect

    Zeuch, Thomas; Moreac, Gladys; Ahmed, Syed Sayeed; Mauss, Fabian

    2008-12-15

    Applied to the primary reference fuel n-heptane, we present the chemistry-guided reduction (CGR) formalism for generating kinetic hydrocarbon oxidation models. The approach is based on chemical lumping and species removal with the necessity analysis method, a combined reaction flow and sensitivity analysis. Independent of the fuel size, the CGR formalism generates very compact submodels for the alkane low-temperature oxidation and provides a general concept for the development of compact oxidation models for large model fuel components such as n-decane and n-tetradecane. A defined sequence of simplification steps, consisting of the compilation of a compact detailed chemical model, the application of linear chemical lumping, and finally species removal based on species necessity values, allows a significantly increased degree of reduction compared to the simple application of the necessity analysis, previously published species, or reaction removal methods. The skeletal model derived by this procedure consists of 110 species and 1170 forward and backward reactions and is validated against the full range of combustion conditions including low and high temperatures, fuel-lean and fuel-rich mixtures, pressures between 1 and 40 bar, and local (species concentration profiles in flames, plug flow and jet-stirred reactors, and reaction sensitivity coefficients) and global parameters (ignition delay times in shock tube experiments, ignition timing in a HCCI engine, and flame speeds). The species removal is based on calculations using a minimum number of parameter configurations, but complemented by a very broad parameter variation in the process of compiling the kinetic input data. We further demonstrate that the inclusion of sensitivity coefficients in the validation process allows efficient control of the reduction process. Additionally, a compact high-temperature n-heptane oxidation model of 47 species and 468 reactions was generated by the application of necessity

  6. Simultaneous realization of high catalytic activity and stability for catalytic cracking of n-heptane on highly exposed (010) crystal planes of nanosheet ZSM-5 zeolite.

    PubMed

    Xiao, Xia; Zhang, Yaoyuan; Jiang, Guiyuan; Liu, Jia; Han, Shanlei; Zhao, Zhen; Wang, Ruipu; Li, Cong; Xu, Chunming; Duan, Aijun; Wang, Yajun; Liu, Jian; Wei, Yuechang

    2016-08-01

    Nanosheet ZSM-5 zeolite with highly exposed (010) crystal planes demonstrates high reactivity and good anti-coking stability for the catalytic cracking of n-heptane, which is attributed to the synergy of high external surface area and acid sites, fully accessible channel intersection acid sites, and hierarchical porosity caused by the unique morphology. PMID:27458616

  7. Method 1664, Revision A: n-hexane extractable material (HEM; oil and grease) and silica gel treated n-hexane extractable material (SGT-HEM; non-polar material) by extraction and gravimetry

    SciTech Connect

    Not Available

    1999-02-01

    This method is for determination of n-hexane extractable material (HEM; oil and grease) and n-hexane extractable material that is not adsorbed by silica gel (SGT-HEM; non-polar material) in surface and saline waters and industrial and domestic aqueous wastes. Extractable materials that may be determined are relatively non-volatile hydrocarbons, vegetable oils, animal fats, waxes, soaps, greases, and related materials. This method is capable of measuring HEM and SGT-HEM in the range of 5 to 1000 mg/L, and may be extended to higher levels by analysis of a smaller sample volume collected separately.

  8. Intermolecular dispersion interactions of normal alkanes with rare gas atoms: van der Waals complexes of n-pentane with helium, neon, and argon

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2008-09-01

    Interaction energies of normal pentane with three rare gas atoms (helium, neon, and argon) were calculated using ab initio methods: the second-order Møller-Plesset (MP2), the fourth-order Møller-Plesset (MP4), and coupled cluster with single and double substitutions with noniterative triple excitation (CCSD(T)) levels of theory. Dunning's correlation consistent basis sets up to aug-cc-pVQZ were applied. Eight profiles (246 points for each rare gas atom) of potential energy surface (PES) of all-trans (anti-anti) conformation of n-pentane were scanned. Optimal distances for complex formation were found. MP2 interaction energies at the basis set limit were evaluated by three different methods (Feller's, Helgaker's, and Martin's). The MP2 interaction energy at the basis set limit for a global minimum of n-pentane complex with argon was more than 400 cm -1, so formation of a stable complex (at least at low temperature) can be expected. A comparison with previously published data on propane complexes with rare gas atoms (both computational and experimental) was done. The MP4 level of theory was found to be sufficient for a description of C 5H 12 complexes with helium, neon, and argon.

  9. Reactive extraction of lactic acid with trioctylamine/methylene chloride/n-hexane

    SciTech Connect

    Han, D.H.; Hong, W.H.

    1996-04-01

    The trioctylamine (TOA)/methylene chloride (MC)/n-hexane system was used as the extraction agent for the extraction of lactic acid. Curves of equilibrium and hydration were obtained at various temperatures and concentrations of TOA. A modified mass action model was proposed to interpret the equilibrium and the hydration curves. The reaction mechanism and the corresponding parameters which best represent the equilibrium data were estimated, and the concentration of water in the organic phase was predicted by inserting the parameters into the simple mathematical equation of the modified model. The concentration of MC and the change of temperature were important factors for the extraction and the stripping process. The stripping was performed by a simple distillation which was a combination of temperature-swing regeneration and diluent-swing regeneration. The type of inactive diluent has no influence on the stripping. The stripping efficiencies were about 70%.

  10. Complex formation between excited-state saturated amines and water in n-hexane solution

    SciTech Connect

    Halpern, A.M.; Ruggles, C.J.; Zhang, X.K.

    1987-06-10

    Fluorescence spectra and decay curves of dilute solutions (<3 x 10/sup -4/ M) of triethylamine (TEA), tri-n-propylamine (TPA), and 1,4-diazabicyclo(2.2.2)octane (DABCO) in H/sub 2/O- and D/sub 2/O-saturated n-hexane reveal the presence of a complex formed between the electronically excited amine and water. The decay curves, measured between 273 and 323 K (and at 280 and 360 nm; 300 and 400 nm for DABCO), conform to the standard monomer-excimer photokinetic scheme and are analyzed accordingly. These results indicate that the binding energy of the excited TEA-H/sub 2/O complex (B*) is ca. 7.8 kcal/mol, which is larger than that of the ground-state TEA hydrate. B* for the TPA and DABCO-H/sub 2/O complexes is estimated to be ca. 10 and 8.8 kcal/mol, respectively. Stationary-state measurements are consistent with these assignments. The activation energy for the diffusion of water in n-hexane (assumed to be monomeric) appears to be very small (<1 kcal/mol). The decay constants of the three complexes studied are ca. 3.4 x 10/sup 7/ s/sup -1/ for amine-H/sub 2/O and 2.9 x 10/sup 7/ s/sup -1/ for the amine-D/sub 2/O systems. Intrinsic fluorescence quantum efficiencies of the amine-H/sub 2/O complexes are 0.17, 0.23, and 0.28 for TEA, TPA, and DABCO, respectively, at 303 K. A Foerster cycle analysis of the dry and H/sub 2/O-saturated fluorescence spectra of TEA, when taking the ground-state hydrate into account indicates that the repulsion energy of the post-fluorescence (TEA-H/sub 2/O) complex is ca. 10 kcal/mol.

  11. Thermodynamics of cavity formation in water and n-hexane using the Widom particle insertion method

    NASA Astrophysics Data System (ADS)

    Tomás-Oliveira, Isabel; Wodak, Shoshana J.

    1999-11-01

    The Widom particle insertion (WPI) method is used to compute the free energy, enthalpy, and entropy associated with the creation of empty cavities of different sizes in water and n-hexane. These thermodynamic parameters are computed from the likelihood of encountering such cavities in thermally equilibrated configurations from 4 ns (1 ns=10-9 s) molecular dynamics trajectories of the neat liquids. The obtained free energy values are in excellent agreement with those computed previously, using the same or other methods. We find that the entropy term is large and unfavorable in both liquids, but more so in water than in hexane. The change in internal energy is, on the other hand, virtually zero in hexane and slightly favorable in water. Comparison with scaled particle theory (SPT) predictions shows good agreement for the free energy values for small cavities, but the theory systematically underestimates these values for large cavities. In contrast, the free energy components obtained by the two methods show several significant differences. With WPI, the entropy of cavity formation is unfavorable in both liquids for all cavity sizes. SPT yields an unfavorable entropy only for water. In hexane, however, the predicted entropy is negative for small cavities, but changes sign for cavity radii >1.1 Å. In addition, SPT yields an unfavorable enthalpy of cavity formation in water, whereas with WPI this term is small but favorable. Taking n-hexane as a model for organic solvents, our calculations thus suggest that the process of cavity formation is similar in water and these solvents, a conclusion which seems to make good physical sense. SPT reaches an opposite conclusion, which seems harder to rationalize, and probably arises from the highly simplified solvent model used by this theory.

  12. Environmentally friendly efficient coupling of n-heptane by sulfated tri-component metal oxides in slurry bubble column reactor.

    PubMed

    Ma, Hongzhu; Xiao, Jing; Wang, Bo

    2009-07-30

    SO(4)(2-)/M(x)O(y) is of the greatest interest in solid catalysts and green catalysts. Slurry bubble column reactors are of considerable interest in industrial processes and various biochemical processes. The cetane number (CN) has widely used diesel fuel quality parameter related to the ignition delay time (and combustion quality) of a fuel. CN improvement of diesel fuels is a difficult task that refiners will face in the near future. For that purpose, the tests were designed in which n-heptane is used as the reactant in the air or ozone atmosphere at room temperature (RT) and local atmospheric pressure (LAP) using different catalysts of sulfated tri-component metal oxides SO(4)(2-)/Fe(2)O(3)-TiO2-SnO(2) (SFTSn) and SO(4)(2-)/MnO(2)-TiO2-SnO(2) (SMTSn) in slurry bubble column reactor. The products distribution was analyzed by gas chromatography-mass spectrometry (GC-MS) method and the results show that the relative selectivity of long linear alkane (C(12)-C(28)) reaches the maximum (87.330%) when SMTSn is used as catalyst in flow air at 60 min. Diesel fuel components with higher cetane numbers can be easily obtained from this study. PMID:19124196

  13. Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane

    SciTech Connect

    Lu, Tianfeng; Law, Chung K.

    2006-01-01

    The algorithm of directed relation graph recently developed for skeletal mechanism reduction was extended to overall linear time operation, thereby greatly facilitating the computational effort in mechanism reduction, particularly for those involving large mechanisms. Together with a two-stage reduction strategy and using the kinetic responses of autoignition and perfectly stirred reactor (PSR) with extensive parametric variations as the criteria in eliminating unimportant species, a detailed 561-species n-heptane mechanism and a detailed 857-species iso-octane mechanism were successfully reduced to skeletal mechanisms consisting of 188 and 233 species, respectively. These skeletal mechanisms were demonstrated to mimic well the performance of the detailed mechanisms, not only for the autoignition and PSR systems based on which the reduced mechanisms were developed but also for the independent system of jet-stirred reactor. It was further observed that the accuracy of calculated species concentrations was equivalently bounded by the user-specified error threshold value and that the reduction time for a single reaction state is only about 50 ms for the large iso-octane mechanism.

  14. THE STRUCTURE SENSITIVITY OF n-HEPTANE DEHYDROCYCLIZATION AND HYDROGENOLYSIS CATALYZED BY PLATINUM SINGLE CRYSTALS AT ATMOSPHERIC PRESSURE

    SciTech Connect

    Gillespie, W. D.; Herz, R. K.; Petersen, E. E.; Somorjai, G. A.

    1980-09-01

    The dehydrocyclization and hydrogenolysis of n~heptane catalyzed by platinum single crystal surfaces have been investigated at temperatures from 533 to 603 K in the range of one atmosphere total pressure, The flat (111), stepped (557), and kinked (10,8,7) and (25,10,7) surfaces used tn this study were characterized in ultrahigh vacuum by low energy electron diffraction and Auger electron spectroscopy before and after reaction experiments. The rate of dehydrocyclization to toluene on the four surfaces increased in the order (111) (25,10,7) (557) (10,8,7), Hydrogenolysis, however, increased in the order (557) (10,8,7) (111) (25,10,7), As a result, the selectivity of toluene production versus hydrogenolysis increased by an order of magnitude in the order (25,10,7) (111) (10,8,7) (557). The sum of the rates of hydrogenolysis and toluene production remains relatively constant. The effect of preoxidation of the single crystal catalysts was to increase the rate of hydrogenolysis and decrease the rate of dehydrocyclization, Iri general, the reaction rates decreased with increasing reaction time. This decrease was shown to be the result of the depositon of irreversibly adsorbed carbonaceous species.

  15. Combustion of n-heptane in a shock tube and in a stirred reactor: A detailed kinetic modeling study

    SciTech Connect

    Gaffuri, P.; Curran, H.J.; Pitz, W.J.; Westbrook, C.K.

    1995-04-13

    A detailed chemical kinetic reaction mechanism is used to study the oxidation of n-heptane under several classes of conditions. Experimental results from ignition behind reflected shock waves and in a rapid compression machine were used to develop and validate the reaction mechanism at relatively high temperatures, while data from a continuously stirred tank reactor (cstr) were used to refine the low temperature portions of the reaction mechanism. In addition to the detailed kinetic modeling, a global or lumped kinetic mechanism was used to study the same experimental results. The lumped model was able to identify key reactions and reaction paths that were most sensitive in each experimental regime and provide important guidance for the detailed modeling effort. In each set of experiments, a region of negative temperature coefficient (NTC) was observed. Variation in pressure from 5 to 40 bars were found to change the temperature range over which the NTC region occurred. Both the lumped and detailed kinetic models reproduced the measured results in each type of experiments, including the features of the NTC region, and the specific elementary reactions and reaction paths responsible for this behavior were identified and rate expressions for these reactions were determined.

  16. A rapid compression machine investigation of oxidation and auto-ignition of n-heptane: Measurements and modeling

    SciTech Connect

    Minetti, R.; Carlier, M.; Ribaucour, M.; Therssen, E.; Sochet, L.R.

    1995-08-01

    n-Heptane oxidation and auto-ignition in a rapid compression machine is studied in the low and intermediate temperature regimes at high pressures. Experimental ignition delay times and some phenomenological aspects related to knock in engines are presented, providing additional information at lower temperatures on previously published delays from shock tube experiments. The products of oxidation are identified and time profiles are measured during a two-stage ignition process. Eight C{sub 7} heterocycles, heptenes, lower 1-alkenes, aldehydes, and carbon monoxide are the main species. Their origin is discussed in relation to the isomerization and decomposition of heptylperoxy radicals. The high selectivity observed in the formation of lower 1-alkenes is explained by the scission of the {beta} C-C bond of the {beta}-hydroperoxyheptyl radicals weakened by the presence of oxygen atoms. Numerical simulation of the experiments with Warnatz`a comprehensive chemical mechanism gives satisfactory results for cool flame and total ignition delays, but fails to reproduce the detailed chemistry before auto-ignition.

  17. Lipase-catalyzed synthesis of isoamyl acetate in an ionic liquid/n-heptane two-phase system at the microreactor scale.

    PubMed

    Pohar, Andrej; Plazl, Igor; Žnidaršič-Plazl, Polona

    2009-12-01

    A continuously operated psi-shaped microreactor was used for lipase-catalyzed synthesis of isoamyl acetate in the 1-butyl-3-methylpyridinium dicyanamide/n-heptane two-phase system. The chosen solvent system with dissolved Candida antarctica lipase B, which was attached to the ionic liquid/n-heptane interfacial area due to its amphiphilic properties, was shown to be highly efficient and enabled simultaneous esterification and product removal. At preliminarily selected conditions regarding the type of acyl donor, its molar ratio to alcohol and enzyme concentration, 48.4 g m(-3) s(-1) of isoamyl acetate was produced, which was almost three-fold better as compared to the intensely mixed batch process. This was mainly a consequence of efficient reaction-diffusion dynamics in the microchannel system, where the developed flow pattern comprising of intense emulsification provided a large interfacial area for the reaction and simultaneous product extraction. PMID:19904405

  18. Comparison of oil refining and biodiesel production process between screw press and n-hexane techniques from beauty leaf feedstock

    NASA Astrophysics Data System (ADS)

    Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.

    2016-07-01

    The Beauty Leaf Tree (Callophylum inophyllum) is regarded as an alternative source of energy to produce 2nd generation biodiesel due to its potentiality as well as high oil yield content in the seed kernels. The treating process is indispensable during the biodiesel production process because it can augment the yield as well as quality of the product. Oil extracted from both mechanical screw press and solvent extraction using n-hexane was refined. Five replications each of 25 gm of crude oil for screw press and five replications each of 25 gm of crude oil for n-hexane were selected for refining as well as biodiesel conversion processes. The oil refining processes consists of degumming, neutralization as well as dewaxing. The degumming, neutralization and dewaxing processes were performed to remove all the gums (phosphorous-based compounds), free fatty acids, and waxes from the fresh crude oil before the biodiesel conversion process carried out, respectively. The results indicated that up to 73% and 81% of mass conversion efficiency of the refined oil in the screw press and n-hexane refining processes were obtained, respectively. It was also found that up to 88% and 90% of biodiesel were yielded in terms of mass conversion efficiency in the transesterification process for the screw press and n-hexane techniques, respectively. While the entire processes (refining and transesterification) were considered, the conversion of beauty leaf tree (BLT) refined oil into biodiesel was yielded up to 65% and 73% of mass conversion efficiency for the screw press and n-hexane techniques, respectively. Physico-chemical properties of crude and refined oil, and biodiesel were characterized according to the ASTM standards. Overall, BLT has the potential to contribute as an alternative energy source because of high mass conversion efficiency.

  19. Theoretical Basis for Estimated Test Times and Conditions for Drop Tower and Space-Based Droplet Burning Experiments With Methanol and N-Heptane

    NASA Technical Reports Server (NTRS)

    Marchese, Anthony J.; Dryer, Fredrick L.; Choi, Mun Y.

    1994-01-01

    In order to develop an extensive envelope of test conditions for NASA's space-based Droplet Combustion Experiment (DCE) as well those droplet experiments which can be performed using a drop tower, the transient vaporization and combustion of methanol and n-heptane droplets were simulated using a recently developed fully time-dependent, spherically symmetric droplet combustion model. The transient vaporization of methanol and n-heptane was modeled to characterize the instantaneous gas phase composition surrounding the droplet prior to the introduction of an ignition source. The results for methanol/air showed that the entire gas phase surrounding a 2 mm methanol droplet deployed in zero-g .quickly falls outside the lean flammability limit. The gas phase surrounding an identically-sized n-heptane droplet, on the other hand, remains flammable. The combustion of methanol was then modeled considering a detailed gas phase chemical kinetic mechanism (168 steps, 26 species) and the effect of the dissolution of flame-generated water into the liquid droplet. These results were used to determine the critical ignition diameter required to achieve quasi-steady droplet combustion in a given oxidizing environment. For droplet diameters greater than the critical ignition diameter, the model predicted a finite diameter at which the flame would extinguish. These extinction diameters were found to vary significantly with initial droplet diameter. This phenomenon appears to be unique to the transient heat transfer, mass transfer and chemical kinetics of the system and thus has not been reported elsewhere to date. The extinction diameter was also shown to vary significantly with the liquid phase Lewis number since the amount of water present in the droplet at extinction is largely governed by the rate at which water is transported into the droplet via mass diffusion. Finally, the numerical results for n-heptane combustion were obtained using both 2 step and 96 step semi

  20. Studies of photoionization in liquids using a laser two-photon ionization conductivity technique. [Potoionization of pyrene, fluoranthene and TMPD in liquid n-pentane

    SciTech Connect

    Siomos, K.; Christophorou, L.G.

    1981-01-01

    One-photon ionization studies of solute molecules in a liquid medium are limited by the absorption of the host medium. A laser two-photon ionization (TPI) technique using a frequency tunable dye laser has been developed, whereby the photoionization threshold of a solute molecule was determined from the induced conductivity in the liquid medium under study due to electron-ion pair formation via two-photon ionization of the solute. The two-photon induced electron-ion current is measured as a function of the laser wavelength, lambda/sub laser/. In this paper, results are reported and discussed on the photoionization of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), pyrene and fluoranthene in liquid n-pentane (n-Pt).

  1. Experimental Study of the Density and Viscosity of n-Heptane at Temperatures from 298 K to 470 K and Pressure upto 245 MPa

    NASA Astrophysics Data System (ADS)

    Sagdeev, D. I.; Fomina, M. G.; Mukhamedzyanov, G. Kh.; Abdulagatov, I. M.

    2013-01-01

    The density and viscosity of n-heptane have been simultaneously measured over the temperature range from 298 K to 470 K and at pressures up to 245 MPa using the hydrostatic weighing and falling-body techniques, respectively. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95 % confidence level with a coverage factor of k= 2 is estimated to be 0.15 % to 0.30 %, 0.05 %, 0.02 K, and 1.5 % to 2.0 % (depending on temperature and pressure ranges), respectively. The measured densities were used to develop a Tait-type equation of state for liquid n-heptane. Theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations with pressure-dependent coefficients were used to describe the temperature and pressure dependences of the measured viscosities for liquid n-heptane. The measured values of the density and viscosity were compared in detail with reported data and with the values calculated from a reference EOS and correlation models for the viscosity.

  2. Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2015-01-01

    A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (< or = 2 mm/s), with a sufficiently large fuel injection velocity (1 cm/s), a growing spherical diffusion flame extinguishes at ˜1200 K due to radiative heat losses. This is typically followed by a transition to the low-temperature (cool-flame) regime with a reaction zone (at ˜700 K) in close proximity to the fuel source. The 'cool flame' regime is formed due to the negative temperature coefficient in the low-temperature chemistry. After a relatively long period (˜18 s) of the cool flame regime, a flash re-ignition occurs, associated with flame-edge propagation and subsequent extinction of the re-ignited flame. In a low-speed (˜3 mm/s) airstream (which simulates the slight droplet movement), the diffusion flame is enhanced upstream and experiences a local extinction downstream at ˜1200 K, followed by steady flame pulsations (˜0.4 Hz). At higher air velocities (4-10 mm/s), the locally extinguished flame becomes steady state. The present axisymmetric computational approach helps in revealing the non-premixed 'cool flame' structure and 2D flame-flow interactions observed in recent microgravity droplet combustion experiments.

  3. In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds

    PubMed Central

    Penduka, Dambudzo; Okoh, Anthony I.

    2011-01-01

    We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8–17 mm, while the aqueous fraction was active against 29% with zones of inhibition ranging between 8–11 mm. The minimum inhibitory concentrations (MIC) were within the ranges of 0.079–0.625 mg/mL for the n-hexane extract and 10 to >10 mg/mL for the aqueous extract. The rate of kill experiment carried out for the n-hexane extract only, revealed complete elimination of the initial bacterial population for L. grayi (LAL 15) at 3× and 4× MIC after 90 and 60 min; L. monocytogenes (LAL 8) at 3× and 4× MIC after 60 and 15 min; L. ivanovii (LEL 18) at 3× and 4× MIC after 120 and 15 min; L. ivanovii (LEL 30) at 2, 3 and 4× MIC values after 105, 90 and 15 min exposure time respectively. The rate of kill activities were time- and concentration-dependant and the extract proved to be bactericidal as it achieved a more than 3log10 decrease in viable cell counts after 2 h exposure time for all of the four test organisms at 3× and 4× MIC values. The results therefore show the potential presence of anti-Listerial compounds in Garcinia kola seeds that can be exploited in effective anti-Listerial chemotherapy. PMID:22072929

  4. Inhalation reproductive toxicology studies: Male dominant lethal study of n-hexane in Swiss (CD-1) mice: Final report

    SciTech Connect

    Mast, T.J.; Rommereim, R.L.; Evanoff, J.J.; Sasser, L.B.; Decker, J.R.; Stoney, K.H.; Weigel, R.J.; Westerberg, R.B.

    1988-08-01

    The straight-chain hydrocarbon, n-hexane, is a volatile, ubiquitous solvent routinely used in industrial environments; consequently, the opportunity for industrial, environmental or accidental exposure to hexane vapors is significant. Although myelinated nerve tissue is the primary target organ of hexane, the testes have also been identified as being sensitive to hexacarbon exposure. The objective of this study was to evaluate male dominant lethal effects in Swiss (CD-1) mice after exposure to 0, 200, 1000, or 5000 ppM n-hexane, 20 h/day for 5 consecutive days. Each exposure concentration consisted of 30 randomly selected, proven male breeders; 4 groups. The mice were weighed just prior to the first day of exposure and at weekly intervals until sacrifice. Ten males in each dose group were sacrificed one day after the cessation of exposure, and their testes and epididymides were removed for evaluation of the germinal epithelium. The remaining male mice, 20 per group, were individually housed in hanging wire-mesh breeding cages where they were mated with unexposed, virgin females for eight weekly intervals; new females were provided each week. The mated females were sacrificed 12 days after the last day of cohabitation and their reproductive status and the number and viability of the implants were recorded. The appearance and behavior of the male mice were unremarkable throughout the study period and no evidence of n-hexane toxicity was observed. 18 refs., 3 figs., 11 tabs.

  5. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali, Md Nasim; Majumdar, K; Ray, D P

    2014-07-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r(2) = 0.87, RMSE = 0.580 log10 mg kg(-1), and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r(2) = 0.65 and RMSE 0.261 log10 mg kg(-1)) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. PMID:24686115

  6. High-temperature diffusion of hydrogen, carbon monoxide, and carbon dioxide in liquid n-heptane, n-dodecane, and n-hexadecane

    SciTech Connect

    Matthews, M.A.; Rodden, J.B.; Akgerman, A.

    1987-07-01

    Mutual diffusion coefficients at infinite dilution have been measured for hydrogen, carbon monoxide, and carbon dioxide in the solvents n-heptane, n-dodecane, and n-hexadecane. The data cover the temperature range from 25 to 293/sup 0/C and pressures of 1415 and 3450 kPa. The Taylor dispersion method was used for diffusion measurements. It was found that the Sovova correlation for diffusion of dissolved gases in liquids failed to predict diffusivities at temperatures above ambient. A free-volume approach to correlation is indicated instead.

  7. Determination of the boiling-point distribution by simulated distillation from n-pentane through n-tetratetracontane in 70 to 80 seconds.

    PubMed

    Lubkowitz, Joaquin A; Meneghini, Roberto I

    2002-01-01

    This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode. PMID:12049156

  8. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1

    NASA Astrophysics Data System (ADS)

    Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed

    2016-01-01

    In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.

  9. Reverse Micelle Formation of Triton X-100 in Butanol and n-Heptane Mixed Solvents Studied by the Positron Annihilation Technique

    PubMed

    Das; Ganguly

    1997-08-01

    The positron annihilation technique (PAT) has been applied to study the molecular association phenomenon of Triton X-100 (TX-100) and formation of reversed micelles in the mixed solvent of butanol and n-heptane. The results indicate the sensitivity of positronium (Ps) parameters to the phase transition region due to the self-aggregation phenomenon of TX-100 within the system. The intensity of the long-lived ortho-Ps component, I3, and its lifetime, tau3, show a remarkable change at a critical concentration of the surfactant at approximately 1.5 mM coined as the operational CMC of TX-100 in both (1:1) and (1:2) butanol-n-heptane (BuHp) systems. The narrow component/para-Ps intensity as computed from Doppler broadening of annihilation radiation indicates discernable changes at the same concentration region ( approximately 1.5 mM) of TX-100 in the system. Further, microphase changes due to the association of water molecules within the nonaqueous phase has been studied by Ps parameters, which reveals a clear demarcation of the polar and nonpolar zones. PMID:9268557

  10. A new organized media: glycerol:N,N-dimethylformamide mixtures/AOT/n-heptane reversed micelles. The effect of confinement on preferential solvation.

    PubMed

    Durantini, Andrés M; Falcone, R Dario; Silber, Juana J; Correa, N Mariano

    2011-05-19

    In this work we investigate the behavior of the glycerol (GY):N,N-dimethylformamide (DMF) mixture in homogeneous and sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane reversed micelles (RMs) media. To achieve this goal we have used the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as an absorption probe, and dynamic light scattering (DLS). QB shows strong preferential solvation when it is dissolved in the GY:DMF mixture, and, as QB is a good hydrogen bond acceptor molecular probe, it is preferentially solvated by the GY-DMF hydrogen-bonded (H-bonded) species. On the other hand, when the GY:DMF mixture was investigated in AOT RMs, the results show that the mixture is encapsulated in the polar core of the AOT RMs. DLS confirms the formation of the GY:DMF/AOT/n-heptane RMs since an increase in the W(s)=([GY]+[DMF])/[AOT] values causes an increment in the RMs droplets sizes. The solvatochromic behavior of QB, which resides at the AOT RMs interface, shows that QB is mostly solvated by GY molecules, especially at low W(s) values. Thus, it seems that upon encapsulation inside the polar core of the AOT RMs, the GY-DMF interaction diminishes due to the strong AOT-GY interaction. (1)H NMR chemical shifts of GY and DMF measured in the different AOT RMs investigated shows that GY and DMF behave practically as noninteracting solvents inside the RMs. PMID:21517031

  11. [An experimental study on the neurotoxicity of 2-octanone and 2-hexanol, a metabolite of n-hexane].

    PubMed

    Misumi, J; Nagano, M; Nomura, S

    1982-09-01

    An electrophysiological study of the neurotoxicity of 2-octanone (an analogue of methyl n-butyl ketone) and 2-hexanol (a metabolite of n-hexane) was conducted on rats as a part of the study to determine the specific molecular arrangement required for the development of peripheral neuropathy. The compound 2-octanone or 2-hexanol was administered subcutaneously in the daily dose of 400 mg/kg of each compound into the back of seven rats, weighing 290 g, 5 days per week for a period of 21 weeks. Animals treated with 2-octanone for 21 weeks failed to exhibit apparent clinical and neurophysiological evidence except a slight inhibition of weight gain and narcotic effects after treatment with the compound. The same doses of 2-hexanol for 21 weeks caused hypersalivation, gait disturbances, crossing phenomena of hind limbs and a failure of normal growth. Retardation of the conduction velocity in the motor and sensory nerve fibers and the prolonged motor latencies of the tail nerves (distal part) began to appear at the 14th week of the experiment when 9.6 g in the total dose had been given to each animal. These changes were intensified in the subsequent course of the experiment. Our previous experiments and the present results showed that n-hexane barely produced peripheral neuropathy in doses over 10.5 g, and that 2-hexanone (MBK), 2,5-hexanediol or 2,5-hexanedione never failed to produce a neuropathy even in doses less than 9.6 g of each compound. The above results suggest that the neurotoxic potency of 2-hexanol is greater than that of n-hexane but less than that of MBK, 2,5-hexanediol or 2,5-hexanedione. PMID:6296504

  12. cis-trans photoisomerization of 1,3,5,7-octatetraene in n-hexane at 4.2 K

    PubMed Central

    Granville, Mark F.; Holtom, Gary R.; Kohler, Bryan E.

    1980-01-01

    Photoisomerization of the linear polyene 1,3,5,7-octatetraene has been observed in an n-hexane matrix maintained at the boiling point of helium. To a good approximation, only the trans,trans and cis,trans isomers participate in the photochemistry. These compounds have been unambiguously identified by comparing the observed high-resolution fluorescence spectra to those of chromatographically purified reference compounds. Although the quantum yield of this process is probably low, its microscopic rate seems to compete favorably with vibrational deactivation. PMID:16592751

  13. Reflectometric measurement of n-hexane adsorption on ZnO2 nanohybrid film modified by hydrophobic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sebők, Dániel; Csapó, Edit; Ábrahám, Nóra; Dékány, Imre

    2015-04-01

    Zinc-peroxide/poly(styrenesulfonate) nanohybrid thin films (containing 20 bilayers: [ZnO2/PSS]20, d ∼ 500 nm) were prepared using layer-by-layer (LbL) method. The thin film surface was functionalized by different surface modifying agents (silanes, alkylthiols and hydrophobized nanoparticles). Based on the experimental results of quartz crystal microbalance (QCM) and contact angle measurements (as prequalifications) the octanethiol covered gold nanoparticles (OT-AuNPs) were selected for further vapour adsorption studies. Reflectometric interference spectroscopy (RIfS) was used to measure n-hexane vapour adsorption on the original and modified nanohybrid films in a gas flow platform. The thin film provides only the principle of the measurement (by interference phenomenon), the selectivity and hydrophobicity is controlled and enhanced by surface functionalization (by dispersion interaction between the alkyl chains). The interference pattern shift (Δλ) caused by the increase of the optical thickness of the thin film due to vapour adsorption was investigated. It was found that due to the surface functionalization by hydrophobic nanoparticles the effect of water vapour adsorption decreased significantly, while for n-hexane opposite tendency was observed (the effective refractive index and thus the interference pattern shift increased drastically). The correlation between QCM technique and optical method (RIfS) was specified: linear specific adsorbed amount vs. wavelength shift calibration curves were determined in the pr = 0-0.4 relative vapour pressure range. The thin film is suitable for sensorial application (e.g. volatile organic compound/VOC sensor).

  14. Crystallization of thin water films on graphite: Effects of n-hexane, formaldehyde, acetone, and methanol additives

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2015-12-01

    Interactions of molecular additives with amorphous solid water have been investigated using time-of-flight secondary ion mass spectrometry and temperature programmed desorption. The crystallization temperature of water on a clean graphite substrate decreases from the bulk value of 160 K to 150 K when water deposition temperature increases from 20 K to 100 K. This phenomenon is induced by the formation of a specifically oriented water layer at the interface, as evidenced by that a submonolayer of n-hexane adspecies on graphite quenches this behavior. Thermal desorption spectra of additives reflect their hydration forms. The n-hexane molecules are trapped in the interior of a porous water film via hydrophobic hydration and released explosively during crystallization. The thermal desorption spectra of methanol resemble those of water from multilayer films because methanol can enter the hydrogen-bond network of water via hydrophilic hydration. The hydration of formaldehyde is hydrophobic in nature despite the presence of the polar carbonyl group. Features of both hydrophilic and hydrophobic hydrations are identifiable in acetone-water interactions; the branching ratio depends on the water preparation method and substrate.

  15. Thermodiffusion, molecular diffusion and Soret coefficient of binary and ternary mixtures of n-hexane, n-dodecane and toluene.

    PubMed

    Alonso de Mezquia, David; Wang, Zilin; Lapeira, Estela; Klein, Michael; Wiegand, Simone; Mounir Bou-Ali, M

    2014-11-01

    In this study, the thermodiffusion, molecular diffusion, and Soret coefficients of 12 binary mixtures composed of toluene, n-hexane and n-dodecane in the whole range of concentrations at atmospheric pressure and temperatures of 298.15 K and 308.15 K have been determined. The experimental measurements have been carried out using the Thermogravitational Column, the Sliding Symmetric Tubes and the Thermal Diffusion Forced Rayleigh Scattering techniques. The results obtained using the different techniques show a maximum deviation of 9% for the thermodiffusion coefficient, 8% for the molecular diffusion coefficient and 2% for the Soret coefficient. For the first time we report a decrease of the thermodiffusion coefficient with increasing ratio of the thermal expansion coefficient and viscosity for a binary mixture of an organic ring compound with a short n-alkane. This observation is discussed in terms of interactions between the different components. Additionally, the thermogravitational technique has been used to measure the thermodiffusion coefficients of four ternary mixtures consisting of toluene, n-hexane and n-dodecane at 298.15 K. In order to complete the study, the values obtained for the molecular diffusion coefficient in binary mixtures, and the thermodiffusion coefficient of binary and ternary mixtures have been compared with recently derived correlations. PMID:25376978

  16. Rate constant for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-06

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants.

  17. Mesoporous Aluminosilicate Catalysts for the Selective Isomerization of n-Hexane: The Roles of Surface Acidity and Platinum Metal.

    PubMed

    Musselwhite, Nathan; Na, Kyungsu; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2015-08-19

    Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brönsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed. PMID:26168190

  18. Molecular motion of benzene, n-hexane, and cyclohexane in potassium zeolite L studied by deuterium NMR

    SciTech Connect

    Silbernagel, B.G.; Garcia, A.R.; Newsam, J.M.; Hulme, R. )

    1989-08-24

    The molecular motions of perdeuterated benzene, n-hexane, and cyclohexane sorbed at loading levels of 1 molecule per channel lobe (or, equivalently, per unit cell) in potassium zeolite L have been examined by {sup 2}H nuclear magnetic resonance (NMR) for 100 K {le} T {le} 350 K. Benzene (C{sub 6}D{sub 6}) gives a broad signal with, for T < {approx} 150 K, a quadrupolar splitting of half of the static value, interpreted in terms of rapid reorientation in the molecular plane. This mode of motion is consistent with the location of benzene in capping positions above channel wall site potassium cations observed at 78 K by powder neutron diffraction. For temperatures above {approx} 250 K, a less broad component (interpreted as indicating activated benzene site hopping) develops. Sorbed n-hexane (C{sub 6}H{sub 14}) also shows no evidence for isotropic motion. Two distinct spectral components, associated respectively with the methyl and methylene deuterons, are observed. The magnitudes of the {sup 2}H quadrupolar coupling strengths can be interpreted solely in terms of torsional rotations about the carbon-carbon bonds. The temperature dependence of the {sup 2}H spin-lattice relaxation processes suggests an activation energy of {approx} 2 kcal mol{sup {minus}1} for these C-C bond rotations, consistent with earlier studies of bond rotation in alkanes. Sorbed cyclohexane (C{sub 6}D{sub 12}) shows a transition in the dynamical behavior (on the time scale of the {sup 2}H NMR experiment) in the vicinity of 280 K. Close to 280 K , a narrow signal is observed consistent with effectively isotropic reorientations, but both above and below 280 K there is a significant residual quadrupole interaction. The narrow component decreases rapidly with temperature, becoming unobservable below 230 K.

  19. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Hu, Feng; Chang, Yu-Qiang; Zhou, Yan; Wang, Peng; Zhang, Jian-Ping

    2015-07-01

    Siphonaxanthin and siphonein are two keto-carotenoids. Upon anthracene-sensitizing, triplet excitation dynamics of these two carotenoids were studied in n-hexane and in methanol, respectively, by ns flash photolysis spectroscopy. In n-hexane, bleaching of the ground state absorption (GSB) and the excitation triplet (3Car*) absorption were observed. In methanol, upon the decay of the 3Car*, the cation dehydrodimer of carotenoid, #[Car]2+, generated by the same rate, while an additional GSB generated synchronously, a polar solvent assisted and anthracene-sensitized mechanism was addressed based on the discussion. The environment-sensitive triplet excitation dynamics imply their potential role in photo-protection in vivo.

  20. Supercritical SC-CO2 and Soxhlet n-Hexane Extract of Tunisian Opuntia ficus indica Seeds and Fatty Acids Analysis

    PubMed Central

    Yeddes, Nizar; Chérif, Jamila Kalthoum; Jrad, Amel; Barth, Danielle; Trabelsi-Ayadi, Malika

    2012-01-01

    The fatty acids profiles of Tunisian Opuntia ficus indica seeds (spiny and thornless form) were investigated. Results of supercritical carbon dioxide (SC-CO2) and soxhlet n-hexane extract were compared. Quantitatively, the better yield was obtained through soxhlet n-hexane: 10.32% (spiny) and 8.91% (thornless) against 3.4% (spiny) and 1.94% (thornless) by SC-CO2 extract (T = 40°C, P = 180 bar, time = 135 mn, CO2 flow rate = 15 mL·s−1). Qualitatively, the main fatty acids components were the same for the two types of extraction. Linoleic acid was the major compound, SC-CO2: 57.60% (spiny), 59.98% (thornless), soxhlet n-hexane: 57.54% (spiny), 60.66% (thornless), followed by oleic acid, SC-CO2: 22.31% (spiny), 22.40% (thornless), soxhlet n-hexane: 25.28% (spiny), 20.58% (thornless) and palmitic acid, SC-CO2: 14.3% (spiny), 12.92% (thornless), soxhlet n-hexane: 11.33% (spiny), 13.08% (thornless). The SC-CO2 profiles fatty acids showed a richness with other minority compounds such as C20:1, C20:2, and C22.The seeds oil was highly unsaturated (US = 4.44–5.25), and the rising temperatures donot affect the selectivity of fatty acids extract by SC-CO2: US = 4.44 (T = 40°C) and 4.13 (T = 70°C). PMID:22754699

  1. Antiestrogenic and Anti-Inflammatory Potential of n-Hexane Fraction of Vitex negundo Linn Leaf Extract: A Probable Mechanism for Blastocyst Implantation Failure in Mus musculus

    PubMed Central

    Jivrajani, Mehul; Ravat, Nirav; Anandjiwala, Sheetal; Nivsarkar, Manish

    2014-01-01

    The anti-implantation potential of different fractions of Vitex negundo Linn leaf extract was evaluated in female Swiss Albino mice. Animals from different groups were dosed orally either with 0.2% agar (vehicle) or with fractions of V. negundo leaf extract (n-hexane, chloroform, n-butanol, and remnant fractions) at 10:00 a.m., from day 1 to day 6 of pregnancy. The pregnant females from each group were sacrificed on different days of pregnancy (n = 6), and uterus was excised and used for estimation of lipid peroxidation and assay of superoxide dismutase activity as a marker for blastocyst implantation. Animals treated with n-hexane fraction showed altered level of superoxide anion radical and superoxide dismutase activity as compared to control animals. The probable mechanism by which this extract exhibits inhibition of blastocyst implantation is through the anti-inflammatory and antiestrogenic potential. PMID:27351007

  2. Effect of carriers on physico-chemical properties and activity of Pd nano-catalyst in n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thoa Dao, Thi Kim; Nguyen, Tri; Huong Bui, Thanh; Yen Dang, Thi Ngoc; Hoang, Minh Nam; Thoang Ho, Si

    2013-12-01

    In this work zeolites HY, HZSM-5 and mixes of zeolites with γ-Al2O3 in different ratios were taken as carriers for 0.8 wt% Pd catalysts. Physico-chemical characteristics of the catalysts were determined by methods of Brunauer-Emmett-Teller (BET)-N2 adsorption, x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), hydrogen pulse chemisorption (HPC) and NH3 adsorption-desorption. The activity of catalysts was studied at 225-450 °C, at 0.1 and 0.7 MPa with molar ratio of H2:n-C6H14 = 5.92 and n-hexane concentration 9.2 mol%. Mixing of γ-Al2O3 with zeolite made acidity of catalyst weaken and led to a decrease of Pd cluster size, to an increase of Pd dispersity and a reduction of the extent of Pd in the case of catalyst Pd/HY; but for the catalyst Pd/HZSM-5 such mixing led to the reverse effect. That is why the increase of activity in the first case and the decrease of activity in the second case have been observed. It has been found that the optimal ratio of mixed carrier is γ-Al2O3:HY = 2.5:1 and the optimal calcined temperature of NH4ZSM-5 to obtain HZSM-5 is 500-550 °C. An increase of reaction pressure from 0.1 to 0.7 MPa remarkably increased the activity, selectivity and stability of Pd-based catalysts.

  3. Characterization of digestive enzymes from de-oiled mackerel (Scomber japonicus) muscle obtained by supercritical carbon dioxide and n-hexane extraction as a comparative study.

    PubMed

    Asaduzzaman, A K M; Chun, Byung-Soo

    2015-06-01

    The oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 °C and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel samples showed same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperature of amylase, lipase, protease and trypsin was 40, 50, 60 and 30 °C, respectively of both extracts. More than 80 % temperature stability of amylase, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane. PMID:26028731

  4. Inhalation reproductive toxicology studies: Sperm morphology study of n-hexane in B6C3F1 mice: Final report

    SciTech Connect

    Mast, T.J.; Hackett, P.L.; Decker, J.R.; Westerberg, R.B.; Sasser, L.B.; McClanahan, B.J.; Rommereim, R.L.; Evanoff, J.J.

    1988-08-01

    The straight-chain hydrocarbon, n-hexane, is a volatile, ubiquitous solvent routinely used in industrial environments. Although myelinated nerve tissue is the primary target organ of hexane, the testes have also been identified as being sensitive to hexacarbon exposure. The objective of this study was to evaluate the epididymal sperm morphology of male B6D3F1 mice 5 weeks after exposure to 0, 200, 1000, or 5000 ppM n-hexane, 20 h/day for 5 consecutive days. Two concurrent positive control groups of animals were injected intraperitoneally with either 200 or 250 mg/kg ethyl methanesulfonate, a known mutagen, once each day for 5 consecutive days. The mice were weighed just prior to the first day of exposure and at weekly intervals until sacrifice. During the fifth post-exposure week the animals were killed and examined for gross lesions of the reproductive tract and suspensions of the epididymal sperm were prepared for morphological evaluations. The appearance and behavior of the mice were unremarkable throughout the experiment and there were no deaths. No evidence of lesions in any organ was noted at sacrifice. Mean body weights of male mice exposed to n-hexane were not significantly different from those for the 0-ppM animals at any time during the study. Analyses of the sperm morphology data obtained 5 weeks post-exposure (the only time point examined) indicated that exposure of male mice to relatively high concentrations of n-hexane vapor for 5 days produced no significant effects on the morphology of sperm relative to that of the 0-ppM control group. 24 refs., 2 figs., 7 tabs.

  5. Influence of turbulence-chemistry interaction for n-heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation

    NASA Astrophysics Data System (ADS)

    Bolla, Michele; Farrace, Daniele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2014-03-01

    The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8‑21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results.

  6. Antihyperglycemic and antihyperlipidemic effects of n-hexane fraction from the hydro-methanolic extract of sepals of Salmalia malabarica in streptozotocin-induced diabetic rats.

    PubMed

    De, Debasis; Ali, Kazi Monjur; Chatterjee, Kausik; Bera, Tushar Kanti; Ghosh, Debidas

    2012-01-01

    Bio-efficacy of n-hexane fraction of sepal of Salmalia malabarica was evaluated covering the biochemical sensors for the management of hyperglycemic and hyperlipidemic effects. Evaluation of n-hexane fraction of Salmalia malabarica (SMH) from hydro-methanolic (2:3) extract at the dose of 0.1 gm/kg body weight twice a day were investigated in normal and streptozotocin (STZ) induced diabetic rats. Normal and STZ-induced diabetic rats were divided into five groups. The effect of the fraction on fasting blood glucose (FBG), serum insulin, hemoglobin, glycated hemoglobin, total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDLc), low density lipoprotein cholesterol (LDLc), very low density lipoprotein cholesterol (VLDLc), phospholipids, free fatty acids, urea, uric acid, creatinine, albumin and transaminases were investigated in STZ-induced diabetic rat. A significant reduction of FBG level was observed after SMH treatment in STZ-induced diabetic rat. Treatment of diabetic rats with n-hexane fraction of this plant restored the levels of the above biochemical sensors significantly (p<0.001) in respect to the control. Histological studies of pancreas showed a qualitative diminution in the area of the islet's of Langerhans in diabetic group which was recovered by said fraction. Phytochemical screening of the fraction revealed the presence of flavonoids, terpenoids and steroids. PMID:22732718

  7. Enthalpy difference between conformations of normal alkanes: Intramolecular basis set superposition error (BSSE) in the case of n-butane and n-hexane

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2008-10-01

    In this paper, an extra error source for high-quality ab initio calculation of conformation equilibrium in normal alkanes—intramolecular basis set superposition error (BSSE)—is discussed. Normal butane (n-butane) and normal hexane (n-hexane) are used as representative examples. Single-point energy difference and BSSE values of trans and gauche conformations for n-butane (and trans-trans-trans and gauche-gauche-gauche conformations for n-hexane) were calculated using popular electron correlation methods: The second-order Moller-Plesset (MP2), the fourth-order Moller-Plesset (MP4), and coupled cluster with single and double substitutions with noniterative triple excitation [CCSD(T)] levels of theory. Extrapolation to the complete basis set is applied. The difference between BSSE-corrected and uncorrected relative energy values ranges from ˜100 cal/mol (in case of n-butane) to more than 1000 cal/mol (in case of n-hexane). The influence of basis set type (Pople or Dunning) and size [up to 6-311G(3df,3pd) and aug-cc-pVQZ] is discussed.

  8. Role of the medium on the C343 inter/intramolecular hydrogen bond interactions. An absorption, emission, and 1HNMR investigation of C343 in benzene/n-heptane mixtures.

    PubMed

    Gutierrez, Jorge A; Falcone, R Darío; Silber, Juana J; Correa, N Mariano

    2010-07-15

    C343, a common molecular probe utilized in solvation dynamics experiments, was studied in homogeneous media. Absorption, emission, and (1)HNMR spectroscopies were used to investigate the behavior of C343 in benzene and in benzene/n-heptane mixtures. We demonstrate the implications of the medium polarity, measured as the Kamlet-Taft polarity-polarizability (pi*) parameter, in the C343 inter/intramolecular hydrogen bond (H-bond) interactions and the role that this interaction plays in the dimerization process of the dye. In pure benzene, the dimer prevails because the intermolecular H-bond interaction is favored. On the other hand, as the n-heptane content increases the intramolecular H-bond is the strongest and the C343 monomer is favored. As the polarity of the medium decreases, the solvophobic interaction makes that C343 monomer species experiences a more complicated aggregation process beyond the simple monomer dimer equilibrium present in pure benzene. Thus, the addition of n-heptane to the mixture yields a C343 higher-order aggregates species. Thus, our work reveals the importance that the medium has on the behavior of a widespread dye used as chromophore for very different systems such as homogeneous and microheterogenous media. This is very important since the use of chromophores without understanding its chemistry can induce artifacts into the interpretation of solvation dynamics in heterogeneous environments, in particular, those provided by biological systems such as proteins. Considerable care in choosing and characterizing the system is required to analyze the results fully. PMID:20565101

  9. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines

    PubMed Central

    Shahraki, Samira; Khajavirad, Abolfazl; Shafei, Mohammad Naser; Mahmoudi, Mahmoud; Tabasi, Nafisa Sadat

    2015-01-01

    Medicinal plants are noted for their many advantages including the ability to treat diseases such as cancer. In this study, we examined the antitumor effect of the medicinal plant Nigella sativa on the morphology, survival, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. From a hydroalcoholic extract of N. sativa, n-hexane and ethyl acetate fractions were extracted. Cells were treated with various concentrations of total hydroalcholic extract and n-hexane and ethyl acetate fractions; cell viability, morphological changes, and apoptosis were then determined. Results were presented as mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was applied for the statistical analysis of the data. The total extract and the fractions in a dose- and time-dependent manner reduced the cell viability in ACHN with no effect on the GP-293 cell line. In addition, the total extract resulted in more morphological changes in the ACHN cells compared to the GP-293 cells. The effect of the total extract in inducing apoptosis after 48 hours in the ACHN cell line was greater than in GP-293. In addition, the effect of the two fractions was lower than the total extract at all used concentrations. Therefore, the effect of total extract and n-hexane and ethyl acetate fractions of N. sativa on cell viability and apoptosis in the ACHN cell line is greater than in the GP-293 cell line. However, the effect of the total extract is higher than either of the two fractions on their own. PMID:26870685

  10. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines.

    PubMed

    Shahraki, Samira; Khajavirad, Abolfazl; Shafei, Mohammad Naser; Mahmoudi, Mahmoud; Tabasi, Nafisa Sadat

    2016-01-01

    Medicinal plants are noted for their many advantages including the ability to treat diseases such as cancer. In this study, we examined the antitumor effect of the medicinal plant Nigella sativa on the morphology, survival, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. From a hydroalcoholic extract of N. sativa, n-hexane and ethyl acetate fractions were extracted. Cells were treated with various concentrations of total hydroalcholic extract and n-hexane and ethyl acetate fractions; cell viability, morphological changes, and apoptosis were then determined. Results were presented as mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was applied for the statistical analysis of the data. The total extract and the fractions in a dose- and time-dependent manner reduced the cell viability in ACHN with no effect on the GP-293 cell line. In addition, the total extract resulted in more morphological changes in the ACHN cells compared to the GP-293 cells. The effect of the total extract in inducing apoptosis after 48 hours in the ACHN cell line was greater than in GP-293. In addition, the effect of the two fractions was lower than the total extract at all used concentrations. Therefore, the effect of total extract and n-hexane and ethyl acetate fractions of N. sativa on cell viability and apoptosis in the ACHN cell line is greater than in the GP-293 cell line. However, the effect of the total extract is higher than either of the two fractions on their own. PMID:26870685

  11. Sorption rate and thermal barriers in a gas-zeolite system: investigation of n-hexane sorption in MFI-type zeolite.

    PubMed

    Wloch, J; Kornatowski, J

    2004-02-17

    The nonequilibrium gravimetric sorption method was used to determine diffusion coefficient values for n-hexane in MFI-type materials. Improvements in the measurement device and experimental conditions resulted in high values of the corrected diffusion coefficient, which are comparable to the literature data obtained by the methods of pulsed field gradient nuclear magnetic resonance (PFG NMR) and frequency response (FR). The results indicate that thermal effects of sorption affect practically neither the rate of the sorption nor the diffusion coefficient. PMID:15803693

  12. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  13. Solid-liquid work of adhesion of coarse-grained models of n-hexane on graphene layers derived from the conditional reversible work method

    SciTech Connect

    Ardham, Vikram Reddy; Leroy, Frédéric E-mail: f.leroy@theo.chemie.tu-darmstadt.de; Deichmann, Gregor; Vegt, Nico F. A. van der E-mail: f.leroy@theo.chemie.tu-darmstadt.de

    2015-12-28

    We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion W{sub SL} calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of W{sub SL} that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and W{sub SL} is elucidated through a detailed study of the energy and entropy components of W{sub SL}. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of W{sub SL}. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.

  14. Kinetics of catalytic oxidation of benzene, n-hexane, and emission gas from a refinery oil/water separator over a chromium oxide catalyst.

    PubMed

    Wang, J B; Chou, M S

    2000-02-01

    With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300-14,700 mg/m3 and 240-400 degrees C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained. Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results. In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst. PMID:10680352

  15. Effect of Different Surfactants on the Interfacial Behavior of the n-Hexane-Water System in the Presence of Silica Nanoparticles.

    PubMed

    Biswal, Nihar Ranjan; Rangera, Naveen; Singh, Jayant K

    2016-07-28

    This paper presents the effect of negatively charged silica nanoparticles (NPs) on the interfacial tension of the n-hexane-water system at variable concentrations of four different surfactants, viz., an anionic surfactant, sodium dodecyl sulfate (SDS), a cationic surfactant, cetyltrimethylammonium bromide (CTAB), and two nonionic surfactants, Tween 20 and Triton X-100 (TX-100). The presence of negatively charged silica nanoparticles is found to have a different effect depending on the type of surfactant. In the case of ionic surfactants, SDS and CTAB, silica NPs reduce the interfacial tension of the system. On the contrary, for nonionic surfactants, Tween 20 and TX-100, silica NPs increase the interfacial tension. The increasing/decreasing nature of the interfacial tension in the presence of NPs is well supported by the calculated surface excess concentrations. The diffusion kinetic control (DKC) and statistical rate theory (SRT) models are used to understand the behavior of dynamic interfacial tension of the surfactant-NP-oil-water system. The DKC model is found to describe the studied surfactant-NP-oil-water systems more aptly. PMID:27367433

  16. Enzymatic hydrolysis of N-benzoyl-L-tyrosine p-nitroanilide by α-chymotrypsin in DMSO-water/AOT/n-heptane reverse micelles. A unique interfacial effect on the enzymatic activity.

    PubMed

    Moyano, Fernando; Setien, Evangelina; Silber, Juana J; Correa, N Mariano

    2013-07-01

    The reverse micelle (RM) media are very good as nanoreactors because they can create a unique microenvironment for carrying out a variety of chemical and biochemical reactions. The aim of the present work is to determine the influence of different water-dimethyl sulfoxide (DMSO) mixtures encapsulated in 1,4-bis-2-ethylhexylsulfosuccinate (AOT)/n-heptane RMs on the enzymatic hydrolysis of N-benzoyl-L-tyrosine p-nitroanilide (Bz-Try-pNA) by α-chymotrypsin (α-CT). The reaction was first studied in homogeneous media at different DMSO-water mixture compositions and in DMSO-water/AOT/n-heptane RMs. The hydrolysis rates of Bz-Try-pNA catalyzed by α-CT were determined by UV-vis spectroscopy. The reaction follows the Michaelis-Menten mechanism and the kinetic parameters: kcat, KM, and kcat/KM were evaluated under different conditions. In this homogeneous media, DMSO plays an important role in the solubilization process of the peptide which is almost insoluble in water, but it has a tremendous impact on the inactivation of α-CT. It is shown that the enzyme dissolved in a 20% molar ratio of the DMSO-water mixture does not present enzymatic activity. Dynamic light scattering has been used to assess the formation of DMSO-water/AOT/heptane RMs at different DMSO compositions. The results also show that there is preferential solvation of the AOT RM interface by water molecules. To test the use of these RMs as nanoreactors, the kinetic parameters for the enzymatic reaction in these systems have been evaluated. The parameters were determined at fixed W(S) {W(S) = ([water] + [DMSO])/[AOT] = 20} at different DMSO-water compositions. The results show that the Michaelis-Menten mechanism is valid for α-CT in all the RM systems studied and that the reaction takes place at the RM interface. Surprisingly, it was observed that the enzyme encapsulated by the RMs show catalytic effects with similar kcat/KM values at any DMSO composition investigated, which evidence that DMSO molecules are

  17. N,N'-(Hexane-1,6-diyl)bis(4-methyl-N-(oxiran-2-ylmethyl)benzenesulfonamide): Synthesis via cyclodextrin mediated N-alkylation in aqueous solution and further Prilezhaev epoxidation

    PubMed Central

    Fischer, Julian; Millan, Simon

    2013-01-01

    Summary N-alkylation of N,N'-(hexane-1,6-diyl)bis(4-methylbenzenesulfonamide) with allyl bromide and subsequent Prilezhaev reaction with m-chloroperbenzoic acid to give N,N'-(hexane-1,6-diyl)bis(4-methyl-N-(oxiran-2-ylmethyl)benzenesulfonamide) is described. This twofold alkylation was performed in aqueous solution, whereby α-, and randomly methylated β-cyclodextrin were used as adequate phase transfer catalysts and the cyclodextrin–guest complexes were characterized by 1H NMR and 2D NMR ROESY spectroscopy. Finally, the curing properties of the diepoxide with lysine-based α-amino-ε-caprolactam were analyzed by rheological measurements. PMID:24367447

  18. Changes in autonomic function as determined by ECG R-R interval variability in sandal, shoe and leather workers exposed to n-hexane, xylene and toluene.

    PubMed

    Murata, K; Araki, S; Yokoyama, K; Yamashita, K; Okajima, F; Nakaaki, K

    1994-01-01

    To clarify if autonomic nervous system effects might be associated with exposure to organic solvents, 30 sandal, shoe and leather workers exposed to n-hexane, xylene, and toluene, and 25 unexposed controls were examined using the coefficient of variation in electrocardiographic R-R intervals (CVRR), combined with the distribution of nerve conduction velocities (DCV). The C-CVRSA and C-CVMWSA (two component CVs of the CVRR reflecting parasympathetic and sympathetic activities, respectively) were also computed from component spectral powers using autoregressive spectral and component analyses. Concentrations of the metabolites of the solvents in urine samples taken in the morning before work were 0-3.18 (mean 1.39) mg/l for 2,5-hexanedione, 0.10-0.43 (mean 0.19) g/g creatinine (Cn) for methylhippuric acid, and 0.05-2.53 (mean 0.41) g/g Cn for hippuric acid. In the solvent workers, the CVRR and C-CVRSA were reduced significantly when compared with the unexposed controls. The faster velocities of the DCV as well as the sensory median nerve conduction velocity (SCV) were significantly slowed in the solvent-exposed workers. The SCV was significantly correlated with the CVRR and C-CVMWSA among the solvent workers. These data suggest that chronic exposure to some organic solvents may affect cardiac autonomic function (mainly, parasympathetic activity) in addition to faster myelinated fibers of the peripheral nerves. However, the absence of significant dose-effect relations among the solvent workers makes it difficult to definitively attribute the differences to specific solvent exposures. PMID:7715857

  19. Pollutant emissions from gasoline combustion. 1. Dependence on fuel structural functionalities.

    PubMed

    Zhang, Hongzhi R; Eddings, Eric G; Sarofim, Adel F

    2008-08-01

    To study the formation of air pollutants and soot precursors (e.g., acetylene, 1,3-butadiene, benzene, and higher aromatics) from aliphatic and aromatic fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submechanisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good predictions of species concentrations in premixed flames of n-heptane, isooctane, benzene, cyclohexane, olefins, oxygenates, and gasoline using a 23-component surrogate formulation. The 1,3-butadiene emission comes mainly from minor fuel fractions of olefins and cyclohexane. The benzene formation potential of gasoline components shows the following trends as functions of (i) chemical class: n-paraffins < isoparaffins < olefins < naphthalenes < alkylbenzenes < cycloparaffins < toluene; (ii) carbon number: n-butane < n-pentane < n-hexane; and (iii) branching: n-hexane < isohexane < 2,2,4-trimethylpentane < 2,2,3,3-tetramethylbutane. In contrast, fuel structure is not the main factor in determining acetylene formation. Therefore, matching the benzene formation potential of the surrogate fuel to that produced by the real fuel should have priority when selecting candidate surrogate components for combustion simulations. PMID:18754484

  20. Crystal structure of bis-(benzyl-amine-κN)[5,10,15,20-tetra-kis-(4-chloro-phen-yl)porphyrinato-κ(4) N]iron(II) n-hexane monosolvate.

    PubMed

    Dhifaoui, Selma; Harhouri, Wafa; Bujacz, Anna; Nasri, Habib

    2016-01-01

    In the title compound, [Fe(II)(C44H24Cl4N4)(C6H5CH2NH2)2]·C6H14 or [Fe(II)(TPP-Cl)(BzNH2)2]·n-hexane [where TPP-Cl and BzNH2 are 5,10,15,20-tetra-kis-(4-chloro-phen-yl)porphyrinate and benzyl-amine ligands, respectively], the Fe(II) cation lies on an inversion centre and is octa-hedrally coordinated by the four pyrrole N atoms of the porphyrin ligand in the equatorial plane and by two amine N atoms of the benzyl-amine ligand in the axial sites. The crystal structure also contains one inversion-symmetric n-hexane solvent mol-ecule per complex mol-ecule. The average Fe-Npyrrole bond length [1.994 (3) Å] indicates a low-spin complex. The crystal packing is sustained by N-H⋯Cl and C-H⋯Cl hydrogen-bonding inter-actions and by C-H⋯π inter-molecular inter-actions, leading to a three-dimensional network structure. PMID:26870596

  1. Crystal structure of bis­(benzyl­amine-κN)[5,10,15,20-tetra­kis­(4-chloro­phen­yl)porphyrinato-κ4 N]iron(II) n-hexane monosolvate

    PubMed Central

    Dhifaoui, Selma; Harhouri, Wafa; Bujacz, Anna; Nasri, Habib

    2016-01-01

    In the title compound, [FeII(C44H24Cl4N4)(C6H5CH2NH2)2]·C6H14 or [FeII(TPP-Cl)(BzNH2)2]·n-hexane [where TPP-Cl and BzNH2 are 5,10,15,20-tetra­kis­(4-chloro­phen­yl)porphyrinate and benzyl­amine ligands, respectively], the FeII cation lies on an inversion centre and is octa­hedrally coordinated by the four pyrrole N atoms of the porphyrin ligand in the equatorial plane and by two amine N atoms of the benzyl­amine ligand in the axial sites. The crystal structure also contains one inversion-symmetric n-hexane solvent mol­ecule per complex mol­ecule. The average Fe—Npyrrole bond length [1.994 (3) Å] indicates a low-spin complex. The crystal packing is sustained by N—H⋯Cl and C—H⋯Cl hydrogen-bonding inter­actions and by C—H⋯π inter­molecular inter­actions, leading to a three-dimensional network structure. PMID:26870596

  2. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  3. Comparative effect of organosulfur compounds on catalysts for the n-heptane isomerization reaction at medium pressure: Mo{sub 2}C-oxygen-modified, MoO{sub 3}-carbon-modified, Pt/{gamma}-Al{sub 2}O{sub 3}, and Pt/{beta}-zeolite catalysts

    SciTech Connect

    York, A.P.E.; Pham-Huu, C.; Del Gallo, P.; Ledoux, M.J.; Blekkan, E.A.

    1996-03-01

    Molybdenum oxycarbide formed from oxidized Mo{sub 2}C or reduced MoO{sub 3} is an active and very selective catalyst for the isomerization of n-heptane compared to supported Pt. Deactivation experiments performed on the catalysts with different concentrations of organosulfur compounds show that molybdenum oxycarbide exhibits a very high resistance to deactivation, whereas with platinum-based catalysts deactivation occurs even at low sulfur concentration in the feed. Deactivation can be slowed by increasing the hydrogen partial pressure from 6 to 20 bar. In these conditions, the molybdenum oxycarbide shows no deactivation with sulfur concentrations up to 120 ppm of S. In addition, the deactivated molybdenum catalysts can be easily regenerated by mild oxidative treatment under flowing air at atmospheric pressure and 723 K for 2 h followed by a reactivation period under the hydrogen and hydrocarbon mixture.

  4. Bis[3α,7α,12α-tris­(4-nitro­benzo­yloxy)-5β-cholan-24-yl] disulfide–ethyl acetate–n-hexane (4/4/1)

    PubMed Central

    Brzezinski, Krzysztof; Tomkiel, Aneta M.; Łotowski, Zenon; Morzycki, Jacek; Dauter, Zbigniew

    2011-01-01

    The crystal structure of the title compound, C90H100N6O24S2·C4H8O2·0.25C6H14, solved and refined against synchrotron diffraction data, contains two formula units in the asymmetric unit with the all-trans n-hexane mol­ecule having half-occupancy and one of the ethyl acetate mol­ecules disordered over two positions. The two symmetry-independent disulfide mol­ecules are assembled by approximate face-to-face and face-to-edge inter­actions between their 4-nitro­benzo­yloxy groups into an inter­twined dimer having a double-helix-type structure. The centrally placed disulfide bridges in the two symmetry-independent mol­ecules exhibit different helicity as shown by the C—S—S—C torsion angles of 71.0 (1) and −92.5 (1)°. PMID:21522786

  5. Enthalpy Differences of the n-Pentane Conformers.

    PubMed

    Csontos, József; Nagy, Balázs; Gyevi-Nagy, László; Kállay, Mihály; Tasi, Gyula

    2016-06-14

    The energy and enthalpy differences of alkane conformers in various temperature ranges have been the subject for both experimental and theoretical studies over the last few decades. It was shown previously for the conformers of butane [G. Tasi et al., J. Chem. Theory Comput. 2012, 8, 479-486] that quantum chemical results can compete with spectroscopic techniques and results obtained even from the most carefully performed experiments could be biased due to the improper statistical model utilized to evaluate the raw experimental data. In the current study, on one hand, the experimental values and their uncertainties for the enthalpy differences for pentane conformers are re-evaluated using the appropriate statistical model. On the other hand, a coupled-cluster-based focal-point analysis has been performed to calculate energy and enthalpy differences for the conformers of pentane. The model chemistry defined in this study includes contributions up to the perturbative quadruple excitations augmented with further small correction terms beyond the Born-Oppenheimer and nonrelativistic approximations. Benchmark quality energy and enthalpy differences for the pentane conformers are given at temperatures 0 and 298.15 K as well as for the various temperature ranges used in the gas-phase experimental measurements. Furthermore, a slight positive shift for the experimental enthalpy differences is also predicted due to an additional Raman active band belonging to the gauche-gauche conformer. PMID:27096811

  6. Isotope values of atmospheric halocarbons and hydrocarbons from Irish urban, rural, and marine locations

    NASA Astrophysics Data System (ADS)

    Redeker, K. R.; Davis, S.; Kalin, R. M.

    2007-08-01

    Stable carbon isotope ratios for 37 hydrocarbon, CFC and halocarbon compounds were determined over the course of 1 year (86 samples) from the urban Belfast environment, Northern Ireland (NI). A smaller number of samples were collected from rural locations at Crossgar and Hillsborough, NI, and one marine location at Mace Head, Republic of Ireland. Source δ13C "signatures" suggest that C5 alkanes and ≥C4 alkenes are most likely derived from vehicle emissions. C3-C5 hydrocarbons show significant enrichment of δ13C with iso-alkanes < n-alkanes < alkenes < alkynes. There is also significant enrichment of δ13C from propane to n-butane to n-pentane. There is no significant separation between n-pentane, n-hexane, n-heptane or methyl-butane, methyl pentane and methyl hexanes. Calculated hydroxyl reaction kinetic isotope effects and subsequent δ13C enrichment are insufficient to explain shifts in isotopic ratio relative to concentration for all compounds as is differences in origin of air mass. Very few compounds show significant diurnal shifts; however, alkanes and ≥C4 alkenes demonstrate consistent enrichment of isotopic ratios when summer samples are compared to winter samples. Benzene is the sole compound measured that appears to become more depleted in δ13C when summer samples are compared against winter samples. Urban air, sampled at Belfast, which has originated in Europe shows enriched values for hydrocarbons while air which has originated in the Arctic Ocean is most similar to marine air off the Atlantic, sampled at Mace Head, Ireland.

  7. Rate constants for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-30

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form in units of cm{sup 3} molecule{sup -1} s{sup -1} as follows: K{sub OH+n-heptane} = (2.48 {+-} 0.17) x 10{sup -10} exp[(-1927 {+-} 69 K)/T] (838-1287 K); k{sub OH+2,2,3,3-TMB} = (8.26 {+-} 0.89) x 10{sup -11} exp[(-1337 {+-} 94 K)/T] (789-1061 K); K{sub OH+n-pentane} = (1.60 {+-} 0.25) x 10{sup -10} exp[(-1903 {+-} 146 K)/T] (823-1308 K); K{sub OH+n-hexane} = (2.79 {+-} 0.39) x 10{sup -10} exp[(-2301 {+-} 134 K)/T] (798-1299 K); and k{sub OH+2,3-DMB} = (1.27 {+-} 0.16) x 10{sup -10} exp[(-1617 {+-} 118 K)/T] (843-1292 K). The available experimental data, along with lower-T determinations, were used to obtain evaluations of the experimental rate constants over the temperature range from {approx}230 to 1300 K for most of the title reactions. These extended-temperature-range evaluations, given as three-parameter fits, are as follows: k{sub OH+n-heptane} = 2.059 x 10{sup -5}T{sup 1.401} exp(33 K/T) cm{sup 3

  8. A moderate distortion of the `picket-fence' porphyrin (cryptand-222)potassium chlorido[meso-α,α,α,α-tetrakis(o-pivalamidophenyl)porphyrinato]ferrate(II) n-hexane monosolvate.

    PubMed

    Yu, Qiang; Liu, Diansheng; Li, Xiangjun; Li, Jianfeng

    2015-10-01

    As representative porphyrin model compounds, the structures of `picket-fence' porphyrins have been studied intensively. The title solvated complex salt {systematic name: (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)potassium(I) [5,10,15,20-tetrakis(2-tert-butanamidophenyl)porphyrinato]iron(II) n-hexane monosolvate}, [K(C18H36N2O6)][Fe(C64H64N8O4)Cl]·C6H14 or [K(222)][Fe(TpivPP)Cl]·C6H14 [222 is cryptand-222 or 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane, and TpivPP is meso-α,α,α,α-tetrakis(o-pivalamidophenyl)porphyrinate(2-)], [K(222)][Fe(TpivPP)Cl]·C6H14, is a five-coordinate high-spin iron(II) picket-fence porphyrin complex. It crystallizes with a potassium cation chelated inside a cryptand-222 molecule; the average K-O and K-N distances are 2.81 (2) and 3.05 (2) Å, respectively. One of the protecting tert-butyl pickets is disordered. The porphyrin plane presents a moderately ruffled distortion, as suggested by the atomic displacements. The axial chloride ligand is located inside the molecular cavity on the hindered porphyrin side and the Fe-Cl bond is tilted slightly off the normal to the porphyrin plane by 4.1°. The out-of-plane displacement of the metal centre relative to the 24-atom mean plane (Δ24) is 0.62 Å, indicating a noticeable doming of the porphyrin core. PMID:26422211

  9. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: Nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors

    SciTech Connect

    Abdelsayed, Victor; Samy El-Shall, M.

    2014-08-07

    This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong

  10. Kinetic modeling of hydrocarbon autoignition at low and intermediate temperatures in a rapid compression machine

    SciTech Connect

    Curran, H J; Pitz, W J; Westbrook, C K; Griffiths, J F; Mohamed, C

    2000-11-01

    A computer model is used to examine oxidation of hydrocarbon fuels in a rapid compression machine. For one of the fuels studied, n-heptane, significant fuel consumption is computed to take place during the compression stroke under some operating conditions, while for the less reactive n-pentane, no appreciable fuel consumption occurs until after the end of compression. The third fuel studied, a 60 PRF mixture of iso-octane and n-heptane, exhibits behavior that is intermediate between that of n-heptane and n-pentane. The model results indicate that computational studies of rapid compression machine ignition must consider fuel reaction during compression in order to achieve satisfactory agreement between computed and experimental results.

  11. Extents of alkane combustion during rapid compression leading to single and two stage ignition

    SciTech Connect

    Cox, A.; Griffiths, J.F.; Mohamed, C.; Curran, H.; Pitz, W.J.; Westbrook, C.K.

    1996-02-01

    Extents of reactant consumption have been measured during the course of spontaneous ignition following rapid compression of N-pentane and N-heptane and also of PRF 60 (N-heptane = i-octane, 2.2.4 trimethylpentane) in stoichiometric mixtures with air. Compressed gas temperatures of 720-750 K and 845-875 K were studied at reactant densities of 131 mol m{sup minus 3}. At the lower gas temperature there was no evidence of reactant consumption during the course of the compression stroke. Two-stage ignition occurred at these temperatures, but only modest proportions of n-pentane were consumed during the first stage (< 15%) whereas about 40% of proportions of n- heptane reacted under the same conditions. At the higher compressed gas temperature the oxidation of n-pentane began only after the piston had stopped, whereas more than 30% of the n-heptane had already been consumed in the final stage of the compression stroke. The behavior of the PRF 60 mixture differed somewhat from that of N- pentane despite the similarly of the research octane numbers. Although there was a preferential oxidation of n-heptane at T{sub c} = 850K, which persisted throughout the early development of spontaneous ignition during the post-compression period, oxidation of both components of the PRF 60 mixture began before the piston had stopped. Numerical simulations of the spontaneous ignition under conditions resembling those of the rapid compression experiments show that the predicted reactivity from detailed kinetics are consistent with the observed features. Insights into the kinetic interactions that give rise to the relative reactivities of the primary reference fuel components are established

  12. [Surface characterization of urushiol-titanium chelate polymers by inverse gas chromatography].

    PubMed

    Xu, Yanlian; Lin, Jinhuo; Xia, Jianrong; Hu, Binghuan

    2011-03-01

    Urushiol-titanium chelate polymer (UTP), the reaction product of urushiol with titanium compound, is a special eco-friendly polymer with excellent performances, such as strong acids-resistance, strong alkalis-resistance, salt solution-resistance and several organic solvent-resistance. Inverse gas chromatography (IGC) was used to measure the dispersive component of surface free energy (gamma(s)d) and the Lewis acid-base parameters of UTP in this work. The gamma(s)d and the acid/base characters of UTP' surfaces were estimated by the retention time with different non-polar and polar probes at infinite dilution region. n-Pentane (C5), n-hexane (C6), n-heptane (C7), n-octane (C8) and n-nonane (C9) were chosen as the non-polar probes to characterize the gamma(s)d. Trichloromethane (CHCl3), tetrahydrofuran (THF) and acetone were chosen as polar probes to detect the Lewis acid-base parameters. The specific free energy (deltaG(a)AB) and the enthalpy (deltaH(a)AB) of adsorption corresponding to acid-base surface interactions were determined. By correlating deltaH(a)AB with the donor and acceptor numbers of the probes, the acidic (K(a)) and the basic (K(b)) parameters of the samples were calculated. The results showed that the dispersive components of the free energy of UTP were 37.68, 33.53, 35.92, 24.01 and 31.32 mJ/m2 at 70, 80, 90, 100 and 110 degrees C, respectively. The Lewis acidic number K(a) of UTP was 0.185 3, and the Lewis basic number K(b) was 0.966 2. The results were of great importance to the study of the surface properties and the applications for urushiol-metal chelate polymers. PMID:21657056

  13. Viscometric determination of the onset of asphaltene flocculation: A novel method

    SciTech Connect

    Escobedo, J.; Mansoori, G.A.

    1995-05-01

    A new technique for the determination of the onset of asphaltene flocculation has been developed through accurate viscosity measurements of a crude oil being diluted with a precipitating agent (n-pentane, n-heptane, n-nonane). This detection method is based on experimental observations of an increase in the viscosity of a crude oil-asphaltene-precipitating agent suspension in which asphaltene particle aggregation occurs. The key point in this development is the phenomenon of asphaltene flocculation induced by the addition of a n-paraffin hydrocarbon (i.e. n-heptane, n-pentane, n-nonane) to crude oil. The onset of asphaltene flocculation is detected graphically, and its location is enhanced by comparison of the analyte curve with a reference system. The reference system was developed using polar and non-precipitating solvents (i.e. toluene, benzene, THF).

  14. An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure.

    PubMed

    Marotta, Ester; Paradisi, Cristina; Scorrano, Gianfranco

    2004-07-01

    A report is given on the ionization/dissociation behavior of the title compounds within air plasmas produced by electrical corona discharges at atmospheric pressure: both positive and negative ions were investigated at different temperatures using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). CHF(2)CH(3) (HFC-152a) undergoes efficient ionic oxidation to C(2)H(5)O(+), in which the oxygen comes from water present in the plasma. In contrast, CF(3)CH(2)F (HFC-134a) does not produce any characteristic positive ion under APCI conditions, its presence within the plasma being revealed only as a neutral ligand in ion-molecule complexes with ions of the background (H(3)O(+) and NO(+)). Analogously, the perfluorocarbon FC-72 (n-C(6)F(14)) does not produce significant positive ions at 30 degrees C: at high temperature, however, it undergoes dissociative ionization to form many product ions including C(3)F(6)(+), C(2)F(4)(+), C(n)F(2n+1)(+) and a few families of oxygen containing cations (C(n)F(2n+1)OH(2)(+), C(n)F(2n)OH(+), C(n)F(2n-1)O(+), C(n)F(2n-1)O(2)H(2)(+), C(n)F(2n-2)O(2)H(+)) which are suggested to derive from C(n)F(2n+1)(+) in a cascade of steps initiated by condensation with water followed by steps of HF elimination and H(2)O addition. Negative ions formed from the fluoroethanes CHF(2)CH(3) and CF(3)CH(2)F (M) include complexes with ions of the background, O(2)(-)(M), O(3)(-)(M) and some higher complexes involving also water, and complexes of the fluoride ion, F(-)(H(2)O), F(-)(M) and higher complexes with both M and H(2)O also together. The interesting product O(2)(-)(HF) is also formed from 1,1-difluoroethane. In contrast to the HFCs, perfluoro-n-hexane gives stable molecular anions, M(-), which at low source temperature or in humidified air are also detected as hydrates, M(-)(H(2)O). In addition, in humidified air F(-)(H(2)O)(n) complexes are also formed. The reactions leading to all major positive and negative product ions are discussed

  15. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    PubMed

    Shahimin, Mohd Faidz Mohamad; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. PMID:26925736

  16. Utilization of n-Alkanes by Cladosporium resinae

    PubMed Central

    Teh, J. S.; Lee, K. H.

    1973-01-01

    Four different isolates of Cladosporium resinae from Australian soils were tested for their ability to utilize liquid n-alkanes ranging from n-hexane to n-octadecane under standard conditions. The isolates were unable to make use of n-hexane, n-heptane, and n-octane for growth. In fact, these hydrocarbons, particularly n-hexane, exerted an inhibitory effect on spore germination and mycelial growth. All higher n-alkanes from n-nonane to n-octadecane were assimilated by the fungus, although only limited growth occurred on n-nonane and n-decane. The long chain n-alkanes (C14 to C18) supported good growth of all isolates, but there was no obvious correlation between cell yields and chain lengths of these n-alkanes. Variation in growth responses to individual n-alkane among the different isolates was also observed. The cause of this variation is unknown. PMID:4735447

  17. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption. PMID:21584320

  18. Total cross section of electron scattering by fluorocarbon molecules

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Ushiroda, S.; Kondo, Y.

    2008-12-01

    A compact linear electron transmission apparatus was used for the measurement of the total electron scattering cross section at 4-500 eV. Total cross sections of chlorofluorocarbon (CCl2F2), hydrochlorofluorocarbon (CHClF2), perfluoropropane (C3F8), perfluoro-n-pentane (C5F12), perfluoro-n-hexane (C6F14) and perfluoro-n-octane (C8F18) were obtained experimentally and compared with the values obtained from a theoretical calculation and semi-empirical model calculation.

  19. Photocurrent enhancement in nonpolar liquids by the addition of electron scavengers

    SciTech Connect

    Howell, G.A.; Lee, K.; Tweeten, D.W.; Lipsky, S.

    1988-07-14

    The photocurrent from anthracene, triphenylamine, and N,N,N',N'-tetramethyl-p-phenylenediamine excited above their ionization thresholds in liquid n-pentane or n-hexane is found to be enhanced by the addition of low concentrations (/approx lt/0.02 M) of the electron scavengers perfluoromethylcyclohexane or perfluorodecalin. The enhancement is not observed in solvents of higher electron mobility (e.g.,. cyclohexane, isooctane, etc.) or for scavengers of lower electron affinity (e.g., n-perfluorohexane). For the solute naphthalene, no enhancement is observed under any conditions. The effects of excitation energy and applied electric field strength are reported.

  20. Combustion of liquid fuels in a flowing combustion gas environment at high pressures

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1975-01-01

    The combustion of fuel droplets in gases which simulate combustion chamber conditions was considered both experimentally and theoretically. The fuel droplets were simulated by porous spheres and allowed to gasify in combustion gases produced by a burner. Tests were conducted for pressures of 1-40 atm, temperatures of 600-1500 K, oxygen concentrations of 0-13% (molar) and approach Reynolds numbers of 40-680. The fuels considered in the tests included methanol, ethanol, propanol-1, n-pentane, n-heptane and n-decane. Measurements were made of both the rate of gasification of the droplet and the liquid surface temperature. Measurements were compared with theory, involving various models of gas phase transport properties with a multiplicative correction for the effect of forced convection.

  1. Study of asphalt/asphaltene precipitation during addition of solvents to West Sak crude

    SciTech Connect

    Jiang, J.C.; Patil, S.L.; Kamath, V.A. )

    1990-07-01

    In this study, experimental data on the amount of asphalt and asphaltene precipitation due to addition of solvents to West Sak crude were gathered. The first set of tests were conducted for two types of West Sak stock tank oils. Solvents used include: ethane, carbon dioxide, propane, n-butane, n-pentane, n-heptane, Prudhoe Bay natural gas (PBG) and natural gas liquids (NGL). Effect of solvent to oil dilution ratio on the amount of precipitation was studied. Alteration of crude oil composition due to asphalt precipitation was measured using gas-liquid chromatography. A second set of experiments were conducted to measure asphaltene precipitation due to addition of CO{sub 2} to live (recombined) West Sak crude.

  2. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.

    1990-01-01

    Research continued on surface control of coal. This report describes Task 7 of the program. The following topics are discussed: quantitative distribution of iron species; surface functional groups; comparison of wet and dry ground samples; study of Illinois No. 6 coal wet ground using additives; study of wet grinding using tall oil; elemental distribution of coal samples wet ground without additives; elemental distribution of coal samples wet ground with tall oil; direct determination of pyrite by x-ray diffraction; electron microprobe measurements; morphology; zeta potential measurements; pyrite size distribution; statistical analysis of grinding study data; grinding using N-pentane; cyclohexane, and N-heptane; study of the effects of the grinding method and time; study of the effects of the agglomeration time; and the pentane to coal ratio. 13 refs.

  3. Trapping of Methanol, Hydrogen Cyanide, and n-Hexane in Water Ice, above Its Transformation Temperature to the Crystalline Form

    NASA Astrophysics Data System (ADS)

    Notesco, G.; Bar-Nun, A.

    1997-04-01

    HCN and n-C 6H 14were found experimentally to be trapped in water ice, when codeposited with water vapor on a cold plate, at 140 K and CH 3OH even at 160 K. At these temperatures at least part of the water ice is cystalline. These three gases have relatively high sublimation temperatures, whereas the gases studied earlier, Ar, Kr, Xe, CO, CH 4, and N 2, which have lower sublimination temperatures, are trapped only in amorphous water ice, up to ˜100 K. It seems that the major factor determining the efficiency of gas trapping by water ice, during codeposition of a gas-water vapor mixture on a cold plate, is the sublimation temperatures of the gases to be trapped. Those with a high sublimation temperature remain, during codeposition, longer in the pores of the water ice which are open to the surface, until they are covered by additional ice layers. Only methanol seems to form a clathrate hydrate, in agreement with the experimental results of D. Blake et al.(1991), Science254, 548-551), which points to the importance of the interaction of the gas molecules with the water molecules in the ice. Consequently, comets and icy satellites that were formed in the Jupiter-Saturn region and their subnebulae could trap CH 3OH, HCN, and heavy hydrocarbons, whereas comets and icy satellites that were formed in the Uranus-Neptune region, at the outskirts of the Saturnian subnebulae (Titan), and beyond the planets in the Kuiper belt could trap also gases having lower sublimation temperatures.

  4. Retama monosperma n-hexane extract induces cell cycle arrest and extrinsic pathway-dependent apoptosis in Jurkat cells

    PubMed Central

    2014-01-01

    Background Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), locally named as “R’tam”, is an annual and spontaneous plant belonging to the Fabaceae family. In Morocco, Retama genus is located in desert regions and across the Middle Atlas and it has been widely used in traditional medicine in many countries. In this study, we show that Retama monosperma hexane extract presents significant anti-leukemic effects against human Jurkat cells. Methods Human Jurkat cells, together with other cell lines were screened with different concentrations of Retama monosperma hexane extract at different time intervals. Growth inhibition was determined using luminescent-based viability assays. Cell cycle arrest and apoptosis were measured by flow cytometry analysis. Combined caspase 3 and 7 activities were measured using luminometric caspase assays and immunoblots were performed to analyze expression of relevant pro- and anti-apoptotic proteins. GC-MS were used to determine the chemical constituents of the active extract. Results Retama monosperma hexane extract (Rm-HE) showed significant cytotoxicity against Jurkat cells, whereas it proved to be essentially ineffective against both normal mouse fibroblasts (NIH3T3) and normal lymphocytes (TK-6). Cytometric analysis indicated that Rm-HE promoted cell cycle arrest and apoptosis induction accompanied by DNA damage induction indicated by an increase in p-H2A.X levels. Rm-HE induced apoptosis was partially JNK-dependent and characterized by an increase in Fas-L levels together with activation of caspases 8, 3, 7 and 9, whereas neither the pro-apoptotic nor anti-apoptotic mitochondrial membrane proteins analyzed were significantly altered. Chemical identification analysis indicated that α-linolenic acid, campesterol, stigmasterol and sitosterol were the major bioactive components within the extract. Conclusions Our data suggest that bioactive compounds present in Rm-HE show significant anti leukemic activity inducing cell cycle arrest and cell death that operates, at least partially, through the extrinsic apoptosis pathway. PMID:24460687

  5. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    NASA Technical Reports Server (NTRS)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  6. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    SciTech Connect

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  7. Combination process for high-octane gasoline production

    SciTech Connect

    Bagirov, R.A.; Dadashev, B.A.; Gasimov, B.A.; Naviev, N.I.

    1984-04-01

    This article describes the use of a combination unit for the catalytic isomerization of n-paraffins with continuous chromatography to increase the yield of high-octane gasoline. The feed, consisting of 44.6% n-pentane and n-hexane and 55.4% isoparaffins and cyclic hydrocarbons, enters the bottom of the adsorber in the vapor phase, and the adsorption of n-paraffins takes place in a fluidized bed of CaA zeolite. The recovery of n-paraffins from the pentane-hexane cut as a function of temperature was investigated in the 70-100/sup 0/C interval. It is determined that a combination of adsorption chromatography with catalytic isomerization of the straight-chain paraffins removed from the feed offers a means for increasing the octane number of the product by 18-20 units.

  8. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    PubMed

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. PMID:26400870

  9. Re-Os dating of maltenes and asphaltenes within single samples of crude oil

    NASA Astrophysics Data System (ADS)

    Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Galimberti, Roberto; Nali, Micaela; Yang, Gang; Zimmerman, Aaron

    2016-04-01

    Re-Os geochronology of oil may constrain the timing of oil formation and improve oil-source and oil-oil correlations. Typically, asphaltene (ASPH), the heaviest and most Re-Os rich oil fraction, from multiple oils within an oil field or a larger petroleum system are analyzed to obtain sufficient spread in Re-Os isotopic ratios, a mathematical necessity for precise Re-Os isochrons. Here we offer a new approach for Re-Os geochronology of oil based on isotopic analyses of different fractions within a single sample of crude oil. We studied three oils from the Gela oil field, southern Sicily, Italy, recovered from Triassic-Jurassic stratigraphic intervals (Streppenosa, Noto, and Sciacca Formations) within the Gela-1 well. ASPH (insoluble in n-alkane) and maltene (MALT, soluble in n-alkane) fractions of oil were separated using n-pentane, n-hexane, n-heptane and n-decane solvents. The ASPH contents of the Sciacca and Noto oils (26-33 wt%) are notably higher compared to the Streppenosa oil (7-12 wt% ASPH). We present an optimized Re-Os procedure with sample digestion in a high-pressure asher, followed by isotopic measurements using negative thermal ionization mass spectrometry. Very high metal contents of Gela oils allowed acquisition of precise Re-Os data. Systematic variations between the type of solvent used for ASPH precipitation and the ASPH content of the oil (also known from the literature) and the Re-Os contents of the ASPH and MALT fractions (first observed in this study) provide important practical applications for Re-Os analyses of oil. Most Re and Os (∼96-98%) in the Noto oil are hosted in the ASPH fraction. In contrast, a significant portion of Re and Os (∼33-34%) is stored in the MALT fraction of the lighter, but heavily biodegraded Streppenosa oil. Collectively, our new data on alkane distribution, hopane and sterane biomarkers, major and trace element contents, and Re-Os concentrations and isotopic ratios of the oils and their fractions support the

  10. Analysis of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans in particulate and oily films on impervious surfaces.

    PubMed

    Klees, Marcel; Hiester, Ernst; Schmidt, Torsten C

    2015-12-15

    During this study wipe sampling was applied to various impervious surfaces for the determination of polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDFs) area concentrations. To that end, a wipe sampling method based on solvent wetted cotton wipes was evaluated and transfer efficiencies of PCBs and PCDD/PCDFs in particulate films (PFs) and oily liquid films (OFs) during sampling were investigated. For PFs sufficient transfer efficiencies of low concentrated PCB and PCDD/PCDF congeners in 1g/m(2) spiking surrogate were achieved after the first wipe using n-hexane as wetting solvent. Transfer efficiencies for OFs were the highest in the first wipe if n-hexane or n-heptane were used rather than toluene. The spiking experiments of OFs showed a log-linear correlation between the number of wiping procedures and transfer efficiency which indicates that transfer efficiencies were constant in subsequent wipes. Furthermore, it was successfully demonstrated that pressurized liquid extraction is a suitable tool for the extraction of wipe samples. Finally, the feasibility of this wipe sampling method was demonstrated on various impervious surfaces of different origin, and concentration levels of PCBs and PCDD/PCDFs in wipe samples are discussed. Hereby, remarkably high ∑CB6 concentrations of up to 1400μg/m(2) (taken at a transformer recycling site) were detected. PMID:26318221

  11. Fuel droplet burning rates at high pressures.

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1973-01-01

    Combustion of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane was observed in air under natural convection conditions, at pressures up to 100 atm. The droplets were simulated by porous spheres, with diameters in the range from 0.63 to 1.90 cm. The pressure levels of the tests were high enough so that near-critical combustion was observed for methanol and ethanol. Due to the high pressures, the phase-equilibrium models of the analysis included both the conventional low-pressure approach as well as high-pressure versions, allowing for real gas effects and the solubility of combustion-product gases in the liquid phase. The burning-rate predictions of the various theories were similar, and in fair agreement with the data. The high-pressure theory gave the best prediction for the liquid-surface temperatures of ethanol and propanol-1 at high pressure. The experiments indicated the approach of critical burning conditions for methanol and ethanol at pressures on the order of 80 to 100 atm, which was in good agreement with the predictions of both the low- and high-pressure analysis.

  12. Gas-Phase Reaction of Hydroxyl Radical with p-Cymene over an Extended Temperature Range.

    PubMed

    Bedjanian, Yuri; Morin, Julien; Romanias, Manolis N

    2015-11-12

    The kinetics of the reaction of OH radicals with p-cymene has been studied in the temperature range of 243-898 K using a flow reactor combined with a quadrupole mass spectrometer: OH + p-cymene → products. The reaction rate constant was determined as a result of absolute measurements, from OH decay kinetics in excess of p-cymene and employing the relative rate method with OH reactions with n-pentane, n-heptane,1,3-dioxane, HBr, and Br2 as the reference ones. For the rate coefficient of the H atom abstraction channel, the expression k1b = (3.70 ± 0.42) × 10(-11) exp[-(772 ± 72)/T] was obtained over the temperature range of 381-898 K. The total rate constant (addition + abstraction) determined at T = 243-320 K was k1 = (1.82 ± 0.48) × 10(-12) exp[(607 ± 70)/T] or, in a biexponential form, k1 = k1a + k1b = 3.7 × 10(-11) exp(-772/T) + 6.3 × 10(-13) exp(856/T), independent of the pressure between 1 and 5 Torr of helium. In addition, our results indicate that the reaction pathway involving alkyl radical elimination upon initial addition of OH to p-cymene is most probably unimportant. PMID:26473634

  13. Theory of viscosity as a criterion for detection of onset of asphaltene flocculation

    SciTech Connect

    Escobedo, J.; Mansoori, G.A.

    1994-12-31

    Recently, the authors proposed a new technique for the determination of the onset of asphaltene flocculation. This method is based on viscosity measurements of a crude oil being diluted with a precipitating solvent (i.e., n-pentane, n-heptane, etc.). The onset of asphaltene flocculation is detected by a sharp increase in the relative viscosity of the suspension in which asphaltene particle aggregation occurs. The key point in this development is the changes which occur in the relative viscosity of the mixture and its relationship to the phenomenon of flocculation of asphaltene particles induced by the addition of a low-molecular-weight n-paraffin to crude oil. In this paper, they present a theoretical analysis of the proposed new technique for the onset of asphaltene flocculation and to estimate the background viscosity of the crude oil-precipitating solvent mixture. This in turn has allowed them to perform analyses of the trends of specific and relative viscosities as a function of precipitating solvent concentration, and hence particle concentration. These analyses have provided them information regarding the effect of the suspended asphaltene particles on the viscosity of the mixture. This effect becomes remarkable at a point which coincides with the previously predicted onset of asphaltene flocculation. The increase in the specific (or relative) viscosity after this point is very rapid.

  14. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro

    PubMed Central

    Mochalski, Paweł; Al-Zoairy, Ramona; Niederwanger, Andreas; Unterkofler, Karl; Amann, Anton

    2016-01-01

    Knowledge of the release of volatile organic compounds (VOCs) by cells provides important information on the origin of VOCs in exhaled breath. Muscle cells are particularly important, since their release of volatiles during the exertion of an effort contributes considerably to breath concentration profiles. Presently, the cultivation of human skeletal muscle cells is encountering a number of obstacles, necessitating the use of animal muscle cells in in vitro studies. Rat L6 skeletal muscle cells are therefore commonly used as a model for studying the molecular mechanisms of human skeletal muscle differentiation and functions, and facilitate the study of the origin and metabolic fate of the endogenously produced compounds observed in breath and skin emanations. Within this study the production and uptake of VOCs by rat L6 skeletal muscle cells were investigated using gas chromatography with mass spectrometric detection, combined with head-space needle trap extraction as the pre-concentration technique (HS-NTE-GC-MS). Seven compounds were found to be produced, whereas sixteen species were consumed (Wilcoxon signed-rank test, p < 0.05) by the cells being studied. The set of released volatiles included two ketones (2-pentanone and 2-nonanone), two volatile sulphur compounds (dimethyl sulfide and methyl 5-methyl-2-furyl sulphide), and three hydrocarbons (2-methyl 1-propene, n-pentane and isoprene). Of the metabolized species there were thirteen aldehydes (2-propenal, 2-methyl 2-propenal, 2-methyl propanal, 2-butenal, 2-methyl butanal, 3-methyl butanal, n-pentanal, 2-methyl 2-butenal, n-hexanal, benzaldehyde, n-octanal, n-nonanal and n-decanal), two esters (n-propyl propionate and n-butyl acetate), and one volatile sulphur compound (dimethyl disulfide). The possible metabolic pathways leading to the uptake and release of these compounds by L6 cells are proposed and discussed. An analysis of the VOCs showed them to have huge potential for the identification and monitoring

  15. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings.

    PubMed

    Siddique, Tariq; Mohamad Shahimin, Mohd Faidz; Zamir, Saima; Semple, Kathleen; Li, Carmen; Foght, Julia M

    2015-12-15

    iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments. PMID:26571341

  16. Modeling VOC Sorption and Transport in Glassy Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    De Angelis, Maria Grazia; Olivieri, Luca; Sarti, G. C.

    2010-06-01

    In this work we evaluated the sorption, diffusion and permeation of a series of volatile organic compounds (VOCs) (acetone, n-butane, n-pentane, n-hexane, ethanol, methanol, chloroform and toluene) into glassy polymers of increasing fractional free volume (FFV): Polycarbonate (PC), Amorphous Teflon AF1600 and AF2400, poly-trimethylsilyl norbornene (PTMSN) and poly[1-(trimethylsilyl)-1-propyne] (PTMSP). Based on some experimental data of sorption and diffusion, and on theoretical and empirical models for the solubility and diffusion coefficients, the permeability for vapor/N2 mixtures was evaluated. These parameters are useful for the membrane separation processes and for other applications such as chemical sensors. The ideal separation factors of glassy polymeric membranes versus mixtures of VOCs and N2 were estimated at various pressures and compositions and at 25° C. The selectivity vs. permeability maps for the mixtures considered were plotted, showing that some of these materials show potentially the same selective ability of rubbery polymeric films. In particular it is shown that, the higher the FFV, the better the vapor/gas selectivity.

  17. A predictive method for crude oil volatile organic compounds emission from soil: evaporation and diffusion behavior investigation of binary gas mixtures.

    PubMed

    Wang, Haijing; Fischer, Thomas; Wieprecht, Wolfgang; Möller, Detlev

    2015-05-01

    Due to their mobility and toxicity, crude oil volatile organic compounds (VOCs) are representative components for oil pipeline contaminated sites detection. Therefore, contaminated location risk assessment, with airborne light detection and ranging (LIDAR) survey, in particular, requires ground-based determinative methods for oil VOCs, the interaction between oil VOCs and soil, and information on how they diffuse from underground into atmosphere. First, we developed a method for determination of crude oil VOC binary mixtures (take n-pentane and n-hexane as examples), taking synergistic effects of VOC mixtures on polydimethylsiloxane (PDMS) solid-phase microextraction (SPME) fibers into consideration. Using this method, we further aim to extract VOCs from small volumes, for example, from soil pores, using a custom-made sampling device for nondestructive SPME fiber intrusion, and to study VOC transport through heterogeneous porous media. Second, specific surface Brunauer-Emmett-Teller (BET) analysis was conducted and used for estimation of VOC isotherm parameters in soil. Finally, two models were fitted for VOC emission prediction, and the results were compared to the experimental emission results. It was found that free diffusion mode worked well, and an empirical correction factor seems to be needed for the other model to adapt to our condition for single and binary systems. PMID:25572270

  18. Observed trends in ambient concentrations of C 2-C 8 hydrocarbons in the United Kingdom over the period from 1993 to 2004

    NASA Astrophysics Data System (ADS)

    Dollard, G. J.; Dumitrean, P.; Telling, S.; Dixon, J.; Derwent, R. G.

    Hourly measurements of up to 26 C 2-C 8 hydrocarbons have been made at eight urban background sites, three urban-industrial sites, a kerbside and a rural site in the UK from 1993 onwards up until the end of December 2004. Average annual mean benzene and 1,3-butadiene concentrations at urban background locations have declined at about -20% per year and the observed declines have exactly mimicked the inferred declines in benzene and 1,3-butadiene emissions over the same period. Ninety-day rolling mean concentrations of ethylene, propylene, n- and i-butane, n- and i-pentane, isoprene and propane at urban and rural sites have also declined steadily by between -10% and -30% per year. Rolling mean concentrations of acetylene, 2- and 3-methylpentane, n-hexane, n-heptane, cis- and trans-but-2-ene, cis- and trans-pent-2-ene, toluene, ethylbenzene and o-, m- and p-xylene at a roadside location in London have all declined at between -14% and -21% per year. These declines demonstrate that motor vehicle exhaust catalysts and evaporative canisters have effectively and efficiently controlled vehicular emissions of hydrocarbons in the UK. Urban ethane concentrations arising largely from natural gas leakage have remained largely unchanged over this same period.

  19. CRADA Final Report: Optimized Catalysts for the Cracking of Heavier Petroleum Feedstocks

    SciTech Connect

    Somorjai, Gabor A.

    2003-01-02

    Catalysts lower the activation energy required for chemical reactions to proceed and are widely used in petroleum refining and chemical manufacturing. The useful lifetime and, thus, the value of an industrial catalyst are limited by a process known as deactivation in which the efficiency of the catalyst declines over time. Understanding this deactivation process is essential for developing new catalysts with longer useful lifetimes. In this project a new surface science tool, ultraviolet (UV) Raman spectroscopy, was used to identify chemical species on the surfaces of catalysts in-situ under actual reaction conditions. In collaboration with Catalytica this tool was applied to study deactivation in a series of important industrial catalysts. In the specific case of "reforming" catalysts are used to dehydrogenate and cyclize n-hexane and n-heptane to form benzene and toluene for the production of high octane gasoline, the buildup and polymerization of carbonaceous reaction byproducts on the surface of the catalyst was studied in-situ by this new method. The information on catalyst reaction and deactivation mechanisms has been found to be useful to the industrial partner in improving their catalysts. These improvements could have a major impact on the efficiency of petroleum refining and gasoline production. In addition, the new surface science tools developed by this project will have general applicability to the study of catalysis and to the field of surface science in general.

  20. Comparative study of free and immobilized lipase from Bacillus aerius and its application in synthesis of ethyl ferulate.

    PubMed

    Saun, Nitin Kumar; Narwal, Sunil Kumar; Dogra, Priyanka; Chauhan, Ghanshyam Singh; Gupta, Reena

    2014-01-01

    In the present study, a purified lipase from Bacillus aerius immobilized on celite matrix was used for synthesis of ethyl ferulate. The celite-bound lipase exposed to glutaraldehyde showed 90.02% binding efficiency. It took two hours to bind maximally onto the support. The pH and temperature optima of the immobilized lipase were same as those of free enzyme i.e 9.5 and 55°C. Among different substrates both free and immobilized lipase showed maximum affinity towards p-nitrophenyl palmitate (p-NPP). The lipase activity was found to be stimulated in the presence of Mg(2+) in case of free enzyme while Zn(2+) and Fe(3+) showed stimulatory effect on immobilized lipase whereas salt ions as well as chelating agents inhibited activity of both free and immobilized lipase. Maximum enzyme activity was observed in n-hexane as organic solvent followed by n-heptane for both free and immobilized lipase, however CCl4, acetone and benzene inhibited the enzyme activity. Moreover, all the selected detergents (SDS, Triton X-100, Tween 80 and Tween 20) had an inhibitory effect on both free and immobilized enzyme activity. The celite bound lipase (1.5%) efficiently performed maximum esterification (2.51 moles/l) of ethanol and ferulic acid (100 mM each, at a molar ratio of 1:3) when incubated at 55°C for 48 h resulting in the formation of ester ethyl ferulate. PMID:25099909

  1. Biodiesel production using waste frying oil

    SciTech Connect

    Charpe, Trupti W.; Rathod, Virendra K.

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  2. n-Aldehydes (C6-C10) in snow samples collected at the high alpine research station Jungfraujoch during CLACE 5

    NASA Astrophysics Data System (ADS)

    Sieg, K.; Starokozhev, E.; Fries, E.; Sala, S.; Püttmann, W.

    2009-03-01

    Samples of freshly fallen snow were collected at the high alpine research station Jungfraujoch, Switzerland, during the Cloud and Aerosol Characterization Experiments (CLACE) 5 in February and March 2006. Sampling was carried out on the Sphinx platform. Headspace-solid-phase-dynamic extraction (HS-SPDE) combined with gas chromatography/mass spectrometry (GC/MS) was used to quantify C6-C10 n-aldehydes in the snow samples. The most abundant n-aldehyde was n-hexanal (median concentration 1.324 μg L-1) followed by n-nonanal, n-decanal, n-octanal and n-heptanal (median concentrations 1.239, 0.863, 0.460, and 0.304 μg L-1, respectively). A wide range of concentrations was found among individual snow samples, even for samples taken at the same time. Higher median concentrations of all n-aldehydes were observed when air masses reached Jungfraujoch from the north-northwest in comparison to air masses arriving from the southeast-southwest. Results suggest that the n-aldehydes detected most likely are of direct and indirect biogenic origin, and that they entered the snow through the particle phase.

  3. Nitrogen incorporation in saturated aliphatic C6-C8 hydrocarbons and ethanol in low-pressure nitrogen plasma generated by a hollow cathode discharge ion source.

    PubMed

    Usmanov, Dilshadbek T; Chen, Lee Chuin; Hiraoka, Kenzo; Wada, Hiroshi; Nonami, Hiroshi; Yamabe, Shinichi

    2016-06-01

    Ion/molecule reactions of saturated hydrocarbons (n-hexane, cyclohexane, n-heptane, n-octane and isooctane) in 28-Torr N2 plasma generated by a hollow cathode discharge ion source were investigated using an Orbitrap mass spectrometer. It was found that the ions with [M+14](+) were observed as the major ions (M: sample molecule). The exact mass analysis revealed that the ions are nitrogenated molecules, [M+N](+) formed by the reactions of N3 (+) with M. The reaction, N3 (+) + M → [M+N](+) + N2 , were examined by the density functional theory calculations. It was found that N3 (+) abstracts the H atom from hydrocarbon molecules leading to the formation of protonated imines in the forms of R'R″CNH2 (+) (i.e. C-H bond nitrogenation). This result is in accord with the fact that elimination of NH3 is the major channel for MS/MS of [M+N](+) . That is, nitrogen is incorporated in the C-H bonds of saturated hydrocarbons. No nitrogenation was observed for benzene and acetone, which was ascribed to the formation of stable charge-transfer complexes benzene⋅⋅⋅⋅N3 (+) and acetone⋅⋅⋅⋅N3 (+) revealed by density functional theory calculations. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27270868

  4. Gas-Phase Reactions of Atomic Gold Cations with Linear Alkanes (C2-C9).

    PubMed

    Zhang, Ting; Li, Zi-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-06-30

    To develop proper ionization methods for alkanes, the reactivity of bare or ligated transition metal ions toward alkanes has attracted increasing interests. In this study, the reactions of the gold cations with linear alkanes from ethane up to nonane (CnH2n+2, n = 2-9) under mild conditions have been characterized by mass spectrometry and density functional theory calculations. When reacting with Au(+), small alkanes (n = 2-6) were confirmed to follow specific reaction channels of dehydrogenation for ethane and hydride transfer for others to generate product ions characteristic of the original alkanes, which indicates that Au(+) can act as a reagent ion to ionize alkanes from ethane to n-hexane. Strong dependence of the chain length of alkanes was observed for the rate constants and reaction efficiencies. Extensive fragmentation took place for larger alkanes (n > 6). Theoretical results show that the fragmentation induced by the hydride transfer occurs after the release of AuH. Moreover, the fragmentation of n-heptane was successfully avoided when the reaction took place in a high-pressure reactor. This implies that Au(+) is a potential reagent ion to ionize linear and even the branched alkanes. PMID:27266670

  5. Phase equilibria and modeling of pyridinium-based ionic liquid solutions.

    PubMed

    Domańska, Urszula; Królikowski, Marek; Ramjugernath, Deresh; Letcher, Trevor M; Tumba, Kaniki

    2010-11-25

    The phase diagrams of the ionic liquid (IL) N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide ([BM(4)Py][NTf(2)]) with water, an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol), an aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene), an alkane (n-hexane, n-heptane, n-octane), or cyclohexane have been measured at atmospheric pressure using a dynamic method. This work includes the characterization of the synthesized compound by water content and also by differential scanning calorimetry. Phase diagrams for the binary systems of [BM(4)Py][NTf(2)] with all solvents reveal eutectic systems with regards to (solid-liquid) phase equilibria and show immiscibility in the liquid phase region with an upper critical solution temperature (UCST) in most of the mixtures. The phase equilibria (solid, or liquid-liquid) for the binary systems containing aliphatic hydrocarbons reported here exhibit the lowest solubility and the highest immiscibility gap, a trend which has been observed for all ILs. The reduction of experimental data has been carried out using the nonrandom two-liquid (NRTL) correlation equation. The phase diagrams reported here have been compared with analogous phase diagrams reported previously for systems containing the IL N-butyl-4-methylpyridinium tosylate and other pyridinium-based ILs. The influence of the anion of the IL on the phase behavior has been discussed. PMID:20964426

  6. A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere.

    PubMed

    Shu, Zhengyu; Lin, Ruifeng; Jiang, Huan; Zhang, Yanfeng; Wang, Mingzi; Huang, Jianzhong

    2009-06-01

    Lipase from Burkholderia cepacia strain is one of the most versatile biocatalysts and is used widely in many biotechnological application fields including detergent additives, the resolution of racemic compounds, etc. Based on the known whole genomic information of B. cepacia strain, both ampicillin and kanamycin were added to the TB-T medium to screen B. cepacia complex stains from rhizosphere soil samples. The selected colonies from the modified TB-T medium were then qualitatively determined the ability to produce extracellular lipase on the rhodamine B-olive oil agar plates. A total of 35 lipolytic pseudo-B. cepacia complex strains were isolated and the positive rate of lipolytic bacteria was 65%. Among them, 15 pseudo-B. cepacia complex strains showed tolerance to benzene, n-hexane and n-heptane at concentration of 10% (V/V) and were identified by the recA gene sequence. All of the 14 lipolytic bacteria were identified as B. cepacia complex strains except that the recA gene sequence of one lipolytic bacterium, strain ZMB009, was not obtained. PMID:19447345

  7. High pressure droplet burning experiments in reduced gravity

    NASA Technical Reports Server (NTRS)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  8. D/H Isotope Ratio Measurements of Atmospheric Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Meisehen, Thomas; Bühler, Fred; Koppmann, Ralf; Krebsbach, Marc

    2015-04-01

    Analysis of isotope ratios in atmospheric volatile organic compounds (VOC) is a reliable method to allocate their sources, to estimate atmospheric residence times and investigate physical and chemical processes on various temporal and spatial scales. Most investigations yet focus on carbon isotope ratios. Certainly more detailed information can be gained by the ratio of deuterium (D) to hydrogen (H) in VOC, especially due to the high mass ratio. Combining measurements of carbon and hydrogen isotopes could lead to considerable improvement in our understanding of atmospheric processes. For this purpose we set up and thoroughly characterised a gas chromatograph pyrolysis isotope ratio mass spectrometer to measure the D/H ratio in atmospheric VOC. From a custom-made gas standard mixture VOC were adsorbed on Tenax®TA which has the advantage that CO2 is not preconcentrated when measuring ambient air samples. Our results show that the pyrolysis method has significant impact on the D/H ratios. A pyrolysis temperature of at least 1723 K and conditioning of the ceramic tube on a regular basis is essential to obtain reproducible D/H isotope ratios. For an independent comparison D/H ratios of the pure VOC used in the gas standard were determined using elemental analysis by Agroisolab (Jülich, Germany). Comparisons of 10 VOC show perfect agreement within the standard deviations of our measurements and the errors given by Agroisolab, e.g. for n-pentane, toluene, 4-methyl-2-pentanone and n-octane. A slight mean difference of 5.1 o was obtained for n-heptane while significant mean differences of 15.5 o and 20.3 o arose for 1,2,4-trimethylbenzene and isoprene, respectively. We further demonstrate the stability of our system and show that the sample preparation does not affect the isotope ratios. Moreover the applicability of our system to ambient air samples is demonstrated.

  9. A new model for pressure-induced shifts of electronic absorption bands as applied to neat CS sub 2 and CS sub 2 in n-hexane and dichloromethane solutions

    SciTech Connect

    Agnew, S.F.; Swanson, B.I. )

    1990-01-25

    The authors propose a model for the pressure dependence of electronic absorption spectra and apply it to the authors data on CS{sub 2} both in neat phase and in hexane and dichloromethane solid solutions. They believe that their data represent a rather severe test of this model and argue that any model for the pressure dependence of electronic absorption spectra must include certain minimal effects - dispersive or dielectric and repulsive or volume effects - in order to adequately represent the data. They discuss previous models at some length in order to delineate the limits of their applicability. They further acknowledge and define the limits of the applicability of their model to solvent-induced shifts in general.

  10. Stable Carbon Isotope Ratios and Mixing Ratios of Several VOC Including n-Hexane, Benzene, Toluene, p-Xylene, n-Octane, and n-Decane Measured During the Border Air Quality Study Campaign (June-July, 2007)

    NASA Astrophysics Data System (ADS)

    Kornilova, A.; Moukhtar, S.; Huang, L.; Rudolph, J.

    2008-12-01

    Many important secondary pollutants are formed during the oxidation of Volatile Organic Compounds (VOC) in the atmosphere. These organic compounds can contribute significant mass to atmospheric particulate matter (PM) and therefore impact physical properties and composition of aerosols. Despite numerous studies, the formation processes for atmospheric PM are still not well understood. While there have been very extensive laboratory investigations of PM formation, nearly all of these studies have been conducted at VOC concentrations which exceed ambient atmospheric levels by several orders of magnitude. Consequently there is substantial uncertainty in the extrapolation of laboratory results to the atmosphere. Recently it has been demonstrated that stable carbon isotopic composition measurements can be very valuable in providing increased insight into the chemical and transport processes of VOC in the troposphere. Studies showed that isotope ratio measurements could aid in the determination of photochemical processing of individual VOC. It is expected that applying isotope measurements to studies of VOC oxidation products in the atmosphere will allow to establish quantitative relationship between the amount of precursor oxidized and the concentration of secondary pollutants formed during this process. Thus, the yield of secondary organic aerosols (SOA) from this reaction can be calculated. A cartridge technique was developed for field sampling of VOC and subsequent laboratory analysis by gas chromatography coupled with isotope ratio mass spectrometry. It was first implemented during the BAQS field study (June-July, 2007) parallel to PM sampling. Stable carbon isotopic composition and concentrations of several VOC were determined and compared to those of PM. The results of these measurements will be presented and discussed.

  11. n-Aldehydes (C6-C10) in snow samples collected at the high alpine research station Jungfraujoch during CLACE 5

    NASA Astrophysics Data System (ADS)

    Sieg, K.; Starokozhev, E.; Fries, E.; Sala, S.; Püttmann, W.

    2009-04-01

    C6-C10 n-aldehydes were analyzed in samples of freshly fallen snow collected at the high alpine research station Jungfraujoch, Switzerland, during the Cloud and Aerosol Characterization Experiments (CLACE) 5 in February and March 2006. Sampling was carried out on the Sphinx platform. Headspace - solid phase dynamic extraction (HS-SPDE) combined with gas chromatography/mass spectrometry (GC/MS) was used to quantify n-aldehydes in melted snow samples. n-Hexanal was identified as the most abundant n-aldehyde (median concentration 1.324 µg L-1) followed by n-nonanal, n-decanal, n-octanal and n-heptanal (median concentrations 1.239, 0.863, 0.460 and 0.304 µg L-1, respectively). A wide range of concentrations of n-aldehydes was found in snow samples from Jungfraujoch, even for samples collected at the same time during the same snowfall event. According to their physical and chemical characteristics, n-aldehydes are expected to be primarily linked to aerosol particles in the atmosphere suggesting the uptake of n-aldehydes into snow via the particle phase. Particle scavenging can occur during snow formation in clouds. The high concentration variations of the n-aldehydes among the snow samples can be explained assuming that aerosol particles, which are loaded with n-aldehydes, are heterogeneously distributed throughout the snow samples. Higher median concentrations of all n-aldehydes were observed when air masses reached Jungfraujoch from the north-northwest in comparison to air masses arriving from the southeast-southwest. The sources of atmospheric n-aldehydes present at Jungfraujoch are most likely to be related to direct and indirect biogenic emissions. The presence of n-aldehydes as semivolatile constituents of direct biogenic emissions from vegetation has been reported previously in studies of Ciccioli et al. [1], Yokouchi et al. [2] and Kesselmeier and Staudt [3]. The distribution pattern of the n-aldehydes in emissions from vegetation largely matches with the n

  12. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA

    PubMed Central

    Lukins, H. B.; Foster, J. W.

    1963-01-01

    Lukins, H. B. (University of Texas, Austin) and J. W. Foster. Methyl ketone metabolism in hydrocarbon-utilizing mycobacteria. J. Bacteriol. 85: 1074–1087. 1963.—Species of Mycobacterium especially M. smegmatis 422, produced the homologous methyl ketones during the oxidation of propane, n-butane, n-pentane, or n-hexane. A carrier-trapping experiment demonstrated the formation of 2-undecanone, as well as 1,11-undecanedioic acid, during the oxidation of undecane-1-C14. Aliphatic alkane-utilizing mycobacteria were able to grow at the expense of several aliphatic methyl ketones as sole sources of carbon. Other ketones which did not support growth were oxidized by resting bacterial suspensions. M. smegmatis 422 cells grown on propane or acetone were simultaneously adapted to oxidize both substrates, as well as n-propanol. n-Propanol cells were unadapted to propane or acetone. Acetone produced from propane in a medium enriched in D2O contained a negligible quantity of D, presumably eliminating propylene as an intermediate in the oxidation. Cells grown at the expense of alkanes or methyl ketones in the presence of O218 had a higher content of O18 than did cells grown on terminally oxidized compounds, e.g., primary alcohols or fatty acids. An oxygenase reaction is postulated for the attack on methyl ketones. Acetol was isolated and characterized as an oxidation product of acetone by M. smegmatis 422. Acetol-grown cells had a higher O18 content than did n-propanol cells, and its utilization appears to involve at least one oxygenase reaction. Acetol produced from acetone in the presence of O218 was not enriched in the isotope, indicating the occurrence of exchange reactions or of oxygenation reactions at a later stage in the assimilation of acetone and acetol. PMID:14043998

  13. [Pollution characteristics and ozone formation potential of ambient VOCs in winter and spring in Xiamen].

    PubMed

    Xu, Hui; Zhang, Han; Xing, Zhen-yu; Deng, Jun-jun

    2015-01-01

    Air samples were collected at urban and rural sites in Xiamen from January to April 2014. The concentrations of 48 ambient volatile organic compounds (VOC) species were measured by the method of cryogenic pre-concentrator and gas chromatography-mass spectrometry (GC/MS). The ozone formation potential (OFP) of VOCs was also calculated with the method of maximum incremental reactivity (MIR). The results showed that the average mixing ratios of VOCs in winter were 11.13 x 10(-9) and 7.17 x 10(-9) at urban and rural sites, respectively, and those in spring were 24.88 x 10(-9) and 11.27 x 10(-9) at urban and rural sites, respectively. At both sites, alkanes contributed the most to VOCs, followed by aromatics and alkenes. The ratios of B/T showed that vehicle and solvent evaporation were the main sources of VOCs at urban site. While at rural site, transport of anthropogenic sources was another important source of VOCs besides local biomass emissions. Ten main components including propene, n-butane, i-butane, n-pentane, i-pentane, n-hexane, benzene, toluene, ethylbenzene and m/p-xylene accounted for 61.57% and 45.83% of total VOCs at urban and rural sites in winter, respectively, and 62.83% and 53.74% at urban and rural sites in spring, respectively. Aromatics contributed the most to total OFP, followed by alkenes. Alkanes contributed the least to OFP with the highest concentration. C3, C4 alkenes and aromatics were found to be the more reactive species with relatively high contributions to ozone formation in Xiamen. Comparing the average MIR of VOCs at the two sites, it was found that the reactivity of VOCs at rural site was higher than that at urban site. PMID:25898641

  14. Sampling, storage, and analysis of C2-C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks.

    PubMed

    Pollmann, Jan; Helmig, Detlev; Hueber, Jacques; Plass-Dülmer, Christian; Tans, Pieter

    2008-04-25

    An analytical technique was developed to analyze light non-methane hydrocarbons (NMHC), including ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, n-hexane, isoprene, benzene and toluene from whole air samples collected in 2.5l-glass flasks used by the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division (NOAA ESRL GMD, Boulder, CO, USA) Cooperative Air Sampling Network. This method relies on utilizing the remaining air in these flasks (which is at below-ambient pressure at this stage) after the completion of all routine greenhouse gas measurements from these samples. NMHC in sample aliquots extracted from the flasks were preconcentrated with a custom-made, cryogen-free inlet system and analyzed by gas chromatography (GC) with flame ionization detection (FID). C2-C7 NMHC, depending on their ambient air mixing ratios, could be measured with accuracy and repeatability errors of generally < or =10-20%. Larger deviations were found for ethene and propene. Hexane was systematically overestimated due to a chromatographic co-elution problem. Saturated NMHC showed less than 5% changes in their mixing ratios in glass flask samples that were stored for up to 1 year. In the same experiment ethene and propene increased at approximately 30% yr(-1). A series of blank experiments showed negligible contamination from the sampling process and from storage (<10 pptv yr(-1)) of samples in these glass flasks. Results from flask NMHC analyses were compared to in-situ NMHC measurements at the Global Atmospheric Watch station in Hohenpeissenberg, Germany. This 9-months side-by-side comparison showed good agreement between both methods. More than 94% of all data comparisons for C2-C5 alkanes, isoprene, benzene and toluene fell within the combined accuracy and precision objectives of the World Meteorological Organization Global Atmosphere Watch (WMO-GAW) for NMHC measurements. PMID:18355832

  15. Investigating the validity of the Knudsen prescription for diffusivities in a mesoporous covalent organic framework

    SciTech Connect

    Krishna, Rajamani; van Baten, Jasper M.

    2011-04-27

    Molecular dynamics (MD) simulations were performed to determine the self-diffusivity (Di,self) and the Maxwell–Stefan diffusivity (ÐI) of hydrogen, argon, carbon dioxide, methane, ethane, propane, n-butane, n-pentane, and n-hexane in BTP-COF, which is a covalent organic framework (COF) that has one-dimensional 3.4-nm-sized channels. The MD simulations show that the zero-loading diffusivity (ÐI(0)) is consistently lower, by up to a factor of 10, than the Knudsen diffusivity (Di,Kn) values. The ratio ÐI(0)/Di,Kn is found to correlate with the isosteric heat of adsorption, which, in turn, is a reflection of the binding energy for adsorption on the pore walls: the stronger the binding energy, the lower the ratio ÐI(0)/Di,Kn. The diffusion selectivity, which is defined by the ratio D1,self/D2,self for binary mixtures, was determined to be significantly different from the Knudsen selectivity (M2/M1)1/2, where MI is the molar mass of species i. For mixtures in which component 2 is more strongly adsorbed than component 1, the expression (D1,self/D2,self)/(M2/M1)1/2 has values in the range of 1–10; the departures from the Knudsen selectivity increased with increasing differences in adsorption strengths of the constituent species. The results of this study have implications in the modeling of diffusion within mesoporous structures, such as MCM-41 and SBA-15.

  16. Investigation of the impact of organic solvent type and solution pH on the extraction efficiency of naphthenic acids from oil sands process-affected water.

    PubMed

    Huang, Rongfu; McPhedran, Kerry N; Sun, Nian; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-03-01

    Naphthenic acids (NAs) from oil sand process-affected water (OSPW) were liquid-liquid extracted using six organic solvents (n-pentane, n-hexane, cyclohexane, dichloromethane, ethyl ether, and ethyl acetate) at three pHs (2.0, 8.5, and 12.0). The NAs exist in ionic (ions) and non-ionic (molecules) forms in the water phase depending on their dissociation constants and the solution pH. Results showed the extractability of NA molecules depends on the solvent polarity and the extractability of NA ions on the water solubility in solvent. The organic solvent type and solution pH were found to not only impact the extracted amounts of each NA species, but also the NAs distribution in terms of molecule carbon number and hydrogen deficiency. Overall, it is concluded that ethyl ether can be used as an alternative to dichloromethane (DCM) given their similar extraction efficiencies and extracted NA profiles. This is important since DCM is known to have metabolic toxicity and transitioning to the safer ethyl ether would eliminate laboratory DCM exposures and risk to human health. Despite the higher extraction efficiency of NAs at pH 2.0, extraction at pH 12.0 could be useful for targeted extraction of low-concentration nonpolar organic compounds in OSPW. This knowledge may assist in the determination of the specific NAs species that are known to have chronic, sub-chronic and acute toxicity to various organisms, and the potential targeting of treatment to these NAs species. PMID:26741553

  17. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Cheng, Shuiyuan; Li, Guohao; Wang, Gang; Wang, Haiyan

    2014-06-01

    This study made a field VOCs (volatile organic compounds) measurement for a petroleum refinery in Beijing by determining 56 PAMS VOCs, which are demanded for photochemical assessment in US, and obtained the characteristics of VOCs emitted from the whole refinery and from its inner main devices. During the monitoring period, this refinery brought about an average increase of 61 ppbv in the ambient TVOCs (sum of the PAMS VOCs) at the refinery surrounding area, while the background of TVOCs there was only 10-30 ppbv. In chemical profile, the VOCs emitted from the whole refinery was characteristic by isobutane (8.7%), n-butane (7.9%), isopentane (6.3%), n-pentane (4.9%%), n-hexane (7.6%), C6 branched alkanes (6.0%), propene (12.7%), 1-butene (4.1%), benzene (7.8%), and toluene (5.9%). On the other hand, the measurement for the inner 5 devices, catalytic cracking units (CCU2 and CCU3), catalytic reforming unit (CRU), tank farm (TF), and wastewater treatment(WT), revealed the higher level of VOCs pollutions (about several hundred ppbv of TVOCs), and the individual differences in VOCs chemical profiles. Based on the measured speciated VOCs data at the surrounding downwind area, PMF receptor model was applied to identify the VOCs sources in the refinery. Then, coupling with the VOCs chemical profiles measured at the device areas, we concluded that CCU1/3 contributes to 25.9% of the TVOCs at the surrounding downwind area by volume, followed by CCU2 (24.7%), CRU (18.9%), TF (18.3%) and WT (12.0%), which was accordant with the research of US EPA (2008). Finally, ozone formation potentials of the 5 devices were also calculated by MIR technique, which showed that catalytic cracking units, accounting for about 55.6% to photochemical ozone formation, should be given the consideration of VOCs control firstly.

  18. Molecular dynamics averaging of Xe chemical shifts in liquids

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Sears, Devin N.; Murad, Sohail

    2004-11-01

    The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.

  19. CARIBIC Observations of Non-Methane Hydrocarbons (NMHCs) in the UT/LS: Biomass Burning in the Tropics and Anthropogenic Pollution in the Extra-Tropics

    NASA Astrophysics Data System (ADS)

    Brenninkmeijer, C. A.; Rhee, T. S.; Slemr, F.; Mfühle, J.; Fischer, H.; Zahn, A.; van Velthoven, P. F.

    2003-12-01

    CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrumented Container) used a Boeing 767 on intercontinental flights to measure trace gases and aerosols between November 1997 and April 2002. From April 2004 onwards, a new Lufthansa Airbus A340-600 with a new inlet system and measurement container with 16 experiments will become operational. Here we discuss the results for NMHCs for a flight from the Maldives to Germany, June 2000. Twelve air samples of 350 L were collected and analyzed in the laboratory for NMHCs, halocarbons, CH4, CO, N2O, SF6, and isotopic compositions in CO and CO2. In the upper troposphere (UT) of the tropics, the concentrations of saturated NMHCs (C2 - C6) were significantly lower and less variable than in the extra-tropics, likely due to enhanced photo-oxidation in summer. A good correlation between long-lived NMHCs and CO, and their emission ratios imply that the air masses come from biomass burning regions. By contrast, the concentrations of all saturated NMHCs in the extra-tropics were greatly augmented. In particular, very high concentrations of several short-lived NMHCs, i.e., n-pentane, i-pentane, n-hexane, were observed near or even in the lowermost stratosphere (LS). Tight anti-correlations between CO and O3, the enhancement of ultra-fine particles, and the calculated backward trajectories indicate the occurrence of deep convection of highly polluted air from southern Europe into the lowermost stratosphere. The CARIBIC findings show a direct (fast) injection of polluted air to be a significant source of NMHCs observed in the lowermost stratosphere in the extra-tropics.

  20. Ultrafast molecular dynamics of biofuel extraction for microalgae and bacteria milking: blocking membrane folding pathways to damaged lipid-bilayer conformations with nanomicelles.

    PubMed

    Gillet, Jean-Numa

    2015-01-01

    Cell milking is a 100% renewable green energy for CO2 by extraction of biofuels inside the cytosol of photosynthetic micro-organisms as microalgae and bacteria. The cells are exposed to a hydrophobic solvent forming holes and cracks through their membranes from which the biofuels can leak out. In protein folding, the goal would be to find pathways to the unique functional protein conformer. However, in the lipid-bilayer interaction with the solvent for milking, the objective is to block the pathways for damaged membrane conformations of low free energy with undesired nanostructures, using the solvent properties, as shown with an ab initio structural bioinformatic model. Statistical thermodynamics is used to compute the free energy (including entropy) from the molecular dynamics trajectory of the biomolecular system with many conformational changes. This model can be extended to the general problem of biomolecules folding as for proteins and nucleic acids. Using an adaptation of the Einstein diffusion law, the conformational change dynamics of the lipid bilayer depends on the two diffusion coefficients of the solvent: D1 before the irreversible folding transition time and the much smaller D2 thereafter. In contrast to the n-hexane and n-heptane hydrocarbons of smaller size, the residual D2=4.7 × 10(-7)cm(2)/s of the n-decane solvent, with the highest partition coefficient among the three extractors, is the only to present a D2 value that is significantly below the critical threshold of 10(-6)cm(2)/s. Therefore, the membrane would resist to long hydrocarbons and the exposed cells would remain viable for milking. PMID:24735062

  1. Isolation and identification of some unknown substances in disposable nitrile-butadiene rubber gloves used for food handling.

    PubMed

    Mutsuga, M; Wakui, C; Kawamura, Y; Maitani, T

    2002-11-01

    In Japan, disposable gloves made from nitrile-butadiene rubber (NBR) are frequently used in contact with foods. In a previous paper, we investigated substances migrating from various gloves made of polyvinyl chloride, polyethylene, natural rubber and NBR. Zinc di-n-butyldithiocarbamate (ZDBC), diethyldithiocarbamate (ZDEC) used as vulcanization accelerators, di(2-ethylhexyl)phthalate (DEHP) used as a plasticizer and many unknown compounds that migrated from NBR gloves into n-heptane were detected by GC/MS. In this paper, six unknown compounds were obtained from one kind of NBR glove by n-hexane extraction and each was isolated by silica gel chromatography. From the results of NMR and mass spectral analysis of the six unknown compounds, their structures are proposed as 1,4-dione-2,5-bis(1,1-dimethylpropyl)cyclohexadiene (1), 2-(1,1-dimethylethyl)-4-(1,1,3,3-tetra methylbutyl)phenol (2), 2,6-bis(1,1-dimethylethyl)-4-(1,1,3,3-tetramethylbutyl)phenol (3), 2,4-bis(1,1,3,3-tetramethylbutyl)phenol (4), 2-(1,1-dimethylethyl)4,6-bis(1,1,3,3-tetramethylbutyl)phenol (5) and 2,4,6-tris(1,1,3,3-tetramethylbutyl)phenol (6). Compound 1 was observed in five of the seven kinds of NBR gloves, and compounds 2-4 and 6, which are not listed in Chemical Abstract (CA), were present in four kinds of gloves. PMID:12456282

  2. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    PubMed Central

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  3. Volatile organic compound concentrations, emission rates, and source apportionment in newly-built apartments at pre-occupancy stage.

    PubMed

    Shin, Seung H; Jo, Wan K

    2012-10-01

    The present study investigated the indoor concentrations of selected volatile organic compounds (VOCs) and formaldehyde and their indoor emission characteristics in newly-built apartments at the pre-occupancy stage. In total, 107 apartments were surveyed for indoor and outdoor VOC concentrations in two metropolitan cities and one rural area in Korea. A mass balanced model was used to estimate surface area-specific emission rates of individual VOCs and formaldehyde. Seven (benzene, ethyl benzene, toluene, m,p-xylene, o-xylene, n-hexane, and n-heptane) of 40 target compounds were detectable in all indoor air samples, whereas the first five were detected in all outdoor air samples. Formaldehyde was also predominant in the indoor air samples, with a high detection frequency of 96%. The indoor concentrations were significantly higher than the outdoor concentrations for aromatics, alcohols, terpenes, and ketones. However, six halogenated VOCs exhibited similar concentrations for indoor and outdoor air samples, suggesting that they are not major components emitted from building materials. It was also suggested that a certain portion of the apartments surveyed were constructed by not following the Korean Ministry of Environment guidelines for formaldehyde emissions. Toluene exhibited the highest emission rate with a median value of 138 μg m(-2) h(-1). The target compounds with median emission rates greater than 20 μg m(-2) h(-1) were toluene, 1-propanol, formaldehyde, and 2-butanone. The wood panels/vinyl floor coverings were the largest indoor pollutant source, followed by floorings, wall coverings, adhesives, and paints. The wood panels/vinyl floor coverings contributed nearly three times more to indoor VOC concentrations than paints. PMID:22698369

  4. Approach to estimation of absorption of aliphatic hydrocarbons diffusing from interior materials in an automobile cabin by inhalation toxicokinetic analysis in rats.

    PubMed

    Yoshida, Toshiaki

    2010-01-01

    The interior air of an automobile cabin has been demonstrated in our previous studies to be contaminated by high concentrations of a large variety of aliphatic hydrocarbons diffusing from the interior materials. In the present study, the amounts of seven selected aliphatic hydrocarbons absorbed by the car driver were estimated by evaluating their inhalation toxicokinetics in rats. Measured amounts of the substances were injected into a closed chamber system in which a rat had been placed, and the concentration changes in the chamber were examined. The toxicokinetics of the substances were evaluated based on concentration-time courses using a nonlinear compartment model. Their absorption amounts in humans at the levels of actual concentrations in the cabins without ventilation were extrapolated from the results found with the rats. The absorption amounts estimated for a driver during a 2 h drive were as follows: 6 microg/60 kg of human body weight for methylcyclopentane (interior concentration 23 microg/m(3) as median value in previous study), 5 microg for 2-methylpentane (36 microg/m(3)), 13 microg for n-hexane (65 microg/m(3)), 51 microg for n-heptane (150 microg/m(3)), 26 microg for 2,4-dimethylheptane (97 microg/m(3)), 17 microg for n-nonane (25 microg/m(3)) and 49 microg for n-decane (68 microg/m(3)). An inverse relationship was found between the exposure and absorption among the substances (e.g. between n-decane and 2,4-dimethylheptane). These findings suggest that not only the exposure concentrations but also the absorption amounts should be taken into account to evaluate the health effects of exposure to low concentrations of volatile compounds as environmental contaminants. PMID:19743389

  5. In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models Based on Three Machine Learning Algorithms.

    PubMed

    Paduszyński, Kamil

    2016-08-22

    The aim of the paper is to address all the disadvantages of currently available models for calculating infinite dilution activity coefficients (γ(∞)) of molecular solutes in ionic liquids (ILs)-a relevant property from the point of view of many applications of ILs, particularly in separations. Three new models are proposed, each of them based on distinct machine learning algorithm: stepwise multiple linear regression (SWMLR), feed-forward artificial neural network (FFANN), and least-squares support vector machine (LSSVM). The models were established based on the most comprehensive γ(∞) data bank reported so far (>34 000 data points for 188 ILs and 128 solutes). Following the paper published previously [J. Chem. Inf. Model 2014, 54, 1311-1324], the ILs were treated in terms of group contributions, whereas the Abraham solvation parameters were used to quantify an impact of solute structure. Temperature is also included in the input data of the models so that they can be utilized to obtain temperature-dependent data and thus related thermodynamic functions. Both internal and external validation techniques were applied to assess the statistical significance and explanatory power of the final correlations. A comparative study of the overall performance of the investigated SWMLR/FFANN/LSSVM approaches is presented in terms of root-mean-square error and average absolute relative deviation between calculated and experimental γ(∞), evaluated for different families of ILs and solutes, as well as between calculated and experimental infinite dilution selectivity for separation problems benzene from n-hexane and thiophene from n-heptane. LSSVM is shown to be a method with the lowest values of both training and generalization errors. It is finally demonstrated that the established models exhibit an improved accuracy compared to the state-of-the-art model, namely, temperature-dependent group contribution linear solvation energy relationship, published in 2011 [J. Chem

  6. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase.

    PubMed

    Peter, Sebastian; Kinne, Matthias; Wang, Xiaoshi; Ullrich, René; Kayser, Gernot; Groves, John T; Hofrichter, Martin

    2011-10-01

    Fungal peroxygenases are novel extracellular heme-thiolate biocatalysts that are capable of catalyzing the selective monooxygenation of diverse organic compounds, using only H(2)O(2) as a cosubstrate. Little is known about the physiological role or the catalytic mechanism of these enzymes. We have found that the peroxygenase secreted by Agrocybe aegerita catalyzes the H(2)O(2)-dependent hydroxylation of linear alkanes at the 2-position and 3-position with high efficiency, as well as the regioselective monooxygenation of branched and cyclic alkanes. Experiments with n-heptane and n-octane showed that the hydroxylation proceeded with complete stereoselectivity for the (R)-enantiomer of the corresponding 3-alcohol. Investigations with a number of model substrates provided information about the route of alkane hydroxylation: (a) the hydroxylation of cyclohexane mediated by H(2)(18)(2) resulted in complete incorporation of (18)O into the hydroxyl group of the product cyclohexanol; (b) the hydroxylation of n-hexane-1,1,1,2,2,3,3-D(7) showed a large intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 16.0 ± 1.0 for 2-hexanol and 8.9 ± 0.9 for 3-hexanol; and (c) the hydroxylation of the radical clock norcarane led to an estimated radical lifetime of 9.4 ps and an oxygen rebound rate of 1.06 × 10(11) s(-1). These results point to a hydrogen abstraction and oxygen rebound mechanism for alkane hydroxylation. The peroxygenase appeared to lack activity on long-chain alkanes (> C(16)) and highly branched alkanes (e.g. tetramethylpentane), but otherwise exhibited a broad substrate range. It may accordingly have a role in the bioconversion of natural and anthropogenic alkane-containing structures (including alkyl chains of complex biomaterials) in soils, plant litter, and wood. PMID:21812933

  7. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes.

    PubMed

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD-coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation-were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria-Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  8. Fischer-Tropsch synthesis in supercritical reaction media. [Quarterly] progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Subramaniam, B.

    1993-10-01

    Figure 1 shows the physical appearance of the reactor and analytical units. The feed preparation section consists of a mass flow controller for syngas introduction, the BPLC pump for n-hexane introduction, preheaters, check valves, static mixer, and safety head has been completed. The stainless steel reactor was fabricated and was alonized to passivate the stainless steel surface. The fluidized sand bath surrounding the reactor was fabricated in house. Aluminum oxide (120 mesh) will be used as the fluidized medium. Stepping-motor-driven micrometering (Autoclave{reg_sign}) valves have been installed for pressure control of the reactor and of the syngas feed stream. The sample transfer lines connected to the gas sampling valves in the GC will be routed inside the valve oven and out through the front top of the GC, where they will be connected with the heated sample transfer lines from the reactor. The sample outlet line will be routed through a cold trap operated at 20{degrees}C or lower and the gases from the cold trap will be exhausted to the roof vent. The reactor unit is versatile and permits us to investigate the effect(s) of any of the following variables on syngas conversion, selectivity and reaction rate maintenance: (1) pressure (25--70) bars, (2) syngas flowrate (30--150) cc/min/g{center_dot}cat, (3) syngas ratio (H{sub 2}/CO of 0.5, 1.0 or 2.0) (4) ratio of syngas to reaction media (0.2--5.0), (5) catalyst type (Fe or Co), (6) direction of cocurrent flow (upflow or downflow), (7) cosolvent effects (such as n-pentane), and (8) sulfur content (1--50 mg{center_dot}/g{center_dot}Fe). Based on a literature review (Pennline et al., 1987; Baltrus et al., 1989; Bukur et al., 1990), the pretreatment of Fe catalysts will be performed with flowing CO at low pressure ({approximately}1 atm) and high temperatures ({approximately}280{degrees}C).

  9. Effects of biomass burning on summertime nonmethane hydrocarbon concentrations in the Canadian wetlands

    NASA Technical Reports Server (NTRS)

    Blake, D. R.; Smith, T. W., Jr.; Chen, T.-Y.; Whipple, W. J.; Rowland, F. S.

    1994-01-01

    Approximately 900 whole air samples were collected and assayed for selected C2-C10 hydrocarbons and seven halocarbons during the 5-week Arctic Boundary Layer Expedition (ABLE) 3B conducted in eastern Canadian wetland areas. In more than half of the 46 vertical profiles flown, enhanced nonmethane hydrocarbon (NMHC) concentrations attributable to plumes from Canadian forest fires were observed. Urban plumes, also enhanced in many NMHCs, were separately identified by their high correlation with elevated levels of perchloroethene. Emission factors relative to ethane were determined for 21 hydrocarbons released from Canadian biomass burning. Using these data for ethane, ethyne, propane, n-butane, and carbon monoxide enhancements from the literature, global emissions of these four NMHCs were estimated. Because of its very short atmospheric lifetime and its below detection limit background mixing ratio, 1,3-butadiene is an excellent indicator of recent combustion. No statistically significant emissions of nitrous oxide, isoprene, or CFC 12 were observed in the biomass-burning plumes encountered during ABLE 3B. The presence of the short-lived biogenically emitted isoprene at altitudes as high as 3000 m implies that mixing within the planetary boundary layer (PBL) was rapid. Although background levels of the longer-lived NMHCs in this Canadian region increase during the fire season, isoprene still dominated local hydroxyl radical photochemistry within the PBL except in the immediate vicinity of active fires. The average biomass-burning emission ratios for hydrocarbons from an active fire sampled within minutes of combustion were, relative to ethane, ethene, 2.45; ethyne 0.57; propane, 0.25; propene, 0.73; propyne, 0.06; n-butane, 0.09; i-butane, 0.01; 1-butene, 0.14; cis-2-butene, 0.02; trans-2-butene, 0.03; i-butylene, 0.07; 1,3-butadiene, 0.12; n-pentane, 0.05; i-pentane, 0.03; 1-pentene, 0.06; n-hexane, 0.05; 1-hexene, 0.07; benzene, 0.37; toluene, 0.16.

  10. Development and implementation of a stereoselective normal-phase liquid chromatography-tandem mass spectrometry method for the determination of intrinsic metabolic clearance in human liver microsomes.

    PubMed

    Zhang, Yingru; Caporuscio, Christian; Dai, Jun; Witkusa, Michael; Rose, Anne; Santella, Joseph; D'Arienzo, Celia; Wang-Iverson, David B; Tymiak, Adrienne A

    2008-11-01

    The stereoselective determination of stereoisomers in biological samples provides vital information on stereospecific metabolism and pharmacokinetic profiles of the drugs. Despite the unique advantage and the great success of normal-phase (NP) HPLC for the separations of drug stereoisomers using polysaccharide-type chiral stationary phases (CSPs), the technique is rarely applied to quantitative HPLC-MS-MS bioanalysis. This is, at least in part, due to the incompatibility between the usual mobile phase (n-hexane or n-heptane) in normal-phase HPLC and the MS ionization sources which poses a potential detonation hazard. An environmentally friendly and nonflammable alternative solvent, ethoxynonafluorobutane (ENFB), was reported previously to potentially provide an ideal solution for combining the powers of stereoselective NP chromatographic separation and MS-MS detection. In this study, a stereoselective NP-HPLC-MS-MS method was developed using ENFB to quantify a pair of Bristol Myers Squibb (BMS) proprietary drug stereoisomers and their ketone metabolite for an in vitro study, which demonstrated, for the first time, the practical applicability and utility of ENFB for bioanalysis in pharmaceutical industry. The effects of different organic modifiers and temperature, as well as the comparison between ENFB and the usual solvent, heptane, for the separation, are discussed. The resolution of the stereoisomers was achieved using 63% of 3:1 mixture of ethanol and methanol with 37% ENFB on a Chiralpak AD-H column at 50 degrees C. High sensitivity was obtained using the MS-MS detection in the positive ion atmospheric pressure chemical ionization (APCI) mode. The lower limit of quantitation (LLOQ) for the first stereoisomer and the ketone metabolite was 5 ng/mL, and was 10 ng/mL for the second isomer in the human liver microsome-potassium phosphate buffer matrix. The linear dynamic range of 5-1000 ng/mL for both isomers and 10-1000 ng/mL for the metabolite were demonstrated

  11. Cytotoxic activity of plants of family zygophyllaceae and euphorbiaceae.

    PubMed

    Dastagir, Ghulam; Hussain, Farrukh

    2014-07-01

    The methanolic and n-hexane extracts of studied plants showed significant toxicity to brine shrimps. The methanolic extract of Fagonia cretica had highest LD50 (117.72) value, while Peganum harmala showed low LD50 value (41.70) compared to n-hexane extract. The methanolic and n-hexane extracts of Tribulus terrestris showed similar LD50 values. The methanolic extract of Chrozophora tinctoria showed low LD50 value than the n-hexane extract. The methanolic extract of Ricinus communis showed highest LD50 value while the n-hexane extract showed lowest LD50 value. The LD50 value less than 100 was obtained for n-hexane extracts of Fagonia cretica, Peganum harmala and Ricinus communis. The n-hexane extracts of these plants also showed the highest toxicity as compare to methanolic extracts. The chemical constituents detected in the present investigation might be responsible for cytotoxic activity. PMID:25015443

  12. Pentane conversion on dealuminated H-Y and HZSM-5

    SciTech Connect

    Hong, Y.; Gruver, V.; Fripiat, J.J.

    1996-07-01

    Kinetics of n-pentane conversion was studied in relation to the acidity of Y zeolites. Selectivity to isomerization vs. cracking depends mainly on the zeolite structure and the partial clogging of the pores. 34 refs., 5 figs., 7 tabs.

  13. C-H\\ctdot O hydrogen bonding in a 4-fluorobenzoate multilayer induced by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Perry, Donald A.; Schiefer, Elizabeth M.; Cordova, James S.; Bonde, Ashley M.; Razer, Taylor M.; Primm, Katherine M.; Chen, Tsung Yen; Biris, Alexandru S.

    2011-08-01

    SERS, SEIRA, and DFT calculations showed silver nanoparticles can stimulate C-H⋯O hydrogen bonding in 4-fluorobenzoate ion/ n-heptane multilayers. SERS/DFT demonstrated that 4-fluorobenzoic acid (4FBA) adsorbed as a 4-fluorobenzoate (4FBT) monolayer on nanosilver. Ionization of 4FBA to 4FBT occurred in the multilayer when 4FBA was deposited in n-heptane onto nanosilver. Frequency shifts in SEIRA bands of 4FBT COO stretch and n-heptane CH bend modes illustrated a change in the degree of C-H⋯O hydrogen bonding as more 4FBT/ n-heptane was adsorbed to the multilayer. This work will influence many research areas such as sensors formed from thin organic layers on metal nanoparticles.

  14. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... with the solvents—distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid in distilled water, and n-heptane, yield total extractives in each extracting solvent not...

  15. 21 CFR 177.1556 - Polyaryletherketone resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... temperature for 2 hours with the following solvents: Distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid (by weight) in distilled water, and n-heptane. (d) In testing...

  16. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... extracted at reflux temperatures for 6 hours with the solvents—distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid in distilled water, and n-heptane, yield...

  17. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... extracted at reflux temperatures for 6 hours with the solvents—distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid in distilled water, and n-heptane, yield...

  18. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... extracted at reflux temperatures for 6 hours with the solvents—distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid in distilled water, and n-heptane, yield...

  19. 21 CFR 177.2415 - Poly(aryletherketone) resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... milligrams per square inch of food contact surface: Distilled water, 50 percent (by volume) ethanol in distilled water, 3 percent acetic acid in distilled water, and n-heptane. In testing the final food...

  20. 40 CFR Appendix: Table 1 to... - List of Hazardous Air Pollutants (HAP) for Subpart HHH

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Acetaldehyde 71432 Benzene (includes benzene in gasoline) 75150 Carbon disulfide 463581 Carbonyl sulfide 100414 Ethyl benzene 107211 Ethylene glycol 75050 Acetaldehyde 50000 Formaldehyde 110543 n-Hexane...

  1. 40 CFR Appendix: Table 1 to... - List of Hazardous Air Pollutants (HAP) for Subpart HHH

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Acetaldehyde 71432 Benzene (includes benzene in gasoline) 75150 Carbon disulfide 463581 Carbonyl sulfide 100414 Ethyl benzene 107211 Ethylene glycol 75050 Acetaldehyde 50000 Formaldehyde 110543 n-Hexane...

  2. Thermal Ignition

    NASA Astrophysics Data System (ADS)

    Boettcher, Philipp Andreas

    sufficiently rapidly undergoes only a moderate amount of thermal decomposition and explodes quite violently. This behavior can also be captured and analyzed using a one-step reaction model, where the heat release is in competition with the depletion of reactants. Hot surface ignition is examined using a glow plug or heated nickel element in a series of premixed n-hexane air mixtures. High-speed schlieren photography, a thermocouple, and a fast response pressure transducer are used to record flame characteristics such as ignition temperature, flame speed, pressure rises, and combustion mode. The ignition event is captured by considering the dominant balance of diffusion and chemical reaction that occurs near a hot surface. Experiments and models show a dependence of ignition temperature on mixture composition, initial pressure, and hot surface size. The mixtures exhibit the known lower flammability limit where the maximum temperature of the hot surface was insufficient at igniting the mixture. Away from the lower flammability limit, the ignition temperature drops to an almost constant value over a wide range of equivalence ratios (0.7 to 2.8) with large variations as the upper flammability limit is approached. Variations in the initial pressure and equivalence ratio also give rise to different modes of combustion: single flame, re-ignition, and puffing flames. These results are successfully compared to computational results obtained using a flamelet model and a detailed chemical mechanism for n-heptane. These different regimes can be delineated by considering the competition between inertia, i.e., flame propagation, and buoyancy, which can be expressed in the Richardson number. In experiments of hot surface ignition and subsequent flame propagation a 10 Hz puffing flame instability is visible in mixtures that are stagnant and premixed prior to the ignition sequence. By varying the size of the hot surface, power input, and combustion vessel volume, we determined that the

  3. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  4. Research on Volatile Organic Compounds in the Mexico City Metropolitan Area (MCMA) in two campaigns collected in the Winter-2011 and Spring-2012

    NASA Astrophysics Data System (ADS)

    Magaña, M.; González-Vargas, S.; Blanco, S.; Watanabe, T.; Maeda, T.; Cardenas, B.

    2013-05-01

    Because of the importance of information on the concentration and speciation of Volatile Organic Compounds (VOC) in the atmosphere for the development of regulatory programs or emission control, is necessary to determine the type and the concentrations of reactive and toxic VOC in atmospheric air. The aim of this study is to determine the speciation and quantification of VOC in the atmospheric air of the Mexico City Metropolitan Area (MCMA), from samples obtained in November-December 2011 (cold-dry) and March-April (warm-dry). This study presents the results of characterization of VOC in ambient air in the MCMA conducted during 2011-2012. Sampling of VOC was done in two sampling campaigns: from November 17th to December 11th, 2011, and March 1st to April 6th, 2012 through collection of ambient air each six days in six liters stainless steel SUMMA canisters of 24 hours integrated samples, in three sites (Merced: commercial area with vehicular sources, Pedregal: residential area with vehicular sources and San Agustin: industrial sources with heavy traffic), in the MCMA. The analysis of samples was carried out with two chromatographic systems: 1) method equivalent to the EPA's Method TO-14, and 2) GC/MSD coupled to a preconcentrator ENTECH, for the analysis of the compounds listed in EPA method TO15. It was investigated the concentration of 111 volatile organic compounds, (ozone precursors and toxic compounds). It was found that concentrations of 23 species, constitute 80% of the total VOC concentration tested: ethane, propane, isobutane, n-butane, n-pentane, n-hexane, isopentane, methylcyclopentane, ethylene, propylene, acetylene, benzene, toluene, ethylbenzene, m/p-xylene, o-xylene, 1,2,4-trimethylbenzene, ethyl and isopropyl alcohols, acetone, 2-butanone, MTBE and ethyl acetate. Both in 2011 and 2012, the highest concentrations measured in the three sites were for compounds associated with the combustion of LPG gas: propane, n-butane. The highest concentrations of

  5. Electron transport in Paracoccus halodenitrificans and the role of Ubiquinone

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    The membrane-bound NADH oxidase of Paracoccus halodenitrificans was inhibited by dicoumarol, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), and exposure to ultraviolet light (at 366 nm). When the membranes were extracted with n-pentane, NADH oxidase activity was lost. Partial restoration was achieved by adding the ubiquinone fraction extracted from the membranes. Succinate oxidation was not inhibited by dicoumarol or HQNO but was affected by ultraviolet irradiation or n-pentane extraction. However, the addition of the ubiquinone fraction to the n-pentane-extracted membranes did not restore enzyme activity. These observations suggested the reducing equivalents from succinate entered the respiratory chain on the oxygen side of the HQNO-sensitive site and probably did not proceed through a quinone.

  6. Electron Transport in Paracoccus Halodenitrificans and the Role of Ubiquinone

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1983-01-01

    The membrane-bound NADH oxidase of Paracoccus halodenitrificans was inhibited by dicoumarol, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), and exposure to ultraviolet light (at 366 nm). When the membranes were extracted with n-pentane, NADH oxidase activity was lost. Partial restoration was achieved by adding the ubiquinone fraction extracted from the membranes. Succinate oxidation was not inhibited by dicoumarol or HQNO but was affected by ultraviolet irradiation or n-pentane extraction. However, the addition of the ubiquinone fraction to the n-pentane-extracted membranes did not restore enzyme activity. These observations suggested the reducing equivalents from succinate entered the respiratory chain on the oxygen side of the HQNO-sensitive site and probably did not proceed through a quinone.

  7. Low severity upgrading of F-T waxes with solid superacids. Quarterly report, March 1, 1993--May 31, 1993

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1993-09-01

    The upgrading of Fischer-Tropsch waxes with solid superacids continued this quarter, the isomerization and hydrocracking of n-pentane were examined by in situ FT-IR. It was found that the intensity of protonic acid sites was weakened as n-pentane was introduced into the IR cell, indicating that protonic acid sites tend to donate a proton to n-paraffins. There was no evidence of olefinic intermediates. It is likely that, as we previously proposed, isomerization and hydrocracking over Pt/ZrO{sub 2}/SO{sub 4} catalyst proceed through initial protonation of n-alkanes to form carbonium ions which are then isomerized and hydrocracked.

  8. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect

    Toulson, Dr. Elisa; Allen, Casey M; Miller, Dennis J; McFarlane, Joanna; Schock, Harold; Lee, Tonghun

    2011-01-01

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  9. Understanding nanofluid stability through molecular simulation

    SciTech Connect

    Dang, Liem X.; Annapureddy, Harsha V.; Sun, Xiuquan; Thallapally, Praveen K.; McGrail, B. Peter

    2012-11-01

    We performed molecular dynamics simulations to study solvation of a nanoparticle and nanoparticle-nanoparticle interactions in an n-hexane solution. Structural signatures are barely observed between the nanoparticle and n-hexane molecules because of weak binding and steric effects. The dynamic properties of the n-hexane molecule, on the other hand, are significantly influenced by the solvated nanoparticle. The diffusion of n-hexane molecules inside the nanoparticle is significantly decreased mainly because of the loss of dimensions of translation. Because one translational degree of freedom is lost by colliding with the wall of nanoparticle, the n-hexane molecules outside the nanoparticle diffuse 30% slower than the molecules in pure solution. The computed free energy profiles illustrate that the arrangement of the nanoparticles in bulk n-hexane solution are dependent on the orientation and functional group. We found that the n-hexane solvent exerts some effects on the interactions between the solvated nanoparticles. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  10. Fiber Supported Droplet Combustion-2 (FSDC-2)

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato; Dietrich, Daniel; Haggard, John B., Jr.; Nayagan, Vedha; Dryer, Frederick L.; Shaw, Benjamin D.; Williams, Forman A.

    1998-01-01

    Experimental results for the burning characteristics of fiber supported, liquid droplets in ambient Shuttle cabin air (21% oxygen, 1 bar pressure) were obtained from the Glove Box Facility aboard the STS-94/MSL-1 mission using the Fiber Supported Droplet Combustion - 2 (FSDC-2) apparatus. The combustion of individual droplets of methanol/water mixtures, ethanol, ethanol/water azeotrope, n-heptane, n-decane, and n-heptane/n-hexadecane mixtures were studied in quiescent air. The effects of low velocity, laminar gas phase forced convection on the combustion of individual droplets of n-heptane and n-decane were investigated and interactions of two droplet-arrays of n-heptane and n-decane droplets were also studied with and without gas phase convective flow. Initial diameters ranging from about 2mm to over 6mm were burned on 80-100 micron silicon fibers. In addition to phenomenological observations, quantitative data were obtained in the form of backlit images of the burning droplets, overall flame images, and radiometric combustion emission measurements as a function of the burning time in each experiment. In all, 124 of the 129 attempted experiments (or about twice the number of experiments originally planned for the STS-94/MSL-1 mission) were conducted successfully. The experimental results contribute new observations on the combustion properties of pure alkanes, binary alkane mixtures, and simple alcohols for droplet sizes not studied previously, including measurements on individual droplets and two-droplet arrays, inclusive of the effects of forced gas phase convection. New phenomena characterized experimentally for the first time include radiative extinction of droplet burning for alkanes and the "twin effect" which occurs as a result of interactions during the combustion of two-droplet arrays. Numerical modeling of isolated droplet combustion phenomenon has been conducted for methanol/water mixtures, n-heptane, and n-heptane/n-hexadecane mixtures, and results

  11. Photophysics of 4- N, N-dimethylamino cinnamaldehyde in AOT reverse micelles and exploration of its position and orientation

    NASA Astrophysics Data System (ADS)

    Panja, Subhasis; Chakravorti, Sankar

    2003-01-01

    An attempt has been made in this Letter to locate the position and orientation of 4- N, N-dimethylamino cinnamaldehyde (DMACA) inside sodium bis(2-ethylhexyl) sulfosuccinate (AOT)- n-heptane reverse micelle based on change in photophysical properties of DMACA compared to that in n-heptane. It has been proposed that the possibility of finding the donor moiety inside the small water pool of reverse micelle is maximum while the acceptor group straddles in the remaining part of the reverse micelle. The micropolarity in the vicinity of the donor moiety has been computed in terms of dielectric constant with varying water pool size.

  12. Immiscible Systems

    ERIC Educational Resources Information Center

    Eckelmann, Jens; Luning, Ulrich

    2013-01-01

    layers of liquids. The setup of both demonstrations is such that one homogeneous layer in a multiphasic mixture separates into two new layers upon shaking. The solvents used are methanol, toluene, petroleum ether or "n"-pentane, silicone oil, perfluoroheptanes,…

  13. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    NASA Astrophysics Data System (ADS)

    Trément, Sébastien; Schnell, Benoît.; Petitjean, Laurent; Couty, Marc; Rousseau, Bernard

    2014-04-01

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.

  14. Mikrokristallbildung und intermolekulare Triplett-Triplett-Energieiibertragung in festen transparenten Glasern bei 77 K. Das System N-Methylcarbazol/Naphthalin / Microcrystal Formation and Intermolecular Triplet-Triplet Energy Transfer in Rigid Transparent Glasses at 77 K. The System N-Methyl-earbazole / Naphthalene

    NASA Astrophysics Data System (ADS)

    Zander, M.

    1984-05-01

    The efficient intermolecular triplet-triplet energy transfer between N-methylcarbazole (donor) and naphthalene (acceptor) observed at 10-2 ᴍ concentration of donor and acceptor in a rigid transparent methylcyclohexane/n-pentane glass at 77 K is shown to occur in microcrystals of the donor containing small amounts of the acceptor

  15. A predictive method for volatile organic compounds emission from soil: Evaporation and diffusion behavior investigation of a representative component of crude oil.

    PubMed

    Wang, Haijing; Fischer, Thomas; Wieprecht, Wolfgang; Möller, Detlev

    2015-10-15

    Pipelines are convenient, economical and widely used mode of transportation of crude oil. However, the inevitable or otherwise accidents during such transport of crude oil lead to large scale oil spills, which consequently result in both soil and air pollution. When such pollution occurs, crude oil VOC concentrations in air, soil pollution evaluation and VOC propagation in soil provide important evidence for airborne detection of oils spills. Therefore, several issues, including determination method for VOC, isotherm parameters of VOC sorption on soil surfaces, and VOC diffusion flux simulation, are significant. In our previous study, n-butane and n-pentane were proved to be the maximum VOCs in studied crude oils. Therefore, a predictive method using n-pentane as a representative component is proposed in this paper. Firstly, a headspace solid phase microextraction (SPME) method was developed for determination of n-pentane in non-equilibrium mass transfer conditions. Secondly, Brunauer-Emmett-Teller (BET) analysis with liquid nitrogen was carried out to predict isotherm parameters for n-pentane. Finally, two models were used to predict the emission process. Probably influenced by gas vapor density below and above the soil layer, the experimental data amounted to 74% of the deduced value from the simplified analytical model. However, the free diffusion model fitted well with the experimental results. PMID:26026407

  16. 21 CFR 178.3010 - Adjuvant substances used in the manufacture of foamed plastics.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... agent in polystyrene. Isopentane For use as a blowing agent in polystyrene. n-Pentane Do. 1,1,2,2-Tetra-chloroethylene For use only as a blowing agent adjuvant in polystyrene at a level not to exceed 0.3 percent by weight of finished foamed polystyrene intended for use in contact with food only of the types...

  17. 21 CFR 178.3010 - Adjuvant substances used in the manufacture of foamed plastics.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... agent in polystyrene. Isopentane For use as a blowing agent in polystyrene. n-Pentane Do. 1,1,2,2-Tetra-chloroethylene For use only as a blowing agent adjuvant in polystyrene at a level not to exceed 0.3 percent by weight of finished foamed polystyrene intended for use in contact with food only of the types...

  18. 21 CFR 178.3010 - Adjuvant substances used in the manufacture of foamed plastics.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... agent in polystyrene. Isopentane For use as a blowing agent in polystyrene. n-Pentane Do. 1,1,2,2-Tetra-chloroethylene For use only as a blowing agent adjuvant in polystyrene at a level not to exceed 0.3 percent by weight of finished foamed polystyrene intended for use in contact with food only of the types...

  19. 21 CFR 178.3010 - Adjuvant substances used in the manufacture of foamed plastics.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-Difluoroethane (CAS Reg. No. 75-37-6) For use as a blowing agent in polystyrene. Isopentane For use as a blowing agent in polystyrene. n-Pentane Do. 1,1,2,2-Tetra-chloroethylene For use only as a blowing agent adjuvant in polystyrene at a level not to exceed 0.3 percent by weight of finished foamed...

  20. 21 CFR 178.3010 - Adjuvant substances used in the manufacture of foamed plastics.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agent in polystyrene. Isopentane For use as a blowing agent in polystyrene. n-Pentane Do. 1,1,2,2-Tetra-chloroethylene For use only as a blowing agent adjuvant in polystyrene at a level not to exceed 0.3 percent by weight of finished foamed polystyrene intended for use in contact with food only of the types...

  1. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: a bottom-up approach.

    PubMed

    Trément, Sébastien; Schnell, Benoît; Petitjean, Laurent; Couty, Marc; Rousseau, Bernard

    2014-04-01

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems. PMID:24712786

  2. 40 CFR Table 2 to Subpart Ggg of... - Partially Soluble HAP

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...,4-) Chlorobenzene Trichloroethylene Chloroethane (ethyl chloride) Trimethylpentane Vinyl acetate Xylene (p) Vinyl chloride N-hexane Xylene (m) Xylene (o) ...-Tetrachloroethane Chloromethane 1,1,2-Trichloroethane Chloroprene 1,1-Dichloroethylene (vinylidene chloride)...

  3. 40 CFR 260.11 - References.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1 CFR part 51. These materials are incorporated as they exist on the date of approval and a notice... Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction...

  4. Method for removing sulfur compounds from C/sub 6/ and lower alkanes

    SciTech Connect

    Keyworth, D.A.

    1989-03-28

    A process is described for recovering a low sulfur content hydrocarbon fraction having a boiling point of n-hexane or less from a hydrocarbon stream containing hydrocarbons boiling at or below the boiling point of hexane and organic sulfur compounds comprising monosulfides boiling at or below the boiling point of n-hexane. It consists of contacting the hydrocarbon stream with a dilute aqueous solution of sodium hypochlorite for a time sufficient to convert a selected amount of monosulfide compounds present to compounds having boiling points above the boiling point of n-hexane, separating an aqueous phase and a hydrocarbon phase and fractionally distilling the hydrocarbon phase to recover a hydrocarbon fraction having a boiling point of n-hexane or less, and having a reduced amount of the organic sulfur compounds.

  5. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... chlorination of polyethylene conforming to the density, maximum n-hexane extractable fraction, and maximum... polyethylene is limited to use only as a modifier admixed at levels not exceeding 15 weight percent in...

  6. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... produced by the direct chlorination of polyethylene conforming to the density, maximum n-hexane extractable... percent in plastic articles prepared from polyvinyl chloride and/or from vinyl chloride...

  7. 40 CFR Table 4 to Subpart Ppp of... - Known Organic HAP From Polyether Polyol Products

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Polyol Products Organic HAP/chemical name 1,3 Butadiene (106990) Epichlorohydrin (106898) Ethylene Oxide (75218) n-Hexane (110543) Methanol (67561) Propylene Oxide (75569) Toluene (108883) CAS No. = Chemical Abstracts Service Registry Number....

  8. 40 CFR Table 4 to Subpart Ppp of... - Known Organic HAP From Polyether Polyol Products

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Products Organic HAP/chemical name 1,3 Butadiene (106990) Epichlorohydrin (106898) Ethylene Oxide (75218) n-Hexane (110543) Methanol (67561) Propylene Oxide (75569) Toluene (108883) CAS No. = Chemical...

  9. 21 CFR 177.1556 - Polyaryletherketone resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-contact surface, when extracted at reflux temperature for 2 hours with the following solvents: Distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid (by weight) in distilled water, and n-heptane. (d) In testing the finished food-contact article made of...

  10. 21 CFR 177.1556 - Polyaryletherketone resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-contact surface, when extracted at reflux temperature for 2 hours with the following solvents: Distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid (by weight) in distilled water, and n-heptane. (d) In testing the finished food-contact article made of...

  11. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  12. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... deionized water or reagent grade n-heptane at reflux temperature for 2 h.1 Minimum 10 pct solution viscosity... viscosity, titled: “Determination of Residual Acrylonitrile and Styrene Monomers-Gas Chromatographic... Copolymers,” and “Analytical Method for 10% Solution Viscosity of Tyril,” which are incorproated by...

  13. Continuous and Batch Distillation in an Oldershaw Tray Column

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Vaz, Raquel V.; Santiago, Ana S.; Lito, Patricia F.

    2011-01-01

    The importance of distillation in the separation field prompts the inclusion of distillation experiments in the chemical engineering curricula. This work describes the performance of an Oldershaw column in the rectification of a cyclohexane/n-heptane mixture. Total reflux distillation, continuous rectification under partial reflux, and batch…

  14. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... distilled water at specified temperatures, times, and particle size Maximum extractable fraction in n-heptane at specified temperatures, times, and particle size 1. Styrene-maleic anhydride copolymers... weight percent 0.006 weight percent at reflux temperature for 1 hr utilizing particles of a size...

  15. LOW OZONE-DEPLETING HALOCARBONS AS TOTAL-FLOOD AGENTS: VOLUME 2. LABORATORY-SCALE FIRE SUPPRESSION AND EXPLOSION PREVENTION TESTING

    EPA Science Inventory

    The report gives results from (1) flame suppression testing of potential Halon-1301 (CF3Br) replacement chemicals in a laboratory cup burner using n-heptane fuel and (2) explosion prevention (inertion) testing in a small-scale explosion sphere using propane and methane as fuels. ...

  16. 21 CFR 177.1330 - Ionomeric resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sugar or both, and including oil-in-water emulsions of low- or high-fat content Water, n-heptane. 2. Acidic (pH 5.0 or below), aqueous products; may contain salt or sugar or both, and including oil-in-water... 2 (0.003 milligram/square centimeter) of food-contact surface (water, acetic acid, or...

  17. Reduced chemical kinetic mechanisms for hydrocarbon fuels

    SciTech Connect

    Montgomery, C J; Cremer, M A; Heap, M P; Chen, J -Y; Westbrook, C K; Maurice, L Q

    1999-12-10

    Using CARM (Computer Aided Reduction Method), a computer program that automates the mechanism reduction process, a variety of different reduced chemical kinetic mechanisms for ethylene and n-heptane have been generated. The reduced mechanisms have been compared to detailed chemistry calculations in simple homogeneous reactors and experiments. Reduced mechanisms for combustion of ethylene having as few as 10 species were found to give reasonable agreement with detailed chemistry over a range of stoichiometries and showed significant improvement over currently used global mechanisms. The performance of reduced mechanisms derived from a large detailed mechanism for n-heptane was compared to results from a reduced mechanism derived from a smaller semi-empirical mechanism. The semi-empirical mechanism was advantageous as a starting point for reduction for ignition delay, but not for PSR calculations. Reduced mechanisms with as few as 12 species gave excellent results for n-heptane/air PSR calculations but 16-25 or more species are needed to simulate n-heptane ignition delay.

  18. Numerical investigation of spontaneous flame propagation under Reactivity Controlled Compression Ignition (RCCI) conditions

    NASA Astrophysics Data System (ADS)

    Bhagatwala, Ankit; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline

    2014-11-01

    Results from one and two-dimensional direct numerical simulations under dual-fuel Reactivity Controlled Compression Ignition (RCCI) conditions will be presented. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work, which incorporates feedback from the flow to follow a predetermined experimental pressure trace. One-dimensional simulations explored the effect of temperature and fuel concentration gradients on the combustion mode. Two-dimensional simulations explored parametric variation in temperature stratification, pressure profiles and n-heptane concentration. Statistics derived from analysis of local diffusion/reaction balances were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition modes were observed to co-exist. Higher n-heptane concentration and higher level of thermal stratification resulted in a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) and higher pressure resulted in more prevalent autoignition. Starting with a uniform initial temperature and a stratified n-heptane concentration also resulted in a large fraction of combustion occurring through flame propagation.

  19. 21 CFR 177.1556 - Polyaryletherketone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-contact surface, when extracted at reflux temperature for 2 hours with the following solvents: Distilled water, 50 percent (by volume) ethyl alcohol in distilled water, 3 percent acetic acid (by weight) in distilled water, and n-heptane. (d) In testing the finished food-contact article made of...

  20. Determination of the antibacterial activity of crude extracts and compounds isolated from Hortia oreadica (Rutaceae) against oral pathogens

    PubMed Central

    Severino, Vanessa Gisele Pasqualotto; da Silva, Maria Fátima das Graças Fernandes; Lucarini, Rodrigo; Montanari, Lilian Bueno; Cunha, Wilson Roberto; Vinholis, Adriana Helena Chicharo; Martins, Carlos Henrique Gomes

    2009-01-01

    Extracts from Hortia oreadica afforded four dihydrocinnamic acid derivatives, isolated from the n-hexane extract, as well as limonoid guyanin and the furoquinoline alkaloid dictamnine, both isolated from the dichloromethane extract. The extracts and the isolated compounds were tested against some oral pathogens, so as to investigate their antibacterial activity. The results showed that the n-hexane extract and the compound dictamnine are the most active against the selected microorganisms PMID:24031396

  1. Developing hexanal as an odor reference standard for sensory analysis of drinking water.

    PubMed

    Omür-Ozbek, Pinar; Dietrich, Andrea M

    2008-05-01

    There are many analytical and sensory methods to analyze drinking water for flavor and off-flavors before it reaches consumers. Flavor profile analysis (FPA) is one of the most comprehensive methods. A well-trained panel is essential for FPA and although taste standards are well established, FPA training lacks an odor reference standard. In search of an odor reference standard, four different panel groups were trained and tested for n-hexanal at various concentrations (1-1000 microg/L) over 14 months. The Weber-Fechner plots for n-hexanal showed a linear and overlapping relationship for all panels. Analytical measurements demonstrated that the headspace concentration of n-hexanal was constant after 5 sniffs at 45 degrees C and it remained constant during FPA sessions for up to 4 h. The panelists liked the grassy odor of n-hexanal, which did not result in fatigue, and testing demonstrated that approximately 95% of the population can detect n-hexanal's odor. n-Hexanal is proposed as an odor reference standard for FPA training to define odor intensities because it is chemically stable, follows Weber-Fechner law, mimics grassy odors found in drinking water, and was acceptable to the human panelists. PMID:18280533

  2. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect

    Andrae, J.C.G.; Brinck, T.; Kalghatgi, G.T.

    2008-12-15

    A semidetailed mechanism (137 species and 633 reactions) and new experiments in a homogeneous charge compression ignition (HCCI) engine on the autoignition of toluene reference fuels are presented. Skeletal mechanisms for isooctane and n-heptane were added to a detailed toluene submechanism. The model shows generally good agreement with ignition delay times measured in a shock tube and a rapid compression machine and is sensitive to changes in temperature, pressure, and mixture strength. The addition of reactions involving the formation and destruction of benzylperoxide radical was crucial to modeling toluene shock tube data. Laminar burning velocities for benzene and toluene were well predicted by the model after some revision of the high-temperature chemistry. Moreover, laminar burning velocities of a real gasoline at 353 and 500 K could be predicted by the model using a toluene reference fuel as a surrogate. The model also captures the experimentally observed differences in combustion phasing of toluene/n-heptane mixtures, compared to a primary reference fuel of the same research octane number, in HCCI engines as the intake pressure and temperature are changed. For high intake pressures and low intake temperatures, a sensitivity analysis at the moment of maximum heat release rate shows that the consumption of phenoxy radicals is rate-limiting when a toluene/n-heptane fuel is used, which makes this fuel more resistant to autoignition than the primary reference fuel. Typical CPU times encountered in zero-dimensional calculations were on the order of seconds and minutes in laminar flame speed calculations. Cross reactions between benzylperoxy radicals and n-heptane improved the model predictions of shock tube experiments for {phi}=1.0 and temperatures lower than 800 K for an n-heptane/toluene fuel mixture, but cross reactions had no influence on HCCI simulations. (author)

  3. Numerical investigation of spontaneous flame propagation under RCCI conditions

    DOE PAGESBeta

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel

  4. Numerical investigation of spontaneous flame propagation under RCCI conditions

    SciTech Connect

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; Chen, Jacqueline H

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles and n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel

  5. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    PubMed

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model. PMID:24640915

  6. Investigation of coal structure. Quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1993-01-01

    The method was applied to standard polymers under the same condition above. The particle size distribution with volume diameters of polyvinylpyrrolidone (average molecular mass; 10,000) was measured at sample/solvent = 0.50 g/100 ml. This polymer readily dissolve in methanol and water, while the polymer does not dissolve in n-hexane and toluene, and toluene is a slightly better solvent than n-hexane. Figure 3 shows the particle size distributions in n-hexane (a) and toluene (b-1 and -2). The distribution in toluene changed time to time, and two representative distributions are shown. The mean volume diameters-were 14 {mu}m in n-hexane and 18 and 31 {mu}m in toluene. The particle size distribution of cross-linked polyvinylpyrrolidone was further examined in methanol and n-hexane. Figure 4 compares these distributions with scanned counts at sample/solvent = 0.50 g/100 ml. As a significant portion of particles was over 250 {mu}m with volume diameters, the distributions are presented with scanned counts. Figure 4 compared the specific swelling ratio (Q`) versus sample/solvent (w/w %) in the same solvents for this sample. It is seen that methanol is a good solvent than n-hexane and swells the sample. It is also seen that the swelling is dependent on the sample concentration. Therefore, the particle size in good solvent methanol is expected to be larger due to swelling. However, the particle size was smaller in methanol than in n-hexane (Figure 4). The dependence of sample concentration on solvent swelling in methanol (Figure 5) is interpreted as follows: Polymer particles disaggregated at low sample concentration and the interparticle voidage of the swollen polymer after centrifugation changed depending upon disaggregation.

  7. Investigation of coal structure

    SciTech Connect

    Not Available

    1993-01-01

    The method was applied to standard polymers under the same condition above. The particle size distribution with volume diameters of polyvinylpyrrolidone (average molecular mass; 10,000) was measured at sample/solvent = 0.50 g/100 ml. This polymer readily dissolve in methanol and water, while the polymer does not dissolve in n-hexane and toluene, and toluene is a slightly better solvent than n-hexane. Figure 3 shows the particle size distributions in n-hexane (a) and toluene (b-1 and -2). The distribution in toluene changed time to time, and two representative distributions are shown. The mean volume diameters-were 14 [mu]m in n-hexane and 18 and 31 [mu]m in toluene. The particle size distribution of cross-linked polyvinylpyrrolidone was further examined in methanol and n-hexane. Figure 4 compares these distributions with scanned counts at sample/solvent = 0.50 g/100 ml. As a significant portion of particles was over 250 [mu]m with volume diameters, the distributions are presented with scanned counts. Figure 4 compared the specific swelling ratio (Q') versus sample/solvent (w/w %) in the same solvents for this sample. It is seen that methanol is a good solvent than n-hexane and swells the sample. It is also seen that the swelling is dependent on the sample concentration. Therefore, the particle size in good solvent methanol is expected to be larger due to swelling. However, the particle size was smaller in methanol than in n-hexane (Figure 4). The dependence of sample concentration on solvent swelling in methanol (Figure 5) is interpreted as follows: Polymer particles disaggregated at low sample concentration and the interparticle voidage of the swollen polymer after centrifugation changed depending upon disaggregation.

  8. A coupled implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho

    1993-01-01

    The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.

  9. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  10. Numerical study of multicomponent droplet vaporization at near critical conditions

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Shuen, Jian-Shun; Yang, Vigor

    1988-01-01

    A comprehensive numerical analysis of multicomponent droplet vaporization at near critical conditions has been carried out. The model is based on the full time-dependent conservation equations and accommodates various important high-pressure phenomena. As an example, the case involving a two-component (n-pentane and n-octane) fuel droplet in nitrogen gas is studied. The influences of transient effects, surface regression, ambient gas solubility, and phase-equilibrium relations on vaporization mechanisms are examined in detail.

  11. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels

    NASA Astrophysics Data System (ADS)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm

  12. Instrumental studies on silicone oil adsorption to the surface of intraocular lenses

    NASA Astrophysics Data System (ADS)

    Kim, Chun Ho; Joo, Choun-Ki; Chun, Heung Jae; Yoo, Bok Ryul; Noh, Dong Il; Shim, Young Bock

    2012-12-01

    The purpose of this study was to examine the degree of adherence of silicone oil to various intraocular lenses (IOLs) through comparison of the physico-chemical properties of the oil and IOLs. Four kinds of IOLs comprising various biomaterials were examined: PMMA (720A™), PHEMA (IOGEL 1103™), Acrysof (MA60BM™), and silicone (SI30NB™). Each lens was immersed in silicone oil or carboxylated silicone (CS-PDMS) oil for 72 h. For determination of the changes in chemical and elemental compositions on the surfaces of IOLs caused by the contact with silicone oil, IOLs were washed and rinsed with n-pentane to remove as much of the adsorbed silicone oil as possible, then subjected to Fourier transform infrared spectroscopic (FTIR) and X-ray photoelectron spectroscopic (XPS) analyses. The results of FTIR studies strongly indicate that washing with n-pentane completely removed the adhered silicone oil on the surfaces of PHEMA and Acrysof IOLs, whereas the residual silicone oil was detected on the surfaces of PMMA and silicone IOLs. XPS studies showed that silicone oil coverage of PMMA lenses was 12%, even after washing with n-pentane. In the case of silicone IOLs, the relative O1s peak area of carboxyl group in the residual CS-PDMS oil was found to be ˜2.7%. Considering that 2.8% carboxyl group-substituted silicone oil was used in the present study, CS-PDMS oil covered the entire surface of the silicone IOLs.

  13. Solidification and loss of hydrostaticity in liquid media used for pressure measurements.

    PubMed

    Torikachvili, M S; Kim, S K; Colombier, E; Bud'ko, S L; Canfield, P C

    2015-12-01

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60,000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe(1-x)Ru(x))2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperature resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. This pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic. PMID:26724044

  14. Liquid CO2 extraction of Jasminum grandiflorum and comparison with conventional processes.

    PubMed

    Prakash, Om; Sahoo, Deeptanjali; Rout, Prasant Kumar

    2012-01-01

    The concrete (0.35%) of Jasminum grandiflorum L. flowers was prepared by extraction in n-pentane, and the absolute (0.27%) by fractionation of the n-pentane extract (concrete) with cold methanol. Direct extraction of flowers with liquid CO2 gave a relatively fat-free product in 0.26% yield. The liquid CO2 extract was enriched with terpenoids and benzenoids, thus providing the organoleptically accepted product. The major compounds, such as benzyl acetate, (E,E)-alpha-farnesene and (Z)-3-hexenyl benzoate, along with compounds like indole, methyl anthranilate, (Z)-jasmone, (Z)-methyl jasmonoate and (Z)-methyl epi-jasmonoate, are responsible for the high diffusivity of the jasmine fragrance. These compounds have been obtained with improved recoveries in the liquid CO2 extract. On the other hand, the yield of the essential oil was poor (0.05%), and some polar compounds (oxygenated terpenoids) were recovered in less amounts in comparison with either the n-pentane or liquid CO2 extract. PMID:22428256

  15. Solidification and loss of hydrostaticity in liquid media used for pressure measurements

    SciTech Connect

    Torikachvili, M. S.; Kim, S. K.; Colombier, E.; Bud’ko, S. L.; Canfield, P. C.

    2015-12-16

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60,000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe1–xRux)2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperature resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. As a result, this pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic.

  16. Solidification and loss of hydrostaticity in liquid media used for pressure measurements

    DOE PAGESBeta

    Torikachvili, M. S.; Kim, S. K.; Colombier, E.; Bud’ko, S. L.; Canfield, P. C.

    2015-12-16

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60,000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe1–xRux)2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperaturemore » resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. As a result, this pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic.« less

  17. Solidification and loss of hydrostaticity in liquid media used for pressure measurements

    NASA Astrophysics Data System (ADS)

    Torikachvili, M. S.; Kim, S. K.; Colombier, E.; Bud'ko, S. L.; Canfield, P. C.

    2015-12-01

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60 000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe1-xRux)2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperature resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. This pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic.

  18. Cytotoxicity and Antiproliferative Activity Assay of Clove Mistletoe (Dendrophthoe pentandra (L.) Miq.) Leaves Extracts.

    PubMed

    Elsyana, Vida; Bintang, Maria; Priosoeryanto, Bambang Pontjo

    2016-01-01

    Clove mistletoe (Dendrophthoe pentandra (L.) Miq.) is a semiparasitic plant that belongs to Loranthaceae family. Clove mistletoe was traditionally used for cancer treatment in Indonesia. In the present study, we examined cytotoxicity of clove mistletoe leaves extracts against brine shrimps and conducted their antiproliferative activity on K562 (human chronic myelogenous leukemia) and MCM-B2 (canine benign mixed mammary) cancer cell lines in vitro. The tested samples were water extract, ethanol extract, ethanol fraction, ethyl acetate fraction, and n-hexane fraction. Cytotoxicity was screened using Brine Shrimp Lethality Test (BSLT). Antiproliferative activity was conducted using Trypan Blue Dye Method and cells were counted using haemocytometer. The results showed that n-hexane fraction exhibited significant cytotoxicity with LC50 value of 55.31 μg/mL. The n-hexane fraction was then considered for further examination. The n-hexane fraction of clove mistletoe could inhibit growth of K562 and MCM-B2 cancer cell lines in vitro. The inhibition activity of clove mistletoe n-hexane fraction at concentration of 125 μg/mL on K562 cancer cell lines was 38.69%, while on MCM-B2 it was 41.5%. Therefore, it was suggested that clove mistletoe had potential natural anticancer activity. PMID:27099614

  19. Cytotoxicity and Antiproliferative Activity Assay of Clove Mistletoe (Dendrophthoe pentandra (L.) Miq.) Leaves Extracts

    PubMed Central

    Elsyana, Vida; Bintang, Maria; Priosoeryanto, Bambang Pontjo

    2016-01-01

    Clove mistletoe (Dendrophthoe pentandra (L.) Miq.) is a semiparasitic plant that belongs to Loranthaceae family. Clove mistletoe was traditionally used for cancer treatment in Indonesia. In the present study, we examined cytotoxicity of clove mistletoe leaves extracts against brine shrimps and conducted their antiproliferative activity on K562 (human chronic myelogenous leukemia) and MCM-B2 (canine benign mixed mammary) cancer cell lines in vitro. The tested samples were water extract, ethanol extract, ethanol fraction, ethyl acetate fraction, and n-hexane fraction. Cytotoxicity was screened using Brine Shrimp Lethality Test (BSLT). Antiproliferative activity was conducted using Trypan Blue Dye Method and cells were counted using haemocytometer. The results showed that n-hexane fraction exhibited significant cytotoxicity with LC50 value of 55.31 μg/mL. The n-hexane fraction was then considered for further examination. The n-hexane fraction of clove mistletoe could inhibit growth of K562 and MCM-B2 cancer cell lines in vitro. The inhibition activity of clove mistletoe n-hexane fraction at concentration of 125 μg/mL on K562 cancer cell lines was 38.69%, while on MCM-B2 it was 41.5%. Therefore, it was suggested that clove mistletoe had potential natural anticancer activity. PMID:27099614

  20. Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture.

    PubMed

    Davidova, Irene A; Gieg, Lisa M; Nanny, Mark; Kropp, Kevin G; Suflita, Joseph M

    2005-12-01

    Gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy were used to study the metabolism of deuterated n-alkanes (C6 to C12) and 1-13C-labeled n-hexane by a highly enriched sulfate-reducing bacterial culture. All substrates were activated via fumarate addition to form the corresponding alkylsuccinic acid derivatives as transient metabolites. Formation of d14-hexylsuccinic acid in cell extracts from exogenously added, fully deuterated n-hexane confirmed that this reaction was the initial step in anaerobic alkane metabolism. Analysis of resting cell suspensions amended with 1-13C-labeled n-hexane confirmed that addition of the fumarate occurred at the C-2 carbon of the parent substrate. Subsequent metabolism of hexylsuccinic acid resulted in the formation of 4-methyloctanoic acid, and 3-hydroxy-4-methyloctanoic acid was tentatively identified. We also found that 13C nuclei from 1-13C-labeled n-hexane became incorporated into the succinyl portion of the initial metabolite in a manner that indicated that 13C-labeled fumarate was formed and recycled during alkane metabolism. Collectively, the findings obtained with a sulfate-reducing culture using isotopically labeled alkanes augment and support the previously proposed pathway (H. Wilkes, R. Rabus, T. Fischer, A. Armstroff, A. Behrends, and F. Widdel, Arch. Microbiol. 177:235-243, 2002) for metabolism of deuterated n-hexane by a denitrifying bacterium. PMID:16332800

  1. Quasi-dynamic leaching characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from raw and solidified waste incineration residues.

    PubMed

    Hsi, Hsing-Cheng; Wang, Lin-Chi; Yu, Tsung-Hsien; Chang-Chien, Guo-Ping

    2008-03-01

    Quasi-dynamic leaching characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from raw and solidified air pollution control (APC) residues were examined via a nine-time multiple leaching test. The effect of injected activated carbon in the APC residues on the PCDD/F leachability was also evaluated. When humic acid solution was used as a leachant, the leaching concentrations of PCDD/Fs fluctuated between the first and the fifth leaching, followed by a gradual increase and then suddenly reached maximum values at the leaching sequences around seventh and eighth. This significant enhancement in PCDD/F leachability was mainly due to an increase in the release of highly chlorinated PCDD/Fs. Leaching of PCDD/Fs with n-hexane was, in contrast, primarily caused by the partitioning of hydrophobic PCDD/Fs between the APC residue surface and the liquid phase of n-hexane. Consequently, the largest leaching concentrations for n-hexane tests achieved at the first leaching, followed by a decrease and reached plateaus. Solidification/stabilization (S/S) decreased the PCDD/F leachability up to the fifth leaching by the use of humic acid solution. However, S/S increased the PCDD/F leaching concentrations and rates with n-hexane. The activated carbon in APC residues significantly inhibited the release of PCDD/F with n-hexane. The inhibiting effect provided by activated carbon was, however, less significant by the use of humic acid solution. PMID:18028984

  2. Alternative solvents for improving the greenness of normal phase liquid chromatography of lipid classes.

    PubMed

    Prache, Nolwenn; Abreu, Sonia; Sassiat, Patrick; Thiébaut, Didier; Chaminade, Pierre

    2016-09-16

    An evaluation of solvents alternative to n-heptane (d-limonene and hexamethyldisiloxane) and chloroform (cyclopentyl methyl ether, 2-methyltetrahydrofuran and isopentyl acetate) was developed for lipid classes separation of non-polar cholesteryl ester to highly polar phospholipids by high-performance liquid chromatography on bare silica stationary phase and evaporative light-scattering detection. Screening of alternative solvents was used to estimate their compatibility with liquid chromatography and evaporative light-scattering detection and to evaluate their chromatographic selectivity. This work shows that n-heptane can be advantageously replaced by hexamethyldisiloxane. An increase of non-polar lipids retention is observed with hexamethyldisiloxane as weak solvent. Chloroform, which is largely used for lipid analysis, might be replaced efficaciously by cyclopentyl methyl ether, 2-methyltetrahydrofuran or isopentyl acetate. Aside from offering a different selectivity, the gradients composed by one or both alternative solvents gave efficient and comparable or even better separations than those obtained with conventional solvents. PMID:27554026

  3. Influence of tray geometry on scaling up distillation efficiency from laboratory data

    SciTech Connect

    Lopez, F.; Castells, F.

    1999-07-01

    This paper studies the effect of tray geometry (especially hole diameter) and liquid tray composition on tray efficiency in a bench-scale distillation column. The results of this study are used for scaling up tray efficiency. Two binary systems, ethanol/water and cyclohexane/n-heptane, were considered. The operating conditions were atmospheric pressure and total reflux. For each one, two different hole diameters (small and large) were also tested. Kirschbaum`s industrial data (1962) for the ethanol/water system and of Yanagi and Sakata`s (1982) for the cyclohexane/n-heptane system were considered as reference values. The results show the importance of reproducing the hole diameter and liquid tray composition in small trays for using laboratory data to predict large tray efficiency.

  4. Combined small-angle x-ray scattering/extended x-ray absorption fine structure study of coated Co nanoclusters in bis(2-ethylhexyl)sulfosuccinate

    NASA Astrophysics Data System (ADS)

    Longo, A.; Giordano, F.; Giannici, F.; Martorana, A.; Portale, G.; Ruggirello, A.; Turco Liveri, V.

    2009-06-01

    Chemically stable cobalt nanostructures have been prepared with Co(II) reduction in the confined space of cobalt bis(2-ethylhexyl)sulfosuccinate, Co(AOT)2, reverse micelles dispersed in n-heptane. The reaction was carried out by adding a solution of sodium borohydride in ethanol (1% weight) to a 0.2M micellar solution of Co(AOT)2 in n-heptane at a reductant to Co(II) molar ratio of 4. This procedure involves the rapid formation of surfactant-coated Co nanoparticles followed by their slow separation as nanostructures embedded in a sodium bis(2-ethylhexyl)sulfosuccinate matrix. The resulting composites, characterized by extended x-ray absorption fine structure and small-angle x-ray scattering, showed the presence of subnanometer sized cobalt nanoparticles aggregated together to form elongated structures coated by the surfactant molecules.

  5. Reduction of Large Detailed Chemical Kinetic Mechanisms for Autoignition Using Joint Analyses of Reaction Rates and Sensitivities

    SciTech Connect

    Saylam, A; Ribaucour, M; Pitz, W J; Minetti, R

    2006-11-29

    A new technique of reduction of detailed mechanisms for autoignition, which is based on two analysis methods is described. An analysis of reaction rates is coupled to an analysis of reaction sensitivity for the detection of redundant reactions. Thresholds associated with the two analyses have a great influence on the size and efficiency of the reduced mechanism. Rules of selection of the thresholds are defined. The reduction technique has been successfully applied to detailed autoignition mechanisms of two reference hydrocarbons: n-heptane and iso-octane. The efficiency of the technique and the ability of the reduced mechanisms to reproduce well the results generated by the full mechanism are discussed. A speedup of calculations by a factor of 5.9 for n-heptane mechanism and by a factor of 16.7 for iso-octane mechanism is obtained without losing accuracy of the prediction of autoignition delay times and concentrations of intermediate species.

  6. Experiments And Model Development For The Investigation Of Sooting And Radiation Effects In Microgravity Droplet Combustion

    NASA Technical Reports Server (NTRS)

    Yozgatligil, Ahmet; Choi, Mun Young; Dryer, Frederick L.; Kazakov, Andrei; Dobashi, Ritsu

    2003-01-01

    This study involves flight experiments (for droplets between 1.5 to 5 mm) and supportive ground-based experiments, with concurrent numerical model development and validation. The experiments involve two fuels: n-heptane, and ethanol. The diagnostic measurements include light extinction for soot volume fraction, two-wavelength pyrometry and thin-filament pyrometry for temperature, spectral detection for OH chemiluminescence, broadband radiometry for flame emission, and thermophoretic sampling with subsequent transmission electron microscopy for soot aerosol property calculations.

  7. A convenient method for preparation of pure standards of peroxyacetyl nitrate for atmospheric analyses

    NASA Astrophysics Data System (ADS)

    Nielsen, Torben; Hansen, Anne Maria; Thomsen, Erling Lund

    Peroxyacetyl nitrate (PAN) is synthesized by nitration of peracetic acid (1.2 M), extracted by n- heptane, and purified with normal-phase high-performance liquid chromatography. The purified PAN solution is free of acetyl nitrate. The content of PAN is determined by means of hydrolysis of PAN into nitrite, and determination by ion chromatography of nitrite and nitrate (formed by oxidation of nitrite). The purified PAN solution is used for the calibration of the gas Chromatograph with electron capture detection.

  8. Ignition Delays of Alkyl Thiophosphites with White and Red Fuming Nitric Acids Within Temperature Range 80 to -105 F

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ladanyi, Dezso J

    1953-01-01

    Ignition delays of alkyl thiophosphites were obtained in a modified open-cup apparatus and a small-scale rocket engine apparatus. At -40 F, mixed alkyl thiophosphites gave short delays with white fuming nitric acid containing 2 percent water and red fuming nitric acids of widely varying compositions. At -40 F and higher, triethyl trithiophosphite blended with as much as 40 percent n-heptane gave satisfactory self-igniting properties at temperatures as low as -76 F.

  9. Collaborative study of a method for the extraction of light filth from crushed red peppers.

    PubMed

    Thrasher, J J

    1975-05-01

    A new method was developed for the extraction of light filth from crushed red peppers. The method utilizes an isoprapanol defatting of the product followed by separation of light filth elements with mineral oil and n-heptane (85+15) in a 2 L trap flask. Collaborative studies resulted in good recoveries of light filth spike elements and clean extration papers. The method has been adopted as official first action. PMID:1170161

  10. Transition from cool flame to thermal flame in compression ignition process

    SciTech Connect

    Yamada, Hiroyuki; Suzaki, Kotaro; Goto, Yuichi; Tezaki, Atsumu

    2008-07-15

    The mechanism that initiates thermal flames in compression ignition has been studied. Experimentally, a homogeneous charge compression ignition (HCCI) engine was used with DME, n-heptane, and n-decane. Arrhenius plots of the heat release rate in the HCCI experiments showed that rates of heat release with DME, n-heptane, and n-decane exhibited a certain activation energy that is identical to that of the H{sub 2}O{sub 2} decomposition reaction. The same feature was observed in diesel engine operation using ordinary diesel fuel with advanced ignition timing to make ignition occur after the end of fuel injection. These experimental results were reproduced in nondimensional simulations using kinetic mechanisms for DME, n-heptane, and n-decane, the last being developed by extending the n-heptane mechanism. Methanol addition, which suppresses low-temperature oxidation (LTO) and delays the ignition timing, had no effect on the activation energy obtained from the Arrhenius plot of heat release rate. Nevertheless, methanol addition lowered the heat release rates during the prethermal flame process. This is because H{sub 2}O{sub 2} formation during cool flame was reduced by adding methanol. The mechanism during the transition process from cool flame to thermal flame can be explained quantitatively using thermal explosion theory, in which the rate-determining reaction is H{sub 2}O{sub 2} decomposition, assuming that heat release in this period is caused by partial oxidation of DME and HCHO initiated with the reaction with OH produced though H{sub 2}O{sub 2} decomposition. (author)

  11. Efficient High-Pressure State Equations

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Miller, Richard S.; Bellan, Josette

    1997-01-01

    A method is presented for a relatively accurate, noniterative, computationally efficient calculation of high-pressure fluid-mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above I bar and temperatures above 100 K are addressed The method is based on curve fitting an effective reference state relative to departure functions formed using the Peng-Robinson cubic state equation Fit parameters for H2, O2, N2, propane, methane, n-heptane, and methanol are given.

  12. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.; Sarv, H.

    1984-01-01

    A monodisperse aerosol generator was modified to study ignition requirements, flammability limits, and flame speeds in the transition region. An ignition system was developed and tested. The fabrication of an optical drop sizing system is nearly complete. Preliminary measurements of droplet size effects on the minimum ignition energy for n-heptane sprays performed. Parameteric studies of droplet size effects on minimum ignition energies of various fuels including alcohols are in progress.

  13. Study of absorption spectra of gasolines and other hydrocarbon mixtures in the second overtone region of the CH3, CH2, CH groups

    NASA Astrophysics Data System (ADS)

    Muradov, V. G.; Sannikov, D. G.

    2007-03-01

    We have obtained experimental and model absorption spectra for individual hydrocarbons (toluene, benzene, n-heptane, and iso-octane) and their mixtures in the near IR range (λ = 1080 1220 nm). We model the spectra of nonsynthetic gasolines obtained under the same conditions by combining the spectra of three pure hydrocarbons. We show that the octane number of the studied gasoline is linearly related to the toluene (or benzene) concentrations in the model mixture.

  14. Utilization of Anting-Anting (Acalypha indica) Leaves as Antibacterial

    NASA Astrophysics Data System (ADS)

    Batubara, Irmanida; Wahyuni, Wulan Tri; Firdaus, Imam

    2016-01-01

    Anting-anting (Acalypha indica) plants is a species of plant having catkin type of inflorescence. This research aims to utilize anting-anting as antibacterial toward Streptococcus mutans and degradation of biofilm on teeth. Anting-anting leaves were extracted by maceration technique using methanol, chloroform, and n-hexane. Antibacterial and biofilm degradation assays were performed using microdilution technique with 96 well. n-Hexane extracts of anting-anting leaves gave the best antibacterial potency with minimum inhibitory concentration and minimum bactericidal concentration value of 500 μg/mL and exhibited good biofilm degradation activity. Fraction of F3 obtained from fractionation of n-hexane's extract with column chromatography was a potential for degradation of biofilm with IC50 value of 56.82 μg/mL. Alkaloid was suggested as antibacterial and degradation of biofilm in the active fraction.

  15. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane. PMID:27451203

  16. Stability and aerosolization of pressurized metered dose inhalers containing thymopentin nanoparticles produced using a bottom-up process.

    PubMed

    Tan, Yinhe; Yang, Zhiwen; Pan, Xin; Chen, Meiwan; Feng, Min; Wang, Lili; Liu, Hu; Shan, Ziyun; Wu, Chuanbin

    2012-05-10

    The objective of this study was to investigate the stability and aerosolization of pressurized metered dose inhalers (pMDIs) containing thymopentin nanoparticles. Thymopentin nanoparticles, fabricated by a bottom-up process, were suspended in hydrofluoroalkane (HFA) 134a together with cineole and/or n-heptane to produce pMDI formulations. The stability study of the pMDIs obtained was carried out at ambient temperature for 6 months. The amount of thymopentin and the aerosolization properties of pMDIs were determined using high-performance liquid chromatography (HPLC) and a twin-stage impinger (TSI), respectively. Based on the results, thymopentin nanoparticles were readily suspended in HFA 134a with the aid of cineole and/or n-heptane to form physically stable pMDI formulations, and more than 98% of the labeled amount of thymopentin and over 50% of the fine particle fraction (FPF) of the pMDIs were achieved. During storage, it was found that for all pMDIs more than 97% of the labeled amount of thymopentin and FPF greater than 47% were achieved. Moreover, the size of thymopentin nanoparticles in propellant containing cineole and n-heptane showed little change. It is, therefore, concluded that the pMDIs comprising thymopentin nanoparticles developed in this study were stable and suitable for inhalation therapy for systemic action. PMID:22343132

  17. Extraordinary enantiospecificity of lipase catalysis in organic media induced by purification and catalyst engineering.

    PubMed

    Tsai, S W; Dordick, J S

    1996-10-20

    A purified lipase preparation from Candida rugosa was compared to its crude counterpart in anhydrous and slightly hydrated hydrophobic organic solvents. The purified lipase preparation was less active than the crude enzyme in dry n-heptane, whereas the presence of small concentrations of added water dramatically activated the purified enzyme but not the crude enzyme. Thus, in the presence of as little as 0.25 microL/mL of added water in n-heptane, the purified enzyme is over 230-fold more active and 6-fold more enantioselective than the dry enzyme suspension in the esterification of racemic 2-(4-chlorophenoxy)propionic acid with n-butanol. The reactivity and selectivity of this biocatalyst, however, was affected by coalescence of the enzyme preparation suspended in the wet organic solvent. Engineering the biocatalyst environment by dissolving the purified lipase in aqueous buffer and then adding this solution to n-heptane resulted in a precipitated enzyme preparation with smaller particle sizes that did not coalesce severely. In the presence of 5 microL/mL of water added with the enzyme, this pretreatment resulted in an activation over the dry, purified enzyme preparation of over 1800-fold and nearly enantiospecific catalysis (E > 100). Hence, by simply modifying the way enzymes are hydrated, dramatic activation of catalytic competency can be achieved. PMID:18629896

  18. A tabulated chemistry approach for numerical modeling of diesel spray evaporation in a 'stabilized cool flame' environment

    SciTech Connect

    Kolaitis, D.I.; Founti, M.A.

    2006-04-15

    Droplet evaporation in a 'stabilized cool flame' environment leads to a homogeneous, heated air-fuel vapor mixture that can be subsequently either burnt or utilized in fuel-reforming applications for fuel cell systems. The paper investigates the locally occurring physico-chemical phenomena in an atmospheric pressure, diesel spray, stabilized cool flame reactor, utilizing a tabulated chemistry approach in conjunction with a two-phase, Eulerian-Lagrangian computational fluid dynamics code. Actual diesel oil physical properties are used to model spray evaporation in the two-phase simulations, whereas the corresponding chemistry is represented by n-heptane. A lookup table is constructed by performing a plethora of perfectly stirred reactor simulations, utilizing a semidetailed n-heptane oxidation chemical kinetics mechanism. The overall exothermicity of the preignition n-heptane oxidation chemistry and the fuel consumption rates are examined as a function of selected independent parameters, namely temperature, fuel concentration, and residence time; their influence on cool flame reactivity is thoroughly studied. It is shown that the tabulated chemistry approach allows accurate investigation of the chemical phenomena with low computational cost. The two-phase flow inside the stabilized cool flame reactor is simulated, utilizing the developed lookup table. Predictions are presented for a variety of test cases and are compared to available experimental data, with satisfactory agreement. Model validation tests indicate that prediction quality improves with increasing values of air temperature at the reactor's inlet. (author)

  19. Transition metal catalysis in the generation of petroleum: A genetic anomaly in Ordovician oils

    SciTech Connect

    Mango, F.D. )

    1992-10-01

    The transition metals, captured from sedimentary waters by chlorophyll, have been proposed as the catalytic agents that convert n-alkane biolipids into the rearranged light hydrocarbons in petroleum. Certain ancient oils (Ordovician) display a depletion in chlorophyll, suggesting that they may have been derived from sedimentary rocks also depleted in transition metals. These oils show anomalously high concentrations of n-heptane relative to their respective rearranged isoalkane and cycloalkane products. This extraordinary enrichment in light n-alkanes appears unique to the chlorophyll-deficient Ordovician oils. The high concentrations of n-heptane may have resulted from the thermal cracking of higher n-alkanes, which are known to be dominant components of the kerogenous precursors to the Ordovician oils. However, the methylhexanes, which have no thermolytic precursors enriched in the kerogenous source, show a proportionate increase in concentration. The contention, therefore, that thermal cracking might explain the n-heptane anomaly is untenable since a kerogenous starting material enriched in n-alkanes and depleted in isoalkanes cannot reasonably crack to a light hydrocarbon product enriched in both n-alkanes and isoalkanes. According to a postulated catalytic cycle, n-alkane and isoalkane concentrations are controlled by the relative rates of two divergent pathways. If the various transition metals that may catalyze these reactions differ in activity, then a unique distribution of metals created by a chlorophyll deficiency could explain the Ordovician anomaly.

  20. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels

    SciTech Connect

    Ra, Youngchul; Reitz, Rolf D.

    2008-12-15

    A reduced chemical kinetic mechanism for the oxidation of primary reference fuel (PRF) has been developed and applied to model internal combustion engines. Starting from an existing reduced reaction mechanism for n-heptane oxidation, a new reduced n-heptane mechanism was generated by including an additional five species and their relevant reactions, by updating the reaction rate constants of several reactions pertaining to oxidation of carbon monoxide and hydrogen, and by optimizing reaction rate constants of selected reactions. Using a similar approach, a reduced mechanism for iso-octane oxidation was built and combined with the n-heptane mechanism to form a PRF mechanism. The final version of the PRF mechanism consists of 41 species and 130 reactions. Validation of the present PRF mechanism was performed with measurements from shock tube tests, and HCCI and direct injection engine experiments available in the literature. The results show that the present PRF mechanism gives reliable performance for combustion predictions, as well as computational efficiency improvements for multidimensional CFD simulations. (author)

  1. Study on Turbulent Premixed Flame Regimes with Ignition Using a Reactor Assisted Turbulent Slot Burner

    NASA Astrophysics Data System (ADS)

    Won, Sang Hee; Reuter, Christopher; Windom, Bret; Ju, Yiguang

    2015-11-01

    Turbulent premixed flames of n-heptane/air and toluene/air mixtures affected by ignition have been experimentally investigated by using a reactor-assisted turbulent slot (RATS) burner at two burner temperatures, 450 K and 700 K. Turbulent burning velocities (ST) and flame structures have been measured by the simultaneous OH and CH2O planar laser-induced fluorescence (PLIF) imaging at various equivalence ratios and turbulent Reynolds numbers. Three distinct turbulent premixed flame regimes are identified for n-heptane/air mixture; chemical frozen (CF) regime at low temperature, low temperature ignition (LTI) regime, and high temperature ignition (HTI) regime for respectively lean and rich conditions at 700 K. For CF regime, the measured turbulent burning velocities of n-heptane and toluene at 450 K follow a conventional correlation of turbulent intensity (defined as u'/SL). In LTI regime, substantial changes in chemical composition alter the laminar flame speed and transport property, leading to rapid increase of turbulent burning velocity. In HTI regime, it is found that the turbulent premixed flame structure is significantly modified by the appearance of volumetric ignition kernel structures associated with the transition from LTI to HTI. The turbulent premixed flame regime in HTI is no longer represented by the thin reaction zone regime. The measured turbulent burning velocities in HTI regime increase substantially as increasing ignition Damkőhler number over those in LTI regime.

  2. Fuel-Specific Effect of Exhaust Gas Residuals on HCCI Combustion: A Modeling Study

    SciTech Connect

    Szybist, James P

    2008-01-01

    A modeling study was performed to investigate fuel-specific effects of exhaust gas recirculation (EGR) components on homogeneous charge compression ignition (HCCI) combustion at conditions relevant to the negative valve overlap (NVO) strategy using CHEMKIN-PRO. Four single-component fuels with well-established kinetic models were chosen: n-heptane, iso-octane, ethanol, and toluene. These fuels were chosen because they span a wide range of fuel chemistries, and produce a wide compositions range of complete stoichiometric products (CSP). The simulated engine conditions combined a typical spark ignition engine compression ratio (11.34) and high intake charge temperatures (500-550 K) that are relevant to NVO HCCI. It was found that over the conditions investigated, all the fuels had overlapping start of combustion (SOC) phasing, despite the wide range in octane number (RON = 0 to 120). The effect of the EGR components CO2 and H2O was to suppress the compression temperature because of their higher heat capacities, which retarded SOC. For a concentration of O2 higher than the stoichiometric amount, or excess O2, there was an effect of advancing SOC for n-heptane, iso-octane, and toluene, but SOC for ethanol was not advanced. Low temperature heat release (LTHR) for n-heptane was also found to be highly dependent on excess O2, and mild endothermic reaction was observed for cases when excess O2 was not present.

  3. Laboratory Evaluations of the Fractions Efficacy of Annona senegalensis (Annonaceae) Leaf Extract on Immature Stage Development of Malarial and Filarial Mosquito Vectors

    PubMed Central

    Lame, Younoussa; Nukenine, Elias Nchiwan; Pierre, Danga Yinyang Simon; Elijah, Ajaegbu Eze; Esimone, Charles Okechukwu

    2015-01-01

    Background: Within the framework to control mosquitoes, ovicidal, larvicidal and pupicidal activity of Annona senegalensis leaf extract and its 4 fractions against Anopheles gambiae and Culex quinquefasciatus were evaluated in the laboratory conditions. Methods: Ovicidal test was performed by submitting at least 100 eggs of mosquitoes to 125, 250, 500, 1000 and 2000 ppm concentrations, while larvicidal and pupicidal effects were assessed by submitting 25 larvae or pupae to the concentrations of 2500, 1250, 625 and 312.5 ppm of plant extract or fractions of A. senegalensis. Results: The eggs of An. gambiae were most affected by N-hexane (0.00% hatchability) and chloroform (03.67% hatchability) fractions compared to Cx. quinquefasciatus where at least 25 % hatchability were recorded at 2000 ppm. For larvicidal test, N-hexane (LC50= 298.8 ppm) and chloroform (LC50= 418.3 ppm) fractions were more effective than other fractions on An. gambiae larvae while, a moderate effectiveness was also observed with N-hexane (LC50= 2087.6 ppm), chloroform (LC50= 9010.1 ppm) fractions on Cx. quinquefasciatus larvae. The highest mortality percent of the pupae were also recorded with N-hexane and chloroform fractions on An. gambiae at 2500 ppm. As for Cx. quinquefasciatus only 50 % and 36 % mortality were recorded with N-hexane and chloroform fractions respectively. Conclusion: The extract of A. senegalensis was toxic on immature stage of mosquito species tested. By splitting methanolic crude extract, only N-hexane and chloroform fractions were revealed to possess a mosquitocidal effects and could be considered and utilized for future immature mosquito vectors control. PMID:26623434

  4. Checking the statistical theory of liquids by ultraacoustic measurements

    NASA Technical Reports Server (NTRS)

    Dima, V. N.

    1974-01-01

    The manner of theoretically obtaining radial distribution functions 9(r) for n-hexane as a function of temperature is described. With the aid of function g(r) the coefficient of dynamic viscosity and the coefficient of volumetric viscosity for temperatures ranging from 213 K to 273 K were calculated. With the aid of the two coefficients of viscosity the coefficient of absorption of ultrasounds in n-hexane referred to the square of the frequency was determined. The same values were measured experimentally. Comparison of theory with experiments resulted in satisfactory agreement.

  5. Application of solvent engineering to optimize lipase-catalyzed 1,3-diglyacylcerols by mixture response surface methodology.

    PubMed

    Liao, Hui-Fen; Tsai, Wei-Chuan; Chang, Shu-Wei; Shieh, Chwen-Jen

    2003-11-01

    1,3-Diacylglycerol (DAG) has been introduced in Japan as a cooking oil under the trade name of Econa to reduce body fat accumulation. Solvent engineering was applied to determine the optimum solvent mixtures for the lipase-catalyzed synthesis of 1,3-DAG by mixture response surface methodology. n-Hexane was required to maintain the lipase activity and the product selectivity could be adjusted by changing the hydrophobicity of reaction medium. The optimum yield (approximately 40%) of 1,3-DAG synthesis was obtained with n-hexane/octane (1:1, v/v). PMID:14677712

  6. Separation of the four pairs of enantiomers of vincamine alkaloids by enantioselective high-performance liquid chromatography.

    PubMed

    Caccamese, S; Principato, G

    2000-09-29

    The four enantiomeric pairs of vincamine group alkaloids were separated by HPLC using Chiralpak AD as chiral stationary phase (CSP) and various n-hexane-2-propanol and n-hexane-ethanol mobile phases. (+)-cis-Vincamine, which is used in pharmaceutical preparations, is eluted much faster than its optical isomer, with separation factors of 2.4 and 3.5, respectively in these mobile phases. Other CSPs gave negative results. A chiral recognition mechanism is proposed and circular dichroism spectra of the individual enantiomers are presented. PMID:11043586

  7. Molecular dynamics of adsorption and segregation from an Alkane mixture

    SciTech Connect

    Xia, T.K.; Landman, U. )

    1993-09-03

    Adsorption and segregation of n-hexadecane molecules from an equal by weight mixture of n-hexadecane and n-hexane to an Au(001) surface at 315 kelvin are studied with the use of molecular dynamics simulations. Preferential adsorption of n-hexadecane at the solid-to-liquid interface together with subsequent layer-by-layer growth of an ordered, wetting interface were observed. The long chains penetrate and adsorb at the interfacial layer by means of a sequential segmental mechanism involving end-segment anchoring and displacive desorption of preadsorbed n-hexane molecules.

  8. Charge-transfer photodissociation of adsorbed molecules via electron image states

    SciTech Connect

    Jensen, E. T.

    2008-01-28

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  9. Isolation and identification of fatty acid amides from Shengli coal

    SciTech Connect

    Ming-Jie Ding; Zhi-Min Zong; Ying Zong; Xiao-Dong Ou-Yang; Yao-Guo Huang; Lei Zhou; Feng Wang; Jiang-Pei Cao; Xian-Yong Wei

    2008-07-15

    Shengli coal, a Chinese brown coal, was extracted with carbon disulfide and the extract was gradiently eluted with n-hexane and ethyl acetate (EA)/n-hexane mixed solvents with different concentrations of EA in a silica gel-filled column. A series of fatty acid amides, including fourteen alkanamides (C{sub 15}-C{sub 28}) and three alkenamides (C{sub 18} and C{sub 22}), were isolated from the coal by this method and analyzed with a gas chromatography/mass spectrometry. 26 refs., 2 figs., 2 tabs.

  10. The oxidation of a gasoline surrogate in the negative temperature coefficient region

    SciTech Connect

    Lenhert, David B.; Miller, David L.; Cernansky, Nicholas P.; Owens, Kevin G.

    2009-03-15

    This experimental study investigated the preignition reactivity behavior of a gasoline surrogate in a pressurized flow reactor over the low and intermediate temperature regime (600-800 K) at elevated pressure (8 atm). The surrogate mixture, a volumetric blend of 4.6% 1-pentene, 31.8% toluene, 14.0% n-heptane, and 49.6% 2,2,4-trimethyl-pentane (iso-octane), was shown to reproduce the low and intermediate temperature reactivity of full boiling range fuels in a previous study. Each of the surrogate components were examined individually to identify the major intermediate species in order to improve existing kinetic models, where appropriate, and to provide a basis for examining constituent interactions in the surrogate mixture. n-Heptane and 1-pentene started reacting at 630 K and 640 K, respectively, and both fuels exhibited a strong negative temperature coefficient (NTC) behavior starting at 700 and 710 K, respectively. Iso-octane showed a small level of reactivity at 630 K and a weak NTC behavior starting at 665 K. Neat toluene was unreactive at these temperatures. The surrogate started reacting at 630 K and exhibited a strong NTC behavior starting at 693 K. The extent of fuel consumption varied for each of the surrogate constituents and was related to their general autoignition behavior. Most of the intermediates identified during the surrogate oxidation were species observed during the oxidation of the neat constituents; however, the surrogate mixture did exhibit a significant increase in intermediates associated with iso-octane oxidation, but not from n-heptane. While neat toluene was unreactive at these temperatures, in the mixture it reacted with the radical pool generated by the other surrogate components, forming benzaldehyde, benzene, phenol, and ethyl-benzene. The observed n-heptane, iso-octane, and surrogate oxidation behavior was compared to predictions using existing kinetic models. The n-heptane model reasonably predicted the disappearance of the fuel

  11. More evidence on the control of reverse micelles sizes. Combination of different techniques as a powerful tool to monitor AOT reversed micelles properties.

    PubMed

    Durantini, Andrés M; Falcone, R Darío; Silber, Juana J; Correa, N Mariano

    2013-04-11

    In this work, we have investigated the behavior of 4-aminophthalimide (4-AP) in solvent mixtures of ethyl lactate (EL)- water and EL-n-heptane and in reversed micelles (RMs) media made of EL-water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. We have used dynamics light scattering (DLS) and absorption, steady-state and time-resolved emission (TRES) techniques. 4-AP is a very interesting and unique molecule used to study preferential solvation in water mixtures since its emission profile changes dramatically when its sphere shell is solvated by water molecules. Thus, in homogeneous media 4-AP is strongly solvated by water in the EL-water mixture and by EL in the EL-n-heptane mixture, results that show the importance of the hydrogen bonding in the 4-AP solvation. We were motivated by this feature of 4-AP and have used it to monitor properties in AOT RMs. Thus, we use 4-AP spectroscopic behavior in conjunction with DLS technique to reveal the location of each polar solvent of the mixture encapsulated within the RMs media. We found that in the EL-water/AOT/n-heptane RMs the results strongly depend on the amount of water dissolved. Below W0 = [water]/[AOT] = 5, there are no reversed micelles and EL, water, AOT and n-heptane forms a nonstructured mixture. For W0 values between 5 and 10, the droplet sizes are independent of the EL content because of its strong intermolecular interactions forms an EL polar core and only water is found at the interface. For W0 values higher than 10, the droplets size increase with the EL content and EL molecules are detected at the AOT RMs interface. We inferred that the RMs sizes will change only if the polar solvent encapsulated interacts with the interface changing the surfactant packing parameter. Then, we can assume that it is possible to create RMs with solvents that do not interact with the interface but can be encapsulated in the polar core. These results, give evidence that expand the knowledge about which are the

  12. Solvothermal Synthesis and Supported Catalysis of Polyanion-derived Metal Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Soultanidis, Nikolaos

    Supported metal oxides (SMOs) are important catalytic materials that find numerous applications in important industrial processes. Improving the structural properties of SMOs is a challenging objective due to material synthesis and characterization limitations. Recent developments in the characterization of SMOs, specifically tungstated zirconia (WOx/ZrO2), have revealed structural information that renewed scientific interest in developing more sophisticated synthetic protocols for SMOs. The current work aims to provide a robust characterization of WO x/ZrO2 by using different characterization techniques and probe reactions. Conventional and non-conventional synthetic methods are investigated to cover the whole spectrum of published methods in order to understand the properties and limitations of these techniques. In the second part of this work, a new synthetic approach is presented that successfully produces ultrasmall (smaller than 2 nm) tungsten oxide nanoparticles (WOx NPs). By using conventional tungsten precursors and oleylamine, WOx NPs are synthesized, characterized, and finally supported to test their propene metathesis activity. Conventional WOx/ZrO2 catalysts were prepared and extensively studied by probing their n-pentane isomerization activity and methanol dehydration activity. WOx/ZrO2 prepared via incipient wetness impregnation shows maximum n-pentane isomerization turnover rates (TOR) at intermediate surface densities (rhosurf). This method delivers the most active n-pentane isomerization WOx/ZrO 2 catalysts since it maximizes the number density of the active sub-nm slightly distorted Zr-WOx sites at rhosurf between 5.2-6.2 W/nm2. By comparing the n-pentane isomerization activity with the methanol dehydration activity of WOx /ZrO2, n-pentane isomerization is shown to be an excellent probe reaction for qualitatively identifying the relative (to the other species) population density of Zr-WOx clusters. Bimolecular n-pentane isomerization is the

  13. A new ester coumarin from Ferula Persica wild, indigenous to Iran.

    PubMed

    Razavi, Seyed Mehdi; Janani, Mehrnoush

    2015-01-01

    Ferula persica wild (Apiaceae) is a perennial herb indigenous to Iran. It has been used in folk medicine for treatment of diabetes, lowering of blood pressure and for antispasmodic, carminative, laxative and expectorant effects in central Iran. Dried ground roots of F. persica (150 g) were extracted sequentially with n-hexane, dichloromethane and methanol (MeOH), 500 ml each, using a Soxhlet apparatus. The n-hexane extract of the roots (3 g) was subjected to vacuum liquid chromatography on silica gel, eluting with solvent mixtures of increasing polarity: 100% n-hexane-ethyl acetate (EtOAc), to yield a number of fractions, Fraction 4 (80% EtOAc in n-hexane) was further analysed by preparative TLC (mobile phase was 12% acetone in chloroform) to yield a coumarin ester (10.1 mg, Rf = 0.31, blue florescent). The structure of the isolated compound was elucidated by spectroscopic means. The compound is 7-O-(4,8,12 -trihydroxy-4,8,12-trimethyl-tridecanoyl)-coumarin, named, ferulone C as a new natural product. PMID:25427054

  14. 40 CFR Table 2 to Subpart Ggg of... - Partially Soluble HAP

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Trichloroethylene Chloroethane (ethyl chloride) Trimethylpentane Vinyl acetate Xylene (p) Vinyl chloride N-hexane... Chloromethane 1,1,2-Trichloroethane Chloroprene 1,1-Dichloroethylene (vinylidene chloride) Cumene 1,2... Methylene chloride Allyl chloride N,N-dimethylaniline Benzene Propionaldehyde Benzyl chloride...

  15. 40 CFR Table 2 to Subpart Ggg of... - Partially Soluble HAP

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Trichloroethylene Chloroethane (ethyl chloride) Trimethylpentane Vinyl acetate Xylene (p) Vinyl chloride N-hexane... Chloromethane 1,1,2-Trichloroethane Chloroprene 1,1-Dichloroethylene (vinylidene chloride) Cumene 1,2... Methylene chloride Allyl chloride N,N-dimethylaniline Benzene Propionaldehyde Benzyl chloride...

  16. 40 CFR Table 2 to Subpart Ggg of... - Partially Soluble HAP

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Trichloroethylene Chloroethane (ethyl chloride) Trimethylpentane Vinyl acetate Xylene (p) Vinyl chloride N-hexane... Chloromethane 1,1,2-Trichloroethane Chloroprene 1,1-Dichloroethylene (vinylidene chloride) Cumene 1,2... Methylene chloride Allyl chloride N,N-dimethylaniline Benzene Propionaldehyde Benzyl chloride...

  17. Circular dichroism study on the diastereoselective self-assembly of bacteriochlorophyll cs

    NASA Astrophysics Data System (ADS)

    Balaban, Teodor S.; Holzwarth, Alfred R.; Schaffner, Kurt

    1995-04-01

    Circular dichroism (CD) spectra of self-assembled bacteriochlorophyll cs (BChl cs) aggregates show a pronounced dependency on the solvent, the concentration and on the stereochemistry of the 3 1-hydroxy groups. In n-hexane a psi-type CD is obtained due to the formation of nanostructural aggregates.

  18. Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esterification.

    PubMed

    Bellot, J C.; Choisnard, L; Castillo, E; Marty, A

    2001-03-01

    Monoglyceride synthesis by Rhyzomucor miehei lipase was investigated via direct esterification between glycerol (adsorbed onto silica gel) and oleic acid in organic solvents. The main difficulty is to avoid the unwanted production of di- and tri-glycerides. It was demonstrated that an increase in solvent polarity, using mixtures of n-hexane and 2-methyl-2-butanol (2M2B), improves drastically the selectivity toward monoglyceride formation. In pure n-hexane, the monoglyceride represents only 6 molar % of the total products at the thermodynamic equilibrium (34 and 60% for di- and tri-glyceride respectively). Use of an equivolume mixture of n-hexane/2M2B enables a product mixture to be obtained containing 94% of monoglyceride at equilibrium (2.4 and 0% for di- and tri-glyceride respectively). This positive effect is counterbalanced by a decrease both in initial velocities and in substrate conversion at thermodynamic equilibrium.A modeling, able to predict the three thermodynamic equilibria governing the 3 consecutive reactions, based on activity coefficient calculations using the UNIFAC model, is proposed. It takes into account both the partition of water between solvent and immobilized catalyst, and the partition of glycerol between solvent and silica gel. A good correlation with experimental data obtained in n-hexane/2M2B mixtures was observed. PMID:11240192

  19. The determination of absorption cross sections and line profiles in vibrational overtone spectra with the use of intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bettermann, H.; Kleist, E.; Kok, R.

    1993-03-01

    This contribution presents quantitative absorption data concerning the 7 th CH overtone stretching vibrations of n-hexane and of methylcyclopentane. The transitions are adapted to Lorentzian and Gaussian line shapes. The bank shape analyses yield the spectral positions, absorption cross sections and linewidths of the investigated transitions.

  20. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra.

    PubMed

    Ying, Hao; Jiang, Heyuan; Liu, Huan; Chen, Fangjuan; Du, Qizhen

    2014-09-12

    High-speed countercurrent chromatographic separation (HSCCC) possesses the property of zero-loss of sample, which is very useful for the screening of bioactive components. In the present study, the ethyl acetate-n-butanol gradient HSCCC solvent system composed of n-hexane-ethyl acetate-n-butanol-water was investigated for the screening of bioactive substances. To screen the antiproliferative compounds in okra extract, we used the stationary phase ethyl acetate-n-butanol-water (1:1:10) as the stationary phase, and eluted the antiproliferative components by 6-steps of gradient using mobile phases n-hexane-ethyl acetate (1:2), n-hexane-ethyl acetate (1:4), n-hexane-ethyl acetate (0:4), n-butanol-ethyl acetate (1:4) n-butanol-ethyl acetate (1:2), n-butanol-ethyl acetate (2:2), and n-butanol-ethyl acetate (2:1). The fractions collected from HSCCC separation with the gradient solvent system were assayed for antiproliferative activity against cancer cells. Bioactive components were identified: a major anti-cancer compound, 4'-hydroxy phenethyl trans-ferulate, with middle activity, and a minor anti-cancer compound, carolignan, with strong activity. The result shows that the gradient solvent system is potential for the screening of bioactive compounds from natural products. PMID:25069743

  1. COMPATIBILITY OF ORGANIC SOLVENTS WITH THE MICROSCREEN PROPHAGE-INDUCTION ASSAY: SOLVENT-MUTAGEN INTERACTIONS

    EPA Science Inventory

    The following solvents did not induce prophage lambda in the Escherichia coli WP2 s (Microscreen assay: cetone, benzene, chloroform, ethanol, n-hexane, isopropanol methanol, toluene, and a mixture of the three isomers of xylene. imethyl sulfoxide was genotoxic in the presence and...

  2. KINETICS AND SELECTIVITY OF DEEP CATALYTIC OXIDATION OF VOLATILE ORGANIC COMPOUND MIXTURES

    EPA Science Inventory

    The paper gives results of a fundamental study of low-temperature deep (complete) oxidation of n-hexane, benzene, and ethyl-acetate over a 0.1% Pt, 3% Ni/gamma-AL203 catalyst. (NOTE: Deep catalytic combustion of volatile organic compounds--VOCs--is emerging as an important emissi...

  3. VANADIUM PHOSPHORUS OXIDE AS AN EFFICIENT CATALYST FOR HYDROCARBON OXIDATIONS USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Calcined vanadium phosphorus oxide (VPO) prepared by an organic route is found to be an efficient catalyst for the oxidation of various alkanes such as cyclopentane, cyclohexane, n-hexane, cycloheptane, cyclooctane, cyclodecane and adamantane in acetonitrile solvent using the env...

  4. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-01-01

    Our goals for this quarter were to complete construction of the reactor and analytical units for carrying out Fischer-Tropsch (F-T) synthesis in liquid (n-hexadecane) and in supercritical n-hexane phases. Progress during this quarter was slower than expected.

  5. Fischer-Tropsch synthesis in supercritical reaction media. Progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Subramaniam, B.; Bochniak, D.; Snavely, K.

    1993-01-01

    Our goals for this quarter were to complete construction of the reactor and analytical units for carrying out Fischer-Tropsch (F-T) synthesis in liquid (n-hexadecane) and in supercritical n-hexane phases. Progress during this quarter was slower than expected.

  6. 2D NMR spectroscopic analyses of archangelicin from the seeds of Angelica archangelica.

    PubMed

    Muller, Melanie; Byres, Maureenx; Jaspars, Marcel; Kumarasamy, Yashodharan; Middleton, Moira; Nahar, Lutfun; Shoeb, Mohammad; Sarker, Satyajit D

    2004-12-01

    A total of six coumarins, bergapten (1), xanthotoxin (2), imperatorin (3), isoimperatorin (4), phellopterin (5) and archangelicin (6), have been isolated from an n-hexane extract of the seeds of Angelica archangelica. The results of comprehensive 2D NMR analyses of archangelicin are discussed. PMID:15634612

  7. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oats (Avena sativa L.) were extracted with 80% aqueous ethanol and the extract was successively isolated by liquid-liquid partition to yield n-hexane, ethyl acetate, n-butanol and water layers. Among these extractions the ethyl acetate (EA) layer exhibited the highest total phenolic content (TPC), t...

  8. Cytotoxicity and modulation of cancer-related signaling by (Z)- and (E)- 3,4,3´,5´ tetramethoxystilbene isolated from Eugenia rigida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The leaves of E. rigida DC (Myrtaceae) were collected from Puerto Rico in March, 2006. The sample was identified by Mr. F. Axelrod and a voucher specimen (3008783) was deposited at the Herbarium of Missouri Botanical Garden, St. Louis, MO. Air-dried powdered leaves (107 g) were soaked in n-hexane an...

  9. IR spectroscopic study of hydroxyl groups of molecular sieves in the fundamental and combination tone regions

    NASA Astrophysics Data System (ADS)

    Löffler, E.; Zscherpel, U.; Peuker, Ch.; Staudte, B.

    1993-03-01

    The fundamental and combination vibrations of hydroxyl groups in zeolites (Y, ZSM-5) and silicoaluminophosphates (SAPO-5, -17, -34) are investigated. The influence of adsorbed molecules (C 6F 6, n-hexane) on the combination vibrations is also studied. Finally, remarks on quantitative evaluation of DRIFT spectra of NaHZSM-5 containing different amounts of bridging OH groups are given.

  10. Novel modified zeolites for energy-efficient hydrocarbon separations.

    SciTech Connect

    Arruebo, Manuel; Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John; Noble, Richard

    2006-11-01

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  11. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    SciTech Connect

    Gratz, Marcel; Galvosas, Petrik

    2008-12-05

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  12. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    NASA Astrophysics Data System (ADS)

    Gratz, Marcel; Galvosas, Petrik

    2008-12-01

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  13. A planar avalanche counter with a thin resistive cathode for light ions

    NASA Astrophysics Data System (ADS)

    Chtchetkovski, A. I.; Kotov, A. A.; Kravtsov, A. V.; Vaishnene, L. A.; Vznuzdaev, E. A.

    2000-09-01

    A new planar avalanche counter to detect the light ions, such as α-particles and low-energy nuclei of hydrogen isotopes has been constructed. With a thin resistive film as a cathode, the detector can operate safely even in the presence of single spark without serious breakdown consequences. Pure vaporous n-pentane and some freons were used as a working gas. Tests were performed with 5.5 MeV α-particles from the 238Pu source at various gas pressures.

  14. Comparative study of choleretic agents in anesthetized rats as well as in restrained and and unrestrained rats, with or without compensation for biliary loss

    NASA Technical Reports Server (NTRS)

    Labrid, C.; Dureng, G.; Tachon, J.; Duchene-Marullaz, P.

    1980-01-01

    Tests were conducted on Wistar rats by using 3 control choleretic agents: 1-phenyl-1-hydroxy n-pentane, dehydrocholic acid, and phenyl-dimethylacetic acid. The effects of these agents were compared in different experimental conditions. The comparative study of choleretic agents in anesthetized rats, in restrained and unrestrained rats, with or without compensation for biliary loss by the biliary secretion of restrained or unrestrained rats does not show, in systematic pharmecodynamic investigations, an obvious superiority over the methods based on the simple technique.

  15. Pseudotenfold symmetry in pentane-solvated C60 and C70

    NASA Astrophysics Data System (ADS)

    Fleming, R. M.; Kortan, A. R.; Hessen, B.; Siegrist, T.; Thiel, F. A.; Marsh, P.; Haddon, R. C.; Tycko, R.; Dabbagh, G.; Kaplan, M. L.; Mujsce, A. M.

    1991-07-01

    Crystals of C60 or C70 cocrystallized with n-pentane grow as elongated, ten-sided columns. X-ray diffraction shows ordering of C60 or C70 molecules along the column and a remarkable tenfold symmetry normal to the column. The ratio of the x-ray-diffraction vectors of the two lowest-order diffraction spots is nearly equal to the ``golden ratio,'' τ. Despite these similarities with decagonal, quasicrystalline order, the diffraction indicates crystalline order with a twinned unit cell.

  16. An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxides

    PubMed Central

    Garssen, G. J.; Vliegenthart, J. F. G.; Boldingh, J.

    1971-01-01

    In an anaerobic system soya-bean lipoxygenase together with linoleic acid induces a structural rearrangement of 13-hydroperoxyoctadeca-cis-9-trans-11-dienoic acid leading to the formation of 13-oxotrideca-cis(trans)-9-trans-11-dienoic acid and n-pentane as well as 13-oxo-octadeca-9,11-dienoic acid. It is proposed that the 13-peroxyoctadeca-cis-9-trans-11-dienoic acid radical formed through hydrogen radical abstraction by the linoleic acid radical is the key intermediate for these reactions. PMID:5165730

  17. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  18. Structural and phase transformations during ball milling of titanium in medium of liquid hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dorofeev, G. A.; Lubnin, A. N.; Lad'yanov, V. I.; Mukhgalin, V. V.; Puskkarev, B. E.

    2014-02-01

    It has been shown using X-ray diffraction, scanning electron microscopy, and chemical analysis that, upon ball milling of α-titanium in liquid organic media (toluene and n-heptane), a nanocrystalline fcc phase is formed that is a metastable carbohydride Ti(C,H) deficient in hydrogen and carbon compared to stable carbohydrides. The dimensions of powder particles after milling in toluene and n-heptane differ substantially (are 5-10 and 20-30 μm, respectively. It has been shown that the kinetics of the formation of Ti(C,H) is independent of the milling medium. The atomic ratios H/C in the products of mechanosynthesis agree well with those corresponding to the employed organic media, i.e., H/C = 1.1 for toluene and 2.3 for n-heptane. A solid-liquid mechanism of mechanosynthesis is suggested, which includes repeated processes of particle fracturing with the formation of fresh surfaces, adsorption of liquid hydrocarbons on these surfaces, and subsequent cold welding of the newly formed particles. It is assumed that the formation of the fcc phase in the process of milling is connected with the generation of stacking faults in α-Ti. Upon annealing at 550°C, the fcc phase decomposes with the formation of stable titanium carbide TiC (annealing in a vacuum) or stable titanium carbohydride and a β-Ti(H) solid solution (annealing in argon) with a partial reverse transformation Ti(C,H) → α-Ti in both cases.

  19. Multidimensional chemistry coordinate mapping approach for combustion modelling with finite-rate chemistry

    NASA Astrophysics Data System (ADS)

    Jangi, Mehdi; Bai, Xue-Song

    2012-12-01

    A multidimensional chemistry coordinate mapping (CCM) approach is presented for efficient integration of chemical kinetics in numerical simulations of turbulent reactive flows. In CCM the flow transport is integrated in the computational cells in physical space, whereas the integration chemical reactions are carried out in a phase space made up of a few principal variables. Each cell in the phase space corresponds to several computational cells in the physical space, resulting in a speedup of the numerical integration. In reactive flows with small hydrocarbon fuels two principal variables have been shown to be satisfactory to construct the phase space. The two principal variables are the temperature (T) and the specific element mass ratio of the H atom (J H). A third principal variable, σ=∇J H.∇J H, which is related to the dissipation rate of J H, is required to construct the phase space for combustion processes with an initially non-premixed mixture. For complex higher hydrocarbon fuels, e.g. n-heptane, care has to be taken in selecting the phase space in order to model the low-temperature chemistry and ignition process. In this article, a multidimensional CCM algorithm is described for a systematic selection of the principal variables. The method is evaluated by simulating a laminar partially remixed pre-vaporised n-heptane jet ignition process. The CCM approach is then extended to simulate n-heptane spray combustion by coupling the CCM and Reynolds averaged Navier-Stokes (RANS) code. It is shown that the computational time for the integration of chemical reactions can be reduced to only 3-7%, while the result from the CCM method is identical to that of direct integration of the chemistry in the computational cells.

  20. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure

    SciTech Connect

    Fieweger, K.; Blumenthal, R.; Adomeit, G.

    1997-06-01

    The self-ignition of several spark-ignition (SI) engine fuels (iso-octane, methanol, methyl tert-butyl ether and three different mixtures of iso-octane and n-heptane), mixed with air, was investigated experimentally under relevant engine conditions by the shock tube technique. Typical modes of the self-ignition process were registered cinematographically. For temperatures relevant to piston engine combustion, the self-ignition process always starts as an inhomogeneous, deflagrative mild ignition. This instant is defined by the ignition delay time, {tau}{sub defl}. The deflagration process in most cases is followed by a secondary explosion (DDT). This transition defines a second ignition delay time, {tau}{sub DDT}, which is a suitable approximation for the chemical ignition delay time, if the change of the thermodynamic conditions of the unburned test gas due to deflagration is taken into account. For iso-octane at p = 40 bar, a NTC (negative temperature coefficient), behavior connected with a two step (cool flame) self-ignition at low temperatures was observed. This process was very pronounced for rich and less pronounced for stoichiometric mixtures. The results of the {tau}{sub DDT} delays of the stoichiometric mixtures were shortened by the primary deflagration process in the temperature range between 800 and 1,000 K. Various mixtures of iso-octane and n-heptane were investigated. The results show a strong influence of the n-heptane fraction in the mixture, both on the ignition delay time and on the mode of self-ignition. The self-ignition of methanol and MTBE (methyl tert-butyl ether) is characterized by a very pronounced initial deflagration. For temperatures below 900 K (methanol: 800 K), no secondary explosion occurs. Taking into account the pressure increase due to deflagration, the measured delays {tau}{sub DDT} of the secondary explosion are shortened by up to one order of magnitude.

  1. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane

    SciTech Connect

    Westbrook, Charles K.; Pitz, William J.; Herbinet, Olivier; Silke, Emma J.; Curran, Henry J.

    2009-01-15

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on previous mechanisms for the primary reference fuels n-heptane and iso-octane, using the reaction classes first developed for n-heptane. Individual reaction class rules are as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms. These mechanisms are validated through extensive comparisons between computed and experimental data from a wide variety of different sources. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare reactivities of different n-alkane fuels. The mechanisms for these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, is available for download from our web page. (author)

  2. The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine

    SciTech Connect

    Szybist, James P; Bunting, Bruce G

    2007-01-01

    The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 88. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant equivalence ratio conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50. The increase in efficiency with higher CR was fuel-dependent, so that the fuels requiring a higher CR to achieve ignition did not gain a proportionate efficiency increase. For example, n-heptane achieved an indicated thermal efficiency (ITE) of 38% at a CR of 9:1, whereas a 50 wt% blend of toluene with n-heptane required a CR of 12:1 to achieve the same ITE. A simple heat balance around the engine showed that higher toluene content fuels had higher cooling losses. The high toluene fuels exhibited higher rates of maximum pressure rise than the lower octane fuels. The increased cooling losses can be attributed to the higher pressure rise rates, which are a driving force for heat transfer.

  3. Recent Advances In Science Support For Isolated Droplet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.

    2003-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.

  4. Theoretical study of binding and permeation of ether-based polymers through interfaces.

    PubMed

    Samanta, Susruta; Hezaveh, Samira; Roccatano, Danilo

    2013-11-27

    We present a molecular dynamics simulation study on the interactions of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and their ABA-type block copolymer, poloxamers, at water/n-heptane and 1,2-dimyristoyl-sn-glycero-3-phospatidycholine (DMPC) lipid bilayer/water interfaces. The partition coefficients in water/1-octanol of the linear polyethers up to three monomers were calculated. The partition coefficients evidenced a higher hydrophobicity of the PPO in comparison to PEO. At the water/n-heptane interface, the polymers tend to adopt elongated conformations in agreement with similar experimental ellipsometry studies of different poloxamers. In the case of the poloxamers at the n-heptane/water interface, the stronger preference of the PPO block for the hydrophobic phase resulted in bottle-brush-type polymer conformations. At lipid bilayer/water interface, the PEO polymers, as expected from their hydrophilic nature, are weakly adsorbed on the surface of the lipid bilayer and locate in the water phase close to the headgroups. The free energy barriers of permeation calculated for short polymer chains suggest a thermodynamics propensity for the water phase that increase with the chain length. The lower affinity of PEO for the hydrophobic interior of the lipid bilayer resulted in the spontaneous expulsion within the simulation time. On the contrary, PPO chains and poloxamers have a longer residence time inside the bilayer, and they tend to concentrate in the tail region of the bilayer near the polar headgroups. In addition, polymers with PPO unit length comparable to the thickness of the hydrophobic region of the bilayer tend to span across the bilayer. PMID:24219592

  5. Anti-inflammatory, Anti-estrogenic, and Anti-implantation Activity of Bergia suffruticosa (Delile) Fenzl

    PubMed Central

    Bind, Sandeep Kumar; Jivrajani, Mehul; Anandjiwala, Sheetal; Nivsarkar, Manish

    2015-01-01

    Background: Bergia suffruticosa (Delile) Fenzl (Syn. Bergia odorata Edgew) (Elatinaceae family) is used traditionally to repair bones and is applied as a poultice on sores. It is also used for stomach troubles and as an antidote to scorpion stings. So far, very little scientific work has been reported to validate its ethnomedical uses in the alleviation of pain, bone repair, etc., Objective: This study was designed to explore the anti-inflammatory and anti-implantation potential of n-hexane extract of B. suffruticosa whole plant in mice along with identification of its chemical constituents. Materials and Methods: n-Hexane extract of B. suffruticosa whole plant was screened for acute and chronic anti-inflammatory activity followed by an anti-estrogenic activity. Eventually, n-hexane extract was tested for anti-implantation activity by exploiting markers of uterine receptivity, lipid peroxidation, and superoxide enzyme activity. The extract was administered orally at a dose of 100 mg/kg body weight in each study. Results: Thin layer chromatography fingerprint profile of n-hexane extract revealed the presence of lupeol and β-sitosterol. The n-hexane extract reduced the edema by 80% in acute inflammation, whereas it reduced edema to 75% on the 5th day in chronic inflammation. The n-hexane extract reduced elevated malonaldehyde level from 6 to 2.5 nmol/g × 10−5 and increased superoxide dismutase enzyme activity from 0 to 350 units/g in treated animals on the 5th day of pregnancy. Moreover, extract decreased uterine weight from 0.33 to 0.2 g in estradiol treated animals. Conclusion: These results indicate that n-hexane extract of B. suffruticosa is having potent anti-inflammatory, anti-estrogenic, and anti-implantation activity. This is the first report of all the pharmacological activities of B. suffruticosa mentioned above. SUMMARY TLC fingerprint profile of n-hexane extract of Bergia suffruticosa whole plant revealed the presence of lupeol and

  6. Activity and stability of catalase in nonionic micellar and reverse micellar systems.

    PubMed

    Gebicka, Lidia; Jurgas-Grudzinska, Monika

    2004-01-01

    Catalase activity and stability in the presence of simple micelles of Brij 35 and entrapped in reverse micelles of Brij 30 have been studied. The enzyme retains full activity in aqueous micellar solution of Brij 35. Catalase exhibits "superactivity" in reverse micelles composed of 0.1 M Brij 30 in dodecane, n-heptane or isooctane, and significantly lowers the activity in decaline. The incorporation of catalase into Brij 30 reverse micelles enhances its stability at 50 degrees C. However, the stability of catalase incubated at 37 degrees C in micellar and reverse micellar solutions is lower than that in homogeneous aqueous solution. PMID:15666551

  7. Chemical kinetic mechanism for the oxidation of paraffinic hydrocarbons needed for primary reference fuels

    SciTech Connect

    Westbrook, C.K.; Pitz, W.J.

    1993-03-01

    A detailed chemical kinetic reaction mechanism is described which simulates the oxidation of the primary reference fuels n-heptane and iso-octane. The high temperature subset of these mechanisms is identified, and the extensions to deal with low temperature conditions are also explained. The algorithms used to assign reaction rates to elementary steps in the reaction mechanism are described, and the means of identifying the different chemical species and the relevant reactions are outlined. Finally, we show how interested kinetic modeling researchers can obtain copies of this reaction mechanism.

  8. Photoisomerization and reorientational mobility of symmetric carbocyanines in AOT/alkane/polar solvent microemulsions

    NASA Astrophysics Data System (ADS)

    Dandapat, Manika; Basu, Saswati; Ghosh, Deborin; Mandal, Debabrata

    2014-07-01

    Molecular motion of carbocyanine fluorophores DOCI, DODCI and DTDCI were studied in AOT/n-heptane microemulsions containing added polar solvents: water, methanol or acetonitrile. The response varied remarkably depending on the nature of the fluorophore and polar solvent. When the amount of added polar solvent was low, molecular mobility was invariably retarded, due to a combination of electrostatic and hydrophobic forces that induce the guest fluorophore to cling to the AOT molecules of the host reverse micelle. However, at high amounts of added methanol or water, these interactions diminished considerably, causing increase in the mobility of the guest fluorophores up to different extents.

  9. Spontaneous ignition characteristics of gaseous hydrocarbon-air mixtures

    NASA Technical Reports Server (NTRS)

    Freeman, G.; Lefebvre, A. H.

    1984-01-01

    Experiments are conducted to determine the spontaneous ignition delay times of gaseous propane, kerosine vapor, and n-heptane vapor in mixtures with air, and oxygen-enriched air, at atmospheric pressure. Over a range of equivalence ratios from 0.2 to 0.8 it is found that ignition delay times are sensibly independent of fuel concentration. However, the results indicate a strong dependence of delay times on oxygen concentration. The experimental data for kerosine and propane demonstrate very close agreement with the results obtained previously by Mullins and Lezberg respectively.

  10. Isolated Liquid Droplet Combustion: Inhibition and Extinction Studies

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kroenlein, K. G.; Kazakov, A.; Williams, F. A.; Nayagam, V.

    2004-01-01

    Introduction of fire suppressants to the ambient environment surrounding a heterogeneous diffusion flame may be an inefficient technique for fire safety in systems without buoyant flows. Carbon dioxide substitution for nitrogen diluent leads to significant modifications of the sphero-symmetric burning behavior of isolated n-heptane droplets, partly through increased heat capacity within the gaseous diffusion flame, but mostly because of modifications in spectral radiative coupling in the gas phase. Effects of longer time scale phenomena such as sooting and slow gas-phase/droplet convection remain to be determined. Similar methodologies can be applied to evaluate the effects and efficacy of chemical inhibitors in the liquid and gas phases.

  11. Fatty and resinic acids extractions from crude tall oil

    SciTech Connect

    Nogueira, J.M.F.

    1996-11-01

    The separation of fatty and resinic acidic fractions from crude tall-oil soap solutions with n-heptane by the technique of dissociation extraction is discussed. The theory of the overall process is supported by a systematic study developed to cover the high selectivity demonstrated in the differential solubility and the aptness between fatty and diterpenic acids to both liquids phases. To study the main factors affecting those liquid-liquid extraction systems and the amphiphilic behavior of such molecules involved, sodium salts aqueous solutions of crude tall oil and synthetic mixtures as molecular acidic models were used.

  12. An experimental investigation of the burning characteristics of water-oil emulsions

    SciTech Connect

    Wang, C.H.; Chen, J.T.

    1996-10-01

    An experimental investigation was conducted on the combustion characteristics of droplets of n-heptane, n-decane, n-dodecane, n-hexadecane and iso-octane emulsified with various amount of water and freely falling in a furnace of controlled temperature. Results demonstrate the intricate influences of water emulsification on the ignition, extinction and micro-explosion of the droplet response, and that the droplet burning time can be significantly reduced through judicious fuel blending so as to minimize the ignition delay and advance the onset of micro-explosion.

  13. The role of water in the formation of reversed micelles: An antimicellization agent

    USGS Publications Warehouse

    Yu, Z.-J.; Zhou, N.-F.; Neuman, R.D.

    1992-01-01

    Micellization of sodium bis(2-ethylhexyl) phosphate in n-heptane has been studied under controlled environmental conditions by dynamic and static light scattering. The results clearly show that a trace amount of water has a very dramatic effect on reversed micellization. In contrast with results in the literature, water can function as an antimicellization agent. The generality of and the evidence for supporting the current view that water is a prerequisite for the formation of reversed micelles are discussed and criticized. ?? 1992 American Chemical Society.

  14. The effect of initial diameter in sperically symmetric droplet combustion of sooting fuels

    NASA Technical Reports Server (NTRS)

    Jackson, G. S.; Avedisian, C. T.

    1994-01-01

    The effect of initial droplet diameter on the burning rate of sooting fuels - n-heptane and 1-chloro-octane - was examined experimentally at low gravity. A 1.2s drop tower provided a low gravity environment to minimize buoyancy and achieve spherically symmetric flames for stationary droplets. Free-floating and fiber-supported droplets were burned, and both techniques gave matching results for droplets of similar initial diameter. Burning rate constants for both fuels were measured for a large number of droplets ranging from 0.4 to 1.1mm in initial diameter.

  15. Velocity profiles in laminar diffusion flames

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Margle, Janice M.

    1986-01-01

    Velocity profiles in vertical laminar diffusion flames were measured by using laser Doppler velocimetry (LDV). Four fuels were used: n-heptane, iso-octane, cyclohexane, and ethyl alcohol. The velocity profiles were similar for all the fuels, although there were some differences in the peak velocities. The data compared favorably with the theoretical velocity predictions. The differences could be attributed to errors in experimental positioning and in the prediction of temperature profiles. Error in the predicted temperature profiles are probably due to the difficulty in predicting the radiative heat losses from the flame.

  16. Testing of high-octane fuels in the single-cylinder airplane engine

    NASA Technical Reports Server (NTRS)

    Seeber, Fritz

    1940-01-01

    One of the most important properties of aviation fuels for spark-ignition engines is their knock rating. The CFR engine tests of fuels of 87 octane and above does not always correspond entirely to the actual behavior of these fuels in the airplane engine. A method is therefore developed which, in contrast to the octane number determination, permits a testing of the fuel under various temperatures and fuel mixture conditions. The following reference fuels were employed: 1) Primary fuels; isooctane and n-heptane; 2) Secondary fuels; pure benzene and synthetic benzine.

  17. Evaluation of a locally homogeneous flow model of spray combustion

    NASA Technical Reports Server (NTRS)

    Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.

    1980-01-01

    A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.

  18. On sub-T(g) dewetting of nanoconfined liquids and autophobic dewetting of crystallites.

    PubMed

    Souda, Ryutaro

    2012-03-28

    The glass transition temperature (T(g)) of thin films is reduced by nanoconfinement, but it is also influenced by the free surface and substrate interface. To gain more insights into their contributions, dewetting behaviors of n-pentane, 3-methylpentane, and toluene films are investigated on various substrates as functions of temperature and film thickness. It is found that monolayers of these molecules exhibit sub-T(g) dewetting on a perfluoro-alkyl modified Ni substrate, which is attributable to the evolution of a 2D liquid. The onset temperature of dewetting increases with film thickness because fluidity evolves via cooperative motion of many molecules; sub-T(g) dewetting is observed for films thinner than 5 monolayers. In contrast, monolayers wet substrates of graphite, silicon, and amorphous solid water until crystallization occurs. The crystallites exhibit autophobic dewetting on the substrate covered with a wetting monolayer. The presence of premelting layers is inferred from the fact that n-pentane crystallites disappear on amorphous solid water via intermixing. Thus, the properties of quasiliquid formed on the crystallite surface differ significantly from those of the 2D liquid formed before crystallization. PMID:22337324

  19. Screening and evaluation of biosurfactant-producing strains isolated from oilfield wastewater.

    PubMed

    Liu, Jianghong; Chen, Yitong; Xu, Ruidan; Jia, Yunpeng

    2013-06-01

    The six biosurfactant-producing strains, isolated from oilfield wastewater in Daqing oilfield, were screened. The production of biosurfactant was verified by measuring the diameter of the oil spreading, measuring the surface tension value and emulsifying capacity against xylene, n-pentane, kerosene and crude oil. The experimental result showed three strains (S2, S3, S6) had the better surface activity. Among the three strains, the best results were achieved when using S2 strain. The diameter of the oil spreading of the biosurfactant produced by S2 strain was 14 cm, its critical micelle concentration (CMC) was 21.8 mg/l and the interfacial tension between crude oil and biosurfactant solution produced by S2 strain reduced to 25.7 mN/m. The biosurfactant produced by S2 strain was capable of forming stable emulsions with various hydrocarbons, such as xylene, n-pentane, kerosene and crude oil. After S2 strain treatment, the reduction rate of oil viscosity was 51 % and oil freezing point reduced by 4 °C. PMID:24426104

  20. New Abietane Diterpenes from Euphorbia Pseudocactus Berger (Euphorbiaceae) and Their Antimicrobial Activity

    PubMed Central

    Abdel-Monem, Azza Ramy; Abdelrahman, Enas Hussein

    2016-01-01

    Background: Euphorbia is the largest genus in Euphorbiaceae. Terpenoids were isolated from most species of this genus. Objective: Since no previous study was reported about Euphorbia pseudocactus Berger, we started here a phytochemical investigation on this species to isolate and identify its terpenoid constituents and to estimate the antimicrobial activity of the isolated compounds. Materials and Methods: The n-hexane fraction of the ethanolic extract of E. pseudocactus Berger was chromatographed on silica gel columns, the structures of the isolated compounds (1–5) were identified based on their MS, 1 D, and 2 D NMR spectral data. The antimicrobial activity of the n-hexane fraction and the isolated compounds (1–4) was investigated using diffusion plate method against Gram-positive (Staphylococcus aureus [12600] and Bacillus subtilis [6051]) and Gram-negative (Pseudomonas aeruginosa [10145] and Escherichia coli [11775]) bacteria, yeast (Candida albicans [7102]), and fungi (Aspergillus flavus). Results: Two triterpenes (glut-5-en-3 β-ol [1] and olean-12,15-diene-3 β-ol [2]) and three abietane diterpene (3-hydoxy-19-cyclopropenoyloxy-abietane [3], ent-abieta-9,12,14-triene-12,16-olide [4], and 12,19-dihydroxy-abieta-5-ene [5]) were isolated. Compound 1 exhibited no antibacterial activity against the tested bacteria, compound 2 and n-hexane fraction exhibited weak activity, whereas compounds 3 and 4 showed moderate activity. All samples showed no activity against the tested yeast and fungi. Discussion and Conclusion: Five compounds were isolated for the 1st time from E. pseudocactus Berger, three of them (3–5) are new natural compounds. As the major isolated compound (1) exhibited no antimicrobial activity, the observed activity of the n-hexane fraction is mainly due to its diterpenoid constituents. SUMMARY Two known triterpenes and three new diterpenes were isolated from n-hexane fraction of Euphorbia pseudocactusThe abietane diterpenoids showed higher

  1. Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe{sub 3}O{sub 4} nanoparticles

    SciTech Connect

    Liu, Jing; Wang, Lu; Wang, Jing; Zhang, Lantong

    2013-02-15

    Graphical abstract: A facile method to produce monodispersed magnetite nanoparticles is based on the solvothermal reaction of iron acetylacetonate (Fe(acac)3) decomposition. The sizes ranged from 7 to 12 nm, which could be controlled by adjusting the volume ratio of oleylamine to n-hexane. Display Omitted Highlights: ► The solvethermal reaction of Fe(acac){sub 3} decomposition was carried out at mild temperature in the presence of oleylamine and n-hexane. ► The size of nanocrystals is controlled by adjusting the volume ratio of oleylamine to n-hexane. ► The low-boiling-point solvent n-hexane offered autogenous pressure parameter after gasified in the reaction temperature. ► The as prepared hydrophobic monodisperse Fe{sub 3}O{sub 4} NPs can be used to prepare the magnetic micelles for future biomedical applications. -- Abstract: A new solvothermal method is proposed for the preparation of Fe{sub 3}O{sub 4} nanoparticles (NPs) from iron acetylacetonate in the presence of oleylamine and n-hexane. The products are characterized by X-ray powder diffraction, infrared (IR) spectroscopy, transmission electron microscopy, thermogravimetry/differential thermogravimetry (TG/DTG) analysis, and vibrating sample magnetometery. The new procedure yields superparamagnetic monodispersed Fe{sub 3}O{sub 4} particles with sizes ranging from 7 nm to 12 nm. The nanocrystal sizes are controlled by adjusting the volume ratio of oleylamine to n-hexane. IR and TG/DTG analyses indicate that the oleylamine molecules, as stabilizers, are adsorbed on the surface of Fe{sub 3}O{sub 4} NPs as bilayer adsorption models. The surface adsorption quantities of oleylamine on 7.5 and 10.4 nm-diameter Fe{sub 3}O{sub 4} NPs are 18% and 11%, respectively. The hydrophobic surface of the obtained nanocrystals is passivated by adsorbed organic solvent molecules. These molecules provide stability against agglomeration, enable solubility in nonpolar solvents, and allow the formation of magnetic polymer

  2. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals. PMID:17980962

  3. Adsorption of Organic Molecules on Kaolinite from the Exchange-Hole Dipole Moment Dispersion Model.

    PubMed

    Johnson, Erin R; Otero-de-la-Roza, Alberto

    2012-12-11

    Intermolecular interactions between organic molecules and clay minerals are important in a wide range of chemical applications, ranging from oil-sands petroleum extraction to environmental chemistry and catalysis. The binding energies between each of benzene, n-hexane, pyridine, 2-propanol, and water and the kaolinite surface are calculated using density functional theory with the exchange-hole dipole moment dispersion model. The dominant noncovalent interactions are found to be hydrogen bonding for pyridine, 2-propanol, and water, OH-π interactions for benzene, and CH-O interactions for n-hexane. All molecules considered are more strongly bound to the hydrophilic alumina face, rather than the hydrophobic siloxane face, of kaolinte. PMID:26593201

  4. [Analysis of spinosad in animal and fishery products by LC-MS].

    PubMed

    Ueno, Eiji; Ohno, Haruka; Watanabe, Minae; Oshima, Harumi; Mikami, Eiichi; Nemoto, Satoru; Matsuda, Rieko

    2011-01-01

    We investigated the determination of spinosyn A and spinosyn D, the active ingredients of spinosad, in animal and fishery products by liquid chromatography with mass spectrometry (LC-MS). The sample was homogenized with 1 mol/L dipotassium hydrogenphosphate aqueous solution and extracted with acetone-n-hexane under mildly alkaline conditions. After n-hexane-acetonitrile partitioning using an EXtrelut(®) column, the extract was cleaned up on a tandem SAX/PSA mini-column, and examined by means of fragmenter-voltage-switching ESI-SIM mode LC-MS. Mean recoveries (n=5) of spinosyn A and spinosyn D from eleven kinds of fortified samples at the analyte concentration of 0.01 µg/g and 0.05 µg/g ranged from 76.1% to 93.8% (RSD≤8.7%) and from 75.1% to 104.1% (RSD≤8.6%), respectively. PMID:22200799

  5. Phytochemical investigation and biological studies of Bombax malabaricum flowers.

    PubMed

    El-Hagrassi, Ali M; Ali, Mamdouh M; Osman, Abeer F; Shaaban, Mohamed

    2011-01-01

    In this study, extracts of the flowers of the folk medicinal plant Bombax malabaricum DC were biologically and chemically screened. Chemical constituents in the n-hexane fraction from the flowers of B. malabaricum DC were investigated using gas-liquid chromatography (GLC) analysis, affording 14 compounds, including cholesterol, stigmasterol, campesterol and α-amyrin, while the residual 10 compounds are hydrocarbons. GLC analysis of the fatty acid (FA) esters established the majority abundance of the saturated FA over their unsaturated analogues. The polar methanol fraction afforded seven flavones: vicenin 2 (1), linarin (2), saponarin (3), cosmetin (4), isovitexin (5), xanthomicrol (6) and apigenin (7). Structures 1-7 were established by intensive studies of various spectral data (H-NMR, mass spectroscopy and UV) and comparison with authentic samples. Compounds 1-7 are described here for the first time from this plant. Extracts of n-hexane and methanol exhibited significant antioxidant and antimicrobial activities. PMID:21246441

  6. Effects of Malva sylvestris and Its Isolated Polysaccharide on Experimental Ulcerative Colitis in Rats.

    PubMed

    Hamedi, Azadeh; Rezaei, Hossein; Azarpira, Negar; Jafarpour, Mehrnaz; Ahmadi, Fatemeh

    2016-01-01

    Malva sylvestris is an edible plant that is consumed as a herbal supplement for its antiulcer and colon cleansing properties in traditional Persian medicine. This study was designed to evaluate its effects on ulcerative colitis, which is a chronic gastrointestinal inflammation. Colitis was induced by rectal instillation of acetic acid solution. Rats in different groups received aqueous, n-hexane, or ethanolic fractions of the plant before induction of colitis. Isolated polysaccharide of plant was also tested in 2 groups before and after induction of colitis. Macroscopic and microscopic evaluation of colitis showed that the aqueous fraction was very effective in preventing the inflammation and efficacy was lower for ethanolic and n-hexane fractions. Polysaccharide was effective in reducing signs of inflammation, especially as pretreatment. These beneficial effects provide evidences that this plant can be suggested for patients with this disease to improve their health condition or to reduce adverse effects of their medication. PMID:26045553

  7. Insect growth regulatory activity of Blechnum chilense.

    PubMed

    Hincapié, Carlos A; Monsalve, Zulma; Parada, Katherine; Lamilla, Claudio; Alarcón, Julio; Céspedes, Carlos L; Seigler, David

    2011-08-01

    The genus Blechnum has 13 species that are common plants, well-distributed in Chile. Here, we report a phytochemical analysis of B. chilense (Kaulf.) Mett., as well as the insecticidal effects of extracts of this plant. From the n-hexane fraction four phytoecdysones were isolated: ecdysone, ponasterone, shidasterone and 2-deoxycrustecdysone. A bioassay with Drosophila melanogaster larvae was used to evaluate insecticidal activity. The EtOAc and n-hexane fractions at 800 ppm caused 66.7 and 50.0% larval mortality, respectively. Treatments with both extracts at 800 ppm caused the greatest larval mortality, whereas treatments with 500 and 200 ppm induced premature pupation compared with the control and the highest adult mortality, probably due to interference with ecdysteroid metabolism and inhibition of ecdysis triggering hormone (ETH). The dead adult flies exhibited malformations. PMID:21922904

  8. Solvent effect on the size of platinum nanoparticle synthesized in microemulsion systems

    NASA Astrophysics Data System (ADS)

    Salabat, Alireza; Far, Mina Rahmati

    2012-05-01

    In this research work, the effect of solvent on the size of paltinum nanoparticles synthesized by microemulsion method was investigated. Platinum nanoparticles have been prepared by the reduction of H2PtCl6 with hydrazine in water-in-oil (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfo-succinate (AOT) and solvents n-hexane, cyclohexane and n-nonane. The size of the platinum nanoparticles was measured using transmission electron microscopy (TEM). It was verified that, for reduction of H2PtCl6 by hydrazine in microemulsion with different organic solvents, the solvents are arranged by their influence on nanoparticle sizes as follows: n-nonane > cyclohexane > n-hexane.

  9. Determination of organochlorine and pyrethroid pesticides in fruit and vegetables using solid phase extraction clean-up cartridges.

    PubMed

    Sharif, Zawiyah; Man, Yaakob Bin Che; Hamid, Nazimah Sheikh Abdul; Keat, Chin Cheow

    2006-09-15

    A method to determine six organochlorine and three pyrethroid pesticides in grape, orange, tomato, carrot and green mustard based on solvent extraction followed by solid phase extraction (SPE) clean-up is described. The pesticides were spiked into the sample prior to analysis, extracted with ethyl acetate, evaporated and reconstituted with a solvent mixture of acetone:n-hexane (3:7). Three different sorbents (Strong Anion Exchanger/Primary Secondary Amine (SAX/PSA), Florisil and C18) were used for the clean-up step. Pesticides were eluted with 5mL of acetone:n-hexane (3:7, v/v) and determined by gas chromatography and electron-capture detection (GC-ECD). SAX/PSA was the sorbent, which provided chromatograms with less interference and the mean recoveries obtained were within 70-120% except for captafol. The captafol recoveries for grape were within acceptable range with C18 clean-up column. PMID:16857206

  10. Vitiquinolone--a quinolone alkaloid from Hibiscus vitifolius Linn.

    PubMed

    Ramasamy, D; Saraswathy, A

    2014-02-15

    Phytochemical investigations of the powdered root of Hibiscus vitifolius Linn. (Malvaceae) was extracted successively with n-hexane and chloroform. Analysis of the n-hexane extract by GC-MS led to the identification of twenty-six components by comparison of their mass spectra with GC-MS library data. A novel quinolone alkaloid, vitiquinolone (5) together with eight known compounds viz. β-Amyrin acetate (1), n-octacosanol (2), β-Amyrin (3), stigmasterol (4), xanthyletin (6), alloxanthoxyletin (7), xanthoxyletin (8) and betulinic acid (9) were isolated from chloroform extract by column chromatography over silica gel. The structure of vitiquinolone was established on the basis of spectroscopic methods including UV, IR, 1D, 2D NMR and ESI-MS. The known compounds were identified on the basis of their physical and spectroscopic data as reported in the literature. PMID:24128571

  11. Assessment of pregnancy in Kiang mares (Equus hemionus holdereri ) using estrogen determination in feces.

    PubMed

    Kuckelkorn, B

    1994-01-01

    Analysis of fecal estrogens was used to diagnose pregnancy in 6 Kiang mares (Equus hemionus holdereri ) that were kept at Tierpark Berlin. Three extraction methods were compared and were followed by an established RIA for total estrogen. Extraction of desiccated feces with chloroform/n-hexane and KOH, with and without enzyme hydrolysis showed better results than extraction with diethylether without hydrolysis. Pregnancy was confirmed by observation of foaling in 2 mares that showed estrogen concentrations between 800 and 1800 ng/g and in 1 mare that showed widely fluctuating values between 500 and 1300 ng/g of feces. Two mares with estrogen concentrations below 500 ng/g were not seen to foal. The method using chloroform/n-hexane and KOH without enzyme hydrolysis seems practical for non-invasive evaluation of the endocrine status in this endangered Equidae species. PMID:16727510

  12. Comparative study of the essential oils and extracts of Achillea fragrantissima (Forssk.) Sch. Bip. and Achillea santolina L. (Asteraceae) from Egypt.

    PubMed

    el-Shazly, A M; Hafez, S S; Wink, M

    2004-03-01

    Essential oils obtained by steam distillation from the aerial parts of Achillea fragrantissima (Forssk.) Sch. Bip. and the flower, leaf and stem of A. santolina L. as well as their lipophilic constituents obtained by solvent extraction were analysed using GLC and GLC-mass spectrometry. Nineteen constituents in the essential oil of A. fragrantissima were identified, in addition to 41 compounds from its n-hexane-ether extract. The hydrodistilled oil and the solvent extract contain santolina alcohol, artemisia alcohol, artemisia ketone, cis-thujone and trans-thujone as major constituents. In A. santolina altogether 54 volatile components were detected. The major components were 1,8-cineole, fragranol, fragranyl acetate and terpin-4-ol. Furthermore, the essential oils and the n-hexane-ether extracts of the two plants were screened for their antimicrobial activity. PMID:15074599

  13. Release of volatile mercury from vascular plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  14. Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5

    SciTech Connect

    Brunner, E.; Ernst, H.; Freude, D.; Froehlich, T.; Hunger, M.; Pfeifer, H. )

    1991-01-01

    {sup 1}H, {sup 13}C, {sup 27}Al, and {sup 29}Si magic-angle-spinning (MAS) NMR was used to elucidate the nature of the catalytic activity of zeolite H-ZSM-5. {sup 1}H MAS NMR of sealed samples after mild hydrothermal dealumination shows that the enhanced activity for n-hexane cracking is not due to an enhanced Bronstead acidity. The concentrations of the various OH groups and aluminous species suggest that the reason for the enhanced catalytic activity is the interaction of the n-hexane molecule with a bridging hydroxyl group and with extra-framework aluminium species, which give rise to the enhanced activity, cannot be easily removed from their positions, and are therefore immobilized by the zeolitic framework.

  15. The effect of azeotropism on combustion characteristics of blended fuel pool fire.

    PubMed

    Ding, Yanming; Wang, Changjian; Lu, Shouxiang

    2014-04-30

    The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm × 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. PMID:24632362

  16. Diffusion of 1,2-dimethoxyethane and 1,2-dimethoxypropane through phosphatidycholine bilayers: a molecular dynamics study.

    PubMed

    Samanta, Susruta; Hezaveh, Samira; Milano, Giuseppe; Roccatano, Danilo

    2012-05-01

    In this paper, a theoretical study of 1,2-dimethoxyethane (DME) and 1,2-dimethoxypropane (DMP) at water/n-heptane and 1,2-dimyristoyl-sn-glycero-3-phospatidycholine (DMPC) lipid bilayer/water interfaces using the umbrella sampling method is reported. Recently proposed GROMOS96/OPLS compatible models for DME and DMP have been used for the simulation studies. The percolation free energy barrier of one DME and DMP molecule from water to n-heptane phase calculated using the umbrella sampling method turned out to be equal to ~18.5 kJ/mol and ~6 kJ/mol, respectively. In the case of the DMPC lipid bilayer, overall free energy barriers of ~20 kJ/mol and ∼12 kJ/mol were obtained for DME and DMP, respectively. The spontaneous diffusion of DME and DMP in the lipid bilayer has also been investigated using unconstrained molecular dynamics simulations at the water/DMPC interface and inside the lipid bilayer. As expected from the estimated percolation barriers, simulation results show that DME, contrary to DMP, spontaneously diffuse into the aqueous solution from the lipid interior. In addition, simulations with multiple DME or DMP molecules at the interface show spontaneous diffusion within 50 ns inside the DMPC layer only for DMP. PMID:22409229

  17. Contaminant breakthrough: A theoretical study of charcoal sampling tubes

    SciTech Connect

    Yoon, Y.H.; Nelson, J.H. )

    1990-06-01

    A previously developed theoretical model was applied to investigate contaminant breakthrough on charcoal sampling tubes. Associated with the model are two important theoretical parameters. These parameters are k' (a rate constant) and tau (the time required for 50% contaminant breakthrough). In this study, values of K' and tau were determined for n-heptane at five different concentration levels in air: 98, 117, 234, 330, and 988 ppm. These values were used along with pertinent theoretical considerations to calculate the entire (0-100%) breakthrough curve (plot of percent breakthrough versus time) regarding the adsorbance of n-heptane on charcoal sampling tubes. In addition, available experimental data for perchloroethylene, isobutyl acetate, ethyl acetate, and dichloromethane were used in conjunction with the theory to generate theoretical breakthrough curves over the entire range of 0 to 100%. In each case, calculated theoretical breakthrough curves are in remarkable agreement with corresponding experimental data. With the use of an additional theoretical parameter, a, the theory was extended to calculate the weight of contaminant collected on a single element (section) of a charcoal sampling tube at 10% breakthrough and at each of several different contaminant assault concentrations.

  18. Isolation of terpenoids from Pimpinella anisum essential oil by high-performance counter-current chromatography.

    PubMed

    Skalicka-Woźniak, Krystyna; Walasek, Magdalena; Ludwiczuk, Agnieszka; Głowniak, Kazimierz

    2013-08-01

    High-performance counter-current chromatography was successfully used for the isolation and purification of terpenoid compounds from the essential oil of Pimpinella anisum L. A two-phase solvent system composed of n-heptane/methanol/ethyl acetate/water (5:2:5:2, v/v/v/v) was suitable for the purification of linalool, terpinen-4-ol, α-terpineol, p-anisaldehyde, while n-heptane/methanol (1:1, v/v) was used for the isolation of anethole and foeniculin. A scale-up process from analytical to preparative was developed. Additionally, a stepwise gradient elution was applied and instead of two different runs, 40 min each, one 80 min separation was performed; although the time of separation remains the same, it was possible to repeat the efficiency even if the water-containing mobile phase was changed to a nonaqueous system. The obtained essential oil, as well as purified compounds, was analyzed by GC. A total of 0.64 mg of linalool, 0.52 mg of terpinen-4-ol, 0.10 mg of α-terpineol, 0.62 mg of p-anisaldehyde, 15 mg of anethole, and 2.12 mg of foeniculin were obtained from 210 mg of the essential oil of P. anisum L. in a short time with purities of 99, 98, 94, 93.54, 93, and 93.6%, respectively. PMID:23749680

  19. Influence of equivalence ratio on the mechanism of pressure wave generation during knocking combustion

    NASA Astrophysics Data System (ADS)

    Terashima, Hiroshi; Koshi, Mitsuo

    2015-11-01

    Knocking in spark-assisted engines is known as a severe pressure oscillation mainly caused by hot-spot autoignition in end-gas regions. In this study, knocking combustion of n-heptane/air mixtures modeled in a one-dimensional constant volume reactor is simulated with particular emphasis on the effects of equivalence ratio (0.6 to 2.0) on the mechanism of pressure wave generation. An efficient compressible flow solver with detailed chemical kinetics of n-heptane (373 species and 1071 reactions) is applied. The results demonstrate that the presence of negative temperature coefficient region significantly influence the knocking timing and knocking intensity, i.e., pressure wave amplitude in end-gas regions. The condition with equivalence ratios lower than 1.0 mostly leads to the reduction of the knocking intensity because of slower heat release rates of end-gas autoignition. On the other hand, the results with higher equivalence ratios of 1.2 to 2.0 indicate that a significant peak in the knocking intensity is produced at an equivalence ratio, which varies with initial temperature conditions. The final presentation will address the relationship between the knocking intensity and equivalence ratio with the discussion on detailed physics of pressure wave generation.

  20. [Identification of migrants from nitrile-butadiene rubber gloves].

    PubMed

    Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio

    2003-04-01

    Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves. PMID:12846157

  1. [Migrants from disposable gloves and residual acrylonitrile].

    PubMed

    Wakui, C; Kawamura, Y; Maitani, T

    2001-10-01

    Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves. PMID:11775358

  2. Microgravity Droplet Combustion in CO2 Enriched Environments at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Nayagam, V.; Williams, F. A.

    2007-01-01

    Microgravity droplet combustion experiments were performed in elevated concentrations of CO2 at pressures of 1.0 atm, 3.0 atm, and 5.0 atm to examine the effects of a radiatively participating suppression agent in space applications. Methanol and n-heptane droplets, with an initial diameter of 2.0 mm supported on a quartz fiber, were used in these experiments. The ambient O2 concentration was held constant at 21% and the CO2 concentrations ranged from 0% to a maximum of 70%, by volume with the balance consisting of N2 . Results from the methanol tests showed slight decreases in burning rates with increased CO2 concentrations at all ambient pressures. The n-heptane tests show slight increases in burning rates with increasing CO2 concentrations at each pressure level. Instantaneous radiative heat flux was also measured using both a broadband radiometer (i.e., wavelengths from 0.6 microns to 40.0 microns) and a narrowband radiometer (i.e., centered at 5.6 microns with a filter width at half maximum of 1.5 microns). Radiative exchanges between the droplet and surrounding gases as well as the soot field produce departures from the classical quasisteady theory which would predict a decrease in burning rates with increasing CO2 concentrations in microgravity.

  3. Perinaphthenone phototransformation in a model of leaf epicuticular waxes.

    PubMed

    Trivella, Aurélien S; Monadjemi, Shirin; Worrall, David R; Kirkpatrick, Iain; Arzoumanian, Emmanuel; Richard, Claire

    2014-01-01

    Perinaphthenone (1H-phenalen-1-one, PN) is a reference photosensitizer producing singlet oxygen with a quantum yield close to one in a large variety of solvents. It is also the basic structure of a class of phototoxic phytoalexins. In this work, the PN photoreactivity was studied for the first time in a paraffinic wax, used as model of leaf epicuticular waxes. The PN photodegradation was monitored by UV-Vis spectroscopy. The triplet excited state, singlet oxygen and the hydroxyperinaphthenyl radical were detected by diffuse reflectance laser flash photolysis, near infrared phosphorescence and by EPR spectroscopy, respectively. The PN phototransformation was found to be fivefold faster in the wax than in n-heptane under steady-state irradiation. The hydroxyperinaphthenyl radical formation was observed in aerated irradiated paraffin wax while in n-heptane solution the radical was observed only in the absence of oxygen. These results show that under continuous irradiation, PN is much more easily phototransformed in a solid environment than in solution. Several photoproducts were identified, in particular phenalanone, PN dimers, and oxidized PN-alkanes adducts. Finally, when pyrethrum extract is added into the wax along with PN, the hydroxyperinaphthenyl radical concentration was increased by a factor of 2.4. Such photochemical reactions may occur when systemic pesticides enter the plant cuticle. PMID:24300996

  4. Mechanisms of strong pressure wave generations during knocking combustion: compressible reactive flow simulations with detailed chemical kinetics

    NASA Astrophysics Data System (ADS)

    Terashima, Hiroshi; Koshi, Mitsuo

    2014-11-01

    Knocking is a very severe pressure oscillation caused by interactions between flame propagation and end-gas autoignition in spark-assisted engines. In this study, knocking combustion modeled in one-dimensional space is simulated using a highly efficient compressible flow solver with detailed chemical kinetics for clarifying the process of knocking occurrence. Especially, mechanisms of strong pressure wave generation are addressed. A robust and fast explicit integration method is used to efficiently handle stiff chemistry, and species bundling for effectively estimating the diffusion coefficients. The detailed mechanisms such as n-butane of 113 species and n-heptane of 373 species are directly applied. Results demonstrate that the negative temperature coefficient (NTC) region of n-heptane significantly influence the knocking timing and intensity. In the NTC region, stronger pressure wave is generated due to rapid heat release of a very small portion in the end-gas, which is attributed to low temperature oxidation and inhomogeneous temperature distributions in the end-gas. The knocking intensity is thus amplified in the NTC region, taking a maximum value. In the case of n-butane with no NTC region, relatively weak knocking intensity is observed in all conditions with no clear peak.

  5. Soot profiles in boundary-layer flames

    SciTech Connect

    Beier, R.A.; Pagni, P.J.

    1981-12-01

    Carbon particulate volume fractions and approximate particle size distributions are measured in a free laminar combusting boundary layer for liquid hydrocarbon fuels (n-heptane, iso-octane, cyclohexane, cyclohexene, toluene) and polymethylmethacrylate (PMMA). A multiwavelength laser transmission technique determines a most probable radius and the total particle concentration, which are two parameters in an assumed form for the size distribution. In the combusting boundary layer, a sooting region exists between the pyrolyzing fuel surface and the flame zone. The liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v approx. 10/sup -5/ for toluene, an aromatic. The PMMA volume fractions, f/sub v/ approx. 5 X 10/sup -7/, are approximately the same as the values previously reported for pool fires. The soot volume fractions increase with height; convection of carbon particles downstream widens the soot region with height. For all fuels tested, the most probable radius is between 20 nm and 50 nm, and it changes only slightly with height and distance from the fuel surface.

  6. Molecular Dynamics Simulations of Glycerol Monooleate Confined between Mica Surfaces.

    PubMed

    Bradley-Shaw, Joshua L; Camp, Philip J; Dowding, Peter J; Lewtas, Ken

    2016-08-01

    The structure and frictional properties of glycerol monooleate (GMO) in organic solvents, with and without water impurity, confined and sheared between two mica surfaces are examined using molecular dynamics simulations. The structure of the fluid is characterized in various ways, and the differences between systems with nonaggregated GMO and with preformed GMO reverse micelles are examined. Preformed reverse micelles are metastable under static conditions in all systems. In n-heptane under shear conditions, with or without water, preformed GMO reverse micelles remain intact and adsorb onto one surface or another, becoming surface micelles. In dry toluene, preformed reverse micelles break apart under shear, while in the presence of water, the reverse micelles survive and become surface micelles. In all systems under static and shear conditions, nonaggregated GMO adsorbs onto both surfaces with roughly equal probability. Added water is strongly associated with the GMO, irrespective of shear or the form of the added GMO. In all cases, with increasing shear rate, the GMO molecules flatten on the surface, and the kinetic friction coefficient increases. Under low-shear conditions, the friction is insensitive to the form of the GMO added, whereas the presence of water is found to lead to a small reduction in friction. Under high-shear conditions, the presence of reverse micelles leads to a significant reduction in friction, whereas the presence of water increases the friction in n-heptane and decreases the friction in toluene. PMID:27429247

  7. General characterization of noncommercial microbial lipases in hydrolytic and synthetic reactions.

    PubMed

    Otero, C; Berrendero, M A; Cardenas, F; Alvarez, E; Elson, S W

    2005-03-01

    Fourteen noncommercial preparations of microbial lipases were investigated with respect to their catalytic activity for hydrolysis and synthesis of ester bonds. Six of the lipases were derived from microorganisms that have not previously been described as lipase producers, and another four were characterized for the first time. The synthetic reactions were carried out in two solvents of different polarities (n-heptane and acetone) using a series of fatty acids and primary and secondary alcohols with different chain lengths. Under the culture conditions employed, Pseudomonas cepacia produced more active enzyme than the other microorganisms. The lipase preparations produced using Ovadendron sulphureo-ochraceum, Monascus mucoroides, Monascus sp., Fusarium oxysporum, Penicillium chrysogenum, Rhodotorula araucariae, Pseudomonas cepacia, Streptomyces halstedii, and Streptomyces sp.were the most efficient catalysts for hydrolysis at lipid-water interfaces. Enzyme preparations from P. cepacia, Streptomyces sp., S. halstedii, and R. araucariae were good biocatalysts for esterification in the polar medium (acetone). When the lipase preparations with the greatest activity for hydrolytic reactions were excluded, regression analysis of the data for the hydrolytic and synthetic activities of the remaining lipase preparations yielded high multiple correlation coefficients for these reactions in both n-heptane and acetone (R = 0.82 and 0.91, respectively). PMID:15767695

  8. Group type analysis of asphalt by column liquid chromatography

    SciTech Connect

    Zhang, C.; Yang, J.; Xue, Y.; Li, Y.

    2008-07-01

    An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The model compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.

  9. Droplet Burns in the Fiber-Supported Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A fuel droplet burns in the Fiber-Supported Droplet Combustion (FSDC) Experiment on STS-94, July 4 1997, MET:02/19:20 (approximate). This experiment, performed in the Middeck Glovebox, allows us to study the burning of fuels such as n-heptane, n-decane, methanol, ethanol, methanol/water mixtures, and heptane/hexadecane mixtures in droplets as large as 6 mm (nearly 1/4 inch). In this sequence, you see the burn of a 5mm droplet of n-heptane, in a 30% O2/He environment at 1 atmosphere pressure. The droplet (looking bright pink because of reflected light) hangs suspended from the supporting fiber. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (279KB JPEG, 1350 x 2026 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300175.html.

  10. Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation

    SciTech Connect

    Jerzembeck, S.; Peters, N.; Pepiot-Desjardins, P.; Pitsch, H.

    2009-02-15

    Spherical flames of n-heptane, iso-octane, PRF 87 and gasoline/air mixtures are experimentally investigated to determine laminar burning velocities and Markstein lengths under engine-relevant conditions by using the constant volume bomb method. Data are obtained for an initial temperature of 373 K, equivalence ratios varying from {phi}=0.7 to {phi}=1.2, and initial pressures from 10 to 25 bar. To track the flame front in the vessel a dark field He-Ne laser Schlieren measurement technique and digital image processing were used. The propagating speed with respect to the burned gases and the stretch rate are determined from the rate of change of the flame radius. The laminar burning velocities are obtained through a linear extrapolation to zero stretch. The experimentally determined Markstein numbers are compared to theoretical predictions. A reduced chemical kinetic mechanism for n-heptane and iso-octane was derived from the Lawrence Livermore comprehensive mechanisms. This mechanism was validated for ignition delay times and flame propagation at low and high pressures. In summary an overall good agreement with the various experimental data sets used in the validation was obtained. (author)

  11. Screening of crude oils for asphalt precipitation: Theory, practice, and the selection of inhibitors

    SciTech Connect

    Boer, R.B. de; Leerlooyer, K.; Bergen, A.R.D. van ); Eigner, M.R.P.

    1995-02-01

    This paper describes a simple method to screen crude oils for their tendency to precipitate asphalt, which may cause problems during production. The method is based on a thermodynamic model of asphalt solubility, derived earlier by Flory and Huggins. The most important parameters in this model are the Hildebrand solubility parameters for oil and asphaltene, and their molar volumes. The oil parameters can all be correlated with the in-situ density of the crude. It is shown that heavy crudes usually will give fewer problems with asphalt precipitation, despite their higher asphaltene content, certainly if the reservoir pressure is close to bubblepoint pressure. Consequently, the tendency for asphalt precipitation is mainly determined by three parameters: the extent to which the crude is undersaturated with gas, the density of the crude at reservoir conditions, and its saturation with asphalt at downhole conditions. Apart from the simple screening method, more elaborate methods are described to assess the potential for asphalt precipitation more accurately; asphaltene analysis on produced reservoir fluid and tank oil; n-heptane titration of the tank oil; visual inspection of a bottom-hole sample in a high-pressure cell during pressure reduction; and dynamic flow tests on tank oil after n-heptane addition.

  12. A reduced thermokinetic model for the autoignition of fuels with variable octane ratings

    SciTech Connect

    Schreiber, M.; Sakak, A.S.; Lingens, A.; Griffiths, J.F.

    1994-12-31

    The autoignition characteristics of the reference fuels i-octane, n-heptane, and their mixtures at temperatures 600--1,500 K and pressures ranging 0.3--4.2 MPa are studied by means of a reduced kinetic mechanism comprising five species in six reactions altogether. The scheme is readily adaptable to mixtures of the primary reference fuels via input of an octane number between 0 (= n-heptane) and 100 (= i-octane). Emphasis is placed on the dependence of ignition delay on gas temperature, on the evolution of reaction as portrayed in the temperature-time records, and on the multitude of dynamic features, e.g., two-stage (or multistage) ignition and negative temperature coefficient characteristics inherent to alkane combustion. The reduced model was fitted to numerical results derived from quantitative kinetic modelling and validated against currently available data from experimental systems. It was originally designed for application in a computational fluid dynamics code based on a transport equation for the joint probability density function (PDF) of the reacting species. Flame propagation and engine ``knock`` may thus be described by one consistent model.

  13. Fiber-Supported Droplet Combustion Experiment on STS-94

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A fuel droplet burns in the Fiber-Supported Droplet Combustion (FSDC) Experiment on STS-94, July 4 1997, MET:02/19:20 (approximate). This experiment, performed in the Middeck Glovebox, allows us to study the burning of fuels such as n-heptane, n-decane, methanol, ethanol, methanol/water mixtures, and heptane/hexadecane mixtures in droplets as large as 6 mm (nearly 1/4 inch). In this sequence, you see the burn of a 5mm droplet of n-heptane, in a 30% O2/He environment at 1 atmosphere pressure. The droplet (looking bright pink because of reflected light) hangs suspended from the supporting fiber. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and dual droplets with and without forced air convection. The FSDC guest investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station.(467KB, 18-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300174.html.

  14. Oxides of Nitrogen Emissions from the Combustion of Monodisperse Liquid Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sarv, H.

    1985-01-01

    A study of NO sub x formation in a one dimensional monodisperse spray combustion system, which allowed independent droplet size variation, was conducted. Temperature, NO and NO sub x concentrations were measured in the transition region, encompassing a 26 to 74 micron droplet size range. Emission measurements of hydrocarbons, carbon monoxide, carbon dioxide and oxygen were also made. The equivalence ratio was varied between 0.8 and 1.2 for the fuels used, including methanol, isopropanaol, n-heptane and n-octane. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives in order to simulate synthetic fuels. Results obtained from the postflame regions using the pure fuels indicate an optimum droplet size in the range of 43 to 58 microns for minimizing NO sub x production. For the fuels examined, the maximum NO sub x reductions relative to the small droplet size limit were about 10 to 20% for lean and 20 to 30% for stoichiometric and rich mixtures. This behavior is attributed to droplet interactions and the transition from diffusive to premixed type of burning. Preflame vaporization controls the gas phase stoichiometry which has a significant effect on the volume of the hot gases surrounding a fuel droplet, where NO sub x is formed.

  15. Kinetic modelling of the oxidation of large aliphatic hydrocarbons using an automatic mechanism generation.

    PubMed

    Muharam, Yuswan; Warnatz, Jürgen

    2007-08-21

    A mechanism generator code to automatically generate mechanisms for the oxidation of large hydrocarbons has been successfully modified and considerably expanded in this work. The modification was through (1) improvement of the existing rules such as cyclic-ether reactions and aldehyde reactions, (2) inclusion of some additional rules to the code, such as ketone reactions, hydroperoxy cyclic-ether formations and additional reactions of alkenes, (3) inclusion of small oxygenates, produced by the code but not included in the handwritten C(1)-C(4) sub-mechanism yet, to the handwritten C(1)-C(4) sub-mechanism. In order to evaluate mechanisms generated by the code, simulations of observed results in different experimental environments have been carried out. Experimentally derived and numerically predicted ignition delays of n-heptane-air and n-decane-air mixtures in high-pressure shock tubes in a wide range of temperatures, pressures and equivalence ratios agree very well. Concentration profiles of the main products and intermediates of n-heptane and n-decane oxidation in jet-stirred reactors at a wide range of temperatures and equivalence ratios are generally well reproduced. In addition, the ignition delay times of different normal alkanes was numerically studied. PMID:17687471

  16. Quantification of total content of non-esterified fatty acids bound to human serum albumin.

    PubMed

    Pavićević, Ivan D; Jovanović, Vesna B; Takić, Marija M; Aćimović, Jelena M; Penezić, Ana Z; Mandić, Ljuba M

    2016-09-10

    Non-esterified fatty acids bound to the human serum albumin (HSA) contribute to several HSAs properties of special concern in pathologies, for instance to the reactivity of the free HSA-Cys34 thiol group (important antioxidative thiol pool in plasma), and to the affinity for binding of molecules and ions (for example cobalt as a prominent biomarker in heart ischemia). Therefore, the method for determination of FAs bound to HSA was developed. FAs were released from HSA (previously isolated from serum by ammonium sulfate precipitation) using acidic copper(II) sulfate in phosphoric acid, extracted by n-heptane-chloroform (4:1, v/v) mixture, spotted on TL silica-gel and then developed with n-heptane-chloroform-acetic acid (5:3:0.3, v/v/v). Common office flatbed scanner and software solution for densitometric image analysis, developed in R, were used. The linearity of calibration curve in concentration range from 0.1 to 5.0mmol/L stearic acid was achieved. The method was proved to be precise (with RSD of 1.4-4.7%) and accurate. Accuracy was examined by standard addition method (recoveries 97.2-102.5%) and by comparison to results of GC. The method is sample saving, technically less demanding, and cheap, and therefore suitable for determination of FAs/HSA ratio when elevated concentrations of free FAs are reliable diagnostic/risk parameter of pathological states. PMID:27394177

  17. Acetylcholinesterase and insect growth inhibitory activities of Gutierrezia microcephala on fall armyworm Spodoptera frugiperda J.E. Smith.

    PubMed

    Calderón, J S; Céspedes, C L; Rosas, R; Gómez-Garibay, F; Salazar, J R; Lina, L; Aranda, E; Kubo, I

    2001-01-01

    From the aerial parts of Gutierrezia microcephala (Asteraceae), four oxyflavones were isolated, namely 5,7,2'-trihydroxy-3,6,8,4',5'-pentamethoxyflavone (1); 5,7,4'-trihydroxy-3,6,8-trimethoxyflavone (2); 5,7,2',4'-tetrahydroxy-3,6,8,5'-tetramethoxyflavone (3); 5,2'-dihydroxy-3,6,7,8,4',5'-hexamethoxyflavone (4), and an ent-clerodane, bacchabolivic acid (5). Compounds 1-5, the synthetic methyl ester (6), n-hexane and MeOH extracts were evaluated against the fall armyworm (Spodoptera frugiperda). Gedunin, a known insect growth regulator isolated from Cedrela spp. was used as a positive control. When tested for activity on neonate larvae into the no-choice artificial diet bioassay, flavone (1), clerodane (5), its methyl ester (6), MeOH and n-hexane extracts caused significant larval mortality with MC50 of 3.9, 10.7, 3.46, 7.95 and 7.5 ppm at 7 days, respectively, as well as growth reduction. They also increased the development time of surviving larvae and a significant delay in time to pupation and adult emergence. Acute toxicity against adults of S. frugiperda was also found, 5, 6, gedunin and n-hexane extract had the most potent activity with LD50 value of 6.59, 15.05, 10.78, and 12.79 ppm, respectively. In addition, MeOH, n-hexane extracts, 5, 6 and gedunin caused acetylcholinesterase inhibition with 93.7, 100, 90.2, 62.0 and 100% at 50.0 ppm, respectively; whereas 1-4 exhibited only moderate inhibitory activity. Compounds 1, 5 and 6 showed inhibitory activities comparable with gedunin. These compounds could be responsible of the insect growth inhibitory activity of this plant. PMID:11421454

  18. Isoprenylated xanthone and benzophenone constituents of the pericarp of Garcinia planchonii.

    PubMed

    Trinh, Duong Hoang; Ha, Ly Dieu; Tran, Phuong Thu; Nguyen, Lien-Hoa Dieu

    2014-12-01

    A new xanthone, planchoxanthone (1), together with six known compounds, garcinianone A (2), cowanin (3), rubraxanthone (4), f-mangostin (5), dulcisxanthone B (6), and guttiferone Q (7), were isolated from an n-hexane extract of the pericap of Garcinia planchonii. Their structures were elucidated using spectroscopic methods. Antioxidant activity of the isolated compounds was tested using the DPPH free radical scavenging assay. PMID:25632472

  19. Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Culture: Solvent Evaluation and Use of Extractants for Partitioning and Selectivity

    PubMed Central

    McPartland, Timothy J.; Patil, Rohan A.; Malone, Michael F.; Roberts, Susan C.

    2012-01-01

    A major challenge in the production of metabolites by plant cells is the separation and purification of a desired product from a number of impurities. An important application of plant cell culture is the biosynthesis of the anti-cancer agent paclitaxel. Liquid-liquid extraction plays a critical role in the recovery of paclitaxel and other valuable plant-derived products from culture broth. In this study, the extraction of paclitaxel and a major unwanted by-product, cephalomannine, from plant cell culture broth into organic solvents is quantified. Potential solvent mixtures show varying affinity and selectivity for paclitaxel over cephalomannine. The partition coefficient of paclitaxel is highest in ethyl acetate and dichloromethane, with measured values of 28 and 25, respectively; however selectivity coefficients are less than 1 for paclitaxel over cephalomannine for both solvents. Selectivity coefficient increases to 1.7 with extraction in n-hexane but the partition coefficient decreases to 1.9. Altering the pH of the aqueous phase results in an increase in both recovery and selectivity using n-hexane, but does not change the results for other solvents significantly. The addition of extractants trioctyl amine (TOA) or tributyl phosphate (TBP) to n-hexane gives significantly higher partition coefficients for paclitaxel (8.6 and 23.7, respectively), but no selectivity. Interestingly, when 20% hexafluorobenzene (HFB) is added to n-hexane, the partition coefficient remains approximately constant but the selectivity coefficient for paclitaxel over cephalomannine improves to 4.5. This significant increase in selectivity early in the purification process has the potential to simplify downstream processing steps and significantly reduce overall purification costs. PMID:22581674

  20. Integral physicochemical properties of reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)

    NASA Astrophysics Data System (ADS)

    Fedyaeva, O. A.; Shubenkova, E. G.; Poshelyuzhnaya, E. G.; Lutaeva, I. A.

    2016-08-01

    The effect the degree of hydration has on optical and electrophysical properties of water/AOT/ n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.

  1. Determination of antimicrobial activity and resistance to oxidation of moringa peregrina seed oil.

    PubMed

    Lalas, Stavros; Gortzi, Olga; Athanasiadis, Vasilios; Tsaknis, John; Chinou, Ioanna

    2012-01-01

    The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid) were used for comparison. The resistance to oxidation of the extracted seed oil was also determined. PMID:22367027

  2. A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter

    SciTech Connect

    Shu Tao; Fuliu Xu; Wenxin Liu; Yanhong Cui; Raymond M. Coveney, Jr.

    2006-04-01

    Severe contamination of agricultural soils by polycyclic aromatic hydrocarbons (PAHs) occurs in many places in China mainly as a result of coal and biomass combustion. Because ingestion is the main source of human exposure to PAHs and vegetables are basic ingredients for the Chinese diet, it is important to know how and to what extent PAHs are accumulated in vegetables produced in contaminated soils. This study, evaluated the extent to which organic matter contents in soils influence the accumulation of PAHs by the roots of wheat plants and have developed a rapid chemical method for determining the bioavailability of PAH. Four PAHs, naphthalene, acenaphthylene, fluorene, and phenanthrene, were added to natural soil samples with different amounts of organic matter for pot experiments to evaluate apparent bioavailability of PAHs to wheat roots (Triticum aestivum L.). The extractabilities of PAHs in the soil were tested by a sequential extraction scheme using accelerated solvent extraction with water, n-hexane, and a mixture of dichloromethane and acetone as solvents. The water or n-hexane-extractable PAHs were positively correlated to dissolved organic matter (DOM) and negatively correlated to total organic matter (TOM), indicating mobilization and immobilization effects of DOM and TOM on soil PAHs, respectively. The apparent accumulation of PAHs by wheat roots was also positively and negatively correlated to DOM and TOM, respectively. As a result, there are positive correlations between the amounts of PAHs extracted by water or n-hexane and the quantities accumulated in plant roots, suggesting the feasibility of using water- or n-hexanes-extractable fractions as indicators of PAH availability to plants. 19 refs., 8 figs., 1 tab.

  3. Pyrene-POSS nanohybrid as a dispersant for carbon nanotubes in solvents of various polarities: its synthesis and application in the preparation of a composite membrane

    PubMed Central

    2012-01-01

    In this study we report the preparation of nanohybrid dispersant molecules based on pyrene and polyhedral oligomeric silsesquioxanes for non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs). The prepared dispersant improves the dispersion of MWCNTs in organic solvents with very different polarities such as tetrahydrofuran, toluene, and n-hexane. The functionalized MWCNTs were used to introduce conductivity into polydimethylsiloxane membranes which can be used for electrostatic discharge applications. PMID:22676373

  4. Constitutional Dynamic Chemistry-based New Concept of Molecular Beacons for High Efficient Development of Fluorescent Probes.

    PubMed

    Chang, Xingmao; Yu, Chunmeng; Wang, Gang; Fan, Jiayun; Zhang, Jianyun; Qi, Yanyu; Liu, Kaiqiang; Fang, Yu

    2015-06-01

    Inspired by the concept of constitutional dynamic chemistry, we propose a new and well-adaptable strategy for developing molecular beacon (MB)-like fluorescent probes. To demonstrate the strategy, we synthesized and used an amino group containing pyrenyl derivative of cholesterol (CP) for the construction of new fluorescent probes with EDTA and sulfuric acid. The probes as created were successfully used for n-hexane purity checking and Ba(2+)and Pb(2+)sensing, respectively. PMID:25985384

  5. Attraction of the Parasitic Mite Varroa to the Drone Larvae of Honey Bees by Simple Aliphatic Esters

    NASA Astrophysics Data System (ADS)

    Le Conte, Yves; Arnold, Gerard; Trouiller, Jerome; Masson, Claudine; Chappe, Bertrand; Ourisson, Guy

    1989-08-01

    An important parasitic threat to honey bees, the mite Varroa jacobsoni, is attracted to its major prey, drone larvae, by methyl and ethyl esters of straight-chain fatty acids, in particular methyl palmitate. These esters were extracted from drone larvae with n-hexane and were identified by gas chromatography-mass spectrometry. Their behavioral effect was evaluated with the use of a four-arm airflow olfactometer.

  6. Phospholipase A1-catalyzed hydrolysis of soy phosphatidylcholine to prepare l-α-glycerylphosphorylcholine in organic-aqueous media.

    PubMed

    Bang, Hyo-Jeong; Kim, In-Hwan; Kim, Byung Hee

    2016-01-01

    This study aimed to optimize the preparation of L-α-glycerylphosphorylcholine (l-α-GPC) via phospholipase A1 (Lecitase Ultra)-catalyzed hydrolysis of soy phosphatidylcholine (PC). The reaction was performed in n-hexane-water biphasic media in a stirred batch reactor, and modeling and optimization were conducted using response surface methodology. Optimal conditions to completely hydrolyze PC to L-α-GPC were: temperature, 50 °C; reaction time, 30 h; water content, 69 g/100 g of PC weight; and enzyme loading, 13 g/100 g of PC weight. The optimal n-hexane-to-water ratio in the medium was 5.8:1 (v/v), and 21.3g of PC was treated as the substrate in 100 mL of the medium. L-α-GPC with purity 99.3 g/100 g was obtained from the reaction products after diethyl ether extraction and silica column chromatography. These findings suggest that the use of n-hexane-water media increases the productivity of l-α-GPC compared to the aqueous media used in enzymatic reaction systems in other published studies. PMID:26212962

  7. Toxicity of Boswellia dalzielii (Burseraceae) Leaf Fractions Against Immature Stages of Anopheles gambiae (Giles) and Culex quinquefasciatus (Say) (Diptera: Culicidae).

    PubMed

    Younoussa, Lame; Nukenine, Elias Nchiwan; Esimone, Charles Okechukwu

    2016-01-01

    Mosquitoes are vectors of several human pathogens, and great attention has recently been placed on insecticides from plant-derived products, in search for mosquito control agents. This study, thus, investigated the potency of Boswellia dalzielii methanol leaf extract and its four fractions as mosquito ovicide, larvicide, and pupicide against Anopheles gambiae and Culex quinquefasciatus. The plant products were tested at the following concentrations: 125, 250, 500, 1000, and 2000 ppm on eggs and 312.5, 625, 1250, and 2500 ppm on the larvae and pupae of the mosquitoes. For results, hatchability of A. gambiae eggs was reduced to 5% with n-hexane fraction at 2000 ppm. Among the plant products tested, n-hexane fraction was most toxic against A. gambiae (LC50 = 385.9 ppm) and C. quinquefasciatus (LC50 = 3394.9 ppm). The n-hexane fraction of B. dalzielii might be used as a mosquitocidal agent in the breeding sites of A. gambiae and C. quinquefasciatus. PMID:27279752

  8. In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora

    PubMed Central

    2012-01-01

    Background Artemisia parviflora leaf extracts were evaluated for potential antimicrobial and antioxidant properties. Antimicrobial susceptibility assay was performed against ten standard reference bacterial strains. Antioxidant activity was analyzed using the ferric thiocyanate and 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) assays. Radical scavenging activity and total phenolic content were compared. Phytochemical analyses were performed to identify the major bioactive constitution of the plant extract. Results Hexane, methanol and ethyl acetate extracts of A. parviflora leaves exhibited good activity against the microorganisms tested. The n-hexane extract of A. parviflora showed high inhibition of the growth of Pseudomonas aeruginosa, Escherichia coli and Shigella flexneri. Methanol extract showed strong radical scavenging and antioxidant activity, other extracts showed moderate antioxidant activity. The major derivatives present in the extracts are of terpenes, steroids, phenols, flavonoids, tannins and volatile oil. Conclusions The results obtained with n-hexane extract were particularly significant as it strongly inhibited the growth of P. aeruginosa, E. coli and S. flexneri. The major constituent of the n-hexane extract was identified as terpenes. Strong antioxidant activity could be observed with all the individual extracts. The antimicrobial and antioxidant property of the extracts were attributed to the secondary metabolites, terpenes and phenolic compounds present in A. parviflora and could be of considerable interest in the development of new drugs. PMID:23171441

  9. Antioxidant potential and radical scavenging effects of various extracts from Abutilon indicum and Abutilon muticum.

    PubMed

    Yasmin, Sammia; Kashmiri, Muhammad Akram; Asghar, Muhammad Nadeem; Ahmad, Mushtaq; Mohy-ud-Din, Ayesha

    2010-03-01

    Abutilon indicum L. (Malvaceae) and Abutilon muticum DC. (Malvaceae) are traditional medicinal herbs used for analgesic, anthelmintic, hepatoprotective, and hypoglycemic properties. These effects may be correlated with the presence of antioxidant compounds. Extracts in organic solvents from the aerial parts and roots of both species were prepared and evaluated for their total antioxidant capacity (TAC), total phenolic content, and total flavonoid content. The Trolox equivalent antioxidant capacity (TEAC) of all the extracts of both plants was found, employing ABTS and FRAP assays. TEAC values ranged from 3.019 to 10.5 muM for n-hexane and butanol fractions of Abutilon indicum and from 2.247 to 14.208 muM for n-hexane and butanol fractions of Abutilon muticum, respectively, using the ABTS assay. The FRAP assay showed reducing powers of the fractions in the order of butanol > ethyl acetate > chloroform > n-hexane and butanol > chloroform > hexane > ethyl acetate for Abutilon indicum and Abutilon muticum, respectively. EC(50) and T(EC50) values for the extracts of both plants were determined using the DPPH free radical assay. The reaction kinetics with this free radical indicated the presence of both slow reacting and fast reacting antioxidant components in the extracts of both plants. The antioxidant/radical scavenging capacity of the extracts was found to be a dose-dependent activity. The results obtained in the present study indicate that both Abutilon species are potential sources of natural antioxidants. PMID:20645814

  10. Phytochemical and pharmacological investigations of Virola oleifera leaves.

    PubMed

    Kuroshima, K N; de Campos, F; de Souza, M M; Yunes, R A; Delle Monache, F; Cechinel Filho, V

    2001-01-01

    A methanolic extract and two fractions (n-hexane and ethyl acetate) from Virola oleifera leaves and some compounds (one lignan and two flavonoids) were investigated to verify the analgesic activity by using the writhing test in mice. The crude methanolic extract showed a moderate analgesic effect (about 40% of inhibition in this test at 10 mg/kg), whereas n-hexane and ethyl acetate fractions caused inhibition of 51.3 +/- 5.9% and 50.5 +/- 6.3%, respectively. Oleiferin-C (1), a lignan isolated from the n-hexane fraction, showed an interesting analgesic potential in this model when compared to two standard drugs, paracetamol (4-acetamidophenol) and aspirin (acetylsalicylic acid). The ID50 calculated for this compound was 17.25 micromol/kg, with confidence interval between 13.7 and 21.3 micromol/kg, being about 8 times more potent than the standard drugs. The mixture of two glycoside-flavonoids, identified as astilbin (2) and quercitrin (3), also exhibited good analgesic activity, causing 63% of reduction of abdominal constriction in mice. These results suggest beneficial effect of this plant to treat dolorous processes. PMID:11724372

  11. Comparative study of antioxidant properties and total phenolic content of the extracts of Humulus lupulus L. and quantification of bioactive components by LC-MS/MS and GC-MS.

    PubMed

    Önder, Ferah Cömert; Ay, Mehmet; Sarker, Satyajit D

    2013-11-01

    In this research, antioxidant activities of various extracts obtained from Humulus lupulus L. were compared by DPPH, ABTS, FRAP, and CUPRAC assays. The amount of total phenolic components determined by the Folin-Ciocalteu reagent was found to be highest for 25% aqueous ethanol (9079 ± 187.83 mg Ferulic acid equivalent/100 g extract) and methanol-1 (directly) (8343 ± 158.39 mg Ferulic acid equivalent/100 g extract) extracts. The n-hexane extract of H. lupulus exhibited the greatest with DPPH (14.95 ± 0.03 μg Trolox equivalent/g sample). The highest phenolic content in the ethanolic extract could be the major contributor to its highest CUPRAC activity (3.15 ± 0.44 mmol Trolox equivalent/g sample). Methanol-2 (n-hexane, acetone, and methanol) and methanol-3 (n-hexane, dichloromethane, ethylacetate, and methanol) extracts, respectively, exhibited the most potent ABTS (7.35 ± 0.03 mM Trolox equivalent) and FRAP (1.56 ± 0.35 mmol Fe(2+)/g sample) activities. Some of the components from the crude extracts were determined by LC-MS/MS and GC-MS analyses. Comparative screening of antioxidant activities of H. lupulus extracts and quantification of some major components by LC-MS/MS, qualitatively analysis of the reported ones which were optimal under negative ion SIM mode and coinjection, are going to be valuable for food and health applications. PMID:24079371

  12. Functionalized hollow siliceous spheres for VOCs removal with high efficiency and stability.

    PubMed

    Wang, Hongning; Tang, Mei; Zhang, Ke; Cai, Daofei; Huang, Weiqiu; Chen, Ruoyu; Yu, Chengzhong

    2014-03-15

    Functionalized hollow siliceous spheres (HSSs) have been prepared by surface modification with trimethylchlorosilane (TMCS) for the removal of volatile organic compounds (VOCs). The resultant HSSs-TMCS possesses a uniform and well-dispersed hollow spherical structure, high surface area, large total pore volume, high VOCs adsorption capacity, and small water vapor adsorption capacity. The adsorption and desorption performance of HSSs-TMCS under static (n-hexane and 93# gasoline) and dynamic (n-hexane) conditions was investigated. Compared with commercial silica gel (SG) and activated carbon (AC), HSSs-TMCS show higher capacity of adsorbing n-hexane and 93# gasoline with good stability and low water vapor adsorption capacity under static adsorption conditions, higher dynamic adsorption capacity and stable breakthrough time under dynamic adsorption conditions. The high efficiency and stability of functionalized HSSs are associated with their unique hollow morphology and structure parameters. The designed HSSs-TMCS with high VOCs removal capacity and recyclability are promising candidates for the treatment of air pollution. PMID:24486614

  13. Analysis of benzo[a]pyrene in vegetable oils using molecularly imprinted solid phase extraction (MISPE) coupled with enzyme-linked immunosorbent assay (ELISA).

    PubMed

    Pschenitza, Michael; Hackenberg, Rudolf; Niessner, Reinhard; Knopp, Dietmar

    2014-01-01

    This paper describes the development of a molecularly imprinted polymer-based solid phase extraction (MISPE) method coupled with enzyme-linked immunosorbent assay (ELISA) for determination of the PAH benzo[a]pyrene (B[a]P) in vegetable oils. Different molecularly imprinted polymers (MIPs) were prepared using non-covalent 4-vinylpyridine/divinylbenzene co-polymerization at different ratios and dichloromethane as porogen. Imprinting was done with a template mixture of phenanthrene and pyrene yielding a broad-specific polymer for PAHs with a maximum binding capacity (Q) of ~32 μg B[a]P per 50 mg of polymer. The vegetable oil/n-hexane mixture (1:1, (v/v)) was pre-extracted with acetonitrile, the solvent evaporated, the residue reconstituted in n-hexane and subjected to MISPE. The successive washing with n-hexane and isopropanol revealed most suitable to remove lipid matrix constituents. After elution of bound PAHs from MISPE column with dichloromethane, the solvent was evaporated, the residue reconstituted with dimethyl sulfoxide and diluted 100-fold with methanol/water (10:90, (v/v)) for analysis of B[a]P equivalents with an ELISA. The B[a]P recovery rates in spiked vegetable oil samples of different fatty acid composition were determined between 63% and 114%. The presence of multiple PAHs in the oil sample, because of MIP selectivity and cross-reactivity of the ELISA, could yield overestimated B[a]P values. PMID:24887045

  14. Determination of chlorinated pesticide residues in foods. II. Simultaneous analysis of chlorinated pesticide and phthalate ester residues by using AgNO3-coated Florisil column chromatography for cleanup of various samples.

    PubMed

    Suzuki, T; Ishikawa, K; Sato, N; Sakai, K I

    1979-05-01

    A simplified method suitable for simultaneous analysis of chlorinated pesticide and phthalate ester residues in various foods was developed. Chemical residues were quantitatively extracted from fatty and vegetable samples with acetonitrile as follows: Chemical standard in 0.5 mL ethanol solution was added to 10 g homogenized sample. After 3 hr, pork and beef were extracted 3 times with 20 mL portions of acetonitrile. The acetonitrile layers were diluted with water and extracted with n-hexane. Rice samples were combined with 10 mL water, 5 mL acetonitrile and 1 mL ethanol and extracted 3 times with 20 mL portions of n-hexane. The n-hexane concentrate from each sample was submitted to AgNO3-coated Florisil column chromatography. The AgNO3 coating adequately adsorbed interfering coextractives. Extracts of fish and vegetable samples were separated into 2 fractions by the above column chromatography. Supplemental cleanup procedures were also developed to accurately determine phthalate esters eluted in the second fraction. Satisfactory gas chromatograms were obtained for most samples. PMID:479097

  15. Antimicrobial Activity and Brine Shrimp Lethality Bioassay of the Leaves Extract of Dillenia indica Linn

    PubMed Central

    Apu, AS; Muhit, MA; Tareq, SM; Pathan, AH; Jamaluddin, ATM; Ahmed, M

    2010-01-01

    The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 µg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC50 of 0.52 µg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC50 of 1.94 µg/ml and 2.13 µg/ml, respectively). The LC50 values of the carbon tetrachloride and aqueous fraction were 4.46 µg/ml and 5.13 µg/ ml, respectively. The study confirms the moderate antimicrobial and potent cytotoxic activities of Dillenia indica leaves extract and therefore demands the isolation of active principles and thorough bioassay. PMID:21331191

  16. Asparagopsis armata and Sphaerococcus coronopifolius as a natural source of antimicrobial compounds.

    PubMed

    Pinteus, Susete; Alves, Celso; Monteiro, Hugo; Araújo, Ernesto; Horta, André; Pedrosa, Rui

    2015-03-01

    Methanol, n-hexane and dichloromethane extracts of twelve marine macro-algae (Rhodophyta, Chlorophyta and Heterokontophyta divisions) from Peniche coast (Portugal) were evaluated for their antibacterial and antifungal activity. The antibacterial activity was evaluated by disc diffusion method against Bacillus subtilis (gram positive bacteria) and Escherichia coli (gram negative bacteria). Saccharomyces cerevisiae was used as a model for the antifungal activity by evaluating the growth inhibitory activity of the extracts. The high antibacterial activity was obtained by the Asparagopsis armata methanolic extract (10 mm-0.1 mg/disc), followed by the Sphaerococcus coronopifolius n-hexane extract (8 mm-0.1 mg/disc), and the Asparagopsis armata dichloromethane extract (12 mm-0.3 mg/disc) against Bacillus subtilis. There were no positive results against Escherichia coli. Sphaerococcus coronopifolius revealed high antifungal potential for n-hexane (IC50 = 40.2 µg/ml), dichloromethane (IC50 = 78.9 µg/ml) and methanolic (IC50 = 55.18 µg/ml) extracts against Saccharomyces cerevisiae growth. The antifungal potency of the Sphaerococcus coronopifolius extracts was similar with the standard amphotericin B. Asparagopsis armata and Sphaerococcus coronopifolius reveal to be interesting sources of natural compounds with antimicrobial properties. PMID:25588525

  17. Evaluation of the antioxidant and antimicrobial properties of in vitro cultured Drosera intermedia extracts.

    PubMed

    Grevenstuk, Tomás; Gonçalves, Sandra; Almeida, Sara; Coelho, Natacha; Quintas, Célia; Gaspar, Maria Nelma; Romano, Anabela

    2009-08-01

    Evaluation of the antioxidant activity of the methanol, water and n-hexane extracts of Drosera intermedia, determined by the Folin-Ciocalteau (F-C), trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC) assays showed that the methanol extract had the highest antioxidant activity (F-C: 378.6 +/- 31.5 micromol(GAE)/mg(extract); TEAC: 332.2 +/- 29.1 micromol(TE)/mg(extract); ORAC: 64.7 +/- 7.8 micromol(TE)/mg(extract). Antimicrobial activity was tested against seven bacterial and eight yeast strains using the agar diffusion assay, followed by the determination of minimum inhibitory concentrations (MIC). All tested D. intermedia extracts demonstrated strong antimicrobial properties with a broad spectrum of activity. However, the n-hexane extract exhibited much greater activity than water and methanol extracts. The most susceptible microorganisms to the n-hexane extract were Staphylococcus epidermidis ATCC 12228 and Candida albicans YP0175, for which a MIC value of 13.0 microg/mL was scored. PMID:19768984

  18. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  19. Acute toxicity study and antipyretic effect of the brown alga Turbinaria conoides (J. Agardh) Kuetz.

    PubMed

    Kumar, S Sadish; Kumar, Y; Khan, M S Y; Anbu, J; Sam, K G

    2009-01-01

    The active principles of brown alga, Turbinaria conoides (J.Agardh) Kuetz. (Sargassaceae) was extracted with n-hexane, cyclohexane, methanol and ethanol-water (1:1) and investigated for acute toxicity and antipyretic activity. Phytochemical analysis of the extracts revealed the presence of steroids, flavonoids and reducing sugars. Acute toxicity study was performed in Wistar rats after administration of extracts orally. No mortality was observed up to the dose of 5 g/kg for methanol and ethanol-water (1:1) extracts whereas n-hexane and cyclohexane extracts were found to be toxic at the dose levels of 1 g/kg and 2 g/kg respectively. In biochemical analysis, n-hexane, cyclohexane and ethanol-water (1:1) extracts caused a significant (P<0.01) increase in serum cholesterol, protein and alkaline phosphatase levels. In haematological studies, a significant difference was observed for cyclohexane and ethanol-water (1:1) extracts in polymorphs, lymphocytes and eosinophils when compared to the control. Antipyretic activity of extracts (100-400 mg/kg doses) was carried out on yeast-induced pyrexia in rats. Cyclohexane extract exhibited more significant antipyretic activity (P<0.01) than the other extracts at a dose of 200 mg/kg (54.43%), which was comparable to that of paracetamol at a dose of 33 mg/kg. The findings validated the use of this brown alga in traditional cure of children's fever. PMID:20448848

  20. Ultrasound-assisted extraction and solid-phase extraction as a cleanup procedure for organochlorinated pesticides and polychlorinated biphenyls determination in aquatic samples by gas chromatography with electron capture detection.

    PubMed

    Sun, Xiumei; Hu, Hongmei; Zhong, Zhi; Jin, Yanjian; Zhang, Xiaojun; Guo, Yuanming

    2015-02-01

    The feasibility of developing a quick, easy, efficient procedure for the simultaneous determination of organochlorinated pesticides and polychlorinated biphenyls in aquatic samples using gas chromatography with electron capture detection based on solid-phase extraction was investigated. The extraction solvent (n-hexane/acetone, cyclohexane/ethyl acetate, n-hexane/dichloromethane, n-hexane) for ultrasound-assisted solid-liquid extraction and solid-phase extraction columns (florisil, neutral alumina, acidic alumina, aminopropyl trimethoxy silane, propyl ethylenediamine, aminopropyl trimethoxy silane/propyl ethylenediamine, graphitized carbon black and silica) for cleanup procedure were optimized. The gas chromatography with electron capture detection method was validated in terms of linearity, sensitivity, reproducibility, and recovery. Mean recoveries ranged from 75 to 115% with relative standard deviations <13%. Quantification limits were 0.20-0.40 ng/g for organochlorinated pesticides and polychlorinated biphenyls. The satisfactory data demonstrated the good reproducibility of the method with relative standard deviations lower than 13%. In comparison to other related methods, this method requires less time and solvent and allows for rapid isolation of the target analytes with high selectivity. This method therefore allows for the screening of numerous samples and can also be used for routine analyses. PMID:25529797

  1. Toxicity of Boswellia dalzielii (Burseraceae) Leaf Fractions Against Immature Stages of Anopheles gambiae (Giles) and Culex quinquefasciatus (Say) (Diptera: Culicidae)

    PubMed Central

    Younoussa, Lame; Nukenine, Elias Nchiwan; Esimone, Charles Okechukwu

    2016-01-01

    Mosquitoes are vectors of several human pathogens, and great attention has recently been placed on insecticides from plant-derived products, in search for mosquito control agents. This study, thus, investigated the potency of Boswellia dalzielii methanol leaf extract and its four fractions as mosquito ovicide, larvicide, and pupicide against Anopheles gambiae and Culex quinquefasciatus. The plant products were tested at the following concentrations: 125, 250, 500, 1000, and 2000 ppm on eggs and 312.5, 625, 1250, and 2500 ppm on the larvae and pupae of the mosquitoes. For results, hatchability of A. gambiae eggs was reduced to 5% with n-hexane fraction at 2000 ppm. Among the plant products tested, n-hexane fraction was most toxic against A. gambiae (LC50 = 385.9 ppm) and C. quinquefasciatus (LC50 = 3394.9 ppm). The n-hexane fraction of B. dalzielii might be used as a mosquitocidal agent in the breeding sites of A. gambiae and C. quinquefasciatus. PMID:27279752

  2. Large-scale solvent-swelling-based amplification of microstructured sharkskin

    NASA Astrophysics Data System (ADS)

    Pan, Junfeng; Chen, Huawei; Zhang, Deyuan; Zhang, Xin; Yuan, Liming; Aobo, Li

    2013-07-01

    Sophisticated biomimetic microstructures/nanostructures have attracted attention worldwide, but their fabrication technique significantly restricts their application. This study uses natural sharkskin to investigate amplification (i.e., the bioscaling forming process) and thus acquire a complex microstructure that cannot be fabricated by traditional micromachining techniques. The bioscaling forming process adjusts the optimal function region of natural surfaces by utilizing the solvent-swelling effect of polydimethylsiloxane. To accurately replicate amplified sharkskin, the swelling ratio and rate in gaseous and liquid n-hexane were investigated. Epoxy resin was used to produce a positive sharkskin mold. A comparison between the microstructure of the original and amplified sharkskin shows that the swelling ratio can reach a maximum of 34% with gaseous n-hexane and 39% with liquid n-hexane. The accuracy of bioscaling forming was higher than 95%. The drag-reducing effect was also tested. When the sharkskin was amplified 1.34 times, the optimal velocity range of the drag reduction moved from 5.0 to 3.5 m s-1.

  3. Para rubber seed oil: new promising unconventional oil for cosmetics.

    PubMed

    Lourith, Nattaya; Kanlayavattanakul, Mayuree; Sucontphunt, Apirada; Ondee, Thunnicha

    2014-01-01

    Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly. PMID:24976614

  4. Influence of particle size and support on the catalytic properties of rhodium for hydrogenolysis of hexanes and methylcyclopentane

    SciTech Connect

    Del Angel, G.; Coq, B.; Dutartre, R.; Figueras, F.

    1984-05-01

    The catalytic properties of rhodium for the hydrogenolysis of C/sub 6/ hydrocarbons have been investigated. Rhodium preferentially cleaves bisecondary and primary-secondary carbon-carbon bonds. Primary-tertiary C-C bonds react much more slowly. Methylcyclopentane (MCP) is converted to methyl-2-pentane, methyl-3-pentane, and n-hexane at temperatures lower than 503 K. The selectivity to n-hexane is low (10%) but measurable on well-dispersed Rh/Al/sub 2/O/sub 3/ catalysts and decreases when the dispersion decreases. Rh/SiO/sub 2/ catalysts have a low selectivity for the formation of n-hexane whatever the dispersion. The specific activity for MCP conversion changes as a function of the dispersion of rhodium and of the support: small rhodium particles are more active than large particles when the support is silica, but the reverse is true on alumina. These changes of activity are consistent with the results reported for C/sub 2/H/sub 6/ hydrogenolysis on Rh/SiO/sub 2/ and for C/sub 5/H/sub 10/ conversion on Rh/Al/sub 2/O/sub 3/. The variations of the catalytic properties for hydrogenolysis may be interpreted as due to the modification of the structure of the small rhodium particles observed on silica.

  5. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea.

    PubMed

    Resch, M; Steigel, A; Chen, Z L; Bauer, R

    1998-03-01

    Lipophilic extracts of Atractylodes lancea rhizomes exhibited potent inhibitory activities in 5-lipoxygenase [IC50 (5-LOX) = 2.9 micrograms/mL (n-hexane extract)] and cyclooxygenase-1 [IC50 (COX-1) = 30.5 micrograms/mL (n-hexane extract)] enzymatic assays. Bioactivity-guided fractionation of the n-hexane extract led to the isolation of a new compound atractylochromene (1), a potent inhibitor in both test systems [IC50 (5-LOX) = 0.6 microM, IC50 (COX-1) = 3.3 microM]. Also obtained was 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2,5-cyclohexadiene-1 ,4-dione (2), which showed a selective inhibitory activity against 5-LOX [IC50 (5-LOX) 0.2 microM, IC50 (COX-1) 64.3 microM]. The sesquiterpene atractylon (3) and the coumarin osthol (4) turned out to be moderate but selective 5-lipoxygenase inhibitors. Atractylenolides I (5), II (6), and III (7) showed no significant inhibitory effects for either enzyme. Structures were established by spectral data interpretation. PMID:9544564

  6. Unusual dewetting of thin polymer films in liquid media containing a poor solvent and a nonsolvent.

    PubMed

    Xu, Lin; Sharma, Ashutosh; Joo, Sang Woo; Liu, Hui; Shi, Tongfei

    2014-12-16

    We investigate the control of pattern size and kinetics in spontaneous dewetting of thin polymer films (polystyrene) that are stable to thermal annealing by annealing in a poor solvent (acetone)/nonsolvent (ethanol or n-hexane) liquid mixture. Dewetting occurs by the formation and growth of circular holes that coalesce to form droplets. The influence of the nature and the volume fraction of the nonsolvents on the contact angle of polymer droplets, number density of holes, and the kinetics of holes formation and growth is studied. Addition of ethanol greatly increases the hole density and slows down the kinetics substantially, while affecting only a small change in wettability. n-Hexane addition shows an interesting nonmonotonic response in decreasing the hole density and contact angle in the volume fraction range of 0-0.3 but an opposite effect beyond that. Although the two nonsolvents chosen cannot by themselves induce dewetting, their relative affinity for the solid substrate vis-à-vis acetone can strongly influence the observed dewetting scenarios that are not understood by the existing theoretical considerations. n-Hexane, for example, has great affinity for silicon substrate. In addition to the changes in wettability, viscosity, and film interfacial tension engendered by the nonsolvents, the possibility of the formation of adsorbed liquid layers at the substrate-polymer interface, which can modify the interfacial friction and slippage, needs to be considered. PMID:25402851

  7. Studies on the potential antioxidant properties of Senecio stabianus Lacaita (Asteraceae) and its inhibitory activity against carbohydrate-hydrolysing enzymes.

    PubMed

    Tundis, Rosa; Menichini, Federica; Loizzo, Monica R; Bonesi, Marco; Solimene, Umberto; Menichini, Francesco

    2012-01-01

    This study showed for the first time the antioxidant and hypoglycaemic properties of the methanol, n-hexane and ethyl acetate extracts from Senecio stabianus Lacaita, a plant that belongs to the Asteraceae family. The antioxidant activities were carried out using two different in vitro assays, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) test and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonate) (ABTS) test. The ethyl acetate extract showed the highest activity with inhibitory concentration 50% (IC(50)) values of 35.5 and 32.7 µg mL(-1) on DPPH test and ABTS test, respectively. This activity may be related to a good total phenol and flavonoid content. All extracts were also tested for their potential inhibitory activity of α-amylase and α-glucosidase digestive enzymes. The n-hexane extract exhibited the highest α-amylase inhibition with an IC(50) value of 0.21 mg mL(-1). Through bioassay-guided fractionation processes seven fractions (A-G) were obtained and tested. Based on the phytochemical analysis, the activity of n-hexane extract may be related to the presence of monoterpenes and sesquiterpenes. PMID:21644170

  8. In vitro antiprotozoal activity of extracts of five Turkish Lamiaceae species.

    PubMed

    Kirmizibekmez, Hasan; Atay, Irem; Kaiser, Marcel; Yesilada, Erdem; Tasdemir, Deniz

    2011-11-01

    The in vitro antiprotozoal activities of crude methanolic extracts from the aerial parts of five Lamiaceae plants (Salvia tomentosa, S. sclarea, S. dichroantha, Nepeta nuda subsp. nuda and Marrubium astracanicum subsp. macrodon) were evaluated against four parasitic protozoa, i.e. Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani and Plasmodium falciparum. The cytotoxic potentials of the extracts on L6 cells were also evaluated. Melarsoprol, benznidazole, miltefosine, chloroquine and podophyllotoxin were used as reference drugs. All crude MeOH extracts showed antiprotozoal potential against at least three parasites, so they were dispersed in water and partitioned against n-hexane and chloroform to yield three subextracts that were screened in the same test systems. The n-hexane extract of N. nuda was the most active against T. brucei rhodesiense while the CHCl3 extracts of S. tomentosa and S. dichroantha showed significant activity against L. donovani. All organic extracts displayed in vitro antimalarial and moderate trypanocidal activities against T. cruzi with the n-hexane extract of S. sclarea being the most active against the latter. The extracts displayed low or no cytotoxicity towards mammalian L6 cells. PMID:22224291

  9. Adsorption of polychlorinated dibenzo-p-dioxins/dibenzofurans on activated carbon from hexane.

    PubMed

    Zhou, Xu-Jian; Buekens, Alfons; Li, Xiao-Dong; Ni, Ming-Jiang; Cen, Ke-Fa

    2016-02-01

    Activated carbon is widely used to abate dioxins and dioxin-like compounds from flue gas. Comparing commercial samples regarding their potential to adsorb dioxins may proceed by using test columns, yet it takes many measurements to characterise the retention and breakthrough of dioxins. In this study, commercial activated carbon samples are evaluated during tests to remove trace amounts of dioxins dissolved in n-hexane. The solution was prepared from fly ash collected from a municipal solid waste incinerator. The key variables selected were the concentration of dioxins in n-hexane and the dosage of activated carbon. Both polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) showed very high removal efficiencies (94.7%-98.0% for PCDDs and 99.7%-99.8% for PCDFs). The presence of a large excess of n-hexane solvent had little effect on the removal efficiency of PCDD/Fs. The adsorbed PCDD/Fs showed a linear correlation (R(2) > 0.98) with the initial concentrations. Comparative analysis of adsorption isotherms showed that a linear Henry isotherm fitted better the experimental data (R(2) = 0.99 both for PCDDs and PCDFs) than the more usual Freundlich isotherm (R(2) = 0.88 for PCDDs and 0.77 for PCDFs). Finally, the results of fingerprint analysis indicated that dioxin fingerprint (weight proportion of different congeners) on activated carbon after adsorption did not change from that in hexane. PMID:26476048

  10. Antiinflammatory effect of mace, aril of Myristica fragrans Houtt., and its active principles.

    PubMed

    Ozaki, Y; Soedigdo, S; Wattimena, Y R; Suganda, A G

    1989-02-01

    Mace which is the aril of the fruit of Myristica fragrans HOUTT, has been used in Indonesian folk medicine as aromatic stomachics, analgesics, a medicine for rheumatism, etc. The present study was carried out to elucidate the antiinflammatory effect of methanol extract obtained from Mace and its active principles. The methanol extract was extracted with ether, and then the ether soluble fraction was extracted with n-hexane. The n-hexane soluble fraction was fractionated by silica gel column chromatography (Fr-l-Fr-V), and the active principle was isolated from Fr-II by thin layer chromatography (Fr-VI-Fr-VII). The antiinflammatory activity of these fractions was investigated on carrageenin-induced edema in rats and acetic acid-induced vascular permeability in mice. All fractions and indomethacin were suspended in 2% C.M.C. solution and administered p.o. The methanol extract (1.5 g/kg), ether fraction (0.9 g/kg), n-hexane fraction (0.5 g/kg), Fr-II (0.19 g/kg) and Fr-VI (0.17 g/kg) showed a lasting antiinflammatory activity, and the potencies of these fractions were approximately the same as that of indomethacin (10 mg/kg). Fr-VI was determined to be myristicin. These results suggest that the antiinflammatory action of Mace is due to the myristicin that it contains. PMID:2487032

  11. Cytotoxic evaluation of different fractions of Salvia chorassanica Bunge on MCF-7 and DU 145 cell lines

    PubMed Central

    Golshan, Alireza; Amini, Elaheh; Emami, Seyed Ahmad; Asili, Javad; Jalali, Zahra; Sabouri-Rad, Sarvenaz; Sanjar-Mousavi, Naghmeh; Tayarani-Najaran, Zahra

    2016-01-01

    Because of antimicrobial, antioxidant, and anticancer potential, Salvia chorassanica Bunge (Lamiaceae) has been considered as a popular herb in Iranian traditional medicine. Previous studies have shown remarkable cytotoxic properties of the methanol, n-hexane and dichloromethane extract of S. chorassanica on human cervical cancer cells. To seek the therapeutic potentials of S. chorassanica, this study was undertaken to evaluate the cytotoxic activities of various extracts of this plant on human breast MCF-7 and prostate cancer DU 145 cells. The DU 145 cells were exposed to different concentrations of plant extracts (1-200 μg/ml). Cytotoxic activities were examined using alamarBlue® assay and apoptosis was assessed by acridine orange/propodium iodide double staining and evaluation of DNA fragmentation by flow cytometry. Our findings indicated that n-hexane and dichloromethane extracts had more cytotoxic activities against DU 145 and MCF-7 cell lines compared with other extracts (P<0.05). The acridine orange/propodium iodide staining showed apoptogenic properties of n-hexane and dichloromethane extracts which was consequently confirmed by flow cytometric histogram that exhibited an increase in sub-G1 peak in treated cells as compared with untreated cancer cell lines. Taken together, these observations demonstrated cytotoxic effects of S. chorassanica extracts on MCF-7 and DU 145 cell lines which is most likely exerted via apoptosis cell death. Therefore, further investigations on S. chorassanica extracts as potential chemotherapeutic agents are warranted. PMID:27051435

  12. Antimicrobial Activity and Brine Shrimp Lethality Bioassay of the Leaves Extract of Dillenia indica Linn.

    PubMed

    Apu, As; Muhit, Ma; Tareq, Sm; Pathan, Ah; Jamaluddin, Atm; Ahmed, M

    2010-01-01

    The crude methanolic extract of Dillenia indica Linn. (Dilleniaceae) leaves has been investigated for the evaluation of antimicrobial and cytotoxic activities. Organic solvent (n-hexane, carbon tetrachloride and chloroform) fractions of methanolic extract and methanolic fraction (aqueous) were screened for their antimicrobial activity by disc diffusion method. Besides, the fractions were screened for cytotoxic activity using brine shrimp (Artemia salina) lethality bioassay. Among the four fractions tested, n-hexane, carbon tetrachloride, and chloroform fractions showed moderate antibacterial and antifungal activity compared to standard antibiotic, kanamycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 400 µg/disc. But the aqueous fraction was found to be insensitive to microbial growth. Compared to vincristine sulfate (with LC(50) of 0.52 µg/ ml), n-hexane and chloroform fractions demonstrated a significant cytotoxic activity (having LC(50) of 1.94 µg/ml and 2.13 µg/ml, respectively). The LC(50) values of the carbon tetrachloride and aqueous fraction were 4.46 µg/ml and 5.13 µg/ ml, respectively. The study confirms the moderate antimicrobial and potent cytotoxic activities of Dillenia indica leaves extract and therefore demands the isolation of active principles and thorough bioassay. PMID:21331191

  13. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite

    USGS Publications Warehouse

    Behar, F.; Lorant, F.; Lewan, M.

    2008-01-01

    The aim of this work is to follow the generation of NSO compounds during the artificial maturation of an immature Type II kerogen and a Type III lignite in order to determine the different sources of the petroleum potential during primary cracking. Experiments were carried out in closed system pyrolysis in the temperature range from 225 to 350 ??C. Two types of NSOs were recovered: one is soluble in n-pentane and the second in dichloromethane. A kinetic scheme was optimised including both kerogen and NSO cracking. It was validated by complementary experiments carried out on isolated asphaltenes generated from the Type II kerogen and on the total n-pentane and DCM extracts generated from the Type III lignite. Results show that kerogen and lignite first decompose into DCM NSOs with minor generation of hydrocarbons. Then, the main source of petroleum potential originates from secondary cracking of both DCM and n-pentane NSOs through successive decomposition reactions. These results confirm the model proposed by Tissot [Tissot, B., 1969. Premie??res donne??es sur les me??canismes et la cine??tique de la formation du pe??trole dans les bassins se??dimentaires. Simulation d'un sche??ma re??actionnel sur ordinateur. Oil and Gas Science and Technology 24, 470-501] in which the main source of hydrocarbons is not the insoluble organic matter, but the NSO fraction. As secondary cracking of the NSOs largely overlaps that of the kerogen, it was demonstrated that bulk kinetics in open system is a result of both kerogen and NSO cracking. Thus, another kinetic scheme for primary cracking in open system was built as a combination of kerogen and NSO cracking. This new kinetic scheme accounts for both the rate and amounts of hydrocarbons generated in a closed pyrolysis system. Thus, the concept of successive steps for hydrocarbon generation is valid for the two types of pyrolysis system and, for the first time, a common kinetic scheme is available for extrapolating results to natural

  14. Fluorescence dynamics of coumarin C522 as a function of micelle confinement along with cyclodextrin supramolecular complex formation.

    PubMed

    Jane, Eduard; Szöcs, Vojtech; Grancicova, Olga; Palszegi, Tibor; Zitnan, Michal; Bugar, Ignac; Lorenc, Dusan; Velic, Dusan

    2012-12-21

    Our aim is to doubly confine a molecule of coumarin C522 in a host-guest supramolecular complex with β-cyclodextrin in a reverse sodium dioctyl sulfosuccinate (AOT) micelle using nonpolar n-heptane and polar water solvents. Varying the volumes of coumarin C522 and β-cyclodextrin dissolved in water allows us to control the water-pool diameters of the reverse micelle in n-heptane with values of w=3, 5, 10, 20, and 40, where w is the ratio of water concentration to AOT concentration in n-heptane. To study the fluorescence dynamics of coumarin C522, the spectral steady-state and time-resolved dependences are compared for the two systems coumarin C522(water)/AOT(n-heptane), denoted C522/micelle, and coumarin C522/β-cyclodextrin(water)/AOT(n-heptane), referred to as C522/CD/micelle. The formation of the supramolecular host-guest complex CD-C522 is indicated by a blue shift, but in the micelle, the shift is red. However, the values of the fluorescence maxima at 520 and 515 nm are still way below the value of 535 nm representing bulk water. The interpretation of the red shift is based on two complementary processes. The first one is the confinement of CD and C522 by the micelle water pool and the second is the perturbation of the micelle by CD and C522, resulting in an increase of the water polarity. The fluorescence spectra of the C522/micelle and C522/CD/micelle systems have maxima and shoulders. The shoulder intensities at 440 nm, representing the C522 at n-heptane/AOT interface, decrease as the w values decrease. This intensity shift suggests that the small micelle provides a stronger confinement, and the presence of CD shifts the equilibrium from n-heptane towards the water pool even more. The fluorescence emission maxima of the C522/micelle and C522/CD/micelle systems for all w values clearly differentiate two trends for w=3-5, and w=10-40, suggesting different interaction in the small and large micelles. Moreover, these fluorescence maxima result in 7 and 13 nm

  15. Prediction of long-term aging of cellular plastics

    SciTech Connect

    Fan, Y.; Kokko, E.

    1995-09-01

    Chlorofluorocarbon(CFC)-based cellular plastics are facing the challenge of environmental protection. The cellular plastic industry has been looking for new blowing agents as alternatives for CFCs since the Montreal Protocol was signed in 1987. The prediction of long-term thermal performance of newly developed cellular plastics thus becomes apparent. In this paper, the model ACP aging of cellular plastic is introduced. This model was originally developed for evaluating the thermal performance of carbon dioxide, CFC-11, CFC-12, CFC-22, n-Pentane, neo-Pentane and cyclo-Pentane. In comparison with short-term measurements, the ACP program now is able to predict the aging performance of cellular plastics is to combine the short-term measurements and model simulation. 21 refs., 5 figs., 4 tabs.

  16. Acetoxychavicol Acetate, an Antifungal Component of Alpinia galanga1.

    PubMed

    Janssen, A M; Scheffer, J J

    1985-12-01

    The essential oils from fresh and dried rhizomes of ALPINIA GALANGA showed an antimicrobial activity against gram-positive bacteria, a yeast and some dermatophytes, using the agar overlay technique. The main components of the oils were also tested and terpinen-4-ol was found most active. An N-pentane/diethyl ether extract of dried rhizomes was active against TRICHOPHYTON MENTAGROPHYTES. 1'-Acetoxychavicol acetate, 1'-acetoxyeugenol acetate and 1'-hydroxychavicol acetate identified by MS and NMR were found in the antifungally active fractions obtained by LSC. Acetoxychavicol acetate was active against the seven fungi tested and its MIC value for dermatophytes ranged from 50 to 250 microg/ml. Dried sliced rhizomes contained 1.5% of this compound. The compound was not found in rhizomes of ALPINIA OFFICINARUM, ZINGIBER OFFICINALE and KAEMPFERIA GALANGA. PMID:17345272

  17. Determination of tetrahydrothiophene formation as a probe of in vitro busulfan metabolism by human glutathione S-transferase A1-1: use of a highly sensitive gas chromatographic-mass spectrometric method.

    PubMed

    Ritter, C A; Bohnenstengel, F; Hofmann, U; Kroemer, H K; Sperker, B

    1999-06-25

    A method for the sensitive determination of tetrahydrothiophene (THT) in cytosolic incubation mixtures was developed. Busulfan conjugation with glutathione was predominantly catalysed by glutathione S-transferase A1-1 (GST A1-1) and THT was released from the primary metabolite by alkalization. After liquid-liquid extraction using n-pentane separation and quantification of the product was performed by gas chromatography with a mass-selective detector. The method showed good sensitivity, accuracy and reproducibility with a detection limit of 2 ng ml(-1) and a limit of quantification of 5 ng ml(-1). The suitability of the method is shown for enzyme kinetic studies in human liver cytosol as well as for determination of GST A1-1 activity. PMID:10437668

  18. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  19. Small angle X-ray scattering study of the effect of pressure on the aggregation of asphaltene fractions in petroleum fluids under near-critical solvent conditions

    SciTech Connect

    Carnahan, N.F.; Quintero, L. ); Pfund, D.M.; Fulton, J.L.; Smith, R.D. ); Capel, M. ); Leontaritis, K. )

    1993-08-01

    Small angle X-ray scattering was used to determine the effect of pressure on the extent of asphaltene aggregation for a system under near-critical conditions. A mixture containing 60 vol% Crude Oil A in n-pentane was studied at 110[degree]C, at pressures ranging from 25 to 400 bar. As the pressure of the near-critical solution is isothermally decreased, these results indicate (1) an increase in the extent of asphaltene aggregation and/or; (2) increased attractive interactions among aggregates. Information derived from different regions of the X-ray scattering curve indicate increasing aggregation with decreasing pressure. From these experimental results, together with theoretical interpretation, we infer that as the pressure is reduced, increased aggregation of asphaltenes results which may contribute to formation damage in hydrocarbon reservoirs, and to fouling in hydrotreatment and cracking catalysts. 71 refs., 10 figs., 2 tabs.

  20. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objective for this quarter was to study the effect of co-feeding a 1-olefin on the Ruhrchemie catalyst activity and selectivity, during-both conventional Fisher-Tropsch synthesis (FTS) and FTS under supercritical conditions. We used propane as the supercritical fluid and 1-dodecene (1-C{sub 12}H{sub 24}) in this test. Motivation for this study was the work of Fujimoto and co-workers who reported that suppression of methane and enhancement of high molecular weight hydrocarbons selectivities occurs with co-feeding of 1-olefins (1-heptene, 1-tetradecene, or 1-hexadecene) during FTS under supercritical conditions, but not during the conventional FTS (Co-La catalyst supported on silica in supercritical n-pentane).The diffusion coefficients of products in supercritical fluids is discussed.

  1. Binary Mutual Diffusion Coefficients of Polymer/Solvent Systems Using Compressible Regular Solutions Theory and Free Volume Theory

    NASA Astrophysics Data System (ADS)

    Farajnezhad, Arsalan; Asef Afshar, Orang; Asgarpour Khansary, Milad; Shirazian, Saeed

    2016-07-01

    The free volume theory has found practical application for prediction of diffusional behavior of polymer/solvent systems. In this paper, reviewing free volume theory, binary mutual diffusion coefficients in some polymer/solvent systems have been systematically presented through chemical thermodynamic modeling in terms of both activity coefficients and fugacity coefficients models. Here chemical thermodynamic model of compressible regular solution (CRS) was used for evaluation of diffusion coefficients calculations as the pure component properties would be required only. Four binary polymeric solutions of cyclohexane/polyisobutylene, n-pentane/polyisobutylene, toluene/polyisobutylene and chloroform/polyisobutylene were considered. The agreement between calculated data and the experimentally collected data was desirable and no considerable error propagation in approximating mutual diffusion coefficients has been observed.

  2. Aldehydes, carboxylic acids and inorganic nitrate during NSMCS

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel

    This article describes the methods and results of a study involving measurements of ambient levels of carboxylic acids (formic, acetic and oxalic), aldehydes (formaldehyde, acetaldehyde, propanal, n- butanal, n- pentanal and benzaldehyde) and total inorganic nitrate (nitric acid + particulate nitrate) during the Nitrogen Species Methods Comparison Study (NSMCS). Results for inorganic nitrate obtained using Teflon-nylon filter packs are compared to those obtained with nylon-nylon filter units and to those obtained by other methods during NSMCS. Calculations are presented of the distribution of gas phase nitrogen among NO, NO 2, HONO 2 and PAN, and of the positive bias due to PAN and HONO 2 in NOx measurements by chemiluminescence. Data for aldehydes and carboxylic acids are discussed in terms of sampling efficiency, gas-aerosol phase distribution, possible interferents (e.g. PAN as acetate on alkaline filters), diurnal variations, and relative importance of emissions vs in-situ daytime and night-time formation and removal processes.

  3. Design and testing of a passive, feedback-controlled, variable conductance heat pipe

    NASA Technical Reports Server (NTRS)

    Schlitt, K. R.

    1973-01-01

    A passive feedback system, which stabilizes the heat source temperature (T sub s) of a gas loaded heat pipe, was designed and tested. The control of T sub s is accomplished by an auxiliary liquid that senses the heat source and actuates a metal bellows system due to the liquid's thermal expansion. The movement of the bellows varies the gas reservoir volume and leads to a corresponding change of the condensation area of the heat pipe. With methanol as the heat pipe working fluid and perfluoro-n-pentane as the auxiliary liquid, the control capability was found to be T sub s = 31.5 + or - 1.5 C in a power range from 3 to 30 W, compared to T sub s = 33 + or - 3 C with methanol as auxiliary liquid. The change in T sub s was 35 + or - 5.5 C with the bellows held in the closed position.

  4. Development of DPD coarse-grained models: From bulk to interfacial properties

    NASA Astrophysics Data System (ADS)

    Solano Canchaya, José G.; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice

    2016-08-01

    A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.

  5. Minutes of the tenth meeting of the centers for the analysis of thermal/mechanical energy conversion concepts

    SciTech Connect

    DiPippo, R.

    1981-03-01

    The agenda, list of participants, and minutes of the meeting are presented. Included in the appendices are figures, data, outlines, etc. from the following presentations: 500 kW Direct-Contact Heat Exchanger Pilot Plant; LBL/EPRI Heat Exchanger Field Test, Critical Temperature and Pressure Comparisons for n-Butane/n-Pentane Mixtures; Second Law Techniques in the Correlation of Cost-Optimized Binary Power Plants; Outline of Chapter on Geothermal Well Logging; Outline and Highlights from Geothermal Drilling and Completion Technology Development Program Annual Progress: October 1979-September 1980; Geothermal Well Stimulation; World Update on Installed Geothermal Power Plants; Baca No. 1 Demonstration Flask Plant: Technical and Cost Data; Heber Binary Project; 45 mw Demonstration Plant; Raft River 5 mw Geothermal Dual-Boiling-Cycle Plant; Materials Considerations in the Design of Geothermal Power Plants; Raft River Brine Treatment for Tower Make-up; and Site Photographs of Raft River Valley.

  6. New thermal diffusion coefficient measurements for hydrocarbon binary mixtures: viscosity and composition dependency.

    PubMed

    Leahy-Dios, Alana; Zhuo, Lin; Firoozabadi, Abbas

    2008-05-22

    New thermal diffusion coefficients of binary mixtures are measured for n-decane-n-alkanes and 1-methylnaphthalene-n-alkanes with 25 and 75 wt % at 25 degrees C and 1 atm using the thermogravitational column technique. The alkanes range from n-pentane to n-eicosane. The new results confirm the recently observed nonmonotonic behavior of thermal diffusion coefficients with molecular weight for binary mixtures of n-decane- n-alkanes at the compositions studied. In this work, the mobility and disparity effects on thermal diffusion coefficients are quantified for binary mixtures. We also show for the binary mixtures studied that the thermal diffusion coefficients and mixture viscosity, both nonequilibrium properties, are closely related. PMID:18438988

  7. Crossed-beam DC slice imaging of fluorine atom reactions with linear alkanes

    SciTech Connect

    Shi, Yuanyuan; Kamasah, Alexander; Joalland, Baptiste; Suits, Arthur G.

    2015-05-14

    We report the reaction dynamics of F atom with selected alkanes studied by crossed beam scattering with DC slice ion imaging. The target alkanes are propane, n-butane, and n-pentane. The product alkyl radicals are probed by 157 nm single photon ionization following reaction at a collision energy of ∼10 kcal mol{sup −1}. The analyzed data are compared with the corresponding theoretical studies. Reduced translational energy distributions for each system show similar trends with little of the reaction exoergicity appearing in translation. However, the pentane reaction shows a somewhat smaller fraction of available energy in translation than the other two, suggesting greater energy channeled into pentyl internal degrees of freedom. The center-of-mass angular distributions all show backscattering as well as sharp forward scattering that decreases in relative intensity with the size of the molecule. Possible reasons for these trends are discussed.

  8. Development of DPD coarse-grained models: From bulk to interfacial properties.

    PubMed

    Solano Canchaya, José G; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice

    2016-08-01

    A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve. PMID:27497539

  9. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  10. An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting.

    PubMed

    Riley, Brenden J; Lennard, Chris; Fuller, Stephen; Spikmans, Val

    2016-09-01

    A proof-of-concept spectroscopic method for crude and heavy fuel oil asphaltenes was developed to complement existing methods for source determination of oil spills. Current methods rely on the analysis of the volatile fraction of oils by Gas Chromatography (GC), whilst the non-volatile fraction, including asphaltenes, is discarded. By discarding the non-volatile fraction, important oil fingerprinting information is potentially lost. Ten oil samples representing various geographical regions were used in this study. The asphaltene fraction was precipitated from the oils using excess n-pentane, and analysed by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Based on visual interpretation of FTIR spectra along with peak height ratio comparisons, all ten oil samples could be differentiated from one another. Furthermore, ATR-FTIR was not able to differentiate a weathered crude oil sample from its source sample, demonstrating significant potential for the application of asphaltenes in oil fingerprinting. PMID:27518037

  11. Separation of asphaltenes using high-resolution supercritical-fluid chromatography. Progress report, March 1, 1982-May 31, 1982. [Methylpolysiloxane

    SciTech Connect

    Jackson, W P; Richter, B E; Fjeldsted, J C; Peaden, P A; Lee, M L

    1982-01-01

    During this quarter more polar stationary phases were developed and tested for application to supercritical fluid chromatography. The studies initiated during the previous quarter into the dependence of the chromatography on pressure, viz., density, were continued in-depth. The on-column fluorimetric detector was modified for greater sensitivity. In addition, some brief studies were done using propane as a carrier as well as isopropanol-doped n-pentane. Synthesis of 50% and 70% phenyl methylphenylpolysiloxane polymers and their in-situ free radical crosslinking with peroxides was accomplished. Chromatographic evidence of coal tar is presented that illustrates the high efficiency and thermal stability of these phases when coated on fused silica capillary columns. 20 figures.

  12. The structural and dynamical variables of pentane isomers

    NASA Astrophysics Data System (ADS)

    Patel, Tarika K.; Vaghela, M. V.; Gajjar, P. N.

    2016-05-01

    We derived structural and dynamical properties of pentane isomers: normal pentane, iso-pentane and neo pentane for liquid and gaseous state. We use molecular dynamics simulation to calculate the dynamical properties of pentane isomers for number of particles 729 using the intermolecular potential and force due to Lenard Jones potential. The computations also include mean square displacement and self diffusion co-efficient using Einstein relation. In structural properties, structure factor and phonon frequency are obtaining from P Y Method and Hubbard and Beeby Approach respectively. The Intermolecular potential and self diffusion co-efficient depend on the branching in the structure. The pair correlation function and phonon dispersion curves revels the complex structure of neo-pentane with respect to iso-pentane and n-pentane.

  13. Quinolone-1-(2H)-ones as hedgehog signalling pathway inhibitors.

    PubMed

    Trinh, Trieu N; McLaughlin, Eileen A; Abdel-Hamid, Mohammed K; Gordon, Christopher P; Bernstein, Ilana R; Pye, Victoria; Cossar, Peter; Sakoff, Jennette A; McCluskey, Adam

    2016-07-14

    A series of quinolone-2-(1H)-ones derived from the Ugi-Knoevenagel three- and four-component reaction were prepared exhibiting low micromolar cytotoxicity against a panel of eight human cancer cell lines known to possess the Hedgehog Signalling Pathway (HSP) components, as well as the seminoma TCAM-2 cell line. A focused SAR study was conducted and revealed core characteristics of the quinolone-2-(1H)-ones required for cytotoxicity. These requirements included a C3-tethered indole moiety, an indole C5-methyl moiety, an aliphatic tail or an ester, as well as an additional aromatic moiety. Further investigation in the SAG-activated Shh-LIGHT2 cell line with the most active analogues: 2-(3-cyano-2-oxo-4-phenylquinolin-1(2H)-yl)-2-(1-methyl-1H-indol-3-yl)-N-(pentan-2-yl)acetamide (5), 2-(3-cyano-2-oxo-4-phenylquinolin-1(2H)-yl)-2-(5-methyl-1H-indol-3-yl)-N-(pentan-2-yl)acetamide (23) and ethyl (2-(3-cyano-2-oxo-4-phenylquinolin-1(2H)-yl)-2-(5-methyl-1H-indol-3-yl)acetyl)glycinate (24) demonstrated a down regulation of the HSP via a reduction in Gli expression, and in the mRNA levels of Ptch1 and Gli2. Analogues 5, 23 and 24 returned in cell inhibition values of 11.6, 2.9 and 3.1 μM, respectively, making this new HSP-inhibitor pharmacophore amongst the most potent non-Smo targeted inhibitors thus far reported. PMID:27272335

  14. Catalyseur d'hydrocraquage à base de sulfure de NiMo déposé sur une zéolithe HEMT modifiée

    NASA Astrophysics Data System (ADS)

    Baalala, M.; Becue, T.; Leglise, J.; Manoli, J. M.; van Gestel, J. N. M.; Lamotte, J.; Bensitel, M.; Goupil, J. M.; Cornet, D.

    1999-02-01

    Treating a NH4EMT zeolite with a solution of (NH4)2SiF6 at 80 °C affords a solid containing amorphous SiO2 intimately mixed with the zeolite. This acidic support EMT-Si was loaded with NiMo sulfide in order to prepare a bifunctional catalyst, which was tested for the hydrogenation of benzene and the hydrocracking of n-heptane. This NiMo/EMT-Si catalyst was found more active for hydrogenation than the analogous NiMo/HY. This is ascribed to a higher dispersion of the NiMo sulfide, which is almost equally shared between the internal mesopores in the modified EMT solid, and the fissures, which were created throughout the zeolite grains upon inserting the NiMo sulfide. The catalyst with the EMT-Si support was also found more active than the NiMo/HY for the hydrocracking of heptane, with a slightly higher selectivity into heptane isomers. Le traitement d'une zéolithe NH4EMT par une solution de (NH4)2SiF6 fournit un solide comportant une phase SiO2 amorphe intimement mélangée aux parties intactes de la zéolithe. Sur ce support acide EMT-Si, on a greffé un sulfure de NiMo afin de préparer un catalyseur bifonctionnel qui a été testé dans les réactions d'hydrogénation du benzène et d'hydrocraquage du n-heptane. Ce catalyseur NiMo/EMT-Si s'avère plus actif en hydrogénation que son analogue NiMo/HY, en raison d'une meilleure dispersion du sulfure de NiMo. Sur le solide EMT modifié, le sulfure se répartit à peu près également entre les mésopores internes et les fissures crées dans les grains de zéolithe lors de l'insertion du sulfure de NiMo. Au contraire sur le support Y, une partie du sulfure est externe aux grains de zéolithe et inactive en catalyse. Le catalyseur NiMo/EMT-Si est aussi trouvé plus actif que le NiMo/HY en hydrocraquage du n-heptane, et un peu plus sélectif en isomères.

  15. A numerical study of laminar flames propagating in stratified mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng

    Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate

  16. Problems in Catalytic Oxidation of Hydrocarbons and Detailed Simulation of Combustion Processes

    NASA Astrophysics Data System (ADS)

    Xin, Yuxuan

    This dissertation research consists of two parts, with Part I on the kinetics of catalytic oxidation of hydrocarbons and Part II on aspects on the detailed simulation of combustion processes. In Part I, the catalytic oxidation of C1--C3 hydrocarbons, namely methane, ethane, propane and ethylene, was investigated for lean hydrocarbon-air mixtures over an unsupported Pd-based catalyst, from 600 to 800 K and under atmospheric pressure. In Chapter 2, the experimental facility of wire microcalorimetry and simulation configuration were described in details. In Chapter 3 and 4, the oxidation rate of C1--C 3 hydrocarbons is demonstrated to be determined by the dissociative adsorption of hydrocarbons. A detailed surface kinetics model is proposed with deriving the rate coefficient of hydrocarbon dissociative adsorption from the wire microcalorimetry data. In Part II, four fundamental studies were conducted through detailed combustion simulations. In Chapter 5, self-accelerating hydrogen-air flames are studied via two-dimensional detailed numerical simulation (DNS). The increase in the global flame velocity is shown to be caused by the increase of flame surface area, and the fractal structure of the flame front is demonstrated by the box-counting method. In Chapter 6, skeletal reaction models for butane combustion are derived by using directed relation graph (DRG) and DRG-aided sensitivity analysis (DRGASA), and uncertainty minimization by polynomial chaos expansion (MUM-PCE) mothodes. The dependence of model uncertainty is subjected to the completeness of the model. In Chapter 7, a systematic strategy is proposed to reduce the cost of the multicomponent diffusion model by accurately accounting for the species whose diffusivity is important to the global responses of the combustion systems, and approximating those of less importance by the mixture-averaged model. The reduced model is validated in an n-heptane mechanism with 88 species. In Chapter 8, the influence of Soret

  17. Structural and diffusion characterizations of steam-stable mesostructured zeolitic UL-ZSM-5 materials.

    PubMed

    Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge

    2006-05-01

    A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main

  18. An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects

    SciTech Connect

    Machrafi, Hatim; Cavadias, Simeon; Guibert, Philippe

    2008-11-15

    In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

  19. Supramolecular assemblies obtained by mixing different cyclodextrins and AOT or BHDC reverse micelles.

    PubMed

    Silva, O Fernando; Correa, N Mariano; Silber, Juana J; de Rossi, Rita H; Fernández, Mariana A

    2014-04-01

    In this contribution we show the effect of the surfactant polar head and the external solvent on the incorporation of different cyclodextrins (CDs) {α-CD, β-CD, γ-CD, decenylsuccinyl-β-CD (Mod-β-CD), and hydroxypropyl-β-CD (hp-β-CD)} in different reverse micelles (RMs) {benzene/sodium 1,4-bis(2-ethylhexyl) sulfosuccinate(AOT)/water, and benzene/benzyl-n-hexadecyldimethylammonium chloride (BHDC)/water} and compare them with previous results obtained in n-heptane/AOT/water RMs. To investigate the different systems, we have used UV-vis spectrophotometry, induced circular dichroism spectroscopy (ICD), and the achiral molecular probe methyl orange (MO). The results show dramatic differences changing the external solvent and the surfactant, which are explained by considering the differences in the RMs interface composition, the water-surfactant interaction, and the CDs' location in the different media investigated. None of the CDs were incorporated into the benzene/AOT/water RMs at any [H2O]/[surfactant] ratio studied (W0) whereas it was previously shown that Mod-β-CD and hp-β-CD could be included in n-heptane/AOT/water RMs. However, all of the CDs are incorporated in benzene/BHDC/water RMs at W0 > 10 and hp-β-CD is dissolved even at W0 = 0. Different from what was found in n-heptane/AOT RMs, in BHDC RMs MO showed ICD signals with two different CDs: Mod-β-CD and hp-β-CD. The results are explained by considering the known difference in the interfacial water structure for AOT and BHDC RMs and the electron-rich region on the secondary hydroxyl (wider side of the CDs), which helps to solubilize all CDs in BHDC. This study shows that chiral cyclodextrin could be available for a guest in an organic medium such as the RMs. Therefore we have created a potentially powerful nanoreactor with two different confined regions in the same aggregate: the polar core of the RMs and the chiral hydrophobic cavity of cyclodextrin. PMID:24597759

  20. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    SciTech Connect

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon

  1. A Detailed Chemical Kinetic Reaction Mechanism for n-Alkane Hydrocarbons From n-Octane to n-Hexadecane

    SciTech Connect

    Westbrook, C K; Pitz, W J; Herbinet, O; Curran, H J; Silke, E J

    2008-02-08

    Detailed chemical kinetic reaction mechanisms have been developed to describe the pyrolysis and oxidation of nine n-alkanes larger than n-heptane, including n-octane (n-C{sub 8}H{sub 18}), n-nonane (n-C{sub 9}H{sub 20}), n-decane (n-C{sub 10}H{sub 22}), n-undecane (n-C{sub 11}H{sub 24}), n-dodecane (n-C{sub 12}H{sub 26}), n-tridecane (n-C{sub 13}H{sub 28}), n-tetradecane (n-C{sub 14}H{sub 30}), n-pentadecane (n-C{sub 15}H{sub 32}), and n-hexadecane (n-C{sub 16}H{sub 34}). These mechanisms include both high temperature and low temperature reaction pathways. The mechanisms are based on our previous mechanisms for the primary reference fuels n-heptane and iso-octane, using the reaction class mechanism construction first developed for n-heptane. Individual reaction class rules are as simple as possible in order to focus on the parallelism between all of the n-alkane fuels included in the mechanisms, and these mechanisms will be refined further in the future to incorporate greater levels of accuracy and predictive capability. These mechanisms are validated through extensive comparisons between computed and experimental data from a wide variety of different sources. In addition, numerical experiments are carried out to examine features of n-alkane combustion in which the detailed mechanisms can be used to compare reactivities of different n-alkane fuels. The mechanisms for all of these n-alkanes are presented as a single detailed mechanism, which can be edited to produce efficient mechanisms for any of the n-alkanes included, and the entire mechanism, with supporting thermochemical and transport data, together with an explanatory glossary explaining notations and structural details, will be available for download from our web page.

  2. Soot agglomeration in isolated, free droplet combustion

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Dryer, F. L.; Green, G. J.; Sangiovanni, J. J.

    1993-01-01

    Under the conditions of an isolated, free droplet experiment, hollow, carbonaceous structures, called soot spheres, were observed to form during the atmospheric pressure, low Reynolds number combustion of 1-methylnaphthalene. These structures which are agglomerates composed of smaller spheroidal units result from both thermophoretic effects induced by the envelope flame surrounding each drop and aerodynamic effects caused by changes in the relative gas/drop velocities. A chemically reacting flow model was used to analyze the process of sootshell formation during microgravity droplet combustion. The time-dependent temperature and gas property field surrounding the droplet was determined, and the soot cloud location for microgravity combustion of n-heptane droplets was predicted. Experiments showed that the sooting propensity of n-alkane fuel droplets can be varied through diluent substitution, oxygen-index variations, and ambient pressure reductions.

  3. Hydrocarbons identified in extracts from estuarine water accommodated no. 2 fuel oil by gas chromatography-mass spectrometry

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Walker, A. L.; Bieri, R. H.

    1974-01-01

    Results are presented on a computerized gas chromatograph-mass spectrometer analysis of methylene chloride and n-heptane extracts of a No. 2 fuel oil accommodated estuarine water sample. The analytical method is briefly described, and the limitations on the identifications are categorized. Some attempt was made to determine major and trace constituents in the water accommodate. Altogether 66 hydrocarbon compounds were identified specifically, and 75 compounds were partially identified. Seven compounds could be recognized as major constituents of the water accommodated oil and ten were present only as traces. The aromatic compounds found were alkyl benzenes, naphthalene, tetralin, indane, biphenyl, fluorene, anthracene, and some of their alkyl substituted isomers in the range of carbon numbers C7 to C15. Four n-alkanes, C10 to C13, were found along with four other assorted hydrocarbons.

  4. Exciplex liquid-phase thermometer using time-resolved laser-induced fluorescence.

    PubMed

    Parigger, C; Plemmons, D H; Litchford, R J; Jeng, S M

    1998-01-01

    Pulsed photoexcitation of hydrocarbon fuels doped with organic molecules exhibits a temperature-dependent fluorescence spectrum that is used as the basis for a weakly intrusive optical thermometer. By use of pulsed excitation from a 308-nm 8-ns XeCl excimer laser with gated detection of the fluorescence emissions from doped n -heptane, we demonstrate that time-resolved measurement of the excited monomer and the redshifted excited-state complex (exciplex) fluorescence emissions can yield sub-1 degrees accuracy for temperatures ranging from 440 K to the vicinity of the critical temperature (540 K). The experiments also show that the exciplex fluorescence spectrum is pressure independent below and above supercritical pressure. PMID:18084417

  5. Analysis of polydisperse fuel spray flame

    NASA Astrophysics Data System (ADS)

    Nave, Ophir; Lehavi, Yaron; Ajadi, Suraju; Gol'dshtein, Vladimir

    2016-06-01

    In this paper we analyzed the model of polydisperse fuel spray flame by using the sectional approach to describe the droplet-droplet interaction within the spray. The radii of the droplets are described by a probability density function. Our numerical simulations include a comparative analysis between three empirical droplet size distributions: the Rosin-Rammler distribution, the log-normal distribution and the Nakiyama-Tanasawa distribution. The log-normal distribution was found to produce a reasonable approximation to both the number and volume size distribution function. In addition our comparative analysis includes the application of the homotopy analysis method which yields convergent solutions for all values of the relevant parameters. We compared the above results to experimental fuel spray data such as {{Tetralin}} , n-{{Decane}} , and n-{{Heptane}} .

  6. Extraction kinetics of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester using a hollow fiber membrane extractor

    SciTech Connect

    Kubota, Fukiko; Goto, Masahiro; Nakashio, Fumiyuki; Hano, Tadashi

    1995-03-01

    A kinetic study concerning chemical complexation-based solvent extraction of rare earth metals with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester dissolved as an extractant in n-heptane was carried out using a microporous hydrophobic hollow fiber membrane extractor. The effects of concentration of chemical species in aqueous and organic feed solutions on the apparent permeabilities of metal species for extraction and stripping, respectively, were investigated to clarify the permeation mechanism. From the experimental results it was predicted that the permeation rate is controlled by diffusion of the chemical species in aqueous and organic phases and by interfacial chemical reaction. The experimental data were analyzed by the diffusion model accompanied with an interfacial reaction, taking into account the velocity distributions of the aqueous and organic phases through the inner and outer sides of the hollow fiber.

  7. High-pressure combustion of binary fuel sprays

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Kono, Michikata; Sato, Jun'ichi; Dietrich, Daniel L.; Williams, Forman A.

    1995-01-01

    The ultimate objective of this study is to obtain fundamental information relevant to combustion processes that occur in fuel sprays of practical interest at high pressures in internal combustion engines. Since practical fuels are multicomponent and derived from petroleum, the present work involves the model alkane mixture of n-heptane and n-hexadecane. Since burning droplets in sprays can interact with each other, the present work involves investigation of the effects of this interaction on flame shapes and droplet burning times. The small droplets in practical combustion chambers are not significantly influenced by buoyancy. Since such small droplets are difficult to study experimentally, the present work takes advantage of microgravity to lessen buoyancy and enable information about droplet interactions to be obtained by studying larger droplets. The results are intended to provide fundamental understanding that can be used in improving descriptions of practical spray combustion.

  8. Pressure Effects in Droplet Combustion of Miscible Binary Fuels

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Habara, Osamu; Kono, Michikata; Sato, Jun-Ichi; Dietrich, Daniel L.; Williams, Forman A.

    1997-01-01

    The objective of this research is to improve understanding of the combustion of binary fuel mixtures in the vicinity of the critical point. Fiber-supported droplets of mixtures of n-heptane and n-hexadecane, initially 1 mm in diameter, were burned in room-temperature air at pressures from 1 MPa to 6 MPa under free-fall microgravity conditions. For most mixtures the total burning time was observed to achieve a minimum value at pressures well above the critical pressure of either of the pure fuels. This behavior is explained in terms of critical mixing conditions of a ternary system consisting of the two fuels and nitrogen. The importance of inert-gas dissolution in the liquid fuel near the critical point is thereby re-emphasized, and nonmonotonic dependence of dissolution on initial fuel composition is demonstrated. The results provide information that can be used to estimate high-pressure burning rates of fuel mixtures.

  9. One-dimensional rainbow technique using Fourier domain filtering.

    PubMed

    Wu, Yingchun; Promvongsa, Jantarat; Wu, Xuecheng; Cen, Kefa; Grehan, Gerard; Saengkaew, Sawitree

    2015-11-16

    Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets. PMID:26698532

  10. High-Speed OH* Chemiluminescence Imaging of Shock Tube End-Wall

    NASA Astrophysics Data System (ADS)

    Troutman, V. A.; Miller, V. A.; Strand, C. S.; Tulgestke, A. M.; Campbell, M. F.; Davidson, D. F.; Hanson, R. K.

    2015-11-01

    We have developed a high-speed OH* chemiluminesence imaging diagnostic and a transparent end-wall for the Stanford Aerosol Shock Tube to better understand the structure and homogeneity of the combustion event behind a reflected shock wave. We use an intensified high repetition rate imaging system to acquire images of OH* chemiluminescence (near 308 nm) at 10-33 kHz from n-heptane combustion. Case studies are presented to illustrate the power of this novel imaging diagnostic: first, we infer the temperature homogeneity of the ignition event; then we image the effect of surface imperfections in the wall of the shock tube; lastly, we visualize the effect of particulates in the shock tube and verify the importance of shock tube cleaning routines.

  11. Adsorption and desorption behavior of asphaltene on polymer-brush-immobilized surfaces.

    PubMed

    Higaki, Yuji; Hatae, Kaoru; Ishikawa, Tatsuya; Takanohashi, Toshimasa; Hayashi, Jun-ichiro; Takahara, Atsushi

    2014-11-26

    The adsorption behavior of a model compound for surface-active component of asphaltenes, N-(1-hexylheptyl)-N'-(12-carboxylicdodecyl) perylene-3,4,9,10-tetracarboxylic bisimide (C5Pe), and detachment behavior of asphaltene deposit films for high-density polymer brushes were investigated. Zwitterionic poly(3-(N-2-methacryloyloxyethyl-N,N-dimethyl)ammonatopropanesulfonate (PMAPS) brushes and hydrophobic poly(n-hexyl methacrylate) (PHMA) brushes exhibit less C5Pe adsorption than poly(methyl methacrylate) (PMMA). The asphaltene deposit films on the PHMA brush detached in a model oil (toluene/n-heptane=1/4 (v/v)), and the asphaltene films on the PMAPS brush detached in water. The antifouling character was explained by the interface free energy for the polymer-brush/asphaltenes (γSA) and polymer-brush/toluene (γSO). PMID:25370500

  12. An evaluation of new asphaltene inhibitors: Laboratory study and field testing

    SciTech Connect

    Bouts, M.N.; Samuel, A.J.

    1995-09-01

    Three candidate asphaltene inhibitors have been laboratory tested for their effectiveness on a canadian crude. One inhibitor, an oil-soluble polymeric dispersant developed by Shell Chemicals, showed superior behavior compared with the others; flocculation titrations with n-heptane resulted in an optimum concentration of 1,300 ppm. PVT calculations, however, indicated that the prevailing conditions downhole can be quite favorable with respect to the amount of effective inhibitor compared with the atmospheric laboratory titrations, which appear to be quite sever tests. Therefore, lower initial concentrations were recommended for a field trial. The chemical could be injected continuously through a capillary string, thereby avoiding the lost oil production associated with solvent-cleaning operations. It have proved to be very effective at concentrations as low as 66 ppm, resulting in both a technically and economically successful trial.

  13. An evaluation of new asphaltene inhibitors: Laboratory study and field testing

    SciTech Connect

    Bouts, M.N.; Wiersma, R.J.; Muijs, H.M.; Samuel, A.J.

    1995-11-01

    Three candidate asphaltene inhibitors have been laboratory tested for their effectiveness on a Canadian crude. One inhibitor, an oil-soluble polymeric dispersant developed by Shell Chemicals, showed superior behavior compared to the others: flocculation titrations with n-heptane resulted in an optimum concentration of 1,300 ppm. PVT calculations, however, indicated that the prevailing conditions downhole can be quite favorable with respect to the amount of effective inhibitor compared to the atmospheric laboratory titrations which appear to be quite severe tests. Therefore, lower initial concentrations were recommended for a field trial. The chemical could be continuously injected through a capillary string, thereby avoiding the lost oil production associated with solvent cleaning operations. It has proved to be very effective at concentrations as low as 66 ppm, resulting in both a technically and an economically successful trial.

  14. Determination of free bile acids in pharmaceuticals by thin layer chromatography and high performance liquid chromatography.

    PubMed

    Novaković, J; Tvrzická, E; Razić, S

    1998-11-01

    High-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and thin layer chromatography with flame ionization detection (TLC-FID) have been applied to the separation of five main free bile acids present in humans: cholic (CA), chenodeoxycholic (CDCA), deoxycholic (DCA), lithocholic (LCA) and ursodeoxycholic (UDCA) acid. HPLC separation was performed on Biospher Si 100 column using a mixture of n-heptane, isopropanol, ethylacetate, methanol and glacial acetic acid as a mobile phase. All the compounds were separated in less than 12 minutes by using a gradient elution mode. TLC-FID separation was performed on S-II Chromarods with a mixture of isooctane, ethylacetate and glacial acetic acid as a mobile phase. HPLC-ELSD method was applied to the determination of CDCA and UDCA in pharmaceuticals and their purity control when LCA, DCA and CA were considered as impurities. PMID:9880946

  15. Ignition Quality Tester (IQT): An Alternative for Characterizing the Combustion Kinetics of Low Volatility Fuels

    SciTech Connect

    Osecky, E.; Bogin, G.; Ratcliff, M.; Luecke, J.; Chen, J. Y.; Zigler, B. T.

    2013-01-01

    The Ignition Quality Tester (IQT) is a constant volume spray combustion system that can be heated and pressurized to conditions that are similar to a diesel engine at top dead center. With no moving parts and the ability to handle low volatility fuels, the IQT can be a bridge between engines and traditional methods for studying chemical kinetics. By comparing experimental data with model predictions, the IQT has been used to validate skeletal kinetic models of ignition. CFD modeling of the IQT using KIVA-3V was used to predict ignition of n-heptane accurately. Operating the IQT in a regime where chemical kinetics dominates (long ignition delays) allowed NTC behavior to be observed for some isomers of heptane. Experimental results with the low volatility fuel heptamethylnonane also show NTC behavior. At long ignition delays, experimental results can be compared with 0-D detailed chemical mechanisms.

  16. Silver nanoparticles in hydrogels and microemulsions—a comparative account of their properties and bio-activity

    NASA Astrophysics Data System (ADS)

    Ray, Debajyoti; Chatterjee, Saptarshi; Sarkar, Keka; De, Swati

    2014-09-01

    Stable silver nanoparticles were prepared in sodium Aerosol OT (AOT) based microemulsions and hydrogels. The various gel and microemulsion compositions used for nanoparticle synthesis were obtained from the phase diagram of the AOT/n-heptane/H2O system. It was found that only in gels can AOT play a dual role of stabilizer as well as reducing agent. In microemulsions, AOT acts as a stabilizer only. In gels, the commonly used NaBH4 reduction results in spherical silver nanoparticles while the AOT based reduction yields highly facetted particles. In microemulsion however, larger particles of undefined shapes are formed in low yield while for the gels, a large number of particles are formed. The synthesized silver nanoparticles show strong antibacterial activity.

  17. Preparation and characterization of polyethylene glycol diacrylate microgels using electron beam radiation

    SciTech Connect

    Hamzah, Mohd Yusof; Isa, Naurah Mat; Napia, Liyana M. Ali

    2014-02-12

    The use of microemulsion in the development of nanosized gels based on polyethylene glycol diacrylate (PEGDA) is demonstrated. PEGDA was solubilized in n-heptane with use of sodium docusate (AOT) at 0.15M concentration to form reverse micelles. These micelles were than irradiated at 5, 10, 15, 20 and 25 kGy using electron beam (EB) to crosslink the entrapped polymer in the micelles. Ionizing radiation was imparted to the emulsions to generate crosslinking reaction in the micelles formed. The nanosized gels were evaluated in terms of particle diameter using dynamic light scattering (DLS) and the images of the nanosized gels were studied using transmission electron microscopy (TEM). Results show that the size and shape of the particles are influenced by concentration of PEGDA and radiation dose. This study showed that this method can be utilized to produce nanosized gels.

  18. Examining Asphaltene Solubility on Deposition in Model Porous Media.

    PubMed

    Lin, Yu-Jiun; He, Peng; Tavakkoli, Mohammad; Mathew, Nevin Thunduvila; Fatt, Yap Yit; Chai, John C; Goharzadeh, Afshin; Vargas, Francisco M; Biswal, Sibani Lisa

    2016-08-30

    Asphaltenes are known to cause severe flow assurance problems in the near-wellbore region of oil reservoirs. Understanding the mechanism of asphaltene deposition in porous media is of great significance for the development of accurate numerical simulators and effective chemical remediation treatments. Here, we present a study of the dynamics of asphaltene deposition in porous media using microfluidic devices. A model oil containing 5 wt % dissolved asphaltenes was mixed with n-heptane, a known asphaltene precipitant, and flowed through a representative porous media microfluidic chip. Asphaltene deposition was recorded and analyzed as a function of solubility, which was directly correlated to particle size and Péclet number. In particular, pore-scale visualization and velocity profiles, as well as three stages of deposition, were identified and examined to determine the important convection-diffusion effects on deposition. PMID:27532331

  19. New apparatus for simultaneous determination of phase equilibria and rheological properties of fluids at high pressures: Its application to coal pastes studies up to 773 K and 30 MPa

    NASA Astrophysics Data System (ADS)

    Cohen, Albert; Richon, Dominique

    1986-06-01

    In this article, we present a new apparatus based on a static method to simultaneously measure rheological properties of a dense (liquid or liquid+solid) medium and sample phases (dense and gaseous) for analysis purposes. It was especially designed to study coal pastes in the working conditions of hydroliquefaction processes. It can also be used to study other mediums such as asphalts and polymers. The rheometer part of the apparatus was already tested and results published in a previous paper. The ability of the new apparatus to get reliable vapor-liquid equilibrium data in the range of thermal stability of chemical materials is shown as a result of measurements on the nitrogen-n-heptane system at 497.1 K and the methane-n-hexadecane system at 623.1 K and comparison to literature's data. Reproducibility tests have displayed very small data dispersion.

  20. Spontaneous Formation of Nanopatterns in Velocity-Dependent Dip-Coated Organic Films: From Dragonflies to Stripes

    NASA Astrophysics Data System (ADS)

    Huber, P.; Bai, M.; Del Campo, V.; Homm, P.; Ferrari, P.; Diama, A.; Wagner, C.; Taub, H.; Knorr, K.; Deutsch, M.; Retamal, M.; Volkmann, U.; Corrales, T.

    2015-11-01

    We present the structure of thin, n-alkane films on the oxide layer of a silicon surface, prepared by dip-coating in a n-C32H66/n-heptane solution. Electron micrographs reveal two adsorption morphologies depending on the substrate withdrawal speed v. For small v, dragonfly-shaped molecular islands are observed. For a large v, stripes parallel to the withdrawal direction are observed. These have a few hundred micrometer lengths and a few-micrometer lateral separation. With increasing v, the surface coverage first decreases, then increases for v >vcr ~ 0 . 15 mm/s. The critical vcr marks a transition between the evaporation regime and the entrainment regime. The stripes' strong crystalline texture and the well defined separation are due to an anisotropic 2D crystallization in narrow liquid fingers, which presumably results from a Marangoni-flow-driven hydrodynamic instability in the evaporating dip-coated films.

  1. UV-Vis spectral investigation of photophysical properties of a solvatochromic electron donor/acceptor dye within a reverse micelle domain

    NASA Astrophysics Data System (ADS)

    Sarkar, Amrita; Kedia, Niraja; Purkayastha, Pradipta; Bagchi, Sanjib

    2014-01-01

    The optical response of a solvatochromic dye, [(E)-3-(1-methyl-1H-indol-3-yl)-1-phenylprop-2-en-1-one], N1, has been studied in the AOT/n-heptane/water reverse micellar media using steady-state and time-resolved techniques. To this end variation in the photophysical properties of N1 have been systematically studied as a function of water pool size (w0). Micropolarity, microviscosity, and relative permittivity of the immediate microenvironment surrounding the probe has been estimated from the limiting values of the photophysical parameters of N1 at high w0. Information about the location of the dye in the reverse micellar media has been obtained using the observed results.

  2. Direct numerical simulations of temporally developing turbulent reacting liquid-fueled jets

    NASA Astrophysics Data System (ADS)

    Shashank, Shashank; Pitsch, Heinz

    2012-11-01

    Liquid fueled engines are ubiquitous in the transportation industry because liquid fuel minimizes the weight and volume of propulsion systems. The combustion that occurs in these engines is an inherently multi-physics process, involving fuel evaporation, reaction kinetics, and high levels of turbulence. A desire for high fidelity data that explains complex interaction between different physical mechanisms motivates the consideration of direct numerical simulation (DNS) as an investigation tool. In this study three-dimensional DNS of a reacting n-heptane liquid fueled temporal jet have been performed to study auto-ignition and subsequent burning in conditions that are representative of a diesel engine environment. In these simulations the continuous phase is described using an Eulerian representation whereas Lagrangian particle tracking is used to model the dispersed phase. The results of this study will demonstrate the importance of unsteady effects, and of accounting for the interaction between different modes of combustion, when simulating spray combustion.

  3. Auto-ignition of hydrocarbons behind reflected shock waves.

    NASA Technical Reports Server (NTRS)

    Vermeer, D. J.; Meyer, J. W.; Oppenheim, A. K.

    1972-01-01

    The paper reports on the study of auto-ignition of hydrocarbon-oxygen mixtures behind reflected shock waves. Because of their bearing on the problem of knock in internal combustion engines, n-heptane and iso-octane were chosen as the combustible species. Their stoichiometric mixtures with oxygen had to be diluted with 70% argon to reduce the influence of the boundary layer. Photographic records demonstrated the existence of two different modes of ignition, as has been previously established for the hydrogen-oxygen system. The pressure-temperature limits between these regions of mild and strong ignition were determined. From the same experimental tests, induction time data were obtained over the pressure range of 1-4 atm and the temperature interval of 1200-1700 K.

  4. Numerical analysis of diameter influence on droplet fluorescence

    SciTech Connect

    Frackowiak, Bruno; Tropea, Cameron

    2010-04-20

    Laser-induced fluorescence (LIF) is used in planar droplet sizing, assuming that the signal integrated over the droplet is proportional to its volume. Nevertheless, this assumption is rigorously valid in nonabsorbing mixtures. We performed an examination of the LIF signal with a fluorescence model, based on the Lorenz-Mie theory and on ray-tracing methods, for n-heptane droplets seeded by 3-pentanone. A parametrical study quantifies the bias caused not only by the absorption of the laser, but also by shadow zones in the droplets, which do not contribute to the fluorescence signal. Moreover, the effect of the first- and higher-order internal reflections is examined. The results of this study have immediately implications for the design of measurement techniques.

  5. Photoinduced underwater superoleophobicity of TiO2 thin films.

    PubMed

    Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro

    2013-06-11

    The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter. PMID:23701360

  6. A Study of Aircraft Fire Hazards Related to Natural Electrical Phenomena

    NASA Technical Reports Server (NTRS)

    Kester, Frank L.; Gerstein, Melvin; Plumer, J. A.

    1960-01-01

    The problems of natural electrical phenomena as a fire hazard to aircraft are evaluated. Assessment of the hazard is made over the range of low level electrical discharges, such as static sparks, to high level discharges, such as lightning strikes to aircraft. In addition, some fundamental work is presented on the problem of flame propagation in aircraft fuel vent systems. This study consists of a laboratory investigation in five parts: (1) a study of the ignition energies and flame propagation rates of kerosene-air and JP-6-air foams, (2) a study of the rate of flame propagation of n-heptane, n-octane, n-nonane, and n-decane in aircraft vent ducts, (3) a study of the damage to aluminum, titanium, and stainless steel aircraft skin materials by lightning strikes, (4) a study of fuel ignition by lightning strikes to aircraft skins, and (5) a study of lightning induced flame propagation in an aircraft vent system.

  7. Measurement of thermodiffusion coefficient in n-alkane binary mixtures: composition dependence.

    PubMed

    Madariaga, J A; Santamaría, C; Bou-Ali, M Mounir; Urteaga, P; Alonso De Mezquia, D

    2010-05-27

    In this work, we have measured the thermodiffusion coefficient of different n-alkane binary mixtures at several concentrations using the thermogravitational technique. In particular, we have studied the n-dodecane/n-heptane system as a function of composition and other systems covering a large range of mass differences and concentration at 25 degrees C and 1 atm. The results show that for any concentration the thermodiffusion coefficient of n-alkane mixtures is proportional to the mass difference between the components and to the ratio of the thermal expansion coefficient and viscosity of the mixture. The obtained equation allows us to determine the infinite dilution values of the thermodiffusion coefficient. We compare these values with recent experimental results in dilute polymer solutions and analyze the Brenner theory of thermodiffusion. Finally, it is shown that the thermodiffusion coefficient depends linearly with the mass fraction, and it can be calculated from the viscosity and thermal expansion of the pure components. PMID:20429569

  8. Probehead with interchangeable loop-gap resonators and rf coils for multifrequency EPR/ENDOR

    NASA Astrophysics Data System (ADS)

    Christides, T.; Froncisz, W.; Oles, T.; Hyde, James S.

    1994-01-01

    A probehead employing interchangeable loop-gap resonators and rf coils for multifrequency EPR/ENDOR spectroscopy from 1 to 10 GHz is described. A precision coupling mechanism allows accurate magnetic coupling of the microwaves to the resonators. The Rexolite© support of the resonator acts as a spool for the ENDOR coil. rf fields of 1.0 mT are generated. The coil and resonator can be easily changed to cover the range of 1-10 GHz. Liquid-phase ENDOR spectra of the stable free-radical galvanoxyl and of the spin label TEMPONE (4-oxo-2,2,6,6-tetramethyl-l-piperidine-N-oxyl) dissolved in n-heptane are shown. The ENDOR enhancement for nitrogen from TEMPONE is 15 times larger at 2.3 than at 9.3 GHz due to the rf enhancement.

  9. Extraction of light filth from coconut: collaborative study.

    PubMed

    Thrasher, J J

    1978-07-01

    The official method for filth in coconut, 44.029, frequently produces filter papers with excessive plant debris and low hair recoveries. To overcome these deficiencies, 3 changes in the method were made: (1) the defatting step was modified to use sodium lauryl sulfate in combination with borax for better defatting; (2) 40% isopropanol was substituted for 60% ethanol as the aqueous phase for cleaner papers; and (3) mineral oil was substituted for n-heptane to improve hair recoveries. These changes resulted in higher, more reproducible recoveries of rodent hairs and insect fragments and cleaner filter papers. The method has been adopted as official first action to replace 44.029. PMID:567215

  10. Droplet ignition and combustion including liquid-phase heating

    SciTech Connect

    Shaygan, N.; Prakash, S.

    1995-07-01

    Heating, ignition, and the subsequent combustion of a liquid droplet are studied in a hot stagnant environment. The transient, coupled liquid-gas phase problem of droplet combustion in one dimension is solved numerically. The pressure is assumed to be uniform and constant. This assumption is utilized in a novel way to formulate and solve the continuity equation. It is found that ignition occurs as soon as suitable conditions develop in the neighborhood of the droplet. In fact, the droplet surface heating is intimately connected with ignition. These general conclusions are found to be true for a volatile (n-heptane) as well as for a less volatile fuel (n-hexadecane). It is also found that the radial velocity produced by the evaporation and combustion of the droplet, leads to a local Reynolds number of order one. Hence, convective effects are as important as diffusion effects.

  11. Charge transfer complexes of N-substituted 2-pyrrolidinones

    NASA Astrophysics Data System (ADS)

    Ruostesuo, P.; Peltola, K.; Salminen, U.; Häkkinen, A.-M.

    The complex formation of 1-ethyl-2-pyrrolidinone, 1-benzyl-2-pyrrolidinone and 1-phenyl-2-pyrrolidinone with iodine, iodine monobromide and iodine monochloride has been studied by u.v. and visible spectroscopic methods in carbon tetrachloride, dichloromethane, 1,2-dichloroethane, n-heptane and cyclohexane. The results show the equilibrium constants ( K), complexation enthalpies (Δ H) and the wavelengths of maximum absorption bands (λ max) of the complexes to vary markedly with the solvent. The decrease in the K values with increasing acceptor number (AN) of the solvent may be due to the competition of the solvent and the halogen molecule for the amide; for halogenated hydrocarbon solvents can act as weak electron acceptors. The complex formation ability of the electron donors decreases in the order 1-ethyl-2-pyrrolidinone ≫ 1-benzyl-2-pyrrolidinone ≫ 1-phenyl-2-pyrrolidinone, and the electron acceptor properties decrease in the order iodine monochloride ≫ iodine monobromide ≫ iodine.

  12. Supercritical droplet gasification experiments with forced convection

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Parigger, Chris; Jeng, San-Mou

    1992-01-01

    Preliminary results of a comprehensive experimental program are presented which offer the first direct observations of suspended n-heptane droplet gasifications in pure nitrogen with forced convection without the interference to optical probing associated with a flame. Measurements show attainment of a wet-bulb temperature until reduced pressures exceed about 1.0 under supercritical gas temperatures. Thereafter, temperature measurements indicate fully transient heat-up through the critical temperature. The surface is found to regress in a continuous manner with the measured temperature approaching the critical value at the end of the droplet lifetime under supercritical conditions with very mild level of convection. At increased level of convection for the same ambient conditions, similar sized droplets will undergo significant deformation during the gasification process until partially convected away as a dense vapor cloud as the critical temperature is approached.

  13. Equation of state for compressed liquids and their mixtures from the cohesive energy density

    NASA Astrophysics Data System (ADS)

    Boushehri, A.; Mason, E. A.

    1993-07-01

    A procedure is presented, based on statistical-mechanical theory, for predicting the equation of state of compressed normal liquids and their mixtures from two scaling constants that are available from measurements at ordinary pressures and temperatures. The theoretical equation of state is that of Ihm, Song, and Mason, and the two constants are the enthalpy of vaporization and the liquid density at the triple point, which are related to the cohesive energy density of regular solution theory. The procedure is tested on a number of substances ranging in complexity from Ar and CO2 to n-heptane and toluene. The results indicate that the liquid density at any pressure and temperature can be predicted within about 5%, over the range from T tp to T c and up to the freezing line. Possible methods of determining the scaling constants are discussed, as well as other possible choices for scaling constants.

  14. Solution-phase photochemistry of a [FeFe]hydrogenase model compound: Evidence of photoinduced isomerisation

    SciTech Connect

    Kania, Rafal; Hunt, Neil T.; Frederix, Pim W. J. M.; Wright, Joseph A.; Pickett, Christopher J.; Ulijn, Rein V.

    2012-01-28

    The solution-phase photochemistry of the [FeFe] hydrogenase subsite model ({mu}-S(CH{sub 2}){sub 3}S)Fe{sub 2}(CO){sub 4}(PMe{sub 3}){sub 2} has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds.

  15. Development of a low temperature phase change material package. [for spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Suelau, H. J.; Mcintosh, R.

    1977-01-01

    Test data obtained for a low temperature phase change material (PCM) canisters are presented. The canister was designed to provide up to 30 w-hrs of storage capacity at approximately -90 C with an overall thermal conductance which is greater than 8 w/deg C. N-heptane which is an n-paraffin and has a -90.6 C freezing point was used as the working fluid. The canister was fabricated from aluminum and has an aluminum honeycomb core. Its void volume permits service temperatures up to 70 C. Results obtained from component and system's tests indicate well defined melting and freezing points which are repeatable and within 1 C of each other. Subcooling effects are less than 0.5 C and are essentially negligible. Measured storage capacities are within 94 to 88% the theoretical.

  16. Kinetic Analysis of Batch Ethanol Acetylation in Isothermal Non-Stationary Multiphase Systems by Lyophilized Mycelium of Aspergillus Oryzae

    PubMed Central

    Palazzi, Emilio; Molinari, Francesco; Fabiano, Bruno; Pessoa, Adalberto; Converti, Attilio

    2011-01-01

    A relatively complex network of reactions has been investigated, using as a network model the isothermal batch esterification of acetic acid with ethanol in n-heptane catalyzed by lyophilized mycelium of Aspergillus oryzae. The kinetic analysis was firstly carried out on the whole system, without any simplification, by means of the well-known integral method. Owing to the poor results obtained by this way, we developed an alternative approach, combining initial rates and integral analysis and reducing the number of empirical parameters to be determined by the use of equilibrium data. All the values of the parameters calculated according to this “composite” approach to kinetic analysis well correlate with experimental data. PMID:24031645

  17. Enthalpies of solution and volumes of water in reversed AOT micelles

    SciTech Connect

    D'Aprano, A.; Lizzio, A.; Liveri, V.T.

    1987-08-27

    Molar enthalpies of solution and apparent molar volumes of water in the sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-heptane system as a function of the molar ratio R = (water)/(AOT) were determined at 25 /sup 0/C. The dependence of these experimental data on R has been rationalized in terms of a semiempirical model based on water partitioning between two states. The positive enthalpies of solution of water indicate that the insertion of water in reversed AOT micelles (unfavorable from an enthalpic point of view) is mainly driven by a favorable change on entropy. An increase of the maximum number of water molecules solvating AOT with increasing concentration of surfactant has also been observed and discussed.

  18. Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations- SAE 2008-01-1378

    SciTech Connect

    Brakora, Jessica L; Ra, Youngchul; Reitz, Rolf; McFarlane, Joanna; Daw, C Stuart

    2008-01-01

    In the present study a skeletal chemical reaction mechanism for biodiesel surrogate fuel was developed and validated for multi-dimensional engine combustion simulations. The reduced mechanism was generated from an existing detailed methyl butanoate oxidation mechanism containing 264 species and 1219 reactions. The reduction process included flux analysis, ignition sensitivity analysis, and optimization of reaction rate constants under constant volume conditions. The current reduced mechanism consists of 41 species and 150 reactions and gives predictions in excellent agreement with those of the comprehensive mechanism. In order to validate the mechanism under biodiesel-fueled engine conditions, it was combined with another skeletal mechanism for n-heptane oxidation. This combined reaction mechanism, ERC-Bio, contains 53 species and 156 reactions, which can be used for diesel/biodiesel blend engine simulations. Biodiesel-fueled engine operation was successfully simulated using the ERC-Bio mechanism.

  19. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  20. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."