Sample records for n-substituted chitosan derivative

  1. Determination of the parameters of binding between lipopolysaccharide and chitosan and its N-acetylated derivative using a gravimetric piezoquartz biosensor.

    PubMed

    Naberezhnykh, G A; Gorbach, V I; Kalmykova, E N; Solov'eva, T F

    2015-03-01

    The interaction of endotoxin (lipopolysaccharide - LPS) with low molecular weight chitosan (5.5 kDa), its N-acylated derivative and chitoliposomes was studied using a gravimetric piezoelectric quartz crystal microbalance biosensor. The optimal conditions for the formation of a biolayer based on immobilized LPS on the resonator surface and its regeneration were elaborated. The association and dissociation rate constants for LPS binding to chitosans were determined and the affinity constants (Kaf) were calculated based on the data on changes in the oscillation frequency of the quartz crystal resonator. The Kaf values correlated with the ones obtained using other methods. The affinity of N-acylated chitosan binding to LPS was higher than that of the parent chitosan binding to LPS. Based on the results obtained, we suggest that water-soluble N-acylated derivatives of chitosan with low degree of substitution of amino groups could be useful compounds for endotoxin binding and neutralization. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan.

    PubMed

    Xu, Tao; Xin, Meihua; Li, Mingchun; Huang, Huili; Zhou, Shengquan; Liu, Juezhao

    2011-11-08

    N,N,N-Trimethyl O-(2-hydroxy-3-trimethylammonium propyl) chitosans (TMHTMAPC) with different degrees of O-substitution were synthesized by reacting O-methyl-free N,N,N-trimethyl chitosan (TMC) with 3-chloro-2-hydroxy-propyl trimethyl ammonium chloride (CHPTMAC). The products were characterized by (1)H NMR, FTIR and TGA, and investigated for antibacterial activity against Staphylococcus aureus and Escherichia coli under weakly acidic (pH 5.5) and weakly basic (pH 7.2) conditions. TMHTMAPC exhibited enhanced antibacterial activity compared with TMC, and the activity of TMHTMAPC increased with an increase in the degree of substitution. Divalent cations (Ba(2+) and Ca(2+)) strongly reduced the antibacterial activity of chitosan, O-carboxymethyl chitosan and N,N,N-trimethyl-O-carboxymethyl chitosan, but the repression on the antibacterial activity of TMC and TMHTMAPC was weaker. This indicates that the free amino group on chitosan backbone is the main functional group interacting with divalent cations. The existence of 100 mM Na(+) slightly reduced the antibacterial activity of both chitosan and its derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing.

    PubMed

    Patrulea, V; Hirt-Burri, N; Jeannerat, A; Applegate, L A; Ostafe, V; Jordan, O; Borchard, G

    2016-05-20

    RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3 μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Understanding the properties of chitosan aryl substituted thioureas in their role and potential as antibacterial agents

    NASA Astrophysics Data System (ADS)

    Khairul, Wan M.; Daud, Adibah Izzati; Ismail, Noraznawati

    2018-02-01

    In this study, the effort was to design and synthesize a series of thiourea-chitosan derivatives featuring five aryl substituted members namely N-chitosan-N'-(4-nitrobenzoyl) thiourea (1), N-chitosan-N'-(4-chlorobenzoyl) thiourea (2), N-chitosan-N'-(4-methylbenzoyl) thiourea (3), N-chitosan-N'-(2-iodobenzoyl) thiourea (4), and N-chitosan-N'-(2-methylbenzoyl) thiourea (5) via SN2 reaction pathway having different donating and withdrawing groups. Their molecular structures were then characterised by FT-IR, UV-Vis, and thermogravimetric analysis (TGA). The antimicrobial activities of these derivatives against four species bacteria Bacillus cereus, Staphylococcus aureus, Salmonella typhi, and Escherichia coli of both Gram-positive and Gram-negative type bacteria at minimum concentration 6mg/ml were carried out to investigate their potential as antibacterial agents. Compound 1 exhibited specific activity as it can only inhibit Gram-positive bacteria while other compounds 2-5 showed broad range spectrum activity as they were able to inhibit both Gram-positive and Gram-negative bacteria. Therefore, 1-5 showed good antibacterial activity and have high potential to be further developed as active materials in pharmaceutical interests.

  5. Effect of chitosan, O-carboxymethyl chitosan, and N-[(2-hydroxy-3-N,N-dimethylhexadecyl ammonium)propyl] chitosan chloride on overweight and insulin resistance in a murine diet-induced obesity.

    PubMed

    Liu, Xiaofei; Zhi, Xiaona; Liu, Yunfei; Wu, Bo; Sun, Zhong; Shen, Jun

    2012-04-04

    Two water-soluble chitosan derivatives, O-carboxymethyl chitosan (O-CM-chitosan) and N-[(2-hydroxy-3-N,N-dimethylhexadecyl ammonium)propyl] chitosan chloride (N-CQ-chitosan), were prepared, and the therapeutic effects of chitosan, O-CM-chitosan, and N-CQ-chitosan on insulin resistance were simultaneously evaluated by rats fed on a high-fat diet. The parameters of high-fat diet-induced rats indicated that chitosan and its two derivatives not only have low cytotoxicity but can control overnutrition by fat and achieve insulin resistance therapy. However, the results in experiment in vivo showed that the therapeutic degree varied by the molecular weight and surface charge of chitosan, O-CM-chitosan, and N-CQ-chitosan. N-CQ-chitosan with a MW of 5 × 10(4) decreased body weight, the ratio of fat to body weight, triglyceride, fasting plasma glucose, fasting plasma insulin, free fatty acid, and leptin by 11, 17, 44, 46, 44, 87, and 64% and increased fecal lipid by 95%, respectively.

  6. Preparation and characterization of N-benzoyl-O-acetyl-chitosan.

    PubMed

    Cai, Jinping; Dang, Qifeng; Liu, Chengsheng; Fan, Bing; Yan, Jingquan; Xu, Yanyan; Li, Jingjing

    2015-01-01

    A novel amphipathic chitosan derivative, N-benzoyl-O-acetyl-chitosan (BACS), was prepared by using the selective partial acylation of chitosan (CS), benzoyl chloride, and acetic acid under high-intensity ultrasound. The chemical structure and physical properties of BACS were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degrees of substitution of benzoyl and acetyl for the chitosan derivatives were 0.26 and 1.15, respectively, which were calculated from the peak areas in NMR spectra by using the combined integral methods. The foaming properties of CS and BACS were determined and the results suggested BACS had better foam capacity and stability than those of chitosan. In addition, the antimicrobial activities of CS and BACS were also investigated against two species of bacteria (Escherichia coli and Staphylococcus aureus) and a fungus (Aspergillus niger), the results indicated that the antibacterial and antifungal activities of BACS were much stronger than those of the parent chitosan. These findings suggested that BACS was preferable for use as a food additive with a dual role of both foaming agent and food preservative. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities--a review.

    PubMed

    Jarmila, Vinsová; Vavríková, Eva

    2011-01-01

    Chitosan is a linear polysaccharide with a good biodegradability, biocompatibility, and no toxicity, which provide it with huge potential for future development. The chitosan molecule appears to be a suitable polymeric complex for many biomedical applications. This review gathers current findings on the antibacterial, antifungal, antitumour and antioxidant activities of chitosan derivatives and concurs with our previous review presenting data collected up to 2008. Antibacterial activity is based on molecular weight, the degree of deacetylation, the type of substitutents, which can be cationic or easily form cations, and the type of bacterium. In general, high molecular weight chitosan cannot pass through cell membranes and forms a film that protects cells against nutrient transport through the microbial cell membrane. Low molecular weight chitosan derivatives are water soluble and can better incorporate the active molecule into the cell. Gram-negative bacteria, often represented by Escherichia coli, have an anionic bacterial surface on which cationic chitosan derivatives interact electrostatically. Thus, many chitosan conjugates have cationic components such as ammonium, pyridinium or piperazinium substituents introduced into their molecules to increase their positive charge. Gram-positive bacteria like Staphylococcus aureus are inhibited by the binding of lower molecular weight chitosan derivatives to DNA or RNA. Chitosan nanoparticles exhibit an increase in loading capacity and efficacy. Antitumour active compounds such as doxorubicin, paclitaxel, docetaxel and norcantharidin are used as drug carriers. It is evident that chitosan, with its low molecular weight, is a useful carrier for molecular drugs requiring targeted delivery. The antioxidant scavenging activity of chitosan has been established by the strong hydrogen-donating ability of chitosan. The low molecular weight and greater degree of quarternization have a positive influence on the antioxidant activity

  8. [Neutralization of anticoagulant activity of heparin by N-[(2-hydroxy-3-trimethylammonium) propyl] chloride derivatives of chitosan].

    PubMed

    Shagdarova, B Ts; Drozd, N N; Il'ina, A V; Logviniva, Yu S; Varlamov, V P

    2016-01-01

    Alkylated derivatives of low molecular weight chitosan with different substitution degrees of 98, 40, and 9% (I, II, and III respectively) have been synthesized. The structure of the obtained derivatives was defined by spectral assays (IR-spectroscopy and proton magnetic resonance). Chitosan derivatives were characterized with positive zeta-potential (33–51 mV) and solubility from 2 to 100 mg/mL in pH 7.4 and 25°C. It was shown that, at a concentration of 0.0014–0.0029 mg/mL, derivative I, as well as protamine sulfate, could be used to neutralize the anticoagulant activity of unfractionated or low molecular weight heparin. At a concentration of 0.0029–0.58 mg/mL, derivative I enhanced platelet aggregation, which would be necessary when hemostatic compounds or materials were used. Derivatives II and III enhanced platelet aggregation to a lesser extent.

  9. Synthesis, characterization, and the antioxidant activity of N,N,N-trimethyl chitosan salts.

    PubMed

    Zhang, Jingjing; Tan, Wenqiang; Wang, Gang; Yin, Xiuli; Li, Qing; Dong, Fang; Guo, Zhanyong

    2018-06-05

    Chitosan, possessing excellent properties, has been drawing broad attention. For the further utilization of chitosan, chemical modification is performed in improving its water solubility and the bioactivities. In the current study, four N,N,N-trimethyl chitosan salts, including N,N,N-trimethyl chitosan citrate (TMCSCi), N,N,N-trimethyl chitosan acetylsalicylate (TMCSAc), N,N,N-trimethyl chitosan ascorbate (TMCSAs), and N,N,N-trimethyl chitosan gallate (TMCSGa), were prepared via N,N,N-trimethyl chitosan iodide (TMCSI). The as-prepared products were characterized by FT-IR and 1 H NMR. Meanwhile, the degrees of substitution were calculated by elemental analysis results. Furthermore, scavenging activities (against DPPH radicals and superoxide radicals) test and reducing power test were selected to evaluate the antioxidant property of N,N,N-trimethyl chitosan salts in vitro. The results indicated that TMCSAs and TMCSGa displayed excellent activity, probably due to the enhancement of ascorbate and gallate in antioxidant activity. However, because of the weak antioxidant property of citrate and acetylsalicylate, the activity was lower for TMCSCi and TMCSAc. For example, in the DPPH radicals scavenging assay, the scavenging rates of chitosan, TMCSI, TMCSCi, TMCSAc, TMCSAs, and TMCSGa were 25.22, 84.11, 6.90, 2.70, 94.92, and 96.75% at 0.4 mg/mL, respectively. Generally, TMCSAs and TMCSGa could be regarded as a potential source of antioxidants. Copyright © 2017. Published by Elsevier B.V.

  10. Amphiphilic chitosan derivatives as carrier agents for rotenone

    NASA Astrophysics Data System (ADS)

    Kamari, Azlan; Aljafree, Nurul Farhana Ahmad

    2017-08-01

    In the present study, the feasibility of amphiphilic chitosan derivatives, namely oleoyl carboxymethyl chitosan (OCMCs), N,N-dimethylhexadecyl carboxymethyl chitosan (DCMCs) and deoxycholic acid carboxymethyl chitosan (DACMCs) as carrier agents for rotenone in water-insoluble pesticide formulations was investigated. Fourier Transform Infrared (FTIR) Spectrometer, CHN-O Elemental Analyser (CHN-O) and Transmission Electron Microscope (TEM) were used to characterise amphiphilic chitosan derivatives. The critical micelle concentration (CMC) of amphiphilic chitosan derivatives was determined using a Fluorescence Spectrometer. A High Performance Liquid Chromatography (HPLC) was used to determine the ability of OCMCs, DCMCs and DACMCs to load and release rotenone in an in vitro system. Based on TEM analysis, results have shown that amphiphilic chitosan derivatives formed self-assembly and exhibited spherical shape. The CMC values determined for OCMCs, DCMCs and DACMCs were 0.093, 0.098 and 0.468 mg/mL, respectively. The encapsulation efficiency (EE) values for the materials were more than 97.0%, meanwhile the loading capacity (LC) values were greater than 0.90%. OCMCs, DCMCs and DACMCs micelles exhibited an excellent ability to control the release of rotenone, of which 90.0% of rotenone was released within 40 to 52 h. In conclusion, OCMCs, DCMCs and DACMCs possess several key features to act as effective carrier agents for rotenone. Overall, amphiphilic chitosan derivatives produced in this study were successfully increased the solubility of rotenone by 49.0 times higher than free rotenone.

  11. Preparation and anticoagulant activity of N-succinyl chitosan sulfates.

    PubMed

    Wang, Tan; Zhou, Yue; Xie, Weiguo; Chen, Lingyun; Zheng, Hua; Fan, Lihong

    2012-12-01

    In order to develop a promising substitute for heparin, N-succinyl chitosan (NSC) was chemically modified by sulfating agent N(SO(3)Na)(3), which were synthesized with sodium bisulfite and sodium nitrite in aqueous solution. The N-succinyl chitosan sulfates (NSCS) products were characterized by infrared spectroscopy (FT-IR) and (13)C NMR. The degree of substitution (DS) of NSCS depended on the ratio of sulfating agent to N-succinyl chitosan, reaction temperature, reaction time and pH of sulfation agent. N-succinyl chitosan sulfates with DS of 1.97 were obtained under optimal conditions. The in vitro coagulation assay of NSCS was determined by activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) assays. The results showed that NSCS obviously prolonged APTT. The anticoagulant activity strongly depended on DS, molecular weight (M(w)) and concentration of NSCS. The anticoagulant activity of NSCS promoted with the increase of DS and concentration, and NSCS exhibited the best anticoagulant activity with the M(w) of 1.37×10(4). Copyright © 2012. Published by Elsevier B.V.

  12. Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification

    NASA Astrophysics Data System (ADS)

    Tan, Fu-neng

    2018-03-01

    A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.

  13. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review

    PubMed Central

    Martins, Alessandro F.; Facchi, Suelen P.; Follmann, Heveline D. M.; Pereira, Antonio G. B.; Rubira, Adley F.; Muniz, Edvani C.

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents. PMID:25402643

  14. Design, synthesis of novel chitosan derivatives bearing quaternary phosphonium salts and evaluation of antifungal activity.

    PubMed

    Tan, Wenqiang; Zhang, Jingjing; Luan, Fang; Wei, Lijie; Chen, Yuan; Dong, Fang; Li, Qing; Guo, Zhanyong

    2017-09-01

    Two novel chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized, including tricyclohexylphosphonium acetyl chitosan chloride (TCPACSC) and triphenylphosphonium acetyl chitosan chloride (TPPACSC), and characterized by FTIR, 1 H NMR, and 13 C NMR spectra. The degree of substitution was also calculated by elemental analysis results. Their antifungal activities against Colletotrichum lagenarium, Watermelon fusarium, and Fusarium oxysporum were investigated in vitro using the radial growth assay, minimal inhibitory concentration, and minimum bactericidal concentration assay. The fungicidal assessment revealed that the synthesized chitosan derivatives had superior antifungal activity compared with chitosan. Especially, TPPACSC exhibited the best antifungal property with inhibitory indices of over 75% at 1.0mg/mL. The results obviously showed that quaternary phosphonium groups could effectively enhance antifungal activity of the synthesized chitosan derivatives. Meanwhile, it was also found that their antifungal activity was influenced by electron-withdrawing ability of the quaternary phosphonium salts. The synthetic strategy described here could be utilized for the development of chitosan as antifungal biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Investigation of an elutable N-propylphosphonic acid chitosan derivative composition with a chitosan matrix prepared from carbonic acid solution.

    PubMed

    Mania, Szymon; Tylingo, Robert; Augustin, Ewa; Gucwa, Katarzyna; Szwacki, Jakub; Staroszczyk, Hanna

    2018-01-01

    Porous chitosan composites using CO 2 dissolution procedure and including water soluble N-propylphosphonic chitosan derivative (p-CHI) were obtained and characterized. In contrast to the control material, composites containing modified chitosan distinguished by a rapid moisture absorption and good adhesion to the skin. The FTIR analysis confirmed the presence of propylphosphonic group in the structure of the polymer. The porosity of the materials was in the range 55-77% and decreased with increasong amount of modified chitosan in materials. Solubility of composites was dependent on the content of p-CHI in scaffolds (40%, 25% and 15%) and reached values 11%, 9% and 6,5%, respectively. The values of other parameters like swelling degree (30g/g) good antioxidant and antimicrobial properties (almost 100% reduction of S.aureus, E.coli and C. albicans growth) and low in vitro cytotoxicity against fibroblasts were highly advantageous for possible biomedical applications of the composites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

    PubMed Central

    Azuma, Kazuo; Izumi, Ryotaro; Osaki, Tomohiro; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    Chitin (β-(1-4)-poly-N-acetyl-d-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review, the studies on the wound-healing effects of chitin, chitosan, and its derivatives are summarized. Moreover, the development of adhesive-based chitin and chitosan are also described. The evidence indicates that chitin, chitosan, and its derivatives are beneficial for the wound healing process. More recently, it is also indicate that some nano-based materials from chitin and chitosan are beneficial than chitin and chitosan for wound healing. Clinical applications of nano-based chitin and chitosan are also expected. PMID:25780874

  17. Chitosan derivatives for gene transfer: effect of phosphorylcholine and diethylaminoethyl grafts on the in vitro transfection efficiency.

    PubMed

    Picola, Isadora Pfeifer Dalla; Shi, Qin; Fernandes, Júlio Cesar; Petrônio, Maicon Segalla; Lima, Aline Margarete Furuyama; de Oliveira Tiera, Vera Aparecida; Tiera, Marcio José

    2016-11-01

    The purpose of this work was to improve the functional properties of chitosan for gene transfer by inserting phosphorylcholine (PC) and diethylaminoethyl (DEAE) groups into the main chain. A series of derivatives containing increasing contents of DEAE and a fixed content of PC groups were synthesized and characterized, aiming to evaluate the effect of these groups on the nanoparticles' properties and the in vitro transfection efficiency. The derivatives were soluble at physiological pH levels and all derivatives were less cytotoxic than the control, the lipid lipofectamine. The obtained derivatives complexed pDNA into nanoparticles with smaller sizes and higher zeta potentials than plain chitosan. The in vitro transfection was performed with nanoparticles prepared at pH 6.3 and 7.4 and the results showed that nanoparticles prepared with derivatives containing 20% of PC groups (PC18-CH) and high degrees of substitution by DEAE (PC20-CH-DEAE100, CH-DEAE80, CH-DEAE100) displayed the better transfection efficiencies in HeLa cells, reaching relative values comparable to lipofectamine. The most effective derivative, PC18CH, was selected for complexation with siRNA and its complexes demonstrated an in vitro knockdown efficiency highly dependent on the N/P ratio. Our combined results indicated that, by means of controlled modifications, the limitations of chitosan can be overcome to obtain more effective carriers based on chitosan, and the derivatives here studied hold potential for in vivo studies.

  18. Cytotoxic activity of aminoderivatized cationic chitosan derivatives.

    PubMed

    Lee, Jung-Kul; Lim, Hyun-Soo; Kim, Jung-Hoe

    2002-10-21

    Chitosan derivatives were prepared by dialkylaminoalkylation and reductive amination followed by quaternization. In this study, the cytotoxic activity of the chitosan derivatives was investigated and a relationship between structure and activity is suggested. The cationic chitosan derivatives elicited dose-dependent inhibitory effects on the proliferation of tumor cell lines.

  19. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    NASA Astrophysics Data System (ADS)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  20. Novel transmucosal absorption enhancers obtained by aminoalkylation of chitosan.

    PubMed

    Zambito, Ylenia; Uccello-Barretta, Gloria; Zaino, Chiara; Balzano, Federica; Di Colo, Giacomo

    2006-12-01

    Literature data suggest that quaternized chitosans have a transmucosal drug absorption enhancing property depending on their MW, quaternization degree and other structural features. With the purpose of preparing novel effective promoters, a chitosan (Ch) from crab shell (ChC; viscometric MW, 800 kDa; deacetylation: 90%, IR; 84%, NMR) and one from shrimp shell (ChS; viscometric MW, 590 kDa; deacetylation: 90%, IR; 82%, NMR) were reacted with 2-diethylaminoethyl chloride (DEAE-Cl) and novel derivatives containing different percentages of pendant quaternary ammonium groups were obtained. NMR analysis, based on HSQC, COSY, TOCSY and ROESY maps, indicated that three partially substituted N,O-[N,N-diethylaminomethyl(diethyldimethylene ammonium)(n)]methyl chitosans, coded N(+)-ChS-2 (degree of substitution, DS=40%; n=1.6), N(+)-ChS-4 (DS=132%; n=2.5), and N(+)-ChC-4 (DS=85%; n=1.7) resulted from the reaction, depending on whether the DEAE-Cl/Ch repeating unit molar ratio, was 2:1 or 4:1. The effects of the derivatives on the permeability of rhodamine 123 (Rh-123), hydrophobic, marker of the transcellular absorption route, and of fluorescein sodium (NaFlu), polar, marker of the paracellular route, across excised porcine cheek epithelium were assessed, using Franz type diffusion cells. Rh-123 permeability was enhanced by N(+)-ChS-4 (enhancement ratio, ER=8.4) and by N(+)-ChC-4 (ER=3.9), whereas N(+)-ChS-2 was ineffective. NaFlu permeability was enhanced by N(+)-ChS-2 (ER=7.2), N(+)-ChS-4 (ER=7.4) and N(+)-ChC-4 (ER=6.6). In conclusion, the three derivatives, whichever their DS, promote paracellular transport, while transcellular transport is substantially accelerated only by the most substituted one.

  1. Preparation and Characterization of Novel Cationic Chitosan Derivatives Bearing Quaternary Ammonium and Phosphonium Salts and Assessment of Their Antifungal Properties.

    PubMed

    Tan, Wenqiang; Li, Qing; Dong, Fang; Chen, Qiuhong; Guo, Zhanyong

    2017-08-31

    Chitosan is an abundant and renewable polysaccharide, its derivatives exhibit attractive bioactivities and the wide applications in various biomedical fields. In this paper, two novel cationic chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized via trimethylation, chloride acetylation, and quaternization with tricyclohexylphosphine and triphenylphosphine. The structures and properties of synthesized products in the reactions were characterized by FTIR spectroscopy, ¹H-NMR, 31 P-NMR, elemental and thermogravimetric analysis. The antifungal activities of chitosan derivatives against four kinds of phytopathogens, including Phomopsis asparagi , Watermelon fusarium , Colletotrichum lagenarium , and Fusarium oxysporum were tested using the radial growth assay in vitro. The results revealed that the synthesized cationic chitosan derivatives showed significantly improved antifungal efficiency compared to chitosan. It was reasonably suggested that quaternary phosphonium groups enabled the obviously stronger antifungal activity of the synthesized chitosans. Especially, the triphenylphosphonium-functionalized chitosan derivative inhibited the growth of Phomopsis asparagi most effectively, with inhibitory indices of about 80% at 0.5 mg/mL. Moreover, the data demonstrated that the substituted groups with stronger electron-withdrawing ability relatively possessed greater antifungal activity. The results suggest the possibility that cationic chitosan derivatives bearing quaternary phosphonium salts could be effectively employed as novel antifungal biomaterials for application in the field of agriculture.

  2. Synthesis and Characterization of a Chitosan Derivative for Electro-Optical Applications

    NASA Technical Reports Server (NTRS)

    Prastofer, Thomas

    1996-01-01

    Chitin is a naturally occurring polymer of alpha(1-4) poly N-acetylglucosamine found primarily in the shells of crustaceans and insects. This polymer is chemically and thermally stable and physically durable as a consequence of hydrogen bonding which causes the alignment and ordering of the polymer chains into microcrystals which aggregate into sheets with chiral nematic order. Industry has attempted to take advantage of chitin's properties and low cost (chitin is a waste product of the shellfish industry) to produce durable fibers and other products. This has been largely unsuccessful because of chitin's non reactivity and insolubility. Chitosan is the deacetylation product of chitin and retains many of the structural properties of chitin. Unlike chitin, chitosan is soluble in aqueous solution at reduced pH making it easier to be processed into fibers and films than chitin. Chitosan and its derivatives are now used in such commercial applications as wound dressings, waste water treatment, and in pharmaceuticals. In this study, we have synthesized a chitosan derivative, N-para-nitrophenyl chitosan (NPNPC), as a model material with potential applications in electro optics.

  3. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt.

    PubMed

    Zhu, Dan; Cheng, Honghao; Li, Jianna; Zhang, Wenwen; Shen, Yuanyuan; Chen, Shaojun; Ge, Zaochuan; Chen, Shiguo

    2016-04-01

    Chitosan (CS) has been widely recognized as an important biomaterial due to its good antimicrobial activity, biocompatibility and biodegradability. However, CS is insoluble in water in neutral and alkaline aqueous solution due to the linear aggregation of chain molecules and the formation of crystallinity. This is one of the key factors that limit its practical applications. Therefore, improving the solubility of CS in neutral and alkaline aqueous solution is a primary research direction for biomedical applications. In this paper, a reactive antibacterial compound (4-(2,5-Dioxo-pyrrolidin-1-yloxycarbonyl)-benzyl)-triphenyl-phosphonium bromide (NHS-QPS) was synthesized for chemical modification of CS, and a series of novel polymeric antimicrobial agents, N-quaternary phosphonium chitosan derivatives (N-QPCSxy, x=1-2,y=1-4) were obtained. The water solubilities and antibacterial activities of N-QPCSxy against Escherichia coli and Staphylococcus aureus were evaluated compare to CS. The water solubility of N-QPCSxy was all better than that of CS at neutral pH aqueous solution, particularly, N-QPCS14 can be soluble in water over the pH range of 3 to 12. The antibacterial activities of CS derivatives were improved by introducing quaternary phosphonium salt, and antibacterial activity of N-QPCSxy increases with degree of substitution. Overall, N-QPCS14 represents a novel antibacterial polymer material with good antibacterial activity, waters solubility and low cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The preparation and antioxidant activity of the sulfanilamide derivatives of chitosan and chitosan sulfates.

    PubMed

    Zhong, Zhimei; Ji, Xia; Xing, Ronge; Liu, Song; Guo, Zhanyong; Chen, Xiaolin; Li, Pengcheng

    2007-06-01

    Chitosan (CS) and chitosan sulfates (CSS) with different molecular weight (Mw) were reacted with 4-acetamidobenzene sulfonyl chloride to obtain sulfanilamide derivatives of chitosan and chitosan sulfates (LSACS, HSACS, LSACSS, HSACSS). The preparation conditions such as different reaction time, temperature, solvent, and the molar ratio of reaction materials are discussed in this paper. Their structures were characterized by FTIR spectroscopy and elemental analyses. The antioxidant activities of the derivatives were investigated employing various established in vitro systems, such as hydroxyl-radical ((*)OH) superoxide anion (O2(*-)) scavenging and reducing power. All kinds of the compounds (HCS, LCS, HCSS, LCSS, HSACS, LSACS, HSACSS, LSACSS) showed stronger scavenging activity on hydroxyl radical than ascorbic acid (Vc). The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were obvious. The experiment showed that the superoxide radical scavenging effect of sulfanilamide derivatives of chitosan and chitosan sulfates was stronger than that of original CS and CSS. All of the derivatives were efficient in the reducing power. The results indicated that the sulfanilamide group were grafted on CS and CSS increased the reducing power of them obviously.

  5. Synthesis of some N-substituted indole derivatives and their biological activities.

    PubMed

    el-Diwani, H; Nakkady, S S; Hishmat, O H; el-Shabrawy, O A; Mahmoud, S S

    1992-03-01

    Acylation of 2,3-diphenyl-5-methoxy-indole using ethyl chloroformate or chloroacetyl chloride in dimethylformamide and sodium hydride yielded the N-substituted derivatives 1 and 2, respectively. While Friedel-Crafts acylation using chloroacetyl chloride afforded di-4,6-chloroacetyl derivative 3, the reaction of the N-chloroacetyl derivative 2 with amines, hydrazines, urea, semicarbazide hydrochloride, thiophenol, benzimidazole-2-thiol, thiosemicarbazide, 2-mercaptoethanol and thioglycolic acid was studied. Several of the compounds were tested for their effect on arterial blood pressure, antiinflammatory and ulcerogenic activities.

  6. Synthesis of carboxymethylated and quaternized chitosans and their therapeutic effect on nonalcoholic Fatty liver disease.

    PubMed

    Liu, Xiaofei; Yang, Fan; Song, Tao; Zeng, Anrong; Wang, Qi; Sun, Zhong; Shen, Jun

    2011-10-12

    O-Carboxymethyl chitosan (O-CMCs) and N-((2-hydroxy-3-N,N-dimethylhexadecylammonium)propyl)chitosan chloride (N-CQCs) were synthesized for nonalcoholic fatty liver disease (NAFLD) treatment. The weight-average weight and substitution degree of O-CMCs and N-CQCs were 6.5 × 10(4) and 0.72 and 7.9 × 10(4) and 0.21, respectively. O-CMCs was negatively charged with a zeta-potential value of -31.82 mV, whereas that of N-CQCs was +36.1 mV, and both showed low cytotoxcity. Serum lipid level and liver fat accumulation were reduced with chitosan and its two derivatives. Furthermore, mRNA and protein expression assay of hepatic lipid metabolism enzymes and low-density lipoprotein receptor (LDL-R) were observed by RT-PCR and Western blot. Results showed that N-CQCs exhibited a more evident desired effect than chitosan and O-CMCs, indicating that amphiphilicity, solubility, and surface charge of chitosan and its two derivatives played roles in the expression of hepatic lipid metabolism enzymes and LDL-R. Therefore, dietary supplementation of O-CMCs and N-CQCs can alleviate the high fat diet induced aberrations related to NAFLD by their antilipidemic property.

  7. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications

    PubMed Central

    Kumar, Santosh; Koh, Joonseok

    2012-01-01

    This paper describes the physiochemical, optical and biological activity of chitosan-chromone derivative. The chitosan-chromone derivative gels were prepared by reacting chitosan with chromone-3-carbaldehyde, followed by solvent exchange, filtration and drying by evaporation. The identity of Schiff base was confirmed by UV-Vis absorption spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. The chitosan-chromone derivative was evaluated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), photoluminescence (PL) and circular dichroism (CD). The CD spectrum showed the chitosan-chromone derivative had a secondary helical structure. Microbiological screening results demonstrated the chitosan-chromone derivative had antimicrobial activity against Escherichia coli bacteria. The chitosan-chromone derivative did not have any adverse effect on the cellular proliferation of mouse embryonic fibroblasts (MEF) and did not lead to cellular toxicity in MEFs. These results suggest that the chitosan-chromone derivative gels may open a new perspective in biomedical applications. PMID:22754352

  8. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    PubMed Central

    Zhang, Hongyin; Li, Renping; Liu, Weimin

    2011-01-01

    Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are widely used in controlling postharvest decay of fruits. This review aims to introduce the effect of chitin and chitosan on postharvest decay in fruits and the possible modes of action involved. We found most of the actions discussed in these researches rest on physiological mechanisms. All of the mechanisms are summarized to lay the groundwork for further studies which should focus on the molecular mechanisms of chitin and chitosan in controlling postharvest decay of fruits. PMID:21541034

  9. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Environmental applications of chitosan and its derivatives.

    PubMed

    Yong, Soon Kong; Shrivastava, Manoj; Srivastava, Prashant; Kunhikrishnan, Anitha; Bolan, Nanthi

    2015-01-01

    , hydraulic conductivity, permeability, surface area and sorption capacity. Crosslinked chitosan is an excellent sorbent for trace metals especially because of the high flexibility of its structural stability. Sorption of trace metals by chitosan is selective and independent of the size and hardness of metal ions, or the physical form of chitosan (e.g., film, powder and solution). Both -OH and -NH2 groups in chitosan provide vital binding sites for complexing metal cations. At low pH, -NH3 + groups attract and coagulate negatively charged contaminants such as metal oxyanions, humic acids and dye molecules. Grafting certain functional molecules into the chitin structure improves sorption capacity and selectivity for remediating specific metal ions. For example, introducing sulfur and nitrogen donor ligands to chitosan alters the sorption preference for metals. Low molecular weight chitosan derivatives have been used to remediate metal contaminated soil and sediments. They have also been applied in permeable reactive barriers to remediate metals in soil and groundwater. Both chitosan and modified chitosan have been used to phytoremediate metals; however, the mechanisms by which they assist in mobilizing metals are not yet well understood. In addition, microbes have been used in combination with chitosan to remediate metals (e.g., Cu and Zn) in contaminated soils. Chitosan has also been used to remediate organic contaminants, such as oil-based wastewater, dyes, tannins, humic acids, phenols, bisphenoi-A, p-benzoquinone, organo-phosphorus insecticides, among others. Chitosan has also been utilized to develop optical and electrochemical sensors for in-situ detection of trace contaminants. In sensor technology, naturally-derived chitosan is used primarily as an immobilizing agent that results from its enzyme compatibility, and stabilizing effect on nanoparticles. Contaminant-sensing agents, such as enzymes, microbes and nanoparticles, have been homogeneously immobilized in chitosan

  11. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles

    PubMed Central

    Sarwar, Atif; Katas, Haliza; Samsudin, Siti Noradila; Zin, Noraziah Mohamad

    2015-01-01

    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future

  12. Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety.

    PubMed

    Salama, Hend E; Saad, Gamal R; Sabaa, Magdy W

    2015-08-01

    The Schiff bases of chitosan were synthesized by the reaction of chitosan with 3-(4-substituted-phenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde. The structure of the prepared chitosan derivatives was characterized by FT-IR spectroscopy, elemental analysis, and X-ray diffraction studies and thermogravimetric analysis (TG). The results show that the specific properties of Schiff bases of chitosan can be altered by modifying the molecular structures with proper substituent groups.TG results reveal that the thermal stability of the prepared chitosan Schiff bases was lower than chitosan. The activation energy of decomposition was calculated using Coats-Redfern model. The antimicrobial activity of chitosan and Schiff bases of chitosan were investigated against Streptococcus pneumonia, Bacillis subtilis, Escherichia coli (as examples of bacteria) and Aspergillus fumigatus, Geotricum candidum and Syncephalastrum recemosum (as examples of fungi). The results indicated that the antimicrobial activity of the Schiff bases was stronger than that of chitosan and was dependent on the substituent group. The activity of un-substituted arylpyrazole chitosan derivative toward the investigated bacteria and fungi species was better than the other derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity.

    PubMed

    Qin, Yukun; Liu, Song; Xing, Ronge; Yu, Huahua; Li, Kecheng; Meng, Xiangtao; Li, Rongfeng; Li, Pengcheng

    2012-06-20

    In this study, ammonium dithiocarbamate chitosan (ADTCCS) and triethylene diamine dithiocarbamate chitosan (TEDADTCCS) derivatives were obtained respectively by mixing chitosan with carbon disulfide and ammonia (triethylenediamine). Their structures were confirmed by FT-IR, 1H NMR, XRD, DSC, SEM, and elemental analysis. Antifungal properties of them against the plant pathogenic fungi Fusarium oxysporum and Alternaria porri were investigated at concentrations ranged from 31.25 to 500 mg/L. The dithiocarbamate chitosan derivatives had enhanced antifungal activity compared with chitosan. Particularly, they showed obvious inhibitory effect on Fusarium oxysporum. At 500 mg/L, TEDADTCCS inhibited growth of F. oxysporum at 60.4%, stronger than polyoxin and triadimefon whose antifungal indexes were found to be 25.3% and 37.7%. The chitosan derivatives described here deserve further study for use in crop protection. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Synthesis and characterization of low-toxicity N-caprinoyl-N-trimethyl chitosan as self-assembled micelles carriers for osthole

    PubMed Central

    Hu, Xiao-juan; Liu, Yang; Zhou, Xiao-feng; Zhu, Qiao-ling; Bei, Yong-yan; You, Ben-gang; Zhang, Chun-ge; Chen, Wei-liang; Wang, Zhou-li; Zhu, Ai-jun; Zhang, Xue-nong; Fan, Yu-jiang

    2013-01-01

    Novel amphiphilic chitosan derivatives (N-caprinoyl-N-trimethyl chitosan [CA-TMC]) were synthesized by grafting the hydrophobic moiety caprinoyl (CA) and hydrophilic moiety trimethyl chitosan to prepare carriers with good compatibility for poorly soluble drugs. Based on self-assembly, CA-TMC can form micelles with sizes ranging from 136 nm to 212 nm. The critical aggregation concentration increased from 0.6 mg • L−1 to 88 mg • L−1 with decrease in the degree of CA substitution. Osthole (OST) could be easily encapsulated into the CA-TMC micelles. The highest entrapment efficiency and drug loading of OST-loaded CA-TMC micelles(OST/CA-TMC) were 79.1% and 19.1%, respectively. The antitumor efficacy results show that OST/CA-TMC micelles have significant antitumor activity on Hela and MCF-7 cells, with a 50% of cell growth inhibition (IC50) of 35.8 and 46.7 μg. mL−1, respectively. Cell apoptosis was the main effect on cell death of Hela and MCF-7 cells after OST administration. The blank micelles did not affect apoptosis or cell death of Hela and MCF-7 cells. The fluorescence imaging results indicated that OST/CA-TMC micelles could be easily uptaken by Hela and MCF-7 cells and could localize in the cell nuclei. These findings suggest that CA-TMC micelles are promising carriers for OST delivery in cancer therapy. PMID:24106424

  15. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

    PubMed Central

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  16. Visible and UV-curable chitosan derivatives for immobilization of biomolecules.

    PubMed

    Kim, Eun-Hye; Han, Ga-Dug; Kim, Jae-Won; Noh, Seung-Hyun; Lee, Jae-Gwan; Ito, Yoshihiro; Son, Tae-Il

    2017-11-01

    Chitosan, which has many biocompatible properties, is used widely in medical field like wound healing, drug delivery and so on. Chitosan could be used as a biomaterial to immobilize protein-drug. There are many methods to immobilize protein-drug, but they have some drawbacks such as low efficiency and denaturation of protein. Therefore, photo-immobilization method is suggested to immobilize protein-drug. Photo-immobilization method is simple-reaction and also needs no additional crosslinking reagent. There has been some effort to modify chitosan to have an ability of photo-immobilization. Generally, visible and UV light reactive chitosan derivatives were prepared. Various types of photo-curable chitosan derivatives showed possibility for application to medical field. For example, they showed ability for protein-immobilization and some of them showed wound-healing effect, anti-adhesive effect, or property to interact directly with titanium surface. In this study, we introduce many types of photo-curable chitosan derivative and their possibility of medical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Solid state synthesis of chitosan and its unsaturated derivatives for laser microfabrication of 3D scaffolds

    NASA Astrophysics Data System (ADS)

    Akopova, T. A.; Demina, T. S.; Bagratashvili, V. N.; Bardakova, K. N.; Novikov, M. M.; Selezneva, I. I.; Istomin, A. V.; Svidchenko, E. A.; Cherkaev, G. V.; Surin, N. M.; Timashev, P. S.

    2015-07-01

    Chitosans with various degrees of deacetylation and molecular weights and their allyl substituted derivatives were obtained through a solvent-free reaction under shear deformation in an extruder. Structure and physical-chemical analysis of the samples were carried out using nuclear magnetic resonance (NMR), ultraviolet (UV) and infrared radiation (IR) spectroscopy. Photosensitive materials based on the synthesized polymers were successfully used for microfabrication of 3D well-defined architectonic structures by laser stereolithography. Study on the metabolic activity of NCTC L929 cultured in the presence of the cured chitosan extracts indicates that the engineered biomaterials could support adhesion, spreading and growth of adherent-dependent cells, and thus could be considered as biocompatible scaffolds.

  18. Synthesis, characterization and biological activity of C6-Schiff bases derivatives of chitosan.

    PubMed

    Xu, Ruibo; Aotegen, Bayaer; Zhong, Zhimei

    2017-12-01

    C 6 -Schiff bases derivatives of chitosan were synthesized for the first time. C 2 -amino groups and C 3 -hydroxy groups were firstly protected by CuSO 4 ·5H 2 O, and the C 6 -hydroxy was then transformed into aldehyde, which then reacted with anilines through nucleophilic addition to introduce the CN group at C 6 -position in chitosan chain. Finally, C 6 -Schiff bases derivatives of chitosan were got by the deprotection of C 2 -NH 2 with cation exchange resin. The structures and properties of the new synthesized products were characterized by Fourier transform infrared spectroscopy, 13 C NMR, SEM image, and elemental analysis. The antibacterial activities of derivatives were tested in the experiment, and the results showed that the prepared chitosan derivatives had significantly improved antibacterial activity toward Staphylococcus aureus and Escherichia coli. The Cytotoxicity test showed that the prepared chitosan derivatives had low Cytotoxicity, compared with chitosan and C 2 -benzaldehyde Schiff bases of chitosan. This paper allowed a new method for the synthesis of Schiff bases of chitosan, which was enlightening. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations.

    PubMed

    Mahjub, Reza; Radmehr, Moojan; Dorkoosh, Farid Abedin; Ostad, Seyed Naser; Rafiee-Tehrani, Morteza

    2014-12-01

    The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan. Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined. Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24 h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared

  20. Synthesis and evaluation of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives as antioxidants agents.

    PubMed

    Olgen, Süreyya; Kiliç, Zuhal; Ada, Ahmet O; Coban, Tulay

    2007-08-01

    We have previously reported on the synthesis of novel indole derivatives where some compounds showed significant antioxidant activity. Here, we report the synthesis of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives and investigated their antioxidant role in order to identify structural characteristics responsible for activity. Although all compounds showed a strong inhibitory (95-100%) effect on superoxide anion (SOD) only compounds 4, 5 and 6 showed simliar potency for the inhibition of lipid peroxidation (81-94%) which revealed that compounds 4, 5 and 6 possessed highly potent antioxidant properties. Substitution in the 1-position of the indole ring caused the significant differences between the activity results regarding lipid peroxidation inhibition.

  1. Synthesis of chitosan derivative with diethyldithiocarbamate and its antifungal activity.

    PubMed

    Qin, Yukun; Xing, Ronge; Liu, Song; Li, Kecheng; Hu, Linfeng; Yu, Huahua; Chen, Xiaolin; Li, Pengcheng

    2014-04-01

    With an aim to discover novel chitosan derivatives with enhanced antifungal properties compared with chitosan. Diethyl dithiocarbamate chitosan (EtDTCCS) was investigated and its structure was well identified. The antifungal activity of EtDTCCS against Alternaria porri (A. porri), Gloeosporium theae sinensis Miyake (G. theae sinensis), and Stemphylium solani Weber (S. solani) was tested at 0.25, 0.5, and 1.0 mg/mL, respectively. Compared with plain chitosan, EtDTCCS shows better inhibitory effect with 93.2% inhibitory index on G. theae sinensis at 1.0 mg/mL, even stronger than for polyoxin (82.5%). It was inferred derivatives of this kind may find potential applications for the treatment of various crop-threatening diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    NASA Astrophysics Data System (ADS)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  3. Adsorption properties of congo red from aqueous solution onto N,O-carboxymethyl-chitosan.

    PubMed

    Wang, Li; Wang, Aiqin

    2008-03-01

    N,O-carboxymethyl-chitosans (N,O-CMC) with different degree of substitution (DS) were synthesized under heterogeneous conditions by controlling the reaction temperature. The factors influencing adsorption capacity of N,O-CMC such as the DS of N,O-CMC, initial pH value of the dye solution and adsorption temperature for anionic dye congo red (CR) were investigated. Compared with chitosan (78.90 mg/g), N,O-CMC with the DS of 0.35 exhibited much higher adsorption capacity (330.62 mg/g) for CR at the same adsorption conditions. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation, respectively. The adsorption mechanism of N,O-CMC was also discussed by means of IR and XPS spectra. The results in this study indicated that N,O-CMC was an attractive candidate for removing CR from the dye wastewater.

  4. Uptake of chitosan-derived D-glucosamine oligosaccharides in Streptomyces coelicolor A3(2).

    PubMed

    Viens, Pascal; Dubeau, Marie-Pierre; Kimura, Akane; Desaki, Yoshitake; Shinya, Tomonori; Shibuya, Naoto; Saito, Akihiro; Brzezinski, Ryszard

    2015-05-01

    The csnR gene, localized at the beginning of an operon, csnR-K, which organization is conserved through many actinomycete genomes, was previously shown to repress the transcription of the chitosanase gene csnA in Streptomyces lividans. However, knowledge on the function of the whole csnR-K operon in the metabolism of chitosan (an N-deacetylated derivative of chitin) remained limited. Mutants of S. coelicolor A3(2) harboring partial or total deletions of the csnR-K operon were analyzed for their capacity to uptake glucosamine oligosaccharides (GlcN)n. The csnR-K operon was autoregulated by CsnR repressor and its transcription was inducible by GlcN oligosaccharides. The operon controlled the uptake of GlcN oligosaccharides in S. coelicolor A3(2), with a minor contribution to the consumption of monomeric GlcN but not chitin-related N-acetylated derivatives. The deletion of the whole operon abolished the uptake of GlcN oligosaccharides. The CsnEFG transporter encoded by this operon is the front door for the assimilation of chitosan-derived hydrolysis products in S. coelicolor A3(2). The ATP-binding component MsiK was essential for CsnEFG transport function. Also, deletion of msiK abolished the induction of csnA transcription by GlcN oligosaccharides. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Effects of Chitosan Derivative N-[(2-Hydroxy-3-Trimethylammonium)Propyl]Chloride on Anticoagulant Activity of Guinea Pig Plasma.

    PubMed

    Drozd, N N; Shagdarova, B Ts; Il'ina, A V; Varlamov, V P

    2017-07-01

    Intravenous injection of protamine sulfate or quarternized chitosan derivative to guinea pigs after injection of 70 aIIa U/kg non-fractionated heparin shortened plasma clotting time (shown by partial activated thromboplastin time, thrombin time, and prothrombin time). Intravenous injection of protamine sulfate or quarternized chitosan derivative to guinea pigs after injection of 1 mg/kg (100 aXa U/kg) low-molecular-weight heparin (clexane) led to shortening of plasma clotting time in the ReaClot Heparin test and to prolongation of plasma amidolytic activity in the factor Xa chromogenic substrate test.

  6. Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Zubareva, A. A.; Shcherbinina, T. S.; Varlamov, V. P.; Svirshchevskaya, E. V.

    2015-04-01

    Chitosan (Chi) is a biodegradable nontoxic polycation with multiple reactive groups that is easily used to obtain derivatives with a desired charge and hydrophobic properties. The aim of this work was to study the intracellular traffic of positively charged hexanoyl-chitosan (HC) or HC-based nanoparticles (HCNPs) and negatively charged succinoyl-chitosan (SC) and SCNPs in epithelial and macrophage cell lines. By using flow cytometry we demonstrated that positively charged HC adhered to cell membranes quicker and more efficiently than negatively charged SC or NPs. However confocal studies showed that SC and SCNPs penetrated cells much more efficiently than HC while HCNPs did not enter the epithelial cells. Macrophages also phagocyted better negatively charged material but were able to engulf both HC and HCNPs. Upon entering the cells, SC and SCNPs were co-localized with endosomes and lysosomes while HC was found in mitochondria and, to a lesser extent, in lysosomes of epithelial cells. Macrophages, RAW264.7, more efficiently transported all Chi samples to the lysosomal compartment while some positively charged material was still found in mitochondria. Incubation of Chi derivatives and ChiNPs at pH specific to mitochondria (8.0) and lysosomes (4.5) demonstrated the neutralization of Chi charge. We concluded that epithelial cells and, to a lesser extent, macrophages sort charged material to the organelles neutralizing Chi charge.

  7. "CH"/N substituted mer-Gaq3 and mer-Alq3 derivatives: an effective approach for the tuning of emitting color.

    PubMed

    Gahungu, Godefroid; Zhang, Jingping

    2005-09-22

    Equilibrium geometry configurations of the "CH"/N substituted Alq3 and Gaq3 derivatives are calculated by density functional theory (B3LYP/6-31G). The frontier molecular orbital and gap energy calculations for all complexes have been performed at the HF/6-31G level. It was shown that, compared to the pristine molecules, the HOMO and LUMO are stabilized, the net effect being however an increasing/decreasing of the gap (Eg) depending on the position of the substituted group. On the basis of the equilibrium geometries, the effect of the substitution on the absorption and emission spectra was evaluated using TDB3LYP/3-21G. It was shown that the change of "CH"/N substituted position on 8-hydroxyquinoline ligand is a powerful approach for the tuning of emitting color. An important blue shift was predicted for 5-substituted 8-hydroxyquinoline derivatives, an important red one being observed for 4-substituted ones. Interestingly, relatively significant blue and red shifts were also predicted for the 7- and 2-substituted derivatives. In this work, the correlation between the spectrum shifts and the metal-ligand bonding is also discussed.

  8. Cholic acid modified N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride for superoxide dismutase delivery.

    PubMed

    Cheng, Ye; Cai, Huanxin; Yin, Baoru; Yao, Ping

    2013-09-15

    A series of novel amphiphilic chitosan derivatives, cholic acid modified N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (HTCC-CA) with different quaternization degrees and cholic acid substitutions were synthesized in this study. HTCC-CA is biocompatible and forms particles in aqueous solution. The binding with superoxide dismutase (SOD) at pH 6.8 destroys the original aggregates of HTCC-CA and produces smaller SOD/HTCC-CA complex nanoparticles via electrostatic and hydrophobic interactions. The SOD loading efficiency and loading capacity of HTCC-CA can reach to more than 90% and 45%, respectively. Confocal laser scanning microscopy observation and flow cytometry analysis reveal that SOD/HTCC-CA complex nanoparticles greatly enhance the cellular internalization of the loaded SOD. The SOD activities and malonaldehyde concentrations in the serum and organs of the rats, administrated intravenously with free SOD, free HTCC-CA, and SOD/HTCC-CA nanoparticles, were assayed to evaluate the antioxidant efficiency in vivo. The results demonstrate that free HTCC-CA is effective to scavenge superoxide radicals in the blood circulation and SOD/HTCC-CA nanoparticles have better antioxidant efficiency than free SOD as well as free HTCC-CA. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review.

    PubMed

    Ahmad, Mudasir; Manzoor, Kaiser; Ikram, Saiqa

    2017-12-01

    The polyfunctional chitosan can act as the biological macromolecule ligand not only for the adsorption and the recovery of metal ions from an aqueous media, but also for the fabrication of novel adsorbents which shows selectivity and better adsorption properties. The unmodified chitosan itself, a single cationic polysaccharide, has hydroxyl and amine groups carrying complex properties with the metal ions. In addition, the selectivity of metal ions, the adsorption efficiency and adsorption capacity of the adsorbent can be modified chemically. This review covers the synthetic strategies of chitosan towards the synthesis of hetero-chitosan based adsorbents via chemical modifications in past two decades. It also includes how chemical modification influences the metal adsorption with N, O, S and P containing chitosan derivatives. Hope this review article provides an opportunity for researchers in the future to explore the potential of chitosan as an adsorbent for removal of metal ions from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis of a novel amphiphilic quaternized chitosan and its distribution in rats.

    PubMed

    Liu, Xiaofei; Zeng, Anrong; Li, Lin; Yang, Fan; Wang, Qi; Sun, Zhong; Shen, Jun

    2011-01-01

    A novel amphiphilic chitosan derivative, N-[(2-hydroxy-3-N,N-dimethylhexadecyl ammonium)propyl]chitosan chloride (N-CQCs), was prepared with a degree of substitution (DS) of 15.58%. N-CQCs was positively charged and its zeta potential was +28.4 mV. The introduction of a long carbon chain with a quaternary ammonium salt group into the chitosan backbone enabled N-CQCs to be lipotropic and hydrophilic. According to the hypothesis of the hypocholesterolemic effect of N-CQCs, its organ distribution in rats was investigated 48 h after administration via gavage using fluorescein isothiocyanate labeling. N-CQCs showed lower cytotoxicity. The plasma half-life of N-CQCs in rats was 48 h and the plasma AUC0-48 h (P) was 371.70 μg/ml per h, suggesting that N-CQCs remained in body for a long time. The results also showed that the accumulation in adipose tissue and gastrointestinal tract was higher than in thymus, kidney, liver and spleen at 48 h after administration. It could be presumed that N-CQCs play an important part in the metabolic process of body fat. Adipose tissue and gastrointestinal tract were the probable interaction sites of N-CQCs and body fat.

  11. Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates.

    PubMed

    Fan, Lihong; Wu, Penghui; Zhang, Jinrong; Gao, Song; Wang, Libo; Li, Mingjia; Sha, Mingming; Xie, Weiguo; Nie, Min

    2012-01-01

    Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO(3)Na)(3)) that was prepared from sodium bisulfite (NaHSO(3)) through reaction with sodium nitrite (NaNO(2)) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, (1)H NMR and (13)C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO(2) to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. [Synthesis, characterization and fluorescent properties of copper phthalocyanine derivates substituted by aliphatic alcohol].

    PubMed

    Zhang, Liang; Xu, Qing-Feng; Lu, Jian-Mei; Yao, She-Chun

    2007-04-01

    A series of copper phthalocyanine derivatives substituted by aliphatic chain were obtained by the reaction of tetra-formyl chloride copper phthalocyanine and aliphatic alcohol such as n-butyl alcohol, n-amyl alcohol, n-hexyl alcohol, n-caprylic alcohol and lauryl alcohol. IR, UV-Vis, elemental analysis and 1H NMR verified the structures and substituting degree. The solubility and the relationship between fluorescence and concentration and substituting group were studied in organic solution. It was confirmed that the solubility in organic solution was improved greatly, the fluorescence did not change in linear according to the concentration and the fluorescence of copper phthalocyanine derivatives substituted by the long alkyl was stronger than that substituted by the relatively short alkyl.

  13. Chitosan: A potential biopolymer for wound management.

    PubMed

    Bano, Ijaz; Arshad, Muhammad; Yasin, Tariq; Ghauri, Muhammad Afzal; Younus, Muhammad

    2017-09-01

    It has been seen that slow healing and non-healing wounds conditions are treatable but still challenging to humans. Wound dressing usually seeks for biocompatible and biodegradable recipe. Natural polysaccharides like chitosan have been examined for its antimicrobial and healing properties on the basis of its variation in molecular weight and degree of deacetylation. Chitosan adopts some vital characteristics for treatment of various kinds of wounds which include its bonding nature, antifungal, bactericidal and permeability to oxygen. Chitosan therefore has been modified into various forms for the treatment of wounds and burns. The purpose of this review article is to understand the exploitation of chitosan and its derivatives as wound dressings. This article will also provide a concise insight on the properties of chitosan necessary for skin healing and regeneration, particularly highlighting the emerging role of chitosan films as next generation skin substitutes for the treatment of full thickness wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.

    PubMed

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Zhang, Junfeng; Qin, Haiyan; Hu, Qingang

    2016-01-01

    Human embryonic stem cells and adult stem cells have always been the cell source for bone tissue engineering. However, their limitations are obvious, including ethical concerns and/or a short lifespan. The use of human induced pluripotent stem cells (hiPSCs) could avoid these problems. Nanohydroxyapatite (nHA) is an important component of natural bone and bone tissue engineering scaffolds. However, its regulation on osteogenic differentiation with hiPSCs from human gingival fibroblasts (hGFs) is unknown. The purpose of the present study was to investigate the osteogenic differentiation of hiPSCs from patient-derived hGFs regulated by nHA/chitosan/gelatin (HCG) scaffolds with different nHA ratios, such as HCG-111 (1 wt/vol% nHA) and HCG-311 (3 wt/vol% nHA). First, hGFs were reprogrammed into hiPSCs, which have enhanced osteogenic differentiation capability. Second, HCG-111 and HCG-311 scaffolds were successfully synthesized. Finally, hiPSC/HCG complexes were cultured in vitro or subcutaneously transplanted into immunocompromised mice in vivo. The osteogenic differentiation effects of two types of HCG scaffolds on hiPSCs were assessed for up to 12 weeks. The results showed that HCG-311 increased osteogenic-related gene expression of hiPSCs in vitro proved by quantitative real-time polymerase chain reaction, and hiPSC/HCG-311 complexes formed much bone-like tissue in vivo, indicated by cone-beam computed tomography imaging, H&E staining, Masson staining, and RUNX-2, OCN immunohistochemistry staining. In conclusion, our study has shown that osteogenic differentiation of hiPSCs from hGFs was improved by HCG-311. The mechanism might be that the nHA addition stimulates osteogenic marker expression of hiPSCs from hGFs. Our work has provided an innovative autologous cell-based bone tissue engineering approach with soft tissues such as clinically abundant gingiva. The present study focused on patient-personalized bone tissue engineering. Human induced pluripotent stem cells

  15. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes

    PubMed Central

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Zhang, Junfeng

    2016-01-01

    Human embryonic stem cells and adult stem cells have always been the cell source for bone tissue engineering. However, their limitations are obvious, including ethical concerns and/or a short lifespan. The use of human induced pluripotent stem cells (hiPSCs) could avoid these problems. Nanohydroxyapatite (nHA) is an important component of natural bone and bone tissue engineering scaffolds. However, its regulation on osteogenic differentiation with hiPSCs from human gingival fibroblasts (hGFs) is unknown. The purpose of the present study was to investigate the osteogenic differentiation of hiPSCs from patient-derived hGFs regulated by nHA/chitosan/gelatin (HCG) scaffolds with different nHA ratios, such as HCG-111 (1 wt/vol% nHA) and HCG-311 (3 wt/vol% nHA). First, hGFs were reprogrammed into hiPSCs, which have enhanced osteogenic differentiation capability. Second, HCG-111 and HCG-311 scaffolds were successfully synthesized. Finally, hiPSC/HCG complexes were cultured in vitro or subcutaneously transplanted into immunocompromised mice in vivo. The osteogenic differentiation effects of two types of HCG scaffolds on hiPSCs were assessed for up to 12 weeks. The results showed that HCG-311 increased osteogenic-related gene expression of hiPSCs in vitro proved by quantitative real-time polymerase chain reaction, and hiPSC/HCG-311 complexes formed much bone-like tissue in vivo, indicated by cone-beam computed tomography imaging, H&E staining, Masson staining, and RUNX-2, OCN immunohistochemistry staining. In conclusion, our study has shown that osteogenic differentiation of hiPSCs from hGFs was improved by HCG-311. The mechanism might be that the nHA addition stimulates osteogenic marker expression of hiPSCs from hGFs. Our work has provided an innovative autologous cell-based bone tissue engineering approach with soft tissues such as clinically abundant gingiva. Significance The present study focused on patient-personalized bone tissue engineering. Human induced

  16. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular.

    PubMed

    Li, Jinyu; Tan, Guoxin; Cheng, Bingchao; Liu, Dandan; Pan, Weisan

    2017-11-01

    To facilitate the hydrophobic drugs modeled by coumarin-6 (Cou-6) acrossing the cornea to the anterior chamber of the rabbit eye, chitosan (CS) derivatives including chitosan-N-acetyl-l-cysteine (CS-NAC), chitosan oligosaccharides (COS) and carboxymethyl chitosan (CMCS) modified nanostructured lipid carriers (NLCs) were designed and characterized. We found that, with similar size distribution and positivecharges, different CS derivatives based on NLCs led to distinctive delivery performance. In vivo precorneal retention study on rabbits revealed that these CS derivatives coating exhibited a stronger resistant effect than Cou-6 eye drops and Cou-6-NLC (P<0.05), moreover, the AUC (0-∞) , C max and MRT (0-∞) of them followed the sequence of CMCS-Cou-6-NLC

  17. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    PubMed

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing

    PubMed Central

    Dragostin, Oana Maria; Samal, Sangram Keshari; Lupascu, Florentina; Pânzariu, Andreea; Dubruel, Peter; Lupascu, Dan; Tuchilus, Cristina; Vasile, Cornelia; Profire, Lenuta

    2015-01-01

    The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol) in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6) showed the highest swelling ratio (197%) and the highest biodegradation rate (63.04%) in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5) which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity. PMID:26694354

  19. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity

    PubMed Central

    Li, Qing; Sun, Xueqi; Gu, Guodong

    2018-01-01

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains. PMID:29597269

  20. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity.

    PubMed

    Li, Qing; Sun, Xueqi; Gu, Guodong; Guo, Zhanyong

    2018-03-28

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating "click reaction" with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC 50 < 0.01 mg mL -1 ) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  1. Lipase-Catalyzed Kinetic Resolution of Novel Antifungal N-Substituted Benzimidazole Derivatives.

    PubMed

    Łukowska-Chojnacka, Edyta; Staniszewska, Monika; Bondaryk, Małgorzata; Maurin, Jan K; Bretner, Maria

    2016-04-01

    A series of new N-substituted benzimidazole derivatives was synthesized and their antifungal activity against Candida albicans was evaluated. The chemical step included synthesis of appropriate ketones containing benzimidazole ring, reduction of ketones to the racemic alcohols, and acetylation of alcohols to the esters. All benzimidazole derivatives were obtained with satisfactory yields and in relatively short times. All synthesized compounds exhibit significant antifungal activity against Candida albicans 900028 ATCC (% cell inhibition at 0.25 μg concentration > 98%). Additionally, racemic mixtures of alcohols were separated by lipase-catalyzed kinetic resolution. In the enzymatic step a transesterification reaction was applied and the influence of a lipase type and solvent on the enantioselectivity of the reaction was studied. The most selective enzymes were Novozyme SP 435 and lipase Amano AK from Pseudomonas fluorescens (E > 100). © 2016 Wiley Periodicals, Inc.

  2. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration.

    PubMed

    Han, Hao-Wei; Hsu, Shan-Hui

    2017-10-01

    Chitosan has been considered as candidate biomaterials for neural applications. The effective treatment of neurodegeneration or injury to the central nervous system (CNS) is still in lack nowadays. Adult neural stem cells (NSCs) represents a promising cell source to treat the CNS diseases but they are limited in number. Here, we developed the core-shell spheroids of NSCs (shell) and mesenchymal stem cells (MSCs, core) by co-culturing cells on the chitosan surface. The NSCs in chitosan derived co-spheroids displayed a higher survival rate than those in NSC homo-spheroids. The direct interaction of NSCs with MSCs in the co-spheroids increased the Notch activity and differentiation tendency of NSCs. Meanwhile, the differentiation potential of MSCs in chitosan derived co-spheroids was significantly enhanced toward neural lineages. Furthermore, NSC homo-spheroids and NSC/MSC co-spheroids derived on chitosan were evaluated for their in vivo efficacy by the embryonic and adult zebrafish brain injury models. The locomotion activity of zebrafish receiving chitosan derived NSC homo-spheroids or NSC/MSC co-spheroids was partially rescued in both models. Meanwhile, the higher survival rate was observed in the group of adult zebrafish implanted with chitosan derived NSC/MSC co-spheroids as compared to NSC homo-spheroids. These evidences indicate that chitosan may provide an extracellular matrix-like environment to drive the interaction and the morphological assembly between NSCs and MSCs and promote their neural differentiation capacities, which can be used for neural regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A simple and convenient method to synthesize N-[(2-hydroxyl)-propyl-3-trimethylammonium] chitosan chloride in an ionic liquid.

    PubMed

    Yang, Xiaodeng; Zhang, Chuanguang; Qiao, Congde; Mu, Xueli; Li, Tianduo; Xu, Jinku; Shi, Lei; Zhang, Dongju

    2015-10-05

    N-[(2-Hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride (HTCC) was synthesized through nucleophilic substitution of 2,3-epoxypropyltrimethyl ammonium chloride (EPTAC) onto chitosan using ionic liquid of 1-allyl-3-methylimidazole chloride (AmimCl) as a homogeneous and green reaction media. The chemical structure of HTCC was confirmed by FTIR, (1)H NMR and (13)C NMR. The FTIR peak intensity of amino group at 1595 cm(-1) decreased and that of [Formula: see text] at 1475 cm(-1) increased with the increase of reaction time, confirming the substitution of EPTAC on CS. The degree of substitutions (DS) were calculated from the integral area of (1)H NMR, and the optimum reaction condition was obtained, namely, reaction time of 8h, temperature of 80°C and [Formula: see text] of 3/1. The degree of crystallinity and thermal properties of HTCC were characterized by XRD, TG, DSC, and DMA methods. Data from XRD, TG, DSC and DMA show that the degree of crystallinity, thermal stability, as well as glass transition temperature of HTCC decreased with the increase of DS. The reaction mechanism of chitosan with EPTAC in AmimCl was elucidated by performing density functional theory (DFT) calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    PubMed Central

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  5. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

    PubMed

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-12-19

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  6. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging.

    PubMed

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors.

  7. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    PubMed Central

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. PMID:25709439

  8. Hydrophobically modified chitosan: a bio-based material for antimicrobial active film.

    PubMed

    Inta, Orathai; Yoksan, Rangrong; Limtrakul, Jumras

    2014-09-01

    The objective of the present research was to improve the hydrophobicity of chitosan, while retaining its antibacterial activity, through the grafting of dodecenyl succinyl chains onto phthaloyl chitosan, mainly at the C-6 position. Dodecenyl succinylated phthaloyl chitosan (DS-g-PHCTS) was synthesized via phthaloylation-dodecenyl succinylation-hydrazinolysis. The obtained derivatives were characterized by FTIR, (1)H NMR and XRD. Hydrazinolysis time was found to be a key factor in controlling the substitution of dodecenyl succinyl chains and phthalimido groups of the final product. DS-g-PHCTS - with a grafting degree of dodecenyl succinyl chains and a substitution degree of phthalimido groups of 0.73 and 0.39, respectively - exhibited an anhydrous crystal structure and the same solubility behavior as native chitosan. The introduction of hydrophobic alkyl chains provided DS-g-PHCTS with enhanced antibacterial activity against Gram-positive bacteria. In addition, DS-g-PHCTS film showed more effective bacterial growth inhibition and better water vapor barrier property under neutral pH condition than chitosan film. The results suggested that DS-g-PHCTS film could be potentially used as antibacterial active film. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    PubMed

    Li, Da-Wei; He, Jin; He, Feng-Li; Liu, Ya-Li; Liu, Yang-Yang; Ye, Ya-Jing; Deng, Xudong; Yin, Da-Chuan

    2018-04-01

    As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.

  10. N-(furfural) chitosan hydrogels based on Diels-Alder cycloadditions and application as microspheres for controlled drug release.

    PubMed

    Montiel-Herrera, Marcelino; Gandini, Alessandro; Goycoolea, Francisco M; Jacobsen, Neil E; Lizardi-Mendoza, Jaime; Recillas-Mota, Maricarmen; Argüelles-Monal, Waldo M

    2015-09-05

    In this study, chitosan was chemically modified by reductive amination in a two-step process. The synthesis of N-(furfural) chitosan (FC) was confirmed by FT-IR and (1)H NMR analysis, and the degrees of substitution were estimated as 8.3 and 23.8%. The cross-linkable system of bismaleimide (BM) and FC shows that FC shared properties of furan-maleimide chemistry. This system produced non-reversible hydrogel networks by Diels-Alder cycloadditions at 85 °C. The system composed of BM and FC (23.8% substitution) generated stronger hydrogel networks than those of FC with an 8.3% degree of substitution. Moreover, the FC-BM system was able to produce hydrogel microspheres. Environmental scanning electron microscopy revealed the surface of the microspheres to be non-porous with small protuberances. In water, the microspheres swelled, increasing their volume by 30%. Finally, microspheres loaded with methylene blue were able to release the dye gradually, obeying second-order kinetics for times less than 600 min. This behavior suggests that diffusion is governed by the relaxation of polymer chains in the swelled state, thus facilitating drug release outside the microspheres. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the Maillard reaction.

    PubMed

    Gullón, Beatriz; Montenegro, María I; Ruiz-Matute, Ana I; Cardelle-Cobas, Alejandra; Corzo, Nieves; Pintado, Manuela E

    2016-02-10

    Chitosan (Chit) was submitted to the Maillard reaction (MR) by co-heating a solution with glucose (Glc). Different reaction conditions as temperature (40, 60 and 80 °C), Glc concentration (0.5%, 1%, and 2%, w/v), and reaction time (72, 52 and 24h) were evaluated. Assessment of the reaction extent was monitored by measuring changes in UV absorbance, browning and fluorescence. Under the best conditions, 2% (w/v) of Chit, 2% (w/v) of Glc at 60°C and 32 h of reaction time, a chitosan-glucose (Chit-Glc) derivative was purified and submitted to structural characterization to confirm its formation. Analysis of its molecular weight (MW) and the degree of substitution (DS) was carried out by HPLC-Size Exclusion Chromatography (SEC) and a colloid titration method, respectively. FT-IR and (1)H NMR were also used to analyze the functional groups and evaluate the introduction of Glc into the Chit molecule. According to our objectives, the results obtained in this work allowed to better understand the key parameters influencing the MR with Chit as well as to confirm the successful introduction of Glc into the Chit molecule obtaining a Chit-Glc derivative with a DS of 64.76 ± 4.40% and a MW of 210.37 kDa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sorption of heavy metal ions onto carboxylate chitosan derivatives--a mini-review.

    PubMed

    Boamah, Peter Osei; Huang, Yan; Hua, Mingqing; Zhang, Qi; Wu, Jingbo; Onumah, Jacqueline; Sam-Amoah, Livingstone K; Boamah, Paul Osei

    2015-06-01

    Chitosan is of importance for the elimination of heavy metals due to their outstanding characteristics such as the presence of NH2 and -OH functional groups, non-toxicity, low cost and, large available quantities. Modifying a chitosan structure with -COOH group improves it in terms of solubility at pH ≤7 without affecting the aforementioned characteristics. Chitosan modified with a carboxylic group possess carboxyl, amino and hydroxyl multifunctional groups which are good for elimination of metal ions. The focal point of this mini-review will be on the preparation and characterization of some carboxylate chitosan derivatives as a sorbent for heavy metal sorption. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Thiolated quaternary ammonium-chitosan conjugates for enhanced precorneal retention, transcorneal permeation and intraocular absorption of dexamethasone.

    PubMed

    Zambito, Ylenia; Di Colo, Giacomo

    2010-06-01

    Previously, a quaternary ammonium (N(+))-chitosan (Ch) conjugate (N(+)(60)-Ch) characterized by short pendant chains, made of 1.7+/-0.1 adjacent diethyl-dimethylene-ammonium groups, substituted onto the primary amino group of the chitosan repeating units (degree of substitution, 59.2+/-4.5%) was used to synthesize a multifunctional non-cytotoxic thiomer (N(+)(60)-Ch-SH(5)), carrying 4.5+/-0.7% thiol-bearing 3-mercaptopropionamide besides quaternary ammonium groups. The present work was aimed at evaluating the potential of N(+)(60)-Ch-SH(5) and N(+)(60)-Ch as bioactive excipients for dexamethasone (DMS) eyedrops. The DMS permeability across excised rabbit cornea was enhanced over the control value by the thiomer and the parent polymer to about the same extent (3.8 vs. 4.1 times). The mean precorneal retention time and AUC in the aqueous of DMS instilled in rabbit eyes via eyedrops were enhanced by the thiomer (MRT=77.96+/-3.57 min, AUC=33.19+/-6.96 microg ml(-1) min) more than the parent polymer (MRT=65.74+/-4.91 min, AUC=21.48+/-3.81 microg ml(-1) min) over the control (MRT=5.07+/-0.25 min, AUC=6.25+/-0.65 microg ml(-1) min). The quaternary ammonium ions were responsible for both permeabilization of corneal epithelium and polymer adhesion to precorneal mucus, while the thiols increased the latter. This synergistic action is the basis of the higher thiomer bioactivity in vivo. A good ocular tolerability of the chitosan derivatives resulted from in vivo experiments. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Response surface methodology applied to the study of the microwave-assisted synthesis of quaternized chitosan.

    PubMed

    dos Santos, Danilo Martins; Bukzem, Andrea de Lacerda; Campana-Filho, Sérgio Paulo

    2016-03-15

    A quaternized derivative of chitosan, namely N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and chitosan (Ch) in acid medium under microwave irradiation. Full-factorial 2(3) central composite design and response surface methodology (RSM) were applied to evaluate the effects of molar ratio GTMAC/Ch, reaction time and temperature on the reaction yield, average degree of quaternization (DQ) and intrinsic viscosity ([η]) of QCh. The molar ratio GTMAC/Ch was the most important factor affecting the response variables and RSM results showed that highly substituted QCh (DQ = 71.1%) was produced at high yield (164%) when the reaction was carried out for 30min. at 85°C by using molar ratio GTMAC/Ch 6/1. Results showed that microwave-assisted synthesis is much faster (≤30min.) as compared to conventional reaction procedures (>4h) carried out in similar conditions except for the use of microwave irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Antimicrobial coating of modified chitosan onto cotton fabrics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoli; Ma, Kaikai; Li, Rong; Ren, Xuehong; Huang, T. S.

    2014-08-01

    Chitosan has been applied as an antibacterial agent to provide biocidal function for textiles but has limitations of application condition and durability. In this study, a new N-halamine chitosan derivative was synthesized by introducing N-halamine hydantoin precursor. The synthesized chitosan derivative 1-Hydroxymethyl-5,5-dimethylhydantoin chitosan (chitosan-HDH) was coated onto cotton fabric with 1,2,3,4-butanetetracarboxylic acid (BTCA) as a crosslinking agent. The coatings were characterized and confirmed by FT-IR and SEM. The treated cotton fabrics can be rendered excellent antimicrobial activity upon exposure to dilute household bleach. The chlorinated coated swatches can inactivate 100% of the Staphylococcus aureus and E. coli O157:H7 with a contact time of 5 min. Almost all the lost chlorine after a month of storage could be recharged upon rechlorination. The crease recovery property of the treated swatches improved while the breaking strength decreased compared with uncoated cotton.

  16. Green synthesis approach: extraction of chitosan from fungus mycelia.

    PubMed

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur; Verma, Mausam

    2013-12-01

    Chitosan, copolymer of glucosamine and N-acetyl glucosamine is mainly derived from chitin, which is present in cell walls of crustaceans and some other microorganisms, such as fungi. Chitosan is emerging as an important biopolymer having a broad range of applications in different fields. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal sources. The methods used for extraction of chitosan are laden with many disadvantages. Alternative options of producing chitosan from fungal biomass exist, in fact with superior physico-chemical properties. Researchers around the globe are attempting to commercialize chitosan production and extraction from fungal sources. Chitosan extracted from fungal sources has the potential to completely replace crustacean-derived chitosan. In this context, the present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan. Biologically derived fungal chitosan offers promising advantages over the chitosan obtained from crustacean shells with respect to different physico-chemical attributes. The different aspects of fungal chitosan extraction methods and various parameters having an effect on the yield of chitosan are discussed in detail. This review also deals with essential attributes of chitosan for high value-added applications in different fields.

  17. Ellipsometric studies of synthetic albumin-binding chitosan-derivatives and selected blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Sarkar, Sabyasachi

    This dissertation summarizes work on the synthesis of chitosan-derivatives and the development of ellipsometric methods to characterize materials of biological origin. Albumin-binding chitosan-derivatives were synthesized via addition reactions that involve amine groups naturally present in chitosan. These surfaces were shown to have an affinity towards human serum albumin via ELISA, UV spectroscopy and SDS PAGE. Modified surfaces were characterized with IR ellipsometry at various stages of their synthesis using appropriate optical models. It was found that spin cast chitosan films were anisotropic in nature. All optical models used for characterizing chitosan-derivatives were thus anisotropic. Chemical signal dependence on molecular structure and composition was illustrated via IR spectroscopic ellipsometry (IRSE). An anisotropic optical model of an ensemble of Lorentz oscillators were used to approximate material behavior. The presence of acetic acid in spin-cast non-neutralized chitosan samples was thus shown. IRSE application to biomaterials was also demonstrated by performing a step-wise chemical characterizations during synthesis stages. Protein adsorbed from single protein solutions on these modified surfaces was monitored by visible in-situ variable wavelength ellipsometry. Based on adsorption profiles obtained from single protein adsorption onto silicon surfaces, lumped parameter kinetic models were developed. These models were used to fit experimental data of immunoglobulin-G of different concentrations and approximate conformational changes in fibrinogen adsorption. Biomaterial characterization by ellipsometry was further extended to include characterization of individual protein solutions in the IR range. Proteins in an aqueous environment were characterized by attenuated total internal reflection (ATR) IR ellipsometry using a ZnSe prism. Parameterized dielectric functions were created for individual proteins using Lorentz oscillators. These

  18. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.

    PubMed

    Kimura, Yuji; Takahashi, Ayumi; Kashiwada, Ayumi; Yamada, Kazunori

    2015-01-01

    In this study, the combined use of a biopolymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was systematically investigated for the removal of bisphenol derivatives from aqueous medium. The process parameters, such as the pH value, temperature, and PPO concentration, were estimated to conduct the enzymatic quinone oxidation of bisphenol derivatives by as little enzyme as possible. Bisphenol derivatives effectively underwent PPO-catalysed quinone oxidation without H2O2 unlike other oxidoreductases, such as peroxidase and tyrosinase, and the optimum conditions were determined to be pH 7.0 and 40°C for bisphenol B, bisphenol E, bisphenol O, and bisphenol Z; pH 7.0 and 30°C for bisphenol C and bisphenol F; and pH 8.0 and 40°C for bisphenol T. They were completely removed through adsorption of enzymatically generated quinone derivatives on chitosan beads or chitosan powders. Quinone adsorption on chitosan beads or chitosan powders in the heterogeneous system was found to be a more effective procedure than generation of aggregates in the homogeneous system with chitosan solution. The removal time was shortened by increasing the amount of chitosan beads or decreasing the size of the chitosan powders.

  19. Synthesis, physiochemical and optical properties of chitosan based dye containing naphthalimide group.

    PubMed

    Kumar, Santosh; Koh, Joonseok

    2013-04-15

    A new biopolymer dye containing naphthalimide moiety was synthesized by reaction of N-naphthaloyl chitosan with 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-piperazino-3-quinolinecarboxylic acid. N-naphthaloyl chitosan was synthesized by reaction of chitosan with 4-bromo-1,8-naphthalic anhydride in aqueous media by greener approach. The degree of substitution of chitosan biopolymer dye is 0.55 with a yield of 70%. The synthesized materials were characterized by using UV-vis, (1)H NMR, FTIR, and FT-Raman spectroscopy. Some physical properties and surface morphology were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Optical properties of chitosan biopolymer dye were evaluated by photoluminescence (PL) spectroscopy that showed red shift (λ(em)) peak at 442 nm and 551 nm at excitation wavelength 325 nm in comparison to chitosan. The solubility of chitosan biopolymer dye increased in most of the organic solvents. These results may provide new perspectives in biomedical applications as an optical and sensitive biosensor material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 40 CFR 721.2025 - Substituted phenylimino carbamate derivative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... derivative. 721.2025 Section 721.2025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.2025 Substituted phenylimino carbamate derivative. (a) Chemical... as a substituted phenylimino carbamate derivative (PMN P-91-487) is subject to reporting under this...

  1. 40 CFR 721.2025 - Substituted phenylimino carbamate derivative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... derivative. 721.2025 Section 721.2025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.2025 Substituted phenylimino carbamate derivative. (a) Chemical... as a substituted phenylimino carbamate derivative (PMN P-91-487) is subject to reporting under this...

  2. Transamination at the Crossroad of the One-Pot Synthesis of N-Substituted Quinonediimines and C-Substituted Benzobisimidazoles.

    PubMed

    Andeme Edzang, Judicaelle; Chen, Zhongrui; Audi, Hassib; Canard, Gabriel; Siri, Olivier

    2016-10-10

    A green and very efficient synthesis of N-substituted benzoquinonediimines or C-substituted benzo-bis(imidazole) derivatives is described under similar conditions. The different reaction pathway is only controlled by the nature of the primary amines, which tunes the reactivity of the intermediates.

  3. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives

    PubMed Central

    Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi

    2015-01-01

    Background A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. Methods A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Results Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure–activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. Conclusion The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. PMID:26149262

  4. Effect of concentration and molecular weight of chitosan and its derivative on the free radical scavenging ability.

    PubMed

    Li, Huili; Xu, Qing; Chen, Yun; Wan, Ajun

    2014-03-01

    Chitosan is a biodegradable and biocompatible natural scaffold material, which has numerous applications in biomedical sciences. In this study, the in vitro antioxidant activity of chitosan scaffold material was investigated by the chemiluminescence signal generated from the hydroxyl radical (•OH) scavenging assay. The scavenging mechanism was also discussed. The results indicated that the free radical scavenging ability of chitosan scaffold material significantly depends on the chitosan concentration and shows interesting kinetic change. Within the experimental concentration range, the optimal concentration of chitosan was 0.2 mg/mL. The molecular weight of chitosan also attributed to the free radical scavenging ability. Comparison between chitosan and its derivative found that carboxymethyl chitosan possessed higher scavenging ability. Copyright © 2013 Society of Plastics Engineers.

  5. Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents.

    PubMed

    Abbasian, Mojtaba; Jaymand, Mehdi; Niroomand, Pouneh; Farnoudian-Habibi, Amir; Karaj-Abad, Saber Ghasemi

    2017-02-01

    A series of chitosan-grafted polyaniline derivatives {chitosan-g-polyaniline (CS-g-PANI), chitosan-g-poly(N-methylaniline) (CS-g-PNMANI), and chitosan-g-poly(N-ethylaniline) (CS-g-PNEANI)} were synthesized by in situ chemical oxidation polymerization method. The synthesized copolymers were analyzed by means of Fourier transform infrared (FTIR), and ultraviolet-visible (UV-vis) spectroscopies, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). These copolymers were applied as adsorbent for removal of acid red 4 (AR4) and direct red 23 (DR23) from aqueous solutions. The adsorption processes were optimized in terms of pH, adsorbent amount, and dyes concentrations. The maximum adsorption capacities (Q m ) for the synthesized copolymers were calculated, and among them the CS-g-PNEANI sample showed highest Q m for both AR4 (98mgg -1 ) and DR23 (112mgg -1 ) dyes. The adsorption kinetics of AR4 and DR23 dyes follow the pseudo-second order kinetic model. The regeneration and reusability tests revealed that the synthesized adsorbents had the relatively good reusability after five repetitions of the adsorption-desorption cycles. As the results, it is expected that the CS-g-PANIs find application for removal of reactive dyes (especially anionic dyes) from industrial effluents mainly due to their low production costs and high adsorption effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An Overview of the Protective Effects of Chitosan and Acetylated Chitosan Oligosaccharides against Neuronal Disorders.

    PubMed

    Hao, Cui; Wang, Wei; Wang, Shuyao; Zhang, Lijuan; Guo, Yunliang

    2017-03-23

    Chitin is the second most abundant biopolymer on Earth and is mainly comprised of a marine invertebrate, consisting of repeating β-1,4 linked N-acetylated glucosamine units, whereas its N-deacetylated product, chitosan, has broad medical applications. Interestingly, chitosan oligosaccharides have therapeutic effects on different types of neuronal disorders, including, but not limited to, Alzheimer's disease, Parkinson's disease, and nerve crush injury. A common link among neuronal disorders is observed at a sub-cellular level, such as atypical protein assemblies and induced neuronal death. Chronic activation of innate immune responses that lead to neuronal injury is also common in these diseases. Thus, the common mechanisms of neuronal disorders might explain the general therapeutic effects of chitosan oligosaccharides and their derivatives in these diseases. This review provides an update on the pathogenesis and therapy for neuronal disorders and will be mainly focused on the recent progress made towards the neuroprotective properties of chitosan and acetylated chitosan oligosaccharides. Their structural features and the underlying molecular mechanisms will also be discussed.

  7. Design, synthesis, and anti-HIV-1 activity of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives.

    PubMed

    Sakakibara, Norikazu; Baba, Masanori; Okamoto, Mika; Toyama, Masaaki; Demizu, Yosuke; Misawa, Takashi; Kurihara, Masaaki; Irie, Kohji; Kato, Yoshihisa; Maruyama, Tokumi

    2015-02-01

    A new series of 1-aromatic methyl-substituted 3-(3,5-dimethylbenzyl)uracil and N-3,5-dimethylbenzyl-substituted urea derivatives were synthesized and evaluated as non-nucleoside HIV-1 reverse transcriptase inhibitors. A series of new 6-azido and 6-amino derivatives of 1-substituted-3-(3,5-dimethylbenzyl)uracils were synthesized using our previously reported method, and three acyclic derivatives were synthesized from urea. The anti-HIV-1 activities of these compounds were determined based on the inhibition of virus-induced cytopathogenicity in MT-4 cells. The cytotoxicities of the compounds were evaluated using the viability of mock-infected cells. Some of these compounds showed good-to-moderate activities against HIV-1 with half maximal effective concentration (EC50) values in the submicromolar or subnanomolar range. Compared with emivirine, compound 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil showed significant anti-HIV-1 activity with an EC50 value of 10 nM and a high selectivity index of 1923. Preliminary structure-activity relationship studies and molecular modeling analyses were carried out to explore the major interactions between HIV-1 reverse transcriptase and the potent inhibitor 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil; these results may be important for further development of this class of compounds as anti-HIV-1 agents. The excellent activity of 6-amino-3-(3,5-dimethylbenzyl)-1-(4-aminobenzyl)uracil (EC50: 0.010 ± 0.006 µM, SI: >1923) may serve as the basis for conducting further investigations on the behavior of this class of compounds against drug-resistant mutants. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Design synthesis and structure-activity relationship of 5-substituted (tetrahydronaphthalen-2yl)methyl with N-phenyl-N-(piperidin-2-yl)propionamide derivatives as opioid ligands.

    PubMed

    Deekonda, Srinivas; Rankin, David; Davis, Peg; Lai, Josephine; Vanderah, Todd W; Porecca, Frank; Hruby, Victor J

    2016-01-15

    Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    PubMed

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes.

    PubMed

    Martins, Danubia Batista; Nasário, Fábio Domingues; Silva-Gonçalves, Laiz Costa; de Oliveira Tiera, Vera Aparecida; Arcisio-Miranda, Manoel; Tiera, Marcio José; Dos Santos Cabrera, Marcia Perez

    2018-02-01

    The antimicrobial activity of chitosan and derivatives to human and plant pathogens represents a high-valued prospective market. Presently, two low molecular weight derivatives, endowed with hydrophobic and cationic character at different ratios were synthesized and characterized. They exhibit antimicrobial activity and increased performance in relation to the intermediate and starting compounds. However, just the derivative with higher cationic character showed cytotoxicity towards human cervical carcinoma cells. Considering cell membranes as targets, the mode of action was investigated through the interaction with model lipid vesicles mimicking bacterial, tumoral and erythrocyte membranes. Intense lytic activity and binding are demonstrated for both derivatives in anionic bilayers. The less charged compound exhibits slightly improved selectivity towards bacterial model membranes, suggesting that balancing its hydrophobic/hydrophilic character may improve efficiency. Observing the aggregation of vesicles, we hypothesize that the "charge cluster mechanism", ascribed to some antimicrobial peptides, could be applied to these chitosan derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis.

    PubMed

    Cheng, Nai-Chen; Lin, Wei-Jhih; Ling, Thai-Yen; Young, Tai-Horng

    2017-03-15

    Adipose-derived stem cells (ASCs) secrete several angiogenic growth factors and can be applied to treat ischemic tissue. However, transplantation of dissociated ASCs has frequently resulted in rapid cell death. Therefore, we aimed to develop a thermosensitive chitosan/gelatin hydrogel that is capable of ASC sustained release for therapeutic angiogenesis. By blending gelatin in the chitosan thermosensitive hydrogel, we significantly enhanced the viability of the encapsulated ASCs. During in vitro culturing, the gradual degradation of gelatin led to sustained release of ASCs from the chitosan/gelatin hydrogel. In vitro wound healing assays revealed significantly faster cell migration by co-culturing fibroblasts with ASCs encapsulated in chitosan/gelatin hydrogel compared to pure chitosan hydrogels. Additionally, significantly higher concentrations of vascular endothelial growth factor were found in the supernatant of ASC-encapsulated chitosan/gelatin hydrogels. Co-culturing SVEC4-10 endothelial cells with ASC-encapsulated chitosan/gelatin hydrogels resulted in significantly more tube-like structures, indicating the hydrogel's potential in promoting angiogenesis. Chick embryo chorioallantoic membrane assay and mice wound healing model showed significantly higher capillary density after applying ASC-encapsulated chitosan/gelatin hydrogel. Relative to ASC alone or ASC-encapsulated chitosan hydrogel, more ASCs were also found in the wound tissue on post-wounding day 5 after applying ASC-encapsulated chitosan/gelatin hydrogel. Therefore, chitosan/gelatin thermosensitive hydrogels not only maintain ASC survival, they also enable sustained release of ASCs for therapeutic angiogenesis applications, thereby exhibiting great clinical potential in treating ischemic diseases. Adipose-derived stem cells (ASCs) exhibit great potential to treat ischemic diseases. However, poor delivery methods lead to low cellular survival or dispersal of cells from target sites. In this study, we

  12. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    PubMed

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structure-activity relationships among substituted N-benzoyl derivatives of phenylalanine and its analogues in a microbial antitumor prescreen III: derivatives of p-fluoro-DL-phenylalanine.

    PubMed

    Otani, T T; Briley, M R

    1985-01-01

    Twelve substituted benzoyl derivatives of p-fluoro-DL-phenylalanine were prepared and tested for growth-inhibitory activity in a Lactobacillus casei system used as an antitumor prescreen. The 12 substituted benzoyl groups were the same as those attached to o-fluorophenylalanine and m-fluorophenylalanine studied earlier. The activity of these compounds was compared vertically among themselves and horizontally with the corresponding derivatives of o-fluorophenylalanine and of m-fluorophenylalanine. It was found that the derivatives of p-fluorophenylalanine, like those of o- and m-fluorophenylalanine, exhibited remarkable inhibition, all but one, i.e., the o-nitrobenzoyl derivative, showing inhibition that is considered to be positive in the prescreen. Particularly potent compounds in this group were the m-chlorobenzoyl-, p-chlorobenzoyl, m-nitrobenzoyl, and p-nitrobenzoyl derivatives. Comparison of the activity of the substituted benzoyl derivatives of all three structural isomers of fluorophenylalanine at equimolar concentrations showed that the derivatives of m-fluorophenylalanine were generally better inhibitors than those of o-fluoro- or p-fluorophenylalanine. Study of the ID50 values of the more active substituted benzoyl derivatives of the fluorophenylalanines showed that the most active of this group was m-chlorobenzoyl-p-fluoro-DL-phenylalanine.

  14. Crosslinking of Chitosan with Dialdehyde Derivatives of Nucleosides and Nucleotides. Mechanism and Comparison with Glutaraldehyde.

    PubMed

    Mikhailov, Sergey N; Zakharova, Alexandra N; Drenichev, Mikhail S; Ershov, Andrey V; Kasatkina, Mariya A; Vladimirov, Leonid V; Novikov, Valentin V; Kildeeva, Natalia R

    2016-01-01

    In medical and pharmaceutical applications, chitosan is used as a component of hydrogels-macromolecular networks swollen in water. Chemical hydrogels are formed by covalent links between the crosslinking reagents and amino functionalities of chitosan. To date, the most commonly used chitosan crosslinkers are dialdehydes, such as glutaraldehyde (GA). We have developed novel GA like crosslinkers with additional functional groups-dialdehyde derivatives of uridine (oUrd) and nucleotides (oUMP and oAMP)-leading to chitosan-based biomaterials with new properties. The process of chitosan crosslinking was investigated in details and compared to crosslinking with GA. The rates of crosslinking with oUMP, oAMP, and GA were essentially the same, though much higher than in the case of oUrd. The remarkable difference in the crosslinking properties of nucleoside and nucleotide dialdehydes can be clearly attributed to the presence of the phosphate group in nucleotides that participates in the gelation process through ionic interactions with the amino groups of chitosan. Using NMR spectroscopy, we have not observed the formation of aldimine bonds. It can be concluded that the real number of crosslinks needed to cause gelation of chitosan chains may be less than 1%.

  15. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    PubMed

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. © 2013 Wiley Periodicals, Inc.

  16. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan.

    PubMed

    Chen, Yuxiang; Li, Jianna; Li, Qingqing; Shen, Yuanyuan; Ge, Zaochuan; Zhang, Wenwen; Chen, Shiguo

    2016-06-05

    Chitosan (CS) has attracted much attention due to its good antibacterial activity and biocompatibility. However, CS is insoluble in neutral and alkaline aqueous solution, limiting its biomedical application to some extent. To circumvent this drawback, we have synthesized a novel N-quaternary ammonium-O-sulfobetaine-chitosan (Q3BCS) by introducing quaternary ammonium compound (QAC) and sulfobetaine, and its water-solubility, antibacterial activity and biocompatibility were evaluated compare to N-quaternary ammonium chitosan and native CS. The results showed that by introducing QAC, antibacterial activities and water-solubilities increase with degrees of substitution. The largest diameter zone of inhibition (DIZ) was improved from 0 (CS) to 15mm (N-Q3CS). And the water solution became completely transparent from pH 6.5 to pH 11; the maximal waters-solubility was improved from almost 0% (CS) to 113% at pH 7 (N-Q3CS). More importantly, by further introducing sulfobetaine, cell survival rate of Q3BCS increased from 30% (N-Q3CS) to 85% at 2000μg/ml, which is even greater than that of native CS. Furthermore, hemolysis of Q3BCS was dropped sharply from 4.07% (N-Q3CS) to 0.06%, while the water-solution and antibacterial activity were further improved significantly. This work proposes an efficient strategy to prepare CS derivatives with enhanced antibacterial activity, biocompatibility and water-solubility. Additionally, these properties can be finely tailored by changing the feed ratio of CS, glycidyl trimethylammonium chloride and NCO-sulfobetaine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Blood contact properties of ascorbyl chitosan.

    PubMed

    Yalinca, Z; Yilmaz, E; Taneri, B; Bullici, F; Tuzmen, S

    2013-01-01

    Ascorbyl chitosan was synthesized by heating chitosan with ascorbic acid in isopropanol. The products were characterized by FTIR and C-13 NMR spectroscopies, SEM, and elemental analysis. Blood contact properties of ascorbyl chitosans were evaluated. The ascorbyl chitosans demonstrated to have increased lipid-lowering activity in comparison to chitosan alone upon contact with human blood serum in in vitro conditions. Furthermore, the total cholesterol/HDL ratio was improved towards the desirable ideal values after three hours contact with ascorbyl chitosan samples. The lipid-lowering activity increased with ascorbyl substitution. The inherent nonspecific adsorption capability of chitosan due to its chelating power with several different functional groups was exhibited by ascorbyl chitosans as well. This behavior was exemplified in a simultaneous decrease in the total iron values of the volunteers together with lower lipid levels. Furthermore, ascorbyl chitosans were observed to have less hemocompatibility but increased anticoagulant activity when compared to chitosan alone. Additional in vivo studies are necessary to support these results and to investigate further the advantages and disadvantages of these materials to prove their safety prior to clinical applications.

  18. Discovery of 5-substituted tetrahydronaphthalen-2yl-methyl with N-phenyl-N-(piperidin-4-yl)propionamide derivatives as potent opioid receptor ligands.

    PubMed

    Deekonda, Srinivas; Wugalter, Lauren; Kulkarni, Vinod; Rankin, David; Largent-Milnes, Tally M; Davis, Peg; Bassirirad, Neemah M; Lai, Josephine; Vanderah, Todd W; Porreca, Frank; Hruby, Victor J

    2015-09-15

    A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Anti-Helicobacter pylori activities of selected N-substituted cinnamamide derivatives evaluated on reference and clinical bacterial strains.

    PubMed

    Klesiewicz, Karolina; Karczewska, Elżbieta; Nowak, Paweł; Skiba-Kurek, Iwona; Sito, Edward; Pańczyk, Katarzyna; Koczurkiewicz, Paulina; Żelaszczyk, Dorota; Pękala, Elżbieta; Waszkielewicz, Anna M; Budak, Alicja; Marona, Henryk; Gunia-Krzyżak, Agnieszka

    2018-05-01

    In this study, thirty-five N-substituted derivatives of cinnamic acid amide (cinnamamide) were evaluated for anti-Helicobacter pylori activity using an agar disc-diffusion method. Qualitative screening was performed on a reference H. pylori strain (ATCC 43504), resulting in the identification of the three most active compounds, 8 (R,S-(2E)-3-(4-chlorophenyl)-N-(2-hydroxypropyl)prop-2-enamide, minimal inhibitory concentration, MIC = 7.5 µg/mL), 23 ((2E)-3-(4-chlorophenyl)-N-(2-hydroxycyclohexyl)prop-2-enamide, MIC = 10 µg/mL), and 28 ((2E)-3-(4-chlorophenyl)-N-(4-oxocyclohexyl)prop-2-enamide, MIC = 10 µg/mL). These compounds were further tested on twelve well-characterized clinical strains, yielding MIC values that ranged from 10 to 1000 µg/mL. Preliminary safety assessments of the compounds were made using the MTT viability test for cytotoxicity and Ames test for mutagenicity, which showed them to be generally safe, although compounds 8 and 28 showed mutagenic activity at some of the tested concentrations. The results of this study showed the anti-H. pylori potential of cinnamamide derivatives.

  20. Design, characterization and ex vivo evaluation of chitosan film integrating of insulin nanoparticles composed of thiolated chitosan derivative for buccal delivery of insulin.

    PubMed

    Mortazavian, Elaheh; Dorkoosh, Farid Abedin; Rafiee-Tehrani, Morteza

    2014-05-01

    The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81 kg/mm(2) tensile strength and 2.47 N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.

  1. Lactosaminated- N-succinyl chitosan nanoparticles for hepatocyte-targeted delivery of acyclovir

    NASA Astrophysics Data System (ADS)

    Jain, Nivrati; Rajoriya, Vaibhav; Jain, Prateek Kumar; Jain, Ashish Kumar

    2014-01-01

    The present study discusses lactose-acyclovir- N-succinyl chitosan nanoparticles (Lac- N-Suc-CSNP) using lactose as an asialoglycoprotein receptor (ASGPR) ligand for hepatic parenchymatic cells targeting. For this purpose, N-succinyl chitosan nanoparticles ( N-Suc-CSNP) were prepared previously by ionotropic gelation method and lactose was conjugated to the free amino terminal group of chitosan. Lactose conjugation with N-Suc-CSNP was confirmed by FT-IR and zeta potential measurements. The Lac- N-Suc-CSNP obtained were characterized for their morphology, particle size, polydispersity index, and zeta potential. The Lac- N-Suc-CSNP showed spherical in shape with 220.3 ± 5.0 nm size range, +4.1 ± 0.2 mV zeta potential, 62.5 ± 1.2 % acyclovir entrapment efficiency and showed 27.3 ± 0.9 % cumulative acyclovir release up to 72 h. The acyclovir concentration from Lac- N-Suc-CSNP was found to be 19.9 ± 1.62 μg/g after 24 h administration revealed remarkably targeting potential to the hepatocytes and keep at a high level during the experiment. These results suggest that Lac- N-Suc-CSNP are potentially vector for hepatocytes targeting.

  2. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.

    PubMed

    Lowe, Baboucarr; Venkatesan, Jayachandran; Anil, Sukumaran; Shim, Min Suk; Kim, Se-Kwon

    2016-12-01

    Solid three dimensional (3D) composite scaffolds for bone tissue engineering were prepared using the freeze-drying method. The scaffolds were composed of chitosan, natural nano-hydroxyapatite (nHA) and fucoidan in the following combinations: chitosan, chitosan-fucoidan, chitosan-nHA, and chitosan-nHA-fucoidan. Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and optical microscopy (OM) were used to determine the physiochemical constituents and the morphology of the scaffolds. The addition of nHA into the chitosan-fucoidan composite scaffold reduced the water uptake and water retention. FT-IR analysis confirmed the presence of a phosphate group in the chitosan-nHA-fucoidan scaffold. This group is present because of the presence of nHA (isolated via alkaline hydrolysis from salmon fish bones). Microscopic results indicated that the dispersion of nHA and fucoidan in the chitosan matrix was uniform with a pore size of 10-400μm. The composite demonstrated a suitable micro architecture for cell growth and nutrient supplementation. This compatibility was further elucidated in vitro using periosteum-derived mesenchymal stem cells (PMSCs). The cells demonstrated high biocompatibility and excellent mineralization for the chitosan-nHA-fucoidan scaffold. We believe that a chitosan-nHA-fucoidan composite is a promising biomaterial for the scaffold that can be used for bone tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Experimental evaluation of new chitin-chitosan graft for duraplasty.

    PubMed

    Pogorielov, M; Kravtsova, A; Reilly, G C; Deineka, V; Tetteh, G; Kalinkevich, O; Pogorielova, O; Moskalenko, R; Tkach, G

    2017-02-01

    Natural materials such as collagen and alginate have promising applications as dural graft substitutes. These materials are able to restore the dural defect and create optimal conditions for the development of connective tissue at the site of injury. A promising material for biomedical applications is chitosan-a linear polysaccharide obtained by the deacetylation of chitin. It has been found to be nontoxic, biodegradable, biofunctional and biocompatible in addition to having antimicrobial characteristics. In this study we designed new chitin-chitosan substitutes for dura mater closure and evaluated their effectiveness and safety. Chitosan films were produced from 3 % of chitosan (molar mass-200, 500 or 700 kDa, deacetylation rate 80-90%) with addition of 20% of chitin. Antimicrobial effictively and cell viability were analysed for the different molar masses of chitosan. The film containing chitosan of molar mass 200 kDa, had the best antimicrobial and biological activity and was successfully used for experimental duraplasty in an in vivo model. In conclusion the chitin-chitosan membrane designed here met the requirements for a dura matter graft exhibiting the ability to support cell growth, inhibit microbial growth and biodegradade at an appropriate rate. Therefore this is a promising material for clinical duroplasty.

  4. Application of Chitosan and its Derivatives in Nanocarrier Based Pulmonary Drug Delivery Systems.

    PubMed

    Dua, Kamal; Bebawy, Mary; Awasthi, Rajendra; Tekade, Rakesh K; Tekade, Muktika; Gupta, Gaurav; De Jesus Andreoli Pinto, Terezinha; Hansbro, Philip M

    2017-01-01

    The respiratory tract as a non-invasive route of drug administration is gaining increasing attention in the present time on achieving both local and the systemic therapeutic effects. Success in achieving pulmonary delivery, requires overcoming barriers including mucociliary clearance and uptake by macrophages. An effective drug delivery system delivers the therapeutically active moieties at the right time and rate to target sites. A major limitation associated with most of the currently available conventional and controlled release drug delivery devices is that not all the drug candidates are well absorbed uniformly locally or systemically. We searched and reviewed the literature focusing on chitosan and chitosan derivative based nanocarrier systems used in pulmonary drug delivery. We focused on the applications of chitosan in the development of nanoparticles for this purpose. Chitosan, a natural linear bio-polyaminosaccharide is central in the development of novel drug delivery systems (NDDS) including nanoparticles for use in the treatment of various respiratory diseases. It achieves this through its unique properties of biodegradability, biocompatibility, mucoadhesivity and its ability to enhance macromolecule permeation across membranes. It also achieves sustained and targeted effects, primary requirements for an effective pulmonary drug delivery system. This review highlights the applications and importance of chitosan with special emphasis on nanotechnology, employed in the management of respiratory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and pulmonary fibrosis. This review will be of interest to both the biological and formulation scientists as it provides a summary on the utility of chitosan in pulmonary drug delivery systems. At present, there are no patented chitosan based controlled release products available for pulmonary drug delivery and so this area has enormous potential in the field of respiratory science

  5. Activated carbon derived from chitosan as air cathode catalyst for high performance in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhao, Yong; Li, Kexun; Wang, Zhong; Tian, Pei; Liu, Di; Yang, Tingting; Wang, Junjie

    2018-02-01

    Chitosan with rich of nitrogen is used as carbon precursor to synthesis activated carbon through directly heating method in this study. The obtained carbon is activated by different amount of KOH at different temperatures, and then prepared as air cathodes for microbial fuel cells. Carbon sample treated with double amount of KOH at 850 °C exhibits maximum power density (1435 ± 46 mW m-2), 1.01 times improved, which ascribes to the highest total surface area, moderate micropore and mesoporous structure and the introduction of nitrogen. The electrochemical impedance spectroscopy and powder resistivity state that carbon treated with double amount of KOH at 850 °C possesses lower resistance. The other electrochemical measurements demonstrate that the best kinetic activity make the above treated sample to show the best oxygen reduction reaction activity. Besides, the degree of graphitization of samples increases with the activated temperature increasing, which is tested by Raman. According to elemental analysis and X-ray photoelectron spectroscopy, all chitosan samples are nitrogen-doped carbon, and high content nitrogen (pyridinic-N) improves the electrochemical activity of carbon treated with KOH at 850 °C. Thus, carbon materials derived from chitosan would be an optimized catalyst for oxygen reduction reaction in microbial fuel cell.

  6. Permeability Evaluation Through Chitosan Membranes Using Taguchi Design

    PubMed Central

    Sharma, Vipin; Marwaha, Rakesh Kumar; Dureja, Harish

    2010-01-01

    In the present study, chitosan membranes capable of imitating permeation characteristics of diclofenac diethylamine across animal skin were prepared using cast drying method. The effect of concentration of chitosan, concentration of cross-linking agent (NaTPP), crosslinking time was studied using Taguchi design. Taguchi design ranked concentration of chitosan as the most important factor influencing the permeation parameters of diclofenac diethylamine. The flux of the diclofenac diethylamine solution through optimized chitosan membrane (T9) was found to be comparable to that obtained across rat skin. The mathematical model developed using multilinear regression analysis can be used to formulate chitosan membranes that can mimic the desired permeation characteristics. The developed chitosan membranes can be utilized as a substitute to animal skin for in vitro permeation studies. PMID:21179329

  7. Permeability evaluation through chitosan membranes using taguchi design.

    PubMed

    Sharma, Vipin; Marwaha, Rakesh Kumar; Dureja, Harish

    2010-01-01

    In the present study, chitosan membranes capable of imitating permeation characteristics of diclofenac diethylamine across animal skin were prepared using cast drying method. The effect of concentration of chitosan, concentration of cross-linking agent (NaTPP), crosslinking time was studied using Taguchi design. Taguchi design ranked concentration of chitosan as the most important factor influencing the permeation parameters of diclofenac diethylamine. The flux of the diclofenac diethylamine solution through optimized chitosan membrane (T9) was found to be comparable to that obtained across rat skin. The mathematical model developed using multilinear regression analysis can be used to formulate chitosan membranes that can mimic the desired permeation characteristics. The developed chitosan membranes can be utilized as a substitute to animal skin for in vitro permeation studies.

  8. Chemical sensors based on N-substituted polyaniline derivatives: reactivity and adsorption studies via electronic structure calculations.

    PubMed

    Mandú, Larissa O; Batagin-Neto, Augusto

    2018-06-09

    Conjugated organic polymers represent an important class of materials for varied technological applications including in active layers of chemical sensors. In this context, polyaniline (PANI) derivatives are promising candidates, mainly due to their high chemical stability, good processability, versatility of synthesis, polymerization, and doping, as well as relative low cost. In this study, electronic structure calculations were carried out for varied N-substituted PANI derivatives in order to investigate the potential sensory properties of these materials. The opto-electronic properties of nine distinct compounds were evaluated and discussed in terms of the employed substituents. Preliminary reactivity studies were performed in order to identify adsorption centers on the oligomer structures via condensed-to-atoms Fukui indexes (CAFI). Finally, adsorption studies were carried out for selected derivatives considering five distinct gaseous analytes. The influence of the analytes on the oligomer properties were investigated via the evaluation of average binding energies and changes on the structural features, optical absorption spectra, frontier orbitals distribution, and total density of states in relation to the isolated oligomers. The obtained results indicate the derivatives PANI-NO 2 and PANI-C 6 H 5 as promising materials for the development of improved chemical sensors.

  9. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  10. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  11. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  12. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  13. 40 CFR 721.430 - Oxo-substituted amino-al-kanoic acid derivative.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxo-substituted amino-al-kanoic acid... Specific Chemical Substances § 721.430 Oxo-substituted amino-al-kanoic acid derivative. (a) Chemical... as oxo-substituted amino al-kan-oic acid derivative (PMN No. P-92-692) is subject to reporting under...

  14. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps.

    PubMed

    Gu, Yun; Zhu, Jianbin; Xue, Chengbin; Li, Zhenmeiyu; Ding, Fei; Yang, Yumin; Gu, Xiaosong

    2014-02-01

    Extracellular matrix (ECM) plays a prominent role in establishing and maintaining an ideal microenvironment for tissue regeneration, and ECM scaffolds are used as a feasible alternative to cellular and molecular therapy in the fields of tissue engineering. Because of their advantages over tissue-derived ECM scaffolds, cultured cell-derived ECM scaffolds are beginning to attract attention, but they have been scarcely studied for peripheral nerve repair. Here we aimed to develop a tissue engineered nerve scaffold by reconstituting nerve cell-derived ECM with natural biomaterials. A protocol was adopted to prepare and characterize the cultured Schwann cell (SC)-derived ECM. A chitosan conduit and silk fibroin (SF) fibers were prepared, cultured with SCs for ECM deposition, and subjected to decellularization, followed by assembly into a chitosan/SF-based, SC-derived ECM-modified scaffold, which was used to bridge a 10 mm rat sciatic nerve gap. The results from morphological analysis as well as electrophysiological examination indicated that regenerative outcomes achieved by our developed scaffold were similar to those by an acellular nerve graft (namely a nerve tissue-derived ECM scaffold), but superior to those by a plain chitosan/SF scaffold. Moreover, blood and histopathological parameters confirmed the safety of scaffold modification by SC-derived ECM. Therefore, a hybrid scaffold based on joint use of acellular and classical biomaterials represents a promising approach to nerve tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    PubMed

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of chitosan-pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies.

    PubMed

    Cevher, Erdal; Salomon, Stefan K; Somavarapu, Satyanarayana; Brocchini, Steve; Alpar, H Oya

    2015-01-01

    Here, we aimed at developing chitosan/pullulan composite nanoparticles and testing their potential as novel systems for the nasal delivery of diphtheria toxoid (DT). All the chitosan derivatives [N-trimethyl (TMC), chloride and glutamate] and carboxymethyl pullulan (CMP) were synthesised and antigen-loaded composites were prepared by polyion complexation of chitosan and pullulan derivatives (particle size: 239-405 nm; surface charge: +18 and +27 mV). Their immunological effects after intranasal administration to mice were compared to intramuscular route. Composite nanoparticles induced higher levels of IgG responses than particles formed with chitosan derivative and antigen. Nasally administered TMC-pullulan composites showed higher DT serum IgG titre when compared with the other composites. Co-encapsulation of CpG ODN within TMC-CMP-DT nanoparticles resulted in a balanced Th1/Th2 response. TMC/pullulan composite nanoparticles also induced highest cytokine levels compared to those of chitosan salts. These findings demonstrated that TMC-CMP-DT composite nanoparticles are promising delivery system for nasal vaccination.

  17. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Małgorzata; Kaczyński, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  18. The Potential of Chitosan and Its Derivatives in Prevention and Treatment of Age-Related Diseases

    PubMed Central

    Kerch, Garry

    2015-01-01

    Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed. PMID:25871293

  19. Photoaddition of N-substituted piperazines to C60: an efficient approach to the synthesis of water-soluble fullerene derivatives.

    PubMed

    Troshina, Olesya A; Troshin, Pavel A; Peregudov, Alexander S; Kozlovski, Viacheslav I; Lyubovskaya, Rimma N

    2006-07-17

    An oxidative radical photoaddition of mono N-substituted piperazines to [60]fullerene was systematically investigated. Reactions of C60 with piperazines bearing bulky electron-withdrawing groups (2-pyridyl, 2-pyrimidinyl) were found to be the most selective and yielded C60(amine)4O as major products along with small amounts of C60(amine)2. In contrast, interactions of fullerene with N-methylpiperazine and N-(tert-butoxycarbonyl)piperazine were found to have low selectivity due to different side reactions. Tetraaminofullerene derivative C60(N-(2-pyridyl)piperazine)4O was found to react readily with organic and inorganic acids to yield highly water-soluble salts (solubility approximately 150 mg mL(-1)). In contrast, C60(N-(2-pyrimidinyl)piperazine)4O undergoes hydrolysis under the same conditions and results in a complex mixture of compounds with an average composition of C60(N-(2-pyrimidinyl)piperazine)2(OH)2O. Radical photoaddition of N-(2-pyridyl)piperazine to fullerene derivatives can be used as a facile route for their transformation into water-soluble compounds. Two model fullerene cycloadducts (a methanofullerene and a pyrrolidinofullerene) were easily converted into mixtures of regioisomers of A=C60(N-(2-pyridyl)piperazine)4O (A=cyclic addend) that give highly water-soluble salts under acid treatment.

  20. Microwave-Assisted Hydrolysis of Chitosan from Shrimp Shell Waste for Glucosammine Hydrochlorid Production

    NASA Astrophysics Data System (ADS)

    Zaeni, Ahmad; Safitri, Endang; Fuadah, Badrotul; Nyoman Sudiana, I.

    2017-05-01

    Chitin is the most widespread renewable natural sources following cellulose as the main source of chitosan. Chitin is isolated from crustacean waste and shrimp shells. Chitosan is derived from chitin throuhgt demineralisation, deproteination, decolorisation and deacetylation process using chemicals such as sodium hydroxide, hydrogen chloride and acetone. Glucosamine hydrochloride (GlcN-Cl) can be produced by hydrolysis of chitosan by using hydrogen chloride. During deacetylation and hydrolysis the solution is heated by hotplate or furnace. In this paper we use microwave instead of hotplate for production chitosan and GlcN-Cl. The research investigates effect of microwaves to amount of rendemen and their property. The chitosan was characterized its moisture content, solubility, and degree of deacetylation (DDA). Whereas the glucosammine hydrochloride characterized its functional groups using FTIR and crystallization by using X-Ray Difraction (XRD). The experimental results show that the use of microwave energy on deacetilation of chitosan and hydrolisis processes can decrease time consuming and reactant concentration during production. the DDA value obtained was very high from 70 to 85%. The results also show that microwaves meet chitosan and GlcN-Cl standards.

  1. Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine

    PubMed Central

    Li, Xiaosong; Min, Min; Du, Nan; Gu, Ying; Hode, Tomas; Naylor, Mark; Chen, Dianjun; Nordquist, Robert E.; Chen, Wei R.

    2013-01-01

    With the development of cancer immunotherapy, cancer vaccine has become a novel modality for cancer treatment, and the important role of adjuvant has been realized recently. Chitin, chitosan, and their derivatives have shown their advantages as adjuvants for cancer vaccine. In this paper, the adjuvant properties of chitin and chitosan were discussed, and some detailed information about glycated chitosan and chitosan nanoparticles was also presented to illustrate the trend for future development. PMID:23533454

  2. Chitosan-thioglycolic acid as a versatile antimicrobial agent.

    PubMed

    Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Käch, Andres; Maake, Caroline; Patzke, Greta R

    2013-04-08

    As functionalized chitosans hold great potential for the development of effective and broad-spectrum antibiotics, representative chitosan derivatives were tested for antimicrobial activity in neutral media: trimethyl chitosan (TMC), carboxy-methyl chitosan (CMC), and chitosan-thioglycolic acid (TGA; medium molecular weight: MMW-TGA; low molecular weight: LMW-TGA). Colony forming assays indicated that LMW-TGA displayed superior antimicrobial activity over the other derivatives tested: a 30 min incubation killed 100% Streptococcus sobrinus (Gram-positive bacteria) and reduced colony counts by 99.99% in Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi). To elucidate LMW-TGA effects at the cellular level, microscopic studies were performed. Use of fluorescein isothiocyanate (FITC)-labeled chitosan derivates in confocal microscopy showed that LMW-TGA attaches to microbial cell walls, while transmission electron microscopy indicated that this derivative severely affects cell wall integrity and intracellular ultrastructure in all species tested. We therefore propose LMW-TGA as a promising and effective broad-band antimicrobial compound.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winstead, Cherese; Katagumpola, Pushpika

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivativesmore » were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), {sup 1}H Nuclear Magnetic Resonance ({sup 1}H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.« less

  4. The study of structure-activity relationships among substituted N-benzoyl derivatives of phenylalanine and its analogs in a microbial antitumor prescreen: II. Derivatives of m-fluoro-DL-phenylalanine.

    PubMed

    Otani, T T; Briley, M R

    1983-05-01

    The fluoro-, chloro-, methoxy- and nitro-substituted benzoyl derivatives of m-fluoro-DL-phenylalanine, substituted singly at the ortho, meta or para position of the benzoyl phenyl ring, were prepared and tested for growth-inhibitory activity in a Lactobacillus casei system used as an antitumor prescreen. The substituted benzoyl derivatives that were previously found to be the most active for o-fluoro-DL-phenylalanine were also the most active for the m-fluoro-DL-phenylalanine. The position of the fluorine substituent in the phenylalanine also appeared to be important for inhibitory activity as the derivatives of m-fluoro-phenylalanine were in general better inhibitors than those of the corresponding o-fluorophenylalanine.

  5. An in vitro study of the anti-biofilm properties of proanthocyanidin and chitosan in Pseudomonas syringae pv. papulans

    NASA Astrophysics Data System (ADS)

    Song, Kai

    Biofilm-forming bacteria are a form of planktonic microorganisms that can become resistant against conventional antibiotics. Because they are difficult to eradicate, biofilm-forming bacteria are extremely problematic for the medical industry areas. Thus, materials that can distort biofilm structure would be helpful for eliminating chronic infection and decreasing bacterial resistance. The primary objective of this study is to evaluate the anti-biofilm effect of two bio-derived substances, proanthocyanidin and chitosan. Proanthocyanidins are secondary plant metabolites that are reported to have antibiotic and antioxidant functions. Chitosan (poly [beta-(1, 4)-amino-2-deoxy-beta-D-glucose]) is a deacetylated derivative of chitin, which is abundant in the exoskeleton of crustaceans and insects. It is reported to be a suitable substitute for conventional fungicides and can enhance the proanthocyanidin content in plants when used as an agrochemical. Chitosan-tripolyphosphate (TPP) nanoparticles, which have good neutral water solubility and are nanoscale in size, can be used as carriers for gene and drug therapy and are thus favorable to be tested as a treatment method against bacterial biofilms. In this study, the anti-biofilm and antibacterial properties of proanthocyanidin, chitosan-TPP nanoparticles and proanthocyanidins-loaded chitosan-TPP nanoparticles were tested using the model plant bacterium, Pseudomonas syringae pv. papulans (Psp), a pathogen isolated from infected apples. At a lower concentration (1 mg/mL and 2.5 mg/mL), both chitosan nanoparticles and proanthocyanidins can postpone the formation of biofilms and eventually disrupted part of the biofilm. While higher concentration (above 5 mg/mL) of chitosan nanoparticles or proanthocyanidins can eliminate most of the biofilm in this study. PAC-loaded chitosan nanoparticles also can also distort biofilms. Both proanthocyanidins and chitosan-TPP nanoparticle showed a mild antibacterial property. PAC

  6. Degree of Acetylization Chitosan Gonggong Snail Shells

    NASA Astrophysics Data System (ADS)

    Horiza, H.; Iskandar, I.; Aldo, N.

    2018-04-01

    Chitosan is a polysaccharide obtained from the deacetylation of chitin, which is generally derived from crustacean animal waste and animal skins other sea. One marine animals that have compounds that can be processed chitin chitosan is derived from the snail Gonggong marine waters of Riau Islands province. The purpose of this study was to determine the degree of chitosan from the shells of snails asetilisasi Gonggong. This research is an experimental research laboratory. The results of this study indicate that the degree of chitosan shell snail deasetilisasi Gonggong is 70.27%.

  7. Nanoparticles Prepared From N,N-Dimethyl-N-Octyl Chitosan as the Novel Approach for Oral Delivery of Insulin: Preparation, Statistical Optimization and In-vitro Characterization

    PubMed Central

    Shamsa, Elnaz Sadat; Mahjub, Reza; Mansoorpour, Maryam; Rafiee-Tehrani, Morteza; Abedin Dorkoosh, Farid

    2018-01-01

    In this study, N,N-Dimethyl-N-Octyl chitosan was synthesized. Nanoparticles containing insulin were prepared using PEC method and were statistically optimized using the Box-Behnken response surface methodology. The independent factors were considered to be the insulin concentration, concentration and pH of the polymer solution, while the dependent factors were characterized as the size, zeta potential, PdI and entrapment efficiency. The optimized nanoparticles were morphologically studied using SEM. The cytotoxicity of the nanoparticles on the Caco-2 cell culture was studied using the MTT cytotoxicity assay method, while the permeation of the insulin nanoparticles across the Caco-2 cell monolayer was also determined. The optimized nanoparticles posed appropriate physicochemical properties. The SEM morphological studies showed spherical to sub-spherical nanoparticles with no sign of aggregation. The in-vitro release study showed that 95.5 ± 1.40% of the loaded insulin was released in 400 min. The permeability studies revealed significant enhancement in the insulin permeability using nanoparticles prepared from octyl chitosan at 240 min (11.3 ± 0.78%). The obtained data revealed that insulin nanoparticles prepared from N,N-Dimethyl-N-Octyl chitosan can be considered as the good candidate for oral delivery of insulin compared to nanoparticles prepared from N,N,N-trimethyl chitosan.

  8. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings.

    PubMed

    Mohandas, Annapoorna; Deepthi, S; Biswas, Raja; Jayakumar, R

    2018-09-01

    Chitosan based nanocomposite scaffolds have attracted wider applications in medicine, in the area of drug delivery, tissue engineering and wound healing. Chitosan matrix incorporated with nanometallic components has immense potential in the area of wound dressings due to its antimicrobial properties. This review focuses on the different combinations of Chitosan metal nanocomposites such as Chitosan/nAg, Chitosan/nAu, Chitosan/nCu, Chitosan/nZnO and Chitosan/nTiO 2 towards enhancement of healing or infection control with special reference to the antimicrobial mechanism of action and toxicity.

  9. Antimicrobial activity of chitosan and a chitosan oligomer against bacterial pathogens of warmwater fish

    USDA-ARS?s Scientific Manuscript database

    Aim: The antibacterial activities of chitosan (CS) and its derivative chitosan oligosaccharide lactate (COL) were evaluated against Aeromonas hydrophila, Edwardsiella ictaluri and Flavobacterium columnare, three highly pathogenic bacteria of warmwater finfish. Methods and Results: The kinetics of ce...

  10. Structure-activity relationships among substituted N-benzoyl derivatives of phenylalanine and its analogs in a microbial antitumor prescreen I: Derivatives of o-fluoro-DL-phenylalanine.

    PubMed

    Otani, T T; Briley, M R

    1982-02-01

    Twelve derivatives of 0-fluoro-dl-phenylalanine containing fluorine, chlorine, methoxy, and nitro radicals in various positions of the aromatic ring of the benzoyl group were prepared and tested in a Lactobacillus casei system. It was found that most substitutions in the benzoyl phenyl ring resulted in a compound exhibiting greater growth-inhibiting activity than the nonsubstituted benzoyl-o-fluorophenylalanine. The greatest activity was observed in the ortho-substituted fluoro compound and the meta- and para-substituted chloro and nitro compounds. With the methoxy group, the position of substitution appeared unimportant, since all three methoxy isomers exhibited essentially equal inhibition. Nitro substitution in the ortho position had a protective effect in that the product was less active than the unsubstituted benzoyl-o-fluoro-dl-phenylalanine.

  11. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    NASA Astrophysics Data System (ADS)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  12. Dissecting the conformational determinants of chitosan and chitlac oligomers.

    PubMed

    Esteban, Carmen; Donati, Ivan; Pantano, Sergio; Villegas, Myriam; Benegas, Julio; Paoletti, Sergio

    2018-06-01

    Chitosan and its highly hydrophilic 1-deoxy-lactit-1-yl derivative (Chitlac) are polysaccharides with increasing biomedical applications. Aimed to unravel their conformational properties we have performed a series of molecular dynamics simulations of Chitosan/Chitlac decamers, exploring different degrees of substitution (DS) of lactitol side chains. At low DS, two conformational regions with different populations are visited, while for DS ≥ 20% the oligomers remain mostly linear and only one main region of the glycosidic angles is sampled. These conformers are (locally) characterized by extended helical "propensities". Helical conformations 3 2 and 2 1, by far the most abundant, only develop in the main region. The accessible conformational space is clearly enlarged at high ionic strength, evidencing also a new region accessible to the glycosidic angles, with short and frequent interchange between regions. Simulations of neutral decamers share these features, pointing to a central role of electrostatic repulsion between charged moieties. These interactions seem to determine the conformational behavior of the chitosan backbone, with no evident influence of H-bond interactions. Finally, it is also shown that increasing temperature only slightly enlarges the available conformational space, but certainly without signs of a temperature-induced conformational transition. © 2018 Wiley Periodicals, Inc.

  13. The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO4, N-NO2 and N-NO3.

    PubMed

    Jóźwiak, Tomasz; Filipkowska, Urszula; Szymczyk, Paula; Kuczajowska-Zadrożna, Małgorzata; Mielcarek, Artur

    2017-11-01

    A hydrogel chitosan sorbent ionically cross-linked with sodium citrate and covalently cross-linked with epichlorohydrin was used to remove nutrients from an equimolar mixture of P-PO 4 , N-NO 2 and N-NO 3 . The scope of the study included, among other things, determination of the influence of pH on nutrient sorption effectiveness, nutrient sorption kinetics as well as determination of the maximum sorption capacity of cross-linked chitosan sorbents regarding P-PO 4 (H 2 PO 4 - , HPO 4 2- ), N-NO 2 (HNO 2 , NO 2 - ), and N-NO 3 (NO 3 - ). The effect of the type of the cross-linking agent on the affinity of the modified chitosan to each nutrient was studied as well. The kinetics of nutrient sorption on the tested chitosan sorbents was best described with the pseudo-second order model. The model of intramolecular diffusion showed that P-PO 4 , N-NO 2 and N-NO3 sorption on cross-linked hydrogel chitosan beads proceeded in two phases. The best sorbent of nutrients turned out to be chitosan cross-linked covalently with epichlorohydrin; with P-PO 4 , N-NO 2 and N-NO 3 sorption capacity reaching: 1.23, 0.94 and 0.76mmol/g, respectively (total of 2.92mmol/g). For comparison, the sorption capacity of chitosan cross-linked ionically with sodium citrate was: 0.43, 0.39 and 0.39mmol/g for P-PO 4 , N-NO 2 and N-NO 3 , respectively (total of 1.21mmol/g). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates.

    PubMed

    Harvey, David J

    2005-01-01

    Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.

  15. Structure-activity relationships for novel drug precursor N-substituted-6-acylbenzothiazolon derivatives: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Sıdır, Yadigar Gülseven; Sıdır, İsa

    2013-08-01

    In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.

  16. Exploration of hydrophobic modification degree of chitosan-based nanocomplexes on the oral delivery of enoxaparin.

    PubMed

    Wang, Linlin; Li, Liang; Sun, Yujiao; Tian, Ye; Li, Ying; Li, Conghao; Junyaprasert, Varaporn B; Mao, Shirui

    2013-11-20

    The objective of this paper is to elucidate the influence of lipophilic modification degree of chitosan on the peroral absorption of enoxaparin. A series of novel chitosan grafted glyceryl monostearate (GM) copolymers with different GM substitution degree were synthesized and the successful synthesis was confirmed by (1)H NMR, FTIR and X-ray diffraction. Enoxaparin loaded nanocomplexes with different carriers were prepared by self-assembly process. Influence of GM substitution degree and chitosan molecular weight in the copolymer on the properties of the nanocomplexes was investigated. Morphology of the nanocomplexes was observed by atomic force microscopy. Mucoadhesive properties of the nanocomplexes were characterized using mucin particle method. Initially, mucoadhesion of the nanocomplexes increased with the increase of GM substitution degree and it started to decrease when the substitution degree was up to 18.6%. A good linear relationship between GM substitution degree and in vivo absorption of enoxaparin in fasted rats was established in the substitution degree range of 0-11.1%. In agreement with mucoadhesion data, further increasing GM substitution degree to 18.6% caused a decrease in oral absorption. In conclusion, oral bioavailability of enoxaparin can be enhanced by structure modification of the carriers and the bioavailability is hydrophobic modification degree dependent. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of chitosan-alginate scaffolds for seeding human umbilical cord derived mesenchymal stem cells.

    PubMed

    Kumbhar, Sneha G; Pawar, S H

    2016-01-01

    Chitosan and alginate are two natural and accessible polymers that are known to be biocompatible, biodegradable and possesses good antimicrobial activity. When combined, they exhibit desirable characteristics and can be created into a scaffold for cell culture. In this study interaction of chitosan-alginate scaffolds with mesenchymal stem cells are studied. Mesenchymal stem cells were derived from human umbilical cord tissues, characterized by flow cytometry and other growth parameters studied as well. Proliferation and viability of cultured cells were studied by MTT Assay and Trypan Blue dye exclusion assay. Besides chitosan-alginate scaffold was prepared by freeze-drying method and characterized by FTIR, SEM and Rheological properties. The obtained 3D porous structure allowed very efficient seeding of hUMSCs that are able to inhabit the whole volume of the scaffold, showing good adhesion and proliferation. These materials showed desirable rheological properties for facile injection as tissue scaffolds. The results of this study demonstrated that chitosan-alginate scaffold may be promising biomaterial in the field of tissue engineering, which is currently under a great deal of examination for the development and/or restoration of tissue and organs. It combines the stem cell therapy and biomaterials.

  18. Preparation and characterization of graphene/turbostratic carbon derived from chitosan film for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hanappi, M. F. Y. M.; Deraman, M.; Suleman, M.; Othman, M. A. R.; Basri, N. H.; Nor, N. S. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.

    2018-04-01

    Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from the carbon grains (CGs) obtained by carbonization (under the flow of nitrogen, N2 gas and over a temperature range from 600 °C to 1000 °C) of biomass precursor chitosan film. The procedure to prepare the chitosan film is described elsewhere. The carbon grains are characterized using Raman spectroscopy (RS) and X-ray diffraction (XRD). We expect that the CGs would have the similar characteristics as graphene and would be a potential electrode material for EDLCs application.

  19. Substitution of the nitro group with Grignard reagents: facile arylation and alkenylation of pyridine N-oxides.

    PubMed

    Zhang, Fang; Zhang, Song; Duan, Xin-Fang

    2012-11-02

    The unprecedented substitution of a nitro group with aryl or alkenyl groups of Grignard reagents affords 2-aryl or alkenylpyridine N-oxides in modest to high yields with high chemoselectivity. This protocol allows a simple and clean synthesis of various 2-substituted pyridine N-oxides and the corresponding pyridine derivatives. Furthermore, straightforward one-pot iterative functionality of pyridine N-oxides could also be achieved simply by successive applications of two Grignard reagents.

  20. A DFT based analysis of adsorption of Hg2+ ion on chitosan monomer and its citralidene and salicylidene derivatives: Prior to the removal of Hg toxicity.

    PubMed

    Hassan, Basila; Rajan, Vijisha K; Mujeeb, V M Abdul; K, Muraleedharan

    2017-06-01

    A Density functional theory based study of adsorption of the toxic metal Hg (II) ion by chitosan monomer and two of its derivatives; citralidene and salicylidene chitosan, has been performed. The effect of structural features on the stability of studied complexes has been analyzed by using Gaussian03 software package. All the possible conformations of these adsorbents were studied using the global minimum geometries. All the adsorbing sites were studied by placing the metal ion on the centroid of the atoms and the stable conformer of the adsorbent-metal ion complex was identified. Interaction between Hg (II) and the adsorbents is found to be electrostatic. Metal ion binding with nitrogen atom is stronger than that with oxygen atoms in all the cases as the charge density of nitrogen is enhanced on Schiff base formation. The advantage of derivatives over chitosan monomer is their stability in acidic media. ΔE value of the complexes are in the order SC-Hg (II)>chitosan-Hg (II)>CC-Hg (II) which indicates that the stability of complexes increases with increase in energy gap. The study reveals that aromatic Schiff base derivatives of chitosan is better for Hg(II) intake than aliphatic derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives.

    PubMed

    Jiang, Yao-Wen; Guo, Hao-Yue; Chen, Zhan; Yu, Zhi-Wu; Wang, Zhifei; Wu, Fu-Gen

    2016-07-05

    Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also

  2. A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles.

    PubMed

    Maddila, Suresh; Gangu, Kranthi Kumar; Maddila, Surya Narayana; Jonnalagadda, Sreekantha B

    2017-02-01

    A simple and versatile one-pot three-component synthetic protocol is devised for heterocycles, viz. 2,6-diamino-4-substituted-4H-pyran-3,5-dicarbonitrile derivatives, in short reaction times ([Formula: see text]30 min) at room temperature using ethanol as a solvent. This method involves the three-component reaction of malononitrile, substituted aldehydes, and cyanoacetamide catalyzed by chitosan-doped calcium hydroxyapatites (CS/CaHAps) giving good to excellent yields (86-96%). Twelve new pyran derivatives (4a-l) were synthesized and their structures were established and confirmed by different spectroscopic methods ([Formula: see text]H NMR, [Formula: see text]C NMR, [Formula: see text]N NMR, and HRMS). The heterogeneous catalyst, CS/CaHAp, was characterized by various instrumental techniques including XRD, TEM, SEM, and FT-IR and TGA spectroscopies. The catalyst was easily separable and reusable for up to six runs without any apparent loss of activity. The reported protocol has many benefits, such as ease of preparation, use of a green solvent, reduced reaction times, excellent product yields, and operational simplicity.

  3. Chitosan nanoparticles from marine squid protect liver cells against N-diethylnitrosoamine-induced hepatocellular carcinoma.

    PubMed

    Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-09-01

    Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterization of bioactive chitosan and sulfated chitosan from Doryteuthis singhalensis (Ortmann, 1891).

    PubMed

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Thinesh, Thangadurai; Selvin, Joseph; Selvan, Kanagaraj Muthamizh; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-06-01

    Chitosan was extracted from the pen of squid Doryteuthis singhalensis and characterized using FT-IR, NMR, CHN, SEM and DSC analysis. Purified chitosan was sulfated with chlorosulfonic acid in N,N-dimethylformamide and the added sulfate group was confirmed with FT-IR analysis. The molecular weight and degree of deacetylation (DDA) of chitosan was found 226.6kDa and 83.76% respectively. Chitosan exhibited potent antioxidant activity evidenced by reducing power, chelating ability on ferrous ions and scavenging activity on DPPH, superoxide and hydroxyl radicals. The anticoagulant assay using activated partial thromboplastin time (APTT) and prothrombin time (PT) showed chitosan as a strong anticoagulant. The results of this study showed possibility of using D. singhalensis pen as a non-conventional source of natural antioxidants and anticoagulant which can be incorporated in functional food formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Removal of p-alkylphenols from aqueous solutions by combined use of mushroom tyrosinase and chitosan beads.

    PubMed

    Yamada, Kazunori; Inoue, Tomoaki; Akiba, Yuji; Kashiwada, Ayumi; Matsuda, Kiyomi; Hirata, Mitsuo

    2006-10-01

    Enzymatic removal of p-alkylphenols from aqueous solutions was investigated through the two-step approach, the quinone conversion of p-alkylphenols with mushroom tyrosinase (EC 1.14.18.1) and the subsequent adsorption of quinone derivatives enzymatically generated on chitosan beads at pH 7.0 and 45 degrees C as the optimum conditions. This technique is quite effective for removal of various p-alkylphenols from an aqueous solution. The % removal values of 97-100% were obtained for p-n-alkylphenols with carbon chain lengths of 5 to 9. In addition, removal of other p-alkylphenols was enhanced by increasing either the tyrosinase concentration or the amount of added chitosan beads, and their % removal values reached >93 except for 4-tert-pentylphenol. This technique was also applicable to remove 4-n-octylphenol (4NOP) and 4-n-nonylphenol (4NNP) as suspected endocrine disrupting chemicals. The reaction of quinone derivatives enzymatically generated with the chitosan's amino groups was confirmed by the appearance of peaks for UV-visible spectrum measurements of the chitosan films incubated in the p-alkylphenol and tyrosinase mixture solutions. In addition, 4-tert-pentylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide.

  6. Chromatographic methods for determination of S-substituted cysteine derivatives--a comparative study.

    PubMed

    Kubec, Roman; Dadáková, Eva

    2009-10-09

    A novel HPLC method for determination of a wide variety of S-substituted cysteine derivatives in Allium species has been developed and validated. This method allows simultaneous separation and quantification of S-alk(en)ylcysteine S-oxides, gamma-glutamyl-S-alk(en)ylcysteines and gamma-glutamyl-S-alk(en)ylcysteine S-oxides in a single run. The procedure is based on extraction of these amino acids and dipeptides by methanol, their derivatization by dansyl chloride and subsequent separation by reversed phase HPLC. The main advantages of the new method are simplicity, excellent stability of derivatives, high sensitivity, specificity and the ability to simultaneously analyze the whole range of S-substituted cysteine derivatives. This method was critically compared with other chromatographic procedures used for quantification of S-substituted cysteine derivatives, namely with two other HPLC methods (derivatization by o-phthaldialdehyde/tert-butylthiol and fluorenylmethyl chloroformate), and with determination by gas chromatography or capillary electrophoresis. Major advantages and drawbacks of these analytical procedures are discussed. Employing these various chromatographic methods, the content and relative proportions of individual S-substituted cysteine derivatives were determined in four most frequently consumed alliaceous vegetables (garlic, onion, shallot, and leek).

  7. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials

    PubMed Central

    Elieh-Ali-Komi, Daniel; Hamblin, Michael R

    2016-01-01

    Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with

  8. Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Demina, T. S.; Zaytseva-Zotova, D. S.; Timashev, P. S.; Bagratashvili, V. N.; Bardakova, K. N.; Sevrin, Ch; Svidchenko, E. A.; Surin, N. M.; Markvicheva, E. A.; Grandfils, Ch; Akopova, T. A.

    2015-07-01

    Chitosan-g-oligo (L, D-lactide) copolymers were synthesized and assessed to fabricate a number of 3D scaffolds using a variety of technologies such as oil/water emulsion evaporation technique, freeze-drying and two-photon photopolymerization. Solid-state copolymerization method allowed us to graft up to 160 wt-% of oligolactide onto chitosan backbone via chitosan amino group acetylation with substitution degree reaching up to 0.41. Grafting of hydrophobic oligolactide side chains with polymerization degree up to 10 results in chitosan amphiphilic properties. The synthesized chitosan-g-lactide copolymers were used to design 3D scaffolds for tissue engineering such as spherical microparticles and macroporous hydrogels.

  9. Biopolymers produced from gelatin and chitosan using polyphenols

    USDA-ARS?s Scientific Manuscript database

    Chitin, and its derivative chitosan, is an abundant waste product derived from crustaceans (e.g. crab). It has unique properties which enable its use in, but not limited to, cosmetic, medical, and food applications. Chitosan has recently been studied, in conjunction with other waste carbohydrates ...

  10. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  11. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.

    PubMed

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca

    2017-04-01

    Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion. Copyright © 2017. Published by Elsevier B.V.

  12. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap.

    PubMed

    Zhu, Changlai; Huang, Jing; Xue, Chengbin; Wang, Yaxian; Wang, Shengran; Bao, Shuangxi; Chen, Ruyue; Li, Yuan; Gu, Yun

    2017-12-27

    Extracellular/acellular matrix has been attracted much research interests for its unique biological characteristics, and ACM modified neural scaffolds shows the remarkable role of promoting peripheral nerve regeneration. In this study, skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) were used as parent cells to generate acellular(ACM) for constructing a ACM-modified neural scaffold. SKP-SCs were co-cultured with chitosan nerve guidance conduits (NGC) and silk fibroin filamentous fillers, followed by decellularization to stimulate ACM deposition. This NGC-based, SKP-SC-derived ACM-modified neural scaffold was used for bridging a 10 mm long rat sciatic nerve gap. Histological and functional evaluation after grafting demonstrated that regenerative outcomes achieved by this engineered neural scaffold were better than those achieved by a plain chitosan-silk fibroin scaffold, and suggested the benefits of SKP-SC-derived ACM for peripheral nerve repair. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  13. Comparison and Characterisation of Regenerated Chitosan from 1-Butyl-3-methylimidazolium Chloride and Chitosan from Crab Shells

    PubMed Central

    Arnold, Lyndon

    2015-01-01

    Chitosan is a biopolymer derived from chitin which is naturally occurring in the exoskeleton of crustaceans. This paper reports dissolution and regeneration of chitosan by directly dissolving in an ionic liquid solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl). This will provide an ideal platform to solubilise these kinds of polymers to achieve the dissolution. The current study dissolved chitosan from crab shell utilising BMIMCl as a solvent and characterised the resultant regenerated polymer. The regenerated chitosan showed increased hydrogen bonding when characterised by Fourier transform infrared (FTIR) spectral analysis. In addition, the study also compared the characteristics of regenerated and generic chitosan. The regenerated chitosan was also evaluated for antimicrobial properties and showed to possess antibacterial features similar to the commercial grade. This method can be utilised in future for blending of polymers with chitosan in a dissolved phase. PMID:26090452

  14. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2015-07-01

    Injectable hydrogels are important cell scaffolding materials for tissue engineering and regenerative medicine. Here, we report a new class of biocompatible and biodegradable polysaccharide hydrogels derived from chitosan and hyaluronan via a metal-free click chemistry, without the addition of copper catalyst. For the metal-free click reaction, chitosan and hyaluronan were modified with oxanorbornadiene (OB) and 11-azido-3,6,9-trioxaundecan-1-amine (AA), respectively. The gelation is attributed to the triazole ring formation between OB and azido groups of polysaccharide derivatives. The molecular structures were verified by FT-IR spectroscopy and elemental analysis, giving substitution degrees of 58% and 47% for chitosan-OB and hyaluronan-AA, respectively. The in vitro gelation, morphologies, equilibrium swelling, compressive modulus and degradation of the composite hydrogels were examined. The potential of the metal-free hydrogel as a cell scaffold was demonstrated by encapsulation of human adipose-derived stem cells (ASCs) within the gel matrix in vitro. Cell culture showed that this metal-free hydrogel could support survival and proliferation of ASCs. A preliminary in vivo study demonstrated the usefulness of the hydrogel as an injectable scaffold for adipose tissue engineering. These characteristics provide a potential opportunity to use the metal-free click chemistry in preparation of biocompatible hydrogels for soft tissue engineering applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Enzymatic modification of chitosan by cinnamic acids: Antibacterial activity against Ralstonia solanacearum.

    PubMed

    Yang, Caifeng; Zhou, Yu; Zheng, Yu; Li, Changlong; Sheng, Sheng; Wang, Jun; Wu, Fuan

    2016-06-01

    This study aimed to identify chitosan polymers that have antibacterial activity against the bacterial wilt pathogen. The chitosan polymers were enzymatically synthesized using chitosan and five cinnamic acids (CADs): caffeic acid (CA), ferulic acid (FA), cinnamic acid (CIA), p-coumaric acid (COA) and chlorogenic acid (CHA), using laccase from Pleurotus ostreatus as a catalyst. The reaction was performed in a phosphate buffered solution under heterogenous reaction conditions. The chitosan derivatives (CTS-g-CADs) were characterized by FT-IR, XRD, TGA and SEM. FT-IR demonstrated that the reaction products bound covalently to the free amino groups or hydroxyl groups of chitosan via band of amide I or ester band. XRD showed a reduced packing density for grafted chitosan comparing to original chitosan. TGA demonstrated that CTS-g-CADs have a higher thermostability than chitosan. Additionally, chitosan and its derivatives showed similar antibacterial activity. However, the IC50 value of the chitosan-caffeic acid derivative (CTS-g-CA) against the mulberry bacterial wilt pathogen RS-5 was 0.23mg/mL, which was two-fifths of the IC50 value of chitosan. Therefore, the enzymatically synthesized chitosan polymers can be used to control plant diseases in biotechnological domains. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Bilayer Engineered Skin Substitute for Wound Repair in an Irradiation-Impeded Healing Model on Rat

    PubMed Central

    Mohd Hilmi, A.B.; Hassan, Asma; Halim, Ahmad Sukari

    2015-01-01

    Objective: An engineered skin substitute is produced to accelerate wound healing by increasing the mechanical strength of the skin wound via high production of collagen bundles. During the remodeling stage of wound healing, collagen deposition is the most important event. The collagen deposition process may be altered by nutritional deficiency, diabetes mellitus, microbial infection, or radiation exposure, leading to impaired healing. This study describes the fabrication of an engineered bilayer skin substitute and evaluates its effectiveness for the production of collagen bundles in an impaired healing model. Approach: Rats were exposed to 10 Gy of radiation. Two months postirradiation, the wounds were excised and treated with one of three skin replacement products: bilayer engineered skin substitutes, chitosan skin templates, or duoderm©. The collagen deposition was analyzed by hematoxylin and eosin staining. Results: On day 21 postwound, the irradiated wounds displayed increased collagen bundle deposition after treatment using bilayer engineered skin substitutes (3.4±0.25) and chitosan skin templates (3.2±0.58) compared with duoderm (2.0±0.63). Innovation: We provide the first report on the fabrication of bilayer engineered skin substitutes using high density human dermal fibroblasts cocultured with HFSCs on chitosan skin templates. Conclusion: The high density of fibroblasts significantly increases the penetration of cells into chitosan skin templates, contributing to the fabrication of bilayer engineered skin substitute. PMID:26005597

  17. Semisynthesis, Cytotoxic Activity, and Oral Availability of New Lipophilic 9-Substituted Camptothecin Derivatives

    PubMed Central

    2013-01-01

    Despite that 9-substituted camptothecins are promising candidates in cancer therapy, the limited accessibility to this position has reduced the studies of these derivatives to a few standard modifications. We report herein a novel semisynthetic route based on the Tscherniac–Einhorn reaction to synthesize new lipophilic camptothecin derivatives with amidomethyl and imidomethyl substitutions in position 9. Compounds were evaluated for their antiproliferative activity, topoisomerase I inhibition, and oral availability. Preliminary data demonstrated that bulky imidomethyl modification is an appropriate lipophilic substitution for an effective oral administration relative to topotecan. In addition, this general procedure paves the way for obtaining new camptothecin derivatives. PMID:24900725

  18. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro.

    PubMed

    Li, Junjie; Yang, Boguang; Qian, Yufeng; Wang, Qiyu; Han, Ruijin; Hao, Tong; Shu, Yao; Zhang, Yabin; Yao, Fanglian; Wang, Changyong

    2015-10-01

    In this study, we have developed ι-carrageenan/chitosan/gelatin (CCG) scaffold containing multiple functional groups (-NH2 , -OH, -COOH, and -SO3 H) to resemble the native extracellular matrix (ECM), using the ion-shielding technology and ultrasonic dispersion method. Fourier transform infrared spectroscopy (FTIR) of the CCG scaffolds suggests that the formation of CCG network involves electrostatic interactions between ι-carrageenan (ι-CA) and chitosan/gelatin, and the covalent cross-linking among amino groups of chitosan and/or gelatin. Scanning electron microscopic (SEM) observation reveals that the porous structure of scaffolds can be modulated by the ratio of ι-CA to chitosan/gelatin. The swelling ratio of the hydrogels increases as the ι-CA contents increase. Using differential scanning calorimetry, we found that the double helix structure of ι-CA is only stabilized at low contents of ι-CA in the CCG scaffolds (e.g., 5 wt %). The scaffolds containing 5% ι-CA showed the best protein adsorption capacity (4.46 ± 0.63 μg protein/mg scaffold) and elastic modulus (5.37 ± 1.03 MPa). In addition, the CCG scaffolds exhibit excellent support for adipose-derived mesenchymal stem cells (ADMSCs) attachment and proliferation, and they can improve the osteogenic differentiation and neovascularization capacities of ADMSCs. Overall, we conclude that the CCG may represent an ideal scaffold material for bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  19. Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application.

    PubMed

    Li, Zehui; Yang, Lan; Cao, Hongbin; Chang, Yu; Tang, Kexin; Cao, Zhiqin; Chang, Junjun; Cao, Youpeng; Wang, Wenbo; Gao, Meng; Liu, Chenming; Liu, Dagang; Zhao, He; Zhang, Yi; Li, Mingjie

    2017-11-01

    In order to promote sustainable development, green and renewable clean energy technologies continue to be developed to meet the growing demand for energy, such as supercapacitor, fuel cells and lithium-ion battery. It is urgent to develop appropriate nanomaterials for these energy technologies to reduce the volume of the device, improve the efficiency of energy conversion and enlarge the energy storage capacity. Here, chitosan/cellulose carbon cryogel (CCS/CCL) were designed and synthesized. Through the introduction of zeolite imidazole frameworks (ZIFs) into the chitosan/cellulose cryogels, the obtained materials showed a microstructure of ZIF-7 (a kind of ZIFs) coated chitosan/cellulose fibers (CS/CL). After carbonizing, the as-prepared carbonized ZIF-7@cellulose cryogel (NC@CCL, NC is carbonized ZIF-7) and carbonized ZIF-7@chitosan cryogel (NC@CCS) exhibited suitable microspore contents of 34.37% and 30%, respectively, and they both showed an internal resistance lower than 2Ω. Thereby, NC@CCL and NC@CCS exhibited a high specific capacitance of 150.4Fg -1 and 173.1Fg -1 , respectively, which were much higher than those of the original materials. This approach offers a facile method for improving the strength and electronic conductivity of carbon cryogel derived from nature polymers, and also efficiently inhibits the agglomeration of cryogel during carbonization in high temperature, which opens a novel avenue for the development of carbon cryogel materials for application in energy conversion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors

    PubMed Central

    Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-01-01

    Aim: To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Methods: Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. Results: A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion: Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies. PMID:19578388

  1. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is subject...

  2. 40 CFR 721.275 - Halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated-N-(2-propenyl)-N... New Uses for Specific Chemical Substances § 721.275 Halogenated-N-(2-propenyl)-N-(substituted phenyl... identified generically as halogenated-N-(2-propenyl)-N-(substituted phenyl) acetamide (P-83-1085) is subject...

  3. N-Allylation of amines with allyl acetates using chitosan-immobilized palladium

    EPA Science Inventory

    A simple procedure for N-Allylation of allyl Acetates has been developed using a biodegradable and easily recyclable heterogeneous chitosan-supported palladium catalyst. The general methodology, applicable to wide range of substrates, has sustainable features that include a ligan...

  4. Optimizing deacetylation process for chitosan production from green mussel (perna viridis) shell

    NASA Astrophysics Data System (ADS)

    Danarto, Y. C.; Distantina, Sperisa

    2016-02-01

    The green mussel (perna viridis) shell waste could be utilized for chitosan production because it contained chitin. Chitin can be derived into chitosan through the deacetylation process. Chitosan is a polysaccharides polymer that is readily soluble in dilute acid solution and easily modified into other useful compounds. This research aimed to study the chitosan production from green mussel shells. This experiment had the following stages, deproteinization process aimed to eliminate the protein content using 1N NaOH solution, demineralization process aimed to remove minerals in green mussel shells as CaCO3 using 1 N HCl solution and decolorization process aimed to eliminate the color pigments and other impurities using ethanol solvent. All process above resulted chitin. Furthermore, chemical modification of chitin into chitosan by deacetylation process. This stage was very important because it greatly affected the chitosan properties. This research studied two different treatment for deacetylation process. The first treatment was the deacetylation process using concentrated NaOH solution (50% w), at high temperatures (90 - 100 °C) for 2 hours extraction, whilw the second treatment was deacetylation process using a low concentration of NaOH solution (15% w), at room temperature for 24 hours. The results showed that deproteinization, demineralization, and decolorizaton was capable of removing protein, mineral, and pigment. This experiment yield chitin 41.6 %wt. Chitosan yield from second treatment was 39.5%w and it was better than first treatment. Chitosan from first treatment had 79.8% degree of deacetylation and 16.5 kDa molecular weight. It was better than first treatment.

  5. Organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    NASA Astrophysics Data System (ADS)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng

    2015-12-01

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan-glutathione (CG) and pre-activated chitosan-glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH-PCL (Lh-LDH-PCL), larger spherical LDH-PCL (Ls-LDH-PCL), smaller hexagonal LDH-PCL (Sh-LDH-PCL), CG hybrid LDH-PCL (LDH-PCL-CG), and CG-2MNA hybrid LDH-PCL (LDH-PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2-274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC0-6h values of Lh-LDH-PCL, Ls-LDH-PCL, Sh-LDH-PCL, LDH-PCL-CG, and LDH-PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.

  6. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells.

    PubMed

    Yen, Hui-Ju; Young, Yen-An; Tsai, Tsung-Neng; Cheng, Kuang-Ming; Chen, Xin-An; Chen, Ying-Chuan; Chen, Cheng-Cheung; Young, Jenn-Jong; Hong, Po-da

    2018-03-01

    In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Novel benzothiophene 1,1-dioxide deoxygenation path for the microwave-assisted synthesis of substituted benzothiophene-fused pyrrole derivatives.

    PubMed

    Karakuş, Hamza; Dürüst, Yaşar

    2017-02-01

    The reaction of C-(4-substituted-phenyl)-N-(benzoyl)-N-methylglycines with benzo[b]thiophene 1,1-dioxide unexpectedly gave benzothiophene-fused pyrrole derivatives in toluene under microwave irradiation via a cycloaddition and metal-free Pummerer-type sulfone deoxygenation path. In order to obtain the desired sulfone derivatives, the sulfide group underwent oxidation with m-CPBA to afford sulfones. The structures of all the new products were elucidated by spectroscopic/physical methods and, in two cases, by X-ray diffraction.

  8. Enhanced fluorescence norfloxacin substituted naphthalimide derivatives: Molecular docking and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Kumar, Gaurav; Tripathi, Amit Kumar; Seena, Sahadevan; Koh, Joonseok

    2018-04-01

    Hybrid derivatives are a fascinating and challenging process in the area of drug discovery. Naphthalimide derivatives with modified norfloxacin moiety were designed and synthesized. Docking simulations were done to assess the interactions of the derivatives with the E. coli type II topoisomerases Gyrase B and ParE ATP-binding pocket by taking novobiocin as a standard molecule. Results suggested that the norfloxacin substituted naphthalimide derivatives indicate red-shift emission maxima when compared to 4-bromo 1,8-naphthalic anhydride. The molecular docking simulation study revealed that the derivatives have similar interaction but a different mode of binding with the gyrase B ATP-binding pocket as compare to novobiocin. However, they bound to ParE ATP-binding pocket similarly to novobiocin. The antibacterial property was confirmed with disc diffusion method. Our study indicated that the norfloxacin substituted naphthalimide novel derivatives have pronounced fluorescence, anti-topoisomerase activity, and antibacterial properties; therefore, they could be developed into new drug candidates.

  9. Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy.

    PubMed

    Babu, Anish; Ramesh, Rajagopal

    2017-03-27

    Chitosan is a versatile polysaccharide of biological origin. Due to the biocompatible and biodegradable nature of chitosan, it is intensively utilized in biomedical applications in scaffold engineering as an absorption enhancer, and for bioactive and controlled drug release. In cancer therapy, chitosan has multifaceted applications, such as assisting in gene delivery and chemotherapeutic delivery, and as an immunoadjuvant for vaccines. The present review highlights the recent applications of chitosan and chitosan derivatives in cancer therapy.

  10. Chitosan-based nanosystems and their exploited antimicrobial activity.

    PubMed

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Synthesis and solar-cell applications of novel furanyl-substituted anthracene derivatives

    NASA Astrophysics Data System (ADS)

    Kivrak, Arif; Er, Ömer Faruk; Kivrak, Hilal; Topal, Yasemin; Kuş, Mahmut; Çamlısoy, Yesim

    2017-11-01

    At present, novel furanyl-substituted anthracene derivatives; namely 9,10-di(furan-2-yl)anthracene (DFA), 5,5‧-(anthracene-9,10-diyl)bis(furan-2-carbaldehyde) (DAFA) and 2,2‧-((5,5‧-(anthracene-9,10-diyl)bis(furan-5,2-diyl))bis(methanylylidene))dimalononitrile (DCNFA) were designed and synthesized successfully by employing Stille Cross-Coupling, Vilsmeier-Haack and Knoevenagel condensation reactions, respectively. This methodology provides a practical new route for the synthesis of furanyl-substituted anthracene derivatives bearing strong electron-withdrawing groups. The electrochemical and electro-optical properties of these novel furanyl-substituted anthracene derivatives were also examined with strong acceptor-π-donor-π-acceptor interactions. Furthermore, Highest occupied molecular orbital (HOMO), Lowest Unoccupied molecular orbital (LUMO), and band gap (Eg) values were investigated by using spectroscopic methods. Electrochemical and electro-optical properties were calculated and compared to DFA, DAFA and DCNFA. Eg was found as 2.85, 2.71, and 2.33 eV, respectively. Consequently, Organic Solar Cells (OSC) were fabricated to investigate their solar cell performances. The strong electron withdrawing groups did not increase the solar cell performance of furanyl-anthracenes. Surprisingly, DFA was found to exhibit the best OSCs performance (Efficiency = 3.36). As a result, one could note that these novel furanyl-substituted anthracene derivatives are good candidate for the applications of the OSCs. Our results might help in the development of new materials with important electrochemical functions by giving the advantage of designing and further derivatization of new generation small organic molecules for photovoltaic device applications.

  12. Design, synthesis and inhibitory activities of 8-(substituted styrol-formamido)phenyl-xanthine derivatives on monoamine oxidase B.

    PubMed

    Hu, Suwen; Nian, Siyun; Qin, Kuiyou; Xiao, Tong; Li, Lingna; Qi, Xiaolu; Ye, Faqing; Liang, Guang; Hu, Guoxin; He, Jincai; Yu, Yinfei; Song, Bo

    2012-01-01

    The design and synthesis of two series of 8-(substituted styrol-formamido)phenyl-xanthine derivatives are described. Their in vitro monoamine oxidase B (MAO-B) inhibition were tested and the effect of substituents on the N-7, phenyl and the substituted positions are discussed. It was observed that compound 9b displayed significant MAO-B inhibition activity and selectivity, fluorine substitution plays a key role in the selectivity of MAO-B inhibition, and the styrol-formamido group at position-3' may enhance the activity and selectivity of 8-phenyl-xanthine analogues. These results suggest that such compounds may be utilized for the development of new candidate MAO-B inhibitors for treatment of Parkinson's disease.

  13. 12 CFR 3.134 - Guarantees and credit derivatives: PD substitution and LGD adjustment approaches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Guarantees and credit derivatives: PD... derivatives: PD substitution and LGD adjustment approaches. (a) Scope. (1) This section applies to wholesale... exposure described in paragraph (a)(1) of this section by using the PD substitution approach or the LGD...

  14. Ab initio computational study of –N-C and –O-C bonding formation : functional group modification reaction based chitosan

    NASA Astrophysics Data System (ADS)

    Siahaan, P.; Salimah, S. N. M.; Sipangkar, M. J.; Hudiyanti, D.; Djunaidi, M. C.; Laksitorini, M. D.

    2018-04-01

    Chitosan application in pharmaceutics and cosmeceutics industries is limited by its solubility issue. Modification of -NH2 and -OH fuctional groups of chitosan by adding carboxyl group has been shown to improve its solubility and application. Attempt to synthesize carboxymethyl chitosan (CMC) from monocloroacetic acid (MCAA) has been done prior this report. However no information is available wether –OH (-O-C bonding formation) or -NH2 (-N-C bonding formation) is the preference for - CH2COOH to attach. In the current study, the reaction mechanism between chitosan and MCAA reactants into carboxymethyl chitosan (CMC) was examined by computational approach. Dimer from of chitosan used as a molecular model in calculation All the molecular structure involved in the reaction mechanism was optimized by ab initio computational on the theory and basis set HF/6-31G(d,p). The results showed that the - N-C bonding formation via SN2 than the -O-C bonding formation via SN2 which have activation energy 469.437 kJ/mol and 533.219 kJ/mol respectively. However, the -O-C bonding formation more spontaneous than the -N-C bonding formation because ΔG the formation of O-CMC-2 reaction is more negative than ΔG of formation N-CMC-2 reaction is -4.353 kJ/mol and -1.095 kJ/mol respectively. The synthesis of N,O-CMC first forms -O-CH2COOH, then continues to form -NH-CH2COOH. This information is valuable to further optimize the reaction codition for CMC synthesis.

  15. Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy

    PubMed Central

    Babu, Anish; Ramesh, Rajagopal

    2017-01-01

    Chitosan is a versatile polysaccharide of biological origin. Due to the biocompatible and biodegradable nature of chitosan, it is intensively utilized in biomedical applications in scaffold engineering as an absorption enhancer, and for bioactive and controlled drug release. In cancer therapy, chitosan has multifaceted applications, such as assisting in gene delivery and chemotherapeutic delivery, and as an immunoadjuvant for vaccines. The present review highlights the recent applications of chitosan and chitosan derivatives in cancer therapy. PMID:28346381

  16. Reinforced chitosan-based heart valve scaffold and utility of bone marrow-derived mesenchymal stem cells for cardiovascular tissue engineering

    NASA Astrophysics Data System (ADS)

    Albanna, Mohammad Zaki

    Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced heart valve leaflet scaffold achieved strength values comparable to the radial values of human pulmonary and aortic valves. Additionally, the effects of shorter fibers (2 mm) were found to be up to 3-fold greater than longer fibers (10 mm). Despite this reduction in fiber mechanical properties caused by heparin crosslinking, the heparin-modified fibers still improved the mechanical properties of the reinforced scaffolds, but to a lesser extent than the unmodified fibers. The results demonstrate that chitosan fiber-reinforcement can be used to generate tissue-matching mechanical properties in porous chitosan scaffolds and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement. We further studied various chemical and physical treatments to improve the mechanical properties of chitosan fibers. With combination of chemical and physical treatments, fiber stiffness improved 40fold compared to unmodified fibers. We also isolated ovine bone marrow-derived MSCs and evaluated their

  17. One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan.

    PubMed

    Nazirov, Alexander; Pestov, Alexander; Privar, Yuliya; Ustinov, Alexander; Modin, Evgeny; Bratskaya, Svetlana

    2016-10-20

    Water soluble luminescent gold nanoparticles with average size 2.3nm were for the first time synthesized by completely green method of Au(III) reduction using chitosan derivative-biocompatible nontoxic N-(4-imidazolyl)methylchitosan (IMC) as both reducing and stabilizing agent. Reduction of Au(III) to gold nanoparticles in IMC solution is a slow process, in which coordination power of biopolymer controls both reducing species concentration and gold crystal growth rate. Gold nanoparticles formed in IMC solution do not manifest surface plasmon resonance, but exhibit luminescence at 375nm under UV light excitation at 230nm. Due to biological activity of imidazolyl-containing polymers and their ability to bind proteins and drugs, the obtained ultra-small gold nanoparticles can find an application for biomolecules detection, bio-imaging, drug delivery, and catalysis. Very high catalytic activity (as compared to gold nanoparticles obtained by other green methods) was found for Au/IMC nanoparticles in the model reaction of p-nitrophenol reduction providing complete conversion of p-nitrophenol to p-aminophenol within 180-190s under mild conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 40 CFR 721.225 - 2-Chloro-N-methyl-N-substituted acetamide (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Chloro-N-methyl-N-substituted... Specific Chemical Substances § 721.225 2-Chloro-N-methyl-N-substituted acetamide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance 2-chloro-N...

  19. 40 CFR 721.225 - 2-Chloro-N-methyl-N-substituted acetamide (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2-Chloro-N-methyl-N-substituted... Specific Chemical Substances § 721.225 2-Chloro-N-methyl-N-substituted acetamide (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance 2-chloro-N...

  20. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Mori, Yasutaka; Ono, Takeshi; Miyahira, Yasushi; Nguyen, Vinh Quang; Matsui, Takemi; Ishihara, Masayuki

    2013-02-01

    Silver nanoparticle (Ag NP)/chitosan (Ch) composites with antiviral activity against H1N1 influenza A virus were prepared. The Ag NP/Ch composites were obtained as yellow or brown floc-like powders following reaction at room temperature in aqueous medium. Ag NPs (3.5, 6.5, and 12.9 nm average diameters) were embedded into the chitosan matrix without aggregation or size alternation. The antiviral activity of the Ag NP/Ch composites was evaluated by comparing the TCID50 ratio of viral suspensions treated with the composites to untreated suspensions. For all sizes of Ag NPs tested, antiviral activity against H1N1 influenza A virus increased as the concentration of Ag NPs increased; chitosan alone exhibited no antiviral activity. Size dependence of the Ag NPs on antiviral activity was also observed: antiviral activity was generally stronger with smaller Ag NPs in the composites. These results indicate that Ag NP/Ch composites interacting with viruses exhibit antiviral activity.

  1. Chitosan impregnation with biologically active tryaryl imidazoles in supercritical carbon dioxide.

    PubMed

    Cherkasova, Anastasia V; Glagolev, Nikolay N; Shienok, Andrey I; Demina, Tatiana S; Kotova, Svetlana L; Zaichenko, Natalia L; Akopova, Tatiana A; Timashev, Peter S; Bagratashvili, Victor N; Solovieva, Anna B

    2016-09-01

    The presented paper is focused on impregnation of chitosan and its derivatives with a biologically active triaryl imidazole model compound ((2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole) in the supercritical carbon dioxide medium. Since initial chitosan represents a polycation-exchange resin and does not swell in supercritical carbon dioxide, the impregnation was carried out in the presence of water (0.15-3.0 vol%). The maximum 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole concentration in a chitosan film was achieved at the ~5 × 10(-3) g/cm(3) water content in the reactor. We also used hydroxy carboxylic acid derivatives of chitosan and its copolymer with polylactide as matrices for introduction of hydrophobic 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole. We have shown that unmodified chitosan contains the greatest amount of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole, as compared with its hydrophobic derivatives. The kinetics of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole diffusion from a chitosan matrix was studied in acidified water with pH 1.6. We found that the complete release of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole into the aqueous phase from unmodified chitosan films occurred in 48 h, while its complete release from chitosan modified with hydroxy carboxylic acids occurred in 5 min or less.

  2. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    PubMed Central

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho; Chan, Wai Yee

    2015-01-01

    Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted. PMID:26287217

  3. Analytical characterization of bioactive N-benzyl-substituted phenethylamines and 5-methoxytryptamines.

    PubMed

    Brandt, Simon D; Elliott, Simon P; Kavanagh, Pierce V; Dempster, Nicola M; Meyer, Markus R; Maurer, Hans H; Nichols, David E

    2015-04-15

    Substances based on the N-(2-methoxybenzyl)phenethylamine template ('NBOMe' derivatives) play an important role in medicinal research but some of these derivatives have also appeared as 'research chemicals' for recreational use which has attracted attention worldwide. A major challenge associated with newly emerging substances includes the lack of analytical data and the ability to correctly identify positional isomers. Six N-benzylphenethylamines based on the 2,5-dimethoxy-4-iodophenethylamine structure ('25I') and twelve substituted N-benzyl-5-methoxytryptamines ('5MT') have been prepared and extensively characterized. Techniques used for characterization were gas chromatography/ion trap mass spectrometry in electron and chemical ionization mode, liquid chromatography/diode array detection (DAD), infrared spectroscopy, electrospray high mass accuracy quadrupole time-of-flight tandem mass spectrometry, and triple quadrupole tandem mass spectrometry. The characterization of 18 'NBOMe' compounds provided a comprehensive collection of chromatographic and spectral data. Four groups of three positional isomers, i.e. 25I-NB2OMe, 25I-NB3OMe, 25I-NB4OMe, 25I-NB2B, 25I-NB3B, 25I-NB4B and their 5-methoxytryptamine counterparts, were included and assessed for ability to obtain differentiation. Six meta-substituted N-benzyl derivatives of 5-methoxytryptamine (CF3, F, CH3, Cl, I, SCH3) were also studied. The implementation of mass spectral techniques was helpful for the differentiation between isomers, for example, when considering the difference in a number of ion ratios. This was considered beneficial in cases where chromatographic separation was only partially achieved under liquid chromatography (LC) conditions. The use of LC/DAD analysis was also found to be valuable for this particular purpose, which confirmed the integrative value of complementary techniques used in areas related to forensic toxicology. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Design and synthesis of potent antileishmanial cycloalkylidene-substituted ether phospholipid derivatives.

    PubMed

    Calogeropoulou, Theodora; Angelou, Panagiotis; Detsi, Anastasia; Fragiadaki, Irene; Scoulica, Effie

    2008-02-28

    Two series of novel ether phospholipids (EPs) have been synthesized. The first includes cyclodecylidene- or cyclopentadecylidene-substituted EPs carrying N,N,N-trimethylammonium or N-methylpiperidino or N-methylmorpholino head groups. The second series encompasses more rigid head groups in combination with cycloalkylidene moieties in the lipid portion. In addition, hydrogenated derivatives were obtained. All the new analogues, except 33, were 1.5- to 62-fold more potent than miltefosine against the intracellular L. infantum, and the most active ones were also less cytotoxic against the human monocytic cell line THP1 and less hemolytic than miltefosine. The analogues that combine high potency with low cytotoxicity and hemolytic activity were 19, 37, 21 23, 38, 39, and 40. Cyclopentadecylpentylphosphocholine (38) possesses an IC50 of 0.7 microM against L. infantum amastigotes and is the least cytotoxic analogue, since it does not present toxicity against THP1 macrophages, even at a concentration that is 800-fold the antiparasitic IC50 value, and does not present significant hemolytic activity.

  5. Spectrum and mechanisms of inflammasome activation by chitosan.

    PubMed

    Bueter, Chelsea L; Lee, Chrono K; Wang, Jennifer P; Ostroff, Gary R; Specht, Charles A; Levitz, Stuart M

    2014-06-15

    Chitosan, the deacetylated derivative of chitin, can be found in the cell wall of some fungi and is used in translational applications. We have shown that highly purified preparations of chitosan, but not chitin, activate the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in primed mouse bone marrow-derived macrophages (BMMΦ), inducing a robust IL-1β response. In this article, we further define specific cell types that are activated and delineate mechanisms of activation. BMMΦ differentiated to promote a classically activated (M1) phenotype released more IL-1β in response to chitosan than intermediate or alternatively activated macrophages (M2). Chitosan, but not chitin, induced a robust IL-1β response in mouse dendritic cells, peritoneal macrophages, and human PBMCs. Three mechanisms for NLRP3 inflammasome activation may contribute: K(+) efflux, reactive oxygen species, and lysosomal destabilization. The contributions of these mechanisms were tested using a K(+) efflux inhibitor, high extracellular potassium, a mitochondrial reactive oxygen species inhibitor, lysosomal acidification inhibitors, and a cathepsin B inhibitor. These studies revealed that each of these pathways participated in optimal NLRP3 inflammasome activation by chitosan. Finally, neither chitosan nor chitin stimulated significant release from unprimed BMMΦ of any of 22 cytokines and chemokines assayed. This study has the following conclusions: 1) chitosan, but not chitin, stimulates IL-1β release from multiple murine and human cell types; 2) multiple nonredundant mechanisms appear to participate in inflammasome activation by chitosan; and 3) chitin and chitosan are relatively weak stimulators of inflammatory mediators from unprimed BMMΦ. These data have implications for understanding the nature of the immune response to microbes and biomaterials that contain chitin and chitosan. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. Nanostructures Derived from Starch and Chitosan for Fluorescence Bio-Imaging

    PubMed Central

    Zu, Yinxue; Bi, Jingran; Yan, Huiping; Wang, Haitao; Song, Yukun; Zhu, Bei-Wei; Tan, Mingqian

    2016-01-01

    Fluorescent nanostructures (NSs) derived from polysaccharides have drawn great attention as novel fluorescent probes for potential bio-imaging applications. Herein, we reported a facile alkali-assisted hydrothermal method to fabricate polysaccharide NSs using starch and chitosan as raw materials. Transmission electron microscopy (TEM) demonstrated that the average particle sizes are 14 nm and 75 nm for starch and chitosan NSs, respectively. Fourier transform infrared (FT-IR) spectroscopy analysis showed that there are a large number of hydroxyl or amino groups on the surface of these polysaccharide-based NSs. Strong fluorescence with an excitation-dependent emission behaviour was observed under ultraviolet excitation. Interestingly, the photostability of the NSs was found to be superior to fluorescein and rhodamine B. The quantum yield of starch NSs could reach 11.12% under the excitation of 360 nm. The oxidative metal ions including Cu(II), Hg(II)and Fe(III) exhibited a quench effect on the fluorescence intensity of the prepared NSs. Both of the two kinds of the multicoloured NSs showed a maximum fluorescence intensity at pH 7, while the fluorescence intensity decreased dramatically when they were put in an either acidic or basic environment (at pH 3 or 11). The cytotoxicity study of starch NSs showed that low cell cytotoxicity and 80% viability was found after 24 h incubation, when their concentration was less than 10 mg/mL. The study also showed the possibility of using the multicoloured starch NSs for mouse melanoma cells and guppy fish imaging. PMID:28335258

  7. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. © The Author(s) 2016.

  8. Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity.

    PubMed

    Guţoaia, Andra; Schuster, Liane; Margutti, Simona; Laufer, Stefan; Schlosshauer, Burkhard; Krastev, Rumen; Stoll, Dieter; Hartmann, Hanna

    2016-06-05

    Polyethylene glycol (PEG) is a widely used modification for drug delivery systems. It reduces undesired interaction with biological components, aggregation of complexes and serves as a hydrophilic linker of ligands for targeted drug delivery. However, PEGylation can also lead to undesired changes in physicochemical characteristics of chitosan/siRNA nanoplexes and hamper gene silencing. To address this conflicting issue, PEG-chitosan copolymers were synthesized with stepwise increasing degrees of PEG substitution (1.5% to 8.0%). Subsequently formed PEG-chitosan/siRNA nanoplexes were characterized physicochemically and biologically. The results showed that small ratios of chitosan PEGylation did not affect nanoplex stability and density. However, higher PEGylation ratios reduced nanoplex size and charge, as well as cell uptake and final siRNA knockdown efficiency. Therefore, we recommend fine-tuning of PEGylation ratios to generate PEG-chitosan/siRNA delivery systems with maximum bioactivity. The degree of PEGylation for chitosan/siRNA nanoplexes should be kept low in order to maintain optimal nanoplex efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Functionalization of Magnetic Chitosan Particles for the Sorption of U(VI), Cu(II) and Zn(II)—Hydrazide Derivative of Glycine-Grafted Chitosan

    PubMed Central

    Hamza, Mohammed F.; Aly, Mohsen M.; Abdel-Rahman, Adel A.-H.; Ramadan, Samar; Raslan, Heba; Wang, Shengye; Vincent, Thierry; Guibal, Eric

    2017-01-01

    A new magnetic functionalized derivative of chitosan is synthesized and characterized for the sorption of metal ions (environmental applications and metal valorization). The chemical modification of the glycine derivative of chitosan consists of: activation of the magnetic support with epichlorohydrin, followed by reaction with either glycine to produce the reference material (i.e., Gly sorbent) or glycine ester hydrochloride, followed by hydrazinolysis to synthesize the hydrazide functionalized sorbent (i.e., HGly sorbent). The materials are characterized by titration, elemental analysis, FTIR analysis (Fourrier-transform infrared spectrometry), TGA analysis (thermogravimetric analysis) and with SEM-EDX (scanning electron microscopy coupled to energy dispersive X-ray analysis). The sorption performances for U(VI), Cu(II), and Zn(II) are tested in batch systems. The sorption performances are compared for Gly and HGly taking into account the effect of pH, the uptake kinetics (fitted by the pseudo-second order rate equation), and the sorption isotherms (described by the Langmuir and the Sips equations). The sorption capacities of the modified sorbent reach up to 1.14 mmol U g−1, 1.69 mmol Cu g−1, and 0.85 mmol Zn g−1. In multi-metal solutions of equimolar concentration, the chemical modification changes the preferences for given metal ions. Metal ions are desorbed using 0.2 M HCl solutions and the sorbents are re-used for five cycles of sorption/desorption without significant loss in performances. PMID:28772896

  10. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects

    PubMed Central

    Dai, Tianhong; Tanaka, Masamitsu; Huang, Ying-Ying; Hamblin, Michael R

    2011-01-01

    Since its discovery approximately 200 years ago, chitosan, as a cationic natural polymer, has been widely used as a topical dressing in wound management owing to its hemostatic, stimulation of healing, antimicrobial, nontoxic, biocompatible and biodegradable properties. This article covers the antimicrobial and wound-healing effects of chitosan, as well as its derivatives and complexes, and its use as a vehicle to deliver biopharmaceuticals, antimicrobials and growth factors into tissue. Studies covering applications of chitosan in wounds and burns can be classified into in vitro, animal and clinical studies. Chitosan preparations are classified into native chitosan, chitosan formulations, complexes and derivatives with other substances. Chitosan can be used to prevent or treat wound and burn infections not only because of its intrinsic antimicrobial properties, but also by virtue of its ability to deliver extrinsic antimicrobial agents to wounds and burns. It can also be used as a slow-release drug-delivery vehicle for growth factors to improve wound healing. The large number of publications in this area suggests that chitosan will continue to be an important agent in the management of wounds and burns. PMID:21810057

  11. Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model.

    PubMed

    Amado, S; Simões, M J; Armada da Silva, P A S; Luís, A L; Shirosaki, Y; Lopes, M A; Santos, J D; Fregnan, F; Gambarotta, G; Raimondo, S; Fornaro, M; Veloso, A P; Varejão, A S P; Maurício, A C; Geuna, S

    2008-11-01

    Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to develop and test hybrid chitosan membranes to use in peripheral nerve reconstruction, either alone or enriched with N1E-115 neural cells. Hybrid chitosan membranes were tested in vitro, to assess their ability in supporting N1E-115 cell survival and differentiation, and in vivo to assess biocompatibility as well as to evaluate their effects on nerve fiber regeneration and functional recovery after a standardized rat sciatic nerve crush injury. Functional recovery was evaluated using the sciatic functional index (SFI), the static sciatic index (SSI), the extensor postural thrust (EPT), the withdrawal reflex latency (WRL) and ankle kinematics. Nerve fiber regeneration was assessed by quantitative stereological analysis and electron microscopy. All chitosan membranes showed good biocompatibility and proved to be a suitable substrate for plating the N1E-115 cellular system. By contrast, in vivo nerve regeneration assessment after crush injury showed that the freeze-dried chitosan type III, without N1E-115 cell addition, was the only type of membrane that significantly improved posttraumatic axonal regrowth and functional recovery. It can be thus suggested that local enwrapping with this type of chitosan membrane may represent an effective approach for the improvement of the clinical outcome in patients receiving peripheral nerve surgery.

  12. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly(acrylic acid).

    PubMed

    Mohamed, Riham R; Elella, Mahmoud H Abu; Sabaa, Magdy W

    2017-05-01

    Physically crosslinked hydrogels resulted from interaction between N,N,N-trimethyl chitosan chloride (N-Quaternized Chitosan) (NQC) and poly(acrylic acid) (PAA) were synthesized in different weight ratios (3:1), (1:1) and (1:3) taking the following codes Q3P1, Q1P1 and Q1P3, respectively. Characterization of the mentioned hydrogels was done using several analysis tools including; FTIR, XRD, SEM, TGA, biodegradation in simulated body fluid (SBF) and cytotoxicity against HepG-2 liver cancer cells. FTIR results proved that the prepared hydrogels were formed via electrostatic and H-bonding interactions, while XRD patterns proved that the prepared hydrogels -irrespective to their ratios- were more crystalline than both matrices NQC and PAA. TGA results, on the other hand, revealed that Q1P3 hydrogel was the most thermally stable compared to the other two hydrogels (Q3P1 and Q1P1). Biodegradation tests in SBF proved that these hydrogels were more biodegradable than the native chitosan. Examination of the prepared hydrogels for their potency in heavy metal ions removal revealed that they adsorbed Fe (III) and Cd (II) ions more than chitosan, while they adsorbed Cr (III), Ni (II) and Cu (II) ions less than chitosan. Moreover, testing the prepared hydrogels as antibacterial agents towards several Gram positive and Gram negative bacteria revealed their higher antibacterial activity as compared with NQC when used alone. Evaluating the cytotoxic effect of these hydrogels on an in vitro human liver cancer cell model (HepG-2) showed their good cytotoxic activity towards HepG-2. Moreover, the inhibition rate increased with increasing the hydrogels concentration in the culture medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Novel aminohydrazide cross-linked chitosan filled with multi-walled carbon nanotubes as antimicrobial agents.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A

    2018-04-21

    Four chemically modified chitosan derivatives 1-4 were designed and synthesized via a series of four reactions; first by reaction with benzaldehyde to protect its amino groups (Derivative 1), second by reaction with epichlorohydrine (Derivative 2), third by reaction with aminobenzhydrazide (Derivative 3), and forth by removing of benzaldehyde to restore the free amino groups on the chitosan (Derivative 4). Two multi-walled carbon nanotube (MWCNT) biocomposites based on Derivative 4 were also prepared. The structure of the prepared derivatives and MWCNT composites was elucidated using elemental analyses, FTIR, XRD, SEM and TEM. The modified chitosan derivatives and MWCNT composites showed better antimicrobial activities than that of chitosan against Enterococcus faecalis, Staphylococcus epidermidis, Escherichia coli, Aspergillus niger, Cryptococcus neoformans and Candida tropicalis as judged by their higher inhibition zone diameters using the agar well diffusion technique. These derivatives and MWCNT composites are more potent against Gram-positive bacteria than against Gram-negative bacteria. The MWCNT composites displayed comparable or even better antimicrobial activities than the reference bactericides or fungicides. Thus, structural modification of chitosan through combination with functionalized moieties and MWCNTs in one system was taken as a way to achieve promising templates for antimicrobial agents and to be appropriate candidates for medical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Poly(ethylene glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications

    PubMed Central

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-01-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field. PMID:29164107

  15. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    NASA Astrophysics Data System (ADS)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  16. Poly(ethylene glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications.

    PubMed

    Campos, Estefânia V R; Oliveira, Jhones L; Fraceto, Leonardo F

    2017-01-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  17. Azomethines, isoxazole, N-substituted pyrazoles and pyrimidine containing curcumin derivatives: Urease inhibition and molecular modeling studies.

    PubMed

    Ahmed, Mahmood; Qadir, Muhammad Abdul; Hameed, Abdul; Arshad, Muhammad Nadeem; Asiri, Abdullah M; Muddassar, Muhammad

    2017-08-19

    Curcumin has shown large number of pharmacological properties against different phenotypes of various disease models. Different synthetic routes have been employed to develop its various derivatives for diverse biological functions. In this study, curcumin derived azomethine, isoxazole, pyrimidines and N-substituted pyrazoles were synthesized to investigate their urease enzyme inhibition. The structures of newly synthesized compounds were described by IR, MS, 1 H NMR and 13 C NMR spectral data. Urease enzyme inhibition was evaluated through in vitro assays in which compound 8b was found to be the most potent (IC 50  = 2.44 ± 0.07 μM) among the tested compounds. The compounds with diazine ring system except the 4d showed better urease inhibition (IC 50  = 11.43 ± 0.21-19.63 ± 0.28 μM) than the standard urease inhibitor thiourea (IC 50  = 22.61 ± 0.23 μM). Similarly enzyme kinetics data revealed that compounds 3c-3e and 8b were competitive inhibitors with Ki values of 20.0, 19.87, 20.23 and 19.11 μM respectively while the compounds 4b, 4c and 4e were mixed type of inhibitors with Ki values 6.72, 19.69 and 6.72 μM respectively. Molecular docking studies were also performed to identify the plausible binding modes of the most active compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Synthesis of novel substituted 1,3-diaryl propenone derivatives and their antimalarial activity in vitro.

    PubMed

    Mishra, Nidhi; Arora, Preeti; Kumar, Brajesh; Mishra, Lokesh C; Bhattacharya, Amit; Awasthi, Satish K; Bhasin, Virendra K

    2008-07-01

    The synthesis of novel 1,3-diaryl propenone derivatives and their antimalarial activity in vitro against asexual blood stages of human malaria parasite, Plasmodium falciparum, are described. Chalcone derivatives were prepared via Claisen-Schmidt condensation of substituted aldehydes with substituted methyl ketones. Antiplasmodial IC(50) (half maximal inhibitory concentration) activity of these compounds ranged between 1.5 and 12.3 microg/ml. The chloro-series, 1,2,4-triazole substituted chalcone was found to be the most effective in inhibiting the growth of P. falciparum in vitro while pyrrole and benzotriazole substituted chalcones showed relatively less inhibitory activity. This is the first report on antiplasmodial activity of chalcones with azoles on acetophenone ring.

  19. Nonpeptidic angiotensin II AT₁ receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Yu, Wei-Fa; Zhou, Zhi-Ming; Tao, Wen-Chang; Wang, Yi-Cheng; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2013-11-01

    Both 6-substituted aminocarbonyl and acylamino benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT₁ receptor antagonists. Compounds 6f, 6g, 11e, 11f, 11g, and 12 showed nanomolar AT₁ receptor binding affinity and high AT₁ receptor selectivity over AT₂ receptor in a preliminary pharmacological evaluation. Among them, the two most active compounds 6f (AT₁ IC₅₀ = 3 nM, AT₂ IC₅₀ > 10,000 nM, PA₂ = 8.51) and 11g (AT₁ IC₅₀ = 0.1 nM, AT₂ IC₅₀ = 149 nM, PA₂ = 8.43) exhibited good antagonistic activity in isolated rabbit aortic strip functional assay. In addition, they were orally active AT₁ receptor antagonists in spontaneous hypertensive rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Preparation of chitosan-ferulic acid conjugate: Structure characterization and in the application of pharmaceuticals.

    PubMed

    Li, Chen; Li, Jian-Bin

    2017-12-01

    A novel drug delivery system based on chitosan derivatives was prepared by introducting ferulic acid to chitosan adopting a free radical-induced grafting procedure. This paper used an ascorbic acid/hydrogen peroxide redox pair as radical initiator. The chitosan derivative was characterized by Fourier transformed infrared (FTIR), Ultraviolet-visible spectrum (UV), Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Electron microscopic scanning (SEM). What is more, preparing microcapsules with the chitosan conjugate as wall material, the drug release propertie of chitosan conjugates were compared with that of a blank chitosan, which treated in the same conditions but in the absence of ferulic acid. The study clearly demonstrates that free radical-induced grafting procedure was an effective reaction methods and chitosan-ferulic acid is a potential functionalized carrier material for drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Potential of chitosan (chemically-modified chitin) for extraction of lead-arsenate contaminated soils

    USDA-ARS?s Scientific Manuscript database

    Arsenic (As), phosphorous (P), and lead (Pb) contamination in soils represents a health risk to humans and the environment. Chitosan (poly-N-acetyl glucosamine) is a non-toxic and inexpensive food industry byproduct derived from chitin that has been used as an adsorbent of heavy metals. The object...

  2. Fragmentation pathways of 2-substituted pyrrole derivatives using electrospray ionization ion trap and electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    Liang, Xianrui; Guo, Zili; Yu, Chuanming

    2013-10-30

    Pyrrole derivatives are of considerable importance and are present in a wide range of natural products and used extensively in drug discovery. Fragmentation pathway studies play an important role in the structural identification of pyrrole derivatives. As a part of our ongoing work on heterocycles, fragmentation pathways of 2-substituted pyrrole derivatives were investigated by mass spectrometry (MS). Twelve pyrrole derivatives were synthesized and analyzed. Low-resolution fragmentation ions of all the compounds were generated by ion trap mass spectrometry (ITMS(n) ) with an electrospray ionization (ESI) source in positive mode. Hybrid quadrupole time-of-flight mass spectrometry (QTOFMS) was used to determine the elemental compositions of the resultant product ions. The side-chain substituents at the 2-position influence the fragmentation pathways. Typical losses of H2 O, aldehydes and pyrrole moieties from the [M + H](+) ion are observed for the compounds with side chains bearing aromatic groups at the 2-position of the pyrrole. However, losses of H2 O, alcohols and C3 H6 are the main cleavage pathways for compounds 6 and 12 with nonphenyl-substituted side chains at the 2-position. Typical fragmentation mechanisms of 2-substituted pyrrole derivatives are proposed and elucidated based on the observations of ITMS(n) and QTOFMS spectra. The results showed that the fragmentation pathways were remarkably influenced by the side-chain substituents at the 2-position of pyrrole. This investigation should have value in the structural identification of this series of molecules or compounds with similar structures. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Synthesis of biodegradable plastic from tapioca with N-Isopropylacrylamid and chitosan using glycerol as plasticizer

    NASA Astrophysics Data System (ADS)

    Syaubari; Safwani, S.; Riza, M.

    2018-04-01

    One of natural polymers that can be used as raw material in the manufacture of biodegradable plastic is tapioca and chitosan. The addition of other compounds such as glycerol as plasticizer is to improve the characteristics of the plastic that already produced. N- Isopropylacrylamid (NIPAm) is an organic compound that can be synthesized into a polymer or polymer grafting which also biodegradable too. This research aims tostudy the synthesis of biodegradable plastics from tapioca with the addition of chitosan, NIPAm, poly(NIPAm) and analyze the characteristics of biodegradable plastics that already produced. This research was done in three stages, there are (1) polymerization NIPAm, (2) the grafting of chitosan-poly NIPAm and (3) the synthesis of biodegradable plastics from starch mixture with variation of addition chitosan, NIPAm, poly(NIPAm), chitosan-graft-poly(NIPAm) and also variations of glycerol as plasticizer. The results of this research is a thin sheet of plastic which is will get analyzed for the characteristics of functional groups, mechanical, morphological and its biodegradability. FTIR spectra showed the grafting process with the new group formation of CO single-bond at 850 cm-1. Plastic with the addition of NIPAm and 1 ml glycerol has the highest tensile strength value about 31.1 MPa. Plastic with poly(NIPAm) and 4 ml glycerol produces the highest elongation value about 153.72%. Plastic with Chitosan-graft-poly(NIPAm) with 1 ml glycerol has the longest biodegradation because of the small mass-loss for six weeks which is about 6.6%.

  4. Substitution Effects and Linear Free Energy Relationships During Reduction of 4- Benzoyl-n-(4-substituted Benzyl)pyridinium Cations

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.; Sotiriou-Leventis, Chariklia; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    In analogy to 4-(para-substituted benzoyl)-N-methylpyridinium cations (1-X's), the title species (2-X's, -X = -OCH3, -CH3, -H, -Br, -COCH3, -NO2) undergo two reversible, well-separated (E(sub 1/2) greater than or equal to 650 mV) one-electron reductions. The effect of substitution on the reduction potentials of 2-X's is much weaker than the effect of the same substituents on 1-X's: the Hammett rho-values are 0.80 and 0.93 for the 1st- and 2nd-e reduction of 2-X's vs. 2.3 and 3.3 for the same reductions of 1-X's, respectively. Importantly, the nitro group of 2-NO2 undergoes reduction before the 2nd-e reduction of the 4-benzoylpyridinium system. These results suggest that the redox potentials of the 4-benzoylpyridinium system can be course-tuned via p-benzoyl substitution and fine-tuned via para-benzyl substitution. Introducing the recently derived substituent constant of the -NO2(sup)- group (sigma para-NO2(sup)- = -0.97) yields an excellent correlation for the 3rd-e reduction of 2- NO2 (corresponding to the reduction of the carbonyl group) with the 2nd-e reduction of the other 2-X's, and confirms the electron donating properties of -NO2(sup)-.

  5. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing.

    PubMed

    Moura, Liane I F; Dias, Ana M A; Leal, Ermelindo C; Carvalho, Lina; de Sousa, Hermínio C; Carvalho, Eugénia

    2014-02-01

    One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (P<0.001) and decreased the amount of inflammatory infiltrate on day 3. On day 10 MMP-9 was reduced in diabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Beta-hydroxyphosphonate ribonucleoside analogues derived from 4-substituted-1,2,3-triazoles as IMP/GMP mimics: synthesis and biological evaluation

    PubMed Central

    Nguyen Van, Tai; Hospital, Audrey; Lionne, Corinne; Jordheim, Lars P; Dumontet, Charles; Périgaud, Christian; Chaloin, Laurent

    2016-01-01

    Summary A series of seventeen β-hydroxyphosphonate ribonucleoside analogues containing 4-substituted-1,2,3-triazoles was synthesized and fully characterized. Such compounds were designed as potential inhibitors of the cytosolic 5’-nucleotidase II (cN-II), an enzyme involved in the regulation of purine nucleotide pools. NMR and molecular modelling studies showed that a few derivatives adopted similar structural features to IMP or GMP. Five derivatives were identified as modest inhibitors with 53 to 64% of cN-II inhibition at 1 mM. PMID:27559400

  7. Tunable passively Q-switched erbium-doped fiber laser with Chitosan/MoS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Aidit, S. N.; Ooi, S. I.; Tiu, Z. C.

    2018-07-01

    Chitosan, an organic polymer derived from the outer skeletons of crustacean and in the cell wall of fungi is explored as polymer host to develop thin film saturable absorber (SA). As a polymer, Chitosan shows high thermal stability as well as significant transmission characteristics. The highly transparent polymer serves as a good host for SA materials, and a composite Chitosan/MoS2 thin film is demonstrated to successfully generate stable Q-switched lasing output at operating wavelength of 1561.5 nm. At maximum pump power of 280.5 mW, the generated pulse exhibits maximum pulse repetition rate and pulse energy of 79.4 kHz and 43.69 nJ respectively as well as minimum pulse width of 1.02 μs. The overall efficiency of the laser cavity with the Chitosan/MoS2 thin film SA is approximately 0.93%. These results reflect the outstanding performance of Chitosan/MoS2 SA as compared to other MoS2 SA prepared using mechanical exfoliation and optical deposition technique. Moreover, the Chitosan polymer is shown to be a highly potential host in the SA fabrication process due to its promising performance which is comparable to PVA.

  8. Vitamin D-fortified chitosan films from mushroom waste

    USDA-ARS?s Scientific Manuscript database

    Brown mushroom (Agaricus bisporus) stalk bases from mushroom waste were treated with UV-B light to rapidly increase vitamin D2 content. Chitin was also recovered from this waste and converted into chitosan by N-deacetylation. FTIR spectra showed that the mushroom chitosan were similar to chitosan fr...

  9. CRM1 inhibitory and antiproliferative activities of novel 4'-alkyl substituted klavuzon derivatives.

    PubMed

    Kanbur, Tuğçe; Kara, Murat; Kutluer, Meltem; Şen, Ayhan; Delman, Murat; Alkan, Aylin; Otaş, Hasan Ozan; Akçok, İsmail; Çağır, Ali

    2017-08-15

    Klavuzons are 6-(naphthalen-1-yl) substituted 5,6-dihydro-2H-pyran-2-one derivatives showing promising antiproliferative activities in variety of cancer cell lines. In this work, racemic syntheses of nine novel 4'-alkyl substituted klavuzon derivatives were completed in eight steps and anticancer properties of these compounds were evaluated. It is found that size of the substituent has dramatic effect over the potency and selectivity of the cytotoxic activity in cancerous and healthy pancreatic cell lines. The size of the substituent can also effect the CRM1 inhibitory properties of klavuzon derivatives. Strong cytotoxic activity and CRM1 inhibition can be observed only when a small substituent present at 4'-position of naphthalen-1-yl group. However, these substituents makes the molecule more cytotoxic in healthy pancreatic cells rather than cancerous pancreatic cells. Among the tested compounds 1,2,3,4-tetrahydrophenanthren-9-yl substituted lactone was the most cytotoxic compound and its antiproliferative activity was also tested in 3D spheroids generated from HuH-7 cell lines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Thiolated chitosans.

    PubMed

    Bernkop-Schnürch, Andreas; Hornof, Margit; Guggi, Davide

    2004-01-01

    The derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions leads to the formation of thiolated chitosans. So far, three types of thiolated chitosans have been generated: chitosan-cysteine conjugates, chitosan-thioglycolic acid conjugates and chitosan-4-thio-butyl-amidine conjugates. Various properties of chitosan are improved by this immobilization of thiol groups. Due to the formation of disulfide bonds with mucus glycoproteins, the mucoadhesiveness is 6--100-fold augmented (I). The permeation of paracellular markers through intestinal mucosa can be enhanced 1.6--3-fold utilizing thiolated instead of unmodified chitosan (II). Moreover, thiolated chitosans display in situ-gelling features, due to the pH-dependent formation of inter- as well as intra-molecular disulfide bonds (III). This latter process provides a strong cohesion and stability of carrier matrices being based on thiolated chitosans (IV). Consequently, thiolated chitosans can guarantee a prolonged controlled release of embedded therapeutic ingredients (V). The potential of thiolated chitosans has meanwhile also been demonstrated in vivo. A significant pharmacological efficacy of 1.3% of orally given salmon calcitonin, for instance, could be achieved utilizing thiolated chitosan as polymeric drug carrier matrix, while no effect was reached using unmodified chitosan. According to these results thiolated chitosans represent a promising new category of polymeric excipients in particular for the non-invasive administration of hydrophilic macromolecules. Further applications such as their use as scaffold materials in tissue engineering or as coating material for stents seem feasible.

  11. Nitric Oxide-Releasing Chitosan Oligosaccharides as Antibacterial Agents

    PubMed Central

    Lu, Yuan; Slomberg, Danielle L.; Schoenfisch, Mark H.

    2014-01-01

    Secondary amine-functionalized chitosan oligosaccharides of different molecular weights (i.e., ~2500, 5000, 10000) were synthesized by grafting 2-methyl aziridine from the primary amines on chitosan oligosaccharides, followed by reaction with nitric oxide (NO) gas under basic conditions to yield N-diazeniumdiolate NO donors. The total NO storage, maximum NO flux, and half-life of the resulting NO-releasing chitosan oligosaccharides were controlled by the molar ratio of 2-methyl aziridine to primary amines (e.g., 1:1, 2:1) and the functional group surrounding the N-diazeniumdiolates (e.g., polyethylene glycol (PEG) chains), respectively. The secondary amine-modified chitosan oligosaccharides greatly increased the NO payload over existing biodegradable macromolecular NO donors. In addition, the water-solubility of the chitosan oligosaccharides enabled their penetration across the extracellular polysaccharides matrix of Pseudomonas aeruginosa biofilms and association with embedded bacteria. The effectiveness of these chitosan oligosaccharides at biofilm eradication was shown to depend on both the molecular weight and ionic characteristics. Low molecular weight and cationic chitosan oligosaccharides exhibited rapid association with bacteria throughout the entire biofilm, leading to enhanced biofilm killing. At concentrations resulting in 5-log killing of bacteria in Pseudomonas aeruginosa biofilms, the NO-releasing and control chitosan oligosaccharides elicited no significant cytotoxicity to mouse fibroblast L929 cells in vitro. PMID:24268196

  12. Calculation of Hammett Equation parameters for some N,N‧-bis (substituted-phenyl)-1,4-quinonediimines by density functional theory

    NASA Astrophysics Data System (ADS)

    Sein, Lawrence T.

    2011-08-01

    Hammett parameters σ' were determined from vertical ionization potentials, vertical electron affinities, adiabatic ionization potentials, adiabatic electron affinities, HOMO, and LUMO energies of a series of N, N' -bis (3',4'-substituted-phenyl)-1,4-quinonediimines computed at the B3LYP/6-311+G(2d,p) level on B3LYP/6-31G ∗ molecular geometries. These parameters were then least squares fit as a function of literature Hammett parameters. For N, N' -bis (4'-substituted-phenyl)-1,4-quinonediimines, the least squares fits demonstrated excellent linearity, with the square of Pearson's correlation coefficient ( r2) greater than 0.98 for all isomers. For N, N' -bis (3'-substituted-3'-aminophenyl)-1,4-quinonediimines, the least squares fits were less nearly linear, with r2 approximately 0.70 for all isomers when derived from calculated vertical ionization potentials, but those from calculated vertical electron affinities usually greater than 0.90.

  13. Folate-conjugated chitosan-polylactide nanoparticles for enhanced intracellular uptake of anticancer drug

    NASA Astrophysics Data System (ADS)

    Huang, Shengtang; Wan, Ying; Wang, Zheng; Wu, Jiliang

    2013-12-01

    Chitosan was conjugated with folic acid (FA) and the resulting chitosan derivatives with a FA-substitution degree of around 6 % was used to synthesize FA-conjugated chitosan-polylactide (FA-CH-PLA) copolymers to build a drug carrier with active targeting characteristics for the anticancer drug of paclitaxel (PTX). Selected FA-CH-PLAs with various polylactide percentages of about 40 wt% or lower were employed to fabricate nanoparticles using sodium tripolyphosphate as a crosslinker, and different types of nanoparticles were endued with similar average particle-sizes located in a range between 100 and 200 nm. Certain types of PTX-loaded FA-CH-PLA nanoparticles having encapsulation efficiency of around 90 % and initial load of about 12 % were able to release PTX in a controlled manner with significant regulation by polylactide content in FA-CH-PLAs. Targeting characteristic of achieved nanoparticles was confirmed using FA-receptor-expressed MCF-7 breast cancer cells. The uptake of PTX revealed that optimized FA-CH-PLA nanoparticles with an equivalent PTX-dose of around 1 μg/mL could have more than sixfold increasing abilities to facilitate intracellular paclitaxel accumulation in MCF-7 cells after 24 h treatment as compared to free PTX. At a relatively safe equivalent PTX-dose for normal MCF-10A mammary epithelial cells, the obtained results from Hoechst 33342 staining indicated that optimized PTX-loaded FA-CH-PLA nanoparticles had more than threefold increasing abilities to induce MCF-7 cell apoptosis in comparison to free PTX.

  14. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier.

    PubMed

    Xu, Yongmei; Du, Yumin; Huang, Ronghua; Gao, Leping

    2003-12-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is water-soluble derivative of chitosan (CS), synthesized by the reaction between glycidyl-trimethyl-ammonium chloride and CS. HTCC nanoparticles have been formed based on ionic gelation process of HTCC and sodium tripolyphosphate (TPP). Bovine serum albumin (BSA), as a model protein drug, was incorporated into the HTCC nanoparticles. HTCC nanoparticles were 110-180 nm in size, and their encapsulation efficiency was up to 90%. In vitro release studies showed a burst effect and a slow and continuous release followed. Encapsulation efficiency was obviously increased with increase of initial BSA concentration. Increasing TPP concentration from 0.5 to 0.7 mg/ml promoted encapsulation efficiency from 46.7% to 90%, and delayed release. As for modified HTCC nanoparticles, adding polyethylene glycol (PEG) or sodium alginate obviously decreased the burst effect of BSA from 42% to 18%. Encapsulation efficiency was significantly reduced from 47.6% to 2% with increase of PEG from 1.0 to 20.0 mg/ml. Encapsulation efficiency was increased from 14.5% to 25.4% with increase of alginate from 0.3 to 1.0 mg/ml.

  15. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  16. Chitosan in Plant Protection

    PubMed Central

    El Hadrami, Abdelbasset; Adam, Lorne R.; El Hadrami, Ismail; Daayf, Fouad

    2010-01-01

    Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR) proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions. PMID:20479963

  17. Inter-laboratory verification of European pharmacopoeia monograph on derivative spectrophotometry method and its application for chitosan hydrochloride.

    PubMed

    Marković, Bojan; Ignjatović, Janko; Vujadinović, Mirjana; Savić, Vedrana; Vladimirov, Sote; Karljiković-Rajić, Katarina

    2015-01-01

    Inter-laboratory verification of European pharmacopoeia (EP) monograph on derivative spectrophotometry (DS) method and its application for chitosan hydrochloride was carried out on two generation of instruments (earlier GBC Cintra 20 and current technology TS Evolution 300). Instruments operate with different versions of Savitzky-Golay algorithm and modes of generating digital derivative spectra. For resolution power parameter, defined as the amplitude ratio A/B in DS method EP monograph, comparable results were obtained only with algorithm's parameters smoothing points (SP) 7 and the 2nd degree polynomial and those provided corresponding data with other two modes on TS Evolution 300 Medium digital indirect and Medium digital direct. Using quoted algorithm's parameters, the differences in percentages between the amplitude ratio A/B averages, were within accepted criteria (±3%) for assay of drug product for method transfer. The deviation of 1.76% for the degree of deacetylation assessment of chitosan hydrochloride, determined on two instruments, (amplitude (1)D202; the 2nd degree polynomial and SP 9 in Savitzky-Golay algorithm), was acceptable, since it was within allowed criteria (±2%) for assay deviation of drug substance, for method transfer in pharmaceutical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase

    PubMed Central

    Yan, Xuxu; Akinnusi, T. Olukayode; Larsen, Aaron T.; Auclair, Karine

    2011-01-01

    Summary A convenient synthesis of 4′-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4′-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6′-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  19. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials.

    PubMed

    Yokoyama, Atsuro; Yamamoto, Satoru; Kawasaki, Takao; Kohgo, Takao; Nakasu, Masanori

    2002-02-01

    We developed a calcium phosphate cement that could be molded into any desired shape due to its chewing-gum-like consistency after mixing. The powder component of the cement consists of alpha-tricalcium phosphate and tetracalcium phosphate, which were made by decomposition of hydroxyapatite ceramic blocks. The liquid component consists of citric acid, chitosan and glucose solution. In this study, we used 20% citric acid (group 20) and 45% citric acid (group 45). The mechanical properties and biocompatibility of this new cement were investigated. The setting times of cements were 5.5 min, in group 20 and 6.4 min, in group 45. When incubated in physiological saline, the cements were transformed to hydroxyapatite at 3, and 6 weeks, the compressive strengths were 15.6 and 20.7 MPa, in group 45 and group 20, respectively. The inflammatory response around the cement implanted on the bone and in the subcutaneous tissue in rats was more prominent in group 45 than in group 20 at 1 week after surgery. After 4 weeks, the inflammation disappeared and the cement had bound to bone in both groups. These results indicate that this new calcium phosphate cement is a suitable bone substitute material and that the concentration of citric acid in the liquid component affects its mechanical properties and biocompatibility.

  20. Selective crystallization of calcium salts by poly(acrylate)-grafted chitosan.

    PubMed

    Neira-Carrillo, Andrónico; Yazdani-Pedram, Mehrdad; Retuert, Jaime; Diaz-Dosque, Mario; Gallois, Sebastien; Arias, José L

    2005-06-01

    The biopolymer chitosan was chemically modified by grafting polyacrylamide or polyacrylic acid in a homogeneous aqueous phase using potassium persulfate (KPS) as redox initiator system in the presence of N,N-methylene-bis-acrylamide as a crosslinking agent. The influence of the grafted chitosan on calcium salts crystallization in vitro was studied using the sitting-drop method. By using polyacrylamide grafted chitosan as substrate, rosette-like CaSO4 crystals were observed. This was originated by the presence of sulfate coming from the initiator KPS. By comparing crystallization on pure chitosan and on grafted chitosan, a dramatic influence of the grafted polymer on the crystalline habit of both salts was observed. Substrates prepared by combining sulfate with chitosan or sulfate with polyacrylamide did not produce similar CaSO4 morphologies. Moreover, small spheres or donut-shaped CaCO3 crystals on polyacrylic acid grafted chitosan were generated. The particular morphology of CaCO3 crystals depends also on other synthetic parameters such as the molecular weight of the chitosan sample and the KPS concentration.

  1. 5-Substituted 3-chlorokenpaullone derivatives are potent inhibitors of Trypanosoma brucei bloodstream forms.

    PubMed

    Orban, Oliver C F; Korn, Ricarda S; Benítez, Diego; Medeiros, Andrea; Preu, Lutz; Loaëc, Nadège; Meijer, Laurent; Koch, Oliver; Comini, Marcelo A; Kunick, Conrad

    2016-08-15

    Trypanothione synthetase is an essential enzyme for kinetoplastid parasites which cause highly disabling and fatal diseases in humans and animals. Inspired by the observation that N(5)-substituted paullones inhibit the trypanothione synthetase from the related parasite Leishmania infantum, we designed and synthesized a series of new derivatives. Although none of the new compounds displayed strong inhibition of Trypanosoma brucei trypanothione synthetase, several of them caused a remarkable growth inhibition of cultivated Trypanosoma brucei bloodstream forms. The most potent congener 3a showed antitrypanosomal activity in double digit nanomolar concentrations and a selectivity index of three orders of magnitude versus murine macrophage cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nerve transection repair using laser-activated chitosan in a rat model.

    PubMed

    Bhatt, Neel K; Khan, Taleef R; Mejias, Christopher; Paniello, Randal C

    2017-08-01

    Cranial nerve transection during head and neck surgery is conventionally repaired with microsuture. Previous studies have demonstrated recovery with laser nerve welding (LNW), a novel alternative to microsuture. LNW has been reported to have poorer tensile strength, however. Laser-activated chitosan, an adhesive biopolymer, may promote nerve recovery while enhancing the tensile strength of the repair. Using a rat posterior tibial nerve injury model, we compared four different methods of nerve repair in this pilot study. Animal study. Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by potassium titanyl phosphate (KTP) laser alone (n = 20), KTP + chitosan (n = 12), microsuture + chitosan (n = 12), and chitosan alone (n = 14). Weekly walking tracks were conducted to measure functional recovery (FR). Tensile strength (TS) was measured at 6 weeks. At 6 weeks, KTP laser alone had the best recovery (FR = 93.4% ± 8.3%). Microsuture + chitosan, KTP + chitosan, and chitosan alone all showed good FR (87.4% ± 13.5%, 84.6% ± 13.0%, and 84.1% ± 10.0%, respectively). One-way analysis of variance was performed (F(3,56) = 2.6, P = .061). A TS threshold of 3.8 N was selected as a control mean recovery. Three groups-KTP alone, KTP + chitosan, and microsuture + chitosan-were found to meet threshold 60% (95% confidence interval [CI]: 23.1%-88.3%), 75% (95% CI: 46.8%-91.1%), and 100% (95% CI: 75.8%-100.0%), respectively. In the posterior tibial nerve model, all repair methods promoted nerve recovery. Laser-activated chitosan as a biopolymer anchor provided good TS and appears to be a novel alternative to microsuture. This repair method may have surgical utility following cranial nerve injury during head and neck surgery. NA Laryngoscope, 127:E253-E257, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Evaluation of bone marrow derived mesenchymal stem cells for full-thickness wound healing in comparison to tissue engineered chitosan scaffold in rabbit.

    PubMed

    Rajabian, Mohammad Hossein; Ghorabi, Gholam Hossein; Geramizadeh, Bita; Sameni, Safoura; Ayatollahi, Maryam

    2017-02-01

    Chronic wounds present a major challenge in modern medicine. Even under optimal conditions, the healing process may lead to scarring and fibrosis. The ability of mesenchymal stem cells (MSCs) to differentiate into other cell types makes these cells an attractive therapeutic tool for cell transplantation. Both tissue-engineered construct and MSC therapy are among the current wound healing procedures and potential care. Chitosan has been widely applied in tissue engineering because of its biocompatibility and biodegradability. The aim of the current work was to compare the efficiency of MSCs and chitosan dressing, alone or in combination treatment on wound healing. This study was conducted on 15 rabbits, which were randomly divided in 3 groups based on the type of treatment with MSCs, chitosan dressing and combination of both. A full-thickness skin defect was excised from the right and left side of the back of each animals. Defects on right sides were filled with treatments and left side defects were left as control. Evaluation of the therapeutic effectiveness was performed through a variety of clinical and microscopical evaluations and measurements of the process of wound healing on days 7, 14, 21, and 28. Histological evaluation of wound healing was classified by different scoring systems. The data indicated that wounds treated with bone marrow derived MSC had enhanced cellularity and better epidermal regeneration. During the early stages of wound healing, the closure rate of bone marrow derived MSC-treated wounds were significantly higher than other treatments (P<0.05). Although the MSCs in the wound edges enhance the healing of the full-thickness wound, the healing process of chitosan treatment was slower than the control group. This study revealed advanced granulation tissue formation and epithelialization in wounds treated with MSCs, and may suggests this treatment as an effective applicant in wound healing process. Chitosan scaffold dressings, whether alone or

  4. Synthesis of galabiose-chitosan conjugate as potent inhibitor of Streptococcus suis adhesion.

    PubMed

    Xu, Yaozu; Fan, Hongjie; Lu, Chengping; Gao, George F; Li, Xuebing

    2010-07-12

    The aim of this work is to construct a safe and effective drug candidate against Streptococcus suis infection. A panel of chitosan-based polymer conjugates with branched galabiose (Galalpha1-4Gal) side chains was synthesized as inhibitors of S. suis adhesion. The synthesis was achieved by using an aldehyde-functionalized galabiose derivative to graft it onto chitosan amino groups. Structural compositions of the conjugates were verified by 1H NMR spectroscopy and CHN elemental analyses. Potent inhibitory activities of the conjugates against S. suis adhesion to human erythrocytes were determined at low nanomolar concentration by HAI assay. An SPR study revealed a high affinity binding (Kd=39.6 nM) of the conjugate with BSI-B4 lectin. By using biocompatible chitosan as the scaffold for presenting S. suis -specific galabiose units, as well as the concise route tailored for the conjugate syntheses, the present study provides a practical way for explorations of new anti- S. suis therapies.

  5. Synthesis, crystal structure determination, biological screening and docking studies of N1-substituted derivatives of 2,3-dihydroquinazolin-4(1H)-one as inhibitors of cholinesterases.

    PubMed

    Sultana, Nargis; Sarfraz, Muhammad; Tanoli, Saba Tahir; Akram, Muhammad Safwan; Sadiq, Abdul; Rashid, Umer; Tariq, Muhammad Ilyas

    2017-06-01

    Pursuing the strategy of developing potent AChE inhibitors, we attempted to carry out the N 1 -substitution of 2,3-dihydroquinazolin-4(1H)-one core. A set of 32 N-alkylated/benzylated quinazoline derivatives were synthesized, characterized and evaluated for their inhibition against cholinesterases. N-alkylation of the series of the compounds reported previously (N-unsubstituted) resulted in improved activity. All the compounds showed inhibition of both enzymes in the micromolar to submicromolar range. Structure activity relationship (SAR) of the 32 derivatives showed that N-benzylated compounds possess good activity than N-alkylated compounds. N-benzylated compounds 2ad and 2af were found very active with their IC 50 values toward AChE in submicromolar range (0.8µM and 0.6µM respectively). Binding modes of the synthesized compounds were explored by using GOLD (Genetic Optimization for Ligand Docking) suit v5.4.1. Computational predictions of ADMET studies reveal that all the compounds have good pharmacokinetic properties with no AMES toxicity and carcinogenicity. Moreover, all the compounds are predicted to be absorbed in human intestine and also have the ability to cross blood brain barrier. Overall, the synthesized compounds have established a structural foundation for the design of new inhibitors of cholinesterase. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Synthesis, cytotoxic effect and antiviral activity of 1-(beta-D-arabinofuranosyl)-5-bromo-N4-substituted cytosine and 1-(beta-D-arabinofuranosyl)-5-bromo-4-methoxypyrimidin-2(1H)-one derivatives.

    PubMed

    Saladino, R; Mezzetti, M; Mincione, E; Palamara, A T; Savini, P; Marini, S

    1999-01-01

    A convenient and mild synthesis of 5-bromo-N4-substituted-1-(beta-D-arabinofuranosyl)cytosine and 5-bromo-O4-methyl-1-(beta-D-arabinofuranosyl)pyrimidin-2(1H)-one derivatives by selective oxyfunctionalization of the corresponding 4-thionucleosides with 3,3-dimethyldioxirane is reported. The cytotoxicity and the antiviral activity against parainfluenza 1 (Sendai virus) of all new synthesized products are also reported.

  7. Isovanillin derived N-(un)substituted hydroxylamines possessing an ortho-allylic group: valuable precursors to bioactive N-heterocycles.

    PubMed

    Dulla, Balakrishna; Tangellamudi, Neelima D; Balasubramanian, Sridhar; Yellanki, Swapna; Medishetti, Raghavender; Kumar Banote, Rakesh; Hari Chaudhari, Girish; Kulkarni, Pushkar; Iqbal, Javed; Reiser, Oliver; Pal, Manojit

    2014-04-28

    The intramolecular 1,3-dipolar cycloaddition of isovanillin derived N-aryl hydroxylamines possessing ortho-allylic dipolarophiles affords novel benzo analogues of tricyclic isoxazolidines that can be readily transformed into functionalized lactams, γ-aminoalcohols and oxazepines. The corresponding N-unsubstituted hydroxylamines give rise to tetrahydroisoquinolines. Anxiogenic properties of these compounds are tested in zebra fish.

  8. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications.

    PubMed

    Zhou, Hui Yun; Jiang, Ling Juan; Cao, Pei Pei; Li, Jun Bo; Chen, Xi Guang

    2015-03-06

    Chitosan is non-toxic, biocompatible and biodegradable polysaccharide composed of glucosamine and derived by deacetylation of chitin. Chitosan thermosensitive hydrogel has been developed to form a gel in situ, precluding the need for surgical implantation. In this review, the recent advances in chitosan thermosensitive hydrogels based on different glycerophosphate are summarized. The hydrogel is prepared with chitosan and β-glycerophosphate or αβ-glycerophosphate which is liquid at room temperature and transits into gel as temperature increases. The gelation mechanism may involve multiple interactions between chitosan, glycerophosphate, and water. The solution behavior, rheological and physicochemical properties, and gelation process of the hydrogel are affected not only by the molecule weight, deacetylation degree, and concentration of chitosan, but also by the kind and concentration of glycerophosphate. The properties and the three-dimensional networks of the hydrogel offer them wide applications in biomedical field including local drug delivery and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers.

    PubMed

    Lai, Jui-Yang; Li, Ya-Ting; Wang, Tsu-Pin

    2010-01-01

    The interaction between cells and biopolymers is the evaluation indicator of the biocompatibility of materials. The purpose of this work was to examine the responses of retinal pigment epithelial (RPE) cells to genipin (GP) or glutaraldehyde (GTA) cross-linked chitosan by means of cell viability assays, cytokine expression analyses, and apoptosis assays. Evaluations of non-cross-linked chitosan were conducted simultaneously for comparison. Both GP and GTA treated samples with the same extent of cross-linking (around 80%) were prepared by varying cross-linking time. Our results showed that GP cross-linking was carried out by either radical polymerization of the monomers or S(N)2 nucleophilic substitution reaction involving the replacement of the ester group on the monomer with a secondary amide linkage. On the other hand, GTA could react with free amino groups of chitosan, leading to the formation of either the Schiff bases or the Michael-type adducts with terminal aldehydes. The biocompatibility of non-cross-linked chitosan membranes was demonstrated by the absence of any signs of toxicity or inflammation reaction. The present study showed that the ARPE-19 cells exposed to GTA cross-linked chitosan membranes had significantly higher cytotoxicity, interleukin-6 levels, and number of TUNEL-positive nuclei than did those exposed to GP treated samples. In addition, the materials modified with GTA trigger apoptosis at an early stage and may induce toxicity in the RPE cells later. The findings suggest that while the chitosan molecules bridged by GP are satisfactorily cytocompatible, the counterparts treated by GTA do not seem to be tolerated. In terms of material safety, the GP cross-linked chitosan may be compatible with human RPE cells and may have a potential application as delivery carriers in the treatment of posterior segment diseases.

  10. 40 CFR 721.267 - N-[2-[(substituted dinitrophenyl)azo]diallylamino-4- substituted phenyl] acetamide (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.267 N-[2-[(substituted dinitrophenyl)azo]diallylamino-4- substituted phenyl] acetamide (generic name). (a) Chemical substance and...

  11. Mining marine shellfish wastes for bioactive molecules: chitin and chitosan--Part A: extraction methods.

    PubMed

    Hayes, Maria; Carney, Brian; Slater, John; Brück, Wolfram

    2008-07-01

    Legal restrictions, high costs and environmental problems regarding the disposal of marine processing wastes have led to amplified interest in biotechnology research concerning the identification and extraction of additional high grade, low-volume by-products produced from shellfish waste treatments. Shellfish waste consisting of crustacean exoskeletons is currently the main source of biomass for chitin production. Chitin is a polysaccharide composed of N-acetyl-D-glucosamine units and the multidimensional utilization of chitin derivatives including chitosan, a deacetylated derivative of chitin, is due to a number of characteristics including: their polyelectrolyte and cationic nature, the presence of reactive groups, high adsorption capacities, bacteriostatic and fungistatic influences, making them very versatile biomolecules. Part A of this review aims to consolidate useful information concerning the methods used to extract and characterize chitin, chitosan and glucosamine obtained through industrial, microbial and enzymatic hydrolysis of shellfish waste.

  12. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets.

    PubMed

    Huanbutta, Kampanart; Cheewatanakornkool, Kamonrak; Terada, Katsuhide; Nunthanid, Jurairat; Sriamornsak, Pornsak

    2013-08-14

    Magnetic resonance imaging (MRI) and gravimetric techniques were used to assess swelling and erosion behaviors of hydrophilic matrix tablets made of chitosan. The impact of salt form, molecular weight (MW) and dissolution medium on swelling behavior and drug (theophylline) release was studied. The matrix tablets made of chitosan glycolate (CGY) showed the greatest swelling in both acid and neutral media, compared to chitosan aspartate, chitosan glutamate and chitosan lactate. MRI illustrated that swelling region of CGY in both media was not different in the first 100 min but glassy region (dry core) in 0.1N HCl was less than in pH 6.8 buffer. The tablets prepared from chitosan with high MW swelled greater than those of low MW. Moreover, CGY can delay drug release in the acid condition due to thick swollen gel and low erosion rate. Therefore, CGY may be suitably applied as sustained drug release polymer or enteric coating material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Novel N-substituted aminobenzamide scaffold derivatives targeting the dipeptidyl peptidase-IV enzyme.

    PubMed

    Al-Balas, Qosay A; Sowaileh, Munia F; Hassan, Mohammad A; Qandil, Amjad M; Alzoubi, Karem H; Mhaidat, Nizar M; Almaaytah, Ammar M; Khabour, Omar F

    2014-01-01

    The dipeptidyl peptidase-IV (DPP-IV) enzyme is considered a pivotal target for controlling normal blood sugar levels in the body. Incretins secreted in response to ingestion of meals enhance insulin release to the blood, and DPP-IV inactivates these incretins within a short period and stops their action. Inhibition of this enzyme escalates the action of incretins and induces more insulin to achieve better glucose control in diabetic patients. Thus, inhibition of this enzyme will lead to better control of blood sugar levels. In this study, computer-aided drug design was used to help establish a novel N-substituted aminobenzamide scaffold as a potential inhibitor of DPP-IV. CDOCKER software available from Discovery Studio 3.5 was used to evaluate a series of designed compounds and assess their mode of binding to the active site of the DPP-IV enzyme. The designed compounds were synthesized and tested against a DPP-IV enzyme kit provided by Enzo Life Sciences. The synthesized compounds were characterized using proton and carbon nuclear magnetic resonance, mass spectrometry, infrared spectroscopy, and determination of melting point. Sixty-nine novel compounds having an N-aminobenzamide scaffold were prepared, with full characterization. Ten of these compounds showed more in vitro activity against DPP-IV than the reference compounds, with the most active compounds scoring 38% activity at 100 μM concentration. The N-aminobenzamide scaffold was shown in this study to be a valid scaffold for inhibiting the DPP-IV enzyme. Continuing work could unravel more active compounds possessing the same scaffold.

  14. The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix.

    PubMed

    Bie, Pingping; Liu, Peng; Yu, Long; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

    2013-10-15

    An antimicrobial material with a slow release property was developed based on poly(lactic acid)/starch/chitosan blends, in which chitosan acted as an antimicrobial agent while PLA and starch together were used as a slow-releasing device. An increase in the starch content drastically improved the hydrophilicity of the blends, which was favorable for the diffusion of the embedded chitosan. Moreover, the release of chitosan was observed to occur in two stages, with a very fast release stage initially and a slow but durable release stage as the latter. These two stages exhibited the effectiveness and long residual action of antimicrobial property of the blends respectively, demonstrating the suitability to be used for foods with high water activity, such as fresh meat. The tensile and thermal properties further verified the promising use of the blend material in packaging. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Spectrophotometric, voltammetric and cytotoxicity studies of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)-substituted derivatives: A combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Akgemci, Emine Guler; Saf, Ahmet Ozgur; Tasdemir, Halil Ugur; Türkkan, Ercan; Bingol, Haluk; Turan, Suna Ozbas; Akkiprik, Mustafa

    2015-02-01

    In this study, 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) and its novel N(4) substituted derivatives were synthesized and characterized by different techniques. The optical band gap of the compounds and the energy of HOMO were experimentally examined by UV-vis spectra and cyclic voltammetry measurements, respectively. Furthermore, the conformational spaces of the compounds were scanned with molecular mechanics method. The geometry optimization, HOMO and LUMO energies, the energy gap of the HOMO-LUMO, dipole moment of the compounds were theoretically calculated by the density functional theory B3LYP/6-311++G(d,p) level. The minimal electronic excitation energy and maximum wavelength calculations of the compounds were also performed by TD-DFT//B3LYP/6-311++G(d,p) level of theory. Theoretically calculated values were compared with the related experimental values. The combined results exhibit that all compounds have good electron-donor properties which affect anti-proliferative activity. The cytotoxic effects of the compounds were also evaluated against HeLa (cervical carcinoma), MCF-7 (breast carcinoma) and PC-3 (prostatic carcinoma) cell lines using the standard MTT assay. All tested compounds showed antiproliferative effect having IC50 values in different range. In comparison with that of HMAT, it was obtained that while ethyl group on 4(N)-substituted position decreased in potent anti-proliferative effect, the phenyl group on the position increased in anti-proliferative effect for the tested cancer cell line. Considering the molecular energy parameters, the cytotoxicity activities of the compounds were discussed.

  16. Sodium carboxymethylation-functionalized chitosan fibers for cutaneous wound healing application

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Zhou, Zhong-Zheng; Jiang, Chang-Qing; Cheng, Xiao-Jie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xi-Guang

    2016-12-01

    A water absorption biomaterial, sodium carboxymethylation-functionalized chitosan fibers (Na-NOCC fibers) were prepared, applied for cutaneous wound repair, and characterized by FTIR and NMR. The water absorption of Na-NOCC fibers increased significantly with substitution degree rising, from 3.2 to 6.8 g/g, and higher than that of chitosan fibers (2.2 g/g) confirmed by swelling behavior. In the antibacterial action, the high degree of substitution of Na-NOCC fibers exhibited stronger antibacterial activities against E. coli (from 66.54% up to 88.86%). The inhibition of Na-NOCC fibers against S. aureus were above 90%, and more effective than E. coli. The cytotoxicity assay demonstrated that Na-NOCC2 fibers were no obvious cytotoxicity to mouse fibroblasts. Wound healing test and histological examination showed that significantly advanced granulation tissue and capillary formation in the healing-impaired wounds treated with Na-NOCC fibers, as compared to those treated with gauze, which demonstrated that Na- NOCC fibers could promote skin repair and might have great application for wound healing.

  17. Synthesis and characterization of PEG-conjugated quaternized chitosan and its application as a gene vector.

    PubMed

    Zhang, Xi; Yao, Juan; Zhang, Lihong; Fang, Jianguo; Bian, Fengling

    2014-03-15

    Poly(ethylene glycol)-conjugated N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride (PHTAC) derivatives were prepared by incorporating PEG molecules onto quaternized chitosan backbone. The copolymers were characterized by FTIR, (1)H NMR and XRD. Agarose gel retardation assay indicated that PHTAC had good plasmid DNA (pDNA) binding capability and the particle sizes of PHTAC/pDNA complexes determined by DLS were about 200 nm. Cytotoxicity assays in HeLa and 293T cells showed that PHTAC had low cytotoxicity. In vitro luciferase assay showed that PHTAC with PEGylation degree of 9% (PHTAC-1) had good transfection efficiency about 5.3-fold higher than quaternized chitosan, which was comparable with PEI (25 kDa). These results suggest that PHTAC-1 is a promising candidate as an efficient nonviral gene vector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    PubMed Central

    Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael

    2012-01-01

    Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545

  19. Termiticidal activity of chitosan against the subterranean termites Reticulitermes flavipes and Reticulitermes virginicus

    Treesearch

    Olanrewaju Raji; Juliet D Tang; Telmah Telmadarrehei; Dragica Jeremic

    2018-01-01

    BACKGROUND: Chitosan is a derivative form of chitin, which is the major component of exoskeletons of arthropods and the cell walls of fungi. The antimicrobial activity of chitosan against lepidopterans, aphids, fungi and bacteria has been extensively investigated, but only one report on the termiticidal effect of chitosan on termites has been published. In this study,...

  20. Preparation and characterization of maleoylagarose/PNIPAAm graft copolymers and formation of polyelectrolyte complexes with chitosan.

    PubMed

    Ortiz, J Andrés; Matsuhiro, Betty; Zapata, Paula A; Corrales, Teresa; Catalina, Fernando

    2018-02-15

    A water soluble derivative in 98% yield with 23.1% incorporation of maleoyl groups was obtained by esterification of agarose with maleic anhydride. Graft copolymers were synthesized through vinyl groups of maleoylagarose with N-isopropylacrylamide using ceric ammonium nitrate or ammonium persulfate as initiator, by conventional method or microwave irradiation. High nitrogen content (4.6%) was obtained in the grafting process using ceric ammonium nitrate as initiator without microwave irradiation. Copolymers were characterized by FT-IR and NMR spectroscopies, TGA, DSC and morphological analysis by AFM and SEM microscopy, confirming the grafting of PNIPAAm onto polysaccharide backbone. Hydrogel films were obtained by ionic complexation between opposite charged groups of maleoylagarose-g-poly(N-isopropylacrylamide) and chitosan. The swelling of 1:1w/v maleoylagarose-g-PNIPAAm:chitosan film was higher than 2:1w/v film at 25 and 37°C. 53% release in vitro of diclofenac sodium from 1:1w/v maleoylagarose-g-PNIPAAm:chitosan was obtained at 37°C and pH 6.0 with <0.5 diffusional constant values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery.

    PubMed

    Zhang, Mengke; Wang, Jinpeng; Jin, Zhengyu

    2018-07-15

    Chitosan-cyclodextrin hydrogel (CFCD) was prepared via Diels-Alder reaction between furfural functionalized chitosan (CF) and N-maleoyl alanine functionalized hydroxypropyl β-cyclodextrin (HPCD-AMI) in aqueous media without any catalyst or initiator. The CF and HPCD-AMI were confirmed by Fourier transform infrared spectroscopy and 1 H nuclear magnetic resonance spectroscopy. The resultant CFCD hydrogel was characterized in terms of thermal peripteries, microstructure, rheology behavior, and swelling capacity. The rheology analysis found that the storage modulus G' ranged from 1pa to 1200pa as the degree of furfural substitute on chitosan increased from 2.6% to 28.3%, indicating the hydrogel strength can be tuned readily by reaction stoichiometry. The swelling behaviors proved that CFCD hydrogel was pH-responsive with low swelling capacity, which would be preferable for drug delivery. Drug adsorption analysis showed the introduction of cyclodextrin into CFCD hydrogels promoted drug adsorption capacity. In addition, methyl orange cumulative release in PBS buffer was only 48.85% after 24h, suggesting CFCD hydrogel had good sustained release capacity on the loaded drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Substitutional and interstitial oxygen in wurtzite GaN

    NASA Astrophysics Data System (ADS)

    Wright, A. F.

    2005-11-01

    Density-functional theory was used to compute energy-minimum configurations and formation energies of substitutional and interstitial oxygen (O) in wurtzite GaN. The results indicate that O substituted at a N site (ON) acts as a single donor with the ionized state (ON+1) being the most stable O state in p-type GaN. In n-type GaN, interstitial O (OI) is predicted to be a double acceptor and O substituted at a Ga site (OGa) is predicted to be a triple acceptor. The formation energies of these two species are comparable to that of ON in n-type GaN and, as such, they should form and compensate the ON donors. The extent of compensation was estimated for both Ga-rich and N-rich conditions with a total O concentration of 1017cm-3. Ga-rich conditions yielded negligible compensation and an ON concentration in excess of 9.9×1016cm-3. N-rich conditions yielded a 25% lower ON concentration, due to the increased stability of OI and OGa relative to ON, and moderate compensation. These findings are consistent with experimental results indicating that O acts as a donor in GaN(O). Complexes of ON with the Mg acceptor and OI with the Si donor were examined. Binding energies for charge-conserving reactions were ⩾0.5eV, indicating that these complexes can exist in equilibrium at room temperature. Complexes of ON with the Ga vacancy in n-type GaN were also examined and their binding energies were 1.2 and 1.4eV, indicating that appreciable concentrations can exist in equilibrium even at elevated temperatures.

  3. Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering

    PubMed Central

    Wang, Limin; Stegemann, Jan P.

    2010-01-01

    Chitosan and collagen type I are naturally-derived materials used as cell carriers because of their ability to mimic the extracellular environment and direct cell function. In this study beta-glycerophosphate (beta-GP), an osteogenic medium supplement and a weak base, was used to simultaneously initiate gelation of pure chitosan, pure collagen, and chitosan-collagen composite materials at physiological pH and temperature. Adult human bone marrow-derived stem cells (hBMSC) encapsulated in such hydrogels at chitosan/collagen ratios of 100/0, 65/35, 25/75, and 0/100 wt% exhibited high viability at day 1 after encapsulation, but DNA content dropped by about half over 12 days in pure chitosan materials while it increased two-fold in materials containing collagen. Collagen-containing materials compacted more strongly and were significantly stiffer than pure chitosan gels. In monolayer culture, exposure of hBMSC to beta-GP resulted in decreased cell metabolic activity that varied with concentration and exposure time, but washing effectively removed excess beta-GP from hydrogels. The presence of chitosan in materials resulted in higher expression of osterix and bone sialoprotein genes in medium with and without osteogenic supplements. Chitosan also increased alkaline phosphatase activity and calcium deposition in osteogenic medium. Chitosan-collagen composite materials have potential as matrices for cell encapsulation and delivery, or as in situ gel-forming materials for tissue repair. PMID:20170955

  4. Natural derivatives of diphenolic acid as substitutes for bisphenol-A

    NASA Astrophysics Data System (ADS)

    Ertl, Johanna; Cerri, Elisa; Rizzuto, Matteo; Caretti, Daniele

    2014-05-01

    Diphenolic acid had been originally used in the first epoxy resins and was later on forgotten as it was substituted by the cheaper bisphenol A. But in the recent years major health concerns have been raised as bisphenol A has a pseudo-hormonal effect on the body, playing the role of estrogen it can cause a severe impact on the organism, especially in males. Moreover it is produced from acetone and phenol, both from fossil, and thus limited resources. On the contrary, diphenolic acid is synthesized from levulinic acid and phenol. Levulinic acid being directly produced by hydrolysis of biomass. By substituting the fossil phenol with natural phenols from lignin or plant extraction we are able to synthesize a fully renewable substitute for bisphenol A. The reactions to yield an epoxy resin have been examined and the reactivity with epichlorohydrin is satisfying. Moreover, some of the derivatives of diphenolic acid have interesting curing properties and preliminary results show excellent properties of the cured resin, including thermal stability and pencil hardness.

  5. Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater.

    PubMed

    Sankararamakrishnan, Nalini; Sharma, Ajit Kumar; Sanghi, Rashmi

    2007-09-05

    Chitosan was chemically modified by introducing xanthate group onto its backbone using carbondisulfide under alkaline conditions. The chemically modified chitosan flakes (CMC) was used as an adsorbent for the removal of cadmium ions from electroplating waste effluent under laboratory conditions. CMC was found to be far more efficient than the conventionally used adsorbent activated carbon. The maximum uptake of cadmium by CMC in batch studies was found to be 357.14 mg/g at an optimum pH of 8.0 whereas for plain chitosan flakes it was 85.47 mg/g. Since electroplating wastewater contains cyanide in appreciable concentrations, interference of cyanide ions in cadmium adsorption was found to be very significant. This problem could be easily overcome by using higher doses of CMC, however, activated carbon was not found to be effective even at higher doses. Due to the high formation constant of cadmium with xanthate and adsorption was carried out at pH 8, cations like Pb(II), Cu(II), Ni(II) and Zn(II) did not interfere in the adsorption. Dynamics of the sorption process were studied and the values of rate constant of adsorption were calculated. Desorption of the bound cadmium from CMC was accomplished with 0.01 N H(2)SO(4). The data from regeneration efficiencies for 10 cycles evidenced the reusability of CMC in the treatment of cadmium-laden wastewater.

  6. The formation of [M-H]+ ions in N-alkyl-substituted thieno[3,4-c]-pyrrole-4,6-dione derivatives during atmospheric pressure photoionization mass spectrometry.

    PubMed

    Sioud, Salim; Kharbatia, Najeh; Amad, Maan H; Zhu, Zhiyong; Cabanetos, Clement; Lesimple, Alain; Beaujuge, Pierre

    2014-11-30

    The formation of ions during atmospheric pressure photoionization (APPI) mass spectrometry in the positive mode usually provides radical cations and/or protonated species. Intriguingly, during the analysis of some N-alkyl-substituted thieno[3,4-c]pyrrole-4,6-dione (TPD) derivatives synthesized in our laboratory, unusual [M-H](+) ion peaks were observed. In this work we investigate the formation of [M-H](+) ions observed under APPI conditions. Multiple experimental parameters, including the type of ionization source, the composition of the solvent, the type of dopant, the infusion flow rate, and the length of the alkyl side chain were investigated to determine their effects on the formation of [M-H](+) ions. In addition, a comparison study of the gas-phase tandem mass spectrometric (MS/MS) fragmentation of [M + H](+) vs [M-H](+) ions and computational approaches were used. [M-H](+) ions were observed under APPI conditions. The type of dopant and the length of the alkyl chain affected the formation of these ions. MS/MS fragmentation of [M-H](+) and [M + H](+) ions exhibited completely different patterns. Theoretical calculations revealed that the loss of hydrogen molecules from the [M + H](+) ions is the most favourable condition under which to form [M-H](+) ions. [M-H](+) ions were detected in all the TPD derivatives studied here under the special experimental conditions during APPI, using a halogenated benzene dopant, and TPD containing substituted N-alkyl side chains with a minimum of four carbon atoms. Density functional theory calculations showed that for [M-H](+) ions to be formed under these conditions, the loss of hydrogen molecules from the [M + H](+)  ions is proposed to be necessary. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Effects of Substitutions on the Biodegradation Potential of Benzotriazole Derivatives

    NASA Astrophysics Data System (ADS)

    Abu-Dalo, M. A.; O'Brien, I.; Hernandez, M. T.

    2018-02-01

    Fourteen benzotriazole derivatives were subjected to microcosm tests to study the influence of substitutions on their biodegradation potential. Methylated, nitrated, carboxylated, and propionated bezotriazoles, a heterocyclic triazole, as well as methylated benzimidazoles, were introduced to activated sludge and soil enrichment cultures as the only carbon source. Some of the enrichment cultures were derived from airport soils that had been previously contaminated with aircraft deicing fluids and subsequently enriched with the commercially significant corrosion inhibitor methylbenzotriazole. The 5-methylbenzotriazole and only the carboxylated derivatives were degraded by soil or activated sludge biomass regardless of acclimation conditions. Radiotracer studies of [U-14C] 5-methylbenzotriazole, and [U-14C] 5-carboxybenzotriazole confirmed that relatively high concentrations (25mg L-1) of these derivatives can be completely mineralized in relatively short time frames by microbial consortia regardless of prior exposure. Observations suggested that the growth yield on these compounds is likely low. Biodegradation patterns suggested that carboxylated benzotriazole derivatives are more readily biodegradable than their more popular methylated counterparts.

  8. Amphiphilically modified chitosan cationic nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    You, Jie; Li, Wenfeng; Yu, Chang; Zhao, Chengguang; Jin, Langping; Zhou, Yili; Xu, Xuzhong; Dong, Siyang; Lu, Xincheng; Wang, Ouchen

    2013-12-01

    A series of amphiphilic N-(2-hydroxy)propyl-3-trimethylammonium-chitosan-cholic acid (HPTA-CHI-CA) polymers were synthesized by grafting cholic acid (CA) and glycidyltrimethylammonium chloride onto chitosan. The self-assembly behavior of HPTA-CHI-CA was studied by fluorescence technique. The polymers were able to self-assemble into NPs in phosphate buffered saline with a critical aggregation concentration (CAC) in the range of 66-26 mg/L and the CAC decreased with the increasing of the degree of substitution (DS) of CA. The size of cationic HPTA-CHI-CA NPs ranges from 170 to 220 nm (PDI < 0.2). It was found that doxorubicin (DOX) could be encapsulated into HPTA-CHI-CA NPs based on self-assembly. The drug loading content and efficiency varies depending on the DS of CA and feeding ratio of DOX to polymer. In vitro release studies suggested that DOX released slowly from HPTA-CHI-CA NPs without any burst initial release. Besides, the confocal microscopic measurements indicated that DOX-HPTA-CHI-CA NPs could easily be uptaken by breast cancer (MCF-7) cells and release DOX in cytoplasm. Anti-tumor efficacy results showed that DOX-HPTA-CHI-CA NPs have a significant activity of inhibition MCF-7 cells growth. These results suggest cationic HPTA-CHI-CA may have great potential for anticancer drug delivery.

  9. Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering.

    PubMed

    Shavandi, Amin; Bekhit, Alaa El-Din A; Ali, M Azam; Sun, Zhifa

    2015-09-01

    In the present study, chitosan/hydroxyapatite (HA)/β-tircalcium phosphate (β-TCP) composites were produced using squid pen derived chitosan (CHS) and commercial crab derived chitosan (CHC). CHS was prepared from squid pens by alkaline N-deacetylation. HA and β-TCP were extracted from mussel shells using a microwave irradiation method. Two different composites were prepared by incorporating 50% (w/w) HA/(β-TCP) in CHS or CHC followed by lyophilization and cross-linking of composites by tripolyphosphate (TPP). The effect of different freezing temperatures of -20, -80 and -196 °C on the physicochemical characteristics of composites was investigated. A simulated body fluid (SBF) solution was used for preliminary in vitro study for 1, 7, 14 and 28 days and the composites were characterized by XRD, FTIR, TGA, SEM, μ-CT and ICP-MS. Porosity, pore size, water uptake; water retention abilities and in vitro degradations of the prepared composites were evaluated. The CHS composites were found to have higher porosity (62%) compared to the CHC composites (porosity 42%) and better mechanical properties. The results of this study indicated that composites produced at -20 °C had higher mechanical properties and lower degradation rate compared with -80 °C. Chitosan from the squid pen is an excellent biomaterial candidate for bone tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering.

    PubMed

    Deepthi, S; Venkatesan, J; Kim, Se-Kwon; Bumgardner, Joel D; Jayakumar, R

    2016-12-01

    Chitin and chitosan based nanocomposite scaffolds have been widely used for bone tissue engineering. These chitin and chitosan based scaffolds were reinforced with nanocomponents viz Hydroxyapatite (HAp), Bioglass ceramic (BGC), Silicon dioxide (SiO 2 ), Titanium dioxide (TiO 2 ) and Zirconium oxide (ZrO 2 ) to develop nanocomposite scaffolds. Plenty of works have been reported on the applications and characteristics of the nanoceramic composites however, compiling the work done in this field and presenting it in a single article is a thrust area. This review is written with an aim to fill this gap and focus on the preparations and applications of chitin or chitosan/nHAp, chitin or chitosan/nBGC, chitin or chitosan/nSiO 2 , chitin or chitosan/nTiO 2 and chitin or chitosan/nZrO 2 in the field of bone tissue engineering in detail. Many reports so far exemplify the importance of ceramics in bone regeneration. The effect of nanoceramics over native ceramics in developing composites, its role in osteogenesis etc. are the gist of this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N,N,N-trimethyl chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine.

    PubMed

    Verheul, Rolf J; Hagenaars, Niels; van Es, Thomas; van Gaal, Ethlinn V B; de Jong, Pascal H J L F; Bruijns, Sven; Mastrobattista, Enrico; Slütter, Bram; Que, Ivo; Heldens, Jacco G M; van den Bosch, Han; Glansbeek, Harrie L; Hennink, Wim E; Jiskoot, Wim

    2012-03-12

    Recently we reported that reacetylation of N,N,N-trimethyl chitosan (TMC) reduced the adjuvant effect of TMC in mice after intranasal (i.n.) administration of whole inactivated influenza virus (WIV) vaccine. The aim of the present study was to elucidate the mechanism of this lack of adjuvanticity. Reacetylated TMC (TMC-RA, degree of acetylation 54%) was compared with TMC (degree of acetylation 17%) at six potentially critical steps in the induction of an immune response after i.n. administration in mice. TMC-RA was degraded in a nasal wash to a slightly larger extent than TMC. The local i.n. distribution and nasal clearance of WIV were similar for both TMC types. Fluorescently labeled WIV was taken up more efficiently by Calu-3 cells when formulated with TMC-RA compared to TMC and both TMCs significantly reduced transport of WIV over a Calu-3 monolayer. Murine bone-marrow derived dendritic cell activation was similar for plain WIV, and WIV formulated with TMC-RA or TMC. The inferior adjuvant effect in mice of TMC-RA over that of TMC might be caused by a slightly lower stability of TMC-RA-WIV in the nasal cavity, rather than by any of the other factors studied in this paper. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Novel quinazoline ring synthesis by cycloaddition of N-arylketenimines with N,N-disubstituted cyanamides.

    PubMed

    Shimizu, Masao; Oishi, Akihiro; Taguchi, Yoichi; Gama, Yasuo; Shibuya, Isao

    2002-03-01

    The reaction of N-aryl-substituted ketenimines with N,N-disubstituted cyanamides or (MeS)2C=N-CN under high pressure afforded 4-(N,N-disubstituted amino) or 4-(MeS)2C=N-substituted quinazoline derivatives, respectively. These products were formed by [4+2] cycloaddition between the aza-diene moieties of the N-arylsubstituted ketenimines and cyano groups. A 4-(unsubstituted amino)quinazoline derivative was synthesized by hydrolysis of the latter product.

  13. Effect of chitosan ethers on fresh state properties of lime mortars

    NASA Astrophysics Data System (ADS)

    Vyšvařil, M.; Žižlavský, T.

    2017-10-01

    The fresh state properties of mortars are eminently important since determine the material workability and also have a great influence on its hardened state characteristics. In this paper, the behaviour of fresh lime mortars modified by etherified derivatives of chitosan (hydroxypropylchitosan (HPCH) and carboxymethylchitosan (CMCH)) is assessed with the purpose of exploring a new application of such derivatives as lime mortar admixtures. The rheological parameters (relative yield stress, consistency coefficient and fluidity index) and viscoelastic properties were correlated with flow table tests, relative density measurements, water retention abilities of mortars and air content in mortars. Results were seen to be strongly dependent on substituents of the chitosan. Non-ionic derivative (HPCH) had a plasticizing influence on the mortars; the ionic CMCH showed the thickening effect. The effect of chitosan ethers was found to be dosage-dependent. CMCH had low impact on water retention, while HPCH displayed high water retention capability. It was concluded, that the ionic derivative (CMCH) is very similar by its viscosity enhancing effect to starch ether.

  14. Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering.

    PubMed

    Wang, Limin; Stegemann, Jan P

    2010-05-01

    Chitosan and collagen type I are naturally derived materials used as cell carriers because of their ability to mimic the extracellular environment and direct cell function. In this study beta-glycerophosphate (beta-GP), an osteogenic medium supplement and a weak base, was used to simultaneously initiate gelation of pure chitosan, pure collagen, and chitosan-collagen composite materials at physiological pH and temperature. Adult human bone marrow-derived stem cells (hBMSC) encapsulated in such hydrogels at chitosan/collagen ratios of 100/0, 65/35, 25/75, and 0/100 wt% exhibited high viability at day 1 after encapsulation, but DNA content dropped by about half over 12 days in pure chitosan materials while it increased twofold in materials containing collagen. Collagen-containing materials compacted more strongly and were significantly stiffer than pure chitosan gels. In monolayer culture, exposure of hBMSC to beta-GP resulted in decreased cell metabolic activity that varied with concentration and exposure time, but washing effectively removed excess beta-GP from hydrogels. The presence of chitosan in materials resulted in higher expression of osterix and bone sialoprotein genes in medium with and without osteogenic supplements. Chitosan also increased alkaline phosphatase activity and calcium deposition in osteogenic medium. Chitosan-collagen composite materials have potential as matrices for cell encapsulation and delivery, or as in situ gel-forming materials for tissue repair. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Synthesis, characterization and nonlinear optical properties of symmetrically substituted dibenzylideneacetone derivatives

    NASA Astrophysics Data System (ADS)

    Sunil Kumar Reddy, N.; Badam, Rajashekar; Sattibabu, Romala; Molli, Muralikrishna; Sai Muthukumar, V.; Siva Sankara Sai, S.; Rao, G. Nageswara

    2014-11-01

    We report here the nonlinear optical (NLO) properties of eight bis-chalcones of D-π-A-π-D type. These dibenzylideneacetone (DBA) derivatives are synthesized by Claisen-Schmidt reaction. The compounds are characterized by UV-vis, FTIR, 1H NMR, 13C NMR, mass spectroscopy and powder XRD. By substituting different groups (electron withdrawing and electron donating) at 'para' and 'meta' positions of the aromatic ring, we observed an enhancement in second harmonic generation with substitution at 'para' position. These compounds have also showed higher two-photon absorption compared to other chalcones reported in literature. These compounds, exhibiting both second and third order NLO effects, are plausible candidate materials in photonic devices.

  16. Synthesis, antiviral evaluation and molecular docking studies of N4-aryl substituted/unsubstituted thiosemicarbazones derived from 1-indanones as potent anti-bovine viral diarrhea virus agents.

    PubMed

    Soraires Santacruz, María C; Fabiani, Matías; Castro, Eliana F; Cavallaro, Lucía V; Finkielsztein, Liliana M

    2017-08-01

    A series of N 4 -arylsubstituted thiosemicarbazones derived from 1-indanones and a set of compounds lacking such substitution in the N 4 position of the thiosemicarbazone moiety were synthesized and evaluated for their anti-bovine viral diarrhea virus (BVDV) activity. Among these, derivatives 2 and 15 displayed high activity (EC 50 =2.7±0.4 and 0.7±0.1µM, respectively) as inhibitors of BVDV replication. Novel key structural features related to the anti-BVDV activity were identified by structure-activity relationship (SAR) analysis. In a previous study, the thiosemicarbazone of 5,6-dimethoxy-1-indanone (5,6-TSC) was characterized as a non-nucleoside inhibitor (NNI) of the BVDV RNA-dependent RNA polymerase. In the present work, cross-resistance assays were performed with the most active compounds. Such studies were carried out on 5,6-TSC resistant BVDV (BVDV-TSC r T1) carrying mutations in the viral polymerase. This BVDV mutant was also resistant to compound 15. Molecular docking studies and MM/PBSA calculations were performed to assess the most active derivatives at the 5,6-TSC viral polymerase binding site. The differences in the interaction pattern and the binding affinity of derivative 15 either to the wild type or BVDV-TSC r T1 polymerase were key factors to define the mode of action of this compound. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Functionalization of chitosan by click chemistry

    NASA Astrophysics Data System (ADS)

    Cheaburu-Yilmaz, Catalina Natalia; Karavana, Sinem Yaprak; Yilmaz, Onur

    2017-12-01

    Chitosan modification represents a challenge nowadays. The variety of compounds which can be obtained with various architectures and different functionalities made it attractive to be used in fields like pharmacy and material science. Presents study deals with the chemical modification of chitosan by using click chemistry technique. The study adopted the approach of clicking azidated chitosan with a synthesized alkyne terminated polymer i.e. poly N isopropylacrylamide with thermoresponsive properties. Structures were confirmed by the FT-IR and HNMR spectra. Thermal characterization was performed showing different thermal behaviour with the chemical modification. The final synthesized graft copolymer can play important role within pharmaceutical formulations carrying drugs for topical or oral treatments.

  18. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan.

    PubMed

    Mohan, L; Anandan, C; Rajendran, N

    2016-12-01

    TiO 2 nanotubes formed by anodic oxidation of Ti-6Al-7Nb were loaded with quercetin (TNTQ) and chitosan was coated on the top of the quercetin (TNTQC) to various thicknesses. Field emission scanning electron microscopy (FESEM), 3D and 2D analyses were used to characterize the samples. The drug release studies of TNTQ and TNTQC were studied in Hanks' solution for 192h. The studies showed that the native oxide on the sample is substituted by self assembled nanotube arrays by anodisation. FESEM images of chitosan-loaded TNT samples showed that filling of chitosan takes place in inter-tubular space and pores. Drug release studies revealed that the release of drug into the local environment during that duration was constant. The local concentration of the drug can be controlled and tuned by controlling the thickness of the chitosan (0.6, 1 and 3μm) to fit into an optimal therapeutic window in order to treat postoperative infections, inflammation and for quick healing with better osseointegration of the titanium implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Chitosan, the marine functional food, is a potent adsorbent of humic acid.

    PubMed

    Chen, Jeen-Kuan; Yeh, Chao-Hsien; Wang, Lian-Chen; Liou, Tzong-Horng; Shen, Chia-Rui; Liu, Chao-Lin

    2011-12-01

    Chitosan is prepared by the deacetylation of chitin, the second-most abundant biopolymer in nature, and has applicability in the removal of dyes, heavy metals and radioactive waste for pollution control. In weight-reduction remedies, chitosan is used to form hydrogels with lipids and to depress the intestinal absorption of lipids. In this study, an experimental method was implemented to simulate the effect of chitosan on the adsorption of humic acid in the gastrointestinal tract. The adsorption capacity of chitosan was measured by its adsorption isotherm and analyzed using the Langmuir equation. The results showed that 3.3 grams of humic acid was absorbed by 1 gram of chitosan. The adsorption capacity of chitosan was much greater than that of chitin, diethylaminoethyl-cellulose or activated charcoal. Cellulose and carboxymethyl-cellulose, a cellulose derivative with a negative charge, could not adsorb humic acid in the gastrointestinal tract. This result suggests that chitosan entraps humic acid because of its positive charge.

  20. Chitosan, the Marine Functional Food, Is a Potent Adsorbent of Humic Acid

    PubMed Central

    Chen, Jeen-Kuan; Yeh, Chao-Hsien; Wang, Lian-Chen; Liou, Tzong-Horng; Shen, Chia-Rui; Liu, Chao-Lin

    2011-01-01

    Chitosan is prepared by the deacetylation of chitin, the second-most abundant biopolymer in nature, and has applicability in the removal of dyes, heavy metals and radioactive waste for pollution control. In weight-reduction remedies, chitosan is used to form hydrogels with lipids and to depress the intestinal absorption of lipids. In this study, an experimental method was implemented to simulate the effect of chitosan on the adsorption of humic acid in the gastrointestinal tract. The adsorption capacity of chitosan was measured by its adsorption isotherm and analyzed using the Langmuir equation. The results showed that 3.3 grams of humic acid was absorbed by 1 gram of chitosan. The adsorption capacity of chitosan was much greater than that of chitin, diethylaminoethyl-cellulose or activated charcoal. Cellulose and carboxymethyl-cellulose, a cellulose derivative with a negative charge, could not adsorb humic acid in the gastrointestinal tract. This result suggests that chitosan entraps humic acid because of its positive charge. PMID:22363235

  1. Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil

    2017-12-01

    A number of orthopedic disorders and bone defect issues are solved by scaffold-based therapy in tissue engineering. The biocompatibility of chitosan (polysaccharide) and its similarity with glycosaminoglycan makes it a bone-grafting material. The current work focus on the synthesis of chitosan and chitosan-gelatin scaffold for hard tissue engineering. The chitosan and chitosan-gelatin scaffold have shown improved specific surface area, density, porosity, mechanical properties, biodegradability and absorption. These scaffolds can lead to the development or artificial fabrication of hard tissue alternates. The porous scaffold samples were prepared by freeze-drying method. The microstructure, mechanical and degradable properties of chitosan and chitosan-gelatin scaffolds were analyzed and results revealed that the scaffolds prepared from chitosan-gelatin can be utilized as a useful matrix for tissue engineering.

  2. Synthesis, structurale elucidation and antioxidant study of Ortho-substituted N,N’-bis(benzamidothiocarbonyl)hydrazine derivatives

    NASA Astrophysics Data System (ADS)

    Firdausiah, Syadza; Hasbullah, S. A.; Yamin, B. M.

    2018-03-01

    Some bis(thiourea) compounds have been reported to posses excellent performance in pharmaceutical and environmental fields because of their ability to form chelating complexes with various anions and metal ions. Structurally for carbonyl thiourea derivatives, to become a chelating agent, it must adopt cis-configuration. In the present study, four new bis(thiourea) derivatives namely N,N’-bis(o-fluorobenzamidothiocarbonyl)hydrazine (1), N,N’- bis(o-chloro-benzamidothiocarbonyl)hydrazine (2), N,N’-bis(o-nitrobenzamidothiocarbonyl)-hydrazine (3), and N,N’-bis(o-methylbenzamidothiocarbonyl)hydrazine (4) were successfully synthesized and characterized by CHNS microelemental analysis, FTIR, UV-Vis, and 1H and 13C NMR spectroscopy. However chemical crystallography study showed that both thiourea moieties in compound (2) and (3) adopt trans geometry. Therefore they are potential monodentate ligand with two active moieties. DPPH radical scavenging experiment showed that compound (1), (2), and (4) exhibited higher antioxidant activity than ascorbic acid (Vitamin C).

  3. Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived layered CNX catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid

    EPA Science Inventory

    Chitosan derived porous layered nitrogen-enriched carbonaceous CNx catalyst (PLCNx) has been synthesized from marine waste and its use demonstrated in a metal-free heterogeneous selective oxidation of 5-hydroxymethyl-furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using aeria...

  4. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends.

    PubMed

    Ghorbani, Fereshte Mohammad; Kaffashi, Babak; Shokrollahi, Parvin; Akhlaghi, Shahin; Hedenqvist, Mikael S

    2016-02-01

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox-Merz theory for this system shows that the polymer-nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Enzymatic degradation and bioactivity evaluation of C-6 oxidized chitosan.

    PubMed

    Pierre, Guillaume; Salah, Rym; Gardarin, Christine; Traikia, Mounir; Petit, Emmanuel; Delort, Anne-Marie; Mameri, Nabil; Moulti-Mati, Farida; Michaud, Philippe

    2013-09-01

    C-6 oxidized chitosan was produced from chitosan by performing selective oxidation with NaOCl and NaBr using 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) as catalyst. Endocellulase, Celluclast 1.5 L, Glucanex(®), Macerozyme R-10, hyaluronidase, hyaluronate lyase, red scorpionfish chitinase, glucuronan lyase and a protein mix from Trichoderma reesei were used to degrade the C-6 oxidized chitosan. Glucanex(®), the crude extract from T. reesei IHEM 4122 and Macerozyme R-10 validated the enzymatic degradation through final hydrolysis yields of the derivative respectively close to 36.4, 20.3 and 12.9% (w/w). The best initial reaction velocity (2.41 U/mL) was observed for Glucanex(®). The antileishmanial activity of the derivative was evaluated against Leishmania infantum LIPA 137. The antibacterial activities against Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were also tested. Results showed an antileishmanial activity (IC50: 125 μg/mL) of the obtained derivatives against L. infantum LIPA 137. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Structural Basis of APH(3)-IIIa-Mediated Resistance to N1-Substituted Aminoglycoside Antibiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, D.; Berghuis, A

    2009-01-01

    Butirosin is unique among the naturally occurring aminoglycosides, having a substituted amino group at position 1 (N1) of the 2-deoxystreptamine ring with an (S)-4-amino-2-hydroxybutyrate (AHB) group. While bacterial resistance to aminoglycosides can be ascribed chiefly to drug inactivation by plasmid-encoded aminoglycoside-modifying enzymes, the presence of an AHB group protects the aminoglycoside from binding to many resistance enzymes, and hence, the antibiotic retains its bactericidal properties. Consequently, several semisynthetic N1-substituted aminoglycosides, such as amikacin, isepamicin, and netilmicin, were developed. Unfortunately, butirosin, amikacin, and isepamicin are not resistant to inactivation by 3'-aminoglycoside O-phosphotransferase type IIIa [APH(3')-IIIa]. We report here the crystal structuremore » of APH(3')-IIIa in complex with an ATP analog, AMPPNP [adenosine 5'-(?,{gamma}-imido)triphosphate], and butirosin A to 2.4-A resolution. The structure shows that butirosin A binds to the enzyme in a manner analogous to other 4,5-disubstituted aminoglycosides, and the flexible antibiotic-binding loop is key to the accommodation of structurally diverse substrates. Based on the crystal structure, we have also constructed a model of APH(3')-IIIa in complex with amikacin, a commonly used semisynthetic N1-substituted 4,6-disubstituted aminoglycoside. Together, these results suggest a strategy to further derivatize the AHB group in order to generate new aminoglycoside derivatives that can elude inactivation by resistance enzymes while maintaining their ability to bind to the ribosomal A site.« less

  7. Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation

    NASA Astrophysics Data System (ADS)

    Abyadeh, Morteza; Sadroddiny, Esmaeil; Ebrahimi, Ammar; Esmaeili, Fariba; Landi, Farzaneh Saeedi; Amani, Amir

    2017-12-01

    A rapid and efficient procedure for DNA transformation is a key prerequisite for successful cloning and genomic studies. While there are efforts to develop a facile method, so far obtained efficiencies for alternative methods have been unsatisfactory (i.e. 105-106 CFU/μg plasmid) compared with conventional method (up to 108 CFU/μg plasmid). In this work, for the first time, we prepared chitosan/pDNA nanoparticles by electrospraying methods to improve transformation process. Electrospray method was used for chitosan/pDNA nanoparticles production to investigate the non-competent bacterial transformation efficiency; besides, the effect of chitosan molecular weight, N/P ratio and nanoparticle size on non-competent bacterial transformation efficiency was evaluated too. The results showed that transformation efficiency increased with decreasing the molecular weight, N/P ratio and nanoparticles size. In addition, transformation efficiency of 1.7 × 108 CFU/μg plasmid was obtained with chitosan molecular weight, N/P ratio and nanoparticles size values of 30 kDa, 1 and 125 nm. Chitosan/pDNA electrosprayed nanoparticles were produced and the effect of molecular weight, N/P and size of nanoparticles on transformation efficiency was evaluated. In total, we present a facile and rapid method for bacterial transformation, which has comparable efficiency with the common method.

  8. Preparation of arginine modified PEI-conjugated chitosan copolymer for DNA delivery.

    PubMed

    Zhang, Xi; Duan, Yajing; Wang, Dongfang; Bian, Fengling

    2015-05-20

    Polyethylenimine-conjugated chitosan (CS-PEI) and arginine modified polyethylenimine-conjugated chitosan (CS-PEI-Arg) were prepared, and the copolymers were characterized by FTIR, (1)H NMR, and XRD. The properties of these copolymers like plasmid DNA (pDNA) binding capacity, complexes' size and zeta potential, cytotoxicity and transfection efficiency were also evaluated. The results show that CS-PEI-Arg derivatives can bind pDNA thoroughly, and form complexes with sizes about 170 nm. Cytotoxicity assay in HepG2 and 293T cells show that CS-PEI-Arg has lower cytotoxicity compared with CS-PEI, which is similar to CS and far below that of PEI. In vitro luciferase assay show that CS-PEI-Arg has better transfection efficiency than CS-PEI, which is superior to that of PEI. The best transfection efficiency of CS-PEI-Arg (N/P = 50) is 2.3-fold, 4.2-fold of those of CS-PEI (N/P = 20) and PEI's (N/P = 10) efficiency respectively. These results display that CS-PEI-Arg is a promising candidate as an efficient gene vector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Naziri, Muhammad Ihsan; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid

    2014-02-01

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%-5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  10. Pyridine radical cation and its fluorine substituted derivatives

    USGS Publications Warehouse

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  11. Nitrate decontamination through functionalized chitosan in brackish water.

    PubMed

    Appunni, Sowmya; Rajesh, Mathur P; Prabhakar, Sivaraman

    2016-08-20

    N, N, N-Triethyl ammonium functionalized cross-linked chitosan beads (TEACCB) was prepared by alkylation of glutaraldehyde cross-linked chitosan beads to remove nitrate from brackish water. Physico-chemical characteristics of TEACCB were analyzed using FTIR, SEM, EDAX, TGA, DTA, BET surface area, swelling ratio and pHzpc. The maximum nitrate removal capacity of TEACCB was 2.26meq/g and is higher than other reported chitosan based adsorbents. Nitrate removal ratio in the presence and absence of common anions like chloride and sulphate demonstrated the selectively of TEACCB towards nitrate. The kinetic data of nitrate removal fitted well with the pseudo-second-order kinetic model. The thermodynamic parameters indicated that nitrate removal could be spontaneous and exothermic in nature. TEACCB was reused with 100% efficiency after regenerating with 0.05N HCl. Column study was carried out to remove nitrate from brackish water. These results are very significant to develop TEACCB based nitrate removal technology with great efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Design, synthesis, fabrication and in vitro evalution of mucoadhesive 5-amino-2-mercaptobenzimidazole chitosan as low water soluble drug carriers.

    PubMed

    Kongsong, Mullika; Songsurang, Kultida; Sangvanich, Polkit; Siralertmukul, Krisana; Muangsin, Nongnuj

    2014-11-01

    Mucoadhesive thiolated chitosan suitable as a carrier for low water soluble drugs was designed and synthesized by conjugating 5-amino-2-mercaptobenzimidazole (MBI) using methylacrylate (MA) as the linking agent. A 14.4% degree of substitution of MA, as determined by (1)H NMR analysis, and 11.86±0.01μmol thiol groups/g of polymer, as determined by Ellman's method, was obtained. The MBI-MA-chitosan had an 11-fold stronger mucoadhesive property compared to unmodified chitosan at pH 1.2, as determined by the periodic acid: Schiff colorimetric method. Chitosan, MA-chitosan and MBI-MA-chitosan were fabricated as well-formed microspheres using electrospray ionization, including an entrapment efficiency of simvastatin (SV) of over 80% for the MBI-MA-chitosan. The mucoadhesiveness of the SV-loaded MBI-MA-CS microspheres was still higher than that for SV-loaded chitosan at pH 1.2 and 6.4. The SV-loaded MBI-MA-CS microspheres revealed a reduced burst effect and an increased release rate (more than fivefold higher than pure SV) of SV over 12h. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthesis and evaluation of dual antiplatelet activity of bispidine derivatives of N-substituted pyroglutamic acids.

    PubMed

    Misra, Ankita; Anil Kumar, K S; Jain, Manish; Bajaj, Kirti; Shandilya, Shyamali; Srivastava, Smriti; Shukla, Pankaj; Barthwal, Manoj K; Dikshit, Madhu; Dikshit, Dinesh K

    2016-03-03

    N-aralkylpyroglutamides of substituted bispidine were prepared and evaluated for their ability to inhibit collagen induced platelet aggregation, both in vivo and in vitro. Some compounds showed high anti-platelet efficacy (in vitro) of which six inhibited both collagen as well as U46619 induced platelet aggregation with concentration dependent anti-platelet efficacy through dual mechanism. In particular, the compound 4j offered significant protection against collagen epinephrine induced pulmonary thromboembolism as well as ferric chloride induced arterial thrombosis, without affecting bleeding tendency in mice. Therefore, the present study suggests that the compound 4j displays a remarkable antithrombotic efficacy much better than aspirin and clopidogrel. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Trifluoromethyl-substituted polymers

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Current work sponsored by the grant at Southwest Texas State University is directed toward the synthesis and characterization of: (1) N-alkylated polyamides derived from o-fluorinated diacids; (2) highly fluorinated polyethers; (3) polyesters derived from 2-hydroxy-2-propyl substituted arenes and/or 2,5-difluoroterephthalic acid; and (4) silicon-containing fluoropolymers. Work during the period from 1 July to 31 Dec. 1993 focused primarily on items 3 and 4 and on the development of a phosphorus containing modification of '12F-PEK.'

  15. Chitosan-based nanocoatings for hypothermic storage of living cells.

    PubMed

    Bulwan, Maria; Antosiak-Iwańska, Magdalena; Godlewska, Ewa; Granicka, Ludomira; Zapotoczny, Szczepan; Nowakowska, Maria

    2013-11-01

    The formation of ultrathin chitosan-based nanocoating on HL-60 model cells and their protective function in hypothermic storage are presented. HL-60 cells are encapsulated in ultrathin shells by adsorbing cationic and anionic chitosan derivatives in a stepwise, layer-by-layer, procedure carried out in an aqueous medium under mild conditions. The chitosan-based films are also deposited on model lipid bilayer and the interactions are studied using ellipsometry and atomic force microscopy. The cells covered with the chitosan-based films and stored at 4 °C for 24 h express viability comparable to that of the control sample incubated at 37 °C, while the unprotected cells stored under the same conditions do not show viability. It is shown that the chitosan-based shell protects HL-60 cells against damaging effect of hypothermic storage. Such nanocoatings provide protection, mechanical stability, and support the cell membrane, while ensuring penetration of small molecules such as nutrients/gases what is essential for cell viability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery.

    PubMed

    Lee, Dongwon; Zhang, Weidong; Shirley, Shawna A; Kong, Xiaoyuan; Hellermann, Gary R; Lockey, Richard F; Mohapatra, Shyam S

    2007-01-01

    Thiolated chitosan appears to possess enhanced mucoadhesiveness and cell penetration properties, however, its potential in gene-drug delivery remains unknown. Herein, we report on a highly effective gene delivery system utilizing a 33-kDa thiol-modified chitosan derivative. Thiolated chitosan was prepared by the reaction with thioglycolic acid. Nanocomplexes of unmodified chitosan or thiolated chitosan with plasmid DNA encoding green fluorescenct protein (GFP) were characterized for their size, zeta potential, their ability to bind and protect plasmid DNA from degradation. The transfection efficiency of thiolated chitosan and sustained gene expression were evaluated in various cell lines in vitro and in Balb/c mice in vivo. Thiolated chitosan-DNA nanocomplexes ranged in size from 75 to 120 nm in diameter and from +2.3 to 19.7 mV in zeta potential, depending on the weight ratio of chitosan to DNA. Thiolated chitosan, CSH360, exhibited effective physical stability and protection against DNase I digestion at a weight ratio>or=2.5:1. CSH360/DNA nanocomplexes induced significantly (P<0.01) higher GFP expression in HEK293, MDCK and Hep-2 cell lines than unmodified chitosan. Nanocomplexes of disulphide-crosslinked CSH360/DNA showed a sustained DNA release and continuous expression in cultured cells lasting up to 60 h post transfection. Also, intranasal administration of crosslinked CSH360/DNA nanocomplexes to mice yielded gene expression that lasted for at least 14 days. Thiolated chitosans condense pDNA to form nanocomplexes, which exhibit a significantly higher gene transfer potential and sustained gene expression upon crosslinking, indicating their great potential for gene therapy and tissue engineering.

  17. Robotic laser tissue welding of sclera using chitosan films.

    PubMed

    Garcia, Pablo; Mines, Michael J; Bower, Kraig S; Hill, J; Menon, J; Tremblay, Eric; Smith, Benjamin

    2009-01-01

    To demonstrate the feasibility of scleral wound closure using a novel adhesive made of chitosan film. Five-millimeter scleral lacerations were created in enucleated pig eyes. Casted chitosan films were sized to 7x7 mm patches. Lacerations were sealed with chitosan film alone (7 eyes) or chitosan film followed by laser irradiation using a near infrared laser (1,455 nm) at 350 mW for 6 minutes (7 eyes). Seven eyes were closed with 9-0 nylon suture for comparison (7 eyes). Outcome measures included watertight closure, closure time, and leak pressure. Leak pressure was measured with a pressure transducer attached to tubing continuously monitored intraocular pressure during saline infusion. Watertight closure testing was performed immediately following closure (n = 3 per group) and after 24 hours (n = 3 per group). One eye in each group was fixed in formalin for histology. All wounds were watertight for each closure method. Mean closure time with unlasered chitosan film was 2.24 minutes (range 1.80-3.26, 7 eyes) with a mean leak pressure of 303 mm Hg (range 217-364, 3 eyes). Mean closure time with lasered chitosan was 12.47 minutes (range 11.45-14.15, 7 eyes) with a mean leak pressure of 454.7 mm Hg (range 152-721, 3 eyes). Suture closure required a mean of 4.83 minutes (range 4.03-7.30, 7 eyes) and resulted in a mean leak pressure of 570.3 mm Hg (range 460-646, 3 eyes). Both lasered and unlasered chitosan eyes remained watertight after 24 hours. Histology revealed minimal laser tissue damage in lasered eyes. In this preliminary study chitosan film successfully closed scleral lacerations with and without the application of laser energy. While laser appears to strengthen the closure, it significantly increases the closure time. Chitosan based adhesives hold promise as a scleral wound closure technique.

  18. Chitosan-containing bread made using marine shellfishery byproducts: functional, bioactive, and quality assessment of the end product.

    PubMed

    Lafarga, Tomas; Gallagher, Eimear; Walsh, Des; Valverde, Juan; Hayes, Maria

    2013-09-18

    Chitosan is nature's second most abundant polymer after cellulose and forms the structural support in crustacean shell material and Basidomycete mushroom stalks. Chitosan is a known antimicrobial agent but, to date, was not examined as an antimicrobial agent in bread formulations for the prevention of mold or rope formation. The aim of this work was to investigate the effects of chitosan generated from prawn shell byproducts on the color, moisture, and texture and crumb formation of bread. A secondary aim of this work was to determine the antimicrobial effect of chitosan added to bread at a rate of 1% against the rope spoilage pathogen Bacillus cereus along with natural molds. The addition of chitosan to bread with a molecular mass of 124000 ± 10000 g/mol and 19% deacetylated was found to inhibit B. cereus growth and rope formation in bread when monitored over 3-5 days. Natural mold growth was also significantly delayed in bread made using chitosan substitution of flour at 1% compared to the control bread, where mold was observed growing on the bread surface after 72 h when bread was incubated at 30 °C.

  19. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    PubMed Central

    Mohammed, Munawar A.; Syeda, Jaweria T. M.; Wasan, Kishor M.; Wasan, Ellen K.

    2017-01-01

    The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies. PMID:29156634

  20. Chitosan-assisted differentiation of porcine adipose tissue-derived stem cells into glucose-responsive insulin-secreting clusters

    PubMed Central

    Lin, Yuan-Yu; Chen, Yu-Jen; Liu, Bing-Hsien; Wong, Shiu-Chung; Wu, Cheng-Yu; Chang, Yun-Tsui; Chou, Han-Yi E.

    2017-01-01

    The unique advantage of easy access and abundance make the adipose-derived stem cells (ADSCs) a promising system of multipotent cells for transplantation and regenerative medicine. Among the available sources, porcine ADSCs (pADSCs) deserve especial attention due to the close resemblance of human and porcine physiology, as well as for the upcoming availability of humanized porcine models. Here, we report on the isolation and conversion of pADSCs into glucose-responsive insulin-secreting cells. We used the stromal-vascular fraction of the dorsal subcutaneous adipose from 9-day-old male piglets to isolate pADSCs, and subjected the cells to an induction scheme for differentiation on chitosan-coated plates. This one-step procedure promoted differentiation of pADSCs into pancreatic islet-like clusters (PILC) that are characterized by the expression of a repertoire of pancreatic proteins, including pancreatic and duodenal homeobox (Pdx-1), insulin gene enhancer protein (ISL-1) and insulin. Upon glucose challenge, these PILC secreted high amounts of insulin in a dose-dependent manner. Our data also suggest that chitosan plays roles not only to enhance the differentiation potential of pADSCs, but also to increase the glucose responsiveness of PILCs. Our novel approach is, therefore, of great potential for transplantation-based amelioration of type 1 diabetes. PMID:28253305

  1. A facile physical approach to make chitosan soluble in acid-free water.

    PubMed

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  3. Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donlon, B.A.; Razo-Flores, E.; Field, J.A.

    1995-11-01

    N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less

  4. Recent Development of Chitosan Nanocomposites for Environmental Applications.

    PubMed

    Khan, Shahid Ali; Khan, Sher Bahadar; Kamal, Tahseen; Asiri, Abdullah M; Akhtar, Kalsoom

    2016-01-01

    Potable, clean and safe water is the basic need for all human beings. Major portion of the earth is occupied by water, however, this is contaminated by rapid industrialization, improper sewage and natural calamities and man-made activates, which produce several water-borne and fetal diseases. In this review we presented some recent patent for environmental remediation. Various technologies have been developed for the treatment of waste water consist of chemical, membrane, filtration, sedimentation, chlorination, disinfection, electrodialysis, electrolysis, reverse osmosis and adsorption. Among these entire phenomenon's, adsorption was the most efficient method for wastewater treatment, because it is a quick and cheap technology which signifies extensive practical applications. Adsorption phenomenon has been tactfully used for the removal of biological waste as well as soluble and insoluble material with a removal efficacy of 90-99%. Clean water supply is limited to human beings. The people in the developing countries have less or no access to the clean and potable water. The shortage of potable water resources and long term safe water deficiencies are some of the leading problems worldwide. In this review, we have explained in the detail adsorption phenomena of chitosan, pharmaceutical importance and other applications. It is worth to say that adsorption technologies using chitosan and its derivative is one of the quickest and cost effective methods for the wastewater treatment. The review comprises of ninety eight references. This review also covers various patents vis-a-vis the role of chitosan-nanocomposite in environmental application for wastewater treatment. Chitosan is a pseudo-neutral cationic polymer which is formed by the de-acetylation of chitin polymer. Various patent on chitosan and chitosan-nanocomposite were taken into account related to wastewater purification. We have found that chitosan and chitosan-nanocomposite are used for the removal of

  5. A water-soluble, mucoadhesive quaternary ammonium chitosan-methyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone.

    PubMed

    Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia

    2018-03-30

    The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.

  6. SYNTHESIS AND EVALUATION OF NEW PHTHALAZINE SUBSTITUTED β-LACTAM DERIVATIVES AS CARBONIC ANHYDRASE INHIBITORS.

    PubMed

    Berber, Nurcan; Arslan, Mustafa; Bilen, Çiğdem; Sackes, Zübeyde; Gençer, Nahit; Arslan, Oktay

    2015-01-01

    A new series of phthalazine substituted β-lactam derivatives were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase (hCA I and II) were evaluated. 2H-Indazolo[2,1-b]phthala- zine-trione derivative was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and the nitro group was reduced to 13-(4-aminophenyl)-3,3-dimethyl-3,4-dihydro- 2H-indazolo[1,2-b]phthalazine-1,6,11(13H)-trione with SnCl2 · 2H2O. The reduced compound was re- acted with different aromatic aldehydes, and phthalazine substituted imines were synthesized. The imine compounds undergo (2+2) cycloaddition reactions with ketenes to produce 2H-indazolo[2,1-b]phthala-zine-trione substituted β-lactam derivatives. The β-lactam compounds were tested as inhibitors of the CA isoenzyme activity. The results showed that all the synthesized compounds inhibited the CA isoenzyme activity. 1-(4-(3,3-dimethyl- 1,6,1 1-trioxo-2,3,4,6,11,13-hexahydro-1H-indazolo[1,2-b]phthalazin-13- yl)phenyl)-2-oxo-4-p-tolylazetidin-3-yl acetate (IC50 = 6.97 µM for hCA I and 8.48 µM for hCA II) had the most inhibitory effect.

  7. Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing

    NASA Astrophysics Data System (ADS)

    Davarpanah, Saideh; Mahmoodi, Niyaz Mohammad; Arami, Mokhtar; Bahrami, Hajir; Mazaheri, Firoozmehr

    2009-01-01

    In this paper, the surface modification of silk fiber using anhydrides to graft the polysaccharide chitosan and dyeing ability of the grafted silk were studied. Silk fiber was degummed and acylated with two anhydrides, succinic anhydride (SA) and phthalic anhydride (PA), in different solvents (dimethyl sulfoxide (DMSO) and N, N-dimethyl formamide (DMF)). The effects of anhydrides, solvents, anhydride concentration, liquor ratio (L:R) and reaction time on acylation of silk were studied. The polysaccharide chitosan was grafted to the acylated silk fiber and dyed by acid dye (Acid Black NB.B). The effects of pH, chitosan concentration, and reaction time on chitosan grafting of acylated silk were investigated. The physical properties show sensible changes regardless of weight gain. Scanning electron microscopy (SEM) analysis showed the presence of foreign materials firmly attached to the surface of silk. FTIR spectroscopy provided evidence that chitosan was grafted onto the acylated silk through the formation of new covalent bonds. The dyeing of the chitosan grafted-acylated silk fiber indicated the higher dye ability in comparison to the acylated and degummed silk samples. The mechanism of chitosan grafting over degummed silk through anhydride linkage was proposed. The findings of this research support the potential production of new environmentally friendly textile fibers. It is worthwhile to mention that the grafted samples have antibacterial potential due to the antibacterial property of chitosan molecules.

  8. Synthesis, biological evaluation, and structure-activity relationships of novel substituted N-phenyl ureidobenzenesulfonate derivatives blocking cell cycle progression in S-phase and inducing DNA double-strand breaks.

    PubMed

    Turcotte, Vanessa; Fortin, Sébastien; Vevey, Florence; Coulombe, Yan; Lacroix, Jacques; Côté, Marie-France; Masson, Jean-Yves; C-Gaudreault, René

    2012-07-12

    Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents.

  9. New assignment of 14N NQR spectral lines for tetrazoles derivatives

    NASA Astrophysics Data System (ADS)

    Mamadazizov, Sultonazar; Shelyapina, Marina G.; Kupriyanova, Galina S.; Mozzhukhin, George V.

    2018-04-01

    In recent years, considerable interest has been shown in the study of tetrazole derivatives, which attract attention as highly nitrogenous compounds for use as an isosteric substitutes for various functional groups that leads to creation of novel biologically active substances. NQR techniques, being sensitive to the local environment of 14N nuclei, provide great opportunities to study these new substances. To make investigation of complex compounds containing tetrazoles derivatives easier and more reliable a correctly assigned 14N NQR spectra of tetrazoles are required. Here we report on the results of our DFT B3LYP calculations of 14N NQR spectral parameters (quadrupole coupling constant Qcc and the asymmetry parameter of the electric field gradient η) for tetrazole, 5-aminotetrazole and 5-aminotetrazole monohydrate. It has been found that the commonly accepted assignment of the 14N NQR spectral lines for these molecules is incorrect. A new assignment for these molecules is proposed.

  10. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers.

    PubMed

    Philibert, Tuyishime; Lee, Byong H; Fabien, Nsanzabera

    2017-04-01

    The natural biopolymer chitin and its deacetylated product chitosan are found abundantly in nature as structural building blocks and are used in all sectors of human activities like materials science, nutrition, health care, and energy. Far from being fully recognized, these polymers are able to open opportunities for completely novel applications due to their exceptional properties which an economic value is intrinsically entrapped. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal and insect sources. Significant efforts have been devoted to commercialize chitosan extracted from fungal and insect sources to completely replace crustacean-derived chitosan. However, the traditional chitin extraction processes are laden with many disadvantages. The present review discusses the potential bioextraction of chitosan from fungal, insect, and crustacean as well as its superior physico-chemical properties. The different aspects of fungal, insects, and crustacean chitosan extraction methods and various parameters having an effect on the yield of chitin and chitosan are discussed in detail. In addition, this review also deals with essential attributes of chitosan for high value-added applications in different fields and highlighted new perspectives on the production of chitin and deacetylated chitosan from different sources with the concomitant reduction of the environmental impact.

  11. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids.

    PubMed

    Huang, Yen-Jang; Hsu, Shan-Hui

    2014-12-01

    Cancer drug development has to go through rigorous testing and evaluation processes during pre-clinical in vitro studies. However, the conventional two-dimensional (2D) in vitro culture is often discounted by the insufficiency to present a more typical tumor microenvironment. The multicellular tumor spheroids have been a valuable model to provide more comprehensive assessment of tumor in response to therapeutic strategies. Here, we applied chitosan-hyaluronan (HA) membranes as a platform to promote three-dimensional (3D) tumor spheroid formation. The biological features of tumor spheroids of human non-small cell lung cancer (NSCLC) cells on chitosan-HA membranes were compared to those of 2D cultured cells in vitro. The cells in tumor spheroids cultured on chitosan-HA membranes showed higher levels of stem-like properties and epithelial-mesenchymal transition (EMT) markers, such as NANOG, SOX2, CD44, CD133, N-cadherin, and vimentin, than 2D cultured cells. Moreover, they exhibited enhanced invasive activities and multidrug resistance by the upregulation of MMP2, MMP9, BCRC5, BCL2, MDR1, and ABCG2 as compared with 2D cultured cells. The grafting densities of HA affected the tumor sphere size and mRNA levels of genes on the substrates. These evidences suggest that chitosan-HA membranes may offer a simple and valuable biomaterial platform for rapid generation of tumor spheroids in vitro as well as for further applications in cancer stem cell research and cancer drug screening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Chitosan based edible films and coatings: a review.

    PubMed

    Elsabee, Maher Z; Abdou, Entsar S

    2013-05-01

    Chitosan is a biodegradable biocompatible polymer derived from natural renewable resources with numerous applications in various fields, and one of which is the area of edible films and coatings. Chitosan has antibacterial and antifungal properties which qualify it for food protection, however, its weak mechanical properties, gas and water vapor permeability limit its uses. This review discusses the application of chitosan and its blends with other natural polymers such as starch and other ingredients for example essential oils, and clay in the field of edible films for food protection. The mechanical behavior and the gas and water vapor permeability of the films are also discussed. References dealing with the antimicrobial behavior of these films and their impact on food protection are explored. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration.

    PubMed

    Wang, Wei; Itoh, Soichiro; Konno, Katsumi; Kikkawa, Takeshi; Ichinose, Shizuko; Sakai, Katsuyoshi; Ohkuma, Tsuneo; Watabe, Kazuhiko

    2009-12-15

    We have constructed a chitosan nonwoven nanofiber mesh tube consisting of oriented fibers by the electrospinning method. The efficacy of oriented nanofibers on Schwann cell alignment and positive effect of this tube on peripheral nerve regeneration were confirmed. The physical properties of the chitosan nanofiber mesh sheets prepared by electrospinning with or without fiber orientation were characterized. Then, immortalized Schwann cells were cultured on these sheets. Furthermore, the chitosan nanofiber mesh tubes with or without orientation, and bilayered chitosan mesh tube with an inner layer of oriented nanofibers and an outer layer of randomized nanofibers were bridgegrafted into rat sciatic nerve defect. As a result of fiber orientation, the tensile strength along the axis of the sheet increased. Because Schwann cells aligned along the nanofibers, oriented fibrous sheets could exhibit a Schwann cell column. Functional recovery and electrophysiological recovery occurred in time in the oriented group as well as in the bilayered group, and approximately matched those in the isograft. Furthermore, histological analysis revealed that the sprouting of myelinated axons occurred vigorously followed by axonal maturation in the isograft, oriented, and bilayered group in the order. The oriented chitosan nanofiber mesh tube may be a promising substitute for autogenous nerve graft.

  14. Injectable In Situ Forming Biodegradable Chitosan-Hyaluronic acid Based Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Tan, Huaping; Chu, Constance R.; Payne, Karin; Marra, Kacey G.

    2009-01-01

    Injectable, biodegradable scaffolds are important biomaterials for tissue engineering and drug delivery. Hydrogels derived from natural polysaccharides are ideal scaffolds as they resemble the extracellular matrices of tissues comprised of various glycosaminoglycans (GAG). Here, we report a new class of biocompatible and biodegradable composite hydrogels derived from water-soluble chitosan and oxidized hyaluronic acid upon mixing, without the addition of a chemical crosslinking agent. The gelation is attributed to the Schiff-base reaction between amino and aldehyde groups of polysaccharide derivatives. In the current work, N-succinyl-chitosan (S-CS) and aldehyde hyaluronic acid (A-HA) were synthesized for preparation of the composite hydrogels. The polysaccharide derivatives and composite hydrogels were characterized by FTIR spectroscopy. The effect of the ratio of S-CS and A-HA on the gelation time, microstructure, surface morphology, equilibrium swelling, compressive modulus, and in vitro degradation of composite hydrogels was examined. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes within the composite hydrogel matrix in vitro. The results demonstrated that the composite hydrogel supported cell survival and the cells retained chondrocytic morphology. These characteristics provide a potential opportunity to use the injectable, composite hydrogels in tissue engineering applications. PMID:19167750

  15. In vivo application of chitosan to improve bioavailability of cyanocobalamin, a form of vitamin B12, following intraintestinal administration in rats.

    PubMed

    Goto, Yuko; Masuda, Ayumi; Aiba, Tetsuya

    2015-04-10

    The effect of chitosan on the intestinal absorption of cyanocobalamin (VB12), a stable form of vitamin B12, was investigated in vivo in rats, with the aim of improving the oral bioavailability of VB12 for anemia treatment in patients with gastrectomy. The bioavailability was evaluated based on the plasma concentration profile of VB12 following intraintestinal administration of the VB12 solution containing chitosan at various concentrations. The bioavailability of VB12 was 0.6±0.2% when the chitosan-free VB12 solution was administered, while it increased to 10.5±3.3% when chitosan was dissolved in the VB12 solution at a concentration of 1%. The bioavailability of VB12 increases with the chitosan concentration, in which chitosan seems to augment the amount of VB12 absorbed without affecting the absorption rate constant of VB12. It was also shown that the bioavailability of VB12 does not increase further when the degree of chitosan deacetylation is increased from 83 to 100% by substitutively employing the fully deacetylated chitosan. These findings suggest that the oral administration of VB12 with readily available chitosan may be a practical approach for anemia treatment in patients with gastrectomy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering.

    PubMed

    Mellati, Amir; Kiamahalleh, Meisam Valizadeh; Madani, S Hadi; Dai, Sheng; Bi, Jingxiu; Jin, Bo; Zhang, Hu

    2016-11-01

    Providing a controllable and definable three-dimensional (3D) microenvironment for chondrogenic differentiation of mesenchymal stem cells (MSCs) remains a great challenge for cartilage tissue engineering. In this work, poly(N-isopropylacrylamide) (PNIPAAm) polymers with the degrees of polymerization of 100 and 400 (NI100 and NI400) were prepared and the polymer solutions were introduced into the preprepared chitosan porous scaffolds (CS) to form hybrids (CSNI100 and CSNI400, respectively). SEM images indicated that the PNIPAAm gel partially occupied chitosan pores while the interconnected porous structure of chitosan was preserved. MSCs were incorporated within the hybrid and cell proliferation and chondrogenic differentiation were monitored. After 7-day incubation of the cell-laden constructs in a growth medium, the cell viability in CSNI100 and CSNI400 were 54 and 108% higher than that in CS alone, respectively. Glycosaminoglycan and total collagen contents increased 2.6- and 2.5-fold after 28-day culture of cell-laden CSNI400 in the chondrogenic medium. These results suggest that the hybrid structure composed of the chitosan porous scaffold and the well-defined PNIPAAm hydrogel, in particular CSNI400, is suitable for 3D stem cell culture and cartilage tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2764-2774, 2016. © 2016 Wiley Periodicals, Inc.

  17. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells

    PubMed Central

    Zhou, Yanfang; Li, Jiemei; Lu, Fang; Deng, Junjie; Zhang, Jiahua; Fang, Peijie; Peng, Xinsheng; Zhou, Shu-Feng

    2015-01-01

    Dendrimers are hyperbranched macromolecules with well-defined topological structures and multivalent functionalization sites, but they may cause cytotoxicity due to the presence of cationic charge. Recently, we have introduced alkyne-terminated poly(amidoamine) (PAMAM) dendrons of different generations (G=2,3) into chitosan to obtain dendronized chitosan derivatives [Cs-g-PAMAM (G=2,3)], which exhibited a better water solubility and enhanced plasmid DNA transfection efficiency. In this study, we attempted to examine the impact of Cs-g-PAMAM (G=2,3) at different concentrations (25 μg/mL, 50 μg/mL, and 100 μg/mL) on the morphology, surface structure, and viability of rat red blood cells (RBCs). The results showed that treatment of RBCs with Cs-g-PAMAM (G=2,3) at 50 μg/mL and 100 μg/mL induced a slightly higher hemolysis than Cs, and Cs-g-PAMAM (G=3) caused a slightly higher hemolysis than Cs-g-PAMAM (G=2), but all values were <5.0%. Optical microscopic and atomic force microscopic examinations indicated that Cs-g-PAMAM (G=2,3) caused slight RBC aggregation and lysis. Treatment of RBCs with 100 μg/mL Cs-g-PAMAM (G=3) induced echinocytic transformation, and RBCs displayed characteristic irregular contour due to the folding of the periphery. Drephanocyte-like RBCs were observed when treated with 100 μg/mL Cs-g-PAMAM (G=3). Erythrocytes underwent similar shape transition upon treatment with Cs-g-PAMAM (G=2) or Cs. The roughness values (Rms) of RBCs incubated with Cs-g-PAMAM (G=2,3) were significantly larger than those for RBCs incubated with physiological saline (P<0.01), but the Rms showed no difference for Cs and Cs-g-PAMAM (G=2,3) (P>0.05). Furthermore, Cs-g-PAMAM (G=2,3) exhibited a lower cytotoxicity in human kidney 293T cells. These results indicate that Cs-g-PAMAM (G=2,3) are hemocompatible but may disturb membrane and lipid structures at higher concentrations. Further safety and biocompatibility evaluations are warranted for Cs-g-PAMAM. Our findings prove

  18. Functional modification of chitosan for biomedical application

    NASA Astrophysics Data System (ADS)

    Tang, Ruogu

    Chitosan is a linear polysaccharide. Normally commercial chitosan consists of randomly distributed beta-(1-4)-linked D-glucosamine (deacetylated proportion) and N-acetyl-D-glucosamine (acetylated proportion) together. Chitosan has been proved to be a multifunctional biopolymer that presents several unique properties due to free amino groups in the repeating unit therefore chitosan has been widely applied in various areas. To be specific, provided by the excellent biocompatibility, chitosan is expected to be used in biological and medical applications including wound dressing, implants, drug carrier/delivery, etc. In this thesis, we worked on chitosan functionalization for biomedical application. The thesis are composed of three parts: In the first part, we focused on modifying the chitosan thin film, chemically introducing the nitric oxide functional groups on chitosan film. We covalently bonded small molecule diazeniumdiolates onto the chitosan films and examined the antimicrobial function and biocompatibility. Commercial chitosan was cast into films from acidic aqueous solutions. Glutaraldehyde reacted with the chitosan film to introduce aldehyde groups onto the chitosan film (GA-CS film). GA-CS reacted with a small molecule NO donor, NOC-18, to covalently immobilize NONO groups onto the polymer (NO-CS film). The-CHO and [NONO] group were verified by FT IR, UV and Griess reagent. The NO releasing rate in aqueous solution and and thermal stability were studied quantitatively to prove its effectiveness. A series of antimicrobial tests indicated that NO-CS films have multiple functions: 1. It could inhibit the bacteria growth in nutrient rich environment; 2. It could directly inactivate bacteria and biofilm; 3. It could reduce the bacteria adherence on the film surface as well as inhibit biofilm formation. In addition, the NO-CS film was proved to be biocompatible with cell and it was also compatible with other antibiotics like Amoxicillin. In the second part, we

  19. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids

    USGS Publications Warehouse

    Cortinas, I.; Field, J.A.; Kopplin, M.; Garbarino, J.R.; Gandolfi, A.J.; Sierra-Alvarez, R.

    2006-01-01

    Large quantities of arsenic are introduced into the environment through land application of poultry litter containing the organoarsenical feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid). The objective of this study was to evaluate the bioconversion of roxarsone and related N-substituted phenylarsonic acid derivatives under anaerobic conditions. The results demonstrate that roxarsone is rapidly transformed in the absence of oxygen to the corresponding aromatic amine, 4-hydroxy-3-aminophenylarsonic acid (HAPA). The formation of HAPA is attributable to the facile reduction of the nitro group. Electron-donating substrates, such as hydrogen gas, glucose, and lactate, stimulated the rate of nitro group reduction, indicating a microbial role. During long-term incubations, HAPA and the closely related 4-aminophenylarsonic acid (4-APA) were slowly biologically eliminated by up to 99% under methanogenic and sulfate-reducing conditions, whereas little or no removal occurred in heat-killed inoculum controls. Arsenite and, to a lesser extent, arsenate were observed as products of the degradation. Freely soluble forms of the inorganic arsenical species accounted for 19-28% of the amino-substituted phenylarsonic acids removed. This constitutes the first report of a biologically catalyzed rupture of the phenylarsonic group under anaerobic conditions. ?? 2006 American Chemical Society.

  20. Temperature dependence of the vapour tension of methyl-substituted phenol derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Gagarin

    2007-05-15

    Notable among the coking products of coal are phenol and its derivatives, derived for the coal tar and water layer above ht tar. Given that phenol an its derivatives are mainly extracted from coal tar fractions by rectification, information on how the vapor tension of the individual components depends on the temperature is of great importance. For phenol and various substituted alkylphenols there are tabular data. In the pre-computer era these data were sufficient for the separation of phenol mixtures. However, the development and introduction of information technology in the coal industry and in the design process demands the mathematicalmore » description of the physicochemical processes of coking products. The temperature dependence of the saturated vapor pressure for organic compounds is commonly described by the Antoine equation.« less

  1. Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi.

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annaian

    2017-06-01

    The chitin and chitosan of S. prashadi was prepared through demineralization, deproteinzation, deacetylation process and sulfation were carried by chlorosulfonic acid in N,N-dimethylformamide. The sulfate content in chitosan was found to be 18.9%. The carbon, hydrogen and nitrogen composition of the sulfated chitosan were recorded 39.09%, 6.95% and 6.58% respectively. The structural analysis was done by using FT-IR and NMR spectroscopy technique. The DSC curves of sulfated chitosan showed a large endothermic peak resolved with T o value of 54.57°C and T P value of 97.46°C. The morphology of sulfated chitin and sulfated chitosan were studied by SEM. The Further in vitro antioxidant activity of sulfated chitosan was screened by scavenging activity of superoxide radical assay, hydroxyl radical scavenging assay, metal-ion chelating effect and reducing power. Its anticoagulant activity was tested for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT). Results prove that sulfated chitosan has potent antioxidant and anticoagulant activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: Emphasis on biofilm reduction.

    PubMed

    Khezri, Azam; Karimi, Arsalan; Yazdian, Fatemeh; Jokar, Mahmoud; Mofradnia, Soheil Rezazadeh; Rashedi, Hamid; Tavakoli, Zahra

    2018-07-15

    Nanotechnology-based drug delivery systems have been used to enhance bioavailability and biological activities. Chitosan incorporating curcumin can serve as a biocompatible substitute for metallic nanoparticles in preventing biofilm formation of Streptococcus mutans and plaque on teeth. The interactions between chitosan nanoparticle as a carrier and curcumin, a natural antibacterial agent, were simulated. The binding conformation between curcumin-chitosan was obtained using the Lamarckian Genetic Algorithm in Autodock™ software in chitosan nanoparticle. The interaction stability was examined in the molecular dynamic stages, with isothermal-isobaric ensemble in the CHARMM Force Field. The results showed the root mean square deviation (RMSD) and the root mean square fluctuations (RMSF) for all complex's atoms were relaxed after 4ns (RMSD for the all-atoms was 26.81±0.1 (Å); RMSF 1.13±0.02Å). For each section, the estimation of RMSD, RMSF, radius of gyration, inter-H bond and other analysis confirmed that, during the first interval;10ns, there was a stable binding between the two sections. Although all bindings disappeared from 10 to 20ns, the curcumin was trapped inside the chitosan nanoparticles, and no release took place until 20ns, after which the curcumin began to release. This trend suggests that chitosan nanoparticle has ability to carry the curcumin. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    PubMed Central

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma José; Palma-Guerrero, Javier; Glass, N. Louise; Lopez-Llorca, Luis Vicente

    2016-01-01

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed, NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement and NCU04537 a MFS monosaccharide transporter related with assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as antifungal. PMID:26694141

  4. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads.

    PubMed

    Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid

    2016-12-01

    In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity.

    PubMed

    Coskun, Demet; Erkisa, Merve; Ulukaya, Engin; Coskun, Mehmet Fatih; Ari, Ferda

    2017-08-18

    Cancer treatment still requires new compounds to be discovered. Chalcone and its derivatives exhibit anticancer potential in different cancer cells. A new series of benzofuran substituted chalcone derivatives was synthesized by the base-catalyzed Claisen-Schmidt reaction of the 1-(7-ethoxy-1-benzofuran-2-yl) ethanone with different aromatic aldehydes to yield 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives 3a-j. The derivatives were characterized by elemental analysis, FT-IR, 1 H NMR and 13 C NMR spectroscopy techniques. The anti-growth effect of chalcone compounds was tested in breast cancer (MCF-7), non-small cell lung cancer (A549) and prostate cancer (PC-3) cell lines by the SRB and ATP cell viability assays. Apoptosis was detected by mitochondrial membrane potential, Annexin V staining and caspase 3/7 activity. Formation of reactive oxygen species was determined by DCFDA. The results revealed that chalcone derivatives have anticancer activity with especially chalcone derivative 3a showing cytotoxic effects on cancer cells. In addition, chalcone derivative 3a induced apoptosis through caspase dependent pathways in prostate, lung and breast cancer cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Effect of five-membered ring and heteroatom substitution on charge transport properties of perylene discotic derivatives: A theoretical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, Amparo, E-mail: anavarro@ujaen.es; Fernández-Liencres, M. Paz; Peña-Ruiz, Tomás

    2016-08-07

    Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier comparedmore » to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.« less

  7. Effect of five-membered ring and heteroatom substitution on charge transport properties of perylene discotic derivatives: A theoretical approach.

    PubMed

    Navarro, Amparo; Fernández-Liencres, M Paz; Peña-Ruiz, Tomás; García, Gregorio; Granadino-Roldán, José M; Fernández-Gómez, Manuel

    2016-08-07

    Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier compared to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.

  8. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles.

    PubMed

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Palmieri, Giovanni Filippo; Ponchel, Gilles

    2007-04-01

    The study is focused on the evaluation of the potential bioadhesive behaviour of chitosan and thiolated chitosan (chitosan-TBA)-coated poly(isobutyl cyanoacrylates) (PIBCA) nanoparticles. Nanoparticles were obtained by radical emulsion polymerisation with chitosan of different molecular weight and with different proportions of chitosan/chitosan-TBA. Mucoadhesion was ex vivo evaluated under static conditions by applying nanoparticle suspensions on rat intestinal mucosal surfaces and evaluating the amount of nanoparticles remaining attached to the mucosa after incubation. The analysis of the results obtained demonstrated that the presence of either chitosan or thiolated chitosan on the PIBCA nanoparticle surface clearly enhanced the mucoadhesion behaviour thanks to non-covalent interactions (ionic interaction and hydrogen bonds) with mucus chains. Both, the molecular weight of chitosan and the proportion of chitosan-TBA in the formulation influenced the nanoparticle hydrodynamic diameter and hence their transport through the mucus layer. Improved interpenetration ability with the mucus chain during the attachment process was suggested for the chitosan of high molecular weight, enhancing the bioadhesiveness of the system. The presence of thiol groups on the nanoparticle surface at high concentration (200 x 10(-6) micromol SH/cm2) increased the mucoadhesion capacity of nanoparticles by forming covalent bonds with the cysteine residues of the mucus glycoproteins.

  9. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin.

    PubMed

    Li, Si-Dong; Li, Pu-Wang; Yang, Zi-Ming; Peng, Zheng; Quan, Wei-Yan; Yang, Xi-Hong; Yang, Lei; Dong, Jing-Jing

    2014-11-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is hydro-soluble chitosan (CS) derivative, which can be obtained by the reaction between epoxypropyl trimethyl ammonium chloride (ETA) and CS. The preparation parameters for the synthesis of HTCC were optimized by orthogonal experimental design. ETA was successfully grafted into the free amino group of CS. Grafting of ETA with CS had great effect on the crystal structure of HTCC, which was confirmed by the XRD results. HTCC displayed higher capability to form nanoparticles by crosslinking with negatively charged sodium tripolyphosphate (TPP). Ribavrin- (RIV-) loaded HTCC nanoparticles were positively charged and were spherical in shape with average particle size of 200 nm. More efficient drug encapsulation efficiency and loading capacity were obtained for HTCC in comparison with CS, however, HTCC nanoparticles displayed faster release rate due to its hydro-soluble properties. The results suggest that HTCC is a promising CS derivative for the encapsulation of hydrophilic drugs in obtaining sustained release of drugs.

  10. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.

    PubMed

    Li, Pu-Wang; Wang, Guang; Yang, Zi-Ming; Duan, Wei; Peng, Zheng; Kong, Ling-Xue; Wang, Qing-Huang

    2016-01-01

    Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250 nm in diameter with smooth surface and were negatively charged with a zeta potential of - 17.4 mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs.

  11. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    PubMed

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain.

  12. Synthesis, Biological Evaluation, and Structure–Activity Relationships of Novel Substituted N-Phenyl Ureidobenzenesulfonate Derivatives Blocking Cell Cycle Progression in S-Phase and Inducing DNA Double-Strand Breaks

    PubMed Central

    2012-01-01

    Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents. PMID:22694057

  13. Chitosan

    PubMed Central

    Smith, Alan; Perelman, Michael; Hinchcliffe, Michael

    2014-01-01

    The nasal route is attractive for the delivery of vaccines in that it not only offers an easy to use, non-invasive, needle-free alternative to more conventional parenteral injection, but it also creates an opportunity to elicit both systemic and (crucially) mucosal immune responses which may increase the capability of controlling pathogens at the site of entry. Immune responses to “naked” antigens are often modest and it is widely accepted that incorporation of an adjuvant is a prerequisite for the achievement of clinically effective nasal vaccines. Many existing adjuvants are sub-optimal or unsuitable because of local toxicity or poor enhancement of immunogenicity. Chitosan, particularly chitosan salts, have now been used in several preclinical and clinical studies with good tolerability, excellent immune stimulation and positive clinical results across a number of infections. Particularly significant evidence supporting chitosan as an adjuvant for nasal vaccination comes from clinical investigations on a norovirus vaccine; this demonstrated the ability of chitosan (ChiSys®), when combined with monophosphoryl lipid, to evoke robust immunological responses and confer protective immunity following (enteral) norovirus challenge. This article summarizes the totality of the meaningful information (including key unpublished data) supporting the development of chitosan-adjuvanted vaccines. PMID:24346613

  14. Synthesis and serotonergic activity of variously substituted (3-amido)phenylpiperazine derivatives and benzothiophene-4-piperazine derivatives: novel antagonists for the vascular 5-HT1B receptor.

    PubMed

    Moloney, Gerard P; Garavelas, Agatha; Martin, Graeme R; Maxwell, Miles; Glen, Robert C

    2004-04-01

    The synthesis and vascular 5-HT(1B) receptor activity of a novel series of substituted 3-amido phenylpiperazine and 4-(4-methyl-1-piperazinyl)-1-benzo[b]thiophene derivatives is described. Modifications to the amido linked sidechains of the 3-amidophenyl-piperazine derivatives and to the 2-sidechain of the 1-benzo[b]thiophene derivatives have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B) receptor of pK(B) > 7.0. From the 3-amidophenyl-piperazine series, N-(4-(4-chlorophenyl)thiazol-2-yl-3-(4-methyl-1-piperazinyl)benzamide (30) and from the benzo[b]thiophene-4-piperazine series N-(2-ethylphenyl)-4-(4-methyl-1- piperazinyl)-1-benzo[b]thiophene-2-carboxamide (38) were identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B) receptor mediated agonist activity in the rabbit femoral artery) and competitive vascular 5-HT(1B) receptor antagonist. The affinity of compounds from these two series of compounds for the vascular 5-HT(1B) receptor is discussed as well as a proposed mode of binding to the receptor pharmacophore.

  15. Physical characteristics of chitosan-silica composite of rice husk ash

    NASA Astrophysics Data System (ADS)

    Sumarni, Woro; Sri Iswari, Retno; Marwoto, Putut; Rahayu, Endah F.

    2016-02-01

    Some previous studies showed that the characteristics of chitosan membranes have a very rigid and non-porous structure so that its utilization is not maximized, particularly in the filtration process. Hence, it needs modification to improve the quality of the chitosan membranes. Adding the silica into the chitosan membranes is one of the offered solutions to overcome the problems of physical and mechanical properties of chitosan. This study aims to investigate the effect of variations in the silica composition to the physical characteristics of the chitosan-silica membranes of rice husk ash that were synthesized. The chitosan used is derived from the chitin of Vannamei shrimps’ shell with 82% degree of de-acetylation, while the silica was synthesized from rice husk ash with rendering of silica (SiO2) by 5% and the results of XRD analysis showed an amorphous phase. Membrane synthesis was performed using the phase inversion method with chitosan-silica mass ratios of rice husk ash, which were 1:0.0; 1:0.5; 1:1.0; 1:1.5 and 1:2.0. The results showed that the addition of silica increases the swelling index and the membrane permeability. The results of the analysis, FTIR spectra, obtained a new functional group after the addition of silica, they are Si-OH, Si-O-Si, and CO- NH2. The morphology test using CCD Microscope MS-804 results in the very tight chitosan membranes without the silica surface, it has no pores, smooth and homogeneous, while the chitosan-silica composite membrane of rice husk ash obviously has cracks and small cavities that seemed to spread out.

  16. Doubly 15N-substituted diazenylium: THz laboratory spectra and fractionation models

    NASA Astrophysics Data System (ADS)

    Dore, L.; Bizzocchi, L.; Wirström, E. S.; Degli Esposti, C.; Tamassia, F.; Charnley, S. B.

    2017-07-01

    Context. Isotopic fractionation in dense molecular cores has been suggested as a possible origin of large 14N/15N ratio variations in solar system materials. While chemical models can explain some observed variations with different fractionation patterns for molecules with -NH or -CN functional groups, they fail to reproduce the observed ratios in diazenylium (N2H+). Aims: Observations of doubly 15N-substituted species could provide important constraints and insights for theoretical chemical models of isotopic fractionation. However, spectroscopic data are very scarce. Methods: The rotational spectra of the fully 15N-substituted isopologues of the diazenylium ion, 15N2H+ and 15N2D+, have been investigated in the laboratory well into the THz region by using a source-modulation microwave spectrometer equipped with a negative glow discharge cell. An extended chemical reaction network has been used to estimate what ranges of 15N fractionation in doubly 15N-substituted species could be expected in the interstellar medium (ISM). Results: For each isotopologue of the H- and D-containing pair, nine rotational transitions were accurately measured in the frequency region 88 GHz-1.2 THz. The analysis of the spectrum provided very precise rest frequencies at millimeter and sub-millimeter wavelengths, useful for the radioastronomical identification of the rotational lines of 15N2H+ and 15N2D+ in the ISM.

  17. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less

  18. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan

    DOE PAGES

    Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose; ...

    2015-12-01

    Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less

  19. Cytotoxicity and biocompatibility evaluation of N,O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application.

    PubMed

    Li, Xingyi; Kong, Xiangye; Zhang, Zhaoliang; Nan, Kaihui; Li, LingLi; Wang, XianHou; Chen, Hao

    2012-06-01

    In this paper, covalently cross-linked hydrogel composed of N,O-carboxymethyl chitosan and oxidized alginate was developed intending for drug delivery application. In vitro/vivo cytocompatibility and biocompatibility of the developed hydrogel were preliminary evaluated. In vitro cytocompatibility test showed that the developed hydrogel exhibited good cytocompatibility against NH3T3 cells after 3-day incubation. According to the results of acute toxicity test, there was no obvious cytotoxicity for major organs during the period of 21-day intraperitoneal administration. Meanwhile, the developed hydrogel did not induce any cutaneous reaction within 72 h of subcutaneous injection followed by slow degradation and adsorption with the time evolution. Moreover, the extraction of developed hydrogel had nearly 0% of hemolysis ratio, which indicated the good hemocompatibility of hydrogel. Based on the above results, it may be concluded that the developed N,O-carboxymethyl chitosan/oxidized alginate hydrogel with non-cytotoxicity and good biocompatibility might suitable for the various drug delivery applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Substitution pattern elucidation of hydroxypropyl Pinus pinaster (Ait.) bark polyflavonoid derivatives by ESI(-)-MS/MS.

    PubMed

    García Marrero, Danny E; Glasser, Wolfgang G; Pizzi, Antonio; Paczkowski, Sebastian; Laborie, Marie-Pierre G

    2014-10-01

    The structure of condensed tannins (CTs) from Pinus pinaster bark extract and their hydroxypropylated derivatives with four degrees of substitution (DS 1, 2, 3 and 4) has been characterized for the first time using negative-ion mode electrospray ionization tandem mass spectrometry (ESI(-)-MS/MS). The results showed that P. pinaster bark CTs possess structural homogeneity in terms of monomeric units (C(15), catechin). The oligomer sizes were detected to be dimers to heptamers. The derivatives showed typical phenyl-propyl ether mass fragmentation by substituent elimination (58 amu) and inherent C(15) flavonoid fissions. The relative abundance of the product ions revealed a preferential triple, tetra-/penta- and octa- hydroxypropylation substitution pattern in the monomer, dimer and trimer derivatives, respectively. A defined order of -OH reactivity towards propylene oxide was established by means of multistage experiments (A-ring ≥ B-ring > C-ring). A high structural heterogeneity of the modified oligomers was detected. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Identification of five substituted phenethylamine derivatives 5-MAPDB, 5-AEDB, MDMA methylene homolog, 6-Br-MDMA, and 5-APB-NBOMe.

    PubMed

    Liu, Cuimei; Jia, Wei; Qian, Zhenhua; Li, Tao; Hua, Zhendong

    2017-02-01

    This paper reports analytical properties of five substituted phenethylamine derivatives seized from a clandestine laboratory. These five derivatives include 5-(2-methylaminopropyl)-2,3-dihydrobenzofuran (5-MAPDB, 1), 5-(2-aminoethyl)-2,3-dihydrobenzofuran (5-AEDB, 2), N,2-dimethyl-3-(3,4-methylenedioxyphenyl)propan-1-amine (MDMA methylene homolog, 3), 6-bromo-3,4-methylenedioxymethamphetamine (6-Br-MDMA, 4), and 1-(benzofuran-5-yl)-N-(2-methoxybenzyl)propan-2-amine (5-APB-NBOMe, 5). These compounds were identified by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy (NMR). No analytical properties about compounds 1-4 have appeared until now, making this the first report on these compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Bone-Induced Chondroinduction in Sheep Jamshidi Biopsy Defects with and without Treatment by Subchondral Chitosan-Blood Implant

    PubMed Central

    Bell, Angela D.; Lascau-Coman, Viorica; Sun, Jun; Chen, Gaoping; Lowerison, Mark W.; Hurtig, Mark B.

    2013-01-01

    Objective: Delivery of chitosan to subchondral bone is a novel approach for augmented marrow stimulation. We evaluated the effect of 3 presolidified chitosan-blood implant formulations on osteochondral repair progression compared with untreated defects. Design: In N = 5 adult sheep, six 2-mm diameter Jamshidi biopsy holes were created bilaterally in the medial femoral condyle and treated with presolidified chitosan-blood implant with fluorescent chitosan tracer (10 kDa, 40 kDa, or 150k Da chitosan, left knee) or left to bleed (untreated, right knee). Implant residency and osteochondral repair were assessed at 1 day (N = 1), 3 weeks (N = 2), or 3 months (N = 2) postoperative using fluorescence microscopy, histomorphometry, stereology, and micro–computed tomography. Results: Chitosan implants were retained in 89% of treated Jamshidi holes up to 3 weeks postoperative. At 3 weeks, biopsy sites were variably covered by cartilage flow, and most bone holes contained cartilage flow fragments and heterogeneous granulation tissues with sparse leukocytes, stromal cells, and occasional adipocytes (volume density 1% to 3%). After 3 months of repair, most Jamshidi bone holes were deeper, remodeling at the edges, filled with angiogenic granulation tissue, and lined with variably sized chondrogenic foci fused to bone trabeculae or actively repairing bone plate. The 150-kDa chitosan implant elicited more subchondral cartilage formation compared with 40-kDa chitosan-treated and control defects (P < 0.05, N = 4). Treated defects contained more mineralized repair tissue than control defects at 3 months (P < 0.05, N = 12). Conclusion: Bone plate–induced chondroinduction is an articular cartilage repair mechanism. Jamshidi biopsy repair takes longer than 3 months and can be influenced by subchondral chitosan-blood implant. PMID:26069656

  3. Synthesis and Biological Evaluation of Substituted N-[3-(1H-Pyrrol-1-yl)methyl]-1,2,5,6-tetrahydropyridin-1-yl]benzamide/ benzene Sulfonamides as Anti-Inflammatory Agents

    PubMed Central

    Gangapuram, Madhavi; Mazzio, Elizabeth; Eyunni, Suresh; Soliman, Karam F. A.; Redda, Kinfe K.

    2014-01-01

    The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a–l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 μg/mL)-activated microglial cells. The data show that only SO2-substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 μM (9i), 14.64 μM (9j), 19.63 μM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50 = 3.1 μM). The most potent SO2-substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immunomodulating effects of SO2-substituted THP derivatives. PMID:24585402

  4. Chitosan microparticles loaded with yeast-derived PCV2 virus-like particles elicit antigen-specific cellular immune response in mice after oral administration.

    PubMed

    Bucarey, Sergio A; Pujol, Myriam; Poblete, Joaquín; Nuñez, Ignacio; Tapia, Cecilia V; Neira-Carrillo, Andrónico; Martinez, Jonatán; Bassa, Oliver

    2014-08-20

    Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry worldwide. In addition to improved management and husbandry practices, the availability of several anti-PCV2 vaccines provides an efficient immunological option for reducing the impact of these diseases. Most anti-PCV2 vaccines are marketed as injectable formulations. Although these are effective, there are problems associated with the use of injectable products, including laborious and time-consuming procedures, the induction of inflammatory responses at the injection site, and treatment-associated stress to the animals. Oral vaccines represent an improvement in antigen delivery technology; they overcome the problems associated with injection management and facilitate antigen boosting when an animals' immunity falls outside the protective window. Chitosan microparticles were used as both a vehicle and mucosal adjuvant to deliver yeast-derived PCV2 virus-like particles (VLPs) in an attempt to develop an oral vaccine. The physical characteristics of the microparticles, including size, Zeta potential, and polydispersity, were examined along with the potential to induce PCV2-specific cellular immune responses in mice after oral delivery. Feeding mice with PCV2 VLP-loaded, positively-charged chitosan microparticles with an average size of 2.5 μm induced the proliferation of PCV2-specific splenic CD4+/CD8+ lymphocytes and the subsequent production of IFN-γ to levels comparable with those induced by an injectable commercial formulation. Chitosan microparticles appear to be a safe, simple system on which to base PCV2 oral vaccines. Oral chitosan-mediated antigen delivery is a novel strategy that efficiently induces anti-PCV2 cellular responses in a mouse model. Further studies in swine are warranted.

  5. Catalytic transformations of biomass substrates using mixed metal oxides derived from substituted hydrotalcites

    NASA Astrophysics Data System (ADS)

    Macala, Gerald Stephen, II

    Fueled by seemingly endless reserves of cheap and easily accessible fossil energy, the industrial age has brought to the developed world tremendous advances in human health and well being. Unfortunately the burning of fossil fuels has also been implicated in increasing atmospheric CO2 concentrations and global climate change. Concerns about short-term and long-term supply further build a case for the need for alternative energy sources. Biomass derived materials are a tantalizing source of fuels and fine chemicals. Unlike petroleum derived hydrocarbons, biomass can be both renewable and carbon neutral. Crops can be regenerated annually or even more often in tropical climates, and since the captured carbon originates as atmospheric CO2, the overall cycle has the potential to be nearly carbon neutral regardless of the final fate of the carbon. In contrast to petroleum derived hydrocarbons, which can often be made more valuable by adding functionality, biomass derived materials are already highly functionalized and can usually be made more valuable by selective removal of functionality. The development of robust catalysts capable of selective defuntionalization of biomass derived substrates remains an important challenge with potentially enormous economic and societal impact. In addition to being robust and selective, catalysts should preferably be heterogeneous to allow for easier removal and regeneration after the reaction is complete. New materials consisting of Mg-Al hydrotalcite-like structures, with a limiting percentage of Mg or Al substituted with other M2+ or M3+ cations, were synthesized by a co-precipitation process in basic aqueous solution with carbonate as counterion. Calcination of these materials at 460 °C resulted in evolution of CO2 and water and yielded high surface area mixed metal oxides with enhanced reactivity. Materials were characterized by ICP for elemental analysis, XRD for structural information, XPS for surface elemental analysis and TEM

  6. Gene silencing activity of siRNA polyplexes based on thiolated N,N,N-trimethylated chitosan.

    PubMed

    Varkouhi, Amir K; Verheul, Rolf J; Schiffelers, Raymond M; Lammers, Twan; Storm, Gert; Hennink, Wim E

    2010-12-15

    N,N,N-Trimethylated chitosan (TMC) is a biodegradable polymer emerging as a promising nonviral vector for nucleic acid and protein delivery. In the present study, we investigated whether the introduction of thiol groups in TMC enhances the extracellular stability of the complexes based on this polymer and promotes the intracellular release of siRNA. The gene silencing activity and the cellular cytotoxicity of polyplexes based on thiolated TMC were compared with those based on the nonthiolated counterpart and the regularly used lipidic transfection agent Lipofectamine. Incubation of H1299 human lung cancer cells expressing firefly luciferase with siRNA/thiolated TMC polyplexes resulted in 60-80% gene silencing activity, whereas complexes based on nonthiolated TMC showed less silencing (40%). The silencing activity of the complexes based on Lipofectamine 2000 was about 60-70%. Importantly, the TMC-SH polyplexes retained their silencing activity in the presence of hyaluronic acid, while nonthiolated TMC polyplexes hardly showed any silencing activity, demonstrating their stability against competing anionic macromolecules. Under the experimental conditions tested, the cytotoxicity of the thiolated and nonthiolated siRNA complexes was lower than those based on Lipofectamine. Given the good extracellular stability and good silencing activity, it is concluded that polyplexes based on TMC-SH are attractive systems for further in vivo evaluations.

  7. Synthesis and antifungal evaluation of (1,2,3-triazol-4-yl)methyl nicotinate chitosan.

    PubMed

    Qin, Yukun; Liu, Song; Xing, Ronge; Li, Kecheng; Yu, Huahua; Li, Pengcheng

    2013-10-01

    With an aim to discover novel chitosan derivatives with significant activities against crop-threatening fungi, (1,2,3-triazol-4-yl)methyl nicotinate chitosan (TAMNCS) was prepared via azide-alkyne click reaction. Its structure was characterized by FT-IR, (1)H NMR, elemental analysis, DSC, and SEM. In vitro antifungal properties of TAMNCS against Rhizoctonia solani Kühn (R. solani), Stemphylium solani weber (S. solani), and Alternaria porri (A. porri) were studied at the concentrations ranged from 0.25 mg/mL to 1.0 mg/mL. Experiments conducted displayed the derivative had obviously enhanced antifungal activity after chemical modification compared with original chitosan. Moreover, it was shown that TAMNCS can 94.2% inhibit growth of A. porri at 1.0 mg/mL, while dose at which the fungicide triadimefon had lower inhibitory index (62.2%). The primary antifungal results described here indicate this derivative may be a promising candidate as an antifungal agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparison of cadmium adsorption onto chitosan and epichlorohydrin crosslinked chitosan/eggshell composite

    NASA Astrophysics Data System (ADS)

    Rahmi; Marlina; Nisfayati

    2018-05-01

    The use of chitosan and epichlorohydrin crosslinked chitosan/eggshell composite for cadmium adsorption from water were investigated. The factors affecting adsorption such as pH and contact time were considered. The results showed that the optimum pH of adsorption was pH = 6.0 and the equilibrium time of adsorption was 40 min. The adsorption isotherm of Cd ions onto chitosan and composite were well fitted to Langmuir equation. The maximum adsorption capacity (fitting by Langmuir model) of chitosan and composite were 1.008 and 11.7647 mg/g, respectively. Adsorption performance of composite after regeneration was better than chitosan.

  10. The Effect of Sulfur Substitution on the Excited-State Dynamics of DNA and RNA Base Derivatives

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Crespo-Hernández, Carlos E.

    2014-06-01

    Substitution of oxygen by a sulfur atom in the natural DNA and RNA bases gives rise to a family of derivatives commonly known as the thiobases. Upon excitation with UV radiation, the natural bases are able to quickly and efficiently dissipate the imparted energy as heat to their surroundings. Thiobases, on the other hand, relax into a long-lived triplet excited state in quantum yields that approach unity. This finding has both fundamental and biological relevance because the triplet state plays a foremost role in the photochemistry of the thiobases, this is especially important in the current medicinal applications of thiobase derivatives. Using femtosecond transient absorption spectroscopy, we are able uncover the ultrafast dynamics leading to the population of this reactive triplet state. In particular, I will present our results on how the site of sulfur substitution and the degree of substitution impact these dynamics and I will compare these experimental results to some recent computational work. Pinning down the excited-state dynamics of the thiobases is important to furthering the understanding of dynamics in natural DNA/RNA bases, as well as to the discovery of thiobase derivatives with desirable therapeutic properties. The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.

  11. UV action spectroscopy of protonated PAH derivatives. Methyl substituted quinolines

    NASA Astrophysics Data System (ADS)

    Klærke, B.; Holm, A. I. S.; Andersen, L. H.

    2011-08-01

    Aims: We investigate the production of molecular photofragments upon UV excitation of PAH derivatives, relevant for the interstellar medium. Methods: The action absorption spectra of protonated gas-phase methyl-substituted quinolines (CH3 - C9H7NH+) have been recorded in the 215-338 nm spectral range using the electrostatic storage ring ELISA, an electrospray ion source and 3 ns UV laser pulses. Results: It is shown that the absorption profile is both redshifted and broadened when moving the methyl group from the heterocycle containing nitrogen to the homoatomic ring. The absorption profiles are explained by TD-DFT calculations. The dissociation time of the studied molecules is found to be of several milliseconds at 230 nm and it is shown that after redistribution of the absorbed energy the molecules dissociate in several channels. The dissociation time found is an order of magnitude faster than the estimated IR relaxation time. Photophysical properties of both nitrogen containing and methyl-substituted PAHs are interesting in an astrophysical context in connection with identifying the aromatic component of the interstellar medium.

  12. Synthesis and antileishmanial activity of 6-mono-substituted and 3,6-di-substituted acridines obtained by acylation of proflavine.

    PubMed

    Di Giorgio, Carole; Shimi, Kamal; Boyer, Gérard; Delmas, Florence; Galy, Jean-Pierre

    2007-10-01

    Two new series of diaminoacridinic derivatives obtained from proflavine and N-(6-amino-3-acridinyl)acetamide were synthesised and assessed for their cytotoxic and antileishmanial activities. Two compounds, N-[6-(acetylamino)-3-acridinyl]acetamide and N-[6-(benzoylamino)-3-acridinyl]benzamide demonstrated highly specific antileishmanial properties against the intracellular amastigote form of the parasite. Structure-activity relationships established that the antiproliferative activity against human cells was greatly enhanced by the presence of a benzoylamino group in 6-mono-substituted acridines, while the presence of two acetylamino or benzoylamino groups in 3,6-di-substituted acridines strongly increased the specificity of the molecules for Leishmania parasite, suggesting that symmetric conformations could preferentially interfere with Leishmania metabolism.

  13. Effect of chitosan addition to characteristic and antimicrobial activity of zinc doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Rasyida, A.; Wicaksono, S. T.; Pradita, N. N.; Ardhyananta, H.; Purnomo, A.

    2017-07-01

    Hydroxyapatite (HAp) doping with zinc was prepared using sol gel method; different chitosan content were further added to prepare the composite, namely 10, 15 and 20% wt. The samples were characterized using FTIR, XRD, SEM-EDX, and AAS. In vitro antimicrobial activities of the composite were evaluated against gram positive and negative bacteria. FTIR results revealed that there were no important changes in the structure of composite, while 10% wt of chitosan in composite shows the highest inhibition zone against Escherichia coli after 24 h incubation. In addition, after 7 days of immersion in simulated body fluid, there were apatite formations in the surface of the composite. These might indicate that this composite could be used as a material candidate for bone substitute applications.

  14. Chitosan but Not Chitin Activates the Inflammasome by a Mechanism Dependent upon Phagocytosis*

    PubMed Central

    Bueter, Chelsea L.; Lee, Chrono K.; Rathinam, Vijay A. K.; Healy, Gloria J.; Taron, Christopher H.; Specht, Charles A.; Levitz, Stuart M.

    2011-01-01

    Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert. PMID:21862582

  15. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis.

    PubMed

    Bueter, Chelsea L; Lee, Chrono K; Rathinam, Vijay A K; Healy, Gloria J; Taron, Christopher H; Specht, Charles A; Levitz, Stuart M

    2011-10-14

    Chitin is an abundant polysaccharide found in fungal cell walls, crustacean shells, and insect exoskeletons. The immunological properties of both chitin and its deacetylated derivative chitosan are of relevance because of frequent natural exposure and their use in medical applications. Depending on the preparation studied and the end point measured, these compounds have been reported to induce allergic responses, inflammatory responses, or no response at all. We prepared highly purified chitosan and chitin and examined the capacity of these glycans to stimulate murine macrophages to release the inflammasome-associated cytokine IL-1β. We found that although chitosan was a potent NLRP3 inflammasome activator, acetylation of the chitosan to chitin resulted in a near total loss of activity. The size of the chitosan particles played an important role, with small particles eliciting the greatest activity. An inverse relationship between size and stimulatory activity was demonstrated using chitosan passed through size exclusion filters as well as with chitosan-coated beads of defined size. Partial digestion of chitosan with pepsin resulted in a larger fraction of small phagocytosable particles and more potent inflammasome activity. Inhibition of phagocytosis with cytochalasin D abolished the IL-1β stimulatory activity of chitosan, offering an explanation for why the largest particles were nearly devoid of activity. Thus, the deacetylated polysaccharide chitosan potently activates the NLRP3 inflammasome in a phagocytosis-dependent manner. In contrast, chitin is relatively inert.

  16. DNA-Binding Interaction Studies of Microwave Assisted Synthesized Sulfonamide Substituted 8-Hydroxyquinoline Derivatives.

    PubMed

    Dixit, Ritu B; Patel, Tarosh S; Vanparia, Satish F; Kunjadiya, Anju P; Keharia, Harish R; Dixit, Bharat C

    2011-01-01

    Sulfonamide substituted 8-hydroxyquinoline derivatives were prepared using a microwave synthesizer. The interaction of sulfonamide substituted 8-hydroxyquinoline derivatives and their transition metal complexes with Plasmid (pUC 19) DNA and Calf Thymus DNA were investigated by UV spectroscopic studies and gel electrophoresis measurements. The interaction between ligand/metal complexes and DNA was carried out by increasing the concentration of DNA from 0 to 12 μl in UV spectroscopic study, while the concentration of DNA in gel electrophoresis remained constant at 10 μl. These studies supported the fact that, the complex binds to DNA by intercalation via ligand into the base pairs of DNA. The relative binding efficacy of the complexes to DNA was much higher than the binding efficacy of ligands, especially the complex of Cu-AHQMBSH had the highest binding ability to DNA. The mobility of the bands decreased as the concentration of the complex was increased, indicating that there was increase in the interaction between the metal ion and DNA. Complexes of AHQMBSH were excellent for DNA binding as compared to HQMABS.

  17. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    PubMed Central

    Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.

    2016-01-01

    CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964

  18. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus.

    PubMed

    Tan, Honglue; Peng, Zhaoxiang; Li, Qingtian; Xu, Xiaofen; Guo, Shengrong; Tang, Tingting

    2012-01-01

    Biomaterial-associated infections remain a serious complication in orthopaedic surgery. Treatments, including the local use of antibiotic-loaded polymethylmethacrylate (PMMA) bone cement, are not always successful because of multiantibiotic-resistant organisms. In this study, we synthesised a new quaternised chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) that contains a series of substitutions of quaternary ammonium and demonstrated that HACC with a 26% degree of substitution (DS; referred to as 26%HACC) had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. We loaded 26%HACC at 20% by weight into PMMA bone cement to investigate whether HACC in PMMA prevents bacterial biofilm formation on the surface of bone cements. Chitosan-loaded PMMA (at the same weight ratio), gentamicin-loaded PMMA and PMMA with no antibiotic were also investigated and compared. Two clinical isolates, Staphylococcus epidermidis 389 and methicillin-resistant S. epidermidis (MRSE287), and two standard strains, S. epidermidis (ATCC35984) and methicillin-resistant Staphylococcus aureus (ATCC43300), were selected to evaluate the bacterial biofilm formation at 6, 12 and 24 h using the spread plate method, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that 26%HACC-loaded PMMA inhibited biofilm formation on its surface, while the PMMA control and chitosan-loaded PMMA were unable to inhibit biofilm formation. The gentamicin-loaded PMMA decreased the number of viable methicillin-resistant Staphylococcus strains, but its ability to inhibit biofilm formation was lower than 26%HACC-loaded PMMA. Real-time PCR demonstrated that 26%HACC-loaded PMMA markedly downregulated the expression of icaAD, which encodes essential enzymes for polysaccharide intercellular adhesion (PIA) biosynthesis, upregulated the expression level of icaR, which negatively mediates icaAD expression, and

  19. HDPE/Chitosan Blends Modified with Organobentonite Synthesized with Quaternary Ammonium Salt Impregnated Chitosan

    PubMed Central

    de Araújo, Maria José G.; Barbosa, Rossemberg C.; Fook, Marcus Vinícius L.; Canedo, Eduardo L.; Silva, Suédina M. L.; Medeiros, Eliton S.; Leite, Itamara F.

    2018-01-01

    In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials. PMID:29438286

  20. HDPE/Chitosan Blends Modified with Organobentonite Synthesized with Quaternary Ammonium Salt Impregnated Chitosan.

    PubMed

    de Araújo, Maria José G; Barbosa, Rossemberg C; Fook, Marcus Vinícius L; Canedo, Eduardo L; Silva, Suédina M L; Medeiros, Eliton S; Leite, Itamara F

    2018-02-13

    In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials.

  1. Structure-activity relationships of truncated C2- or C8-substituted adenosine derivatives as dual acting A₂A and A₃ adenosine receptor ligands.

    PubMed

    Hou, Xiyan; Majik, Mahesh S; Kim, Kyunglim; Pyee, Yuna; Lee, Yoonji; Alexander, Varughese; Chung, Hwa-Jin; Lee, Hyuk Woo; Chandra, Girish; Lee, Jin Hee; Park, Seul-Gi; Choi, Won Jun; Kim, Hea Ok; Phan, Khai; Gao, Zhan-Guo; Jacobson, Kenneth A; Choi, Sun; Lee, Sang Kook; Jeong, Lak Shin

    2012-01-12

    Truncated N(6)-substituted-4'-oxo- and 4'-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A(2A) and A(3) adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross-coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA(2A)AR, but hydrophobic C8 substitution abolished binding at the hA(2A)AR. However, most of synthesized compounds displayed medium to high binding affinity at the hA(3)AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA(2A)AR agonists. C2 substitution probed geometrically through hA(2A)AR docking was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA(2A)AR agonist and hA(3)AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases.

  2. Chemical improvement of chitosan-modified beads for the immobilization of Enterococcus faecium DBFIQ E36 L-arabinose isomerase through multipoint covalent attachment approach.

    PubMed

    Manzo, Ricardo M; de Sousa, Marylane; Fenoglio, Cecilia L; Gonçalves, Luciana Rocha Barro; Mammarella, Enrique J

    2015-10-01

    D-tagatose is produced from D-galactose by the enzyme L-arabinose isomerase (L-AI) in a commercially viable bioprocess. An active and stable biocatalyst was obtained by modifying chitosan gel structure through reaction with TNBS, D-fructose or DMF, among others. This led to a significant improvement in L-AI immobilization via multipoint covalent attachment approach. Synthetized derivatives were compared with commercial supports such as Eupergit(®) C250L and glyoxal-agarose. The best chitosan derivative for L-AI immobilization was achieved by reacting 4 % (w/v) D-fructose with 3 % (w/v) chitosan at 50 °C for 4 h. When compared to the free enzyme, the glutaraldehyde-activated chitosan biocatalyst showed an apparent activity of 88.4 U g (gel) (-1) with a 211-fold stabilization factor while the glyoxal-agarose biocatalyst gave an apparent activity of 161.8 U g (gel) (-1) with an 85-fold stabilization factor. Hence, chitosan derivatives were comparable to commercial resins, thus becoming a viable low-cost strategy to obtain high active L-AI insolubilized derivatives.

  3. The targeted behavior of folate-decorated N-succinyl-N'-octyl chitosan evaluated by NIR system in mouse model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyan; Deng, Dawei; Chen, Haiyan; Qian, Zhiyu; Gu, Yueqing

    2010-11-01

    The development of more selective delivery systems for cancer diagnosis and chemotherapy is one of the most important goals of current anticancer research. The purpose of this study is to construct and evaluate the folate-decorated, self-assembled nanoparticles as candidates to deliver near infrared fluorescent dyes into tumors and to investigate the mechanisms underlying the tumor targeting with folate-decorated, self-assembled nanoparticles. Folate-decorated N-succinyl-N'-octyl chitosan (folate-SOC) were synthesized. The chemical modification chitosan could self-assemble into stable micelles in aqueous medium. Micelle size determined by size analysis was around 140 nm in a phosphate-buffered saline (PBS, PH 7.4). Folate-SOC could maintain their structure for up to 15 days in PBS. Near infrared dye ICG-Der-01 as a mode drug was loaded in the micelles, and the entrapment efficiency (EE) and drug loading (DL) were investigated. The targeted behavior of folate-SOC was evaluated by near-infrared fluorescence imaging in vivo on different groups of denuded mice, with A549 or Bel-7402 tumors. The optical imaging results indicated that folated-decorated SOC showed an excellent tumor specificity in Bel-7402 tumor-bearing mice, and weak tumor specificity in A549 tumor bearing mice. We believe that this work can provide insight for the engineering of nanoparticles and be extended to cancer therapy and diagnosis so as to deliver multiple therapeutic agents and imaging probes at high local concentrations.

  4. Synthesis, Biological Evaluation, and Autophagy Mechanism of 12N-Substituted Sophoridinamines as Novel Anticancer Agents.

    PubMed

    Bi, Chongwen; Zhang, Na; Yang, Peng; Ye, Cheng; Wang, Yanxiang; Fan, Tianyun; Shao, Rongguang; Deng, Hongbin; Song, Danqing

    2017-02-09

    A series of 12 N -substituted sophoridinamine derivatives were synthesized and evaluated for their cytotoxic activities in human HepG2 hepatoma cells. Structure-activity relationship revealed that introduction of a suitable arylidene or arylethyl at the N '-end could greatly enhance antiproliferation potency. Among them, compound 6b possessing a N '-trimethoxyphenyl methylene exhibited potent antiproliferation effect against three human tumor cell lines including HepG2, leukemia (K562), and breast cancer (HMLE), with IC 50 between 0.55 and 1.7 μM. The underlying mechanism of 6b against tumor cells is to block autophagic flux, mainly through neutralizing lysosomal acidity. Our results indicated that compound 6b is a potent lysosomal deacidification agent and is accordingly able to block autophagic flux and inhibit tumor cell growth.

  5. Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis.

    PubMed

    Tay, Nicholas E S; Nicewicz, David A

    2017-11-15

    Nucleophilic aromatic substitution (S N Ar) is a direct method for arene functionalization; however, it can be hampered by low reactivity of arene substrates and their availability. Herein we describe a cation radical-accelerated nucleophilic aromatic substitution using methoxy- and benzyloxy-groups as nucleofuges. In particular, lignin-derived aromatics containing guaiacol and veratrole motifs were competent substrates for functionalization. We also demonstrate an example of site-selective substitutive oxygenation with trifluoroethanol to afford the desired trifluoromethylaryl ether.

  6. Primary amino acid derivatives: substitution of the 4'-N'-benzylamide site in (R)-N'-benzyl 2-amino-3-methylbutanamide, (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide, and (R)-N'-benzyl 2-amino-3-methoxypropionamide provides potent anticonvulsants with pain-attenuating properties.

    PubMed

    King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold

    2011-10-13

    Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.

  7. Enzymatic degradation of thiolated chitosan.

    PubMed

    Laffleur, Flavia; Hintzen, Fabian; Rahmat, Deni; Shahnaz, Gul; Millotti, Gioconda; Bernkop-Schnürch, Andreas

    2013-10-01

    The objective of this study was to evaluate the biodegradability of thiolated chitosans in comparison to unmodified chitosan. Mediated by carbodiimide, thioglycolic acid (TGA) and mercaptonicotinic acid (MNA) were covalently attached to chitosan via formation an amide bond. Applying two different concentrations of carbodiimide 50 and 100 mM, two chitosan TGA conjugates (TGA A and TGA B) were obtained. According to chitosan solution (3% m/v) thiomer solutions were prepared and chitosanolytic enzyme solutions were added. Lysozyme, pectinase and cellulase were examined in chitosan degrading activity. The enzymatic degradability of these thiomers was investigated by viscosity measurements with a plate-plate viscometer. The obtained chitosan TGA conjugate A displayed 267.7 µmol and conjugate B displayed 116.3 µmol of immobilized thiol groups. With 325.4 µmol immobilized thiol groups, chitosan MNA conjugate displayed the most content of thiol groups. In rheological studies subsequently the modification proved that chitosan TGA conjugates with a higher coupling rate of thiol groups were not only degraded to a lesser extent by 20.9-26.4% but also more slowly. Chitosan mercaptonicotinic acid was degraded by 31.4-50.1% depending the investigated enzyme and even faster than unmodified chitosan. According to these results the biodegradability can be influenced by various modifications of the polymer which showed in particular that the rate of biodegradation is increased when MNA is the ligand, whereas the degradation is hampered when TGA is used as ligand for chitosan.

  8. An acid-free water-born quaternized chitosan/montmorillonite loaded into an innovative ultra-fine bead-free water-born nanocomposite nanofibrous scaffold; in vitro and in vivo approaches.

    PubMed

    Dastjerdi, Roya; Sharafi, Mahsa; Kabiri, Kourosh; Mivehi, Leila; Samadikuchaksaraei, Ali

    2017-07-26

    An acid-free water-born chitosan derivative/montmorillonite has been successfully synthesized. A natural-based biopolymer, N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride, was synthesized, and its structure confirmed by Fourier transform infrared microscopy and conductometric titration. It was applied to the cationic ion-exchange reaction of montmorillonite. Then, the synthesized materials were used to produce water-born composite scaffolds for tissue engineering applications and formed an ultra-fine bead-free multicomponent nanofibrous scaffold. The scaffold was subjected to in vitro and in vivo investigations. The effects of both acidic and neutral reaction media on the efficiency of the cationic ion-exchange reaction of montmorillonite were investigated. A mechanism has been suggested for the more efficient cationic ion-exchange reaction achieved in the absence of the acid. In in vitro studies, the modified montmorillonite showed synergistic biocompatibility and cell growth with enhanced bioactivity compared to unmodified clay and even chitosan and the chitosan derivative. Scanning electron microscopy showed ultra-fine bead-free nanocomposite nanofibers. Improved biocompatibility, cell attachment, and cell growth were observed for the nanofibrous scaffolds compared to the individual components. In vivo experiments showed complete restoration of a critical-sized full-thickness wound without infection in 21 d. The technique provides a guideline to achieve chitosan nanofibrous morphology for multifunctional biomedical applications.

  9. Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications.

    PubMed

    Ono, K; Ishihara, M; Ozeki, Y; Deguchi, H; Sato, M; Saito, Y; Yura, H; Sato, M; Kikuchi, M; Kurita, A; Maehara, T

    2001-11-01

    In various surgical cases, effective tissue adhesives are required for both hemostasis (eg, intraoperative bleeding) and air sealing (eg, thoracic surgery). We have designed a chitosan molecule (Az-CH-LA) that can be photocrosslinked by ultraviolet (UV) light irradiation, thereby forming a hydrogel. The purpose of this work was to evaluate the effectiveness and safety of the photocrosslinkable chitosan hydrogel as an adhesive with surgical applications. The sealing ability of the chitosan hydrogel, determined as a bursting pressure, was assessed with removed thoracic aorta, trachea, and lung of farm pigs and in a rabbit model. The carotid artery and lung of rabbits were punctured with a needle, and the chitosan hydrogel was applied to, respectively, stop the bleeding and the air leakage. In vivo chitosan degradability and biologic responses were histologically assessed in animal models. The bursting pressure of chitosan hydrogel (30 mg/mL) and fibrin glue, respectively, was 225 +/- 25 mm Hg (mean +/- SD) and 80 +/- 20 mm Hg in the thoracic aorta; 77 +/- 29 mm Hg and 48 +/- 21 mm Hg in the trachea; and in the lung, 51 +/- 11 mm Hg (chitosan hydrogel), 62 +/- 4 mm Hg (fibrin glue, rubbing method), and 12 +/- 2 mm Hg (fibrin glue, layer method). The sealing ability of the chitosan hydrogel was stronger than that of fibrin glue. All rabbits with a carotid artery (n = 8) or lung (n = 8) that was punctured with a needle and then sealed with chitosan hydrogel survived the 1-month observation period without any bleeding or air leakage from the puncture sites. Histologic examinations demonstrated that 30 days after application, a fraction of the chitosan hydrogel was phagocytosed by macrophages, had partially degraded, and had induced the formation of fibrous tissues around the hydrogel. A newly developed photocrosslinkable chitosan has demonstrated strong sealing ability and a great potential for use as an adhesive in surgical operations.

  10. Novel unsymmetrical P/O substituted ferrocene ligands and the first structurally characterised hydroxyferrocene derivative.

    PubMed

    Atkinson, Robert C J; Gibson, Vernon C; Long, Nicholas J; White, Andrew J P; Williams, David J

    2004-06-21

    Two new unsymmetrical 1'-substituted hydroxyferrocene ligands featuring either phosphine or phosphine oxide substituents have been synthesised and the phosphine oxide derivative has been structurally characterised. A nickel complex of the hydroxyl/phosphine ligand has been formed, along with preliminary evaluation of the complex for catalysis of ethylene polymerisation.

  11. Mass spectrometry of analytical derivatives. 1. Cyanide cations in the spectra of N-alkyl-N-perfluoroacyl-α-amino acids and their methyl esters

    PubMed Central

    Todua, Nino G.; Tretyakov, Kirill V.; Mikaia, Anzor I.

    2016-01-01

    The central mission for the development of the National Institute of Standards and Technology/National Institutes of Health/Environmental Protection Agency Mass Spectral Library is the acquisition of reference gas chromatography–mass spectrometry data for important compounds and their chemical modification products. The addition of reliable reference data of various derivatives of amino acids to The Library, and the study of their behavior under electron ionization conditions may be useful for their identification, structure elucidation, and a better understanding of the data obtained when the same derivatives are subjected to other ionization methods. N-Alkyl-N-perfluoroacyl derivatives of amino acids readily produce previously unreported alkylnitrilium cations of composition [HC≡N-alkyl]+. Homologous [HC≡N-aryl]+ cations are typical for corresponding N-aryl analogs. The formation of other ions characteristic for these derivatives involves oxygen rearrangement giving rise to ions [CnF2n+1–C≡N+–CnH2n+1] and [CnF2n+1–C≡N+-aryl]. The introduction of an N-benzyl substituent in a molecule favors a process producing benzylidene iminium cations. l-Threonine and l-cysteine derivatives exhibit more fragmentation pathways not typical for other α-amino acids; additionally, the Nω-amino group in l-lysine directs the dissociation process and provides structural information on the substitution at the amino functions in the molecule. PMID:26307698

  12. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    NASA Astrophysics Data System (ADS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-02-01

    Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  13. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage

    USDA-ARS?s Scientific Manuscript database

    A novel nanocomposite of silver/titanium dioxide/chitosan adipate (Ag/TiO2/CS) was developed through photochemical reduction using a chitosan adipate template. Chitosan served as a reducing agent for the metal ions, and anchored metal ions by forming Ag–N coordination bonds and electrostatic attract...

  14. Effect of chitosan content on gel content of epoxized natural rubber grafted with chitosan in latex form.

    PubMed

    Riyajan, Sa-Ad; Sukhlaaied, Wattana

    2013-04-01

    The epoxidized natural rubber (ENR) latex-g-chitosan (ENR-g-chitosan) was prepared in latex form using potassium persulphate as an initiator. Firstly, the reduction in molecular weight of chitosan was subjected to the addition of K2S2O8 at 70 °C for 15 min. The structure of the modified chitosan was characterized by ATR-FTIR. Secondarily, the influence of chitosan contents, reaction time, and temperature and K2S2O8 concentrations on the gel content of the modified ENR was investigated. The chemical structure of the ENR-g-chitosan was confirmed by (1)H-NMR and ATR-FTIR. The ether linkage of the ENR-g-chitosan was conformed at 1154 an 1089 cm(-1) by ATR-FTIR and 3.60 ppm by (1)H-NMR. The gel content of ENR-g-chitosan at 5% chitosan showed the highest value compared with other samples. But when chitosan increased from 5% to 10% or 20%, the gel content of ENR-g-chitosan dramatically decreased. The ENR-g-chitosan showed good thermal resistance due to incorporation of chitosan. The morphology of ENR-g-chitosan particle showed the core-shell structure observed by TEM. The optimum condition of grafting ENR with chitosan was found at 65°C for 3h of reaction time, ratio of ENR/chitosan at 9:1. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of the Presence of Surfactants and Immobilization Conditions on Catalysts' Properties of Rhizomucor miehei Lipase onto Chitosan.

    PubMed

    de Oliveira, Ulisses M F; Lima de Matos, Leonardo J B; de Souza, Maria Cristiane M; Pinheiro, Bruna B; Dos Santos, José C S; Gonçalves, Luciana R B

    2018-04-01

    Lipase from Rhizomucor miehei (RML) was immobilized onto chitosan support in the presence of some surfactants added at low levels using two different strategies. In the first approach, the enzyme was immobilized in the presence of surfactants on chitosan supports previously functionalized with glutaraldehyde. In the second one, after prior enzyme adsorption on chitosan beads in the presence of surfactants, the complex chitosan beads-enzyme was then cross-linked with glutaraldehyde. The effects of surfactant concentrations on the activities of free and immobilized RML were evaluated. Hexadecyltrimethylammonium bromide (CTAB) promoted an inhibition of enzyme activity while the nonionic surfactant Triton X-100 caused a slight increase in the catalytic activity of the free enzyme and the derivatives produced in both methods of immobilization. The best derivatives were achieved when the lipase was firstly adsorbed on chitosan beads at 4 °C for 1 h, 220 rpm followed by cross-link the complex chitosan beads-enzyme with glutaraldehyde 0.6% v.v -1 at pH 7. The derivatives obtained under these conditions showed high catalytic activity and excellent thermal stability at 60° and 37 °C. The best derivative was also evaluated in the synthesis of two flavor esters namely methyl and ethyl butyrate. At non-optimized conditions, the maximum conversion yield for methyl butyrate was 89%, and for ethyl butyrate, the esterification yield was 92%. The results for both esterifications were similar to those obtained when the commercial enzyme Lipozyme® and free enzyme were used in the same reaction conditions and higher than the one achieved in the absence of the selected surfactant.

  16. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase.

    PubMed

    Cui, Yi; Hu, Yong-Hua; Yu, Feng; Zheng, Jing; Chen, Lin-Shan; Chen, Qing-Xi; Wang, Qin

    2017-02-01

    This study was to investigate the inhibition effects of para-substituted cinnamic acid derivatives (4-chlorocinnamic acid, 4-ethoxycinnamic acid and 4-nitrocinnamic acid) on tyrosinase catalyzing the substrates, with the purpose of elucidating the inhibition mechanism of the tested derivatives on tyrosinase by the UV-vis spectrum, fluorescence spectroscopy, copper interacting and molecular docking, respectively. The native-PAGE results showed that 4-chlorocinnamic acid (4-CCA), 4-ethoxycinnamic acid (4-ECA) and 4-nitrocinnamic acid (4-NCA) had inhibitory effects on tyrosinase. Spectrophotometric analysis used to determine the inhibition capabilities of these compounds on tyrosinase catalyzing L-tyrosine (L-Tyr) and L-3,4-Dihydroxyphenylalanine (L-DOPA) as well. The IC 50 values and inhibition constants were further determined. Moreover, quenching mechanisms of tested compounds to tyrosinase belonged to static type and a red shift on fluorescence emission peak occurred when 4-NCA added. Copper interacting and molecular docking demonstrated that 4-CCA could not bind directly to the copper, but it could interact with residues in the active center of tyrosinase. Meanwhile, 4-ECA and 4-NCA could chelate a copper ion of tyrosinase. Anti-tyrosinase activities of para-substituted cinnamic acid derivatives would lay scientific foundation for their utilization in designing of novel tyrosinase inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of chitin and chitosan synthesized from red snapper (Lutjanus sp.) scale's waste

    NASA Astrophysics Data System (ADS)

    Takarina, N. D.; Fanani, A. A.

    2017-07-01

    Chitin and chitosan are natural biopolymer which are useful for industrial, medical and environmental field. Study about using fish scale sources especially saltwater fish is still limited. Red snapper (Lutjanus sp) is common tropical saltwater fish that known as important source of marine products, particularly in Indonesia. Correspondingly, the consumption of this species has generated significant amount of discarded scale wastes recently and hence can cause adverse impact on the environment. Utilizing the fish scale as alternative sources of chitin and chitosan can be one solution dealing with environmental problem. Therefore, this research aimed to characterize the chitin and chitosan derived from the red snapper scale wastes. Chitin were extracted by deproteination and demineralization while chitosan using deacetylation. Morphology of the chitin and chitosan were analyzed using electron dispersal spectroscopy (EDS) and scanning electron microscope (SEM), while degree of deacetylation using fourier transform infrared spectroscopy (FTIR). Proximate analysis showed that content of moisture, ash, and nitrogen in chitin were 3.20 %, 2.40 %, 0.04 %, respectively while in chitosan were 6.14 %, 1.18 %, 0.03 % respectively. Furthermore, amount of C, O, Na, Al, P and Ca elements were obtained from chitin and chitosan samples by energy dispersed spectroscopy respectively. The degree of deacetylation for both chitin and chitosan showed high value more than 75 %. Hence, by considering the chemical properties of red snapper scales, it confirms that this species is a promising alternative source for both chitin and chitosan.

  18. Synthesis and pharmacological evaluation of N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide as cyclooxygenase inhibitors.

    PubMed

    Rambabu, D; Mulakayala, Naveen; Ismail; Kumar, K Ravi; Kumar, G Pavan; Mulakayala, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rao, M V Basaveswara; Oruganti, Srinivas; Pal, Manojit

    2012-11-01

    A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthesized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. In vivo assessment of chitosan/β-glycerophosphate as a new liquid embolic agent.

    PubMed

    Wang, Y; Xu, N; Luo, Q; Li, Y; Sun, L; Wang, H; Xu, K; Wang, B; Zhen, Y

    2011-03-01

    We sought to assess the feasibility of using thermosensitive chitosan/β-glycerophosphate forembolotherapy. The renal arteries in nine rabbits were embolized with chitosan/β-glycero-phosphate. The animals were studied angiographically and sacrificed at one week (n = 3), four weeks (n = 3), and eight weeks (n = 3) after embolotherapy. Histology was obtained at these three time points. Delivery of chitosan/β-glycerophosphate was successful in all cases. Complete occlusion was achieved in all cases. No recanalization was observed in the follow-up angiograms. No untoward inflammatory reactions were observed in the target renal arteries and infarcted kidneys during the histological examinations. Our preliminary feasibility evaluation in rabbit renal arteries indicates that C/GP is a satisfactory embolization agent.

  20. Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery.

    PubMed

    Xiao, Bo; Wan, Ying; Wang, Xiaoyu; Zha, Qichen; Liu, Haoming; Qiu, Zhiye; Zhang, Shengmin

    2012-03-01

    A series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride (HTCC) samples with various degrees of quaternization ranging from 12.4 to 43.7% was synthesized. The structures and properties of HTCC were investigated by FT-IR, (1)H NMR, conductometric titration and XRD analysis. It was found that HTCC had a more amorphous structure than chitosan. HTCC samples showed significantly lower cytotoxicity than polyethyleneimine in HepG2 and HeLa cell lines. The samples spontaneously formed complexes with pGL3 luciferase plasmid. These complexes had desirable particle sizes (160-300 nm) and zeta potentials (10.8-18.7 mV) when the weight ratios of HTCC to plasmid altered in the range of 3:1-20:1. In vitro gene transfection results indicated that HTCC had significantly high transfection efficiency compared with chitosan for delivering pGL3 luciferase plasmid to HeLa cells. The results suggest that HTCC could be a promising non-viral vector for safe and efficient DNA delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells.

    PubMed

    Kumari, Suneeta; Kumar Annamareddy, Sri Hari; Abanti, Sahoo; Kumar Rath, Pradip

    2017-11-01

    Chitosan is derived from different starting materials such as fish scales, shrimp and crab shells by the process of deacetylation of chitin, which is carried out using 40% KOH at 90°C for 6h. Prepared chitosan was characterized by Fourier transforms infrared spectroscopy, X-ray powder diffraction, Scanning electron microscope and Thermogravimetric analysis. Futher the physicochemical properties of chitosan like Fat binding capacity (FBC), water binding capacity (WBC), solubility, average molecular weight, ash content, moisture and degree of deacetylation of chitosan were also studied. Crystalline index (%) values of commercial, shrimp, crab and fish chitosan were found to be 96, 82, 88 and 84% respectively. The presence of amino group was confirmed from the FTIR spectra of chitosan synthesized. TGA results demonstrated the lower thermal stability of chitosan. Relatively smother surface and nano-fiber structures were observed from SEM analysis. The degree of deacetylation of chitosan from different sources such as shells of fish, shrimp and crab were found to be 75%, 78%, and 70% respectively. In a similar way the WBC and FBC of fish, shrimp and crab shells were found to be 492, 358 and 138% and 226, 246 and 138% respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Chitosan-g-MPEG-modified alginate/chitosan hydrogel microcapsules: a quantitative study of the effect of polymer architecture on the resistance to protein adsorption.

    PubMed

    Zheng, Jia N; Xie, Hong G; Yu, Wei T; Liu, Xiu D; Xie, Wei Y; Zhu, Jing; Ma, Xiao J

    2010-11-16

    The chemical modification of the alginate/chitosan/alginate (ACA) hydrogel microcapsule with methoxy poly(ethylene glycol) (MPEG) was investigated to reduce nonspecific protein adsorption and improve biocompatibility in vivo. The graft copolymer chitosan-g-MPEG (CS-g-MPEG) was synthesized, and then alginate/chitosan/alginate/CS-g-MPEG (ACAC(PEG)) multilayer hydrogel microcapsules were fabricated by the layer-by-layer (LBL) polyelectrolyte self-assembly method. A quantitative study of the modification was carried out by the gel permeation chromatography (GPC) technique, and protein adsorption on the modified microcapsules was also investigated. The results showed that the apparent graft density of the MPEG side chain on the microcapsules decreased with increases in the degree of substitution (DS) and the MPEG chain length. During the binding process, the apparent graft density of CS-g-MPEG showed rapid growth-plateau-rapid growth behavior. CS-g-MPEG was not only bound to the surface but also penetrated a certain depth into the microcapsule membranes. The copolymers that penetrated the microcapsules made a smaller contribution to protein repulsion than did the copolymers on the surfaces of the microcapsules. The protein repulsion ability decreased with the increase in DS from 7 to 29% with the same chain length of MPEG 2K. CS-g-MPEG with MPEG 2K was more effective at protein repulsion than CS-g-MPEG with MPEG 550, having a similar DS below 20%. In this study, the microcapsules modified with CS-g-MPEG2K-DS7% had the lowest IgG adsorption of 3.0 ± 0.6 μg/cm(2), a reduction of 61% compared to that on the chitosan surface.

  3. 12 CFR 324.134 - Guarantees and credit derivatives: PD substitution and LGD adjustment approaches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... credit derivative covering an exposure described in paragraph (a)(1) of this section by using the PD... hedged exposures—(1) PD substitution approach—(i) Full coverage. If an eligible guarantee or eligible..., where PD is the protection provider's PD, LGD is determined under paragraph (c)(1)(iii) of this section...

  4. 12 CFR 217.134 - Guarantees and credit derivatives: PD substitution and LGD adjustment approaches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... credit derivative covering an exposure described in paragraph (a)(1) of this section by using the PD... hedged exposures—(1) PD substitution approach—(i) Full coverage. If an eligible guarantee or eligible..., where PD is the protection provider's PD, LGD is determined under paragraph (c)(1)(iii) of this section...

  5. Synthesis and biological evaluation of substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydropyridin-1-yl]benzamide/benzene sulfonamides as anti-inflammatory agents.

    PubMed

    Gangapuram, Madhavi; Mazzio, Elizabeth; Eyunni, Suresh; Soliman, Karam F A; Redda, Kinfe K

    2014-05-01

    The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a-l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 µg/mL)-activated microglial cells. The data show that only SO2 -substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 µM (9i), 14.64 µM (9j), 19.63 µM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50  = 3.1 µM). The most potent SO2 -substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immuno-modulating effects of SO2 -substituted THP derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photophysical investigation of cyano-substituted terrylenediimide derivatives.

    PubMed

    Kennes, Koen; Baeten, Yannick; Vosch, Tom; Sempels, Wouter; Yordanov, Stoyan; Stappert, Sebastian; Chen, Long; Müllen, Klaus; Hofkens, Johan; Van der Auweraer, Mark; Fron, Eduard

    2014-12-18

    Two new terrylenediimide (TDI) chromophores with cyano substituents in the bay and core area (BCN-TDI and OCN-TDI, respectively) have been characterized by a wide range of techniques, and their applicability for stimulated emission depletion (STED) microscopy has been tested. By cyano substitution an increase of the fluorescence quantum yield and a decrease of the nonradiative rate constant is achieved and attributed to a reduced charge-transfer character of the excited state due to a lower electron density of the TDI core. For BCN-TDI, the substitution in the bay area induces a strong torsional twist in the molecule which, similar to phenoxy bay-perylenediimide (PDI), has a strong effect on the fluorescence lifetime but appears to prevent the aggregation that is observed for OCN-TDI. The single-molecule photobleaching stability of BCN- and OCN-TDI is lower than that of a reference TDI without cyano substitution (C7-TDI), although less so for OCN-TDI. The photophysical properties of the excited singlet state are only slightly influenced by the cyano groups. The observed intense stimulated emission, the pump-dump-probe experiments, and STED single-molecule imaging indicate that STED experiments with the cyano-substituted TDIs are possible. However, because of aggregation and more efficient photobleaching, the performance of BCN- and OCN-TDI is worse than that of the reference compound without cyano groups (C7-TDI). Bay-substituted TDIs are less suitable for STED microscopy.

  7. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films.

    PubMed

    Ren, Lili; Yan, Xiaoxia; Zhou, Jiang; Tong, Jin; Su, Xingguang

    2017-12-01

    The active packaging films based on corn starch and chitosan were prepared through mixing the starch solution and the chitosan solution (1:1) by casting. The aim of this work was to characterize and analyze the effects of the chitosan concentrations (0, 21, 41, 61 and 81wt% of starch) on physicochemical, mechanical and water vapor barrier properties as well as morphological characteristics of the corn starch/chitosan (CS/CH) films. Starch molecules and chitosan could interact through hydrogen bonding as confirmed from the shift of the main peaks to higher wavenumbers in FTIR and the reduction of crystallinity in XRD. Results showed that the incorporation of chitosan resulted in an increase in film solubility, total color differences, tensile strength and elongation at break and a decrease in Young's modulus and water vapor permeability (WVP). Elongation at break of the CS/CH films increased with increasing of chitosan concentration, and reached a maximum at 41 wt%, then declined at higher chitosan concentration. The WVP of CS/CH films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. The results suggest that this biodegradable CS/CH films could potentially be used as active packaging films for food and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Biologically active chitosan systems for tissue engineering and regenerative medicine.

    PubMed

    Jiang, Tao; Kumbar, Sangamesh G; Nair, Lakshmi S; Laurencin, Cato T

    2008-01-01

    Biodegradable polymeric scaffolds are widely used as a temporary extracellular matrix in tissue engineering and regenerative medicine. By physical adsorption of biomolecules on scaffold surface, physical entrapment of biomolecules in polymer microspheres or hydrogels, and chemical immobilization of oligopeptides or proteins on biomaterials, biologically active biomaterials and scaffolds can be derived. These bioactive systems show great potential in tissue engineering in rendering bioactivity and/or specificity to scaffolds. This review highlights some of the biologically active chitosan systems for tissue engineering application and the associated strategies to develop such bioactive chitosan systems.

  9. Characterization of Chitin and Chitosan Molecular Structure in Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franca, Eduardo D.; Lins, Roberto D.; Freitas, Luiz C.

    Molecular dynamics simulations have been used to characterize the structure of chitin and chitosan fibers in aqueous solutions. Chitin fibers, whether isolated or in the form of a β-chitin nanoparticle, adopt the so-called 2-fold helix with Φ and φ values similar to its crystalline state. In solution, the intramolecular hydrogen bond HO3(n)•••O5(n+1) responsible for the 2-fold helical motif is stabilized by hydrogen bonds with water molecules in a well-defined orientation. On the other hand, chitosan can adopt five distinct helical motifs and its conformational equilibrium is highly dependent on pH. The hydrogen bond pattern and solvation around the O3 atommore » of insoluble chitosan (basic pH) are nearly identical to these quantities in chitin. Our findings suggest that the solubility and conformation of these polysaccharides are related to the stability of the intrachain HO3(n)•••O5(n+1) hydrogen bond, which is affect by the water exchange around the O3-HO3 hydroxyl group.« less

  10. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief.

    PubMed

    Patel, Deepa; Naik, Sachin; Chuttani, Krishna; Mathur, Rashi; Mishra, Anil K; Misra, Ambikanandan

    2013-09-01

    The purpose of present investigation was to formulate and characterize the cyclobenzaprine HCl (CBZ)-loaded thiolated chitosan nanoparticles and assessment of in-vitro cell viability, trans-mucosal permeability on RPMI2650 cell monolayer, in-vivo pharmacokinetic and pharmacodynamic study of thiolated chitosan nanoparticles on Swiss albino mice after intranasal administration. A significant high permeation of drug was observed from thiolated chitosan nanoparticles with less toxicity on nasal epithelial cells. Brain uptake of the drug after (99m)Tc labeling was significantly enhanced after thiolation of chitosan. CBZ-loaded thiolated chitosan NPs significantly reverse the N-Methyl-.-Aspartate (NMDA)-induced hyperalgesia by intranasal administration than the CBZ solution. The studies of present investigation revealed that thiolation of chitosan significantly reduce trans-mucosal toxicity with enhanced trans-mucosal permeability via paracellular pathway and brain uptake of a hydrophilic drug (normally impermeable across blood brain barrier) and pain alleviation activity via intranasal route.

  11. Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos

    PubMed Central

    Özel, Rıfat Emrah; Wallace, Kenneth N.; Andreescu, Silvana

    2011-01-01

    We report the development of a chitosan modified carbon fiber microelectrode for in vivo detection of serotonin. We find that chitosan has the ability to reject physiological levels of ascorbic acid interferences and facilitate selective and sensitive detection of in vivo levels of serotonin, a common catecholamine neurotransmitter. Presence of chitosan on the microelectrode surface was investigated using scanning electron microscopy (SEM) and cyclic voltammetry (CV). The electrode was characterized using differential pulse voltammetry (DPV). A detection limit of 1.6 nM serotonin with a sensitivity of 5.12 nA/µM, a linear range from 2 to 100 nM and a reproducibility of 6.5 % for n=6 electrodes were obtained. Chitosan modified microelectrodes selectively measure serotonin in presence of physiological levels of ascorbic acid. In vivo measurements were performed to measure concentration of serotonin in the live embryonic zebrafish intestine. The sensor quantifies in vivo intestinal levels of serotonin while successfully rejecting ascorbic acid interferences. We demonstrate that chitosan can be used as an effective coating to reject ascorbic acid interferences at carbon fiber microelectrodes, as an alternative to Nafion, and that chitosan modified microelectrodes are reliable tools for in vivo monitoring of changes in neurotransmitter levels. PMID:21601035

  12. Transfection efficiency of chitosan and thiolated chitosan in retinal pigment epithelium cells: A comparative study

    PubMed Central

    Oliveira, Ana V.; Silva, Andreia P.; Bitoque, Diogo B.; Silva, Gabriela A.; Rosa da Costa, Ana M.

    2013-01-01

    OBJECTIVE: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. MATERIALS AND METHODS: Chitosan and thiolated chitosan nanoparticles (NPs) were prepared in order to obtain a NH3+:PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. RESULTS: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. CONCLUSION: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery. PMID:23833516

  13. Photochemical tissue bonding with chitosan adhesive films

    PubMed Central

    2010-01-01

    Background Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31). The adhesion strength dropped to 0.5 ± 0.1 (n = 8) kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase. PMID:20825632

  14. Feasibility study of the natural derived chitosan dialdehyde for chemical modification of collagen.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua; Gong, Juxia

    2016-01-01

    The aim of this study is to evaluate the chemical crosslinking effects of the natural derived chitosan dialdehyde (OCS) on collagen. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and circular dichroism (CD) measurements suggest that introducing OCS might not destroy the natural triple helix conformation of collagen but enhance the thermal-stability of collagen. Meanwhile, a denser fibrous network of cross-linked collagen is observed by atomic force microscopy. Further, scanning electron microscopy (SEM) and aggregation kinetics analysis confirm that the fibrillation process of collagen advances successfully and OCS could lengthen the completion time of collagen fibrillogenesis but raise the reconstitution rate of collagen fibrils or microfibrils. Besides, the cytocompatibility analysis implies that when the dosage of OCS is less than 15%, introducing OCS into collagen might be favorable for the cell's adhesion, growth and proliferation. Taken as a whole, the present study demonstrates that OCS might be an ideal crosslinker for the chemical fixation of collagen. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Synthesis and antidepressant properties of novel 2-substituted 4,5-dihydro-1H-imidazole derivatives.

    PubMed

    Wentland, M P; Bailey, D M; Alexander, E J; Castaldi, M J; Ferrari, R A; Haubrich, D R; Luttinger, D A; Perrone, M H

    1987-08-01

    A unique combination of alpha 2-adrenoreceptor antagonist and serotonin-selective reuptake inhibitory activities has been identified in a series of 2-substituted 4,5-dihydro-1H-imidazole derivatives. This combination of blocking activities has provided one of these derivatives, napamezole hydrochloride (2), with potential as an antidepressant. A discussion of the syntheses of these compounds includes a convenient method for the conversion of nitriles to imidazolines with ethylenediamine and trimethylaluminum.

  16. Improvement in hemocompatibility of chitosan/soy protein composite membranes by heparinization.

    PubMed

    Wang, Xiaomei; Shi, Na; Chen, Yan; Li, Chen; Du, Xinshen; Jin, Weihua; Chen, Yun; Chang, Peter R

    2012-01-01

    To improve the hemocompatibility of chitosan/soy protein isolate composite membranes by heparinization. Chitosan/soy protein isolate membranes (ChS-n, n=0, 10 and 30, corresponding to the soy protein isolate content in the membranes) and heparinized ChS-n membranes (HChS-n) were prepared by blending in dilute HAc/NaAc solution. The hemocompatibility of ChS-n and HChS-n membranes were comparatively evaluated by measuring surface heparin density, blood platelet adhesion, plasma recalcification time (PRT), thrombus formation and hemolysis assay. The surface heparin density analysis showed that heparinized chitosan/SPI soy protein isolate membranes have been successfully prepared by blending. The density of heparin on the surface of HChS-n membranes was in the range of 0.67-1.29 μg/cm2. The results of platelet adhesion measurement showed that the platelet adhesion numbers of HChS-n membranes were lower than those of the corresponding ChS-n membranes. The PRT of the HChS-0, HChS-10 and HChS-30 membranes were around 292, 306 and 295 s, respectively, which were longer than the corresponding ChS-0 (152 s), ChS-10 (204 s) and ChS-30 (273 s) membranes. The hemolysis rate of HChS-n membranes was lower than 1%. The hemocompatibility of ChS membranes could be improved by blending with heparin. Compared with ChS membranes, HChS membranes showed lower platelet adhesion, longer PRT, higher BCI, significant thromboresistivity and a lower hemolysis rate due to the heparinization. This widens the application of chitosan and soy protein-based biomaterials that may come in contact with blood.

  17. Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel.

    PubMed

    Chen, Daquan; Yu, Hongyun; Mu, Hongjie; Wei, Junhua; Song, Zhenkun; Shi, Hong; Liang, Rongcai; Sun, Kaoxiang; Liu, Wanhui

    2013-04-15

    In this study, a novel liposome-loaded microbubble gel based on N-cholesteryl hemisuccinate-O-sulfate chitosan (NCHOSC) was designed. The structure of the NCHOSC was characterized by FTIR and (1)H NMR. The liposomal microbubble gel based on NCHOSC with a high encapsulation efficiency of curcumin was formed and improved the solubility of curcumin. The diameter of most liposomal microbubble was about 950 nm. The temperature-sensitive CS/GP gel could be formulated at room temperature and would form a gel at body temperature. Simultaneously, the ultrasound-sensitive induced release of curcumin was 85% applying ultrasound. The results of cytotoxicity assay indicated that encapsulated curcumin in Cur-LM or Cur-LM-G was less toxic. The anti-tumor efficacy in vivo suggested that Cur-LM-G by ultrasound suppressed tumor growth most efficiently. These findings have shed some light on the potential NCHOSC material used to liposome-loaded microbubble gel for temperature and ultrasound dual-sensitive drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Tandem SN2' nucleophilic substitution/oxidative radical cyclization of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds.

    PubMed

    Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming

    2017-04-11

    A novel and efficient tandem S N 2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc) 3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.

  19. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering.

    PubMed

    Adekogbe, Iyabo; Ghanem, Amyl

    2005-12-01

    Chitosan, the deacetylated derivative of chitin, is a promising scaffold material for skin tissue engineering applications. It is biocompatible and biodegradable, and the degradation products are resorbable. However, the rapid degradation of chitosan and its low mechanical strength are concerns that may limit its use. In this study, chitosan with 80%, 90% and 100% degree of deacetylation (DDA) was crosslinked with dimethyl 3-3, dithio bis' propionimidate (DTBP) and compared to uncrosslinked scaffolds. The scaffolds were characterized with respect to important tissue engineering properties. The tensile strength of scaffolds made from 100% DDA chitosan was significantly higher than for scaffolds made from 80% and 90% DDA chitosan. Crosslinking of scaffolds with DTBP increased the tensile strength. Crosslinking with DTBP had no significant effect on water vapour transmission rate (WVTR) or water absorption but had significant effect on the pore size and porosity of the samples. All samples showed a WVTR and pore size distribution suitable for skin tissue engineering; however, the water absorption and porosity were lower than the optimal values for skin tissue engineering. The biodegradation rate of scaffolds crosslinked with DTBP and glutaraldehyde (GTA) were reduced while no significant effect was observed in biodegradation of the samples made from 100% DDA chitosan whether crosslinked or uncrosslinked after 24 days of degradation.

  20. 8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors

    PubMed Central

    2016-01-01

    We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay. PMID:26741168

  1. The dispersion of fine chitosan particles by beads-milling

    NASA Astrophysics Data System (ADS)

    Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.

  2. Hexavalent chromium removal by chitosan modified-bioreduced nontronite

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Zeng, Qiang; Zhang, Li; Rengasamy, Karthikeyan

    2017-08-01

    Recent efforts have focused on structural Fe(II) in chemically or biologically reduced clay minerals to immobilize Cr(VI) from aqueous solution, but the coulombic repulsion between the negatively charged clay surface and the polyanionic form of Cr(VI), e.g., dichromate, can hinder the effectiveness of this process. The purpose of this study was to investigate the efficiency and mechanism of Cr(VI) removal by a charge-reversed nontronite (NAu-2), an Fe-rich smectite. Chitosan, a linear polysaccharide derived from chitin found in soil and groundwater, was used to reverse the charge of NAu-2. Intercalation of chitosan into NAu-2 interlayer increased the basal d-spacing of NAu-2 from 1.23 nm to 1.83 nm and zeta potential from -27.17 to +34.13 mV, with the amount of increase depending on chitosan/NAu-2 ratio. Structural Fe(III) in chitosan-exchanged NAu-2 was then biologically reduced by an iron-reducing bacterium Shewanella putrefaciens CN32 in bicarbonate buffer with lactate as the sole electron donor, with and without electron shuttle, AQDS. Without AQDS, the extent of Fe(III) reduction increased from the lowest (∼9%) for the chitosan-free NAu-2 to the highest (∼12%) for the highest chitosan loaded NAu-2 (3:1 ratio). This enhancement of Fe(III) reduction was likely due to the attachment of negatively charged bacterial cells to charge-reversed (e.g., positively charged) NAu-2 surfaces, facilitating the electron transfer between cells and structural Fe(III). With AQDS, Fe(III) reduction extent doubled relative to those without AQDS, but the enhancement effect was similar across all chitosan loadings, suggesting that AQDS was more important than chitosan in enhancing Fe(III) bioreduction. Chitosan-exchanged, biologically reduced NAu-2 was then utilized for removing Cr(VI) in batch experiments with three consecutive spikes of 50 μM Cr. With the first Cr spike, the rate of Cr(VI) removal by charged-reversed NAu-2 that was bioreduced without and with AQDS was ∼1

  3. Adipose-derived stem-cell-implanted poly(ϵ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model.

    PubMed

    Zhou, Zhe; Yan, Hao; Liu, Yidong; Xiao, Dongdong; Li, Wei; Wang, Qiong; Zhao, Yang; Sun, Kang; Zhang, Ming; Lu, Mujun

    2018-04-01

    The study investigated the feasibility of seeding adipose-derived stem cells (ASCs) onto a poly(ϵ-caprolactone)/chitosan (PCL/CS) scaffold for bladder reconstruction using a rat model of bladder augmentation. In the experimental group, the autologous ASCs were seeded onto the PCL/CS scaffold for bladder augmentation. An unseeded scaffold was used for bladder augmentation as control group. The sham group was also set. 8 weeks after implantation, more densely smooth muscles were detected in the experimental group with a larger bladder capacity and more intensive blood vessels. Immunofluorescence staining demonstrated that some of the smooth muscle cells were transdifferentiated from the ASCs. Our findings indicated that ASC-seeded PCL/CS may be a potential scaffold for bladder tissue engineering.

  4. In Vivo Assessment of Chitosan/ β-Glycerophosphate as a New Liquid Embolic Agent

    PubMed Central

    Wang, Y.; Xu, N.; Luo, Q.; Li, Y.; Sun, L.; Wang, H.; Xu, K.; Wang, B.; Zhen, Y.

    2011-01-01

    Summary We sought to assess the feasibility of using thermosensitive chitosan/β-glycerophosphate for embolotherapy. The renal arteries in nine rabbits were embolized with chitosan/β-glycerophosphate. The animals were studied angiographically and sacrificed at one week (n = 3), four weeks (n = 3), and eight weeks (n = 3) after embolotherapy. Histology was obtained at these three time points. Delivery of chitosan/β-glycerophosphate was successful in all cases. Complete occlusion was achieved in all cases. No recanalization was observed in the follow-up angiograms. No untoward inflammatory reactions were observed in the target renal arteries and infarcted kidneys during the histological examinations. Our preliminary feasibility evaluation in rabbit renal arteries indicates that C/GP is a satisfactory embolization agent. PMID:21561564

  5. Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide).

    PubMed

    Kononova, Svetlana V; Kruchinina, Elena V; Petrova, Valentina A; Baklagina, Yulia G; Romashkova, Kira A; Orekhov, Anton S; Klechkovskaya, Vera V; Skorik, Yury A

    2017-12-14

    Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone- N -phenylphthalimide) and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol) mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH₃⁺ for chitosan and -SO₃ - for sulfoethylcellulose) show high permselectivity (the water content in the permeate was 100%). Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes.

  6. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation.

    PubMed

    Jintapattanakit, Anchalee; Mao, Shirui; Kissel, Thomas; Junyaprasert, Varaporn Buraphacheep

    2008-10-01

    The aim of this research was to investigate the effect of degrees of quaternization (DQ) and dimethylation (DD) on physicochemical properties and cytotoxicity of N-trimethyl chitosan (TMC). TMC was synthesized by reductive methylation of chitosan in the presence of a strong base at elevated temperature and polymer characteristics were investigated. The number of methylation process and duration of reaction were demonstrated to affect the DQ and DD. An increased number of reaction steps increased DQ and decreased DD, while an extended duration of reaction increased both DQ and DD. The molecular weight of TMC was in the range of 60-550kDa. From the Mark-Houwink equation, it was found that TMC in 2% acetic acid/0.2M sodium acetate behaved as a spherical structure, approximating a random coil. The highest solubility was found with TMC of an intermediate DQ (40%) regardless of DD and molecular weight. The effect of DD on the physicochemical properties and cytotoxicity was obviously observed when proportion of DD to DQ was higher than 1. TMC with relatively high DD showed reduction in both solubility and mucoadhesion and hence decreased cytotoxicity. However, the influence of DD was insignificant when DQ of TMC was higher than 40% at which physicochemical properties and cytotoxicity were mainly dependent upon DQ.

  7. Synthesis, photophysical, and electrochemical properties of wide band gap tetraphenylsilane-carbazole derivatives: Effect of the substitution position and naphthalene side chain

    NASA Astrophysics Data System (ADS)

    Ho, Kar Wei; Ariffin, A.

    2016-12-01

    Four tetraphenylsilane-carbazole derivatives with wide bandgaps (3.38-3.55 eV) were synthesized. The effects of the substitution position and of the presence of naphthalene groups on the photophysical, electrochemical and thermal properties were investigated. The derivatives exhibited maximum absorption peaks ranging from 293 to 304 nm and maximum emission peaks ranging from 347 to 386 nm. Changing the carbazole substitution position on the tetraphenylsilane did not significantly change the photophysical and electrochemical properties. However, p-substituted compounds exhibited higher glass transition temperatures than m-substituted compounds. Naphthalene groups with bulky structures had extended the conjugation lengths that red-shifted both the absorption and emission spectra. The LUMO level was decreased, which reduced the optical bandgap and triplet energy level. However, the naphthalene groups significantly improved the thermal stability by increasing the glass transition temperature of the compounds.

  8. Investigation of Self-Assembly Processes for Chitosan-Based Coagulant-Flocculant Systems: A Mini-Review

    PubMed Central

    Bhalkaran, Savi; Wilson, Lee D.

    2016-01-01

    The presence of contaminants in wastewater poses significant challenges to water treatment processes and environmental remediation. The use of coagulation-flocculation represents a facile and efficient way of removing charged particles from water. The formation of stable colloidal flocs is necessary for floc aggregation and, hence, their subsequent removal. Aggregation occurs when these flocs form extended networks through the self-assembly of polyelectrolytes, such as the amine-based polysaccharide (chitosan), which form polymer “bridges” in a floc network. The aim of this overview is to evaluate how the self-assembly process of chitosan and its derivatives is influenced by factors related to the morphology of chitosan (flocculant) and the role of the solution conditions in the flocculation properties of chitosan and its modified forms. Chitosan has been used alone or in conjunction with a salt, such as aluminum sulphate, as an aid for the removal of various waterborne contaminants. Modified chitosan relates to grafted anionic or cationic groups onto the C-6 hydroxyl group or the amine group at C-2 on the glucosamine monomer of chitosan. By varying the parameters, such as molecular weight and the degree of deacetylation of chitosan, pH, reaction and settling time, dosage and temperature, self-assembly can be further investigated. This mini-review places an emphasis on the molecular-level details of the flocculation and the self-assembly processes for the marine-based biopolymer, chitosan. PMID:27706052

  9. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration.

    PubMed

    Busilacchi, Alberto; Gigante, Antonio; Mattioli-Belmonte, Monica; Manzotti, Sandra; Muzzarelli, Riccardo A A

    2013-10-15

    The idea of using chitosan as a functional delivery aid to support simultaneously PRP, stem cells and growth factors (GF) is associated with the intention to use morphogenic biomaterials to modulate the natural healing sequence in bone and other tissues. For example, chitosan-chondroitin sulfate loaded with platelet lysate was included in a poly(D,L-lactate) foam that was then seeded with human adipose-derived stem cells and cultured in vitro under osteogenic stimulus: the platelet lysate provided to the bone tissue the most suitable assortment of GF which induces the osteogenic differentiation of the mesenchymal stem cells. PDGF, FGF, IGF and TGF-β were protagonists in the repair of callus fractures. The release of GF from the composites of chitosan-PRP and either nano-hydroxyapatite or tricalcium phosphate was highly beneficial for enhancing MSC proliferation and differentiation, thus qualifying chitosan as an excellent vehicle. A number of biochemical characteristics of chitosan exert synergism with stem cells in the regeneration of soft tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Structure-Activity Relationships of Truncated C2- or C8-Substituted Adenosine Derivatives as Dual Acting A2A and A3 Adenosine Receptor Ligands

    PubMed Central

    Hou, Xiyan; Majik, Mahesh S.; Kim, Kyunglim; Pyee, Yuna; Lee, Yoonji; Alexander, Varughese; Chung, Hwa-Jin; Lee, Hyuk Woo; Chandra, Girish; Lee, Jin Hee; Park, Seul-gi; Choi, Won Jun; Kim, Hea Ok; Phan, Khai; Gao, Zhan-Guo; Jacobson, Kenneth A.; Choi, Sun; Lee, Sang Kook; Jeong, Lak Shin

    2011-01-01

    Truncated N6-substituted-4′-oxo- and 4′-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A2A and A3 adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA2AAR, but hydrophobic C8 substitution abolished binding at the hA2AAR. However, most of synthesized compounds displayed medium to high binding affinity at the hA3AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA2AAR agonists. C2 substitution probed geometrically through hA2AAR-docking, was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA2AAR agonist and hA3AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases. PMID:22142423

  11. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  12. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    PubMed

    Mann, Alex J; Noulin, Nicolas; Catchpole, Andrew; Stittelaar, Koert J; de Waal, Leon; Veldhuis Kroeze, Edwin J B; Hinchcliffe, Michael; Smith, Alan; Montomoli, Emanuele; Piccirella, Simona; Osterhaus, Albert D M E; Knight, Alastair; Oxford, John S; Lapini, Giulia; Cox, Rebecca; Lambkin-Williams, Rob

    2014-01-01

    We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and

  13. Reactivities of Substituted α-Phenyl-N-tert-butyl Nitrones

    PubMed Central

    2015-01-01

    In this work, a series of α-phenyl-N-tert-butyl nitrones bearing one, two, or three substituents on the tert-butyl group was synthesized. Cyclic voltammetry (CV) was used to investigate their electrochemical properties and showed a more pronounced substituent effect for oxidation than for reduction. Rate constants of superoxide radical (O2•–) reactions with nitrones were determined using a UV–vis stopped-flow method, and phenyl radical (Ph•) trapping rate constants were measured by EPR spectroscopy. The effect of N-tert-butyl substitution on the charge density and electron density localization of the nitronyl carbon as well as on the free energies of nitrone reactivity with O2•– and HO2• were computationally rationalized at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level of theory. Theoretical and experimental data showed that the rates of the reaction correlate with the nitronyl carbon charge density, suggesting a nucleophilic nature of O2•– and Ph• addition to the nitronyl carbon atom. Finally, the substituent effect was investigated in cell cultures exposed to hydrogen peroxide and a correlation between the cell viability and the oxidation potential of the nitrones was observed. Through a combination of computational methodologies and experimental methods, new insights into the reactivity of free radicals with nitrone derivatives have been proposed. PMID:24968285

  14. Encapsulation of testosterone by chitosan nanoparticles.

    PubMed

    Chanphai, P; Tajmir-Riahi, H A

    2017-05-01

    The loading of testosterone by chitosan nanoparticles was investigated, using multiple spectroscopic methods, thermodynamic analysis, TEM images and modeling. Thermodynamic parameters showed testosterone-chitosan bindings occur mainly via H-bonding and van der Waals contacts. As polymer size increased more stable steroid-chitosan conjugates formed and hydrophobic contact was also observed. The loading efficacy of testosterone-nanocarrier was 40-55% and increased as chitosan size increased. Testosterone encapsulation markedly alters chitosan morphology. Chitosan nanoparticles are capable of transporting testosterone in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold.

    PubMed

    Ye, Ken; Felimban, Raed; Traianedes, Kathy; Moulton, Simon E; Wallace, Gordon G; Chung, Johnson; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-01-01

    Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGFβ3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a 'cap' on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGFβ3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGFβ3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft.

  16. Design, synthesis, and biological evaluation of 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates.

    PubMed

    Liu, Jie; Liu, Qin; Yang, Xue; Xu, Shengtao; Zhang, Hengyuan; Bai, Renren; Yao, Hequan; Jiang, Jieyun; Shen, Mingqin; Wu, Xiaoming; Xu, Jinyi

    2013-12-15

    A series of novel 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives were designed and synthesized to develop new angiotensin II subtype 2 (AT2) receptor agonists as novel antihypertensive candidates. It was found that 14f (IC50=0.4 nM) and 15e (IC50=5.0 nM) displayed potent AT2 receptor affinity and selectivity in binding assays. Biological evaluation in vivo suggested that 14f is obviously superior to that of reference drug losartan in RHRs, and meanwhile, 14f has no significant impact on heart rate. The interesting activities of these compounds may make them promising candidates as antihypertensive agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish.

    PubMed

    Jovanović, Gordana D; Klaus, Anita S; Nikšić, Miomir P

    2016-01-01

    The antibacterial activity of chitosan coatings prepared with acetic or lactic acid, as well as of composite chitosan-gelatin films prepared with essential oils, was evaluated in fresh shredded black radish samples inoculated with Listeria monocytogenes ATCC 19115 and L. monocytogenes ATCC 19112 during seven days of storage at 4°C. The chitosan coating prepared with acetic acid showed the most effective antibacterial activity. All tested formulations of chitosan films exhibited strong antimicrobial activity on the growth of L. monocytogenes on black radish, although a higher inhibition of pathogens was achieved at higher concentrations of chitosan. The antimicrobial effect of chitosan films was even more pronounced with the addition of essential oils. Chitosan-gelatin films with thyme essential oils showed the most effective antimicrobial activity. A reduction of 2.4log10CFU/g for L. monocytogenes ATCC 19115 and 2.1log10CFU/g for L. monocytogenes ATCC 19112 was achieved in the presence of 1% chitosan film containing 0.2% of thyme essential oil after 24h of storage. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Dense chitosan surgical membranes produced by a coincident compression-dehydration process

    PubMed Central

    Dooley, Thomas P.; Ellis, April L.; Belousova, Maria; Petersen, Don; DeCarlo, Arthur A.

    2012-01-01

    High density chitosan membranes were produced via a novel manufacturing process for use as implantable resorbable surgical membranes. The innovative method utilizes the following three sequential steps: (1) casting an acidic chitosan solution within a silicon mold, followed by freezing; (2) neutralizing the frozen acidic chitosan solution in alkaline solution to facilitate polymerization; and (3) applying coincident compression-dehydration under a vacuum. Resulting membranes of 0.2 – 0.5 mm thickness have densities as high as 1.6 g/cm3. Inclusion of glycerol prior to the compression-dehydration step provides additional physical and clinical handling benefits. The biomaterials exhibit tensile strength with a maximum load as high as 10.9 N at ~ 2.5 mm width and clinically-relevant resistance to suture pull-out with a maximum load as high as 2.2 N. These physical properties were superior to those of a commercial reconstituted collagen membrane. The dense chitosan membranes have excellent clinical handling characteristics, such as pliability and “memory” when wet. They are semi-permeable to small molecules, biodegradable in vitro in lysozyme solution, and the rates of degradation are inversely correlated to the degree of deacetylation. Furthermore, the dense chitosan membranes are biocompatible and resorbable in vivo as demonstrated in a rat oral wound healing model. The unique combination of physical, in vitro, in vivo, and clinical handling properties demonstrate the high utility of dense chitosan membranes produced by this new method. The materials may be useful as surgical barrier membranes, scaffolds for tissue engineering, wound dressings, and as delivery devices for active ingredients. PMID:23565872

  19. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides.

    PubMed

    Lavrov, K V; Zalunin, I A; Kotlova, E K; Yanenko, A S

    2010-08-01

    A new acylamidase was isolated from Rhodococcus erythropolis TA37 and characterized. N-Substituted acrylamides (isopropyl acrylamide, N,N-dimethyl-aminopropyl acrylamide, and methylene-bis-acrylamide), acid para-nitroanilides (4'-nitroacetanilide, Gly-pNA, Ala-pNA, Leu-pNA), and N-acetyl derivatives of glycine, alanine, and leucine are good substrates for this enzyme. Aliphatic amides (acetamide, acrylamide, isobutyramide, n-butyramide, and valeramide) are also used as substrates but with less efficiency. The enzyme subunit mass by SDS-PAGE is 55 kDa. Maximal activity is exhibited at pH 7-8 and 55°C. The enzyme is stable for 15 h at 22°C and for 0.5 h at 45°C. The Michaelis constant (K(m)) is 0.25 mM with Gly-pNA and 0.55 mM with Ala-pNA. The acylamidase activity is suppressed by inhibitors of serine proteases (phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate) but is not suppressed by inhibitors of aliphatic amidases (acetaldehyde and nitrophenyl disulfides). The N-terminal amino acid sequence of the acylamidase is highly homologous to those of two putative amidases detected from sequenced R. erythropolis genomes. It is suggested that the acylamidase together with the detected homologs forms a new class within the amidase signature family.

  20. Functionalized and graft copolymers of chitosan and its pharmaceutical applications.

    PubMed

    Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab

    2017-10-01

    Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.

  1. Fusion of a Novel Genetically Engineered Chitosan Affinity Protein and Green Fluorescent Protein for Specific Detection of Chitosan In Vitro and In Situ

    PubMed Central

    Nampally, Malathi; Moerschbacher, Bruno Maria

    2012-01-01

    Chitin is the second most abundant polysaccharide, present, e.g., in insect and arthropod exoskeletons and fungal cell walls. In some species or under specific conditions, chitin appears to be enzymatically de-N-acetylated to chitosan—e.g., when pathogenic fungi invade their host tissues. Here, the deacetylation of chitin is assumed to represent a pathogenicity mechanism protecting the fungus from the host's chitin-driven immune response. While highly specific chitin binding lectins are well known and easily available, this is not the case for chitosan-specific probes. This is partly due to the poor antigenicity of chitosan so that producing high-affinity, specific antibodies is difficult. Also, lectins with specificity to chitosan have been described but are not commercially available, and our attempts to reproduce the findings were not successful. We have, therefore, generated a fusion protein between a chitosanase inactivated by site-directed mutagenesis, the green fluorescent protein (GFP), and StrepII, as well as His6 tags for purification and detection. The recombinant chitosan affinity protein (CAP) expressed in Escherichia coli was shown to specifically bind to chitosan, but not to chitin, and the affinity increased with decreasing degree of acetylation. In vitro, CAP detection was possible either based on GFP fluorescence or using Strep-Tactin conjugates or anti-His5 antibodies. CAP fluorescence microscopy revealed binding to the chitosan exposing endophytic infection structures of the wheat stem rust fungus, but not the chitin exposing ectophytic infection structures, verifying its suitability for in situ chitosan staining. PMID:22367086

  2. Combined effects of sodium chlorite dip treatment and chitosan coatings on the quality of fresh-cut d’Anjou pears

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the effects of sodium chlorite (SC) alone and its sequential treatment with edible coatings on browning inhibition and quality maintenance of fresh-cut d’Anjou pears. Edible coatings were prepared from chitosan (CH) and its water soluble derivative: carboxymethyl chitosan (CMCH...

  3. Aryl substitution of pentacenes

    PubMed Central

    Waterloo, Andreas R; Sale, Anna-Chiara; Lehnherr, Dan; Hampel, Frank

    2014-01-01

    Summary A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films), thermoanalytical methods (DSC and TGA), cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives). X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices. PMID:25161729

  4. Pseudo-thermosetting chitosan hydrogels for biomedical application.

    PubMed

    Berger, J; Reist, M; Chenite, A; Felt-Baeyens, O; Mayer, J M; Gurny, R

    2005-01-20

    To prepare transparent chitosan/beta-glycerophosphate (betaGP) pseudo-thermosetting hydrogels, the deacetylation degree (DD) of chitosan has been modified by reacetylation with acetic anhydride. Two methods (I and II) of reacetylation have been compared and have shown that the use of previously filtered chitosan, dilution of acetic anhydride and reduction of temperature in method II improves efficiency and reproducibility. Chitosans with DD ranging from 35.0 to 83.2% have been prepared according to method II under homogeneous and non-homogeneous reacetylation conditions and the turbidity of chitosan/betaGP hydrogels containing homogeneously or non-homogeneously reacetylated chitosan has been investigated. Turbidity is shown to be modulated by the DD of chitosan and by the homogeneity of the medium during reacetylation, which influences the distribution mode of the chitosan monomers. The preparation of transparent chitosan/betaGP hydrogels requires a homogeneously reacetylated chitosan with a DD between 35 and 50%.

  5. Pseudo-thermosetting chitosan hydrogels for biomedical application.

    PubMed

    Berger, J; Reist, M; Chenite, A; Felt-Baeyens, O; Mayer, J M; Gurny, R

    2005-01-06

    To prepare transparent chitosan/beta-glycerophosphate (betaGP) pseudo-thermosetting hydrogels, the deacetylation degree (DD) of chitosan has been modified by reacetylation with acetic anhydride. Two methods (I and II) of reacetylation have been compared and have shown that the use of previously filtered chitosan, dilution of acetic anhydride and reduction of temperature in method II improves efficiency and reproducibility. Chitosans with DD ranging from 35.0 to 83.2% have been prepared according to method II under homogeneous and non-homogeneous reacetylation conditions and the turbidity of chitosan/betaGP hydrogels containing homogeneously or non-homogeneously reacetylated chitosan has been investigated. Turbidity is shown to be modulated by the DD of chitosan and by the homogeneity of the medium during reacetylation, which influences the distribution mode of the chitosan monomers. The preparation of transparent chitosan/betaGP hydrogels requires a homogeneously reacetylated chitosan with a DD between 35 and 50%.

  6. Comparative study of porous hydroxyapatite/chitosan and whitlockite/chitosan scaffolds for bone regeneration in calvarial defects

    PubMed Central

    Zhou, Ding; Qi, Chao; Chen, Yi-Xuan; Zhu, Ying-Jie; Sun, Tuan-Wei; Chen, Feng; Zhang, Chang-Qing

    2017-01-01

    Hydroxyapatite (HAP; Ca10(PO4)6(OH)2) and whitlockite (WH; Ca18Mg2(HPO4)2(PO4)12) are widely utilized in bone repair because they are the main components of hard tissues such as bones and teeth. In this paper, we synthesized HAP and WH hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through microwave-assisted hydrothermal method. Then, we prepared HAP/chitosan and WH/chitosan composite membranes to evaluate their biocompatibility in vitro and prepared porous HAP/chitosan and WH/chitosan scaffolds by freeze drying to compare their effects on bone regeneration in calvarial defects in a rat model. The experimental results indicated that the WH/chitosan composite membrane had a better biocompatibility, enhancing proliferation and osteogenic differentiation ability of human mesenchymal stem cells than HAP/chitosan. Moreover, the porous WH/chitosan scaffold can significantly promote bone regeneration in calvarial defects, and thus it is more promising for applications in tissue engineering such as calvarial repair compared to porous HAP/chitosan scaffold. PMID:28435251

  7. Investigation of the effects of local glutathione and chitosan administration on incisional oral mucosal wound healing in rabbits.

    PubMed

    Kılıç, Ciğdem; Güleç Peker, Emine Gülçeri; Acartürk, Füsun; Kılıçaslan, Seda M Sarı; Çoşkun Cevher, Şule

    2013-12-01

    The aim of the present study was to investigate the effects of local glutathione (GSH) and chitosan applications on the oxidant events and histological changes that occur, during healing processes in rabbits with incisional intraoral mucosal wounds. For this purpose, discs containing glutathione and chitosan (1:1) were prepared and their physicochemical characteristics were evaluated. New Zealand white rabbits were used in in vivo studies. A standard incision was applied to the oral mucosa of rabbits. The rabbits were divided into four groups, being: an untreated incisional group (n=6), a group treated with discs containing GSH+chitosan (n=6), a group treated with discs containing solely chitosan (n=5) and a group treated with discs containing solely GSH (n=5). The levels of malondialdehyde (MDA), glutathione and nitric oxide (NOx) in the oral wound tissues were measured on the fifth day after the injury. Histological changes in the wound tissues were also investigated. The tissue MDA levels in the group treated with the disc containing GSH+chitosan were found to be lower than those in the other groups. There were no statistically significant differences in terms of tissue GSH and NOx levels between the group treated with the disc comprising GSH+chitosan and the control group that had untreated incision wounds. According to the histological findings, wound healing in the group treated with the disc containing solely chitosan was found to be better than in the other groups. The results of the experiments showed that the local application to the intraoral incision wounds of chitosan+GSH, and chitosan alone, can be effective in the wound healing processes of soft tissues and dental implants. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Halloysite and chitosan oligosaccharide nanocomposite for wound healing.

    PubMed

    Sandri, Giuseppina; Aguzzi, Carola; Rossi, Silvia; Bonferoni, Maria Cristina; Bruni, Giovanna; Boselli, Cinzia; Cornaglia, Antonia Icaro; Riva, Federica; Viseras, Cesar; Caramella, Carla; Ferrari, Franca

    2017-07-15

    Halloysite is a natural nanotubular clay mineral (HNTs, Halloysite Nano Tubes) chemically identical to kaolinite and, due to its good biocompatibility, is an attractive nanomaterial for a vast range of biological applications. Chitosan oligosaccharides are homo- or heterooligomers of N-acetylglucosamine and D-glucosamine, that accelerate wound healing by enhancing the functions of inflammatory and repairing cells. The aim of the work was the development of a nanocomposite based on HNTs and chitosan oligosaccharides, to be used as pour powder to enhance healing in the treatment of chronic wounds. A 1:0.05 wt ratio HTNs/chitosan oligosaccharide nanocomposite was obtained by simply stirring the HTNs powder in a 1% w/w aqueous chitosan oligosaccharide solution and was formed by spontaneous ionic interaction resulting in 98.6% w/w HTNs and 1.4% w/w chitosan oligosaccharide composition. Advanced electron microscopy techniques were considered to confirm the structure of the hybrid nanotubes. Both HTNs and HTNs/chitosan oligosaccharide nanocomposite showed good in vitro biocompatibility with normal human dermal fibroblasts up to 300μg/ml concentration and enhanced in vitro fibroblast motility, promoting both proliferation and migration. The HTNs/chitosan oligosaccharide nanocomposite and the two components separately were tested for healing capacity in a murine (rat) model. HTNs/chitosan oligosaccharide allowed better skin reepithelization and reorganization than HNTs or chitosan oligosaccharide separately. The results suggest to develop the nanocomposite as a medical device for wound healing. The present work is focused on the development of halloysite and chitosan oligosaccharide nanocomposite for wound healing. It considers a therapeutic option for difficult to heal skin lesions and burns. The significance of the research considers two fundamental aspects: the first one is related to the development of a self-assembled nanocomposite, formed by spontaneous ionic

  9. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  10. Computational insights into crystal plane dependence of thermal activity of anion (C and N)-substituted titania.

    PubMed

    V, Sai Phani Kumar; Arya, Rahul; Deshpande, Parag A

    2017-11-29

    Geometry optimizations of anion (C and N) doped anatase TiO 2 were carried out by using DFT+U calculations. Various anion vacancy sites were examined to study the synergistic effects of anion doping accompanied with anion vacancy formation on lattice oxygen activation. Two non-identical crystal planes (0 0 1) and (1 0 0) were chosen for C and N substitutions. Energetically favoured N-vacancy pairs were identified on TiO 2 surfaces. Substitution of N along with anion vacancies at various sites was energetically more favoured than that of C-doping in bulk TiO 2 while the energies were comparable for surface substitutions. Bond length distributions due to the formation of differential bonds were determined. Net oxygen activation and accompanying reversible oxygen exchange capacities were compared for TiO 2-2x C x and TiO 2-3x N 2x . Substitution of C in the surface exposed (1 0 0) plane of TiO 2 resulted in 47.6% and 23.8% of bond elongation and compression, respectively, resulting in 23.8% of net oxygen activation which was higher when compared to N substitution in the (1 0 0) plane of TiO 2 resulting in a net oxygen activation of 17%.

  11. The effect of chitosan and whey proteins-chitosan films on the growth of Penicillium expansum in apples.

    PubMed

    Simonaitiene, Dovile; Brink, Ieva; Sipailiene, Ausra; Leskauskaite, Daiva

    2015-05-01

    Penicillium expansum causes a major post-harvest disease of apples. The aim of this study was to investigate the inhibition effect of chitosan and whey proteins-chitosan films containing different amounts of quince and cranberry juice against P. expansum on the simulation medium and on apples. The mechanical properties of films were also evaluated. The presence of cranberry and quince juice in the composition of chitosan and whey proteins-chitosan films caused a significant (P ≤ 0.05) increase in elasticity and decrease in tensile strength of films. Chitosan and whey proteins-chitosan films with quince and cranberry juice demonstrated a significant (P ≤ 0.05) inhibition effect against P. expansum growth on the simulated medium and apples. The presence of cranberry juice in the composition of chitosan and whey proteins-chitosan films resulted in a longer lag phase and a lower P. expansum growth rate on the simulation medium in comparison with films made with the addition of quince juice. These differences were not evident when experiment was conducted with apples. Addition of quince and cranberry juice to the chitosan and whey proteins-chitosan films as natural antifungal agents has some potential for prolonging the shelf life of apples. © 2014 Society of Chemical Industry.

  12. Mucoadhesive nanoparticles made of thiolated quaternary chitosan crosslinked with hyaluronan.

    PubMed

    Zambito, Ylenia; Felice, Francesca; Fabiano, Angela; Di Stefano, Rossella; Di Colo, Giacomo

    2013-01-30

    Mucoadhesive polymeric nanoparticles intended for drug transport across the gastrointestinal mucosa were prepared from quaternary ammonium-chitosan conjugates synthesised from reduced-MW chitosan (32 kDa). Conjugates contained pendant moieties of 2-4 adjacent diethyl-dimethylene-ammonium groups substituted on repeating units (26-55%). Conjugates were thiolated via amide bonds with thioglycolic acid to yield products with thiol content in the 35-87 μmol/g range. Nanoparticles with mean size in the 270-370 nm range and positive zeta-potential (+3.7 to +12.5 mV) resulted from ionotropic gelation of the thiolated conjugates with de-polymerised hyaluronic acid (470 kDa). The nanoparticles were fairly stable in size and thiol content and showed a significant mucoadhesivity, matching and even exceeding that of the constituent polymers. Nanoparticles were internalised by endothelial progenitor cells in direct relation to their surface charge intensity. Nanoparticle uptake significantly improved cell viability and resistance to oxidation. The lyophilised nanoparticles were re-dispersible and could make a manageable formulation for oral use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. [Chitosan-collagen polymer induced remineralization of tooth hard tissue through self-growing methods].

    PubMed

    Xun, Ren; Jing, Yao; Qin, Du; Chuhang, Liao; Kun, Tian

    2014-10-01

    To modify biomacromolecules, such as chitosan and collagen, to synthesize a mineralized template that will induce self-growing remineralization of tooth enamel. Natural polycation polysaccharide chitosan was modified through phosphorylation to synthesize the polyanion derivative ofphosphorylated chitosan. Parent hydrogels com- bined with chitosan and collagen I were built through peptide binding reaction using genipin as a crosslinker. The gels self- assembled on the tooth's inert surface, which was stimulated by ultraviolet radiation. The bionic saliva provided mineralized ion, and then the hydroxyapatite assembled and grew in situ on the tooth. The functional group P04(3-) (3,446 cm(-1)) was grafted on chitosan as confirmed by the Fourier transform infrared spectroscopy. The porous polyelectrolyte complex hydrogel formed by the interaction between the polycation chitosan and the polyanion phosphorylated chitosan could induce hydroxyapatite crystal nucleation and growth on the hydrogel fiber surfaces. The neonatal crystal was hydroxyapatite as confirmed by X-ray diffraction and was tightly connected to the tooth. A continuous structure of column crystals with sizes ranging from 30 nm to 60 nm was observed. The structure was in parallel direction similar to the direction of the enamel rod, and its hardness was close to dentin. The parent hydrogels that were easily obtained and controlled could mimic the template of the enamel mineralization and induce a self-growing hydroxyapatite, which is an important step in the structural bionics of enamel.

  14. Design, Synthesis and Optoelectronic Properties of Unsymmetrical Oxadiazole Based Indene Substituted Derivatives as Deep Blue Fluoroscent Materials.

    PubMed

    Belavagi, Ningaraddi S; Deshapande, Narahari; Pujar, G H; Wari, M N; Inamdar, S R; Khazi, Imtiyaz Ahmed M

    2015-09-01

    A series of novel unsymmetrically substituted indene-oxadiazole derivatives (3a-f) have been designed and synthesized by employing palladium catalysed Suzuki cross coupling reaction in high yields. The structural integrity of all the novel compounds was established by (1)H, (13)C NMR and LC/MS analysis. These compounds are amorphous in nature and are remarkably stable to long term storage under ambient conditions. The optoelectronic properties have been studied in detail using UV-Vis absorption and Fluorescence spectroscopy. All compounds emit intense blue to green-blue fluoroscence with high quantum yields. Time resolved measurments have shown life times in the range of 1.28 to 4.51 ns. The density functional theory (DFT) calculations were carried out for all the molecules to understand their structure-property relationships. Effect of concentration studies has been carried out in different concentrations for both absorption and emission properties and from this we have identified the optimized fluoroscence concentrations for all these compounds. The indene substituted anthracene-oxadiazole derivative (3f) showed significant red shift (λmax (emi) = 490 nm) and emits intense green-blue fluoroscence with largest stokes shift of 145 nm. This compound also exhibited highest fluoroscence life time (τ) of 4.51 ns, which is very close to the standard dye coumarin-540A (4.63 ns) and better than fluorescein-548 (4.10 ns). The results demonstrated that the novel unsymmetrical indene-substituted oxadiazole derivatives could play important role in organic optoelectronic applications, such as organic light-emitting diodes (OLEDs) or as models for investigating the fluorescent structure-property relationship of the indene-functionalized oxadiazole derivatives.

  15. Pharmacological performance of novel poly-(ionic liquid)-grafted chitosan-N-salicylidene Schiff bases and their complexes.

    PubMed

    Elshaarawy, Reda F M; Refaee, Ayaat A; El-Sawi, Emtithal A

    2016-08-01

    In our endeavor to develop a new class of pharmacological candidates with antimicrobial and anticancer efficacy, a series of biopolymeric chitosan Schiff bases bearing salicylidene ionic liquid (IL-Sal) brushes (ILCSB1-3, poly-(GlcNHAc-GlcNH2-(GlcN-Sal-IL)) was successfully synthesized by adopting efficient synthetic routes. Unfortunately, metalation trials of these biopolymeric Schiff bases afford the corresponding Ag(I)/M(II) complexes (where M=Co, Pd). These designed architectures were structurally characterized and pharmacologically evaluated for their in vitro antimicrobial, against common bacterial and fungal pathogens, and anticancer activities against human colon carcinoma (HCT-116) cell line. In conclusion functionalization of chitosan with IL-Sal brushes coupled with metalation of formed ILCSBs were synergistically enhanced its antimicrobial and antitumor properties to a great extent. Noteworthy, Ag-ILCSB2 (IC50=9.13μg/mL) was ca. 5-fold more cytotoxic against HCT-116 cell line than ILCSB2 (IC50=43.30μg/mL). Copyright © 2016. Published by Elsevier Ltd.

  16. 40 CFR 721.10078 - Butanamide, 2-[(2-methoxy-4-nitrophenyl)azo]-N-(2-methoxyphenyl)-3-oxo-, 4-[(17-substituted-3,6,9...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-nitrophenyl)azo]-N-(2-methoxyphenyl)-3-oxo-, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl)substituted...-nitrophenyl)azo]-N-(2-methoxyphenyl)-3-oxo-, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl)substituted...]-N-(2-methoxyphenyl)-3-oxo-, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl)substituted]phenyl...

  17. Synthesis and hypoglycemic activity of 9-O-(lipophilic group substituted) berberine derivatives.

    PubMed

    Zhang, Shanshan; Wang, Xiaohong; Yin, Weicheng; Liu, Zhenbao; Zhou, Mi; Xiao, Daipeng; Liu, Yanfei; Peng, Dongming

    2016-10-01

    A series of 9-O-(lipophilic group substituted) berberine derivatives were synthesized and evaluated for their cytotoxicity and hypoglycemic activity against HepG2 cells. All the results indicated that most of the synthesized compounds exhibited lower cytotoxicity and a certain degree of hypoglycemic activity. Especially the compounds 5g and 5h displayed dramatically increased hypoglycemic activity compared with berberine, and the cytotoxicity maintained or even lower than berberine, indicating that they are potential candidates for new anti-type 2 diabetes mellitus drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development and evaluation of N-naphthyl-N,O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment.

    PubMed

    Tonglairoum, Prasopchai; Woraphatphadung, Thisirak; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Sajomsang, Warayuth; Opanasopit, Praneet

    2017-03-01

    Clotrimazole (CZ)-loaded N-naphthyl-N,O-succinyl chitosan (NSCS) micelles have been developed as an alternative for oral candidiasis treatment. NSCS was synthesized by reductive N-amination and N,O-succinylation. CZ was incorporated into the micelles using various methods, including the dropping method, the dialysis method, and the O/W emulsion method. The size and morphology of the CZ-loaded micelles were characterized using dynamic light scattering measurements (DLS) and a transmission electron microscope (TEM), respectively. The drug entrapment efficiency, loading capacity, release characteristics, and antifungal activity against Candida albicans were also evaluated. The CZ-loaded micelles prepared using different methods differed in the size of micelles. The micelles ranged in size from 120 nm to 173 nm. The micelles prepared via the O/W emulsion method offered the highest percentage entrapment efficiency and loading capacity. The CZ released from the CZ-loaded micelles at much faster rate compared to CZ powder. The CZ-loaded NSCS micelles can significantly hinder the growth of Candida cells after contact. These CZ-loaded NSCS micelles offer great antifungal activity and might be further developed to be a promising candidate for oral candidiasis treatment.

  19. Herstellung von Chitosan und einige Anwendungen

    NASA Astrophysics Data System (ADS)

    Struszczyk, Marcin Henryk

    2001-05-01

    . Die aus Chitosan-Dispersionen hergestellten MCChB-Filme weisen bessere mechanische Eigenschaften (Bruchfestigkeit, Dehnung) und eine höhere Wasseraufnahmefähigkeit auf als Filme, die nach herkömmlichen Methoden aus sauerer Lösung hergestellt werden. Die Einführung von Proteinen ändert die mechanischen Eigenschaften der MCChB-Filme abhängig von der Art, der Proteine sowie des DD und der Mv des eingesetzte Chitosan. Die Zugabe von Protein beschleunigt den biologischen Abbau der MCChB-Filme. Aus den untersuchten MCChB-Filmen mit Proteinzusatz können leichte, reißfeste und dennoch elastische Materialen hergestellt werden. 4. Mit Hilfe von MCChB-Dispersion kann Papier modifiziert werden. Dadurch werden die mechanischen Eigenschaften verbessert und die Wasseraufnahme wird verringert. Die Zugabe von Proteinen verringert das Wasseraufnahmevermögen noch weiter. Ein geringes Wasseraufnahmevermögen ist der bedeutendste Faktor bei der Papierherstellung. Auch Papier, das mit einem MCChB-Protein-Komplexe modifiziert wurde, zeigt gute mechanische Eigenschaften. 5. Wird Chitosan durch unmittelbare Einführung von MCChB auf Cellulose-Fasern aufgebracht, so erhält man eine netzartige Struktur, während durch Ausfällung aufgebrachtes Chitosan eine dünne Schicht auf den Cellulose-Fasern bildet. Die netzartige Struktur erleichtert die Bioabbaubarkeit, während die Schichtstruktur diese erschwert. 6. Die guten mechanischen Eigenschaften, die geringe Wasseraufnahmefähigkeit und die mit Cellulose vergleichbare Bioabbaubarkeit von Papier, das mit MCChB modifiziert wurde, lassen MCChB für die Veredlung von Papier nützlich erscheinen. 1. Deacetylation of the crustacean chitosan causes drastically decrease in the Mv with increasing reaction temperature and time as well as the concentration of sodium hydroxide. However, the DD are relatively less affected. Pandalus borealis is a good source for production of chitosan having high Mv and low DD, whereas chitosan of medium to low Mv

  20. Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities.

    PubMed

    Sayari, Nadhem; Sila, Assaâd; Abdelmalek, Baha Eddine; Abdallah, Rihab Ben; Ellouz-Chaabouni, Semia; Bougatef, Ali; Balti, Rafik

    2016-06-01

    Chitin was recovered through enzymatic deproteinization of the Norway lobster (Nephrops norvegicus) processing by-products. The obtained chitin was characterized and converted into chitosan by N-deacetylation, the acid-soluble form of chitin. Chitosan samples were then characterized by Fourier transform infrared spectroscopy (FTIR) and 13 Cross polarization magic angle spinning nuclear magnetic resonance (CP/MAS)-NMR spectroscopy. The antimicrobial activity and anti-proliferative capacity of chitosan were evaluated. Antimicrobial activity assays indicated that prepared chitosan exhibited marked inhibitory activity against the bacterial and fungal strains tested. Further, cytotoxic effects of chitosan samples on human colon carcinoma cells HCT116 was evaluated using the MTT assay. Chitosan showed the antiproliferative capacity against the colon-cancer-cell HCT116 in a dose dependent manner with IC50 of 4.6mg/ml. Indeed, HCT116 cell proliferation was significantly inhibited (p<0.05) between 13.5 and 67.5% at 0.5-6mg/mL of chitosan after 24h of cell treatment. The chitosan showed high antitumor activity which seemed to be dependent on its characteristics such as acetylation degree. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Pharmacokinetics and biodegradation of chitosan in rats

    NASA Astrophysics Data System (ADS)

    Li, Hui; Jiang, Zhiwen; Han, Baoqin; Niu, Shuyi; Dong, Wen; Liu, Wanshun

    2015-10-01

    Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics and biodegradation of fluorescein isothiocyanate (FITC) labeled and muscle implantation administrated chitosan in rats were investigated with fluorescence spectrophotometry, histological assay and gel chromatography. After implantation, chitosan was degraded gradually during its distribution to diverse organs. Among the tested organs, liver and kidney were found to be the first two highest in chitosan content, which was followed by heart, brain and spleen. Urinary excretion was believed to be the major pathway of chitosan elimination, yet 80% of chitosan administered to rats was not trackable in their urine. This indicated that the majority of chitosan was degraded in tissues. In average, the molecular weight of the degradation products of chitosan in diverse organs and urine was found to be <65 kDa. This further confirmed the in vivo degradation of chitosan. Our findings provided new evidences for the intensive and safe application of chitosan as a biomedical material.

  2. ANAEROBIC BIODEGRADATION OF NITROGEN-SUBSTITUTED AND SULFONATED BENZENE AQUIFER CONTAMINANTS (JOURNAL)

    EPA Science Inventory

    A literature survey of ground water contaminants indicated that aquifers are repositories for hazardous wastes, including N- and 5-substituted benzene derivatives. We therefore examined the susceptibility of several anilines, benzamides, benenesulfonic acids and benenesulfonamide...

  3. Chitosan-plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies.

    PubMed

    Jean, M; Smaoui, F; Lavertu, M; Méthot, S; Bouhdoud, L; Buschmann, M D; Merzouki, A

    2009-09-01

    Growth factor therapy is an emerging treatment modality that enhances tissue vascularization, promotes healing and regeneration and can treat a variety of inflammatory diseases. Both recombinant human growth factor proteins and their gene therapy are in human clinical trials to heal chronic wounds. As platelet-derived growth factor-bb (PDGF-BB) and fibroblast growth factor-2 (FGF-2) are known to induce chemotaxis, proliferation, differentiation, and matrix synthesis, we investigated a non-viral means for gene delivery of these factors using the cationic polysaccharide chitosan. Chitosan is a polymer of glucosamine and N-acetyl-glucosamine, in which the percentage of the residues that are glucosamine is called the degree of deacetylation (DDA). The purpose of this study was to express PDGF-BB and FGF-2 genes in mice using chitosan-plasmid DNA nanoparticles for the controlled delivery of genetic material in a specific, efficient, and safe manner. PDGF-BB and FGF-2 genes were amplified from human tissues by RT-PCR. To increase the secretion of FGF-2, a recombinant 4sFGF-2 was constructed bearing eight amino-acid residues of the signal peptide of FGF-4. PCR products were inserted into the expression vector pVax1 to produce recombinant plasmids pVax1-4sFGF2 and pVax1-PDGF-BB, which were then injected into BALB/C mice in the format of polyelectrolyte nanocomplexes with specific chitosans of controlled DDA and molecular weight, including 92-10, 80-10, and 80-80 (DDA-number average molecular weight or M(n) in kDa). ELISA assays on mice sera showed that recombinant FGF-2 and PDGF-BB proteins were efficiently expressed and specific antibodies to these proteins could be identified in sera of injected mice, but with levels that were clearly dependent on the specific chitosan used. We found high DDA low molecular weight chitosans to be efficient protein expressors with minimal or no generation of neutralizing antibodies, while lowering DDA resulted in greater antibody levels

  4. Gold-catalyzed and N-iodosuccinimide-mediated cyclization of gamma-substituted allenamides.

    PubMed

    Hyland, Christopher J T; Hegedus, Louis S

    2006-10-27

    Chiral gamma-substituted allenamides have been shown to undergo efficient gold-catalyzed and N-iodosuccinimide-mediated cyclization to highly functionalized dihydrofurans. These reactions proceed rapidly and without loss of stereochemistry.

  5. Synthesis, Crystal Structure, Antioxidant, and α-Glucosidase Inhibitory Activities of Methoxy-substituted Benzohydrazide Derivatives

    NASA Astrophysics Data System (ADS)

    Prachumrat, P.; Kobkeatthawin, T.; Ruanwas, P.; Boonnak, N.; Laphookhieo, S.; Kassim, M. B.; Chantrapromma, S.

    2018-05-01

    Eight methoxy substituted at the benzylidene moiety benzohydrazide derivatives [ R = 2-OCH3 ( 1), 3-OCH3 ( 2), 4-OCH3 ( 3), 2,3-(OCH3)2 ( 4), 3,4-(OCH3)2 ( 5), 2,4,5-(OCH3)3 ( 6), 2,4,6-(OCH3)3 ( 7), and 3,4,5-(OCH3)3 ( 8)] were synthesized and characterized by 1H NMR, FT-IR and UV-Vis spectroscopy. The crystal structure of 4 was determined by single crystal X-ray diffraction (sp. gr. Pbca, Z = 8). The molecule is slightly twisted with the dihedral angle between the two phenyl rings being 9.33(14)°. The methoxy group at the ortho position is twisted [C-O-C-C angle is-109.2(3)°] whereas the other at meta position is co-planar with the attached benzene ring. In the crystal packing, the molecules are linked into two-dimensional network parallel to the (001) plane by O-H···O, O-H···N, and N-H···O hydrogen bonds. Compounds 1-8 were evaluated for an antioxidant and α-glucosidase inhibitory activities and the results suggested that the -OCH3 substituent was ineffective for bioactivity enhancement.

  6. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery.

    PubMed

    Duceppe, Nicolas; Tabrizian, Maryam

    2010-10-01

    This review aims to provide an overview of state-of-the-art chitosan-based nanosized carriers for the delivery of therapeutic agents. Chitosan nanocarriers are smart delivery systems owing to the possibility of their property alterations with various approaches, which would confer them with the possibility of spatiotemporal delivery features. The focus of this review is principally on those aspects that have not often been addressed in other reviews. These include the influence of physicochemical properties of chitosan on delivery mechanisms and chitosan modification with a variety of ligand moieties specific for cell surface receptors to increase recognition and uptake of nanocarriers into cells through receptor-mediated endocytosis. Multiple examples that demonstrate the advantages of chitosan-based nanocarriers over other delivery systems of therapeutic agents are highlighted. Particular emphasis is given to the alteration of material properties by functionalization or combination with other polymers for their specific applications. Finally, structural and experimental parameters influencing transfection efficiency of chitosan-based nanocarriers are presented for both in vitro and in vivo gene delivery. The readers will acquire knowledge of parameters influencing the properties of the chitosan-based nanocarriers for delivery of therapeutic agents (genetic material or drugs) in vitro and in vivo. They will get a better idea of the strategies to be adapted to tune the characteristics of chitosan and chitosan derivatives for specific delivery applications. Chitosan is prone to chemical and physical modifications, and is very responsive to environmental stimuli such as temperature and pH. These features make chitosan a smart material with great potential for developing multifunctional nanocarrier systems to deliver large varieties of therapeutic agents administrated in multiple ways with reduced side effects.

  7. Chitosan nanoparticle carrying small interfering RNA to platelet-derived growth factor B mRNA inhibits proliferation of smooth muscle cells in rabbit injured arteries.

    PubMed

    Xia, He; Jun, Ji; Wen-Ping, Ling; Yi-Feng, Pan; Xiao-Ling, Chen

    2013-10-01

    The purpose of this study was to elucidate the transfection of chitosan nanoparticle carrying small interfering RNA against platelet-derived growth factor B (PDGF-B) to inhibit the expression of PDGF-B mRNA and proliferation of smooth muscle cells. A rabbit iliac artery injury model was constructed. A small interfering RNA (siRNA) against PDGF-B mRNA expression vector was constructed and packaged by chitosan nanoparticle to transfect into the vascular smooth muscle cells (vSMCs) of balloon catheter-injured rabbit iliac artery wall, using a therapeutic ultrasound for the gene delivery. The experiment was divided into two groups: experimental group, denudation and nano-PDGF-B siRNA treated, and only single denudation as control. Effects of the siRNA on the expressions of proliferating cell nuclear antigen (PCNA) and PDGF-B mRNA by vSMCs and the proliferation of vSMCs were observed with the methods of routine pathological, immunohistochemical staining, in situ hybridization and morphometry. The nano siRNA against PDGF-B was successfully transfected. The nano siRNA significantly inhibited the expressions of PCNA and PDGF-B mRNA in intimal vSMCs. The local intimal thickness and area were also reduced remarkably. In conclusion, transfection of chitosan nanoparticle carrying siRNA against PDGF-B mRNA could inhibit proliferation of vSMCs in the rabbit iliac artery injury model. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Prediction of the binding mode of N2-phenylguanine derivative inhibitors to herpes simplex virus type 1 thymidine kinase

    NASA Astrophysics Data System (ADS)

    Gaudio, Anderson Coser; Takahata, Yuji; Richards, William Graham

    1998-01-01

    The probable binding mode of the herpes simplex virus thymidine kinase (HSV1 TK) N2-[substituted]-phenylguanine inhibitors is proposed. A computational experiment was designed to check some qualitative binding parameters and to calculate the interaction binding energies of alternative binding modes of N2-phenylguanines. The known binding modes of the HSV1 TK natural substrate deoxythymidine and one of its competitive inhibitors ganciclovir were used as templates. Both the qualitative and quantitative parts of the computational experiment indicated that the N2-phenylguanine derivatives bind to the HSV1 TK active site in the deoxythymidine-like binding mode. An experimental observation that N2-phenylguanosine derivatives are not phosphorylated during the interaction with the HSV1 TK gives support to the proposed binding mode.

  9. Effects of chitosan combined with nisin treatment on storage quality of large yellow croaker (Pseudosciaena crocea).

    PubMed

    Hui, Guohua; Liu, Wei; Feng, Hailin; Li, Jian; Gao, Yuanyuan

    2016-07-15

    Effects of chitosan combined with different concentrations of nisin on quality enhancement of large yellow croaker (Pseudosciaena crocea) stored at 4 °C were evaluated for 8 days. Changes in sensory score and volatile spoilage products, total viable counts (TVC), and physiochemical indexes including weight loss, colour, pH, total volatile basic nitrogen (TVB-N), and K-value were examined. Results demonstrated that nisin-treated samples presented better quality preservation effects than chitosan alone. 1% chitosan combined with 0.6% nisin presented optimal quality enhancement effects, such as moisture loss control, volatile spoilage inhibition, TVB-N reduction, TVC growth control, and colour and sensory acceptability maintenance. Therefore, chitosan combined with nisin is promising in large yellow croaker shelf life extension. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. N-substituted 1,2-dihydroquinolines as anticancer agents: electronic control of redox stability, assessment of antiproliferative effects, and mechanistic insights.

    PubMed

    John Victor, Napoleon; Sakthivel, Ramasamy; Muraleedharan, Kannoth Manheri; Karunagaran, Devarajan

    2013-10-01

    Redox chemotherapy: Antiproliferative activities of a series of N-substituted 1,2-dihydroquinolines capable of causing redox imbalance in cancer cells are presented. Detailed studies showed that these derivatives arrest the cell cycle in the G2/M phase and induce apoptosis through an intrinsic pathway characterized by loss of mitochondrial membrane potential, DNA fragmentation, cytochrome c release, and activation of caspases 9 and 3. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex.

    PubMed

    Dananjaya, S H S; Erandani, W K C U; Kim, Cheol-Hee; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama

    2017-12-01

    Though the metal nanoparticles (NPs) have been shown favorable results against fungal diseases, erratic environmental toxicity of NPs have raised serious concerns against their applications. Hence, it is vital to modify antifungal compounds into safe substitutes over synthetic chemicals. In this study, antifungal effects of chitosan nanoparticles (CNPs) and chitosan silver nanocomposites (CAgNCs) were compared against Fusarium oxysporum species complex. CNPs and CAgNCs were synthesized, characterized and compared based on the transmission electron microscope, X-ray diffraction, UV-vis absorbance spectra, particle size distribution, zeta potential and thermal stability analysis. Ultra-structural analysis on mycelium membrane of treated F. oxysporum showed that CNPs and CAgNCs could induce a pronounced membrane damage and disruption of the mycelium surface, increase the membrane permeability, and even cell disintegration. CAgNCs showed a significantly higher radial growth inhibition than CNPs in all the tested concentrations. Both CNPs and CAgNCs were not only effective in reducing the fungal growth, but also caused morphological and ultrastructural changes in the pathogen, thereby suggesting its usage as an antifungal dispersion system to control F. oxysporum. Additionally, CNPs and CAgNCs therapy reduced the F. oxysporum infection in zebrafish. Data demonstrates biologically active CNPs and CAgNCs are promising antifungal agents against F. oxysporum. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Improvement of absorption enhancing effects of n-dodecyl-beta-D-maltopyranoside by its colon-specific delivery using chitosan capsules.

    PubMed

    Fetih, Gihan; Lindberg, Sara; Itoh, Katsuhito; Okada, Naoki; Fujita, Takuya; Habib, Fawsia; Artersson, Per; Attia, Mohammed; Yamamoto, Akira

    2005-04-11

    In general, absorption enhancing effects of various absorption enhancers were greater in the large intestine than those in the small intestinal regions. Therefore, the effectiveness of absorption enhancers is expected to be remarkably observed, if these enhancers can be delivered to the large intestine with some poorly absorbable drugs after oral administration. In this study, therefore, we examined whether chitosan capsules were effective for the colon-specific delivery of a certain absorption enhancer and can improve the absorption enhancing action of the absorption enhancer after oral administration. 5(6)-Carboxyfluorescein (CF) was used as a model drug to investigate the site-dependent effectiveness of various absorption enhancers by an in situ closed loop method. Sodium glycocholate (NaGC), n-dodecyl-beta-d-maltopyranoside (LM), sodium salicylate (NaSal) and sodium caprate (NaCap) were used as models of absorption enhancers in this study. Overall, the absorption enhancing effects of these enhancers for intestinal absorption of CF were greater in the colon than those in the jejunum and the ileum. Especially, among these enhancers tested in this study, LM showed much greater absorption enhancing effect in the colon than in the jejunum and the ileum. Therefore, LM was selected as a model absorption enhancer to examine the effect of chitosan capsules on the absorption enhancing effect of LM. When CF and LM were orally administered to rats using chitosan capsules, the plasma concentration of CF was much higher than those in other dosage forms including solution and gelatin capsules. Therefore, chitosan capsules may be useful carriers for colon-specific delivery of LM, thereby increasing its absorption enhancing effect from the intestinal membranes.

  13. Preparation of Some Eco-friendly Corrosion Inhibitors Having Antibacterial Activity from Sea Food Waste.

    PubMed

    Hussein, Mohamed H M; El-Hady, Mohamed F; Shehata, Hassan A H; Hegazy, Mohammad A; Hefni, Hassan H H

    2013-03-01

    Chitosan is one of the important biopolymers and it is extracted from exoskeletons of crustaceans in sea food waste. It is a suitable eco-friendly carbon steel corrosion inhibitor in acid media; the deacetylation degree of prepared chitosan is more than 85.16 %, and the molecular weight average is 109 kDa. Chitosan was modified to 2-N,N-diethylbenzene ammonium chloride N-oxoethyl chitosan (compound I), and 12-ammonium chloride N-oxododecan chitosan (compound II) as soluble water derivatives. The corrosion inhibition efficiency for carbon steel of compound (I) in 1 M HCl at varying temperature is higher than for chitosan and compound (II). However, the antibacterial activity of chitosan for Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and Candida albicans is higher than for its derivatives, and the minimum inhibition concentration and minimum bacterial concentration of chitosan and its derivatives were carried out with the same strain.

  14. Novel 4-(4-substituted-thiazol-2-ylamino)-N-(pyridin-2-yl)-benzenesulfonamides as cytotoxic and radiosensitizing agents.

    PubMed

    Ghorab, Mostafa M; Ragab, Fatma A; Heiba, Helmy I; Agha, Hebaallah M; Nissan, Yassin M

    2012-01-01

    A series of novel 4-(4-substituted-thiazol-2-ylamino)-N-(pyridin-2-yl) benzene-sulfonamides were synthesized and screened for their cytotoxic activity against human breast cancer cell line (MCF-7). Compounds 6, 7, 9, 10, 11, and 14 displayed significant activity against MCF-7 when compared to doxorubicin, which was used as a reference drug. The synergistic effect of Gamma radiation for the most active derivatives 7, 9, and 11 was also studied and their IC(50) values markedly decreased to 11.9 μM, 11.7 μM, and 11.6 μM, respectively.

  15. Characterization of a Chitosanase from Jelly Fig (Ficus awkeotsang Makino) Latex and Its Application in the Production of Water-Soluble Low Molecular Weight Chitosans.

    PubMed

    Chang, Chen-Tien; Lin, Yen-Lu; Lu, Shu-Wei; Huang, Chun-Wei; Wang, Yu-Ting; Chung, Yun-Chin

    2016-01-01

    A chitosanase was purified from jelly fig latex by ammonium sulfate fractionation (50-80% saturation) and three successive column chromatography steps. The purified enzyme was almost homogeneous, as determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and gel activity staining. The molecular mass of the enzyme was 20.5 kDa. The isoelectric point (pI) was <3.5, as estimated by isoelectric focusing electrophoresis on PhastGel IEF 3-9. Using chitosan as the substrate, the optimal pH for the enzyme reaction was 4.5; the kinetic parameters Km and Vmax were 0.089 mg mL-1 and 0.69 μmol min-1 mg-1, respectively. The enzyme showed activity toward chitosan polymers which exhibited various degrees of deacetylation (21-94%). The enzyme hydrolyzed 70-84% deacetylated chitosan polymers most effectively. Substrate specificity analysis indicated that the enzyme catalyzed the hydrolysis of chitin and chitosan polymers and their derivatives. The products of the hydrolysis of chitosan polymer derivatives, ethylene glycol (EG) chitosan, carboxymethyl (CM) chitosan and aminoethyl (AE) chitosan, were low molecular weight chitosans (LMWCs); these products were referred to as EG-LMWC, CM-LMWC and AE-LMWC, respectively. The average molecular weights of EG-LMWC, CM-LMWC and AE-LMWC were 11.2, 11.2 and 8.89 kDa, respectively. All of the LMWC products exhibited free radical scavenging activities toward ABTS•+, superoxide and peroxyl radicals.

  16. Synthesis and characterization of Ag2S decorated chitosan nanocomposites and chitosan nanofibers for removal of lincosamides antibiotic.

    PubMed

    Gupta, Vinod Kumar; Fakhri, Ali; Agarwal, Shilpi; Azad, Mona

    2017-10-01

    We report the synthesis of Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids as performance adsorbents for Lincosamides such as Clindamycin antibiotic removal. Isotherms and kinetic studies were determined to understand the adsorption behavior both two adsorbent. At low adsorbent dose, removals are increased in the adsorption process, and performance is better with Ag 2 S-chitosan nanohybrids due to the special surface area increased. The average sizes and surface area of Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids were found as 50nm, 70nm and 180.18, 238.24m 2 g -1 , respectively. In particular, Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids show high maximum Clindamycin adsorption capacity (q max ) of 153.21, and 181.28mgg -1 , respectively. More strikingly, Ag 2 S-Chitosan nanocomposites and Ag 2 S-chitosan nanohybrids are also demonstrated to nearly completely remove Clindamycin from drinking water. The excellent adsorption performance along with their cost effective, convenient synthesis makes this range of adsorbents highly promising for commercial applications in drinking water and wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. α,α'-N-Boc-substituted bi- and terthiophenes: fluorescent precursors for functional materials.

    PubMed

    Dong, Yanmei; Navarathne, Daminda; Bolduc, Andréanne; McGregor, Nicholas; Skene, W G

    2012-06-15

    Fluorescent α,α'-diamide substituted bi- and terthiophene derivatives were prepared by Stille and Suzuki couplings. Their one-pot deprotection and coupling with 2-thiophene carboxaldehyde led to stable conjugated azomethines. These exhibited electrochromic properties, and they were used to fabricate a working electrochromic device.

  18. [Experimental study on the chitosan-DNA vaccines against campylobacter jejuni invasion].

    PubMed

    Zheng, Hui; Cai, Fang-cheng; Zhong, Min; Deng, Bing; Li, Xin; Zhang, Xiao-ping

    2007-09-01

    The immunogenicity and protective efficacy of an experimental Campylobacter jejuni (C. jejuni) chitosan-DNA vaccines were evaluated in mice. The chitosan-DNA vaccines were prepared by embedding pcDNA3.1(+)-cadF and pcDNA3.1(+)-peblA with chitosan respectively. BALB/c mice were intranasally immunized in a four-dose primary series (7 d intervals) at doses of 60 microg chitosan-DNA vaccines each time. The comparative immunogenicities of nine formulations were assessed on the basis of the generation of antigen-specific antibodies in serum and intestinal secretions. Mice were attacked repeatedly through intragastric administration of C. jejuni HS:19 at the 8th week after the immunization and protective efficacy was determined by detecting the degrees of protection afforded against C. jejuni invaded. The mice immunized with chitosan-DNA vaccines have generated high levels of IgA and IgG from the sera and IgA from the intestinal secretions and the P/N value went up to 20.58, 30.13 and 6.87 respectively. Meanwhile, the expression of intestinal SIgA increased correspondingly. Moreover the chitosan-DNA vaccines induced strongest level of protection in BALB/c mice against challenge with C. jejuni HS:19 strain and the protective efficacies was 93.70. The results of this study indicate that the chitosan-DNA vaccines could induce significant protective immunity against C. jejuni challenge in the mice model.

  19. Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance.

    PubMed

    Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H

    2013-06-01

    Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.

  20. A new molecular evolution model for limited insertion independent of substitution.

    PubMed

    Lèbre, Sophie; Michel, Christian J

    2013-10-01

    We recently introduced a new molecular evolution model called the IDIS model for Insertion Deletion Independent of Substitution [13,14]. In the IDIS model, the three independent processes of substitution, insertion and deletion of residues have constant rates. In order to control the genome expansion during evolution, we generalize here the IDIS model by introducing an insertion rate which decreases when the sequence grows and tends to 0 for a maximum sequence length nmax. This new model, called LIIS for Limited Insertion Independent of Substitution, defines a matrix differential equation satisfied by a vector P(t) describing the sequence content in each residue at evolution time t. An analytical solution is obtained for any diagonalizable substitution matrix M. Thus, the LIIS model gives an expression of the sequence content vector P(t) in each residue under evolution time t as a function of the eigenvalues and the eigenvectors of matrix M, the residue insertion rate vector R, the total insertion rate r, the initial and maximum sequence lengths n0 and nmax, respectively, and the sequence content vector P(t0) at initial time t0. The derivation of the analytical solution is much more technical, compared to the IDIS model, as it involves Gauss hypergeometric functions. Several propositions of the LIIS model are derived: proof that the IDIS model is a particular case of the LIIS model when the maximum sequence length nmax tends to infinity, fixed point, time scale, time step and time inversion. Using a relation between the sequence length l and the evolution time t, an expression of the LIIS model as a function of the sequence length l=n(t) is obtained. Formulas for 'insertion only', i.e. when the substitution rates are all equal to 0, are derived at evolution time t and sequence length l. Analytical solutions of the LIIS model are explicitly derived, as a function of either evolution time t or sequence length l, for two classical substitution matrices: the 3

  1. A New Synthetic Route to N-Benzyl Carboxamides through the Reverse Reaction of N-Substituted Formamide Deformylase

    PubMed Central

    Hashimoto, Yoshiteru; Sakashita, Toshihide; Fukatsu, Hiroshi; Sato, Hiroyoshi

    2014-01-01

    Previously, we isolated a new enzyme, N-substituted formamide deformylase, that catalyzes the hydrolysis of N-substituted formamide to the corresponding amine and formate (H. Fukatsu, Y. Hashimoto, M. Goda, H. Higashibata, and M. Kobayashi, Proc. Natl. Acad. Sci. U. S. A. 101:13726–13731, 2004, doi:10.1073/pnas.0405082101). Here, we discovered that this enzyme catalyzed the reverse reaction, synthesizing N-benzylformamide (NBFA) from benzylamine and formate. The reverse reaction proceeded only in the presence of high substrate concentrations. The effects of pH and inhibitors on the reverse reaction were almost the same as those on the forward reaction, suggesting that the forward and reverse reactions are both catalyzed at the same catalytic site. Bisubstrate kinetic analysis using formate and benzylamine and dead-end inhibition studies using a benzylamine analogue, aniline, revealed that the reverse reaction of this enzyme proceeds via an ordered two-substrate, two-product (bi-bi) mechanism in which formate binds first to the enzyme active site, followed by benzylamine binding and the subsequent release of NBFA. To our knowledge, this is the first report of the reverse reaction of an amine-forming deformylase. Surprisingly, analysis of the substrate specificity for acids demonstrated that not only formate, but also acetate and propionate (namely, acids with numbers of carbon atoms ranging from C1 to C3), were active as acid substrates for the reverse reaction. Through this reaction, N-substituted carboxamides, such as NBFA, N-benzylacetamide, and N-benzylpropionamide, were synthesized from benzylamine and the corresponding acid substrates. PMID:24123742

  2. Toxicity and biodegradability of selected N-substituted phenols under anaerobic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donlon, B.; Razo-Flores, E.; Hwu, C.S.

    1995-12-31

    The anaerobic toxicity and biodegradability of N-substituted aromatics were evaluated in order to obtain information on their ultimate biotreatment. The toxicity of selected N-substituted aromatic compounds toward acetoclastic methanogens in granular sludge was measured in batch assays. This toxicity was highly correlated with compound hydrophobicity, indicating that partitioning into the bacterial membranes was an important factor in the toxicity. However, other factors, such as chemical interactions with key cell components, were suggested to be playing an important role. Nitroaromatic compounds were, on the average, over 300-fold more toxic than their amino-substituted counterparts. This finding suggests that the facile reduction ofmore » nitro-groups known to occur in anaerobic environments would result in a high level of detoxification. To test this hypothesis, continuous lab-scale upward-flow anaerobic sludge bed reactors treating 2-nitrophenol and 4-nitrophenol were established. The 4-nitrophenol was readily converted to the corresponding 4-aminophenol, whereas complete mineralization of 2-nitrophenol via intermediate formation of 2-aminophenol was obtained. These conversions led to a dramatic detoxification of the nitrophenols, because it was feasible to treat the highly toxic nitrophenolics at high organic loading rates.« less

  3. In vitro mutagenic, antimutagenic, and antioxidant activities evaluation and biotransformation of some bioactive 4-substituted 1-(2-methoxyphenyl)piperazine derivatives.

    PubMed

    Słoczyńska, Karolina; Pańczyk, Katarzyna; Waszkielewicz, Anna M; Marona, Henryk; Pękala, Elżbieta

    2016-12-01

    In vitro mutagenic, antimutagenic, and antioxidant potency evaluation and biotransformation of six novel 4-substituted 1-(2-methoxyphenyl)piperazine derivatives demonstrating antidepressant-like activity were investigated. Mutagenic and antimutagenic properties were assessed using the Ames test; free radical scavenging activity was evaluated with 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and biotransformation was performed with liver microsomes. It was found that all tested compounds are not mutagenic in bacterial strains TA100 and TA1535 and exhibit antimutagenic effects in the Ames test. Noteworthy, compounds possessing propyl linker between phenoxyl and N-(2-methoxyphenyl)piperazine displayed more pronounced antimutagenic properties than derivatives with ethoxyethyl linker. Additionally, compounds 2 and 6 in vitro biotransformation showed that primarily their hydroxylated or O-dealkylated metabolites are formed. Some of the compounds exhibited intrinsic clearance values lower than those reported previously for antidepressant imipramine. To sum up, the results of the present study might represent a valuable step in designing and planning future studies with piperazine derivatives. © 2016 Wiley Periodicals, Inc.

  4. Improved Mesenchymal Stem Cells Attachment and In Vitro Cartilage Tissue Formation on Chitosan-Modified Poly(l-Lactide-co-Epsilon-Caprolactone) Scaffold

    PubMed Central

    Wu, Yingnan; Li, Chao; Zhang, Tianting; Zou, Yu; Hui, James H.P.; Lee, Eng Hin

    2012-01-01

    Considering the load-bearing physiological requirement of articular cartilage, scaffold for cartilage tissue engineering should exhibit appropriate mechanical responses as natural cartilage undergoing temporary deformation on loading with little structural collapse, and recovering to the original geometry on unloading. A porous elastomeric poly l-lactide-co-ɛ-caprolactone (PLCL) was generated and crosslinked at the surface to chitosan to improve its wettability. Human bone marrow derived mesenchymal stem cells (MSC) attachment, morphological change, proliferation and in vitro cartilage tissue formation on the chitosan-modified PLCL scaffold were compared with the unmodified PLCL scaffold. Chitosan surface promoted more consistent and even distribution of the seeded MSC within the scaffold. MSC rapidly adopted a distinct spread-up morphology on attachment on the chitosan-modified PLCL scaffold with the formation of F-actin stress fiber which proceeded to cell aggregation; an event much delayed in the unmodified PLCL. Enhanced cartilage formation on the chitosan-modified PLCL was shown by real-time PCR analysis, histological and immunochemistry staining and biochemical assays of the cartilage extracellular matrix components. The Young's modulus of the derived cartilage tissues on the chitosan-modified PLCL scaffold was significantly increased and doubled that of the unmodified PLCL. Our results show that chitosan modification of the PLCL scaffold improved the cell compatibility of the PLCL scaffold without significant alteration of the physical elastomeric properties of PLCL and resulted in the formation of cartilage tissue of better quality. PMID:21902611

  5. Plasticized chitosan/polyolefin films produced by extrusion.

    PubMed

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Halogen atom effect on the photophysical properties of substituted aza-BODIPY derivatives.

    PubMed

    De Simone, B C; Mazzone, G; Pirillo, J; Russo, N; Sicilia, E

    2017-01-18

    The influence of halogen atom substitution (Br and I), in different amounts and positions in an aza-BODIPY skeleton, on the photophysical properties of some aza-BODIPY derivatives has been investigated by using density functional theory and its time-dependent extension. The heavy atom effect on excitation energies, singlet-triplet energy gaps and spin-orbit matrix elements has been considered. The maximum absorption within the therapeutic window has been confirmed for all the aza-BODIPY derivatives. The feasible intersystem spin crossing pathways for the population of the lowest triplet state, that will depend on the values of the spin-orbit matrix elements, the energy gap as well as the orbital composition of the involved states have been found to most likely involve the S 1 and T 1 or T 2 states. The outcomes of computations support the potential therapeutic use of these compounds as photosensitizers in photodynamic therapy.

  7. Highly regioselective synthesis of N-3 organophosphorous derivatives of 3,4-dihydropyrimidin-2(1H)-ones and their calcium channel binding studies.

    PubMed

    Singh, Kamaljit; Singh, Kawaljit; Trappanese, Danielle M; Moreland, Robert S

    2012-08-01

    A series of novel N-3 substituted 3,4-dihydropyrimidin-2(1H)-ones derivatives bearing diaminophosphinyl, phosphonate and phosphorous containing heterocycles were obtained from 3,4-dihydropyrimidinones (DHPMs) in a regioselective manner through an efficient reaction protocol, tolerant to substitutional variation at the key diversity positions around the DHPM core. None of the representative compounds screened for calcium channel blocking activity was found to have significant activity compared to nifedipine. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells.

    PubMed

    Li, Xinxin; Dong, Wenjuan; Nalin, Ansel P; Wang, Yufeng; Pan, Pan; Xu, Bo; Zhang, Yibo; Tun, Steven; Zhang, Jianying; Wang, Li-Shu; He, Xiaoming; Caligiuri, Michael A; Yu, Jianhua

    2018-01-01

    Natural products comprise an important class of biologically active molecules. Many of these compounds derived from natural sources exhibit specific physiologic or biochemical effects. An example of a natural product is chitosan, which is enriched in the shells of certain seafood that are frequently consumed worldwide. Like other natural products, chitosan has the potential for applications in clinical medicine and perhaps in cancer therapy. Toward this end, the immunomodulatory or anti-cancer properties of chitosan have yet to be reported. In this study, we discovered that chitosan enhanced the anti-tumor activity of natural killer (NK) cells by activating dendritic cells (DCs). In the presence of DCs, chitosan augmented IFN-γ production by human NK cells. Mechanistically, chitosan activated DCs to express pro-inflammatory cytokines such as interleukin (IL)-12 and IL-15, which in turn activated the STAT4 and NF-κB signaling pathways, respectively, in NK cells. Moreover, chitosan promoted NK cell survival, and also enhanced NK cell cytotoxicity against leukemia cells. Finally, a related in vivo study demonstrated that chitosan activated NK cells against B16F10 tumor cells in an immunocompetent syngeneic murine melanoma model. This effect was accompanied by in vivo upregulation of IL-12 and IL-15 in DCs, as well as increased IFN-γ production and cytolytic degranulation in NK cells. Collectively, our results demonstrate that chitosan activates DCs leading to enhanced capacity for immune surveillance by NK cells. We believe that our study has future clinical applications for chitosan in the prevention or treatment of cancer and infectious diseases.

  9. A mediator-free glucose biosensor based on glucose oxidase/chitosan/α-zirconium phosphate ternary biocomposite.

    PubMed

    Liu, Li-Min; Wen, Jiwu; Liu, Lijun; He, Deyong; Kuang, Ren-yun; Shi, Taqing

    2014-01-15

    A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Ex Vivo and in Vivo Evaluation of the Effect of Coating a Coumarin-6-Labeled Nanostructured Lipid Carrier with Chitosan-N-acetylcysteine on Rabbit Ocular Distribution.

    PubMed

    Liu, Dandan; Li, Jinyu; Cheng, Bingchao; Wu, Qingyin; Pan, Hao

    2017-08-07

    This study is focused on further understanding the characteristics of chitosan-N-acetylcysteine surface-modified nanostructured lipid carriers (CS-NAC-NLCs) in their interaction with ocular mucosa. Coumarin-6 (C6)-labeled NLCs, including uncoated NLCs, chitosan hydrochloride (CH)-, and CS-NAC-coated NLCs, were developed using a melt-emulsification technique and subsequently decorated with different types or portions of chitosan derivatives. Mucoadhesion was evaluated ex vivo using a flow-through process with fluorescence detection. The results demonstrated that the presence of CS-NAC on the C6-NLC surface provided the most obvious enhancement in adhesion due to the formation of both noncovalent (ionic) and covalent (disulfide bridges) interactions with mucus chains. Meanwhile, the concentration of CS-NAC in the formulation positively influenced the viscosity of the nanoparticles and hence prolonged their retention in the ocular tissue. Transcorneal penetration studies revealed that CS-NAC-NLC particles were able to penetrate through the entire corneal epithelium primarily via a transcellular route. The transport depth and velocity strongly relied on the modification material and the particle size. Ex vivo fluorescence imaging and in vivo ocular distribution investigations showed that C6 was broadly distributed in rabbit eye tissues and absorbed by aqueous humor after CS-NAC-NLC instillation. In relation to C6 eye drops, CS-NAC-NLCs achieved considerably higher C max (4.01-fold), MRT 0-∞ (1.87-fold), and AUC 0-∞ (16.29-fold) in the aqueous humor. Moreover, the increase in drug absorption was greater in the cornea than in the conjunctiva. Thereby, it is possible to draw a conclusion that CS-NAC-NLCs presented great potential for drug application to the front portion of the eye.

  11. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery.

    PubMed

    Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-10-15

    Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohammadi, Somayeh; Khayatian, Gholamreza

    2017-10-01

    We have described a simple and reliable colorimetric method for the sensing of biothiols such as cysteine, homocysteine, and glutathione in biological samples. The selective binding of chitosan capped silver nanoparticles to biothiols induced aggregation of the chitosan-Ag NPs. But the other amino acids that do not have thiol group cannot aggregate the chitosan-Ag NPs. Aggregation of chitosan-Ag NPs has been confirmed with UV-vis absorption spectra, zeta potential and transmission electron microscopy images. Under optimum conditions, good linear relationships existed between the absorption ratios (at A500/A415) and the concentrations of cysteine, homocysteine, and glutathione in the range of 0.1-10.0 μM with detection limits of 15.0, 84.6 and 40.0 nM, respectively. This probe was successfully applied to detect these biothiols in biological samples (urine and plasma).

  13. In Vitro Evaluation of Cell-Seeded Chitosan Films for Peripheral Nerve Tissue Engineering

    PubMed Central

    Wrobel, Sandra; Serra, Sofia Cristina; Ribeiro-Samy, Silvina; Sousa, Nuno; Heimann, Claudia; Barwig, Christina; Grothe, Claudia; Haastert-Talini, Kirsten

    2014-01-01

    Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)—immortalized, neonatal, and adult—as well as rat bone-marrow-derived mesenchymal stromal cells (BMSCs) were analyzed with regard to their cell metabolic activity, proliferation profiles, and cell morphology after different time points of mono- and cocultures on the chitosan films. Overall the results demonstrate a good cytocompatibility of the chitosan substrate. Both cell types were viable on the biomaterial and showed different metabolic activities and proliferation behavior, indicating cell-type-specific cell–biomaterial interaction. Moreover, the cell types also displayed their typical morphology. In cocultures adult SCs used the BMSCs as a feeder layer and no negative interactions between both cell types were detected. Further, the chitosan films allow neurite outgrowth from dissociated sensory neurons, which is additionally supported on film preseeded with SC-BMSC cocultures. The presented chitosan films therefore demonstrate high potential for their use in tissue-engineered nerve grafts. PMID:24606318

  14. Continuous and massive intake of chitosan affects mineral and fat-soluble vitamin status in rats fed on a high-fat diet.

    PubMed

    Deuchi, K; Kanauchi, O; Shizukuishi, M; Kobayashi, E

    1995-07-01

    We investigated the effects of continuous and massive intake of chitosan with sodium ascorbate (AsN) on the mineral and the fat-soluble vitamin status in male Sprague-Dawley rats fed on a high-fat diet. The apparent fat digestibility in the chitosan-receiving group was significantly lower than that in the cellulose- or glucosamine-receiving group. Chitosan feeding for 2 weeks caused a decrease in mineral absorption and bone mineral content, and it was necessary to administer twice the amount of Ca in the AIN-76 formula, which was supplemented with AsN, to prevent such a decrease in the bone mineral content. Moreover, the ingestion of chitosan along with AsN led to a marked and rapid decrease in the serum vitamin E level, while such a loss in vitamin E was not observed for rats given glucosamine monomer instead of chitosan.

  15. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil

    PubMed Central

    Fabiano, Angela; Bizzarri, Ranieri; Zambito, Ylenia

    2017-01-01

    A thermosensitive ophthalmic hydrogel (TSOH) – fluid at 4°C (instillation temperature), semisolid at 35°C (eye temperature), which coupled the dosing accuracy and administration ease of eyedrops with the increased ocular bioavailability of a hydrogel – was prepared by gelling a chitosan hydrochloride (ChHCl) solution (27.8 mg/mL) medicated with 1.25 mg/mL 5-fluorouracil (5-FU) with β-glycerophosphate 0.8 mg/mL. Polymer mixtures, where Ch was partially (10%, 15%, or 20%) replaced by quaternary ammonium–chitosan conjugates (QA-Ch) or thiolated derivatives thereof, were also used to modulate 5-FU-release properties of TSOH. Also, Ch-based nanoparticles (NPs; size after lyophilization and redispersion 341.5±15.2 nm, polydispersity 0.315±0.45, ζ-potential 10.21 mV) medicated with 1.25 mg/mL 5-FU prepared by ionotropic cross-linking of Ch with hyaluronan were introduced into TSOH. The 5-FU binding by TSOH polymers in the sol state was maximum with plain Ch (31.4%) and tended to decrease with increasing QA presence in polymer mixture. 5-FU release from TSOH with or without NPs was diffusion-controlled and linear in √t. The different TSOH polymers were compared on a diffusivity basis by comparing the slopes of √t plots. These showed a general decrease with NP-containing TSOH, which was the most marked with the TSOH, where Ch was 20% replaced by the derivative QA-Ch50. This formulation and that not containing NP were instilled in rabbits and the 5-FU transcorneal penetration was measured by analyzing the aqueous humor. Both TSOH solutions increased the area under the curve (0–8 hours) 3.5 times compared with the plain eyedrops, but maximum concentration for the NP-free TSOH was about 0.65 µg/mL, followed by a slow decline, while the NP-containing one showed a plateau (0.25–0.3 µg/mL) in a time interval of 0.5–7 hours. This is ascribed to the ability of this TSOH to control drug release to a zero order and that of NPs to be internalized by corneal

  16. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil.

    PubMed

    Fabiano, Angela; Bizzarri, Ranieri; Zambito, Ylenia

    2017-01-01

    A thermosensitive ophthalmic hydrogel (TSOH) - fluid at 4°C (instillation temperature), semisolid at 35°C (eye temperature), which coupled the dosing accuracy and administration ease of eyedrops with the increased ocular bioavailability of a hydrogel - was prepared by gelling a chitosan hydrochloride (ChHCl) solution (27.8 mg/mL) medicated with 1.25 mg/mL 5-fluorouracil (5-FU) with β-glycerophosphate 0.8 mg/mL. Polymer mixtures, where Ch was partially (10%, 15%, or 20%) replaced by quaternary ammonium-chitosan conjugates (QA-Ch) or thiolated derivatives thereof, were also used to modulate 5-FU-release properties of TSOH. Also, Ch-based nanoparticles (NPs; size after lyophilization and redispersion 341.5±15.2 nm, polydispersity 0.315±0.45, ζ-potential 10.21 mV) medicated with 1.25 mg/mL 5-FU prepared by ionotropic cross-linking of Ch with hyaluronan were introduced into TSOH. The 5-FU binding by TSOH polymers in the sol state was maximum with plain Ch (31.4%) and tended to decrease with increasing QA presence in polymer mixture. 5-FU release from TSOH with or without NPs was diffusion-controlled and linear in √t. The different TSOH polymers were compared on a diffusivity basis by comparing the slopes of √t plots. These showed a general decrease with NP-containing TSOH, which was the most marked with the TSOH, where Ch was 20% replaced by the derivative QA-Ch50. This formulation and that not containing NP were instilled in rabbits and the 5-FU transcorneal penetration was measured by analyzing the aqueous humor. Both TSOH solutions increased the area under the curve (0-8 hours) 3.5 times compared with the plain eyedrops, but maximum concentration for the NP-free TSOH was about 0.65 µg/mL, followed by a slow decline, while the NP-containing one showed a plateau (0.25-0.3 µg/mL) in a time interval of 0.5-7 hours. This is ascribed to the ability of this TSOH to control drug release to a zero order and that of NPs to be internalized by corneal cells.

  17. Chitosan Improves Anti-Biofilm Efficacy of Gentamicin through Facilitating Antibiotic Penetration

    PubMed Central

    Mu, Haibo; Guo, Fan; Niu, Hong; Liu, Qianjin; Wang, Shunchun; Duan, Jinyou

    2014-01-01

    Antibiotic overuse is one of the major drivers in the generation of antibiotic resistant “super bugs” that can potentially cause serious effects on health. In this study, we reported that the polycationic polysaccharide, chitosan could improve the efficacy of a given antibiotic (gentamicin) to combat bacterial biofilms, the universal lifestyle of microbes in the world. Short- or long-term treatment with the mixture of chitosan and gentamicin resulted in the dispersal of Listeria monocytogenes (L. monocytogenes) biofilms. In this combination, chitosan with a moderate molecular mass (~13 kDa) and high N-deacetylation degree (~88% DD) elicited an optimal anti-biofilm and bactericidal activity. Mechanistic insights indicated that chitosan facilitated the entry of gentamicin into the architecture of L. monocytogenes biofilms. Finally, we showed that this combination was also effective in the eradication of biofilms built by two other Listeria species, Listeria welshimeri and Listeria innocua. Thus, our findings pointed out that chitosan supplementation might overcome the resistance of Listeria biofilms to gentamicin, which might be helpful in prevention of gentamicin overuse in case of combating Listeria biofilms when this specific antibiotic was recommended. PMID:25479075

  18. Disinfection of water with new chitosan-modified hybrid clay composite adsorbent.

    PubMed

    Unuabonah, Emmanuel I; Adewuyi, Adewale; Kolawole, Matthew O; Omorogie, Martins O; Olatunde, Olalekan C; Fayemi, Scott O; Günter, Christina; Okoli, Chukwunonso P; Agunbiade, Foluso O; Taubert, Andreas

    2017-08-01

    Hybrid clay composites were prepared from Kaolinite clay and Carica papaya seeds via modification with chitosan, Alum, NaOH, and ZnCl 2 in different ratios, using solvothermal and surface modification techniques. Several composite adsorbents were prepared, and the most efficient of them for the removal of gram negative enteric bacteria was the hybrid clay composite that was surface-modified with chitosan, Ch-nHYCA 1:5 (Chitosan: nHYCA = 1:5). This composite adsorbent had a maximum adsorption removal value of 4.07 × 10 6 cfu/mL for V. cholerae after 120 min, 1.95 × 10 6 cfu/mL for E. coli after ∼180 min and 3.25 × 10 6 cfu/mL for S. typhi after 270 min. The Brouers-Sotolongo model was found to better predict the maximum adsorption capacity ( q max ) of Ch-nHYCA 1:5 composite adsorbent for the removal of E. coli with a q max of 103.07 mg/g (7.93 × 10 7 cfu/mL) and V. cholerae with a q max of 154.18 mg/g (1.19 × 10 8 cfu/mL) while the Sips model best described S. typhi adsorption by Ch-nHYCA 1:5 composite with an estimated q max of 83.65 mg/g (6.43 × 10 7 cfu/mL). These efficiencies do far exceed the alert/action levels of ca. 500 cfu/mL in drinking water for these bacteria. The simplicity of the composite preparation process and the availability of raw materials used for its preparation underscore the potential of this low-cost chitosan-modified composite adsorbent (Ch-nHYCA 1:5 ) for water treatment.

  19. Synthesis, characterization and biological screening of sulfonamides derived form 2-phenylethylamine.

    PubMed

    Rehman, Aziz-ur; Afroz, Sumbel; Abbasi, Muhammad Athar; Tanveer, Wajeeha; Khan, Khalid Mohammed; Ashraf, Muhammad; Ahmad, Irshad; Afzal, Iftikhar; Ambreen, Nida

    2012-10-01

    In the present study, a series of N-substituted derivatives of 2-phenylethylamine has been synthesized. The reaction of 2-phenylethylamine (1) with benzene sulfonyl chloride (2) yielded N-(2-phenylethyl) benzenesulfonamide (3), which further on treatment with alkyl/acyl halides (4a-i) in the presence of sodium hydride furnished into N-substituted sulfonamides (5a-i). These derivatives were characterized by IR, (1)H-NMR and EI-MS and then screened against acetyl cholinesterase (AChE), butyryl cholinesterase (BChE) and lipoxygenase enzyme (LOX) and were found to be potent inhibitors of butyryl cholinesterase only.

  20. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid.

    PubMed

    Rui, Liyun; Xie, Minhao; Hu, Bing; Zhou, Li; Saeeduddin, Muhammad; Zeng, Xiaoxiong

    2017-08-15

    Chlorogenic acid-chitosan conjugate was synthesized by introducing of chlorogenic acid onto chitosan with the aid of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxybenzotriazole. The data of UV-vis, FT-IR and NMR for chlorogenic acid-chitosan conjugates demonstrated the successful conjugation of chlorogenic acid with chitosan. Compared to chitosan, chlorogenic acid-chitosan conjugates exhibited increased solubility in distilled water, 1% acetic acid solution (v/v) or 50% ethanol solution (v/v) containing 0.5% acetic acid. Moreover, chlorogenic acid-chitosan conjugates showed dramatic enhancements in metal ion chelating activity, total antioxidant capacity, scavenging activities on 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) and superoxide radicals, inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching, and protective effect on H 2 O 2 -induced oxidative injury of PC12 cells. Particularly, chlorogenic acid-chitosan conjugate exhibited higher inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching than chlorogenic acid. The results suggested that chlorogenic acid-chitosan conjugates could serve as food supplements to enhance the function of foods in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.

  2. Chitosan and thiolated chitosan: Novel therapeutic approach for preventing corneal haze after chemical injuries.

    PubMed

    Zahir-Jouzdani, Forouhe; Mahbod, Mirgholamreza; Soleimani, Masoud; Vakhshiteh, Faezeh; Arefian, Ehsan; Shahosseini, Saeed; Dinarvand, Rasoul; Atyabi, Fatemeh

    2018-01-01

    Corneal haze, commonly caused by deep physical and chemical injuries, can greatly impair vision. Growth factors facilitate fibroblast proliferation and differentiation, which leads to haze intensity. In this study, the potential effect of chitosan (CS) and thiolated-chitosan (TCS) nanoparticles and solutions on inhibition of fibroblast proliferation, fibroblast to myofibroblast differentiation, neovascularization, extracellular matrix (ECM) deposition, and pro-fibrotic cytokine expression was examined. Transforming growth factor beta-1 (TGFβ 1 ) was induced by interleukin-6 (IL6) in human corneal fibroblasts and expression levels of TGFβ 1 , Platelet-derived growth factor (PDGF), α-smooth muscle actins (α-SMA), collagen type I (Col I), fibronectin (Fn) and vascular endothelial growth factor (VEGF) were quantified using qRT-PCR. To assess wound-healing capacity, TCS-treated mice were examined for α-SMA positive cells, collagen deposition, inflammatory cells and neovascularization through pathological immunohistochemistry. The results revealed that CS and TCS could down-regulate the expression levels of TGFβ 1 and PDGF comparable to that of TGFβ 1 knockdown experiment. However, down-regulation of TGFβ 1 was not regulated through miR29b induction. Neovascularization along with α-SMA and ECM deposition were significantly diminished. According to these findings, CS and TCS can be considered as potential anti-fibrotic and anti-angiogenic therapeutics. Furthermore, TCS, thiolated derivative of CS, will increase mucoadhesion of the polymer at the corneal surface which makes the polymer efficient and non-toxic therapeutic approach for corneal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles.

    PubMed

    Terrón-Mejía, Ketzasmin A; Martínez-Benavidez, Evelin; Higuera-Ciapara, Inocencio; Virués, Claudia; Hernández, Javier; Domínguez, Zaira; Argüelles-Monal, Waldo; Goycoolea, Francisco M; López-Rendón, Roberto; Gama Goicochea, Armando

    2018-06-12

    The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.

  4. Bone-Induced Chondroinduction in Sheep Jamshidi Biopsy Defects with and without Treatment by Subchondral Chitosan-Blood Implant: 1-Day, 3-Week, and 3-Month Repair.

    PubMed

    Bell, Angela D; Lascau-Coman, Viorica; Sun, Jun; Chen, Gaoping; Lowerison, Mark W; Hurtig, Mark B; Hoemann, Caroline D

    2013-04-01

    Delivery of chitosan to subchondral bone is a novel approach for augmented marrow stimulation. We evaluated the effect of 3 presolidified chitosan-blood implant formulations on osteochondral repair progression compared with untreated defects. In N = 5 adult sheep, six 2-mm diameter Jamshidi biopsy holes were created bilaterally in the medial femoral condyle and treated with presolidified chitosan-blood implant with fluorescent chitosan tracer (10 kDa, 40 kDa, or 150k Da chitosan, left knee) or left to bleed (untreated, right knee). Implant residency and osteochondral repair were assessed at 1 day (N = 1), 3 weeks (N = 2), or 3 months (N = 2) postoperative using fluorescence microscopy, histomorphometry, stereology, and micro-computed tomography. Chitosan implants were retained in 89% of treated Jamshidi holes up to 3 weeks postoperative. At 3 weeks, biopsy sites were variably covered by cartilage flow, and most bone holes contained cartilage flow fragments and heterogeneous granulation tissues with sparse leukocytes, stromal cells, and occasional adipocytes (volume density 1% to 3%). After 3 months of repair, most Jamshidi bone holes were deeper, remodeling at the edges, filled with angiogenic granulation tissue, and lined with variably sized chondrogenic foci fused to bone trabeculae or actively repairing bone plate. The 150-kDa chitosan implant elicited more subchondral cartilage formation compared with 40-kDa chitosan-treated and control defects (P < 0.05, N = 4). Treated defects contained more mineralized repair tissue than control defects at 3 months (P < 0.05, N = 12). Bone plate-induced chondroinduction is an articular cartilage repair mechanism. Jamshidi biopsy repair takes longer than 3 months and can be influenced by subchondral chitosan-blood implant.

  5. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate.

    PubMed

    Koukaras, Emmanuel N; Papadimitriou, Sofia A; Bikiaris, Dimitrios N; Froudakis, George E

    2012-10-01

    This work reports details pertaining to the formation of chitosan nanoparticles that we prepare by the ionic gelation method. The molecular interactions of the ionic cross-linking of chitosan with tripolyphosphate have been investigated and elucidated by means of all-electron density functional theory. Solvent effects have been taken into account using implicit models. We have identified primary-interaction ionic cross-linking configurations that we define as H-link, T-link, and M-link, and we have quantified the corresponding interaction energies. H-links, which display high interaction energies and are also spatially broadly accessible, are the most probable cross-linking configurations. At close range, proton transfer has been identified, with maximum interaction energies ranging from 12.3 up to 68.3 kcal/mol depending on the protonation of the tripolyphosphate polyanion and the relative coordination of chitosan with tripolyphosphate. On the basis of our results for the linking types (interaction energies and torsion bias), we propose a simple mechanism for their impact on the chitosan/TPP nanoparticle formation process. We introduce the β ratio, which is derived from the commonly used α ratio but is more fundamental since it additionally takes into account structural details of the oligomers.

  6. Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method.

    PubMed

    Thomas, Christopher G; Krupp, Johannes J; Bagley, Elena E; Bauzon, Reginald; Heinemann, Stephen F; Vissel, Bryce; Westbrook, Gary L

    2006-04-01

    Several forms of macroscopic N-methyl-D-aspartate (NMDA) receptor desensitization affect the amplitude and duration of postsynaptic responses. In addition to its functional significance, desensitization provides one means to examine the conformational coupling of ligand binding to channel gating. Segments flanking the ligand binding domain in the extracellular N terminus of the NMDA receptor NR2 subunit influence the glycine-independent form of desensitization. The NR2A pre-M1 region, the linker between the glutamate binding domain and the channel pore, plays a critical role in desensitization. Thus, we used the substituted-cysteine accessibility method to scan the accessibility of residues in the pre-M1 region and the first transmembrane domain (M1) of NR2A. Cysteine mutants were expressed with NR1 in human embryonic kidney 293 cells and were assayed by whole-cell recording. With activation of the receptor by glutamate and glycine, only a single mutant, V557C, which is located at the beginning of M1, led to irreversible inhibition by the methanethiosulfonate derivative methanethiosulfonate ethyltrimethylammonium (MTSET). The NR2 ligand glutamate was insufficient on its own to induce modification of V557C by MTSET, suggesting that the change in accessibility required channel gating. The rate of MTSET modification of the homologous residue on NR1 (NR1-1a(L562C)/NR2A) was much slower than V557C. We also substituted cysteine in the V557 site of mutant subunits that exhibit either enhanced or reduced desensitization. Modification by MTSET correlated with the degree of desensitization for these subunits, suggesting that V557C is a sensitive detector of desensitization gating.

  7. In situ gelable interpenetrating double network hydrogel formulated from binary components: thiolated chitosan and oxidized dextran.

    PubMed

    Zhang, Hanwei; Qadeer, Aisha; Chen, Weiliam

    2011-05-09

    In situ gelable interpenetrating double-network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule cross-linkers and that do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-cross-linkings through exploiting the disparity of their reaction times. Compared with the autogelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed 3D network in a short time span. Compared with typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell, and the results reveal that the hydrogels are noncytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response.

  8. In situ Gelable Interpenetrating Double Network Hydrogel Formulated from Binary Components: Thiolated Chitosan and Oxidized Dextran

    PubMed Central

    Zhang, Hanwei; Qadeer, Aisha; Chen, Weiliam

    2011-01-01

    In situ gelable interpenetrating double network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule crosslinkers and do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-crosslinkings through exploiting the disparity of their reaction times. Compare to the auto-gelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed three-dimensional network in a short time span. Compare to typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell and the results reveal that the hydrogels are non-cytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response. PMID:21410248

  9. Effectiveness of chitosan against wine-related microorganisms.

    PubMed

    Bağder Elmaci, Simel; Gülgör, Gökşen; Tokatli, Mehmet; Erten, Hüseyin; İşci, Asli; Özçelik, Filiz

    2015-03-01

    The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.

  10. Alkyl chitosan film-high strength, functional biomaterials.

    PubMed

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  11. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan-Red Scoria and Chitosan-Pumice Blends.

    PubMed

    Asere, Tsegaye Girma; Mincke, Stein; De Clercq, Jeriffa; Verbeken, Kim; Tessema, Dejene A; Fufa, Fekadu; Stevens, Christian V; Du Laing, Gijs

    2017-08-09

    In different regions across the globe, elevated arsenic contents in the groundwater constitute a major health problem. In this work, a biopolymer chitosan has been blended with volcanic rocks (red scoria and pumice) for arsenic (V) removal. The effect of three blending ratios of chitosan and volcanic rocks (1:2, 1:5 and 1:10) on arsenic removal has been studied. The optimal blending ratio was 1:5 (chitosan: volcanic rocks) with maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g for chitosan: red scoria (Ch-Rs) and chitosan: pumice (Ch-Pu), respectively. The experimental adsorption data fitted well a Langmuir isotherm ( R ² > 0.99) and followed pseudo-second-order kinetics. The high stability of the materials and their high arsenic (V) removal efficiency (~93%) in a wide pH range (4 to 10) are useful for real field applications. Moreover, the blends could be regenerated using 0.05 M NaOH and used for several cycles without losing their original arsenic removal efficiency. The results of the study demonstrate that chitosan-volcanic rock blends should be further explored as a potential sustainable solution for removal of arsenic (V) from water.

  12. Synthesis and antitumoral activity of novel 3-(2-substituted-1,3,4-oxadiazol-5-yl) and 3-(5-substituted-1,2,4-triazol-3-yl) beta-carboline derivatives.

    PubMed

    Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena

    2008-11-15

    Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.

  13. Enhanced O-2 Selectivity versus N-2 by Partial Metal Substitution in Cu-BTC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.

    2015-03-24

    Here, we describe the homogeneous substitution of Mn, Fe, and Co at various levels into a prototypical metal organic framework (MOP), namely Cu-BTC (HKUST-1), and the effect of that substitution on preferential gas sorption. Using a combination of density functional theory (DFT) calculations, postsynthetic metal substitutions, materials characterization, and gas sorption testing, we demonstrate that the identity of the metal ion has a quantifiable effect on their oxygen and nitrogen sorption properties at cryogenic temperatures. An excellent correlation is found between O-2/N-2 selectivities determined experimentally at 77 K and the difference in O-2 and N-2 binding energies calculated from DFTmore » modeling data: Mn > Fe Co >> Cu. Room temperature gas sorption studies were also performed and correlated with metal substitution. The Fe-exchanged sample shows a significantly higher nitrogen isosteric heat of adsorption at temperatures close to ambient conditions (273-298 K) as compared to all other metals studied, indicative of favorable interactions between N-2 and coordinatively unsaturated Fe metal centers. Interestingly, differences in gas adsorption results at cryogenic and room temperatures are evident; they are explained by comparing experimental results with DFT binding energies (0 K) and room temperature Grand Canonical Monte Carlo simulations.« less

  14. Enhanced O 2 selectivity versus N 2 by partial metal substitution in Cu-BTC

    DOE PAGES

    Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; ...

    2015-03-05

    Here we describe the homogeneous substitution of Mn, Fe and Co at various levels into a prototypical metal-organic framework (MOF), namely Cu-BTC (HKUST-1), and the effect of that substitution on preferential gas sorption. Using a combination of density functional theory (DFT) calculations, postsynthetic metal substitutions, materials characterization, and gas sorption testing, we demonstrate that the identity of the metal ion has a quantifiable effect on their oxygen and nitrogen sorption properties at cryogenic temperatures. An excellent correlation is found between O 2/N 2 selectivities determined experimentally at 77 K and the difference in O 2 and N 2 binding energiesmore » calculated from DFT modeling data: Mn > Fe > Co > Cu. Room temperature gas sorption studies were also performed and correlated with metal substitution. The Fe-exchanged sample shows a significantly higher nitrogen isosteric heat of adsorption at temperatures close to ambient conditions (273 K - 298 K) as compared to all other metals studied, indicative of favorable interactions between N 2 and coordinatively unsaturated Fe metal centers. Furthermore, differences in gas adsorption results at cryogenic and room temperatures are evident; they are explained by comparing experimental results with DFT binding energies (0 K) and room temperature Grand Canonical Monte Carlo simulations.« less

  15. Interrelations between the mesomeric and electronegativity effects in para-substituted derivatives of phenol/phenolate and aniline/anilide H-bonded complexes: a DFT-based computational study.

    PubMed

    Szatyłowicz, Halina; Krygowski, Tadeusz M; Jezierska, Aneta; Panek, Jarosław J

    2009-05-14

    We were able to test the Bent-Walsh rule by examining geometric parameters in the vicinity of the ipso-carbon atom of H-bonded complexes of para-substituted phenol/phenolate and aniline/anilide derivatives for the three cases (i) a versus alpha, (ii) alpha versus d(CO) or d(CN), and (iii) a versus d(CO) or d(CN), where alpha is the ring valence angle at the ipso-carbon atom (C1 substituted by OH or O(-) or NH(2) or NH(-)) and a is the arithmetic mean of the two C(ipso)-C(ortho) bond lengths. The data for nonequilibrium H-bonded complexes of unsubstituted phenol/phenolate and aniline/anilide with the respective bases F(-) and CN(-) and acids HF and HCN showed the same dependence of a on d(CX) (X = O, N) as the data for equilibrium complexes of para-Y-substituted phenol/phenolate and aniline/anilide derivatives (Y = NO, NO(2), CHO, COMe, CONH(2), Cl, F, H, Me, OMe, OH) with the same bases and acids. The slope of these dependencies was negative, as expected. In the remaining cases (a versus alpha and alpha versus d(CO) or d(CN)), the slopes for simulated complexes followed the Bent-Walsh rule. Finally, for the equilibrium complexes in which the substituent effect was included, the slopes of the trend lines for the substituted systems were opposite. This is because in the a versus alpha relationships, electonegativity and the resonance effect act in the same direction, whereas for the other two cases, these effects are opposite, and the resonance effect dominates.

  16. Synthesis and biological activity of novel series of 4-methoxy, and 4,9-dimethoxy-5-substituted furo[2,3-g]-1,2,3-benzoxathiazine-7,7-dioxide derivatives

    PubMed Central

    El-Sawy, Eslam R.; Ebaid, Manal S.; Abo-Salem, Heba M.; El-Hallouty, Salwa; Kassem, Emad M.; Mandour, Adel H.

    2013-01-01

    A novel series of 4-methoxy, and 4,9-dimethoxy-5-substituted furo[2,3-g]-1,2,3-benzoxathiazine-7,7-dioxide derivatives 3a,b, 10a–g and 11a–g were prepared in good yields via the reaction of 4-methoxy (1a) and 4,7-dimethoxy-5-acetyl-6-hydroxybenzofurans (1b) and their α,β-unsaturated keto derivatives 6a–g and 7a–g with chlorosulfonyl isocyanate (CSI). On the other hand, N-chlorosulfonyl carbamate derivatives 4a,b, 12a,b and 13a,b were prepared and allowed to react with piperidine to give the corresponding N-piperidinosulfonyl carbamate derivatives 5a,b, 14a,b and 15a,b, respectively. Sixteen new target compounds 3a,b, 10a–g, and 11a–g were tested for their DPPH radical-scavenging, and in vitro antiproliferative activity against A-549, MCF7 and HCT-116 cancer cell lines. Compounds 10a, 11c, 11e, and 11g showed moderate DPPH radical-scavenging activity compared to ascorbic acid at 100 μg/mL. 4,9-Dimethoxy-5-substituted styrylfuro[3,2-g]-1,2,3-benzoxathiazine-7,7-dioxides 11a, 11b, and 11c were found to be highly active against A-549 and HCT-116 cancer cell lines with IC50 values ranging from 0.02 to 0.08 μmol/mL compared to doxorubicin with IC50 = 0.04 and 0.06 μmol/mL, respectively. PMID:25685501

  17. Synthesis and biological activity of novel series of 4-methoxy, and 4,9-dimethoxy-5-substituted furo[2,3-g]-1,2,3-benzoxathiazine-7,7-dioxide derivatives.

    PubMed

    El-Sawy, Eslam R; Ebaid, Manal S; Abo-Salem, Heba M; El-Hallouty, Salwa; Kassem, Emad M; Mandour, Adel H

    2014-05-01

    A novel series of 4-methoxy, and 4,9-dimethoxy-5-substituted furo[2,3-g]-1,2,3-benzoxathiazine-7,7-dioxide derivatives 3a,b, 10a-g and 11a-g were prepared in good yields via the reaction of 4-methoxy (1a) and 4,7-dimethoxy-5-acetyl-6-hydroxybenzofurans (1b) and their α,β-unsaturated keto derivatives 6a-g and 7a-g with chlorosulfonyl isocyanate (CSI). On the other hand, N-chlorosulfonyl carbamate derivatives 4a,b, 12a,b and 13a,b were prepared and allowed to react with piperidine to give the corresponding N-piperidinosulfonyl carbamate derivatives 5a,b, 14a,b and 15a,b, respectively. Sixteen new target compounds 3a,b, 10a-g, and 11a-g were tested for their DPPH radical-scavenging, and in vitro antiproliferative activity against A-549, MCF7 and HCT-116 cancer cell lines. Compounds 10a, 11c, 11e, and 11g showed moderate DPPH radical-scavenging activity compared to ascorbic acid at 100 μg/mL. 4,9-Dimethoxy-5-substituted styrylfuro[3,2-g]-1,2,3-benzoxathiazine-7,7-dioxides 11a, 11b, and 11c were found to be highly active against A-549 and HCT-116 cancer cell lines with IC50 values ranging from 0.02 to 0.08 μmol/mL compared to doxorubicin with IC50 = 0.04 and 0.06 μmol/mL, respectively.

  18. Highly defined 3D printed chitosan scaffolds featuring improved cell growth.

    PubMed

    Elviri, Lisa; Foresti, Ruben; Bergonzi, Carlo; Zimetti, Francesca; Marchi, Cinzia; Bianchera, Annalisa; Bernini, Franco; Silvestri, Marco; Bettini, Ruggero

    2017-07-12

    The augmented demand for medical devices devoted to tissue regeneration and possessing a controlled micro-architecture means there is a need for industrial scale-up in the production of hydrogels. A new 3D printing technique was applied to the automation of a freeze-gelation method for the preparation of chitosan scaffolds with controlled porosity. For this aim, a dedicated 3D printer was built in-house: a preliminary effort has been necessary to explore the printing parameter space to optimize the printing results in terms of geometry, tolerances and mechanical properties of the product. Analysed parameters included viscosity of the starting chitosan solution, which was measured with a Brookfield viscometer, and temperature of deposition, which was determined by filming the process with a cryocooled sensor thermal camera. Optimized parameters were applied to the production of scaffolds from solutions of chitosan alone or with the addition of raffinose as a viscosity modifier. Resulting hydrogels were characterized in terms of morphology and porosity. In vitro cell culture studies comparing 3D printed scaffolds with their homologous produced by solution casting evidenced an improvement in biocompatibility deriving from the production technique as well as from the solid state modification of chitosan stemming from the addition of the viscosity modifier.

  19. Polymeric material prepared from Schiff base based on O-carboxymethyl chitosan and its Cu(II) and Pd(II) complexes

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Menteş, Ayfer

    2016-07-01

    In this study, a new eco-friendly Schiff base based on O-carboxymethyl chitosan ([OCMCS-7a]) and its copper(II) and palladium(II) complexes were synthesized. Characterizations of [OCMCS-7a] and its metal complexes were conducted using FTIR, 1H NMR, 13C NMR, TG/DTG, XRD, SEM-EDAX, ICP, UV-VIS, GC-MS, elemental analysis, magnetic moment and molar conductivity measurements. The degree of substitution (DS) of [OCMCS-7a] was determined by elemental analysis to be 0.44. It was shown by the solubility test that [OCMCS-7a] was completely soluble in water. Surface images of chitosan, [OCMCS-7a] and its Cu(II) and Pd(II) complexes were investigated using the SEM-EDAX technique. Their thermal behaviors and crystallinities of the synthesized complexes were determined by TG/DTG and X-ray powder diffraction techniques, respectively. The metal contents of the obtained complexes were determined using an ICP-OES instrument. From the analyses, it was noted that the thermal stabilities and crystallinities of [OCMCS-7a] and its complexes decreased compared to chitosan. As a consequence of surface screening, it was also noted that the surface structure of the chitosan was smoother than that of the obtained compounds.

  20. Synthesis and evaluation on pH- and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels.

    PubMed

    Rasib, S Z M; Ahmad, Z; Khan, A; Akil, H M; Othman, M B H; Hamid, Z A A; Ullah, F

    2018-03-01

    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Identification of Amino Acid Substitutions Supporting Antigenic Change of Influenza A(H1N1)pdm09 Viruses

    PubMed Central

    Koel, Björn F.; Mögling, Ramona; Chutinimitkul, Salin; Fraaij, Pieter L.; Burke, David F.; van der Vliet, Stefan; de Wit, Emmie; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Smith, Derek J.; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT The majority of currently circulating influenza A(H1N1) viruses are antigenically similar to the virus that caused the 2009 influenza pandemic. However, antigenic variants are expected to emerge as population immunity increases. Amino acid substitutions in the hemagglutinin protein can result in escape from neutralizing antibodies, affect viral fitness, and change receptor preference. In this study, we constructed mutants with substitutions in the hemagglutinin of A/Netherlands/602/09 in an attenuated backbone to explore amino acid changes that may contribute to emergence of antigenic variants in the human population. Our analysis revealed that single substitutions affecting the loop that consists of amino acid positions 151 to 159 located adjacent to the receptor binding site caused escape from ferret and human antibodies elicited after primary A(H1N1)pdm09 virus infection. The majority of these substitutions resulted in similar or increased replication efficiency in vitro compared to that of the virus carrying the wild-type hemagglutinin and did not result in a change of receptor preference. However, none of the substitutions was sufficient for escape from the antibodies in sera from individuals that experienced both seasonal and pandemic A(H1N1) virus infections. These results suggest that antibodies directed against epitopes on seasonal A(H1N1) viruses contribute to neutralization of A(H1N1)pdm09 antigenic variants, thereby limiting the number of possible substitutions that could lead to escape from population immunity. IMPORTANCE Influenza A viruses can cause significant morbidity and mortality in humans. Amino acid substitutions in the hemagglutinin protein can result in escape from antibody-mediated neutralization. This allows the virus to reinfect individuals that have acquired immunity to previously circulating strains through infection or vaccination. To date, the vast majority of A(H1N1)pdm09 strains remain antigenically similar to the virus

  2. Emerging Biomedical Applications of Nano-Chitins and Nano-Chitosans Obtained via Advanced Eco-Friendly Technologies from Marine Resources

    PubMed Central

    Muzzarelli, Riccardo A. A.; El Mehtedi, Mohamad; Mattioli-Belmonte, Monica

    2014-01-01

    The present review article is intended to direct attention to the technological advances made in the 2010–2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide) or poly(caprolactone). The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas. PMID:25415349

  3. Novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one derivatives as potential inhibitors of chorismate mutase.

    PubMed

    Mallikarjuna Rao, V; Mahesh Kumar, P; Rambabu, D; Kapavarapu, Ravikumar; Shobha Rani, S; Misra, Parimal; Pal, Manojit

    2013-12-01

    A series of novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one (DHPM) derivatives were designed, synthesized and evaluated in vitro as potential inhibitors of chorismate mutase (CM). All these compounds were prepared via a multi-component reaction (MCR) involving sequential I2-mediated Biginelli reaction followed by Cu-free Sonogashira coupling. Some of them showed promising inhibitory activities when tested at 30μM. One compound showed dose dependent inhibition of CM with IC50 value of 14.76±0.54μM indicating o-alkynylphenyl substituted DHPM as a new scaffold for the discovery of promising inhibitors of CM. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzo[c]acridine derivatives as new c-KIT promoter G-quadruplex binding ligands.

    PubMed

    Guo, Qian-Liang; Su, Hua-Fei; Wang, Ning; Liao, Sheng-Rong; Lu, Yu-Ting; Ou, Tian-Miao; Tan, Jia-Heng; Li, Ding; Huang, Zhi-Shu

    2017-04-21

    It has been shown that treatment of cancer cells with c-KIT G-quadruplex binding ligands can reduce their c-KIT expression levels thus inhibiting cell proliferation and inducing cell apoptosis. Herein, a series of new 7-substituted-5,6-dihydrobenzo[c]acridine derivatives were designed and synthesized. Subsequent biophysical evaluation demonstrated that the derivatives could effectively bind to and stabilize c-KIT G-quadruplex with good selectivity against duplex DNA. It was found that 12-N-methylated derivatives with a positive charge introduced at 12-position of 5,6-dihydrobenzo[c]acridine ring had similar binding affinity but lower stabilizing ability to c-KIT G-quadruplex DNA, compared with those of nonmethylated derivatives. Further molecular modeling studies showed possible binding modes of G-quadruplex with the ligands. RT-PCR assay and Western blot showed that compound 2b suppressed transcription and translation of c-KIT gene in K562 cells, which was consistent with the property of an effective G-quadruplex binding ligand targeting c-KIT oncogene promoter. Further biological evaluation showed that compound 2b could induce apoptosis through activation of the caspase-3 cascade pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction.

    PubMed

    Simões, M J; Gärtner, A; Shirosaki, Y; Gil da Costa, R M; Cortez, P P; Gartnër, F; Santos, J D; Lopes, M A; Geuna, S; Varejão, A S P; Maurício, A Colette

    2011-01-01

    Tissue regeneration over a large defect with a subsequent satisfactory functional recovery still stands as a major problem in areas such as nerve regeneration or bone healing. The routine technique for the reconstruction of a nerve gap is the use of autologous nerve grafting, but still with severe complications. Over the last decades several attempts have been made to overcome this problem by using biomaterials as scaffolds for guided tissue regeneration. Despite the wide range of biomaterials available, functional recovery after a serious nerve injury is still far from acceptable. Prior to the use of a new biomaterial on healing tissues, an evaluation of the host's inflammatory response is mandatory. In this study, three chitosan membranes were tested in vitro and in vivo for later use as nerve guides for the reconstruction of peripheral nerves submitted to axonotmesis or neurotmesis lesions. Chitosan membranes, with different compositions, were tested in vitro, with a nerve growth factor cellular producing system, N1E-115 cell line, cultured over each of the three membranes and differentiated for 48h in the presence of 1.5% of DMSO. The intracellular calcium concentrations of the non-differentiated and of the 48h-differentiated cells cultured on the three types of the chitosan membranes were measured to determine the cell culture viability. In vivo, the chitosan membranes were implanted subcutaneously in a rat model, and histological evaluations were performed from material retrieved on weeks 1, 2, 4 and 8 after implantation. The three types of chitosan membranes were a viable substrate for the N1E-115 cell multiplication, survival and differentiation. Furthermore, the in vivo studies suggested that these chitosan membranes are promising candidates as a supporting material for tissue engineering applications on the peripheral nerve, possibly owing to their porous structure, their chemical modifications and high affinity to cellular systems.

  6. Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives.

    PubMed

    Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro

    2007-10-15

    Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.

  7. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  8. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  9. 40 CFR 721.10056 - Benzenemethanaminium, N-(3-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)-N,N-dimethyl-, N-soya acyl derivs., chlorides. 721.10056 Section 721.10056 Protection of Environment...-aminopropyl)-N,N-dimethyl-, N-soya acyl derivs., chlorides. (a) Chemical substance and significant new uses...-dimethyl-, N-soya acyl derivs., chlorides (PMN P-03-47; CAS No. 90194-13-1) is subject to reporting under...

  10. Albendazole Microcrystal Formulations Based on Chitosan and Cellulose Derivatives: Physicochemical Characterization and In Vitro Parasiticidal Activity in Trichinella spiralis Adult Worms.

    PubMed

    Priotti, Josefina; Codina, Ana V; Leonardi, Darío; Vasconi, María D; Hinrichsen, Lucila I; Lamas, María C

    2017-05-01

    The oral route has notable advantages to administering dosage forms. One of the most important questions to solve is the poor solubility of most drugs which produces low bioavailability and delivery problems, a major challenge for the pharmaceutical industry. Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its extended spectrum activity and low cost. Nevertheless, the main disadvantage is the poor bioavailability due to its very low solubility in water. The main objective of this study was to prepare microcrystal formulations by the bottom-up technology to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. Thus, 20 novel microstructures based on chitosan, cellulose derivatives, and poloxamer as a surfactant were produced and characterized by their physicochemical properties and in vitro biological activity. To determine the significance of type and concentration of polymer, and presence or absence of surfactant in the crystals, the variables area under the curve, albendazole microcrystal solubility, and drug released (%) at 30 min were analyzed with a three-way ANOVA. This analysis indicated that the microcrystals made with hydroxyethylcellulose or chitosan appear to be the best options to optimize oral absorption of the active pharmaceutical ingredient. The in vitro evaluation of anthelmintic activity on adult forms of Trichinella spiralis identified system S10A as the most effective, of choice for testing therapeutic efficacy in vivo.

  11. A Diastereoselective Multicomponent Reaction for Construction of Alkynylamide-Substituted α,β-Diamino Acid Derivatives To Hunt Hits.

    PubMed

    Lei, Ruirui; Wu, Yong; Dong, Suzhen; Jia, Kaili; Liu, Shunying; Hu, Wenhao

    2017-03-17

    A highly diasetereoselective Mannich-type multicomponent reaction was developed to rapidly construct alkynylamide-substituted α,β-diamino acid derivatives from simple starting materials under mild conditions in moderate to good yields for hit hunting. Most of the resulting products 4 exhibited good anticancer activity in HCT116, BEL7402, and SMMC7721 cells.

  12. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves.

    PubMed

    Meyer, Cora; Stenberg, Lena; Gonzalez-Perez, Francisco; Wrobel, Sandra; Ronchi, Giulia; Udina, Esther; Suganuma, Seigo; Geuna, Stefano; Navarro, Xavier; Dahlin, Lars B; Grothe, Claudia; Haastert-Talini, Kirsten

    2016-01-01

    Biosynthetic nerve grafts are developed in order to complement or replace autologous nerve grafts for peripheral nerve reconstruction. Artificial nerve guides currently approved for clinical use are not widely applied in reconstructive surgery as they still have limitations especially when it comes to critical distance repair. Here we report a comprehensive analysis of fine-tuned chitosan nerve guides (CNGs) enhanced by introduction of a longitudinal chitosan film to reconstruct critical length 15 mm sciatic nerve defects in adult healthy Wistar or diabetic Goto-Kakizaki rats. Short and long term investigations demonstrated that the CNGs enhanced by the guiding structure of the introduced chitosan film significantly improved functional and morphological results of nerve regeneration in comparison to simple hollow CNGs. Importantly, this was detectable both in healthy and in diabetic rats (short term) and the regeneration outcome almost reached the outcome after autologous nerve grafting (long term). Hollow CNGs provide properties likely leading to a wider clinical acceptance than other artificial nerve guides and their performance can be increased by simple introduction of a chitosan film with the same advantageous properties. Therefore, the chitosan film enhanced CNGs represent a new generation medical device for peripheral nerve reconstruction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Identification of ortho-Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry.

    PubMed

    Blincoe, William D; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A; Joyce, Leo A; Mangion, Ian; Sheng, Huaming

    2018-04-01

    Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS 1 ). Significant water/alcohol loss (>30% abundance in MS 1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. Graphical Abstract ᅟ.

  14. Identification of ortho-Substituted Benzoic Acid/Ester Derivatives via the Gas-Phase Neighboring Group Participation Effect in (+)-ESI High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Blincoe, William D.; Rodriguez-Granillo, Agustina; Saurí, Josep; Pierson, Nicholas A.; Joyce, Leo A.; Mangion, Ian; Sheng, Huaming

    2018-02-01

    Benzoic acid/ester/amide derivatives are common moieties in pharmaceutical compounds and present a challenge in positional isomer identification by traditional tandem mass spectrometric analysis. A method is presented for exploiting the gas-phase neighboring group participation (NGP) effect to differentiate ortho-substituted benzoic acid/ester derivatives with high resolution mass spectrometry (HRMS1). Significant water/alcohol loss (>30% abundance in MS1 spectra) was observed for ortho-substituted nucleophilic groups; these fragment peaks are not observable for the corresponding para and meta-substituted analogs. Experiments were also extended to the analysis of two intermediates in the synthesis of suvorexant (Belsomra) with additional analysis conducted with nuclear magnetic resonance (NMR), density functional theory (DFT), and ion mobility spectrometry-mass spectrometry (IMS-MS) studies. Significant water/alcohol loss was also observed for 1-substituted 1, 2, 3-triazoles but not for the isomeric 2-substituted 1, 2, 3-triazole analogs. IMS-MS, NMR, and DFT studies were conducted to show that the preferred orientation of the 2-substituted triazole rotamer was away from the electrophilic center of the reaction, whereas the 1-subtituted triazole was oriented in close proximity to the center. Abundance of NGP product was determined to be a product of three factors: (1) proton affinity of the nucleophilic group; (2) steric impact of the nucleophile; and (3) proximity of the nucleophile to carboxylic acid/ester functional groups. [Figure not available: see fulltext.

  15. Effect of Chitosan Properties on Immunoreactivity

    PubMed Central

    Ravindranathan, Sruthi; Koppolu, Bhanu prasanth; Smith, Sean G.; Zaharoff, David A.

    2016-01-01

    Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells) and the amount of tumor necrosis factor-α (TNF-α) released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg) ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application. PMID:27187416

  16. Effect of chitosan-carvacrol coating on the quality of Pacific white shrimp during iced storage as affected by caprylic acid.

    PubMed

    Wang, Qianyun; Lei, Jun; Ma, Junjie; Yuan, Gaofeng; Sun, Haiyan

    2018-01-01

    This study aimed to investigate the effect of chitosan-carvacrol coating with or without caprylic acid (CAP) on the quality of Pacific white shrimp (Litopenaeus vannamei) during 10days of iced storage. The result showed that chitosan-carvacrol coating significantly inhibited the increase in total aerobic plate count (TPC), pH and total volatile basic nitrogen content (TVB-N) of shrimp in comparison with the control. Chitosan-carvacrol coating also delayed the melanosis formation and changes of ΔE values, and improved the texture and sensory properties of shrimp. Moreover, incorporation of CAP potentiated the efficacy of chitosan-carvacrol coating in retarding the increase of TPC and TVB-N. Incorporation of CAP into chitosan-carvacrol coating also enabled the texture characteristics of shrimp to be retained greater degrees. These results suggested that chitosan-carvacrol coating may be promising to be used as active packaging for extending the shelf life, and incorporation of CAP may enhance the efficacy of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genetic Incorporation of Twelve meta-Substituted Phenylalanine Derivatives Using A Single Pyrrolysyl-tRNA Synthetase

    PubMed Central

    Wang, Yane-Shih; Fang, Xinqiang; Chen, Hsueh-Ying; Wu, Bo; Wang, Zhiyong U.; Hilty, Christian; Liu, Wenshe R.

    2012-01-01

    When coexpressed with its cognate amber suppressing tRNACUAPyl, a pyrrolysyl-tRNA synthetase mutant N346A/C348A is able to genetically incorporate twelve meta-substituted phenylalanine derivatives into proteins site-specifically at amber mutation sites in Escherichia coli. These genetically encoded noncanonical amino acids resemble phenylalanine in size and contain diverse bioorthogonal functional groups such as halide, trifluoromethyl, nitrile, nitro, ketone, alkyne, and azide moieties. The genetic installation of these functional groups in proteins provides multiple ways to site-selectively label proteins with biophysical and biochemical probes for their functional investigations. We demonstrate that a genetically incorporated trifluoromethyl group can be used as a sensitive 19F NMR probe to study protein folding/unfolding, and that genetically incorporated reactive functional groups such as ketone, alkyne, and azide moieties can be applied to site-specifically label proteins with florescent probes. This critical discovery allows the synthesis of proteins with diverse bioorthogonal functional groups for a variety of basic studies and biotechnology development using a single recombinant expression system. PMID:23138887

  18. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration.

    PubMed

    Lin, Yu-Hsin; Lin, Jui-Hsiang; Hong, Ya-Shiuan

    2017-01-01

    The hydrophobic polyphenol curcumin has anti-inflammatory, antimicrobial, and wound-healing properties that warrant its pharmacological consideration. We report a curcumin nanoparticle with a tripolymeric composite that can be used as a delivery device for wound healing. The present composite nanoparticles were prepared with three biocompatible polymers of chitosan, poly-γ-glutamic acid, and pluronic using a simple ionic gelation technology. Pluronic was used to enhance the solubility of curcumin in chitosan/poly-γ-glutamic acid nanoparticles, leading to the incorporation of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles into chitosan membranes, and reduced inflammation and bacterial infection during wound regeneration. Nanoparticles were of 193.1 ± 8.9 nm and had a zeta potential of 20.6 ± 2.4 mV. Moreover, in vitro analyses indicated controlled curcumin release in a simulated skin tissue model. Subsequent in vivo studies show that chitosan wound dressing containing chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles promoted neocollagen regeneration and tissue reconstruction. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 81-90, 2017. © 2015 Wiley Periodicals, Inc.

  19. Substitution determination of Fmoc‐substituted resins at different wavelengths

    PubMed Central

    Kley, Markus; Bächle, Dirk; Loidl, Günther; Meier, Thomas; Samson, Daniel

    2017-01-01

    In solid‐phase peptide synthesis, the nominal batch size is calculated using the starting resin substitution and the mass of the starting resin. The starting resin substitution constitutes the basis for the calculation of a whole set of important process parameters, such as the number of amino acid derivative equivalents. For Fmoc‐substituted resins, substitution determination is often performed by suspending the Fmoc‐protected starting resin in 20% (v/v) piperidine in DMF to generate the dibenzofulvene–piperidine adduct that is quantified by ultraviolet–visible spectroscopy. The spectrometric measurement is performed at the maximum absorption wavelength of the dibenzofulvene–piperidine adduct, that is, at 301.0 nm. The recorded absorption value, the resin weight and the volume are entered into an equation derived from Lambert–Beer's law, together with the substance‐specific molar absorption coefficient at 301.0 nm, in order to calculate the nominal substitution. To our knowledge, molar absorption coefficients between 7100 l mol−1 cm−1 and 8100 l mol−1 cm−1 have been reported for the dibenzofulvene–piperidine adduct at 301.0 nm. Depending on the applied value, the nominal batch size may differ up to 14%. In this publication, a determination of the molar absorption coefficients at 301.0 and 289.8 nm is reported. Furthermore, proof is given that by measuring the absorption at 289.8 nm the impact of wavelength accuracy is reduced. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. PMID:28635051

  20. Synthesis of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}-N-substituted acetamides as potential antimicrobial and hemolytic agents.

    PubMed

    Rehman, Aziz-ur; Abbasi, Muhammad Athar; Siddiqui, Sabahat Zahra; Ahmad, Irshad; Shahid, Muhammad; Subhani, Zinayyera

    2016-05-01

    A new series of N-substituted derivatives of 2-{(5-phenyl-1,3,4-Oxadiazol-2-yl)sulfanyl}acetamides was synthesized. The synthesis was carried out by converting benzoic acid (1) into ethyl benzoate (2), benzohydrazide (3) and then 5-pheny-1,3,4-Oxadiazol-2-thiol (4) step by st0ep. The target compounds 6a-p were synthesized by reaction of compound 4 with equimolar ratios of different N-alkyl/aryl substituted 2-bromoacetamide (5a-p) in the presence of DMF and sodium hydride (NaH). The spectral (EI-MS, IR, (1)H-NMR) characterization of all the synthesized compounds reveal their successful synthesis. The compounds were also screened for antimicrobial & hemolytic activity and most of them were found to be active against the selected microbial species at variable extent relative to reference standards. But 6h was the most active against the selected panel of microbes. This series showed less toxicity and may be considered for further biological screening and application trial except 6m, possessing higher cytotoxicity.