Sample records for n-type delta-doped si

  1. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including

  2. Intersubband linear and nonlinear optical response of the delta-doped SiGe quantum well

    NASA Astrophysics Data System (ADS)

    Duque, C. A.; Akimov, V.; Demediuk, R.; Belykh, V.; Tiutiunnyk, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Fomina, O.; Tulupenko, V.

    2015-11-01

    The degree of ionization, controlled by external fields, of delta-doped layers inside the quantum wells can affect their energy structure, therefore delta-doped QWs can be used to engineer different kinds of tunable THz optical devices on intersubband transitions. Here it is calculated and analyzed the linear and nonlinear (Kerr-type) optical response, including absorption coefficient and refractive index change of 20 nm-wide Si0.8Ge0.2/Si/Si0.8Ge0.2 QW structures n-delta-doped either at the center or at the edge of the well under different temperatures. The conduction subband energy structure was found self-consistently, including the calculation of the impurity binding energy. Our results show that the degree of ionization of the impurity layer as well as the heterostructure symmetry has a strong influence on optical properties of the structures in THz region.

  3. Delta-doping optimization for high quality p-type GaN

    NASA Astrophysics Data System (ADS)

    Bayram, C.; Pau, J. L.; McClintock, R.; Razeghi, M.

    2008-10-01

    Delta (δ -) doping is studied in order to achieve high quality p-type GaN. Atomic force microscopy, x-ray diffraction, photoluminescence, and Hall measurements are performed on the samples to optimize the δ-doping characteristics. The effect of annealing on the electrical, optical, and structural quality is also investigated for different δ-doping parameters. Optimized pulsing conditions result in layers with hole concentrations near 1018 cm-3 and superior crystal quality compared to conventional p-GaN. This material improvement is achieved thanks to the reduction in the Mg activation energy and self-compensation effects in δ-doped p-GaN.

  4. Resistive switching behaviors of Au/pentacene/Si-nanowire arrays/heavily doped n-type Si devices for memory applications

    NASA Astrophysics Data System (ADS)

    Tsao, Hou-Yen; Lin, Yow-Jon

    2014-02-01

    The fabrication of memory devices based on the Au/pentacene/heavily doped n-type Si (n+-Si), Au/pentacene/Si nanowires (SiNWs)/n+-Si, and Au/pentacene/H2O2-treated SiNWs/n+-Si structures and their resistive switching characteristics were reported. A pentacene memory structure using SiNW arrays as charge storage nodes was demonstrated. The Au/pentacene/SiNWs/n+-Si devices show hysteresis behavior. H2O2 treatment may lead to the hysteresis degradation. However, no hysteresis-type current-voltage characteristics were observed for Au/pentacene/n+-Si devices, indicating that the resistive switching characteristic is sensitive to SiNWs and the charge trapping effect originates from SiNWs. The concept of nanowires within the organic layer opens a promising direction for organic memory devices.

  5. A delta-doped amorphous silicon thin-film transistor with high mobility and stability

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghun; Lee, Kyung Min; Lee, Eui-Wan; Jo, Younjung; Kim, Do-Hyung; Kim, Hong-jae; Yang, Key Young; Son, Hyunji; Choi, Hyun Chul

    2012-12-01

    Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the deltadoping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ˜0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.

  6. Time-Resolved Photoluminescence Studies of Si-doped AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Nam, K. B.; Li, J.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.

    2002-03-01

    Si-doped n-type Al x Ga_1-x N alloys with x between 0.3 and 0.5 were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. Time-resolved photoluminescence (PL) emission spectroscopy and variable temperature Hall-effect measurements were employed to study the optical and electrical properties of these epilayers. Our electrical data revealed that the conductivity of Si-doped Al x Ga_1-x N alloys (x > 0.4) increases with an increase of the Si doping concentration (N_Si) for a fixed x value and exhibits a sharp increase around N_Si= 1x10 ^18cm-3, suggesting the existence of a critical Si doping concentration needed to convert insulating Al x Ga_1-x N alloys (x > 0.4) to n-type conductivity. Time-resolved PL studies also showed that PL decay lifetime and activation energy decrease sharply when Si-doping concentration increases from N_Si= 0 to 1x10 ^18cm-3and then followed by gradual decreases as N_Si further increases. Our results thus suggest that Si-doping reduces the effect of carrier localization in Al x Ga_1-x N alloys and a sharp drop in carrier localization energy occurs at N_Si= 1x10 ^18cm-3, which is the critical Si-doping concentration needed to fill up the localized states in Al x Ga_1-x N alloys (x > 0.4). The implications of these results to UV optoelectronic devices are also discussed.

  7. What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael

    2011-01-01

    Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)

  8. A DFT study on NEA GaN photocathode with an ultrathin n-type Si-doped GaN cap layer

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Kong, Yike; Diao, Yu

    2016-10-01

    Due to the drawbacks of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, a new-type NEA GaN photocathodes with heterojunction surface dispense with Cs activation are proposed. This structure can be obtained through the coverage of an ultrathin n-type Si-doped GaN cap layer on the p-type Mg-doped GaN emission layer. The influences of the cap layer on the photocathode are calculated using DFT. This study indicates that the n-type cap layer can promote the photoemission characteristics of GaN photocathode and demonstrates the probability of the preparation of a NEA GaN photocathode with an n-type cap layer.

  9. A spot laser modulated resistance switching effect observed on n-type Mn-doped ZnO/SiO2/Si structure.

    PubMed

    Lu, Jing; Tu, Xinglong; Yin, Guilin; Wang, Hui; He, Dannong

    2017-11-09

    In this work, a spot laser modulated resistance switching (RS) effect is firstly observed on n-type Mn-doped ZnO/SiO 2 /Si structure by growing n-type Mn-doped ZnO film on Si wafer covered with a 1.2 nm native SiO 2 , which has a resistivity in the range of 50-80 Ω∙cm. The I-V curve obtained in dark condition evidences the structure a rectifying junction, which is further confirmed by placing external bias. Compared to the resistance state modulated by electric field only in dark (without illumination), the switching voltage driving the resistance state of the structure from one state to the other, shows clear shift under a spot laser illumination. Remarkably, the switching voltage shift shows a dual dependence on the illumination position and power of the spot laser. We ascribe this dual dependence to the electric filed produced by the redistribution of photo-generated carriers, which enhance the internal barrier of the hetero-junction. A complete theoretical analysis based on junction current and diffusion equation is presented. The dependence of the switching voltage on spot laser illumination makes the n-type Mn-doped ZnO/SiO 2 /Si structure sensitive to light, which thus allows for the integration of an extra functionality in the ZnO-based photoelectric device.

  10. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    NASA Astrophysics Data System (ADS)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  11. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    NASA Astrophysics Data System (ADS)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  12. On compensation in Si-doped AlN

    NASA Astrophysics Data System (ADS)

    Harris, Joshua S.; Baker, Jonathon N.; Gaddy, Benjamin E.; Bryan, Isaac; Bryan, Zachary; Mirrielees, Kelsey J.; Reddy, Pramod; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.

    2018-04-01

    Controllable n-type doping over wide ranges of carrier concentrations in AlN, or Al-rich AlGaN, is critical to realizing next-generation applications in high-power electronics and deep UV light sources. Silicon is not a hydrogenic donor in AlN as it is in GaN; despite this, the carrier concentration should be controllable, albeit less efficiently, by increasing the donor concentration during growth. At low doping levels, an increase in the Si content leads to a commensurate increase in free electrons. Problematically, this trend does not persist to higher doping levels. In fact, a further increase in the Si concentration leads to a decrease in free electron concentration; this is commonly referred to as the compensation knee. While the nature of this decrease has been attributed to a variety of compensating defects, the mechanism and identity of the predominant defects associated with the knee have not been conclusively determined. Density functional theory calculations using hybrid exchange-correlation functionals have identified VAl+n SiAl complexes as central to mechanistically understanding compensation in the high Si limit in AlN, while secondary impurities and vacancies tend to dominate compensation in the low Si limit. The formation energies and optical signatures of these defects in AlN are calculated and utilized in a grand canonical charge balance solver to identify carrier concentrations as a function of Si content. The results were found to qualitatively reproduce the experimentally observed compensation knee. Furthermore, these calculations predict a shift in the optical emissions present in the high and low doping limits, which is confirmed with detailed photoluminescence measurements.

  13. Rayleigh surface waves in ultraheavily doped n-Si

    NASA Astrophysics Data System (ADS)

    Sood, A. K.; Cardona, M.

    1986-11-01

    We report the effect of free carriers on the velocity of surface Rayleight waves (SRW) in n-type Si studied by Brillouin scattering. The samples prepared by ion implantation followed by laser annealing have carrier concentrations up to 3 x 10 21cm-3. The SRW velocity is observed to decrease significantly on doping (-18% for the heaviest doped sample). The large softening of the velocity can be quantitatively explained on the basis of the decrease of all the three independent elastic constants C 11, C 12, and C 44 in n-Si along with the changes in the density of the doped layer due to the dopant ions.

  14. Ultrafast carrier dynamics in LT-GaAs doped with Si delta layers

    NASA Astrophysics Data System (ADS)

    Khusyainov, D. I.; Dekeyser, C.; Buryakov, A. M.; Mishina, E. D.; Galiev, G. B.; Klimov, E. A.; Pushkarev, S. S.; Klochkov, A. N.

    2017-10-01

    We characterized the ultrafast properties of LT-GaAs doped with silicon δ-layers and introduced delta-doping (δ-doping) as efficient method for enhancing the properties of GaAs-based structures which can be useful for terahertz (THz) antenna, ultrafast switches and other high frequency applications. Low temperature grown GaAs (LT-GaAs) became one of the most promising materials for ultrafast optical and THz devices due to its short carrier lifetime and high carrier mobility. Low temperature growth leads to a large number of point defects and an excess of arsenic. Annealing of LT-GaAs creates high resistivity through the formation of As-clusters, which appear due to the excess of arsenic. High resistivity is very important for THz antennas so that voltage can be applied without the risk of breakdown. With δ-Si doping, control of As-clusters is possible, since after annealing, clusters align in the plane where the δ-doping occurs. In this paper, we compare the properties of LT-GaAs-based planar structures with and without δ-Si doping and subsequent annealing. We used pump-probe transient reflectivity as a probe for ultrafast carrier dynamics in LT-GaAs. The results of the experiment were interpreted using the Ortiz model and show that the δ-Si doping increases deep donor and acceptor concentrations and decreases the photoinduced carrier lifetime as compared with LT-GaAs with same growth and annealing temperatures, but without doping.

  15. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    PubMed

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  16. A computational study on the electronic and field emission properties of Mg and Si doped AlN nanocones

    NASA Astrophysics Data System (ADS)

    Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah

    2018-05-01

    Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.

  17. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC

    NASA Astrophysics Data System (ADS)

    Sakwe, S. A.; Müller, R.; Wellmann, P. J.

    2006-04-01

    We have developed a KOH-based defect etching procedure for silicon carbide (SiC), which comprises in situ temperature measurement and control of melt composition. As benefit for the first time reproducible etching conditions were established (calibration plot, etching rate versus temperature and time); the etching procedure is time independent, i.e. no altering in KOH melt composition takes place, and absolute melt temperature values can be set. The paper describes this advanced KOH etching furnace, including the development of a new temperature sensor resistant to molten KOH. We present updated, absolute KOH etching parameters of n-type SiC and new absolute KOH etching parameters for low and highly p-type doped SiC, which are used for quantitative defect analysis. As best defect etching recipes we found T=530 °C/5 min (activation energy: 16.4 kcal/mol) and T=500 °C/5 min (activation energy: 13.5 kcal/mol) for n-type and p-type SiC, respectively.

  18. Effect of doping on the intersubband absorption in Si- and Ge-doped GaN/AlN heterostructures

    NASA Astrophysics Data System (ADS)

    Ajay, A.; Lim, C. B.; Browne, D. A.; Polaczyński, J.; Bellet-Amalric, E.; Bleuse, J.; den Hertog, M. I.; Monroy, E.

    2017-10-01

    In this paper, we study band-to-band and intersubband (ISB) characteristics of Si- and Ge-doped GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 μm. Regarding the band-to-band properties, we discuss the variation of the screening of the internal electric field by free carriers, as a function of the doping density and well/nanodisk size. We observe that nanowire heterostructures consistently present longer photoluminescence decay times than their planar counterparts, which supports the existence of an in-plane piezoelectric field associated to the shear component of the strain tensor in the nanowire geometry. Regarding the ISB characteristics, we report absorption covering 1.45-1.75 μm using Ge-doped quantum wells, with comparable performance to Si-doped planar heterostructures. We also report similar ISB absorption in Si- and Ge-doped nanowire heterostructures indicating that the choice of dopant is not an intrinsic barrier for observing ISB phenomena. The spectral shift of the ISB absorption as a function of the doping concentration due to many body effects confirms that Si and Ge efficiently dope GaN/AlN nanowire heterostructures.

  19. Highly conducting and wide band gap phosphorous doped nc-Si–QD/a-SiC films as n-type window layers for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-05-23

    Nano-crystalline silicon quantum dots (Si-QDs) embedded in the phosphorous doped amorphous silicon carbide (a-SiC) matrix has been successfully prepared at a low temperature (300 °C) by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD) system from (SiH{sub 4} + CH{sub 4})-plasma with PH{sub 3} as the doping gas. The effect of PH{sub 3} flow rate on structural, optical and electrical properties of the films has been studied. Phosphorous doped nc-Si–QD/a-SiC films with high optical band gap (>1.9 eV) and superior conductivity (~10{sup −2} S cm{sup −1}) are obtained, which could be appropriately used as n-type window layers for nc-Si solarmore » cells in n-i-p configuration.« less

  20. Transport properties of Sb-doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Philipose, U.

    2012-08-01

    We present a safe and cost-effective approach for synthesis of n-type Sb-doped Si nanowires. The nanowires were synthesized at ambient pressure using SiCl4 as Si source and pure Sb as the dopant source. Structural and compositional characterization using electron microscopy and X-ray spectroscopy show crystalline nanowires with lengths of 30-40 μm and diameters of 40-100 nm. A 3-4 nm thick amorphous oxide shell covers the surface of the nanowire, post-growth. The composition of this shell was confirmed by Raman spectroscopy. Growth of Si nanowires, followed by low temperature annealing in Sb vapor, was shown to be an effective technique for synthesizing Sb-doped Si nanowires. The doping concentration of Sb was found to be dependent on temperature, with Sb re-evaporating from the Si nanowire at higher doping temperatures. Field effect transistors (FETs) were fabricated to investigate the electrical transport properties of these nanowires. The as-grown Si nanowires were found to be p-type with a channel mobility of 40 cm2 V-1 s-1. After doping with Sb, these nanowires exhibited n-type behavior. The channel mobility and carrier concentration of the Sb-doped Si nanowires were estimated to be 288 cm2 V-1 s-1 and 5.3×1018 cm-3 respectively.

  1. Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength.

    PubMed

    Chang, Guo-En; Chang, Shu-Wei; Chuang, Shun Lien

    2009-07-06

    We propose and develop a theoretical gain model for an n-doped, tensile-strained Ge-Si(x)Ge(y)Sn(1-x-y) quantum-well laser. Tensile strain and n doping in Ge active layers can help achieve population inversion in the direct conduction band and provide optical gain. We show our theoretical model for the bandgap structure, the polarization-dependent optical gain spectrum, and the free-carrier absorption of the n-type doped, tensile-strained Ge quantum-well laser. Despite the free-carrier absorption due to the n-type doping, a significant net gain can be obtained from the direct transition. We also present our waveguide design and calculate the optical confinement factors to estimate the modal gain and predict the threshold carrier density.

  2. Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's

    NASA Technical Reports Server (NTRS)

    Wang, Yang

    1994-01-01

    We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.

  3. Transport properties of Sb doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Usha, Philipose

    2011-10-01

    n-type Si nanowires were synthesized at ambient pressure using SiCl4 as Si source and Sb source as the dopant. Sb doping of 3-4 wt % was achieved through a post growth diffusion technique. The nanowires were found to have an amorphous oxide shell that developed post-growth; the thickness of the shell is estimated to be about 3-4 nm. The composition of the amorphous shell covering the crystalline Si core was determined by Raman spectroscopy, with evidence that the shell was an amorphous oxide layer. Optical characterization of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell covering the Si nanowire core. Etching of the oxide shell was found to decrease the intensity of this green emission. A single undoped Si nanowire contacted in an FET type configuration was found to be p-type with channel mobility of 20 cm^2V-1S-1. Sb doped Si nanowires exhibited n-type behavior, compensating for the holes in the undoped nanowire. The doped nanowires had carrier mobility and concentration of 160 cm^2V-1S-1 and 9.6 x 10^18cm-3 respectively.

  4. High Temperature Si-doped BN Interphases for Woven SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurwitz, Frances; Yun, Hee Mann; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The hydrolytic stability of high-temperature deposited Si-doped BN has been shown in the past to be superior in comparison to "pure" BN processed at similar or even higher temperatures. This type of material would be very desirable as a SiC/SiC composite interphase that is formed by chemical infiltration into multi-ply woven preform. However, due to rapid deposition on the preform outer surface at the high processing temperature, this has proven very difficult. To overcome this issue, single plies of woven fabric were infiltrated with Si-doped BN. Three composite panels of different SiC fiber types were fabricated with Si-doped BN interphases including Sylramic, Hi-Nicalon Type S and Sylramic-iBN fiber-types. The latter fiber-type possesses a thin in-situ grown BN layer on the fiber surface. High Si contents (approx. 7 to 10 a/o) and low oxygen contents (less than 1 a/o) were achieved. All three composite systems demonstrated reasonable debonding and sliding properties. The coated Sylramic fabric and composites were weak due to fiber degradation apparently caused during interphase processing by the formation of TiN crystals on the fiber surface. The Hi-Nicalon Type S composites with Si-doped BN interphase were only slightly weaker than Hi-Nicalon Type S composites with conventional BN when the strength on the load-bearing fibers at failure was compared. On the other hand, the Sylramic-iBN fabric and composites with Si-doped BN showed excellent composite and intermediate temperature stress-rupture properties. Most impressive was the lack of any significant interphase oxidation on the fracture surface of stress-ruptured specimens tested well above matrix cracking at 815C.

  5. Effects of Si-doping on magnetic properties of Ga1-xCrxN

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongpo; Yang, Zongxian; Liu, Chang

    2015-01-01

    Ga1-xCrxN thin films with and without the Si doping have been prepared by molecular beam epitaxy. The samples have been investigated by X-ray diffraction, X-ray photoemission spectroscopy, photoluminescence, optical absorption spectra and magnetic measurements. It has been confirmed that for the undoped samples Cr in GaN is predominantly trivalent when substituting for Ga and that the Cr 3d state appears within the band gap of GaN. In Si doped specimens the upward shifts of the chemical potential are observed, and the electrons supplied by the Si doping are trapped at Cr sites forming Cr2+. As a result, the Si doping effects show an increase of the Curie temperature, and a reduction of the saturation magnetization in the Ga1-xCrxN:Si samples. The significant effect on the ferromagnetism with Si doping in Ga1-xCrxN is explained by the percolation theory of bound magnetic polarons.

  6. Achieving robust n-type nitrogen-doped graphene via a binary-doping approach

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Seok; Kim, Han Seul; Kim, Seong Sik; Kim, Yong-Hoon

    2014-03-01

    Among various dopant candidates, nitrogen (N) atoms are considered as the most effective dopants to improve the diverse properties of graphene. Unfortunately, recent experimental and theoretical studies have revealed that different N-doped graphene (NGR) conformations can result in both p- and n-type characters depending on the bonding nature of N atoms (substitutional, pyridinic, pyrrolic, and nitrilic). To overcome this obstacle in achieving reliable graphene doping, we have carried out density functional theory calculations and explored the feasibility of converting p-type NGRs into n-type by introducing additional dopant candidates atoms (B, C, O, F, Al, Si, P, S, and Cl). Evaluating the relative formation energies of various binary-doped NGRs and the change in their electronic structure, we conclude that B and P atoms are promising candidates to achieve robust n-type NGRs. The origin of such p- to n-type change is analyzed based on the crystal orbital Hamiltonian population analysis. Implications of our findings in the context of electronic and energy device applications will be also discussed. This work was supported by the Basic Science Research Grant (No. 2012R1A1A2044793), Global Frontier Program (No. 2013-073298), and Nano-Material Technology Development Program (2012M3A7B4049888) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea. Corresponding author

  7. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111).

    PubMed

    Nguyen, H P T; Zhang, S; Cui, K; Han, X; Fathololoumi, S; Couillard, M; Botton, G A; Mi, Z

    2011-05-11

    Full-color, catalyst-free InGaN/GaN dot-in-a-wire light-emitting diodes (LEDs) were monolithically grown on Si(111) by molecular beam epitaxy, with the emission characteristics controlled by the dot properties in a single epitaxial growth step. With the use of p-type modulation doping in the dot-in-a-wire heterostructures, we have demonstrated the most efficient phosphor-free white LEDs ever reported, which exhibit an internal quantum efficiency of ∼56.8%, nearly unaltered CIE chromaticity coordinates with increasing injection current, and virtually zero efficiency droop at current densities up to ∼640 A/cm(2). The remarkable performance is attributed to the superior three-dimensional carrier confinement provided by the electronically coupled dot-in-a-wire heterostructures, the nearly defect- and strain-free GaN nanowires, and the significantly enhanced hole transport due to the p-type modulation doping.

  8. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm-2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm-3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm-3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ˜0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ˜2 × 1019 cm-3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  9. Schottky barrier detection devices having a 4H-SiC n-type epitaxial layer

    DOEpatents

    Mandal, Krishna C.; Terry, J. Russell

    2016-12-06

    A detection device, along with methods of its manufacture and use, is provided. The detection device can include: a SiC substrate defining a substrate surface cut from planar to about 12.degree.; a buffer epitaxial layer on the substrate surface; a n-type epitaxial layer on the buffer epitaxial layer; and a top contact on the n-type epitaxial layer. The buffer epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.15 cm.sup.-3 to about 5.times.10.sup.18 cm.sup.-3 with nitrogen, boron, aluminum, or a mixture thereof. The n-type epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.13 cm.sup.-3 to about 5.times.10.sup.15 cm.sup.-3 with nitrogen. The top contact can have a thickness of about 8 nm to about 15 nm.

  10. Surface photovoltage in heavily doped GaN:Si,Zn

    NASA Astrophysics Data System (ADS)

    McNamara, J. D.; Behrends, A.; Mohajerani, M. S.; Bakin, A.; Waag, A.; Baski, A. A.; Reshchikov, M. A.

    2014-02-01

    In n-type GaN, an upward band bending of about 1 eV is caused by negative charge at the surface. UV light reduces the band bending by creating a surface photovoltage (SPV), which can be measured by a Kelvin probe. Previously, we reported a fast SPV signal of about 0.6 eV in undoped and moderately doped GaN. In this work, we have studied degenerate GaN co-doped with Zn and Si, with a Si concentration of about 1019 cm-3 and a Zn concentration of 6×1017 cm-3. At room temperature, a fast component of about 0.6 eV was observed. However, after preheating the sample at 600 K for one hour and subsequently cooling the sample to 300 K (all steps performed in vacuum), the fast component disappeared. Instead, a very slow (minutes) and logarithmic in time rise of the SPV was observed with UV illumination. The total change in SPV was about 0.4 eV. This slow SPV transient can be reversibly converted into the "normal" fast (subsecond) rise by letting air or dry oxygen in at room temperature. Possible explanations of the observed unusual SPV transients are discussed.

  11. Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H-SiC

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Ping, Chen; De-Gang, Zhao; De-Sheng, Jiang; Zhi-Juan, Zhao; Zong-Shun, Liu; Jian-Jun, Zhu; Jing, Yang; Wei, Liu; Xiao-Guang, He; Xiao-Jing, Li; Xiang, Li; Shuang-Tao, Liu; Hui, Yang; Li-Qun, Zhang; Jian-Ping, Liu; Yuan-Tao, Zhang; Guo-Tong, Du

    2016-05-01

    We have investigated the electron affinity of Si-doped AlN films (N Si = 1.0 × 1018-1.0 × 1019 cm-3) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n-type (001)6H-SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy (UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 eV for the 400-nm-thick one. Accompanying the x-ray photoelectron spectroscopy (XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  12. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  13. p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Ramsteiner, Manfred; Corfdir, Pierre; Feix, Felix; Geelhaar, Lutz; Riechert, Henning

    2017-03-08

    GaN nanowires (NWs) doped with Mg as a p-type impurity were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. In a systematic series of experiments, the amount of Mg supplied during NW growth was varied. The incorporation of Mg into the NWs was confirmed by the observation of donor-acceptor pairs and acceptor-bound excitons in low-temperature photoluminescence spectroscopy. Quantitative information about the Mg concentrations was deduced from Raman scattering by local vibrational modes related to Mg. In order to study the type and density of charge carriers present in the NWs, we employed two photoelectrochemical techniques, open-circuit potential and Mott-Schottky measurements. Both methods showed the expected transition from n-type to p-type conductivity with increasing Mg doping level, and the latter characterization technique allowed us to quantify the charge carrier concentration. Beyond the quantitative information obtained for Mg doping of GaN NWs, our systematic and comprehensive investigation demonstrates the benefit of photoelectrochemical methods for the analysis of doping in semiconductor NWs in general.

  14. Diodes of nanocrystalline SiC on n-/n+-type epitaxial crystalline 6H-SiC

    NASA Astrophysics Data System (ADS)

    Zheng, Junding; Wei, Wensheng; Zhang, Chunxi; He, Mingchang; Li, Chang

    2018-03-01

    The diodes of nanocrystalline SiC on epitaxial crystalline (n-/n+)6H-SiC wafers were investigated, where the (n+)6H-SiC layer was treated as cathode. For the first unit, a heavily boron doped SiC film as anode was directly deposited by plasma enhanced chemical vapor deposition method on the wafer. As to the second one, an intrinsic SiC film was fabricated to insert between the wafer and the SiC anode. The third one included the SiC anode, an intrinsic SiC layer and a lightly phosphorus doped SiC film besides the wafer. Nanocrystallization in the yielded films was illustrated by means of X-ray diffraction, transmission electronic microscope and Raman spectrum respectively. Current vs. voltage traces of the obtained devices were checked to show as rectifying behaviors of semiconductor diodes, the conduction mechanisms were studied. Reverse recovery current waveforms were detected to analyze the recovery performance. The nanocrystalline SiC films in base region of the fabricated diodes are demonstrated as local regions for lifetime control of minority carriers to improve the reverse recovery properties.

  15. Electronic Structure of p- and n-Type Doping Impurities in Cubic Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Pentaleri, E. A.; Gubanov, V. A.; Fong, C. Y.; Klein, B. M.

    1996-03-01

    LMTO-TB calculations were performed to investigate the electronic structure of C, Be, Mg, Si, Zn, and Cd substitutional impurities in cubic GaN (c-GaN). The calculations used 128-site supercells consisting of 64-atoms. Empty spheres of two types occupied the remaining sites. Semi-core Ga 3d states were treated explicitly as valence states. Both amphoteric substitutions were considered for C and Si impurities, while only cation-site substitutions were considered for Be, Mg, Zn, and Cd. All metal impurities formed partially occupied impurity states at the VB edge, which may result in p-type conductivity. C and Si impurities substituted at anion sites form sharp resonances in the gap, and are inactive in creating either p- or n-type carriers. Likewise, cation-site C substitutions introduce to the middle of the band gap strongly localized states that are inactive in carrier formation. Cation-site Si substitutions form an impurity sub-band at the CB edge, leading to n-type conductivity. The DOS at the Fermi level for each impurity-doped c-GaN crystal is used to estimate the most effective p-type doping impurities. The wave-function composition, space, and energy localization is analyzed for different impurities via projections onto the orbital basis and atomic coordinational spheres, and by examining calculated charge-density distributions.

  16. Laser doping of boron-doped Si paste for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi

    2015-08-01

    Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.

  17. Understanding the role of Si doping on surface charge and optical properties: Photoluminescence study of intrinsic and Si-doped InN nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Mi, Z.; Kibria, M. G.; Li, Q.; Wang, G. T.

    2012-06-01

    In the present work, the photoluminescence (PL) characteristics of intrinsic and Si-doped InN nanowires are studied in detail. For intrinsic InN nanowires, the emission is due to band-to-band carrier recombination with the peak energy at ˜0.64 eV (at 300 K) and may involve free-exciton emission at low temperatures. The PL spectra exhibit a strong dependence on optical excitation power and temperature, which can be well characterized by the presence of very low residual electron density and the absence or a negligible level of surface electron accumulation. In comparison, the emission of Si-doped InN nanowires is characterized by the presence of two distinct peaks located at ˜0.65 and ˜0.73-0.75 eV (at 300 K). Detailed studies further suggest that these low-energy and high-energy peaks can be ascribed to band-to-band carrier recombination in the relatively low-doped nanowire bulk region and Mahan exciton emission in the high-doped nanowire near-surface region, respectively; this is a natural consequence of dopant surface segregation. The resulting surface electron accumulation and Fermi-level pinning, due to the enhanced surface doping, are confirmed by angle-resolved x-ray photoelectron spectroscopy measurements on Si-doped InN nanowires, which is in direct contrast to the absence or a negligible level of surface electron accumulation in intrinsic InN nanowires. This work elucidates the role of charge-carrier concentration and distribution on the optical properties of InN nanowires.

  18. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  19. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less

  20. Gallium-Doped Poly-Si:Ga/SiO 2 Passivated Emitters to n-Cz Wafers With iV oc >730 mV

    DOE PAGES

    Young, David L.; Lee, Benjamin G.; Fogel, Derek; ...

    2017-09-26

    Here, we form gallium-doped poly-Si:Ga/SiO 2 passivated contacts on n-type Czochralski (n-Cz) wafers using ion implantation of Ga and Ga-containing spin-on dopants. After annealing and passivation with Al 2O 3, the contacts exhibit i Voc values of >730 mV with corresponding Joe values of <5 fA/cm 2. These are among the best-reported values for p-type poly-Si/SiO 2 contacts. Secondary ion mass spectroscopic depth profile data show that, in contrast to B, Ga does not pileup at the SiO 2 interface in agreement with its known high diffusivity in SiO 2. This lack of Ga pileup may imply fewer dopant-related defectsmore » in the SiO 2, compared with B dopants, and account for the excellent passivation.« less

  1. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells.

    PubMed

    Tang, Y B; Chen, Z H; Song, H S; Lee, C S; Cong, H T; Cheng, H M; Zhang, W J; Bello, I; Lee, S T

    2008-12-01

    Vertically aligned Mg-doped GaN nanorods have been epitaxially grown on n-type Si substrate to form a heterostructure for fabricating p-n heterojunction photovoltaic cells. The p-type GaN nanorod/n-Si heterojunction cell shows a well-defined rectifying behavior with a rectification ratio larger than 10(4) in dark. The cell has a high short-circuit photocurrent density of 7.6 mAlcm2 and energy conversion efficiency of 2.73% under AM 1.5G illumination at 100 mW/cm2. Moreover, the nanorod array may be used as an antireflection coating for solar cell applications to effectively reduce light loss due to reflection. This study provides an experimental demonstration for integrating one-dimensional nanostructure arrays with the substrate to directly fabricate heterojunction photovoltaic cells.

  2. Structural studies of n-type nc-Si-QD thin films for nc-Si solar cells

    NASA Astrophysics Data System (ADS)

    Das, Debajyoti; Kar, Debjit

    2017-12-01

    A wide optical gap nanocrystalline silicon (nc-Si) dielectric material is a basic requirement at the n-type window layer of nc-Si solar cells in thin film n-i-p structure on glass substrates. Taking advantage of the high atomic-H density inherent to the planar inductively coupled low-pressure (SiH4 + CH4)-plasma, development of an analogous material in P-doped nc-Si-QD/a-SiC:H network has been tried. Incorporation of C in the Si-network extracted from the CH4 widens the optical band gap; however, at enhanced PH3-dilution of the plasma spontaneous miniaturization of the nc-Si-QDs below the dimension of Bohr radius (∼4.5 nm) further enhances the band gap by virtue of the quantum size effect. At increased flow rate of PH3, dopant induced continuous amorphization of the intrinsic crystalline network is counterbalanced by the further crystallization promoted by the supplementary atomic-H extracted from PH3 (1% in H2) in the plasma, eventually holding a moderately high degree of crystallinity. The n-type wide band gap (∼1.93 eV) window layer with nc-Si-QDs in adequate volume fraction (∼52%) could furthermore be instrumental as an effective seed layer for advancing sequential crystallization in the i-layer of nc-Si solar cells with n-i-p structure in superstrate configuration.

  3. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma.

    PubMed

    Hsieh, Ping-Yen; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-02-01

    We developed an innovative approach of self-biased sputtering solid doping source process to synthesize doped crystalline Si film on flexible polyimide (PI) substrate via microwave-plasma-enhanced chemical vapor deposition (MWPECVD) using SiCl4/H2 mixture. In this process, P dopants or B dopants were introduced by sputtering the solid doping target through charged-ion bombardment in situ during high-density microwave plasma deposition. A strong correlation between the number of solid doping targets and the characteristics of doped Si films was investigated in detail. The results show that both P- and B-doped crystalline Si films possessed a dense columnar structure, and the crystallinity of these structures decreased with increasing the number of solid doping targets. The films also exhibited a high growth rate (>4.0 nm/s). Under optimal conditions, the maximum conductivity and corresponding carrier concentration were, respectively, 9.48 S/cm and 1.2 × 10(20) cm(-3) for P-doped Si film and 7.83 S/cm and 1.5 × 10(20) cm(-3) for B-doped Si film. Such high values indicate that the incorporation of dopant with high doping efficiency (around 40%) into the Si films was achieved regardless of solid doping sources used. Furthermore, a flexible crystalline Si film solar cell with substrate configuration was fabricated by using the structure of PI/Mo film/n-type Si film/i-type Si film/p-type Si film/ITO film/Al grid film. The best solar cell performance was obtained with an open-circuit voltage of 0.54 V, short-circuit current density of 19.18 mA/cm(2), fill factor of 0.65, and high energy conversion of 6.75%. According to the results of bending tests, the critical radius of curvature (RC) was 12.4 mm, and the loss of efficiency was less than 1% after the cyclic bending test for 100 cycles at RC, indicating superior flexibility and bending durability. These results represent important steps toward a low-cost approach to high-performance flexible crystalline Si film

  4. Characterization of N-doped multilayer graphene grown on 4H-SiC (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arezki, Hakim, E-mail: hakim.arezki@lgep.supelec.fr; Jaffré, Alexandre; Alamarguy, David

    Large-area graphene film doped with hetero-atoms is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, fuel cells among many others. Here, we report the structural and electronic properties of nitrogen doped multilayer graphene on 4H-SiC (0001). The incorporation of nitrogen during the growth causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. The analysis of micro-Raman mapping of G, D, 2D bands shows a predominantly trilayer graphene with a D band inherent to doping and inhomogeneous dopant distribution at the step edges.more » Ultraviolet photoelectron spectroscopy (UPS) indicates an n type work function (WF) of 4.1 eV. In addition, a top gate FET device was fabricated showing n-type I-V characteristic after the desorption of oxygen with high electron and holes mobilities.« less

  5. Ultra-doped n-type germanium thin films for sensing in the mid-infrared

    PubMed Central

    Prucnal, Slawomir; Liu, Fang; Voelskow, Matthias; Vines, Lasse; Rebohle, Lars; Lang, Denny; Berencén, Yonder; Andric, Stefan; Boettger, Roman; Helm, Manfred; Zhou, Shengqiang; Skorupa, Wolfgang

    2016-01-01

    A key milestone for the next generation of high-performance multifunctional microelectronic devices is the monolithic integration of high-mobility materials with Si technology. The use of Ge instead of Si as a basic material in nanoelectronics would need homogeneous p- and n-type doping with high carrier densities. Here we use ion implantation followed by rear side flash-lamp annealing (r-FLA) for the fabrication of heavily doped n-type Ge with high mobility. This approach, in contrast to conventional annealing procedures, leads to the full recrystallization of Ge films and high P activation. In this way single crystalline Ge thin films free of defects with maximum attained carrier concentrations of 2.20 ± 0.11 × 1020 cm−3 and carrier mobilities above 260 cm2/(V·s) were obtained. The obtained ultra-doped Ge films display a room-temperature plasma frequency above 1,850 cm−1, which enables to exploit the plasmonic properties of Ge for sensing in the mid-infrared spectral range. PMID:27282547

  6. Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Li, Mingqi

    2018-05-01

    To improve the cycling stability and rate capability of SiO electrodes, multi-channel and porous SiO@N-doped C (mp-SiO@N-doped C) rods are fabricated by the combination of electrospinning and heat treatment with the assistance of poly(methyl methacrylate) (PMMA). During annealing, in-situ PMMA degradation and gasification lead to the formation of multi-channel structure and more pores. As anodes for lithium ion batteries, the mp-SiO@N-doped C rods exhibit excellent cycling stability. At a current density of 400 mA g-1, a discharge capacity of 806 mAh g-1 can be kept after 250 cycles, the retention of which is over than 100% versus the initial reversible capacity. Compared with the SiO@N-doped C rods synthesized without the help of PMMA, the mp-SiO@N-doped C rods exhibit more excellent rate capability. The excellent electrochemical performance is attributed to the special structure of the mp-SiO@N-doped C rods. In addition to the conductivity improved by carbon fibers, the multi-channel and porous structures not only make ions/electrons transfer and electrolyte diffusion easier, but also contribute to the structural stability of the electrodes.

  7. Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire.

    PubMed

    Tsykaniuk, Bogdan I; Nikolenko, Andrii S; Strelchuk, Viktor V; Naseka, Viktor M; Mazur, Yuriy I; Ware, Morgan E; DeCuir, Eric A; Sadovyi, Bogdan; Weyher, Jan L; Jakiela, Rafal; Salamo, Gregory J; Belyaev, Alexander E

    2017-12-01

    Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n + /n 0 /n + -GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states.

  8. Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices

    NASA Astrophysics Data System (ADS)

    Li, Jinchai; Yang, Weihuang; Li, Shuping; Chen, Hangyang; Liu, Dayi; Kang, Junyong

    2009-10-01

    The internal electric field is modified by using Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices (SLs). The first-principles simulation results show that the internal electric field in SL has been significantly intensified due to the charge transferring from Si-doped interface to Mg-doped interface. Accordingly, the Mg- and Si-δ-codoped p-type Al0.2Ga0.8N/GaN SLs are grown by metalorganic vapor phase epitaxy and higher hole concentration as much as twice of that in modulation-doped SL has been achieved, as determined by Hall effect measurements. Furthermore, by applying Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN SLs with high Al content as the p-type layers, we have fabricated deep ultraviolet light emitting diodes with superior current-voltage characteristics by lowering Mg-acceptor activation energy.

  9. Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence.

    PubMed

    Chen, Hung-Ling; Himwas, Chalermchai; Scaccabarozzi, Andrea; Rale, Pierre; Oehler, Fabrice; Lemaître, Aristide; Lombez, Laurent; Guillemoles, Jean-François; Tchernycheva, Maria; Harmand, Jean-Christophe; Cattoni, Andrea; Collin, Stéphane

    2017-11-08

    We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 10 17 to 1 × 10 18  cm -3 . These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.

  10. Structural and electrical properties of Ge-on-Si(0 0 1) layers with ultra heavy n-type doping grown by MBE

    NASA Astrophysics Data System (ADS)

    Yurasov, D. V.; Antonov, A. V.; Drozdov, M. N.; Yunin, P. A.; Andreev, B. A.; Bushuykin, P. A.; Baydakova, N. A.; Novikov, A. V.

    2018-06-01

    In this paper we report about the formation of ultra heavy doped n-Ge layers on Si(0 0 1) substrates by molecular beam epitaxy and their characterization by different independent techniques. Combined study of structural and electrical properties of fabricated layers using secondary ion mass spectroscopy, X-ray diffraction, Hall effect and reflection measurements was carried out and it has revealed the achievable charge carrier densities exceeding 1020 cm-3 without deterioration of crystalline quality of such doped layers. It was also shown that X-ray analysis can be used as a fast, reliable and non-destructive method for evaluation of the electrically active Sb concentration in heavy doped Ge layers. The appropriate set of doping density allowed to adjust the plasmonic resonance position in Ge:Sb layers in a rather wide range reaching the wavelength of 3.6 μm for the highest doping concentration. Room temperature photoluminescence confirmed the high crystalline quality of such doped layers. Our results indicated the attainability of high electron concentration in Ge:Sb layers grown on Si substrates without crystalline quality deterioration which may find potential applications in the fields of Si-based photonics and mid-IR plasmonics.

  11. Itinerant magnetism in doped semiconducting β-FeSi2 and CrSi2

    PubMed Central

    Singh, David J.; Parker, David

    2013-01-01

    Novel or unusual magnetism is a subject of considerable interest, particularly in metals and degenerate semiconductors. In such materials the interplay of magnetism, transport and other Fermi liquid properties can lead to fascinating physical behavior. One example is in magnetic semiconductors, where spin polarized currents may be controlled and used. We report density functional calculations predicting magnetism in doped semiconducting β-FeSi2 and CrSi2 at relatively low doping levels particularly for n-type. In this case, there is a rapid cross-over to a half-metallic state as a function of doping level. The results are discussed in relation to the electronic structure and other properties of these compounds. PMID:24343332

  12. High Mobility SiGe/Si n-Type Structures and Field Effect Transistors on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Ponchak, George E.; Mueller, Carl H.; Croke, Edward T.

    2004-01-01

    SiGe/Si n-type modulation doped field effect transistors (MODFETs) fabricated on sapphire substrates have been characterized at microwave frequencies for the first time. The highest measured room temperature electron mobility is 1380 sq cm/V-sec at a carrier density of 1.8 x 10(exp 12)/sq cm for a MODFET structure, and 900 sq cm/V-sec at a carrier density of 1.3 x 10/sq cm for a phosphorus ion implanted sample. A two finger, 2 x 200 micron gate n-MODFET has a peak transconductance of 37 mS/mm at a drain to source voltage of 2.5 V and a transducer gain of 6.4 dB at 1 GHz.

  13. Improved electrical properties of n-type SiGe alloys

    NASA Technical Reports Server (NTRS)

    Scoville, A. N.; Bajgar, Clara; Vandersande, Jan; Fleurial, Jean-Pierre

    1992-01-01

    The effect of changes in the carrier concentration and mobility for heavily doped n-type SiGe on the electrical power factor has been investigated. It has been shown that power factors of 37-40 microV/cm-K-squared can be achieved with carrier concentrations of 2.0 - 2.5 x 10 exp 20/cu cm and mobilities of 38-40 sq cm/V-sec. Many samples with suitable carrier concentration do not have high mobilities and some rationale for this behavior is presented. Initial results are presented on fabrication of n-type samples from ultrafine powders. The emphasis in this work is to achieve thermal conductivity reductions by adding inert particles to scatter midfrequency phonons.

  14. Mobility and Device Applications of Heavily Doped Silicon and Strained SILICON(1-X) Germanium(x) Layers

    NASA Astrophysics Data System (ADS)

    Carns, Timothy Keith

    discovery of mobility and conductivity enhancement in coupled delta-doped layers is highlighted in Chapter 5. Finally, the third part of this work discusses the implementation of boron delta -doped layers in Si homojunction bipolar transistors and FETs. Chapter 6 includes the fabrication of the first coupled delta-doped base layer Si BJT, the first p-type Si delta-doped layer MESFET, the first coupled delta -doped layer FET, and the first SiGe delta -FET.

  15. An XPS study on the chemical bond structure at the interface between SiO{sub x}N{sub y} and N doped polyethylene terephthalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Wanyu; Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024; Li Li

    2013-03-14

    The super-thin silicon oxynitride (SiO{sub x}N{sub y}) films were deposited onto the N doped polyethylene terephthalate (PET) surface. Varying the N doping parameters, the different chemical bond structures were obtained at the interface between the SiO{sub x}N{sub y} film and the PET surface. X-ray photoelectron spectra results showed that at the initial stage of SiO{sub x}N{sub y} film growth, the C=N bonds could be broken and C-N-Si crosslink bonds could be formed at the interface of SiO{sub x}N{sub y}/PET, which C=N bonds could be formed onto the PET surface during the N doping process. At these positions, the SiO{sub x}N{submore » y} film could be crosslinked well onto the PET surface. Meanwhile, the doped N could crosslink the [SiO{sub 4}] and [SiN{sub 4}] tetrahedrons, which could easily form the dense layer structure at the initial stage of SiO{sub x}N{sub y} film growth, instead of the ring and/or chain structures of [SiO{sub 4}] tetrahedrons crosslinked by O. Finally, from the point of applying SiO{sub x}N{sub y}/PET complex as the substrate, the present work reveals a simple way to crosslink them, as well as the crosslink model and physicochemical mechanism happened at the interface of complex.« less

  16. Microscopic potential fluctuations in Si-doped AlGaN epitaxial layers with various AlN molar fractions and Si concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurai, Satoshi, E-mail: kurai@yamaguchi-u.ac.jp; Yamada, Yoichi; Miyake, Hideto

    2016-01-14

    Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with Si concentrations of 3.0–37 × 10{sup 17 }cm{sup −3} were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractionsmore » of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of V{sub Al} did not contribute to the linewidth broadening, unlike the case of the V{sub Al} clusters.« less

  17. Doping effect in Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  18. Effect of Si, Mg, and Mg Zn doping on structural properties of a GaN layer grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cho, H. K.; Lee, J. Y.; Kim, K. S.; Yang, G. M.

    2001-12-01

    We have studied the structural properties of undoped, Si-doped, Mg-doped, and Mg-Zn codoped GaN using high-resolution X-ray diffraction (HRXRD) and transmission electron microscopy. When compared with undoped GaN, the dislocation density at the surface of the GaN layer decreases with Si doping and increases with Mg doping. In addition, we observed a reduction of dislocation density by codoping with Zn atoms in the Mg-doped GaN layer. The full width at half maximum of HRXRD shows that Si doping and Mg-Zn codoping improve the structural quality of the GaN layer as compared with undoped and Mg-doped GaN, respectively.

  19. Equation of state for Eu-doped SrSi2O2N2

    NASA Astrophysics Data System (ADS)

    Ermakova, Olga; Paszkowicz, Wojciech; Kaminska, Agata; Barzowska, Justyna; Szczodrowski, Karol; Grinberg, Marek; Minikayev, Roman; Nowakowska, Małgorzata; Carlson, Stefan; Li, Guogang; Liu, Ru-Shi; Suchocki, Andrzej

    2014-07-01

    α-SrSi2O2N2 is one of the recently studied oxonitridosilicates applicable in optoelectronics, in particular in white LEDs. Its elastic properties remain unknown. A survey of literature shows that, up to now, nine oxonitridosilicate materials have been identified. For most of these compounds, doped with rare earths and manganese, a luminescence has been reported at a wavelength characteristic for the given material; all together cover a broad spectral range. The present study focuses on the elastic properties of one of these oxonitridosilicates, the Eu-doped triclinic α-SrSi2O2N2. High-pressure powder diffraction experiments are used in order to experimentally determine, for the first time, the equation of state of this compound. The in situ experiment was performed for pressures ranging up to 9.65 GPa, for Eu-doped α-SrSi2O2N2 sample mounted in a diamond anvil cell ascertaining the hydrostatic compression conditions. The obtained experimental variation of volume of the triclinic unit cell of α-SrSi2O2N2:Eu with rising pressure served for determination of the Birch-Murnaghan equation of state. The determined above quoted bulk modulus is 103(5) GPa, its first derivative is 4.5(1.1). The above quoted bulk modulus value is found to be comparable to that of earlier reported oxynitrides of different composition.

  20. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  1. The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method

    NASA Astrophysics Data System (ADS)

    Akasaka, Masayasu; Iida, Tsutomu; Matsumoto, Atsunobu; Yamanaka, Kohei; Takanashi, Yoshifumi; Imai, Tomohiro; Hamada, Noriaki

    2008-07-01

    Bulk Mg2Si crystals were grown using the vertical Bridgman melt growth method. The n-type and p-type dopants, bismuth (Bi) and silver (Ag), respectively, were incorporated during the growth. X-ray powder diffraction analysis revealed clear peaks of Mg2Si with no peaks associated with the metallic Mg and Si phases. Residual impurities and process induced contaminants were investigated by using glow discharge mass spectrometry (GDMS). A comparison between the results of GDMS and Hall effect measurements indicated that electrical activation of the Bi doping in the Mg2Si was sufficient, while activation of the Ag doping was relatively smaller. It was shown that an undoped n-type specimen contained a certain amount of aluminum (Al), which was due either to residual impurities in the Mg source or the incorporation of process-induced impurities. Thermoelectric properties such as the Seebeck coefficient and the electrical and thermal conductivities were measured as a function of temperature up to 850 K. The dimensionless figures of merit for Bi-doped and Ag-doped samples were 0.65 at 840 K and 0.1 at 566 K, respectively. Temperature dependence of the observed Seebeck coefficient was fitted well by the two-carrier model. The first-principles calculations were carried out by using the all-electron band-structure calculation package (ABCAP) in which the full-potential linearized augmented-plane-wave method was employed. The ABCAP calculation adequately presents characteristics of the Seebeck coefficients for the undoped and heavily Bi-doped samples over the whole measured temperature range from room temperature to 850 K. The agreement between the theory and the experiment is poorer for the Ag-doped p-type samples.

  2. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

    PubMed

    Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu

    2018-03-01

    Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabrication and characterization of Ga-doped ZnO / Si heterojunction nanodiodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Akgul, Funda Aksoy

    2017-02-01

    In this study, temperature-dependent electrical properties of n-type Ga-doped ZnO thin film / p-type Si nanowire heterojunction diodes were reported. Metal-assisted chemical etching (MACE) process was performed to fabricate Si nanowires. Ga-doped ZnO films were then deposited onto nanowires through chemical bath deposition (CBD) technique to build three-dimensional nanowire-based heterojunction diodes. Fabricated devices revealed significant diode characteristics in the temperature range of 220 - 360 K. Electrical measurements shown that diodes had a well-defined rectifying behavior with a good rectification ratio of 103 ±3 V at room temperature. Ideality factor (n) were changed from 2.2 to 1.2 with increasing temperature.

  4. A model for the high-temperature transport properties of heavily doped n-type silicon-germanium alloys

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.

    1991-01-01

    A model is presented for the high-temperature transport properties of large-grain-size, heavily doped n-type silicon-germanium alloys. Electron and phonon transport coefficients are calculated using standard Boltzmann equation expressions in the relaxation time approximation. Good agreement with experiment is found by considering acoustic phonon and ionized impurity scattering for electrons, and phonon-phonon, point defect, and electron-phonon scattering for phonons. The parameters describing electron transport in heavily doped and lightly doped materials are significantly different and suggest that most carriers in heavily doped materials are in a band formed largely from impurity states. The maximum dimensionless thermoelectric figure of merit for single-crystal, n-type Si(0.8)Ge(0.2) at 1300 K is estimated at ZT about 1.13 with an optimum carrier concentration of n about 2.9 x 10 to the 20th/cu cm.

  5. Photoluminescence properties of arsenic and boron doped Si3N4 nanocrystal embedded in SiN x O y matrix

    NASA Astrophysics Data System (ADS)

    Puglia, Denise; Sombrio, Guilherme; dos Reis, Roberto; Boudinov, Henri

    2018-03-01

    Photoluminescence emission of Si3N4 nanocrystals embedded in SiN x O y matrices was investigated. Nanocrystals were grown by annealing of silicon oxynitride films deposited by sputtering, passivated in forming gas atmosphere and implanted with boron and arsenic. Emission energy was tuned from green to ultraviolet by changing the composition of SiN x O y matrices. Structural characterization of the nanocrystals was performed by Transmission Electron Microscopy. Photoluminescence at room and low temperatures was analyzed and the results suggest that light emission originates in the interface between the nanocrystals and the matrix. The highest photoluminescence intensity at room temperature was achieved by arsenic doped silicon oxynitride films deposited with an excess of nitrogen.

  6. Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh

    2009-01-01

    In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.

  7. Fabrication of a nanometer thick nitrogen delta doped layer at the sub-surface region of (100) diamond

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Michaelson, Shaul; Saguy, Cecile; Hoffman, Alon

    2016-11-01

    In this letter, we report on the proof of a concept of an innovative delta doping technique to fabricate an ensemble of nitrogen vacancy centers at shallow depths in (100) diamond. A nitrogen delta doped layer with a concentration of ˜1.8 × 1020 cm-3 and a thickness of a few nanometers was produced using this method. Nitrogen delta doping was realized by producing a stable nitrogen terminated (N-terminated) diamond surface using the RF nitridation process and subsequently depositing a thin layer of diamond on the N-terminated diamond surface. The concentration of nitrogen on the N-terminated diamond surface and its stability upon exposure to chemical vapor deposition conditions are determined by x-ray photoelectron spectroscopy analysis. The SIMS profile exhibits a positive concentration gradient of 1.9 nm/decade and a negative gradient of 4.2 nm/decade. The proposed method offers a finer control on the thickness of the delta doped layer than the currently used ion implantation and delta doping techniques.

  8. Low Temperature Ohmic Contact Formation of Ni2Si on N-type 4H-SiC and 6H-SiC

    NASA Technical Reports Server (NTRS)

    Elsamadicy, A. M.; Ila, D.; Zimmerman, R.; Muntele, C.; Evelyn, L.; Muntele, I.; Poker, D. B.; Hensley, D.; Hirvonen, J. K.; Demaree, J. D.; hide

    2001-01-01

    Nickel Silicide (Ni2Si) is investigated as possible ohmic contact to heavily nitrogen-doped N-type 4H-SiC and 6H-SiC. Nickel Silicide was deposited via electron gun with various thicknesses on both Si and C faces of the SiC substrates. The Ni2Si contacts were formed at room temperature as well as at elevated temperatures (400 to 1000 K). Contact resistivities and I-V characteristics were measured at temperatures between 100 and 700 C. To investigate the electric properties, I-V characteristics were studied and the Transmission Line Method (TLM) was used to determine the specific contact resistance for the samples at each annealing temperature. Both Rutherford Backscattering Spectroscopy (RBS) and Auger Electron Spectroscopy (AES) were used for depth profiling of the Ni2Si, Si, and C. X-ray Photoemission Spectroscopy (XPS) was used to study the chemical structure of the Ni2Si/SiC interface.

  9. Careful stoichiometry monitoring and doping control during the tunneling interface growth of an n + InAs(Si)/p + GaSb(Si) Esaki diode

    NASA Astrophysics Data System (ADS)

    El Kazzi, S.; Alian, A.; Hsu, B.; Verhulst, A. S.; Walke, A.; Favia, P.; Douhard, B.; Lu, W.; del Alamo, J. A.; Collaert, N.; Merckling, C.

    2018-02-01

    In this work, we report on the growth of pseudomorphic and highly doped InAs(Si)/GaSb(Si) heterostructures on p-type (0 0 1)-oriented GaSb substrate and the fabrication and characterization of n+/p+ Esaki tunneling diodes. We particularly study the influence of the Molecular Beam Epitaxy shutter sequences on the structural and electrical characteristics of InAs(Si)/GaSb(Si) Esaki diodes structures. We use real time Reflection High Electron Diffraction analysis to monitor different interface stoichiometry at the tunneling interface. With Atomic Force Microscopy, X-ray diffraction and Transmission Electron Microscopy analyses, we demonstrate that an "InSb-like" interface leads to a sharp and defect-free interface exhibiting high quality InAs(Si) crystal growth contrary to the "GaAs-like" one. We then prove by means of Secondary Ion Mass Spectroscopy profiles that Si-diffusion at the interface allows the growth of highly Si-doped InAs/GaSb diodes without any III-V material deterioration. Finally, simulations are conducted to explain our electrical results where a high Band to Band Tunneling (BTBT) peak current density of Jp = 8 mA/μm2 is achieved.

  10. Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor

    PubMed Central

    Molnar, Wolfgang; Wojcik, Tomasz; Pongratz, Peter; Auner, Norbert; Bauch, Christian; Bertagnolli, Emmerich

    2012-01-01

    Summary Perchlorinated polysilanes were synthesized by polymerization of tetrachlorosilane under cold plasma conditions with hydrogen as a reducing agent. Subsequent selective cleavage of the resulting polymer yielded oligochlorosilanes SinCl2 n +2 (n = 2, 3) from which the octachlorotrisilane (n = 3, Cl8Si3, OCTS) was used as a novel precursor for the synthesis of single-crystalline Si nanowires (NW) by the well-established vapor–liquid–solid (VLS) mechanism. By adding doping agents, specifically BBr3 and PCl3, we achieved highly p- and n-type doped Si-NWs by means of atmospheric-pressure chemical vapor deposition (APCVD). These as grown NWs were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as electrical measurements of the NWs integrated in four-terminal and back-gated MOSFET modules. The intrinsic NWs appeared to be highly crystalline, with a preferred growth direction of [111] and a specific resistivity of ρ = 6 kΩ·cm. The doped NWs appeared to be [112] oriented with a specific resistivity of ρ = 198 mΩ·cm for p-type Si-NWs and ρ = 2.7 mΩ·cm for n-doped Si-NWs, revealing excellent dopant activation. PMID:23019552

  11. Fast growth of n-type 4H-SiC bulk crystal by gas-source method

    NASA Astrophysics Data System (ADS)

    Hoshino, Norihiro; Kamata, Isaho; Tokuda, Yuichiro; Makino, Emi; Kanda, Takahiro; Sugiyama, Naohiro; Kuno, Hironari; Kojima, Jun; Tsuchida, Hidekazu

    2017-11-01

    Fast growth of n-type 4H-SiC crystals was attempted using a high-temperature gas-source method. High growth rates exceeding 9 mm/h were archived at a seed temperature of 2550 °C, although the formation of macro-step bunching caused doping fluctuation and voids in the grown crystal. We investigated a trade-off between growth-rate enhancement and macro-step formation and how to improve the trade-off. By controlling the growth conditions, the growth of highly nitrogen-doped 4H-SiC crystals without the doping fluctuation and void formation were accomplished under a high growth rate exceeding 3 mm/h, maintaining the density of threading screw dislocations in the same level with the seed crystal. The influence of growth parameters on nitrogen incorporations into grown crystals was also surveyed.

  12. Opto-electronic properties of P-doped nc-Si-QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2016-07-01

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si-QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si-C bonds in the amorphous matrix and the embedded high density tiny nc-Si-QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si-QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si-QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si-QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si-QD/a-SiC:H films grown at ˜300 °C, demonstrating wide optical gap ˜1.86-1.96 eV and corresponding high electrical conductivity ˜4.5 × 10-1-1.4 × 10-2 S cm-1, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.

  13. Delta Doping High Purity CCDs and CMOS for LSST

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Nikzad, Shouleh; Hoenk, Michael; Elliott, S. Tom; Bebek, Chris; Holland, Steve; Kolbe, Bill

    2006-01-01

    A viewgraph presentation describing delta doping high purity CCD's and CMOS for LSST is shown. The topics include: 1) Overview of JPL s versatile back-surface process for CCDs and CMOS; 2) Application to SNAP and ORION missions; 3) Delta doping as a back-surface electrode for fully depleted LBNL CCDs; 4) Delta doping high purity CCDs for SNAP and ORION; 5) JPL CMP thinning process development; and 6) Antireflection coating process development.

  14. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  15. The electronic response of pristine, Al and Si doped BC2N nanotubes to a cathinone molecule: Computational study

    NASA Astrophysics Data System (ADS)

    Nejati, Kamellia; Vessally, Esmail; Delir Kheirollahi Nezhad, Parvaneh; Mofid, Hadi; Bekhradnia, Ahmadreza

    2017-12-01

    Cathinone (CT) is a psychoactive drug which its abuse is linked to several deaths worldwide. Here, we investigated the electronic response of BC2N nanotubes to the CT drug, using density functional theory calculations. Our results indicate that the CT drug is adsorbed on the pristine tube from its -NH2 group with ad adsorption energy about -14.6 kcal/mol with no electronic response. To overcome this problem, we doped the tube with Al or Si atom. Both of the Al and Si dopants increase the tube sensitivity and strengthen the interaction. Our calculations demonstrate that despite the high sensitivity of the Al-doped BC2N nanotube to the CT drug, it suffers from a very long recovery time which makes it unsuitable for application in CT sensors. But the calculated recovery time for the Si-doped BC2N nanotube is predicted to be about 0.27 s, which is short and desirable. Also, we showed that the Si-doped tube can be used in the humidity condition and at the presence of some gases including H2, O2, N2, and CO2. It was concluded that Si-doped BC2N nanotubes may be promising candidate for application in the CT sensors which benefit form a short recovery time, high sensitivity, and selectivity.

  16. Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si

    NASA Astrophysics Data System (ADS)

    Persson, C.; Lindefelt, U.; Sernelius, B. E.

    1999-10-01

    Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.

  17. Structural and electrical properties of Si- and Ti-doped Cu{sub 2}SnSe{sub 3} bulks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wubet, Walelign; Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw

    2015-07-15

    Silicon-doped (Cu{sub 2}(Sn{sub 1−x}Si{sub x})Se{sub 3} and titanium-doped (Cu{sub 2}(Sn{sub 1−x}Ti{sub x})Se{sub 3} at x=0, 0.05, 0.1, 0.15, and 0.2 were prepared at 550 °C for 2 h with soluble sintering aids of volatile Sb{sub 2}S{sub 3} and Te. Defect chemistry was studied by measuring structural and electrical properties of Si-doped and Ti-doped Cu{sub 2}SnSe{sub 3} (CTSe) as a function of dopant concentration. Si-doped CTSe pellets show p-type at x=0 and 0.05 and n-type at x=0.1, 0.15, and 0.2, whereas Ti-doped CTSe pellets show p-type at x=0, 0.05 and 0.1 and n-type at x=0.15 and 0.2. The lowest hole concentrationmore » of 3.6×10{sup 17} cm{sup −3} and the highest mobility of 1525 cm{sup 2} V{sup −1} s{sup −1} were obtained for the Si-doped (Cu{sub 2}(Sn{sub 1−x}Si{sub x})Se{sub 3} bulks at x=0.1 (10% Si), while they were 3.1×10{sup 17} cm{sup −3} and 813 cm{sup 2} V{sup −1} s{sup −1} for the Ti-doped CTSe bulks at x=0.15 (15% Ti), as compared to 1.1×10{sup 18} cm{sup −3} and 209 cm{sup 2} V{sup −1} s{sup −1} for undoped one. The explanations based upon antisite defects of Si-to-Sn, Ti-to-Sn, Cu-to-Sn, and Sn-to-Cu for the changes in electrical property were declared. The study in bulk Si-doped and Ti-doped CTSe is based upon defect state and is consistent and supported by the data of electrical property and lattice parameter. - Graphical abstract: Cu{sub 2}SnSe{sub 3} (CTSe) semiconductor is interesting because of its adjustable electrical properties by extrinsic doping. Si and Ti doping in CTSe leads to high carrier mobility above 800 cm{sup 2} V{sup −1} s{sup −1}. - Highlights: • Cu{sub 2}SnSe{sub 3} (CTSe) is an interesting semiconductor because of its adjustable electrical properties. • Cu(In,Ga)Se{sub 2}, on the contrary, is difficult to change its electrical properties. • Si and Ti doping can change p-CTSe to n-CTSe. • The lowest electron concentration in doped CTSe had the highest mobility above 800 cm{sup 2

  18. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B 2O 3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection andmore » transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.« less

  19. Potassium-doped n-type bilayer graphene

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  20. Boron doped Si rich oxide/SiO{sub 2} and silicon rich nitride/SiN{sub x} bilayers on molybdenum-fused silica substrates for vertically structured Si quantum dot solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ziyun, E-mail: z.lin@unsw.edu.au; Wu, Lingfeng; Jia, Xuguang

    2015-07-28

    Vertically structured Si quantum dots (QDs) solar cells with molybdenum (Mo) interlayer on quartz substrates would overcome current crowding effects found in mesa-structured cells. This study investigates the compatibility between boron (B) doped Si QDs bilayers and Mo-fused silica substrate. Both Si/SiO{sub 2} and Si/SiN{sub x} based QDs bilayers were studied. The material compatibility under high temperature treatment was assessed by examining Si crystallinity, microstress, thin film adhesion, and Mo oxidation. It was observed that the presence of Mo interlayer enhanced the Si QDs size confinement, crystalline fraction, and QDs size uniformity. The use of B doping was preferred comparedmore » to phosphine (PH{sub 3}) doping studied previously in terms of better surface and interface properties by reducing oxidized spots on the film. Though crack formation due to thermal mismatch after annealing remained, methods to overcome this problem were proposed in this paper. Schematic diagram to fabricate full vertical structured Si QDs solar cells was also suggested.« less

  1. Photo-assisted Kelvin probe force microscopy investigation of three dimensional GaN structures with various crystal facets, doping types, and wavelengths of illumination

    NASA Astrophysics Data System (ADS)

    Ali Deeb, Manal; Ledig, Johannes; Wei, Jiandong; Wang, Xue; Wehmann, Hergo-Heinrich; Waag, Andreas

    2017-08-01

    Three dimensional GaN structures with different crystal facets and doping types have been investigated employing the surface photo-voltage (SPV) method to monitor illumination-induced surface charge behavior using Kelvin probe force microscopy. Various photon energies near and below the GaN bandgap were used to modify the generation of electron-hole pairs and their motion under the influence of the electric field near the GaN surface. Fast and slow processes for Ga-polar c-planes on both Si-doped n-type as well as Mg-doped p-type GaN truncated pyramid micro-structures were found and their origin is discussed. The immediate positive (for n-type) and negative (for p-type) SPV response dominates at band-to-band and near-bandgap excitation, while only the slow process is present at sub-bandgap excitation. The SPV behavior for the semi-polar facets of the p-type GaN truncated pyramids has a similar characteristic to that on its c-plane, which indicates that it has a comparable band bending and no strong influence of the polarity-induced charges is detectable. The SPV behavior of the non-polar m-facets of the Si-doped n-type part of a transferred GaN column is similar to that of a clean c-plane GaN surface during illumination. However, the SPV is smaller in magnitude, which is attributed to intrinsic surface states of m-plane surfaces and their influence on the band bending. The SPV behavior of the non-polar m-facet of the slightly Mg-doped part of this GaN column is found to behave differently. Compared to c- and r-facets of p-type surfaces of GaN-light-emitting diode micro-structures, the m-plane is more chemically stable.

  2. Mechanistic analysis of temperature-dependent current conduction through thin tunnel oxide in n+-polySi/SiO2/n+-Si structures

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas

    2017-09-01

    We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.

  3. First principles study of crystal Si-doped Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Yan, Beibei; Yang, Fei; Chen, Tian; Wang, Minglei; Chang, Hong; Ke, Daoming; Dai, Yuehua

    2017-02-01

    Ge2Sb2Te5 (GST) and Si-doped GST with hexagonal structure were investigated by means of First-principles calcucations. We performed many kinds of doping types and studied the electronic properties of Si-doped GST with various Si concentrations. The theoretical calculations show that the lowest formation energy appeared when Si atoms substitute the Sb atoms (SiSb). With the increasing of Si concentrations from 10% to 30%, the impurity states arise around the Fermi level and the band gap of the SiSb structure broadens. Meanwhile, the doping supercell has the most favorable structure when the doping concentration keeps in 20%. The Si-doped GST exhibits p-type metallic characteristics more distinctly owing to the Fermi level moves toward the valence band. The Te p, d-orbitals electrons have greater impact on electronic properties than that of Te s-orbitals.

  4. Doping process of p-type GaN nanowires: A first principle study

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  5. Suppression of surface segregation of the phosphorous δ-doping layer by insertion of an ultra-thin silicon layer for ultra-shallow Ohmic contacts on n-type germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-28

    We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.

  6. Dual ohmic contact to N- and P-type silicon carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  7. Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: prediction versus experiment

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Nishimatsu, T.; Yamamoto, T.; Orita, N.

    2001-10-01

    We review our new valence control method of a co-doping for the fabrication of low-resistivity p-type GaN, p-type AlN and n-type diamond. The co-doping method is proposed based upon ab initio electronic structure calculation in order to solve the uni-polarity and the compensation problems in the wide band-gap semiconductors. In the co-doping method, we dope both the acceptors and donors at the same time by forming the meta-stable acceptor-donor-acceptor complexes for the p-type or donor-acceptor-donor complexes for the n-type under thermal non-equilibrium crystal growth conditions. We propose the following co-doping method to fabricate the low-resistivity wide band-gap semiconductors; p-type GaN: [Si + 2 Mg (or Be)], [H + 2 Mg (or Be)], [O + 2 Mg (or Be)], p-type AlN: [O + 2 C] and n-type diamond: [B + 2 N], [H + S], [H + 2 P]. We compare our prediction of the co-doping method with the recent successful experiments to fabricate the low-resistivity p-type GaN, p-type AlN and n-type diamond. We show that the co-doping method is the efficient and universal doping method by which to avoid carrier compensation with an increase of the solubility of the dopant, to increase the activation rate by decreasing the ionization energy of acceptors and donors, and to increase the mobility of the carrier.

  8. Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures

    NASA Astrophysics Data System (ADS)

    Badali, Yosef; Nikravan, Afsoun; Altındal, Şemsettin; Uslu, İbrahim

    2018-03-01

    The aim of this study is to improve the electrical property of Ag/n-Si metal-semiconductor (MS) structure by growing an Ru-doped PVP interlayer between Ag and n-Si using electrospinning technique. To illustrate the utility of the Ru-doped PVP interface layer, current-voltage (I-V) characteristics of Ag/n-Si (MS) and Ag/Ru-doped PVP/n-Si metal-polymer-semiconductor (MPS) structures was carried out. In addition, the main electrical parameters of the fabricated Ag/Ru-doped PVP/n-Si structures were investigated as a function of frequency and electric field using impedance spectroscopy method (ISM). The capacitance-voltage (C-V) plot showed an anomalous peak in the depletion region due to the special density distribution of interface traps/states (D it /N ss) and interlayer. Both the values of series resistance (R s) and N ss were drawn as a function of voltage and frequency between 0.5 kHz and 5 MHz at room temperature and they had a peak behavior in the depletion region. Some important parameters of the sample such as the donor concentration atoms (N D), Fermi energy (E F ), thickness of the depletion region (W D), barrier height (Φ B0 ) and R s were determined from the C -2 versus V plot for each frequency. The values of N D , W D , Φ B0 and R s were changed from 1 × 1015 cm-3, 9.61 × 10-5 cm, 0.94 eV and 19,055 Ω (at 0.5 kHz) to 0.13 × 1015 cm-3, 27.4 × 10-4 cm, 1.04 eV and 70 Ω (at 5 MHz), respectively. As a result of the experiments, it is observed that the change in electrical parameters becomes more effective at lower frequencies due to the N ss and their relaxation time (τ), dipole and surface polarizations.

  9. Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures

    NASA Astrophysics Data System (ADS)

    Badali, Yosef; Nikravan, Afsoun; Altındal, Şemsettin; Uslu, İbrahim

    2018-07-01

    The aim of this study is to improve the electrical property of Ag/n-Si metal-semiconductor (MS) structure by growing an Ru-doped PVP interlayer between Ag and n-Si using electrospinning technique. To illustrate the utility of the Ru-doped PVP interface layer, current-voltage ( I-V) characteristics of Ag/n-Si (MS) and Ag/Ru-doped PVP/n-Si metal-polymer-semiconductor (MPS) structures was carried out. In addition, the main electrical parameters of the fabricated Ag/Ru-doped PVP/n-Si structures were investigated as a function of frequency and electric field using impedance spectroscopy method (ISM). The capacitance-voltage ( C-V) plot showed an anomalous peak in the depletion region due to the special density distribution of interface traps/states ( D it /N ss) and interlayer. Both the values of series resistance ( R s) and N ss were drawn as a function of voltage and frequency between 0.5 kHz and 5 MHz at room temperature and they had a peak behavior in the depletion region. Some important parameters of the sample such as the donor concentration atoms ( N D), Fermi energy ( E F ), thickness of the depletion region ( W D), barrier height ( Φ B0 ) and R s were determined from the C - 2 versus V plot for each frequency. The values of N D , W D , Φ B0 and R s were changed from 1 × 1015 cm-3, 9.61 × 10-5 cm, 0.94 eV and 19,055 Ω (at 0.5 kHz) to 0.13 × 1015 cm-3, 27.4 × 10-4 cm, 1.04 eV and 70 Ω (at 5 MHz), respectively. As a result of the experiments, it is observed that the change in electrical parameters becomes more effective at lower frequencies due to the N ss and their relaxation time ( τ), dipole and surface polarizations.

  10. Fabrication of n-type Si nanostructures by direct nanoimprinting with liquid-Si ink

    NASA Astrophysics Data System (ADS)

    Takagishi, Hideyuki; Masuda, Takashi; Yamazaki, Ken; Shimoda, Tatsuya

    2018-01-01

    Nanostructures of n-type amorphous silicon (a-Si) and polycrystalline silicon (poly-Si) with a height of 270 nm and line widths of 110-165 nm were fabricated directly onto a substrate through a simple imprinting process that does not require vacuum conditions or photolithography. The n-type Liquid-Si ink was synthesized via photopolymerization of cyclopentasilane (Si5H10) and white phosphorus (P4). By raising the temperature from 160 °C to 200 °C during the nanoimprinting process, well-defined angular patterns were fabricated without any cracking, peeling, or deflections. After the nanoimprinting process, a-Si was produced by heating the nanostructures at 400°C-700 °C, and poly-Si was produced by heating at 800 °C. The dopant P diffuses uniformly in the Si films, and its concentration can be controlled by varying the concentration of P4 in the ink. The specific resistance of the n-type poly-Si pattern was 7.0 × 10-3Ω ṡ cm, which is comparable to the specific resistance of flat n-type poly-Si films.

  11. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Ueno, Kohei; Fudetani, Taiga; Arakawa, Yasuaki; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-12-01

    We report a systematic investigation of the transport properties of highly degenerate electrons in Ge-doped and Si-doped GaN epilayers prepared using the pulsed sputtering deposition (PSD) technique. Secondary-ion mass spectrometry and Hall-effect measurements revealed that the doping efficiency of PSD n-type GaN is close to unity at electron concentrations as high as 5.1 × 1020 cm-3. A record low resistivity for n-type GaN of 0.16 mΩ cm was achieved with an electron mobility of 100 cm2 V-1 s-1 at a carrier concentration of 3.9 × 1020 cm-3. We explain this unusually high electron mobility of PSD n-type GaN within the framework of conventional scattering theory by modifying a parameter related to nonparabolicity of the conduction band. The Ge-doped GaN films show a slightly lower electron mobility compared with Si-doped films with the same carrier concentrations, which is likely a consequence of the formation of a small number of compensation centers. The excellent electrical properties presented in this letter clearly demonstrate the striking advantages of the low-temperature PSD technique for growing high-quality and highly conductive n-type GaN.

  12. Proposal of a neutron transmutation doping facility for n-type spherical silicon solar cell at high-temperature engineering test reactor.

    PubMed

    Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo

    2018-05-01

    The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Native defect properties and p -type doping efficiency in group-IIA doped wurtzite AlN

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Wen; Niu, Hanben

    2008-01-01

    Using the first-principles full-potential linearized augmented plane-wave (FPLAPW) method based on density functional theory (DFT), we have investigated the native defect properties and p -type doping efficiency in AlN doped with group-IIA elements such as Be, Mg, and Ca. It is shown that nitrogen vacancies (VN) have low formation energies and introduce deep donor levels in wurtzite AlN, while in zinc blende AlN and GaN, these levels are reported to be shallow. The calculated acceptor levels γ(0/-) for substitutional Be (BeAl) , Mg (MgAl) , and Ca (CaAl) are 0.48, 0.58, and 0.95eV , respectively. In p -type AlN, Be interstitials (Bei) , which act as donors, have low formation energies, making them a likely compensating center in the case of acceptor doping. Whereas, when N-rich growth conditions are applied, Bei are energetically not favorable. It is found that p -type doping efficiency of substitutional Be, Mg, and Ca impurities in w-AlN is affected by atomic size and electronegativity of dopants. Among the three dopants, Be may be the best candidate for p -type w-AlN . N-rich growth conditions help us to increase the concentration of BeAl , MgAl , and CaAl .

  14. Thermophotovoltaic energy conversion system having a heavily doped n-type region

    DOEpatents

    DePoy, David M.; Charache, Greg W.; Baldasaro, Paul F.

    2000-01-01

    A thermophotovoltaic (TPV) energy conversion semiconductor device is provided which incorporates a heavily doped n-type region and which, as a consequence, has improved TPV conversion efficiency. The thermophotovoltaic energy conversion device includes an emitter layer having first and second opposed sides and a base layer in contact with the first side of the emitter layer. A highly doped n-type cap layer is formed on the second side of the emitter layer or, in another embodiment, a heavily doped n-type emitter layer takes the place of the cap layer.

  15. Effect of Si-doping on InAs nanowire transport and morphology

    NASA Astrophysics Data System (ADS)

    Wirths, S.; Weis, K.; Winden, A.; Sladek, K.; Volk, C.; Alagha, S.; Weirich, T. E.; von der Ahe, M.; Hardtdegen, H.; Lüth, H.; Demarina, N.; Grützmacher, D.; Schäpers, Th.

    2011-09-01

    The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature.

  16. Density-functional study of the structures and properties of holmium-doped silicon clusters HoSi n (n = 3-9) and their anions.

    PubMed

    Hou, Liyuan; Yang, Jucai; Liu, Yuming

    2017-04-01

    The structures and properties of Ho-doped Si clusters, including their adiabatic electron affinities (AEAs), simulated photoelectron spectra (PESs), stabilities, magnetic moments, and charge-transfer characteristics, were systematically investigated using four density-functional methods. The results show that the double-hybrid functional (which includes an MP2 correlation component) can accurately predict the ground-state structure and properties of Ho-doped Si clusters. The ground-state structures of HoSi n (n = 3-9) are sextuplet electronic states. The structures of these Ho-doped Si clusters (aside from HoSi 7 ) are substitutional. The ground-state structures of HoSi n - are quintuplet electronic states. Their predicted AEAs are in excellent agreement with the experimental ones. The mean absolute error in the theoretical AEAs of HoSi n (n = 4-9) is only 0.04 eV. The simulated PESs for HoSi n - (n = 5-9) are in good agreement with the experimental PESs. Based on its simulated PES and theoretical AEA, we reassigned the experimental PES of HoSi 4 - and obtained an experimental AEA of 2.2 ± 0.1 eV. The dissociation energies of Ho from HoSi n and HoSi n - (n = 3-9) were evaluated to test the relative stabilities of the clusters. HOMO-LUMO gap analysis indicated that doping the Si clusters with the rare-earth metal atom significantly increases their photochemical reactivity. Natural population analysis showed that the magnetic moments of HoSi n (n = 3-9) and their anions derive mainly from the Ho atom. It was also found that the magnetic moments of Ho in the HoSi n clusters are larger than the magnetic moment of an isolated Ho atom.

  17. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  18. Comparison of the IN VITRO Cytotoxicities of Nitrogen Doped (p-TYPE) and n-TYPE Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Fujihara, Junko; Hashimoto, Hideki; Nishimoto, Naoki; Tongu, Miki; Fujita, Yasuhisa

    The use of NPs in the health care field is increasing. Before their biological application, investigating the toxicities of both n-type ZnO nanoparticles (NPs) and nitrogen-doped (“p-type”) NPs is important. Using L929 cells, the cell viability, oxidative stress, apoptosis induction, inflammatory responses, and cellular uptake were assayed 24h after the addition of n-type ZnO NPs and nitrogen-doped NPs (which act as p-type) (25μg/mL). The ZnO NPs were fabricated using a gas evaporation method. Increased H2O2 generation and decreased levels of glutathione were more evident in with n-type than in those treated with nitrogen-doped (“p-type”) ZnO NPs. Caspase-3/-7 activity was higher in cells treated with n-type ZnO NPs than in those treated with nitrogen-doped (“p-type”) NPs. Elevated levels of TNF-α and IL-1β were observed in cell culture supernatants: IL-1β levels were higher in n-type ZnO NPs than nitrogen-doped (“p-type”) NPs. The cellular Zn uptake of n-type ZnO NPs was higher than nitrogen-doped (“p-type”) NPs. These findings show that n-type ZnO NPs have higher cytotoxicity than nitrogen-doped (“p-type”) ZnO NPs. This may be due to a reductive effect of n-type ZnO NPs that induces higher free radical production, reactive oxygen species (ROS) generation, and cellular uptake of this type of ZnO NPs.

  19. TOPICAL REVIEW: The doping process and dopant characteristics of GaN

    NASA Astrophysics Data System (ADS)

    Sheu, J. K.; Chi, G. C.

    2002-06-01

    The characteristic effects of doping with impurities such as Si, Ge, Se, O, Mg, Be, and Zn on the electrical and optical properties of GaN-based materials are reviewed. In addition, the roles of unintentionally introduced impurities, such as C, H, and O, and grown-in defects, such as vacancy and antisite point defects, are also discussed. The doping process during epitaxial growth of GaN, AlGaN, InGaN, and their superlattice structures is described. Doping using the diffusion process and ion implantation techniques is also discussed. A p-n junction formed by Si implantation into p-type GaN is successfully fabricated. The results on crystal structure, electrical resistivity, carrier mobility, and optical spectra obtained by means of x-rays, low-temperature Hall measurements, and photoluminescence are also discussed.

  20. Fabrication of Si heterojunction solar cells using P-doped Si nanocrystals embedded in SiNx films as emitters

    PubMed Central

    2013-01-01

    Si heterojunction solar cells were fabricated on p-type single-crystal Si (sc-Si) substrates using phosphorus-doped Si nanocrystals (Si-NCs) embedded in SiNx (Si-NCs/SiNx) films as emitters. The Si-NCs were formed by post-annealing of silicon-rich silicon nitride films deposited by electron cyclotron resonance chemical vapor deposition. We investigate the influence of the N/Si ratio in the Si-NCs/SiNx films on their electrical and optical properties, as well as the photovoltaic properties of the fabricated heterojunction devices. Increasing the nitrogen content enhances the optical gap E04 while deteriorating the electrical conductivity of the Si-NCs/SiNx film, leading to an increased short-circuit current density and a decreased fill factor of the heterojunction device. These trends could be interpreted by a bi-phase model which describes the Si-NCs/SiNx film as a mixture of a high-transparency SiNx phase and a low-resistivity Si-NC phase. A preliminary efficiency of 8.6% is achieved for the Si-NCs/sc-Si heterojunction solar cell. PMID:24188725

  1. New GaN based HEMT with Si3N4 or un-doped region in the barrier for high power applications

    NASA Astrophysics Data System (ADS)

    Razavi, S. M.; Tahmasb Pour, S.; Najari, P.

    2018-06-01

    New AlGaN/GaN high electron mobility transistors (HEMTs) that their barrier layers under the gate are divided into two regions horizontally are presented in this work. Upper region is Si3N4 (SI-HEMT) or un-doped AlGaN (UN-HEMT) and lower region is AlGaN with heavier doping compared to barrier layer. Upper region in SI-HEMT and UN-HEMT reduces peak electric field in the channel and then improves breakdown voltage considerably. Lower region increases electron density in the two dimensional electron gas (2-DEG) and enhances drain current significantly. For instance, saturated drain current in SI-HEMT is about 100% larger than that in the conventional one. Moreover, the maximum breakdown voltage in the proposed structures is 65 V. This value is about 30% larger than that in the conventional transistor (50 V). Also, suggested structure reduces short channel effect such as DIBL. The maximum gm is obtained in UN-HEMT and conventional devices. Proposed structures improve breakdown voltage and saturated drain current and then enhance maximum output power density. Maximum output power density in the new structures is about 150% higher than that in the conventional.

  2. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2004-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony concentration was approximately 4 x 10(exp 19) per cubic centimeter. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per square centimeter, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V (sub DS)) range, with V (sub DS) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  3. Controlled n-Type Doping of Carbon Nanotube Transistors by an Organorhodium Dimer.

    PubMed

    Geier, Michael L; Moudgil, Karttikay; Barlow, Stephen; Marder, Seth R; Hersam, Mark C

    2016-07-13

    Single-walled carbon nanotube (SWCNT) transistors are among the most developed nanoelectronic devices for high-performance computing applications. While p-type SWCNT transistors are easily achieved through adventitious adsorption of atmospheric oxygen, n-type SWCNT transistors require extrinsic doping schemes. Existing n-type doping strategies for SWCNT transistors suffer from one or more issues including environmental instability, limited carrier concentration modulation, undesirable threshold voltage control, and/or poor morphology. In particular, commonly employed benzyl viologen n-type doping layers possess large thicknesses, which preclude top-gate transistor designs that underlie high-density integrated circuit layouts. To overcome these limitations, we report here the controlled n-type doping of SWCNT thin-film transistors with a solution-processed pentamethylrhodocene dimer. The charge transport properties of organorhodium-treated SWCNT thin films show consistent n-type behavior when characterized in both Hall effect and thin-film transistor geometries. Due to the molecular-scale thickness of the organorhodium adlayer, large-area arrays of top-gated, n-type SWCNT transistors are fabricated with high yield. This work will thus facilitate ongoing efforts to realize high-density SWCNT integrated circuits.

  4. Electronic structures and thermochemical properties of the small silicon-doped boron clusters B(n)Si (n=1-7) and their anions.

    PubMed

    Tai, Truong Ba; Kadłubański, Paweł; Roszak, Szczepan; Majumdar, Devashis; Leszczynski, Jerzy; Nguyen, Minh Tho

    2011-11-18

    We perform a systematic investigation on small silicon-doped boron clusters B(n)Si (n=1-7) in both neutral and anionic states using density functional (DFT) and coupled-cluster (CCSD(T)) theories. The global minima of these B(n)Si(0/-) clusters are characterized together with their growth mechanisms. The planar structures are dominant for small B(n)Si clusters with n≤5. The B(6)Si molecule represents a geometrical transition with a quasi-planar geometry, and the first 3D global minimum is found for the B(7)Si cluster. The small neutral B(n)Si clusters can be formed by substituting the single boron atom of B(n+1) by silicon. The Si atom prefers the external position of the skeleton and tends to form bonds with its two neighboring B atoms. The larger B(7)Si cluster is constructed by doping Si-atoms on the symmetry axis of the B(n) host, which leads to the bonding of the silicon to the ring boron atoms through a number of hyper-coordination. Calculations of the thermochemical properties of B(n)Si(0/-) clusters, such as binding energies (BE), heats of formation at 0 K (ΔH(f)(0)) and 298 K (ΔH(f)([298])), adiabatic (ADE) and vertical (VDE) detachment energies, and dissociation energies (D(e)), are performed using the high accuracy G4 and complete basis-set extrapolation (CCSD(T)/CBS) approaches. The differences of heats of formation (at 0 K) between the G4 and CBS approaches for the B(n)Si clusters vary in the range of 0.0-4.6 kcal mol(-1). The largest difference between two approaches for ADE values is 0.15 eV. Our theoretical predictions also indicate that the species B(2)Si, B(4)Si, B(3)Si(-) and B(7)Si(-) are systems with enhanced stability, exhibiting each a double (σ and π) aromaticity. B(5)Si(-) and B(6)Si are doubly antiaromatic (σ and π) with lower stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optical properties of Mg doped p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S.; Tyagi, A. K.

    2015-06-01

    Mg doped p-type GaN nanowires are grown using chemical vapor deposition technique in vapor-liquid-solid (VLS) process. Morphological and structural studies confirm the VLS growth process of nanowires and wurtzite phase of GaN. We report the optical properties of Mg doped p-type GaN nanowires. Low temperature photoluminescence studies on as-grown and post-growth annealed samples reveal the successful incorporation of Mg dopants. The as-grwon and annealed samples show passivation and activation of Mg dopants, respectively, in GaN nanowires.

  6. Controlling n-type doping in MoO 3

    DOE PAGES

    Peelaers, H.; Chabinyc, M. L.; Van de Walle, C. G.

    2017-02-27

    Here, we study the electronic properties of native defects and intentional dopant impurities in MoO 3, a widely used transparent conductor. Using first-principles hybrid functional calculations, we show that electron polarons can be self-trapped, but they can also bind to defects; thus, they play an important role in understanding the properties of doped MoO 3. Our calculations show that oxygen vacancies can cause unintentional n-type doping in MoO 3. Mo vacancies are unlikely to form. Tc and Re impurities on the Mo site and halogens (F, Cl, and Br) on the O site all act as shallow donors but trapmore » electron polarons. Fe, Ru, and Os impurities are amphoteric and will compensate n-type MoO 3. Mn dopants are also amphoteric, and they show interesting magnetic properties. These results support the design of doping approaches that optimally exploit functionality.« less

  7. Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination.

    PubMed

    van Druenen, Maart; Collins, Gillian; Glynn, Colm; O'Dwyer, Colm; Holmes, Justin D

    2018-01-17

    Monolayer doping (MLD) involves the functionalization of semiconductor surfaces followed by an annealing step to diffuse the dopant into the substrate. We report an alternative doping method, oxide-MLD, where ultrathin SiO 2 overlayers are functionalized with phosphonic acids for doping Si. Similar peak carrier concentrations were achieved when compared with hydrosilylated surfaces (∼2 × 10 20 atoms/cm 3 ). Oxide-MLD offers several advantages over conventional MLD, such as ease of sample processing, superior ambient stability, and minimal carbon contamination. The incorporation of an oxide layer minimizes carbon contamination by facilitating attachment of carbon-free precursors or by impeding carbon diffusion. The oxide-MLD strategy allows selection of many inexpensive precursors and therefore allows application to both p- and n-doping. The phosphonic acid-functionalized SiO 2 surfaces were investigated using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, whereas doping was assessed using electrochemical capacitance voltage and Hall measurements.

  8. Carrier concentration dependent photoluminescence properties of Si-doped InAs nanowires

    NASA Astrophysics Data System (ADS)

    Sonner, M.; Treu, J.; Saller, K.; Riedl, H.; Finley, J. J.; Koblmüller, G.

    2018-02-01

    We report the effects of intentional n-type doping on the photoluminescence (PL) properties of InAs nanowires (NWs). Employing silicon (Si) as a dopant in molecular beam epitaxy grown NWs, the n-type carrier concentration is tuned between 1 × 1017 cm-3 and 3 × 1018 cm-3 as evaluated from Fermi-tail fits of the high-energy spectral region. With the increasing carrier concentration, the PL spectra exhibit a distinct blueshift (up to ˜50 meV), ˜2-3-fold peak broadening, and a redshift of the low-energy tail, indicating both the Burstein-Moss shift and bandgap narrowing. The low-temperature bandgap energy (EG) decreases from ˜0.44 eV (n ˜ 1017 cm-3) to ˜0.41 eV (n ˜ 1018 cm-3), following a ΔEG ˜ n1/3 dependence. Simultaneously, the PL emission is quenched nearly 10-fold, while the pump-power dependent analysis of the integrated PL intensity evidences a typical 2/3-power-law scaling, indicative of non-radiative Auger recombination at high carrier concentrations. Carrier localization and activation at stacking defects are further observed in undoped InAs NWs by temperature-dependent measurements but are absent in Si-doped InAs NWs due to the increased Fermi energy.

  9. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon

    n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less

  10. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes

    DOE PAGES

    Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon; ...

    2018-01-11

    n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less

  11. Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si

    NASA Technical Reports Server (NTRS)

    Manasevit, H. M.; Gergis, I. S.; Jones, A. B.

    1982-01-01

    Enhanced Hall-effect mobilities have been measured in epitaxial (100)-oriented multilayer n-type Si/Si(1-x)Ge(x) films grown on single-crystal Si substrates by chemical vapor deposition. Mobilities from 20 to 40% higher than that of epitaxial Si layers and about 100% higher than that of epitaxial SiGe layers on Si were measured for the doping range 8 x 10 to the 15th to 10 to the 17th/cu cm. No mobility enhancement was observed in multilayer p-type (100) films and n-type (111)-oriented films. Experimental studies included the effects upon film properties of layer composition, total film thickness, doping concentrations, layer thickness, and growth temperature.

  12. Si and Mg pair-doped interlayers for improving performance of AlGaN/GaN heterostructure field effect transistors grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Ni, Yi-Qiang; He, Zhi-Yuan; Yao, Yao; Yang, Fan; Zhou, De-Qiu; Zhou, Gui-Lin; Shen, Zhen; Zhong, Jian; Zheng, Yue; Zhang, Bai-Jun; Liu, Yang

    2015-05-01

    We report a novel structure of AlGaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair-doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio (˜ 109). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 51177175 and 61274039), the National Basic Research Project of China (Grant Nos. 2010CB923200 and 2011CB301903), the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the National High-tech R&D Program of China (Grant No. 2014AA032606), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).

  13. Temperature independent quantum well FET with delta channel doping

    NASA Technical Reports Server (NTRS)

    Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.

    1992-01-01

    A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.

  14. Influence of the doping type and level on the morphology of porous Si formed by galvanic etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatilova, O. V., E-mail: 5ilova87@gmail.com; Gavrilov, S. A.; Shilyaeva, Yu. I.

    The formation of porous silicon (por-Si) layers by the galvanic etching of single-crystal Si samples (doped with boron or phosphorus) in an HF/C{sub 2}H{sub 5}OH/H{sub 2}O{sub 2} solution is investigated. The por-Si layers are analyzed by the capillary condensation of nitrogen and scanning electron microscopy (SEM). The dependences of the morphological characteristics of por-Si (pore diameter, specific surface area, pore volume, and thickness of the pore walls), which determine the por-Si combustion kinetics, on the dopant type and initial wafer resistivity are established.

  15. Defect reaction network in Si-doped InAs. Numerical predictions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter A.

    This Report characterizes the defects in the def ect reaction network in silicon - doped, n - type InAs predicted with first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si - doped InAs , until culminating in immobile reaction p roducts. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon - related defects in the reaction network. This Report serves to extend the results for the properties of intrinsic defects in bulkmore » InAs as colla ted in SAND 2013 - 2477 : Simple intrinsic defects in InAs : Numerical predictions to include Si - containing simple defects likely to be present in a radiation - induced defect reaction sequence . This page intentionally left blank« less

  16. Opto-electronic properties of P-doped nc-Si–QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Debjit; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-07-14

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si–QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si–C bonds in the amorphous matrix and the embedded high densitymore » tiny nc-Si–QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si–QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si–QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si–QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si–QD/a-SiC:H films grown at ∼300 °C, demonstrating wide optical gap ∼1.86–1.96 eV and corresponding high electrical conductivity ∼4.5 × 10{sup −1}–1.4 × 10{sup −2} S cm{sup −1}, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.« less

  17. A conduction model for contacts to Si-doped AlGaN grown on sapphire and single-crystalline AlN

    NASA Astrophysics Data System (ADS)

    Haidet, Brian B.; Bryan, Isaac; Reddy, Pramod; Bryan, Zachary; Collazo, Ramón; Sitar, Zlatko

    2015-06-01

    Ohmic contacts to AlGaN grown on sapphire substrates have been previously demonstrated for various compositions of AlGaN, but contacts to AlGaN grown on native AlN substrates are more difficult to obtain. In this paper, a model is developed that describes current flow through contacts to Si-doped AlGaN. This model treats the current through reverse-biased Schottky barriers as a consequence of two different tunneling-dependent conduction mechanisms in parallel, i.e., Fowler-Nordheim emission and defect-assisted Frenkel-Poole emission. At low bias, the defect-assisted tunneling dominates, but as the potential across the depletion region increases, tunneling begins to occur without the assistance of defects, and the Fowler-Nordheim emission becomes the dominant conduction mechanism. Transfer length method measurements and temperature-dependent current-voltage (I-V) measurements of Ti/Al-based contacts to Si-doped AlGaN grown on sapphire and AlN substrates support this model. Defect-assisted tunneling plays a much larger role in the contacts to AlGaN on sapphire, resulting in nearly linear I-V characteristics. In contrast, contacts to AlGaN on AlN show limited defect-assisted tunneling appear to be only semi-Ohmic.

  18. Electro-Optical Properties of Hydrogenated Si-Doped CdO

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.

    2018-01-01

    The optoelectronic properties of CdO films could be controlled and improved for transparent conducting (TC) purposes by means of doping. In the present work, several sets of CdO thin films hydrogenated and doped with different amounts of silicon were prepared on glass substrates by a thermal deposition technique in order to improve their TC properties. The x-ray diffraction method was used to study the crystal structural variations in CdO films as a consequence of Si(H) doping. Optical properties were studied by means of optical absorption and reflection spectroscopy. The observed blue-shifting in the optical bandgap by Si(H) doping was attributed to the Moss-Burstein effect with reduced structural bandgap by point defects created during the process of doping. The mechanism of the hydrogenation process was explained by the dissociation of hydrogen molecules into atoms/ions, which in turn interacted with structural oxygen ions leading to the creation of oxygen vacancies. The creation of oxygen vacancies caused increases in electron concentration ( N el) and electrical conductivity ( σ). The results showed that Si(H) doping of host CdO films significantly increased their conductivity, mobility, and carrier concentration by ˜ 69, 5.6, and 12.3 times, respectively. The results confirm that Si(H) doping is effective for using CdO films in transparent conducting oxide applications.

  19. Growth of a delta-doped silicon layer by molecular beam epitaxy on a charge-coupled device for reflection-limited ultraviolet quantum efficiency

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu

    1992-01-01

    Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.

  20. Complementary p- and n-type polymer doping for ambient stable graphene inverter.

    PubMed

    Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk

    2014-01-28

    Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.

  1. Control of Eu Luminescence Centers by Codoping of Mg and Si into Eu-Doped GaN

    NASA Astrophysics Data System (ADS)

    Lee, Dong-gun; Wakamatsu, Ryuta; Koizumi, Atsushi; Terai, Yoshikazu; Fujiwara, Yasufumi

    2013-08-01

    The effects of Mg and Si codoping on Eu luminescence properties have been investigated in Eu-doped GaN (GaN:Eu). The Mg codoping into GaN:Eu produced novel luminescence centers consisting of Eu and Mg, and increased photoluminescence (PL) intensity in Eu,Mg-codoped GaN (GaN:Eu,Mg). However, this increased PL intensity was quenched by thermal annealing in N2 ambient, which is due to activation of Mg acceptors. In GaN:Eu,Mg codoped additionally with Si (GaN:Eu,Mg,Si), on the other hand, the Eu-Mg centers disappeared, while an additional luminescence center appeared. Furthermore, the additional luminescence center showed no quenching under N2 annealing because Si donors compensated for the Mg acceptors in GaN. Thermal quenching of the luminescence center was also approximately half of that in GaN:Eu. These results indicate that the codoping with additional impurities in GaN:Eu is a powerful technique to control Eu luminescence centers for realization of improved device performance in red light-emitting diodes using GaN:Eu.

  2. Extremely high absolute internal quantum efficiency of photoluminescence in co-doped GaN:Zn,Si

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Willyard, A. G.; Behrends, A.; Bakin, A.; Waag, A.

    2011-10-01

    We report on the fabrication of GaN co-doped with silicon and zinc by metalorganic vapor phase epitaxy and a detailed study of photoluminescence in this material. We observe an exceptionally high absolute internal quantum efficiency of blue photoluminescence in GaN:Zn,Si. The value of 0.93±0.04 has been obtained from several approaches based on rate equations.

  3. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2003-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony, concentration was approximately 4 x 10(exp19) per cubic cm. The electron mobility was over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per sq cm, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V(sub DS)) range, with (V(sub DS)) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  4. Correlation between mobility collapse and carbon impurities in Si-doped GaN grown by low pressure metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kaess, Felix; Mita, Seiji; Xie, Jingqiao; Reddy, Pramod; Klump, Andrew; Hernandez-Balderrama, Luis H.; Washiyama, Shun; Franke, Alexander; Kirste, Ronny; Hoffmann, Axel; Collazo, Ramón; Sitar, Zlatko

    2016-09-01

    In the low doping range below 1 × 1017 cm-3, carbon was identified as the main defect attributing to the sudden reduction of the electron mobility, the electron mobility collapse, in n-type GaN grown by low pressure metalorganic chemical vapor deposition. Secondary ion mass spectroscopy has been performed in conjunction with C concentration and the thermodynamic Ga supersaturation model. By controlling the ammonia flow rate, the input partial pressure of Ga precursor, and the diluent gas within the Ga supersaturation model, the C concentration in Si-doped GaN was controllable from 6 × 1019 cm-3 to values as low as 2 × 1015 cm-3. It was found that the electron mobility collapsed as a function of free carrier concentration, once the Si concentration closely approached the C concentration. Lowering the C concentration to the order of 1015 cm-3 by optimizing Ga supersaturation achieved controllable free carrier concentrations down to 5 × 1015 cm-3 with a peak electron mobility of 820 cm2/V s without observing the mobility collapse. The highest electron mobility of 1170 cm2/V s was obtained even in metalorganic vapor deposition-grown GaN on sapphire substrates by optimizing growth parameters in terms of Ga supersaturation to reduce the C concentration.

  5. Strong intramolecular Si-N interactions in the chlorosilanes Cl3-nHnSiOCH2CH2NMe2 (n = 1-3).

    PubMed

    Hagemann, Michael; Mix, Andreas; Berger, Raphael J F; Pape, Tania; Mitzel, Norbert W

    2008-11-17

    The compounds Cl 3SiOCH 2CH 2NMe 2 ( 1) and Cl 2HSiOCH 2CH 2NMe 2 ( 2) were prepared by reactions of lithium 2-(dimethylamino)ethanolate with SiCl 4 and HSiCl 3. The analogous reaction with H 2SiCl 2 gave ClH 2SiOCH 2CH 2NMe 2 ( 3), but only in a mixture with Cl 2HSiOCH 2CH 2NMe 2 ( 2), from which it could not be separated. All compounds were characterized by IR and NMR ( (1)H, (13)C, (29)Si) spectroscopy, 1 and 2 by elemental analyses and by determination of their crystal structures. Cl 3SiOCH 2CH 2NMe 2 ( 1) and Cl 2HSiOCH 2CH 2NMe 2 ( 2) crystallize as monomeric ring compounds with pentacoordinate silicon atoms participating in intramolecular Si-N bonds [2.060(2) A ( 1), 2.037(2) A ( 2)]. The dative bonds in 1 and 2 between the silicon and nitrogen atoms could also be proven to exist at low temperatures in solution in (1)H, (29)Si-HMBC-NMR experiments by detection of the scalar coupling between the (29)Si and the protons of the NCH 2 and NCH 3 groups. A function describing the chemical shift delta exp (29)Si dependent on the chemical shifts of the individual equilibrium components, the temperature, and the free enthalpy of reaction was worked out and fitted to the experimental VT-NMR data of 1 and 2. This provided values of the free reaction enthalpies of Delta G = -28.8 +/- 3.9 kJ x mol (-1) for 1 and Delta G = -22.3 +/- 0.4 kJ x mol (-1) for 2 and estimates for the chemical shifts of open-chain (index o) and ring conformers (index r) for 1 of delta r = -94 +/- 2 ppm and delta o = -36 +/- 5 ppm and for 2 of delta r = -82 +/- 1 ppm and delta o = -33 +/- 4 ppm. The value of delta r for 1 is very close to that obtained from a solid-state (29)Si MAS NMR spectrum. Quantumchemical calculations (up to MP2/TZVPP) gave largely differing geometries for 1 (with a Si...N distance of 3.072 A), but well reproduced the geometry of 2. These differences are due to Cl...H and Cl...C repulsions and solid state effects, which can be modeled by conductor-like screening model

  6. Delta-Doped CCDs as Detector Arrays in Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd; Jewell, April; Sinha, Mahadeva

    2007-01-01

    In a conventional mass spectrometer, charged particles (ions) are dispersed through a magnetic sector onto an MCP at an output (focal) plane. In the MCP, the impinging charged particles excite electron cascades that afford signal gain. Electrons leaving the MCP can be read out by any of a variety of means; most commonly, they are post-accelerated onto a solid-state detector array, wherein the electron pulses are converted to photons, which, in turn, are converted to measurable electric-current pulses by photodetectors. Each step in the conversion from the impinging charged particles to the output 26 NASA Tech Briefs, February 2007 current pulses reduces spatial resolution and increases noise, thereby reducing the overall sensitivity and performance of the mass spectrometer. Hence, it would be preferable to make a direct measurement of the spatial distribution of charged particles impinging on the focal plane. The utility of delta-doped CCDs as detectors of charged particles was reported in two articles in NASA Tech Briefs, Vol. 22, No. 7 (July 1998): "Delta-Doped CCDs as Low-Energy-Particle Detectors" (NPO-20178) on page 48 and "Delta- Doped CCDs for Measuring Energies of Positive Ions" (NPO-20253) on page 50. In the present developmental miniature mass spectrometers, the above mentioned miniaturization and performance advantages contributed by the use of delta-doped CCDs are combined with the advantages afforded by the Mattauch-Herzog design. The Mattauch- Herzog design is a double-focusing spectrometer design involving an electric and a magnetic sector, where the ions of different masses are spatially separated along the focal plane of magnetic sector. A delta-doped CCD at the focal plane measures the signals of all the charged-particle species simultaneously at high sensitivity and high resolution, thereby nearly instantaneously providing a complete, high-quality mass spectrum. The simultaneous nature of the measurement of ions stands in contrast to that of a

  7. Optical and electronic properties of SO2 molecule adsorbed on Si-doped (8, 0) boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Guo, Shuang-Shuang; Wei, Xiu-Mei; Zhang, Jian-Min; Zhu, Gang-Qiang; Guo, Wan-Jin

    2016-09-01

    The study of the optical properties of pristine BNNT, Si-doped BNNTs and SO2 molecule adsorption on Si-doped BNNTs is that, to our knowledge, few relevant research have ever been found. In this paper, the adsorption behaviors of Sulfur dioxide (SO2) molecule on Si-doped Boron nitride nanotubes (BNNTs) are investigated applying the first-principles calculations. The main contribution of this paper is that the foremost investigation for the optical properties of the pristine BNNT, Si-doped BNNTs and SO2 adsorption on Si-doped BNNTs. Additionally, the electronic properties and the structural properties are also presented. In our calculations of optical properties, the dielectric constant, the refractive index and the absorption coefficient are obtained. Comparing the pristine BNNT, our results indicate that, the blue-shifts (in the main peaks of the dielectric constant of SiB -BNNT and SO2-SiB -BNNT), and the red-shifts (in the main peaks of the refractive index of SiN -BNNT and SO2-SiN -BNNT) are appeared. Under these conditions, Si-doped BNNT and Si-doped BNNT with SO2 adsorption, the gaps are reduced both for the speculated optical band gaps and the electronic structure band gaps.

  8. P-type Al-doped Cr-deficient CrN thin films for thermoelectrics

    NASA Astrophysics Data System (ADS)

    le Febvrier, Arnaud; Van Nong, Ngo; Abadias, Gregory; Eklund, Per

    2018-05-01

    Thermoelectric properties of chromium nitride (CrN)-based films grown on c-plane sapphire by dc reactive magnetron sputtering were investigated. In this work, aluminum doping was introduced in CrN (degenerate n-type semiconductor) by co-deposition. Under the present deposition conditions, over-stoichiometry in nitrogen (CrN1+δ) rock-salt structure is obtained. A p-type conduction is observed with nitrogen-rich CrN combined with aluminum doping. The Cr0.96Al0.04N1.17 film exhibited a high Seebeck coefficient and a sufficient power factor at 300 °C. These results are a starting point for designing p-type/n-type thermoelectric materials based on chromium nitride films, which are cheap and routinely grown on the industrial scale.

  9. Positronium formation at Si surfaces

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Maekawa, M.; Miyashita, A.; Wada, K.; Kaiwa, T.; Nagashima, Y.

    2018-06-01

    Positronium formation at Si(111) and Si(001) surfaces has been investigated by changing the doping level systematically over the range 300-1000 K. The temperature dependence of the positronium fraction varied with the doping condition, and there were practically no differences between the two surface orientations. In heavily doped n -type Si (n ≳1018cm-3) , the positronium fraction (IPs) increased above 700 K and reached more than 95% at 1000 K. In undoped and lightly doped Si (n , p ≲1015cm-3 ), IPs decreased from 300 to 500 K and increased above 700 K. In heavily doped p -type Si (p ≳1018cm-3 ), IPs increased in two steps: one at 500-600 K and one above 700 K. Overall, the positronium fraction increased with the amount of n -type doping. These phenomena were found to be dominated by two kinds of positronium with energies of 0.6-1.5 eV and 0.1-0.2 eV, which were attributed to the work-function mechanism and the surface-positron-mediated process, respectively, with contributions from conduction electrons. The positron work function was estimated to be positive. This agrees with first-principles calculation. The positive positron work function implies that the formation of excitonic electron-positron bound states begins in the bulk subsurface region and transits to the final positronium state in the vacuum.

  10. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    DOEpatents

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  11. Cat-doping: Novel method for phosphorus and boron shallow doping in crystalline silicon at 80 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Hideki; Hayakawa, Taro; Ohta, Tatsunori

    Phosphorus (P) or boron (B) atoms can be doped at temperatures as low as 80 to 350 °C, when crystalline silicon (c-Si) is exposed only for a few minutes to species generated by catalytic cracking reaction of phosphine (PH₃) or diborane (B₂H₆) with heated tungsten (W) catalyzer. This paper is to investigate systematically this novel doping method, “Cat-doping”, in detail. The electrical properties of P or B doped layers are studied by the Van der Pauw method based on the Hall effects measurement. The profiles of P or B atoms in c-Si are observed by secondary ion mass spectrometry mainlymore » from back side of samples to eliminate knock-on effects. It is confirmed that the surface of p-type c-Si is converted to n-type by P Cat-doping at 80 °C, and similarly, that of n-type c-Si is to p-type by B Cat-doping. The doping depth is as shallow as 5 nm or less and the electrically activated doping concentration is 10¹⁸ to 10¹⁹cm⁻³ for both P and B doping. It is also found that the surface potential of c-Si is controlled by the shallow Cat-doping and that the surface recombination velocity of minority carriers in c-Si can be enormously lowered by this potential control.« less

  12. Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Du, H. W.; Yang, J.; Li, Y. H.; Xu, F.; Xu, J.; Ma, Z. Q.

    2015-03-01

    Complete photo-generated minority carrier's quantum tunneling device under AM1.5 illumination is fabricated by depositing tin-doped indium oxide (ITO) on n-type silicon to form a structure of ITO/SiOx/n-Si heterojunction. The work function difference between ITO and n-Si materials essentially acts as the origin of built-in-field. Basing on the measured value of internal potential (Vbi = 0.61 V) and high conversion efficiency (9.27%), we infer that this larger photo-generated holes tunneling occurs when a strong inversion layer at the c-Si surface appears. Also, the mixed electronic states in the ultra-thin intermediate region between ITO and n-Si play a defect-assisted tunneling.

  13. Characterization of gate recessed GaN/AlGaN/GaN high electron mobility transistors fabricated using a SiCl4/SF6 dry etch recipe

    NASA Astrophysics Data System (ADS)

    Green, R. T.; Luxmoore, I. J.; Lee, K. B.; Houston, P. A.; Ranalli, F.; Wang, T.; Parbrook, P. J.; Uren, M. J.; Wallis, D. J.; Martin, T.

    2010-07-01

    Incorporating GaN capping layers in conjunction with recessing has been identified as a means to maximize the high frequency performance of AlGaN/GaN high electron mobility transistors (HEMTs). Doping the cap heavily n-type is required in order to ensure minimal loss of carriers from the channel. Using a SiCl4/SF6 dry etch plasma recipe, 250 nm gate length HEMTs with recess lengths varying from 300 nm to 5 μm are fabricated. Heavily doped n+GaN caps enabled contact resistances of 0.3 Ω mm to be achieved. Recessing using a SiCl4/SF6 recipe does not introduce significant numbers of bulk traps. Gate recessing in conjunction with Si3N4 passivation reduces rf dispersion to negligible levels.

  14. A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Lu, Yuanxi; Huang, Jian; Li, Bing; Tang, Ke; Ma, Yuncheng; Cao, Meng; Wang, Lin; Wang, Linjun

    2018-01-01

    ZnO (Zinc oxide)/Si (Silicon) heterojunctions were prepared by depositing n-type ZnO films on p-type single crystal Si substrates using magnetron sputtering. A boron and gallium co-doped ZnO (BGZO) high conductivity intermediate layer was deposited between aurum (Au) electrodes and ZnO films. The influence of the BGZO layer on the properties of Au/ZnO contacts and the performance of ZnO/Si heterojunctions was investigated. The results show an improvement in contact resistance by introducing the BGZO layer. Compared with the ZnO/Si heterojunction, the BGZO/ZnO/Si heterojunction exhibits a larger forward current, a smaller turn-on voltage and higher ratio of ultraviolet (UV) photo current/dark current.

  15. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors.

    PubMed

    Morkötter, S; Jeon, N; Rudolph, D; Loitsch, B; Spirkoska, D; Hoffmann, E; Döblinger, M; Matich, S; Finley, J J; Lauhon, L J; Abstreiter, G; Koblmüller, G

    2015-05-13

    Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature.

  16. The reduction of critical H implantation dose for ion cut by incorporating B-doped SiGe/Si superlattice into Si substrate

    NASA Astrophysics Data System (ADS)

    Xue, Zhongying; Chen, Da; Jia, Pengfei; Wei, Xing; Di, Zengfeng; Zhang, Miao

    2016-11-01

    An approach to achieve Si or SiGe film exfoliation with as low as 3 × 1016/cm2 H implantation dose was investigated. Two intrinsic Si0.75Ge0.25/Si samples, merged with B-doped Si0.75Ge0.25 layer and B-doped Si0.75Ge0.25/Si superlattice (SL) layer respectively, were used to study the formation of crack after 3 × 1016/cm2 H implantation and annealing. For the sample into which B doped Si0.75Ge0.25 layer is incorporated, only few discrete cracks are observed along both sides of the B doped Si0.75Ge0.25 layer; on the contrary, a continuous (100) oriented crack is formed in the B-doped Si0.75Ge0.25/Si SL layer, which means ion cut can be achieved using this material with 3 × 1016/cm2 H implantation. As the SIMS profiles confirm that hydrogen tends to be trapped at B-doped SiGe/Si interface, the formation of continuous crack in SL layer can be ascribed to the more efficient hydrogen trapping by the multiple B-doped SiGe/Si interfaces.

  17. Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires

    NASA Astrophysics Data System (ADS)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong

    2018-04-01

    The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.

  18. Electronic structure and p-type doping of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Janotti, Anderson; Ni, Chaoying

    ZnSnN2 is a promising solar-cell absorber material composed of earth abundant elements. Little is known about doping, defects, and how the valence and conduction bands in this material align with the bands in other semiconductors. Using density functional theory with the the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06), we investigate the electronic structure of ZnSnN2, its band alignment to other semiconductors, such as GaN and ZnO, the possibility of p-type doping, and the possible causes of the observed unintentional n-type conductivity. We find that the position of the valence-band maximum of ZnSnN2 is 0.55 eV higher than that of GaN, yet the conduction-band minimum is close to that in ZnO. As possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. Finally, we discuss the cause of unintentional n-type conductivity by analyzing the position of the conduction-band minimum with respect to that of GaN and ZnO.

  19. Selection Rule of Preferred Doping Site for n-Type Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.; Li, J.; Li, S. S.

    2012-06-25

    Using first-principles calculations and analysis, we show that to create shallow n-type dopants in oxides, anion site doping is preferred for more covalent oxides such as SnO{sub 2} and cation site doping is preferred for more ionic oxides such as ZnO. This is because for more ionic oxides, the conduction band minimum (CBM) state actually contains a considerable amount of O 3s orbitals, thus anion site doping can cause large perturbation on the CBM and consequently produces deeper donor levels. We also show that whether it is cation site doping or anion site doping, the oxygen-poor condition should always bemore » used.« less

  20. Investigation of pentacene growth on SiO2 gate insulator after photolithography for nitrogen-doped LaB6 bottom-contact electrode formation

    NASA Astrophysics Data System (ADS)

    Maeda, Yasutaka; Hiroki, Mizuha; Ohmi, Shun-ichiro

    2018-04-01

    Nitrogen-doped (N-doped) LaB6 is a candidate material for the bottom-contact electrode of n-type organic field-effect transistors (OFETs). However, the formation of a N-doped LaB6 electrode affects the surface morphology of a pentacene film. In this study, the effects of surface treatments and a N-doped LaB6 interfacial layer (IL) were investigated to improve the pentacene film quality after N-doped LaB6 electrode patterning with diluted HNO3, followed by resist stripping with acetone and methanol. It was found that the sputtering damage during N-doped LaB6 deposition on a SiO2 gate insulator degraded the crystallinity of pentacene. The H2SO4 and H2O2 (SPM) and diluted HF treatments removed the damaged layer on the SiO2 gate insulator surface. Furthermore, the N-doped LaB6 IL improved the crystallinity of pentacene and realized dendritic grain growth. Owing to these surface treatments, the hole mobility improved from 2.8 × 10-3 to 0.11 cm2/(V·s), and a steep subthreshold swing of 78 mV/dec for the OFET with top-contact configuration was realized in air even after bottom-contact electrode patterning.

  1. Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.

    2014-10-01

    Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.

  2. Calibration on wide-ranging aluminum doping concentrations by photoluminescence in high-quality uncompensated p-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Asada, Satoshi; Kimoto, Tsunenobu; Ivanov, Ivan G.

    2017-08-01

    Previous work has shown that the concentration of shallow dopants in a semiconductor can be estimated from the photoluminescence (PL) spectrum by comparing the intensity of the bound-to-the-dopant exciton emission to that of the free exciton. In this work, we study the low-temperature PL of high-quality uncompensated Al-doped p-type 4H-SiC and propose algorithms for determining the Al-doping concentration using the ratio of the Al-bound to free-exciton emission. We use three different cryogenic temperatures (2, 41, and 79 K) in order to cover the Al-doping range from mid 1014 cm-3 up to 1018 cm-3. The Al-bound exciton no-phonon lines and the strongest free-exciton replica are used as a measure of the bound- and free-exciton emissions at a given temperature, and clear linear relationships are obtained between their ratio and the Al-concentration at 2, 41, and 79 K. Since nitrogen is a common unintentional donor dopant in SiC, we also discuss the criteria allowing one to determine from the PL spectra whether a sample can be considered as uncompensated or not. Thus, the low-temperature PL provides a convenient non-destructive tool for the evaluation of the Al concentration in 4H-SiC, which probes the concentration locally and, therefore, can also be used for mapping the doping homogeneity.

  3. Measurement of carrier transport and recombination parameter in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  4. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  5. Buffer Layer Doping Concentration Measurement Using VT-VSUB Characteristics of GaN HEMT with p-GaN Substrate Layer

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Yu; Nakatani, Katsutoshi; Kawai, Hiroji; Ao, Jin-Ping; Ohno, Yasuo

    To improve the high voltage performance of AlGaN/GaN heterojunction field effect transistors (HFETs), we have fabricated AlGaN/GaN HFETs with p-GaN epi-layer on sapphire substrate with an ohmic contact to the p-GaN (p-sub HFET). Substrate bias dependent threshold voltage variation (VT-VSUB) was used to directly determine the doping concentration profile in the buffer layer. This VT-VSUB method was developed from Si MOSFET. For HFETs, the insulator is formed by epitaxially grown and heterogeneous semiconductor layer while for Si MOSFETs the insulator is amorphous SiO2. Except that HFETs have higher channel mobility due to the epitaxial insulator/semiconductor interface, HFETs and Si MOSFETs are basically the same in the respect of device physics. Based on these considerations, the feasibility of this VT-VSUB method for AlGaN/GaN HFETs was discussed. In the end, the buffer layer doping concentration was measured to be 2 × 1017cm-3, p-type, which is well consistent with the Mg concentration obtained from secondary ion mass spectroscopy (SIMS) measurement.

  6. Identification of photoluminescence P line in indium doped silicon as In{sub Si}-Si{sub i} defect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauer, Kevin, E-mail: klauer@cismst.de; Möller, Christian; Schulze, Dirk

    2015-01-15

    Indium and carbon co-implanted silicon was investigated by low-temperature photoluminescence spectroscopy. A photoluminescence peak in indium doped silicon (P line) was found to depend on the position of a silicon interstitial rich region, the existence of a SiN{sub x}:H/SiO{sub x} stack and on characteristic illumination and annealing steps. These results led to the conclusion that silicon interstitials are involved in the defect and that hydrogen impacts the defect responsible for the P line. By applying an unique illumination and annealing cycle we were able to link the P line defect with a defect responsible for degradation of charge carrier lifetimemore » in indium as well as boron doped silicon. We deduced a defect model consisting of one acceptor and one silicon interstitial atom denoted by A{sub Si}-Si{sub i}, which is able to explain the experimental data of the P line as well as the light-induced degradation in indium and boron doped silicon. Using this model we identified the defect responsible for the P line as In{sub Si}-Si{sub i} in neutral charge state and C{sub 2v} configuration.« less

  7. Lattice Location of Mg in GaN: A Fresh Look at Doping Limitations.

    PubMed

    Wahl, U; Amorim, L M; Augustyns, V; Costa, A; David-Bosne, E; Lima, T A L; Lippertz, G; Correia, J G; da Silva, M R; Kappers, M J; Temst, K; Vantomme, A; Pereira, L M C

    2017-03-03

    Radioactive ^{27}Mg (t_{1/2}=9.5  min) was implanted into GaN of different doping types at CERN's ISOLDE facility and its lattice site determined via β^{-} emission channeling. Following implantations between room temperature and 800 °C, the majority of ^{27}Mg occupies the substitutional Ga sites; however, below 350 °C significant fractions were also found on interstitial positions ∼0.6  Å from ideal octahedral sites. The interstitial fraction of Mg was correlated with the GaN doping character, being highest (up to 31%) in samples doped p type with 2×10^{19}  cm^{-3} stable Mg during epilayer growth, and lowest in Si-doped n-GaN, thus giving direct evidence for the amphoteric character of Mg. Implanting above 350 °C converts interstitial ^{27}Mg to substitutional Ga sites, which allows estimating the activation energy for migration of interstitial Mg as between 1.3 and 2.0 eV.

  8. Lattice Location of Mg in GaN: A Fresh Look at Doping Limitations

    NASA Astrophysics Data System (ADS)

    Wahl, U.; Amorim, L. M.; Augustyns, V.; Costa, A.; David-Bosne, E.; Lima, T. A. L.; Lippertz, G.; Correia, J. G.; da Silva, M. R.; Kappers, M. J.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-03-01

    Radioactive 27Mg (t1 /2=9.5 min ) was implanted into GaN of different doping types at CERN's ISOLDE facility and its lattice site determined via β- emission channeling. Following implantations between room temperature and 800 °C , the majority of 27Mg occupies the substitutional Ga sites; however, below 350 °C significant fractions were also found on interstitial positions ˜0.6 Å from ideal octahedral sites. The interstitial fraction of Mg was correlated with the GaN doping character, being highest (up to 31%) in samples doped p type with 2 ×1019 cm-3 stable Mg during epilayer growth, and lowest in Si-doped n -GaN, thus giving direct evidence for the amphoteric character of Mg. Implanting above 350 °C converts interstitial 27Mg to substitutional Ga sites, which allows estimating the activation energy for migration of interstitial Mg as between 1.3 and 2.0 eV.

  9. Evaluation of local free carrier concentrations in individual heavily-doped GaN:Si micro-rods by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohajerani, M. S.; Khachadorian, S.; Schimpke, T.; Nenstiel, C.; Hartmann, J.; Ledig, J.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-02-01

    Three-dimensional III-nitride micro-structures are being developed as a promising candidate for the future opto-electrical devices. In this study, we demonstrate a quick and straight-forward method to locally evaluate free-carrier concentrations and a crystalline quality in individual GaN:Si micro-rods. By employing micro-Raman mapping and analyzing lower frequency branch of A1(LO)- and E1(LO)-phonon-plasmon-coupled modes (LPP-), the free carrier concentrations are determined in axial and planar configurations, respectively. Due to a gradual doping profile along the micro-rods, a highly spatially resolved mapping on the sidewall is exploited to reconstruct free carrier concentration profile along the GaN:Si micro-rods. Despite remarkably high free carrier concentrations above 1 × 1020 cm-3, the micro-rods reveal an excellent crystalline quality, without a doping-induced stress.

  10. Negative Photoconductance in Heavily Doped Si Nanowire Field-Effect Transistors.

    PubMed

    Baek, Eunhye; Rim, Taiuk; Schütt, Julian; Baek, Chang-Ki; Kim, Kihyun; Baraban, Larysa; Cuniberti, Gianaurelio

    2017-11-08

    We report the first observation of negative photoconductance (NPC) in n- and p-doped Si nanowire field-effect transistors (FETs) and demonstrate the strong influence of doping concentrations on the nonconventional optical switching of the devices. Furthermore, we show that the NPC of Si nanowire FETs is dependent on the wavelength of visible light due to the phonon-assisted excitation to multiple conduction bands with different band gap energies that would be a distinct optoelectronic property of indirect band gap semiconductor. We attribute the main driving force of NPC in Si nanowire FETs to the photogenerated hot electrons trapping by dopants ions and interfacial states. Finally, comparing back- and top-gate modulation, we derive the mechanisms of the transition between negative and positive photoconductance regimes in nanowire devices. The transition is decided by the competition between the light-induced interfacial trapping and the recombination of mobile carriers, which is dependent on the light intensity and the doping concentration.

  11. Characteristics of Mg-doped and In-Mg co-doped p-type GaN epitaxial layers grown by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chung, S. J.; Senthil Kumar, M.; Lee, Y. S.; Suh, E.-K.; An, M. H.

    2010-05-01

    Mg-doped and In-Mg co-doped p-type GaN epilayers were grown using the metal organic chemical vapour deposition technique. The effect of In co-doping on the physical properties of p-GaN layer was examined by high resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), Hall effect, photoluminescence (PL) and persistent photoconductivity (PPC) at room temperature. An improved crystalline quality and a reduction in threading dislocation density are evidenced upon In doping in p-GaN from HRXRD and TEM images. Hole conductivity, mobility and carrier density also significantly improved by In co-doping. PL studies of the In-Mg co-doped sample revealed that the peak position is blue shifted to 3.2 eV from 2.95 eV of conventional p-GaN and the PL intensity is increased by about 25%. In addition, In co-doping significantly reduced the PPC effect in p-type GaN layers. The improved electrical and optical properties are believed to be associated with the active participation of isolated Mg impurities.

  12. Theoretical studies on anisotropic electrical conductivity of trans-polyacetylene doped with n-type dopants

    NASA Astrophysics Data System (ADS)

    Wang, Cunguo; Wang, Rongshun

    2000-12-01

    Based on energy band theory of solid states, extended Hückel molecular orbital methods (EHMO/CO) were used to calculate the two-dimensional (2D) energy band structures of highly oriented trans-polyacetylene (PA) undoped and doped with n-type dopant (Li, Na, K). The band gaps ( Eg) of undoped PA in directions parallel and perpendicular to the oriented direction were 1.195 and 3.040 eV, respectively. When PA was doped with n-type dopant, the corresponding band gaps Eg1 and Eg2 decreased significantly. Based on the calculated results, we could successfully account for the changes of electrical anisotropy of PA from the undoped state to the doped form. The conductivity anisotropy ratio σ1/ σ2 decreased when PA was doped with n-type dopant, because the PA chains and the dopant showed a strong interchain coupling. It was the interchain coupling that acted as a bridge between two neighboring chains, and made the charge-carrier transport easier between the interchains. The theoretical results for undoped and doped PA are in good agreement with the experiment.

  13. Structures and stability of metal-doped Ge nM (n = 9, 10) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  14. Structures and stability of metal-doped Ge nM (n = 9, 10) clusters

    DOE PAGES

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; ...

    2015-06-26

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  15. Effect of doping on structural, optical and electrical properties of nanostructure ZnO films deposited onto a-Si:H/Si heterojunction

    NASA Astrophysics Data System (ADS)

    Sali, S.; Boumaour, M.; Kermadi, S.; Keffous, A.; Kechouane, M.

    2012-09-01

    We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10-4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark I-V curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.

  16. High-density Two-Dimensional Small Polaron Gas in a Delta-Doped Mott Insulator

    PubMed Central

    Ouellette, Daniel G.; Moetakef, Pouya; Cain, Tyler A.; Zhang, Jack Y.; Stemmer, Susanne; Emin, David; Allen, S. James

    2013-01-01

    Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical point Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~7 × 1014 cm−2. PMID:24257578

  17. Synthesis and characterization of P-doped amorphous and nanocrystalline Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jialing; Ganguly, Shreyashi; Sen, Sabyasachi

    Intentional impurity doping lies at the heart of the silicon technology. The dopants provide electrons or holes as necessary carriers of the electron current and can significantly modify the electric, optical and magnetic properties of the semiconductors. P-doped amorphous Si (a-Si) was prepared by a solid state and solution metathesis reaction of a P-doped Zintl phase precursor, NaSi 0.99P 0.01, with an excess of NH 4X (X = Br, I). After the salt byproduct was removed from the solid state reaction, the a-Si material was annealed at 600 °C under vacuum for 2 h, resulting in P-doped nanocrystalline Si (nc-Si)more » material embedded in a-Si matrix. The product from the solution reaction also shows a combination of nc-Si embedded in a-Si; however, it was fully converted to nc-Si after annealing under argon at 650 °C for 30 min. Powder X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) show the amorphous nature of the P-doped Si material before the annealing and the nanocrystallinity after the annealing. Fourier Transform Infrared (FTIR) spectroscopy shows that the P-doped Si material surface is partially capped by H and O or with solvent. Finally, electron microprobe wavelength dispersive spectroscopy (WDS) as well as energy dispersive spectroscopy (EDS) confirm the presence of P in the Si material. 29Si and 31P solid state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy data provide the evidence of P doping into the Si structure with the P concentration of approximately 0.07 at.%.« less

  18. Preparation of ITO/SiO{sub x}/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, H. W.; Yang, J.; Li, Y. H.

    2015-03-02

    Complete photo-generated minority carrier's quantum tunneling device under AM1.5 illumination is fabricated by depositing tin-doped indium oxide (ITO) on n-type silicon to form a structure of ITO/SiO{sub x}/n-Si heterojunction. The work function difference between ITO and n-Si materials essentially acts as the origin of built-in-field. Basing on the measured value of internal potential (V{sub bi} = 0.61 V) and high conversion efficiency (9.27%), we infer that this larger photo-generated holes tunneling occurs when a strong inversion layer at the c-Si surface appears. Also, the mixed electronic states in the ultra-thin intermediate region between ITO and n-Si play a defect-assisted tunneling.

  19. Origins of n -type doping difficulties in perovskite stannates

    NASA Astrophysics Data System (ADS)

    Weston, L.; Bjaalie, L.; Krishnaswamy, K.; Van de Walle, C. G.

    2018-02-01

    The perovskite stannates (A SnO3 ; A = Ba, Sr, Ca) are promising for oxide electronics, but control of n -type doping has proved challenging. Using first-principles hybrid density functional calculations, we investigate La dopants and explore the formation of compensating acceptor defects. We find that La on the A site always behaves as a shallow donor, but incorporation of La on the Sn site can lead to self-compensation. At low La concentrations and in O-poor conditions, oxygen vacancies form in BaSnO3. A -site cation vacancies are found to be dominant among the native compensating centers. Compared to BaSnO3, charge compensation is a larger problem for the wider-band-gap stannates, SrSnO3 and CaSnO3, a trend we can explain based on conduction-band alignments. The formation of compensating acceptor defects can be inhibited by choosing oxygen-poor (cation-rich) growth or annealing conditions, thus providing a pathway for improved n -type doping.

  20. Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yiping; Zhang, Zi-Hui; Tan, Swee Tiam; Hernandez-Martinez, Pedro Ludwig; Zhu, Binbin; Lu, Shunpeng; Kang, Xue Jun; Sun, Xiao Wei; Demir, Hilmi Volkan

    2017-01-01

    Due to the limitation of the hole injection, p-type doping is essential to improve the performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs). In this work, we propose and show a depletion-region Mg-doping method. Here we systematically analyze the effectiveness of different Mg-doping profiles ranging from the electron blocking layer to the active region. Numerical computations show that the Mg-doping decreases the valence band barrier for holes and thus enhances the hole transportation. The proposed depletion-region Mg-doping approach also increases the barrier height for electrons, which leads to a reduced electron overflow, while increasing the hole concentration in the p-GaN layer. Experimentally measured external quantum efficiency indicates that Mg-doping position is vitally important. The doping in or adjacent to the quantum well degrades the LED performance due to Mg diffusion, increasing the corresponding nonradiative recombination, which is well supported by the measured carrier lifetimes. The experimental results are well numerically reproduced by modifying the nonradiative recombination lifetimes, which further validate the effectiveness of our approach.

  1. Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, Si(n)Co (n = 10-12).

    PubMed

    Li, Yejun; Tam, Nguyen Minh; Claes, Pieterjan; Woodham, Alex P; Lyon, Jonathan T; Ngan, Vu Thi; Nguyen, Minh Tho; Lievens, Peter; Fielicke, André; Janssens, Ewald

    2014-09-18

    The structures of neutral cobalt-doped silicon clusters have been assigned by a combined experimental and theoretical study. Size-selective infrared spectra of neutral Si(n)Co (n = 10-12) clusters are measured using a tunable IR-UV two-color ionization scheme. The experimental infrared spectra are compared with calculated spectra of low-energy structures predicted at the B3P86 level of theory. It is shown that the Si(n)Co (n = 10-12) clusters have endohedral caged structures, where the silicon frameworks prefer double-layered structures encapsulating the Co atom. Electronic structure analysis indicates that the clusters are stabilized by an ionic interaction between the Co dopant atom and the silicon cage due to the charge transfer from the silicon valence sp orbitals to the cobalt 3d orbitals. Strong hybridization between the Co dopant atom and the silicon host quenches the local magnetic moment on the encapsulated Co atom.

  2. p-BaSi2/n-Si heterojunction solar cells on Si(001) with conversion efficiency approaching 10%: comparison with Si(111)

    NASA Astrophysics Data System (ADS)

    Deng, Tianguo; Sato, Takuma; Xu, Zhihao; Takabe, Ryota; Yachi, Suguru; Yamashita, Yudai; Toko, Kaoru; Suemasu, Takashi

    2018-06-01

    B-doped p-BaSi2 epitaxial layers with a hole concentration of 1.1 × 1018 cm‑3 were grown on n-Si(001) using molecular beam epitaxy to fabricate p-BaSi2/n-Si solar cells. The thickness (d) of the p-BaSi2 layer was varied from 20 to 60 nm to investigate its effect on the solar cell performance. The conversion efficiency under an AM1.5 illumination increased with d reaching a maximum of 9.8% at d = 40 nm, which is nearly equal to the highest efficiency (9.9%) for p-BaSi2/n-Si solar cells on Si(111). This study indicated that Si(001) substrates are promising for use in BaSi2 solar cells.

  3. Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells

    PubMed Central

    Jäckle, Sara; Mattiza, Matthias; Liebhaber, Martin; Brönstrup, Gerald; Rommel, Mathias; Lips, Klaus; Christiansen, Silke

    2015-01-01

    We investigated hybrid inorganic-organic solar cells combining monocrystalline n-type silicon (n-Si) and a highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). The build-in potential, photo- and dark saturation current at this hybrid interface are monitored for varying n-Si doping concentrations. We corroborate that a high build-in potential forms at the hybrid junction leading to strong inversion of the n-Si surface. By extracting work function and valence band edge of the polymer from ultraviolet photoelectron spectroscopy, a band diagram of the hybrid n-Si/PEDOT:PSS heterojunction is presented. The current-voltage characteristics were analyzed using Schottky and abrupt pn-junction models. The magnitude as well as the dependence of dark saturation current on n-Si doping concentration proves that the transport is governed by diffusion of minority charge carriers in the n-Si and not by thermionic emission of majorities over a Schottky barrier. This leads to a comprehensive explanation of the high observed open-circuit voltages of up to 634 mV connected to high conversion efficiency of almost 14%, even for simple planar device structures without antireflection coating or optimized contacts. The presented work clearly shows that PEDOT:PSS forms a hybrid heterojunction with n-Si behaving similar to a conventional pn-junction and not, like commonly assumed, a Schottky junction. PMID:26278010

  4. Low thermal budget n-type doping into Ge(001) surface using ultraviolet laser irradiation in phosphoric acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Kouta, E-mail: ktakahas@alice.xtal.nagoya-u.ac.jp, E-mail: kurosawa@alice.xtal.nagoya-u.ac.jp; Sakashita, Mitsuo; Takeuchi, Wakana

    2016-02-01

    We have investigated phosphorus (P) doping into Ge(001) surfaces by using ultraviolet laser irradiation in phosphoric acid solution at room temperature. We demonstrated that the diffusion depth of P in Ge and the concentration of electrically activated P can be controlled by the number of laser shots. Indeed, a high concentration of electrically activated P of 2.4 × 10{sup 19} cm{sup −3} was realized by 1000-times laser shots at a laser energy of 1.0 J/cm{sup 2}, which is comparable or better than the counterparts of conventional n-type doping using a high thermal budget over 600 °C. The generation current is dominant in the reverse biasmore » condition for the laser-doped pn-junction diodes independent on the number of laser shots, thus indicating low-damage during the pn-junction formation. These results open up the possibility for applicable low thermal budget doping process for Ge-based devices fabricated on flexible substrates as well as Si electronics.« less

  5. Amorphous sub-nanometre Tb-doped SiO(x)N(y)/SiO2 superlattices for optoelectronics.

    PubMed

    Ramírez, Joan Manel; Wojcik, Jacek; Berencén, Yonder; Ruiz-Caridad, Alícia; Estradé, Sònia; Peiró, Francesca; Mascher, Peter; Garrido, Blas

    2015-02-27

    Amorphous sub-nanometre Tb-doped SiOxNy/SiO2 superlattices were fabricated by means of alternating deposition of 0.7 nm thick Tb-doped SiOxNy layers and of 0.9 nm thick SiO2 barrier layers in an electron-cyclotron-resonance plasma enhanced chemical vapour deposition system with in situ Tb-doping capability. High resolution transmission electron microscopy images showed a well-preserved superlattice morphology after annealing at a high temperature of 1000 °C. In addition, transparent indium tin oxide (ITO) electrodes were deposited by electron beam evaporation using a shadow mask approach to allow for the optoelectronic characterization of superlattices. Tb(3+) luminescent spectral features were obtained using three different excitation sources: UV laser excitation (photoluminescence (PL)), under a bias voltage (electroluminescence (EL)) and under a highly energetic electron beam (cathodoluminescence (CL)). All techniques displayed Tb(3+) inner transitions belonging to (5)D4 levels except for the CL spectrum, in which (5)D3 transition levels were also observed. Two competing mechanisms were proposed to explain the spectral differences observed between PL (or EL) and CL excitation: the population rate of the (5)D3 state and the non-radiative relaxation rate of the (5)D3-(5)D4 transition due to a resonant OH-mode. Moreover, the large number of interfaces (trapping sites) that electrons have to get through was identified as the main reason for observing a bulk-limited charge transport mechanism governed by Poole-Frenkel conduction in the J-V characteristic. Finally, a linear EL-J dependence was measured, with independent spectral shape and an EL onset voltage as low as 6.7 V. These amorphous sub-nanometre superlattices are meant to provide low-cost solutions in different areas including sensing, photovoltaics or photonics.

  6. Phosphorus Doping in Si Nanocrystals/SiO2 msultilayers and Light Emission with Wavelength compatible for Optical Telecommunication

    PubMed Central

    Lu, Peng; Mu, Weiwei; Xu, Jun; Zhang, Xiaowei; Zhang, Wenping; Li, Wei; Xu, Ling; Chen, Kunji

    2016-01-01

    Doping in semiconductors is a fundamental issue for developing high performance devices. However, the doping behavior in Si nanocrystals (Si NCs) has not been fully understood so far. In the present work, P-doped Si NCs/SiO2 multilayers are fabricated. As revealed by XPS and ESR measurements, P dopants will preferentially passivate the surface states of Si NCs. Meanwhile, low temperature ESR spectra indicate that some P dopants are incorporated into Si NCs substitutionally and the incorporated P impurities increase with the P doping concentration or annealing temperature increasing. Furthermore, a kind of defect states will be generated with high doping concentration or annealing temperature due to the damage of Si crystalline lattice. More interestingly, the incorporated P dopants can generate deep levels in the ultra-small sized (~2 nm) Si NCs, which will cause a new subband light emission with the wavelength compatible with the requirement of the optical telecommunication. The studies of P-doped Si NCs/SiO2 multilayers suggest that P doping plays an important role in the electronic structures and optoelectronic characteristics of Si NCs. PMID:26956425

  7. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2000-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  8. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2002-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  9. Influence of different organic fertilizers on quality parameters and the delta(15)N, delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of orange fruit (Citrus sinensis L. Osbeck).

    PubMed

    Rapisarda, Paolo; Camin, Federica; Fabroni, Simona; Perini, Matteo; Torrisi, Biagio; Intrigliolo, Francesco

    2010-03-24

    To investigate the influence of different types of fertilizers on quality parameters, N-containing compounds, and the delta(15)N, delta(13)C, delta(2)H, delta (34)S, and delta(18)O values of citrus fruit, a study was performed on the orange fruit cv. 'Valencia late' (Citrus sinensis L. Osbeck), which was harvested in four plots (three organic and one conventional) located on the same farm. The results demonstrated that different types of organic fertilizers containing the same amount of nitrogen did not effect important changes in orange fruit quality parameters. The levels of total N and N-containing compounds such as synephrine in fruit juice were not statistically different among the different treatments. The delta(15)N values of orange fruit grown under fertilizer derived from animal origin as well as from vegetable compost were statistically higher than those grown with mineral fertilizer. Therefore, delta(15)N values can be used as an indicator of citrus fertilization management (organic or conventional), because even when applied organic fertilizers are of different origins, the natural abundance of (15)N in organic citrus fruit remains higher than in conventional ones. These treatments also did not effect differences in the delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of fruit.

  10. Determination of carrier concentration by Fano interference of Raman scattering in heavily doped n-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Mitani, Takeshi; Nakashima, Shin-ichi; Kojima, Kazutoshi; Kato, Tomohisa; Okumura, Hajime

    2012-08-01

    For n-type 4H-SiC crystals with carrier concentrations between 2 × 1017 and 2.5 × 1020 cm-3, Fano interference of the folded transverse acoustic (FTA) doublet modes was observed. The Fano line-shape parameters were shown to vary with carrier concentration. It is proposed that the peak shifts in the FTA modes resulting from interference with an electronic continuum state can be used to measure carrier concentration for n-type 4H-SiC up to 1020 cm-3. In addition, the relative intensity of the FTA doublet modes varies markedly with carrier concentrations above 5 × 1018 cm-3. This suggests that mode coupling occurs between the FTA doublet components. The variation in the intensity ratio is attributed to the intensity transfer between the FTA doublet components. This mode coupling arises from a phonon-phonon interaction via electronic continuum state-phonon interactions.

  11. Large electron capture-cross-section of the major nonradiative recombination centers in Mg-doped GaN epilayers grown on a GaN substrate

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Shima, K.; Kojima, K.; Takashima, S.; Edo, M.; Ueno, K.; Ishibashi, S.; Uedono, A.

    2018-05-01

    Complementary time-resolved photoluminescence and positron annihilation measurements were carried out at room temperature on Mg-doped p-type GaN homoepitaxial films for identifying the origin and estimating the electron capture-cross-section ( σ n ) of the major nonradiative recombination centers (NRCs). To eliminate any influence by threading dislocations, free-standing GaN substrates were used. In Mg-doped p-type GaN, defect complexes composed of a Ga-vacancy (VGa) and multiple N-vacancies (VNs), namely, VGa(VN)2 [or even VGa(VN)3], are identified as the major intrinsic NRCs. Different from the case of 4H-SiC, atomic structures of intrinsic NRCs in p-type and n-type GaN are different: VGaVN divacancies are the major NRCs in n-type GaN. The σ n value approximately the middle of 10-13 cm2 is obtained for VGa(VN)n, which is larger than the hole capture-cross-section (σp = 7 × 10-14 cm2) of VGaVN in n-type GaN. Combined with larger thermal velocity of an electron, minority carrier lifetime in Mg-doped GaN becomes much shorter than that of n-type GaN.

  12. Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guangtao; Ingenito, Andrea; Hameren, Nienke van

    2016-01-18

    Ion-implanted passivating contacts based on poly-crystalline silicon (polySi) are enabled by tunneling oxide, optimized, and used to fabricate interdigitated back contact (IBC) solar cells. Both n-type (phosphorous doped) and p-type (boron doped) passivating contacts are fabricated by ion-implantation of intrinsic polySi layers deposited via low-pressure chemical vapor deposition and subsequently annealed. The impact of doping profile on the passivation quality of the polySi doped contacts is studied for both polarities. It was found that an excellent surface passivation could be obtained by confining as much as possible the implanted-and-activated dopants within the polySi layers. The doping profile in the polySimore » was controlled by modifying the polySi thickness, the energy and dose of ion-implantation, and the temperature and time of annealing. An implied open-circuit voltage of 721 mV for n-type and 692 mV for p-type passivating contacts was achieved. Besides the high passivating quality, the developed passivating contacts exhibit reasonable high conductivity (R{sub sh n-type} = 95 Ω/□ and R{sub sh p-type} = 120 Ω/□). An efficiency of 19.2% (V{sub oc} = 673 mV, J{sub sc} = 38.0 mA/cm{sup 2}, FF = 75.2%, and pseudo-FF = 83.2%) was achieved on a front-textured IBC solar cell with polySi passivating contacts as both back surface field and emitter. By improving the front-side passivation, a V{sub OC} of 696 mV was also measured.« less

  13. Improvement in crystal quality and optical properties of n-type GaN employing nano-scale SiO2 patterned n-type GaN substrate.

    PubMed

    Jo, Min Sung; Sadasivam, Karthikeyan Giri; Tawfik, Wael Z; Yang, Seung Bea; Lee, Jung Ju; Ha, Jun Seok; Moon, Young Boo; Ryu, Sang Wan; Lee, June Key

    2013-01-01

    n-type GaN epitaxial layers were regrown on the patterned n-type GaN substrate (PNS) with different size of silicon dioxide (SiO2) nano dots to improve the crystal quality and optical properties. PNS with SiO2 nano dots promotes epitaxial lateral overgrowth (ELOG) for defect reduction and also acts as a light scattering point. Transmission electron microscopy (TEM) analysis suggested that PNS with SiO2 nano dots have superior crystalline properties. Hall measurements indicated that incrementing values in electron mobility were clear indication of reduction in threading dislocation and it was confirmed by TEM analysis. Photoluminescence (PL) intensity was enhanced by 2.0 times and 3.1 times for 1-step and 2-step PNS, respectively.

  14. Structure, luminescence and thermal quenching properties of Eu doped Sr{sub 2−x}Ba{sub x}Si{sub 5}N{sub 8} red phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.H.; Chen, L.; Zhou, X.F.

    Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasingmore » x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs). - Graphical abstract: Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} solid solutions were prepared by the solid-state reaction method. The structure, luminescence and thermal quenching properties with varying Ba/Sr ratio were investigated in detail. - Highlights: • The stucture and luminescence properties of Eu doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were investigated. • The samples with the intermediate compositions(x=1.0,1.5) show better stability than the end members of both Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Ba{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}. • The possible mechanism for the improvement of thermal quenching properties was proposed.« less

  15. Band alignment and p -type doping of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-05-01

    Composed of earth-abundant elements, ZnSnN2 is a promising semiconductor for photovoltaic and photoelectrochemical applications. However, basic properties such as the precise value of the band gap and the band alignment to other semiconductors are still unresolved. For instance, reported values for the band gap vary from 1.4 to 2.0 eV. In addition, doping in ZnSnN2 remains largely unexplored. Using density functional theory with the Heyd-Scuseria-Ernzerhof hybrid functional, we investigate the electronic structure of ZnSnN2, its band alignment to GaN and ZnO, and the possibility of p -type doping. We find that the position of the valence-band maximum of ZnSnN2 is 0.39 eV higher than that in GaN, yet the conduction-band minimum is close to that in ZnO, which suggests that achieving p -type conductivity is likely as in GaN, yet it may be difficult to control unintentional n -type conductivity as in ZnO. Among possible p -type dopants, we explore Li, Na, and K substituting on the Zn site. We show that while LiZn is a shallow acceptor, NaZn and KZn are deep acceptors, which we trace back to large local relaxations around the Na and K impurities due to the atomic size mismatches.

  16. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p-n diodes and InGaN LEDs

    NASA Astrophysics Data System (ADS)

    Mughal, Asad J.; Young, Erin C.; Alhassan, Abdullah I.; Back, Joonho; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.

    2017-12-01

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal-organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p-n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm-3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10-3-3.4 × 10-3 Ω·cm2, and the turn-on voltages of the diodes.

  17. Exceptional cracking behavior in H-implanted Si/B-doped Si0.70Ge0.30/Si heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Dadi; Chang, Yongwei; Li, Ya; Ding, Rui; Li, Jiurong; Chen, Xiao; Wang, Gang; Guo, Qinglei

    2018-01-01

    The cracking behavior in H-implanted Si/B-doped Si0.70Ge0.30/Si structures after thermal annealing was investigated. The crack formation position is found to closely correlate with the thickness of the buried Si0.70Ge0.30 layer. For H-implanted Si containing a buried 3-nm-thick B-doped Si0.70Ge0.30 layer, localized continuous cracking occurs at the interfaces on both sides of the Si0.70Ge0.30 interlayer. Once the thickness of the buried Si0.70Ge0.30 layer increases to 15 and 70 nm, however, a continuous sharp crack is individually observed along the interface between the Si substrate and the B-doped Si0.70Ge0.30 interlayer. We attribute this exceptional cracking behavior to the existence of shear stress on both sides of the buried Si0.70Ge0.30 layer and the subsequent trapping of hydrogen, which leads to a crack in a well-controlled manner. This work may pave the way for high-quality Si or SiGe membrane transfer in a feasible manner, thus expediting its potential applications to ultrathin silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI) production.

  18. Electron concentration in highly resistive GaN substrates co-doped with Si, C, and Fe

    NASA Astrophysics Data System (ADS)

    Tokuda, Hirokuni; Suzuki, Kosuke; Asubar, Joel T.; Kuzuhara, Masaaki

    2018-07-01

    Electron concentration in highly resistive GaN substrates with intentional iron (Fe) dopants as well as unintentionally incorporated silicon (Si) and carbon (C) dopants has been investigated. Si, C, and Fe atomic concentrations were 2 × 1017, 1 × 1016, and 1 × 1019 cm‑3, respectively as measured by secondary ion mass spectroscopy (SIMS). Temperature dependence of current–voltage (I–V) characteristics revealed that the resistivity (ρ) was 3.8 × 109 Ω cm at 300 K and monotonously decreased to 3.1 × 104 Ω cm at 570 K, giving an activation energy of 0.63 eV. Electron concentration (n) was modeled using analytical equation assuming three impurity levels of Si donor, C and Fe acceptors. The n of 5.0 × 107 and 3.1 × 1012 cm‑3 at 300 and 570 K, respectively, with an effective activation energy of 0.60 eV, were derived based on the model. These calculated electron concentration values are in good agreement with the experimental results. In addition, quantitatively analyzed results revealed that around 2 orders of magnitude reduction of n is expected by increasing doping concentration of Fe from 1.0 × 1018 to 1.0 × 1020 cm‑3.

  19. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device

    NASA Astrophysics Data System (ADS)

    Zhang, Jiahua; Chen, Da; Huang, Shihua

    2017-12-01

    The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I-V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed. Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY17F040001), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. KF2015_02), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (No. M201503), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  20. Point Defects and p -Type Doping in ScN from First Principles

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu

    2018-03-01

    Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.

  1. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm < λ < 780 nm) irradiation is used to evaluate the photocatalytic activity of the composites. Compared with pure TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  2. Doping enhanced barrier lowering in graphene-silicon junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  3. Electron-irradiated n+-Si as hole injection tunable anode of organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Li, Y. Z.; Wang, Z. L.; Wang, Y. Z.; Luo, H.; Xu, W. J.; Ran, G. Z.; Qin, G. G.

    2013-01-01

    Traditionally, n-type silicon is not regarded as a good anode of organic light emitting diode (OLED) due to the extremely low hole concentration in it; however, when doped with Au element which acts as carrier generation centers, it can be, as shown in our previous work. In this study, we demonstrate a new kind of carrier generation centers in n+-type silicon, which are the defects produced by 5 MeV electron irradiation. The density of carrier generation centers in the irradiated n+-Si anode can be controlled by tuning the electron irradiation time, and thus hole injection current in the OLEDs with the irradiated n+-Si anode can be optimized, leading to their much higher maximum efficiencies than those of the OLEDs with non-irradiated n+-Si anode. For a green phosphorescent OLED with the irradiated n+-Si anode, the current efficiency and power efficiency reach up to 12.1 cd/A and 4.2 lm/W, respectively.

  4. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  5. Thermoelectric properties of heavily GaP- and P-doped Si0.95Ge0.05

    NASA Astrophysics Data System (ADS)

    Yamashita, Osamu

    2001-06-01

    The Seebeck coefficient S, the electrical resistivity ρ and the thermal conductivity κ of Si0.95Ge0.05 samples doped with 0.4 at. % P and/or 0.5-2.0 mol % GaP, which were prepared by a conventional arc melting method, were measured as functions of GaP content and temperature T in the range from 323 to 1208 K. When multidoped with P and GaP, Ga tends to segregate more strongly with Ge to the grain boundaries than P, while when doped with GaP alone, both P and Ga segregate equally strongly with Ge. For multidoped samples, the S values at 323 K have a minimum at 1.0 mol % GaP and then increase with additional GaP, while the values of ρ and κ decrease monotonically with increasing GaP content. The optimum additional content of GaP that gives the largest thermoelectric figures of merit (ZT=S2T/κρ) for multidoped n-type Si0.95Ge0.05 samples was 1.5 mol %, which is slightly less than the 2.0 mol % of GaP added to Si0.8Ge0.2 alloy by hot pressing. The ZT value for multidoped Si0.95Ge0.05 with an optimum content of GaP increases linearly with temperature, and at 1073 K is 18% higher than that obtained previously for Si0.95Ge0.05 doped with only 0.4 at. % P. At 1173 K the ZT value is 1.16, which corresponds to 95% of that obtained previously at the corresponding temperature for Si0.8Ge0.2 alloy doped with 2.0 mol % GaP.

  6. Effect of ethylene glycol doping on performance of PEDOT:PSS/µT-n-Si heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Nakra, Rohan; Sivaiah, B.; Sardana, Sanjay K.; Prathap, P.; Rauthan, C. M. S.; Srivastava, Sanjay K.

    2018-05-01

    This study reports effect of co-solvent doping in poly (3, 4-ethyelenedioxythiophene):poly(dimethyl sulfoxide) (PEDOT:PSS) over the performance of Ag/PEDOT:PSS/µT-n-Si/In:Ga architecture based solar cell. PEDOT:PSS polymer is doped with varying concentration of ethylene glycol (EG). At 10% (volume) concentration performance of the device is highest with 4.69% power conversion efficiency. At higher or lower concentrations of ethylene glycol device performance deteriorates with sharp decline in short-circuit current density. Improvement in conductivity of the PEDOT:PSS polymer due to addition of co-solvent is the reason behind improvement in the performance of the device efficiency.

  7. Upper bound for the s -d exchange integral in n -(Ga,Mn)N:Si from magnetotransport studies

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Stefanowicz, W.; Faina, B.; Capuzzo, G.; Sawicki, M.; Dietl, T.; Bonanni, A.

    2015-05-01

    A series of recent magneto-optical studies pointed to contradicting values of the s -d exchange energy N0α in Mn-doped GaAs and GaN as well as in Fe-doped GaN. Here, a strong sensitivity of weak-localization phenomena to symmetry-breaking perturbations (such as spin-splitting and spin-disorder scattering) is exploited to evaluate the magnitude of N0α for n -type wurtzite (Ga,Mn)N:Si films grown by metalorganic vapor phase epitaxy. Millikelvin magnetoresistance studies and their quantitative interpretation point to N0α <40 meV, a value at least 5 times smaller than the one found with similar measurements on, e.g., n -(Zn,Mn)O. It is shown that this striking difference in the values of the s -d coupling between n -type III-V and II-VI dilute magnetic semiconductors can be explained by a theory that takes into account the acceptor character of Mn in III-V compounds.

  8. Reduction in the concentration of cation vacancies by proper Si-doping in the well layers of high AlN mole fraction Al{sub x}Ga{sub 1–x}N multiple quantum wells grown by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chichibu, S. F., E-mail: chichibulab@yahoo.co.jp; Ishikawa, Y.; Furusawa, K.

    2015-09-21

    Appropriate-amount Si-doping in the well layers significantly improved the luminescence efficiency of Al{sub 0.68}Ga{sub 0.32}N/Al{sub 0.77}Ga{sub 0.23}N multiple quantum wells. To understand the mechanisms, spatio-time-resolved cathodoluminescence measurements and self-consistent Schrödinger-Poisson calculations were carried out. The increase in the luminescence lifetime at room temperature, which reflects the decrease in the concentration of nonradiative recombination centers (NRCs), was correlated with increased terrace width of Si-doped wells. The results suggest the importance of H{sub 3}SiNH{sub 2} doping-reactant formation that gives rise to enhanced decomposition of NH{sub 3} and provides wetting conditions by surface Si-N bonds, which reduce the total energy and concentration ofmore » NRCs composed of cation vacancies.« less

  9. Structures and stability of metal-doped Ge{sub n}M (n = 9, 10) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Wei, E-mail: qinw@qdu.edu.cn; Xia, Lin-Hua; Zhao, Li-Zhen

    The lowest-energy structures of neutral and cationic Ge{sub n}M (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge{sub 9} and Ge{sub 10} clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge{sub n} clusters. However, the neutral and cationic FeGe{sub 9,10},MnGe{sub 9,10} and Ge{sub 10}Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge{sub n} clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge{sub 9,10}Fe and Ge{sub 9}Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  10. Self-assembled patches in PtSi/n-Si (111) diodes

    NASA Astrophysics Data System (ADS)

    Afandiyeva, I. M.; Altιndal, Ş.; Abdullayeva, L. K.; Bayramova, A. İ.

    2018-05-01

    Using the effect of the temperature on the capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics of PtSi/n-Si (111) Schottky diodes the profile of apparent doping concentration (N Dapp), the potential difference between the Fermi energy level and the bottom of the conduction band (V n), apparent barrier height (Φ Bapp), series resistance (R s) and the interface state density N ss have been investigated. From the temperature dependence of (C–V) it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K. The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells, which formed due to the process of PtSi formation on semiconductor and the presence of hexagonal voids of Si (111).

  11. Smooth and selective photo-electrochemical etching of heavily doped GaN:Si using a mode-locked 355 nm microchip laser

    NASA Astrophysics Data System (ADS)

    Lee, SeungGeun; Mishkat-Ul-Masabih, Saadat; Leonard, John T.; Feezell, Daniel F.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2017-01-01

    We investigate the photo-electrochemical (PEC) etching of Si-doped GaN samples grown on nonpolar GaN substrates, using a KOH/K2S2O8 solution and illuminated by a Xe arc lamp or a Q-switched 355 nm laser. The etch rate with the arc lamp decreased as the doping concentration increased, and the etching stopped for concentrations above 7.7 × 1018 cm-3. The high peak intensity of the Q-switched laser extended the etchable concentration to 2.4 × 1019 cm-3, with an etch rate of 14 nm/min. Compositionally selective etching was demonstrated, with an RMS surface roughness of 1.6 nm after etching down to an n-Al0.20Ga0.80N etch stop layer.

  12. Theoretical prediction of a self-forming gallium oxide layer at an n-type GaN/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Chokawa, Kenta; Narita, Tetsuo; Kikuta, Daigo; Kachi, Tetsu; Shiozaki, Koji; Shiraishi, Kenji

    2018-03-01

    We examine the energy band diagram at the n-type GaN (n-GaN)/SiO2 interface and show that electron transfer from n-GaN to SiO2 leads to the formation of negatively charged oxygen vacancies in the SiO2, resulting in the self-formation of an n-GaN/Ga2O3/SiO2 structure. On the other hand, it is difficult to automatically form Ga2O3 at a p-type GaN (p-GaN)/SiO2 interface. This electron-transfer-induced self-formation of Ga2O3 causes an interface dipole, which leads to band bending, resulting in an increase in the conduction band offset between GaN and SiO2. Accordingly, by using this self-forming phenomenon, GaN MOSFETs with lower leakage current can be realized.

  13. Au-Doped Indium Tin Oxide Ohmic Contacts to p-Type GaN

    NASA Astrophysics Data System (ADS)

    Guo, H.; Andagana, H. B.; Cao, X. A.

    2010-05-01

    Indium tin oxide (ITO) thin films doped with Au, Ni, or Pt (3.5 at.% to 10.5 at.%) were deposited on p-GaN epilayers (Mg ~4 × 1019 cm-3) using direct-current (DC) sputter codeposition. It was found that undoped ITO con- tacts to p-GaN exhibited leaky Schottky behavior, whereas the incorporation of a small amount of Au (3.5 at.% to 10.5 at.%) significantly improved their ohmic characteristics. Compared with standard Ni/ITO contacts, the Au-doped ITO contacts had a similar specific contact resistance in the low 10-2 Ω cm-2 range, but were more stable above 600°C and more transparent at blue wavelengths. These results provide support for the use of Au-doped ITO ohmic contact to p-type GaN in high-brightness blue light-emitting diodes.

  14. Benzene Adsorption on C24, Si@C24, Si-Doped C24, and C20 Fullerenes

    NASA Astrophysics Data System (ADS)

    Baei, Mohammad T.

    2017-12-01

    The absorption feasibility of benzene molecule in the C24, Si@C24, Si-doped C24, and C20 fullerenes has been studied based on calculated electronic properties of these fullerenes using Density functional Theory (DFT). It is found that energy of benzene adsorption on C24, Si@C24, and Si-doped C24 fullerenes were in range of -2.93 and -51.19 kJ/mol with little changes in their electronic structure. The results demonstrated that the C24, Si@C24, and Si-doped C24 fullerenes cannot be employed as a chemical adsorbent or sensor for benzene. Silicon doping cannot significantly modify both the electronic properties and benzene adsorption energy of C24 fullerene. On the other hand, C20 fullerene exhibits a high sensitivity, so that the energy gap of the fullerene is changed almost 89.19% after the adsorption process. We concluded that the C20 fullerene can be employed as a reliable material for benzene detection.

  15. Technological state of the art of SiC

    NASA Astrophysics Data System (ADS)

    Tyc, Stdphane

    1993-10-01

    In a recent paper [1], Locatelli and Gamal describe the technological state of the art of SiC compared with Si. I would like to bear witness to the rapid advancement of SiC technology by giving a slighty updated account of SiC technology. The boule growth of SiC now achieves diameters up to 60 mm. One of the most problematic standing issues is the presence of micropipes in the wafers with a density of the order of 100 cm^{-2} or more [2]. The doping range available in epilayers is now wider. CAFE Research [3] accepts orders for doping densities from 5 × 10^{15} cm^{-3} to 1 × 10^{19} cm^{-3} in both N and P type. However their state of the art is better (we have received P type with doping 4 × 10^{14} cm^{-3} and N type with doping over 2 × 10^{19} cm^{-3} and they have also delivered [4] N type doping of 5 × 10^{14} cm^{-3}). As for large P dopings, Dmitriev has published [5] dopings over 10^{20} cm^{-3} The specific resistance of contacts on N type layers has also rapidly improved. Kelner has published results of 3 × 10^{-6} Ohm.cm2 with Ni contacts [6]. We have obtained with molybdenum [7] specific resistances of 2 × 10^{-5} Ohm.cm2 on epitaxies doped to 5 × 10^{18} cm^{-3} This value should be rapidly lowered as higher doped layers are used. In sum, I do agree with the authors of [1] that the technology of 6H SiC is rapidly advancing, thanks to breakthroughs in material growth and to a wide ranging renewed interest in this material. The pace may actually be higher than hitherto realized. References: [1] Locatelli and Gamal, J. Phys. III France 3 (1993) 1101. [2] Barret D. L. et al., Tenth Int. Conf. on Crystal Growth, San Diego, CA, USA 16-21 (August 1992). [3] CREE Research Inc., 2810 Meridian Parkway, Durham, NC 27713, USA. [4] Parrish M., private communication. [5] Dmitriev et al., Ext. Abstracts of the Electrochemical Soc. Meeting, 4, 89-2 (1989) 711. [6] Workshop on SiC Material and Devices (Charlottesville, September 10-11 1992) VA 22901. [7] Tyc

  16. Structure, luminescence and thermal quenching properties of Eu doped Sr2-xBaxSi5N8 red phosphors

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Chen, L.; Zhou, X. F.; Liu, R. H.; Zhuang, W. D.

    2017-02-01

    Eu2+ doped Sr2-xBaxSi5N8 phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasing x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu2+ doped Sr2-xBaxSi5N8 is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs).

  17. Red Light Emitting Schottky Diodes on p-TYPE GaN/AlN/Si(111) Substrate

    NASA Astrophysics Data System (ADS)

    Chuah, L. S.; Hassan, Z.; Abu Hassan, H.

    High quality GaN layers doped with Mg were grown on Si(111) substrates using high temperature AlN as buffer layer by radio-frequency molecular beam epitaxy. From the Hall measurements, fairly uniform high hole concentration as high as (4-5) × 1020 cm-3 throughout the GaN was achieved. The fabrication of the device is very simple. Nickel ohmic contacts and Schottky contacts using indium were fabricated on Mg-doped p-GaN films. The light emission has been obtained from these thin film electroluminescent devices. Thin film electroluminescent devices were operated under direct current bias. Schottky and ohmic contacts used as cathode and anode were employed in these investigations. Alternatively, two Schottky contacts could be probed as cathode and anode. Thin film electroluminescent devices were able to emit light. However, electrical and optical differences could be observed from the two different probing methods. The red light color could be observed when the potential between the electrodes was increased gradually under forward bias of 8 V at room temperature. Electrical properties of these thin film electroluminescent devices were characterized by current-voltage (I-V) system, the heights of barriers determined from the I-V measurements were found to be related to the electroluminescence.

  18. Mechanism of oxide thickness and temperature dependent current conduction in n+-polySi/SiO2/p-Si structures — a new analysis

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas

    2017-10-01

    The conduction mechanism of gate leakage current through thermally grown silicon dioxide (SiO2) films on (100) p-type silicon has been investigated in detail under negative bias on the degenerately doped n-type polysilicon (n+-polySi) gate. The analysis utilizes the measured gate current density J G at high oxide fields E ox in 5.4 to 12 nm thick SiO2 films between 25 and 300 °C. The leakage current measured up to 300 °C was due to Fowler-Nordheim (FN) tunneling of electrons from the accumulated n +-polySi gate in conjunction with Poole Frenkel (PF) emission of trapped-electrons from the electron traps located at energy levels ranging from 0.6 to 1.12 eV (depending on the oxide thickness) below the SiO2 conduction band (CB). It was observed that PF emission current I PF dominates FN electron tunneling current I FN at oxide electric fields E ox between 6 and 10 MV/cm and throughout the temperature range studied here. Understanding of the mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown (TDDB) of metaloxide-semiconductor (MOS) devices and to precisely predict the normal operating field or applied gate voltage for lifetime projection of the MOS integrated circuits.

  19. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    NASA Astrophysics Data System (ADS)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  20. Measurement of steady-state minority-carrier transport parameters in heavily doped n-type silicon

    NASA Technical Reports Server (NTRS)

    Del Alamo, Jesus A.; Swanson, Richard M.

    1987-01-01

    The relevant hole transport and recombination parameters in heavily doped n-type silicon under steady state are the hole diffusion length and the product of the hole diffusion coefficient times the hole equilibrium concentration. These parameters have measured in phosphorus-doped silicon grown by epitaxy throughout nearly two orders of magnitude of doping level. Both parameters are found to be strong functions of donor concentration. The equilibrium hole concentration can be deduced from the measurement. A rigid shrinkage of the forbidden gap appears as the dominant heavy doping mechanism in phosphorus-doped silicon.

  1. Si /SiGe n-type resonant tunneling diodes fabricated using in situ hydrogen cleaning

    NASA Astrophysics Data System (ADS)

    Suet, Z.; Paul, D. J.; Zhang, J.; Turner, S. G.

    2007-05-01

    In situ hydrogen cleaning to reduce the surface segregation of n-type dopants in SiGe epitaxy has been used to fabricate Si /SiGe resonant tunneling diodes in a joint gas source chemical vapor deposition and molecular beam epitaxial system. Diodes fabricated without the in situ clean demonstrate linear current-voltage characteristics, while a 15min hydrogen clean produces negative differential resistance with peak-to-valley current ratios up to 2.2 and peak current densities of 5.0A/cm2 at 30K. Analysis of the valley current and the band structure of the devices suggest methods for increasing the operating temperature of Si /SiGe resonant tunneling diodes as required for applications.

  2. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    NASA Astrophysics Data System (ADS)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  3. Effect of n-type doping level on direct band gap electroluminescence intensity for asymmetric metal/Ge/metal diodes

    NASA Astrophysics Data System (ADS)

    Maekura, T.; Tanaka, K.; Motoyama, C.; Yoneda, R.; Yamamoto, K.; Nakashima, H.; Wang, D.

    2017-10-01

    The direct band gap electroluminescence (EL) intensity was investigated for asymmetric metal/Ge/metal diodes fabricated on n-type Ge with doping levels in the range of 4.0 × 1013-3.1 × 1018 cm-3. Up to a doping level of 1016 cm-3 order, commercially available (100) n-Ge substrates were used. To obtain a doping level higher than 1017 cm-3 order, which is commercially unavailable, n+-Ge/p-Ge structures were fabricated by Sb doping on p-type (100) Ge substrates with an in-diffusion at 600 °C followed by a push-diffusion at 700 °C-850 °C. The EL intensity was increased with increasing doping level up to 1.0 × 1018 cm-3. After that, it was decreased with a further increase in n-type doping level. This EL intensity decrease is explained by the decreased number of holes in the active region. One reason is the difficulty in hole injection through the PtGe/n-Ge contact due to the occurring of tunneling electron current. Another reason is the loss of holes caused by both the small thickness of n+-Ge layer and the existence of n+p junction.

  4. Luminescence properties of Ce{sup 3+} and Tb{sup 3+} co-doped SiO{sub x}N{sub y} thin films: Prospects for color tunability in silicon-based hosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez, J. M., E-mail: joan-manel.ramirez@u-psud.fr; Ruiz-Caridad, A.; Estradé, S.

    2016-03-21

    In this work, the role of the nitrogen content, the annealing temperature, and the sample morphology on the luminescence properties of Ce{sup 3+} and Tb{sup 3+} co-doped SiO{sub x}N{sub y} thin films has been investigated. An increasing nitrogen atomic percentage has been incorporated in the host matrix by gradually replacing oxygen with nitrogen during fabrication while maintaining the Si content unaltered, obtaining a sequential variation in the film composition from nearly stoichiometric SiO{sub 2} to SiO{sub x}N{sub y}. The study of rare earth doped single layers has allowed us to identify the parameters that yield an optimum optical performance frommore » Ce{sup 3+} and Tb{sup 3+} ions. Ce{sup 3+} ions proved to be highly sensitive to the annealing temperature and the nitrogen content, showing strong PL emission for relatively low nitrogen contents (from 0 to 20%) and moderate annealing temperatures (800–1000 °C) or under high temperature annealing (1180 °C). Tb{sup 3+} ions, on the other hand, displayed a mild dependence on those film parameters. Rare earth co-doping has also been investigated by comparing the luminescence properties of three different approaches: (i) a Ce{sup 3+} and Tb{sup 3+} co-doped SiO{sub x}N{sub y} single layer, (ii) a bilayer composed of two SiO{sub x}N{sub y} single layers doped with either Ce{sup 3+} or Tb{sup 3+} ions, and (iii) a multilayer composed of a series of either Tb{sup 3+} or Ce{sup 3+}-doped SiO{sub x}N{sub y} thin films with interleaved SiO{sub 2} spacers. Bright green emission and efficient energy transfer from either Ce{sup 3+} ions or Ce silicates to Tb{sup 3+} ions has been observed in the co-doped single layer as a consequence of the strong ion-ion interaction. On the other hand, independent luminescence from Ce{sup 3+} and Tb{sup 3+} ions has been observed in the Ce{sup 3+} and Tb{sup 3+} co-doped bilayer and multilayer, providing a good scenario to develop light emitting devices with wide color

  5. Prospects and limitations for p-type doping in boron nitride polymorphs

    NASA Astrophysics Data System (ADS)

    Weston, Leigh; van de Walle, Chris G.

    Using first-principles calculations, we examine the potential for p-type doping of BN polymorphs via substitutional impurities. Based on density functional theory with a hybrid functional, our calculations reveal that group-IV elements (C, Si) substituting at the N site result in acceptor levels that are more than 1 eV above the valence-band maximum in all of the BN polymorphs, and hence far too deep to allow for p-type doping. On the other hand, group-II elements (Be, Mg) substituting at the B site lead to shallower acceptor levels. However, for the ground-state hexagonal phase (h-BN), we show that p-type doping at the B site is inhibited by the formation of hole polarons. Our calculations reveal that hole localization is intrinsic to sp2 bonded h-BN, and this places fundamental limits on hole conduction in this material. In contrast, the sp3 bonded wurtzite (w-BN) and cubic (c-BN) polymorphs are capable of forming shallow acceptor levels. For Be dopants, the acceptor ionization energies are 0.31 eV and 0.24 eV for w-BN and c-BN, respectively; these values are only slightly larger than the ionization energy of the Mg acceptor in GaN. This work was supported by NSF.

  6. Efficient n-type doping of zinc-blende III-V semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.

    2014-03-01

    We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.

  7. N-VSi-related center in non-irradiated 6H SiC nanostructure

    NASA Astrophysics Data System (ADS)

    Bagraev, Nikolay; Danilovskii, Eduard; Gets, Dmitrii; Kalabukhova, Ekaterina; Klyachkin, Leonid; Malyarenko, Anna; Savchenko, Dariya; Shanina, Bella

    2014-02-01

    We present the first findings of the vacancy-related centers identified by the electron spin resonance (ESR) and electrically-detected (ED) ESR method in the non-irradiated 6H-SiC nanostructure. This planar 6H-SiC nanostructure represents the ultra-narrow p-type quantum well confined by the δ-barriers heavily doped with boron on the surface of the n-type 6H-SiC (0001) wafer. The EDESR method by measuring the only magnetoresistance of the 6H SiC nanostructure under the high frequency generation from the δ-barriers appears to allow the identification of the silicon vacancy centers as well as the triplet center with spin state S=1. The same triplet center that is characterized by the larger value of the zero-field splitting constant D and anisotropic g-factor is revealed by the ESR (X-band) method. The hyperfine (hf) lines in the ESR and EDESR spectra originating from the hf interaction with the 14N nucleus allow us to attribute this triplet center to the N-VSi defect.

  8. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  9. High-performance Ge p-i-n photodetector on Si substrate

    NASA Astrophysics Data System (ADS)

    Chen, Li-qun; Huang, Xiang-ying; Li, Min; Huang, Yan-hua; Wang, Yue-yun; Yan, Guang-ming; Li, Cheng

    2015-05-01

    High-performance and tensile-strained germanium (Ge) p-i-n photodetector is demonstrated on Si substrate. The epitaxial Ge layers were prepared in an ultrahigh vacuum chemical vapor deposition (UHV-CVD) system using low temperature Ge buffer technique. The devices were fabricated by in situ doping and using Si as passivation layer between Ge and metal, which can improve the ohmic contact and realize the high doping. The results show that the dark current of the photodetector with diameter of 24 μm is about 2.5×10-7 μA at the bias voltage of -1 V, and the optical responsivity is 0.1 A/W at wavelength of 1.55 μm. The 3 dB bandwidth (BW) of 4 GHz is obtained for the photodetector with diameter of 24 μm at reverse bias voltage of 1 V. The long diffusion time of minority carrier in n-type Ge and the large contact resistance in metal/Ge contacts both affect the performance of Ge photodetectors.

  10. Dominant transverse-electric polarized emission from 298 nm MBE-grown AlN-delta-GaN quantum well ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2017-02-01

    III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths <300 nm due to high dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.

  11. Enhanced blue responses in nanostructured Si solar cells by shallow doping

    NASA Astrophysics Data System (ADS)

    Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho

    2018-03-01

    Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.

  12. Hole polarons and p -type doping in boron nitride polymorphs

    NASA Astrophysics Data System (ADS)

    Weston, L.; Wickramaratne, D.; Van de Walle, C. G.

    2017-09-01

    Boron nitride polymorphs hold great promise for integration into electronic and optoelectronic devices requiring ultrawide band gaps. We use first-principles calculations to examine the prospects for p -type doping of hexagonal (h -BN ), wurtzite (w z -BN ), and cubic (c -BN ) boron nitride. Group-IV elements (C, Si) substituting on the N site result in a deep acceptor, as the atomic levels of the impurity species lie above the BN valence-band maximum. On the other hand, group-II elements (Be, Mg) substituting on the B site do not give impurity states in the band gap; however, these dopants lead to the formation of small hole polarons. The tendency for polaron formation is far more pronounced in h -BN compared to w z -BN or c -BN . Despite forming small hole polarons, Be acceptors enable p -type doping, with ionization energies of 0.31 eV for w z -BN and 0.24 eV for c -BN ; these values are comparable to the Mg ionization energy in GaN.

  13. High Electron Mobility in SiGe/Si n-MODFET Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Croke, Edward T.; Alterovitz, Samuel A.

    2003-01-01

    For the first time, SiGe/Si n-Modulation Doped Field Effect Transistors (n-MODFET) structures have been grown on sapphire substrates. Room temperature electron mobility value of 1271 square centimeters N-sec at an electron carrier density (n(sub e) = 1.33x10(exp 12) per square centimeter)) of 1.6 x 10(exp 12) per square centimeter was obtained. At 250 mK, the mobility increases to 13,313 square centimeters/V-sec (n(sub e)=1.33x10(exp 12) per square centimeter)) and Shubnikov-de Haas oscillations appear, showing excellent confinement of the two-dimensional electron gas.

  14. Silicon incorporation in GaAs: From delta-doping to monolayer insertion

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Newman, R. C.; Roberts, C.

    1995-08-01

    Raman spectroscopy was used to study the incorporation of Si into doping layers in GaAs, grown by molecular beam epitaxy at a temperature of 400 °C, for Si concentrations ranging from the δ-doping level to a ML coverage. The strength of the scattering by local vibrational modes of substitutional Si was almost constant for Si areal concentration [Si]A in the range 5×1012<[Si]A<5×1013 cm-2 but then decreased, dropping below the detection limit for [Si]A≳3×1014 cm-2. At these concentrations a new vibrational band emerged at a frequency close to 470 cm-1 and developed into the optic zone center phonon of a coherently strained epitaxial layer of Si embedded in GaAs when a coverage of ≊1.5 ML (9.3×1014 cm-2) was reached. These findings strongly indicate that the observed saturation and the eventual decrease of the concentration of substitutional silicon is caused by an increasing incorporation of deposited Si into two-dimensional islands of covalently bonded Si.

  15. Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n-type PbTe with Enhanced Thermoelectric Performance.

    PubMed

    Wang, Zhengshang; Wang, Guoyu; Wang, Ruifeng; Zhou, Xiaoyuan; Chen, Zhiyu; Yin, Cong; Tang, Mingjing; Hu, Qing; Tang, Jun; Ang, Ran

    2018-06-22

    P-type lead telluride (PbTe) emerged as a promising thermoelectric material for intermediate-temperature waste-heat-energy harvesting. However, n-type PbTe still confronted with a considerable challenge owing to its relatively low figure of merit ZT and conversion efficiency η, limiting widespread thermoelectric applications. Here, we report that Ga-doping in n-type PbTe can optimize carrier concentration and thus improve the power factor. Moreover, further experimental and theoretical evidence reveals that Ga-doping-induced multiphase structures with nano- to micrometer size can simultaneously modulate phonon transport, leading to dramatic reduction of lattice thermal conductivity. As a consequence, a tremendous enhancement of ZT value at 823 K reaches ∼1.3 for n-type Pb 0.97 Ga 0.03 Te. In particular, in a wide temperature range from 323 to 823 K, the average ZT ave value of ∼0.9 and the calculated conversion efficiency η of ∼13% are achieved by Ga doping. The present findings demonstrate the great potential in Ga-doped PbTe thermoelectric materials through a synergetic carrier tuning and multiphase engineering strategy.

  16. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires

    NASA Astrophysics Data System (ADS)

    de Santiago, F.; Trejo, A.; Miranda, A.; Salazar, F.; Carvajal, E.; Pérez, L. A.; Cruz-Irisson, M.

    2018-05-01

    Silicon nanowires (SiNWs) are considered as potential chemical sensors due to their large surface-to-volume ratio and their possible integration into arrays for nanotechnological applications. Detection of harmful gases like CO has been experimentally demonstrated, however, the influence of doping on the sensing capacity of SiNWs has not yet been reported. For this work, we theoretically studied the surface adsorption of a CO molecule on hydrogen-passivated SiNWs grown along the [111] crystallographic direction and compared it with the adsorption of other molecules such as NO, and O2. Three nanowire diameters and three dopant elements (B, Al and Ga) were considered, and calculations were done within the density functional theory framework. The results indicate that CO molecules are more strongly adsorbed on the doped SiNW than on the pristine SiNW. The following trend was observed for the CO adsorption energies: E A[B-doped] > E A[Al-doped] > E A[Ga-doped] > E A[undoped], for all diameters. The electronic charge transfers between the SiNWs and the adsorbed CO were estimated by using a Voronoi population analysis. The CO adsorbed onto the undoped SiNWs has an electron-acceptor character, while the CO adsorbed onto the B-, Al-, and Ga-doped SiNWs exhibits an electron-donor character. Comparing these results with the ones obtained for the NO and O2 adsorption, the larger CO adsorption energy on B-doped SiNWs indicates their good selectivity towards CO. These results suggest that SiNW-based sensors of toxic gases could represent a clear and advantageous application of nanotechnology in the improvement of human quality of life.

  17. Preparation of p-type GaN-doped SnO2 thin films by e-beam evaporation and their applications in p-n junction

    NASA Astrophysics Data System (ADS)

    Lv, Shuliang; Zhou, Yawei; Xu, Wenwu; Mao, Wenfeng; Wang, Lingtao; Liu, Yong; He, Chunqing

    2018-01-01

    Various transparent GaN-doped SnO2 thin films were deposited on glass substrates by e-beam evaporation using GaN:SnO2 targets of different GaN weight ratios. It is interesting to find that carrier polarity of the thin films was converted from n-type to p-type with increasing GaN ratio higher than 15 wt.%. The n-p transition in GaN-doped SnO2 thin films was explained for the formation of GaSn and NO with increasing GaN doping level in the films, which was identified by Hall measurement and XPS analysis. A transparent thin film p-n junction was successfully fabricated by depositing p-type GaN:SnO2 thin film on SnO2 thin film, and a low leakage current (6.2 × 10-5 A at -4 V) and a low turn-on voltage of 1.69 V were obtained for the p-n junction.

  18. Analysis of doping concentration and composition in wide bandgap AlGaN:Si by wavelength dispersive x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kusch, Gunnar; Mehnke, Frank; Enslin, Johannes; Edwards, Paul R.; Wernicke, Tim; Kneissl, Michael; Martin, Robert W.

    2017-03-01

    Detailed knowledge of the dopant concentration and composition of wide band gap Al x Ga{}1-x{{N}} layers is of crucial importance for the fabrication of ultra violet light emitting diodes. This paper demonstrates the capabilities of wavelength dispersive x-ray (WDX) spectroscopy in accurately determining these parameters and compares the results with those from high resolution x-ray diffraction (HR-XRD) and secondary ion mass spectrometry (SIMS). WDX spectroscopy has been carried out on different silicon-doped wide bandgap Al x Ga{}1-x{{N}} samples (x between 0.80 and 1). This study found a linear increase in the Si concentration with the SiH4/group-III ratio, measuring Si concentrations between 3× {10}18 cm-3 and 2.8× {10}19 cm-3, while no direct correlation between the AlN composition and the Si incorporation ratio was found. Comparison between the composition obtained by WDX and by HR-XRD showed very good agreement in the range investigated, while comparison of the donor concentration between WDX and SIMS found only partial agreement, which we attribute to a number of effects.

  19. General control of transition-metal-doped GaN nanowire growth: toward understanding the mechanism of dopant incorporation.

    PubMed

    Stamplecoskie, Kevin G; Ju, Ling; Farvid, Shokouh S; Radovanovic, Pavle V

    2008-09-01

    We report the first synthesis and characterization of cobalt- and chromium-doped GaN nanowires (NWs), and compare them to manganese-doped GaN NWs. Samples were synthesized by chemical vapor deposition method, using cobalt(II) chloride and chromium(III) chloride as dopant precursors. For all three impurity dopants hexagonal, triangular, and rectangular NWs were observed. The fraction of NWs having a particular morphology depends on the initial concentration of the dopant precursors. While all three dopant ions have the identical effect on GaN NW growth and faceting, Co and Cr are incorporated at much lower concentrations than Mn. These findings suggest that the doping mechanism involves binding of the transition-metal intermediates to specific NW facets, inhibiting their growth and causing a change in the NW morphology. We discuss the doping concentrations of Mn, Co, and Cr in terms of differences in their crystal-field stabilization energies (DeltaCFSE) in their gas-phase intermediates and in substitutionally doped GaN NWs. Using iron(III) chloride and cobalt(II) acetate as dopant precursors we show that the doping concentration dependence on DeltaCFSE allows for the prediction of achievable doping concentrations for different dopant ions in GaN NWs, and for a rational choice of a suitable dopant-ion precursor. This work further demonstrates a general and rational control of GaN NW growth using transition-metal impurities.

  20. Delta-doped CCD's as low-energy particle detectors and imagers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Hecht, Michael H. (Inventor)

    2002-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to detect very low-energy particles that penetrate less than 1.0 nm into the CCD, including electrons having energies less than 1000 eV and protons having energies less than 10 keV.

  1. Germanium- and tellurium-doped GaAs for non-alloyed p-type and n-type ohmic contacts

    NASA Astrophysics Data System (ADS)

    Park, Joongseo; Barnes, Peter A.; Lovejoy, Michael L.

    1995-08-01

    Epitaxial ohmic contacts to GaAs were grown by liquid phase epitaxy. Heavily Ge-doped GaAs was grown to prepare ohmic contacts to p-GaAs while Te was used for the n-type contacts. Hall measurements were carried out for the samples grown from melts in which the mole fraction of Ge was varied between 1.55 atomic % and 52.2 atomic %, while the Te mole fractions varied between 0.03% and 0.5%. Specific contact resistance, rc, as low as rcp=2.9×10-6 ohm-cm 2 for Ge doping of p=(Na-Nd)=6.0×1019 holes/cm3 was measured for p-contacts and rcn=9.6×10-5 ohm-cm2 was measured for Te doping of n=(Nd-Na)=8.9×1018 electrons/cm3 for GaAs metallized with non-alloyed contacts of Ti/Al.

  2. Towards high frequency heterojunction transistors: Electrical characterization of N-doped amorphous silicon-graphene diodes

    NASA Astrophysics Data System (ADS)

    Strobel, C.; Chavarin, C. A.; Kitzmann, J.; Lupina, G.; Wenger, Ch.; Albert, M.; Bartha, J. W.

    2017-06-01

    N-type doped amorphous hydrogenated silicon (a-Si:H) is deposited on top of graphene (Gr) by means of very high frequency (VHF) and radio frequency plasma-enhanced chemical vapor deposition (PECVD). In order to preserve the structural integrity of the monolayer graphene, a plasma excitation frequency of 140 MHz was successfully applied during the a-Si:H VHF-deposition. Raman spectroscopy results indicate the absence of a defect peak in the graphene spectrum after the VHF-PECVD of (n)-a-Si:H. The diode junction between (n)-a-Si:H and graphene was characterized using temperature dependent current-voltage (IV) and capacitance-voltage measurements, respectively. We demonstrate that the current at the (n)-a-Si:H-graphene interface is dominated by thermionic emission and recombination in the space charge region. The Schottky barrier height (qΦB), derived by temperature dependent IV-characteristics, is about 0.49 eV. The junction properties strongly depend on the applied deposition method of (n)-a-Si:H with a clear advantage of the VHF(140 MHz)-technology. We have demonstrated that (n)-a-Si:H-graphene junctions are a promising technology approach for high frequency heterojunction transistors.

  3. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.

    PubMed

    de Santiago, F; Trejo, A; Miranda, A; Salazar, F; Carvajal, E; Pérez, L A; Cruz-Irisson, M

    2018-05-18

    Silicon nanowires (SiNWs) are considered as potential chemical sensors due to their large surface-to-volume ratio and their possible integration into arrays for nanotechnological applications. Detection of harmful gases like CO has been experimentally demonstrated, however, the influence of doping on the sensing capacity of SiNWs has not yet been reported. For this work, we theoretically studied the surface adsorption of a CO molecule on hydrogen-passivated SiNWs grown along the [111] crystallographic direction and compared it with the adsorption of other molecules such as NO, and O 2 . Three nanowire diameters and three dopant elements (B, Al and Ga) were considered, and calculations were done within the density functional theory framework. The results indicate that CO molecules are more strongly adsorbed on the doped SiNW than on the pristine SiNW. The following trend was observed for the CO adsorption energies: E A [B-doped] > E A [Al-doped] > E A [Ga-doped] > E A [undoped], for all diameters. The electronic charge transfers between the SiNWs and the adsorbed CO were estimated by using a Voronoi population analysis. The CO adsorbed onto the undoped SiNWs has an electron-acceptor character, while the CO adsorbed onto the B-, Al-, and Ga-doped SiNWs exhibits an electron-donor character. Comparing these results with the ones obtained for the NO and O 2 adsorption, the larger CO adsorption energy on B-doped SiNWs indicates their good selectivity towards CO. These results suggest that SiNW-based sensors of toxic gases could represent a clear and advantageous application of nanotechnology in the improvement of human quality of life.

  4. Growth rate independence of Mg doping in GaN grown by plasma-assisted MBE

    NASA Astrophysics Data System (ADS)

    Turski, Henryk; Muzioł, Grzegorz; Siekacz, Marcin; Wolny, Pawel; Szkudlarek, Krzesimir; Feduniewicz-Żmuda, Anna; Dybko, Krzysztof; Skierbiszewski, Czeslaw

    2018-01-01

    Doping of Ga(Al)N layers by plasma-assisted molecular beam epitaxy in Ga-rich conditions on c-plane bulk GaN substrates was studied. Ga(Al)N samples, doped with Mg or Si, grown using different growth conditions were compared. In contrast to Si doped layers, no change in the Mg concentration was observed for layers grown using different growth rates for a constant Mg flux and constant growth temperature. This effect enables the growth of Ga(Al)N:Mg layers at higher growth rates, leading to shorter growth time and lower residual background doping, without the need of increasing Mg flux. Enhancement of Mg incorporation for Al containing layers was also observed. Change of Al content from 0% to 17% resulted in more than two times higher Mg concentration.

  5. Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramaniam, Y.; Pobedinskas, P., E-mail: paulius.pobedinskas@uhasselt.be; Janssens, S. D.

    2016-08-08

    The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 μm thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 μm h{sup −1}. A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 × 10{sup 16} cm{sup −3} phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates formore » future use in high-power electronic applications.« less

  6. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutchich, M.; Arezki, H.; Alamarguy, D.

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicatingmore » that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm{sup 2}/V s for holes and 850 cm{sup 2}/V s for electrons at room temperature.« less

  7. Effects of gold diffusion on n-type doping of GaAs nanowires.

    PubMed

    Tambe, Michael J; Ren, Shenqiang; Gradecak, Silvija

    2010-11-10

    The deposition of n-GaAs shells is explored as a method of n-type doping in GaAs nanowires grown by the Au-mediated metal-organic chemical vapor deposition. Core-shell GaAs/n-GaAs nanowires exhibit an unintended rectifying behavior that is attributed to the Au diffusion during the shell deposition based on studies using energy dispersive X-ray spectroscopy, current-voltage, capacitance-voltage, and Kelvin probe force measurements. Removing the gold prior to n-type shell deposition results in the realization of n-type GaAs nanowires without rectification. We directly correlate the presence of gold impurities to nanowire electrical properties and provide an insight into the role of seed particles on the properties of nanowires and nanowire heterostructures.

  8. Chemical-free n-type and p-type multilayer-graphene transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com; Eisaman, M. D.; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping.more » When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.« less

  9. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jing; Zhao, Degang, E-mail: dgzhao@red.semi.ac.cn; Jiang, Desheng

    2015-03-15

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg{sub Ga} acceptors and passivating donor defects. A decrease in p-type resistivity when O{sub 2} is introduced during the postannealing process is attributed to the fact that annealing in an O{sub 2}-containing environment can enhance the dissociation of Mg{sub Ga}-H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donormore » species and passivate them, leading to the positive effect of reduced compensation.« less

  10. Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Qu, Long; Luo, Dong; Fang, Shaohua; Liu, Yi; Yang, Li; Hirano, Shin-ichi; Yang, Chun-Chen

    2016-03-01

    Mg-doped Li2FeSiO4/C is synthesized by using Fe2O3 nanoparticle as iron source. Through Rietveld refinement of X-ray diffraction data, it is confirmed that Mg-doped Li2FeSiO4 owns monoclinic P21/n structure and Mg occupies in Fe site in the lattice. Through energy dispersive X-ray measurement, it is detected that Mg element is distributed homogenously in the resulting product. The results of transmission electron microscopy measurement reveal that the effect of Mg-doping on Li2FeSiO4 crystallite size is not obvious. As a cathode material for lithium-ion battery, this Mg-doped Li2FeSiO4/C delivers high discharge capacity of 190 mAh g-1 (the capacity was with respect to the mass of Li2FeSiO4) at 0.1C and its capacity retention of 100 charge-discharge cycles reaches 96% at 0.1C. By the analysis of electrochemical impedance spectroscopy, it is concluded that Mg-doping can help to decrease the charge-transfer resistance and increase the Li+ diffusion capability.

  11. Simulation of temperature dependent dielectric breakdown in n{sup +}-polySi/SiO{sub 2}/n-6H-SiC structures during Poole-Frenkel stress at positive gate bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Piyas, E-mail: piyas@vcfw.org; Mandal, Krishna C., E-mail: mandalk@cec.sc.edu

    2016-08-14

    We present for the first time a thorough investigation of trapped-hole induced gate oxide deterioration and simulation results of time-dependent dielectric breakdown (TDDB) of thin (7–25 nm) silicon dioxide (SiO{sub 2}) films thermally grown on (0 0 0 1) silicon (Si) face of n-type 6H-silicon carbide (n-6H-SiC). Gate oxide reliability was studied during both constant voltage and current stress with positive bias on the degenerately doped n-type poly-crystalline silicon (n{sup +}-polySi) gate at a wide range of temperatures between 27 and 225 °C. The gate leakage current was identified as the Poole-Frenkel (PF) emission of electrons trapped at an energy 0.92 eV belowmore » the SiO{sub 2} conduction band. Holes were generated in the n{sup +}-polySi anode material as well as in the oxide bulk via band-to-band ionization depending on the film thickness t{sub ox} and the energy of the hot-electrons (emitted via PF mechanism) during their transport through oxide films at oxide electric fields E{sub ox} ranging from 5 to 10 MV/cm. Our simulated time-to-breakdown (t{sub BD}) results are in excellent agreement with those obtained from time consuming TDDB measurements. It is observed that irrespective of stress temperatures, the t{sub BD} values estimated in the field range between 5 and 9 MV/cm better fit to reciprocal field (1/E) model for the thickness range studied here. Furthermore, for a 10 year projected device lifetime, a good reliability margin of safe operating field from 8.5 to 7.5 MV/cm for 7 nm and 8.1 to 6.9 MV/cm for 25 nm thick SiO{sub 2} was observed between 27 and 225 °C.« less

  12. Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping

    NASA Astrophysics Data System (ADS)

    Dong, Gangqiang; Liu, Fengzhen; Liu, Jing; Zhang, Hailong; Zhu, Meifang

    2013-12-01

    A radial p-n junction solar cell based on vertically free-standing silicon nanowire (SiNW) array is realized using a novel low-temperature and shallow phosphorus doping technique. The SiNW arrays with excellent light trapping property were fabricated by metal-assisted chemical etching technique. The shallow phosphorus doping process was carried out in a hot wire chemical vapor disposition chamber with a low substrate temperature of 250°C and H2-diluted PH3 as the doping gas. Auger electron spectroscopy and Hall effect measurements prove the formation of a shallow p-n junction with P atom surface concentration of above 1020 cm-3 and a junction depth of less than 10 nm. A short circuit current density of 37.13 mA/cm2 is achieved for the radial p-n junction SiNW solar cell, which is enhanced by 7.75% compared with the axial p-n junction SiNW solar cell. The quantum efficiency spectra show that radial transport based on the shallow phosphorus doping of SiNW array improves the carrier collection property and then enhances the blue wavelength region response. The novel shallow doping technique provides great potential in the fabrication of high-efficiency SiNW solar cells.

  13. SiN sub x passivation of silicon surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1986-01-01

    The objectives were to perform surface characterization of high efficiency n+/p and p+/n silicon cells, to relate surface density to substrate dopant concentration, and to identify dominant current loss mechanisms in high efficiency cells. The approach was to measure density of states on homogeneously doped substrates with high frequency C-V and Al/SiN sub x/Si structures; to investigate density of states and photoresponse of high efficiency N+/P and P+/N cells; and to conduct I-V-T studies to identify current loss nechanisms in high efficiency cells. Results are given in tables and graphs.

  14. Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Foussekis, M.; McNamara, J. D.; Behrends, A.; Bakin, A.; Waag, A.

    2012-04-01

    The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements.

  15. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    PubMed

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  16. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD

    NASA Astrophysics Data System (ADS)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-03-01

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 107 cm-2. The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  17. Copper-Based OHMIC Contracts for the Si/SiGe Heterojunction Bipolar Transistor Structure

    NASA Technical Reports Server (NTRS)

    Das, Kalyan; Hall, Harvey

    1999-01-01

    Silicon based heterojunction bipolar transistors (HBT) with SiGe base are potentially important devices for high-speed and high-frequency microelectronics. These devices are particularly attractive as they can be fabricated using standard Si processing technology. However, in order to realize the full potential of devices fabricated in this material system, it is essential to be able to form low resistance ohmic contacts using low thermal budget process steps and have full compatibility with VLSI/ULSI processing. Therefore, a study was conducted in order to better understand the contact formation and to develop optimized low resistance contacts to layers with doping densities corresponding to the p-type SiGe base and n-type Si emitter regions of the HBTS. These as-grown doped layers were implanted with BF(sub 2) up to 1 X 10(exp 16)/CM(exp 2) and As up to 5 x 10(exp 15)/CM2, both at 30 keV for the p-type SiGe base and n-type Si emitter layers, respectively, in order to produce a low sheet resistance surface layer. Standard transfer length method (TLM) contact pads on both p and n type layers were deposited using an e-beam evaporated trilayer structure of Ti/CufTi/Al (25)A/1500A/250A/1000A). The TLM pads were delineated by a photoresist lift-off procedure. These contacts in the as-deposited state were ohmic, with specific contact resistances for the highest implant doses of the order of 10(exp -7) ohm-CM2 and lower.

  18. Formation of Fe2SiO4 thin films on Si substrates and influence of substrate to its thermoelectric transport properties

    NASA Astrophysics Data System (ADS)

    Choi, Jeongyong; Nguyen, Van Quang; Duong, Van Thiet; Shin, Yooleemi; Duong, Anh Tuan; Cho, Sunglae

    2018-03-01

    Fe2SiO4 thin films have been grown on n-type, p-type and semi-insulating Si(100) substrates by molecular beam epitaxy. When Fe-O thin films were deposited on Si(100) substrate at 300 °C, the film reacted with Si, resulting in a Fe2SiO4 film because of the high reactivity between Fe and Si. The electrical resistance and Seebeck coefficient of Fe2SiO4 thin films grown were different in different doping states. On n-type and p-type Si(100), the electrical resistance decreased suddenly and increased again at 350 and 250 K, respectively, while on semi-insulating Si(100), it exhibited typical semiconducting resistance behavior. We observed similar crossovers at 350 and 250 K in temperature dependent Seebeck coefficients on n-type and p-type Si(100), respectively. These results suggest that the measured electrical and thermoelectric properties originate from Si substrate.

  19. On the annealing-induced enhancement of the interface properties of NiO:Cu/wet-SiOx/n-Si tunnelling junction solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Xueliang; Liu, Wei; Chen, Jingwei; Sun, Yun

    2018-04-01

    Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.

  20. A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube

    NASA Astrophysics Data System (ADS)

    Nematollahi, Parisa; Neyts, Erik C.

    2018-05-01

    In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G∗ computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O2 molecule: O2(g) + CO(g) → O2(ads) + CO(ads) → CO2(g) + O(ads) and O(ads) + CO(g) → CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT.

  1. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  2. Development of Si/SiGe heterostructures

    NASA Astrophysics Data System (ADS)

    Hauenstein, R. J.; Veteran, J. L.; Young, M. H.

    1991-01-01

    New molecular beam epitaxy (MBE) materials growth and doping processes were developed for the fabrication of Si/SiGe heterostructure devices. These new materials processes are applied to the demonstration of cryogenic n-p-n Si/Si 1-x Gex/Si heterojunction bipolar transistors (HBT). This application has special significance as an enabling DoD technology for fast low noise, high performance readout and signal processing circuits for IR focal systems. Reliable, versatile methods were developed to grow very high quality Si/SiGe strained layer heterostructures and multilayers. In connection with this program methods were developed to dope the Si and SiGe with B, Sb and Ga. B and Sb were found to be the preferred dopants for p and n regions respectively, of the HBT devices. The test devices clearly displayed gain enhancement due to the heterojunction and provided useful gains from room temperature down to 10 K.

  3. Theoretical investigation of the formation of basal plane stacking faults in heavily nitrogen-doped 4H-SiC crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Chisato; Ichimura, Aiko; Ohtani, Noboru, E-mail: ohtani.noboru@kwansei.ac.jp

    The formation of basal plane stacking faults in heavily nitrogen-doped 4H-SiC crystals was theoretically investigated. A novel theoretical model based on the so-called quantum well action mechanism was proposed; the model considers several factors, which were overlooked in a previously proposed model, and provides a detailed explanation of the annealing-induced formation of double layer Shockley-type stacking faults in heavily nitrogen-doped 4H-SiC crystals. We further revised the model to consider the carrier distribution in the depletion regions adjacent to the stacking fault and successfully explained the shrinkage of stacking faults during annealing at even higher temperatures. The model also succeeded inmore » accounting for the aluminum co-doping effect in heavily nitrogen-doped 4H-SiC crystals, in that the stacking fault formation is suppressed when aluminum acceptors are co-doped in the crystals.« less

  4. Investigation of electronic structures and optical properties of β -Si3N4 doped with IV A elements: A first-principles simulation

    NASA Astrophysics Data System (ADS)

    Lu, Xuefeng; Gao, Xu; Ren, Junqiang; Li, Cuixia; Guo, Xin; Wei, Yupeng; La, Peiqing

    2018-04-01

    Based on first-principles simulations with the generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional, we studied the electronic structures and optical properties of hexagonal silicon nitride (β-Si3N4) doped with IV A elements, C, Ge, Sn and Pb. It was found that the Ge-doped system is characterized by a more stable structure with a lower formation energy of 2.584 eV compared with those of the C-, Sn- and Pb-doped systems of 3.877 eV, 5.249 eV and 7.672 eV, respectively. The band gap (EG) of the Pb-doped system was the lowest at 1.6 eV, displaying semiconducting characteristics. Additionally, there was a transition from a direct band gap to an indirect band gap in the C-doped system. Charge difference density analysis showed that the covalent property of the C-N bonds was enhanced by expansion of the electron-free region and the larger Mulliken population values of 0.71 and 0.86. Furthermore, lower absorption and reflectivity peaks at 11.30 eV were observed for the C-doped system, demonstrating its broader potential for application in photoelectric and microelectronic devices.

  5. Bandgap control and optical properties of β-Si3N4 by single- and co-doping from a first-principles simulation

    NASA Astrophysics Data System (ADS)

    Lu, Xuefeng; Gao, Xu; Ren, Junqiang; Li, Cuixia; Guo, Xin; Wei, Yupeng; La, Peiqing

    2018-06-01

    Bandgap tailoring of β-Si3N4 is performed by single and co-doping by using density functional theory (DFT) of PBE functional and plane-wave pseudopotential method. The results reveal that a direct bandgap transfers into an indirect one when single-doped with As element. Also, a considerate decrease of bandgap to 0.221 eV and 0.315 eV is present for Al-P and As-P co-doped systems, respectively, exhibiting a representative semiconductor property that is characteristic for a narrower bandgap. Compared with other doped systems, Al-doped system with formation energy of 2.67 eV is present for a more stable structure. From charge density difference (CDD) maps, it is found that the blue area between co-doped atoms increases, illustrating an enhancement of covalent property for Al-P and Al-As bonds. Moreover, a slightly obvious “Blue shift” phenomenon can be obtained in Al, Al-P and Al-As doped systems, indicating an enhanced capacity of responses to light, which contributes to the insight for broader applications with regard to photoelectric devices.

  6. [Seasonal variation patterns of NH4(+) -N/NO3(-) -N ratio and delta 15 NH4(+) value in rainwater in Yangtze River Delta].

    PubMed

    Xie, Ying-Xin; Zhang, Shu-Li; Zhao, Xu; Xiong, Zheng-Qin; Xing, Guang-Xi

    2008-09-01

    By using a customized manual rainwater sampler made of polyvinyl chloride plastic, the molar ratio of NH4(+) -N/NO3(-) -N and the natural 15N abundance of NH4(+) (delta 15 NH4(+) in rainwater was monitored all year round from June 2003 to July 2005 at three observation sites (Changshu, Nanjing, and Hangzhou) in the Yangtze River Delta. The results indicated that at the three sites, the NH4(+) -N/NO3(-) -N ratio and the delta 15 NH4(+) value in rainwater had the similar seasonal variation trend, being more obvious in Changshu (rural monitoring type) site than in Nanjing (urban monitoring type) and Hangzhou (urban-rural monitoring type) sites. The NH4(+) -N/NO3(-) -N ratio peaked from early June to early August, declined gradually afterwards, and reached the bottom in winter; while the delta 15 NH4(+) value was negative from late June to mid-August, turned positive from late August to mid or late November, became negative again when winter dominated from December to March, but turned positive again in next May and negative again in next July. These seasonal variation patterns of NH4(+) -N/NO3(-) -N ratio and delta 15 NH4(+) value were found in relation to the application of chemical nitrogen fertilizers during different crop growth periods, and also, the alternation of seasons and the NH3 volatilization from other NH3 emission sources (including excrements of human and animals, nitrogen- polluted water bodies, and organic nitrogen sources, etc.), which could be taken as an indicator of defining the sources and form composition of NH4(+) in atmospheric wet deposition and the intensity of various terrestrial NH3 emission sources.

  7. 4f and 5d energy levels of the divalent and trivalent lanthanide ions in M{sub 2}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kate, O.M. ten, E-mail: o.m.tenkate@tudelft.nl; Energy Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven; Zhang, Z.

    Optical data of Sm, Tb and Yb doped Ca{sub 2}Si{sub 5}N{sub 8} and Sr{sub 2}Si{sub 5}N{sub 8} phosphors that have been prepared by solid-state synthesis, are presented. Together with luminescence data from literature on Ce{sup 3+} and Eu{sup 2+} doping in the M{sub 2}Si{sub 5}N{sub 8} (M=Ca, Sr, Ba) hosts, energy level schemes were constructed showing the energy of the 4f and 5d levels of all divalent and trivalent lanthanide ions relative to the valence and conduction band. The schemes were of great help in interpreting the optical data of the lanthanide doped phosphors and allow commenting on the valencemore » stability of the ions, as well as the stability against thermal quenching of the Eu{sup 2+}d-f emission. Tb{sup 3+} substitutes on both a high energy and a low energy site in Ca{sub 2}Si{sub 5}N{sub 8}, due to which excitation at 4.77 eV led to emission from both the {sup 5}D{sub 3} and {sup 5}D{sub 4} levels, while excitation at 4.34 eV gave rise to mainly {sup 5}D{sub 4} emission. Doping with Sm resulted in typical Sm{sup 3+}f-f line absorption, as well as an absorption band around 4.1 eV in Ca{sub 2}Si{sub 5}N{sub 8} and 3.6 eV in Sr{sub 2}Si{sub 5}N{sub 8} that could be identified as the Sm{sup 3+} charge transfer band. Yb on the other hand was incorporated in both the divalent and the trivalent state in Ca{sub 2}Si{sub 5}N{sub 8}. - Graphical abstract: Energy level schemes showing the 4f ground states of the trivalent ( Black-Down-Pointing-Small-Triangle ) and divalent ( Black-Up-Pointing-Small-Triangle ) lanthanide ions and lowest energy 5d states of the trivalent ({nabla}) and divalent ({Delta}) ions with respect to the valence and conduction bands of Ca{sub 2}Si{sub 5}N{sub 8} (left) and Sr{sub 2}Si{sub 5}N{sub 8} (right). Highlights: Black-Right-Pointing-Pointer Construction of energy level schemes of all lanthanides within the M{sub 2}Si{sub 5}N{sub 8} hosts. Black-Right-Pointing-Pointer Construction was done by analyzing existing as well as new

  8. Highly doped layer for tunnel junctions in solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetzer, Christopher M.

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  9. Characterization of Strain Due to Nitrogen Doping Concentration Variations in Heavy Doped 4H-SiC

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Guo, Jianqiu; Raghothamachar, Balaji; Chan, Xiaojun; Kim, Taejin; Dudley, Michael

    2018-02-01

    Highly doped 4H-SiC will show a significant lattice parameter difference with respect to the undoped material. We have applied the recently developed monochromatic contour mapping technique for 4H-SiC crystals to a 4H-SiC wafer crystal characterized by nitrogen doping concentration variation across the whole sample surface using a synchrotron monochromatic x-ray beam. Strain maps of 0008 and - 2203 planes were derived by deconvoluting the lattice parameter variations from the lattice tilt. Analysis reveals markedly different strain values within and out of the basal plane indicating the strain induced by nitrogen doping is anisotropic in the 4H-SiC hexagonal crystal structure. The highest strain calculated along growth direction [0001] and along [1-100] on the closed packed basal plane is up to - 4 × 10-4 and - 2.7 × 10-3, respectively. Using an anisotropic elasticity model by separating the whole bulk crystal into numerous identical rectangular prism units, the measured strain was related to the doping concentration and the calculated highest nitrogen level inside wafer crystal was determined to be 1.5 × 1020 cm-3. This is in agreement with observation of double Shockley stacking faults in the highly doped region that are predicted to nucleate at nitrogen levels above 2 × 1019 cm-3.

  10. Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Shengchang; Kong, Man

    2014-01-28

    The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less

  11. Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type δ-doping

    NASA Astrophysics Data System (ADS)

    Bayram, C.; Pau, J. L.; McClintock, R.; Razeghi, M.

    2008-06-01

    High quality δ-doped p-GaN is used as a means of improving the performance of back-illuminated GaN avalanche photodiodes (APDs). Devices with δ-doped p-GaN show consistently lower leakage current and lower breakdown voltage than those with bulk p-GaN. APDs with δ-doped p-GaN also achieve a maximum multiplication gain of 5.1×104, more than 50 times higher than that obtained in devices with bulk p-GaN. The better device performance of APDs with δ-doped p-GaN is attributed to the higher structural quality of the p-GaN layer achieved via δ-doping.

  12. Microstructure and high-temperature tribological properties of Si-doped hydrogenated diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Zhang, Teng Fei; Wan, Zhi Xin; Ding, Ji Cheng; Zhang, Shihong; Wang, Qi Min; Kim, Kwang Ho

    2018-03-01

    Si-doped DLC films have attracted great attention for use in tribological applications. However, their high-temperature tribological properties remain less investigated, especially in harsh oxidative working conditions. In this study, Si-doped hydrogenated DLC films with various Si content were synthesized and the effects of the addition of Si on the microstructural, mechanical and high-temperature tribological properties of the films were investigated. The results indicate that Si doping leads to an obvious increase in the sp3/sp2 ratio of DLC films, likely due to the silicon atoms preferentially substitute the sp2-hybridized carbon atoms and augment the number of sp3 sites. With Si doping, the mechanical properties, including hardness and adhesion strength, were improved, while the residual stress of the DLC films was reduced. The addition of Si leads to higher thermal and mechanical stability of DLC films because the Si atoms inhibit the graphitization of the films at an elevated temperature. Better high-temperature tribological properties of the Si-DLC films under oxidative conditions were observed, which can be attributed to the enhanced thermal stability and formation of a Si-containing lubricant layer on the surfaces of the wear tracks. The nano-wear resistance of the DLC films was also improved by Si doping.

  13. Materials Design of the Codoping for the Fabrication of Low-Resistivity p-Type ZnSe and GaN by ab-initio Electronic Structure Calculation

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Yamamoto, T.

    1997-08-01

    We propose an effective doping method, the codoping (doping with n- and p-type dopants at the same time) method, for the fabrication of low-resistivity p-type ZnSe and GaN with wide-band-gap based upon ab-initio electronic band structure calculations. p-type doping eminently leads to an increase in the electrostatic energy, called the Madelung energy, which shifts the Se 4p levels for p-type doped ZnSe and the N 2p levels for p-type doped GaN materials towards higher energy regions. This leads to a destabilization of ionic charge distributions in p-type ZnSe and p-type GaN crystals, resulting in the self-compensation of anion intrinsic defects. For ZnSe crystals, we propose the codoping of n-type In donors at Zn sites and p-type N acceptors at Se sites based on the calculation. In addition, we propose the codoping of n-type Si-donors at Ga sites (n-type O donors at N sites) and p-type Be- or Mg acceptors at Ga sites. The codoping decreases the Madelung energy and leads to an increase in the net acceptor carrier density.

  14. Tellurium n-type doping of highly mismatched amorphous GaN 1-xAs x alloys in plasma-assisted molecular beam epitaxy

    DOE PAGES

    Novikov, S. V.; Ting, M.; Yu, K. M.; ...

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less

  15. Multiple doping of silicon-germanium alloys for thermoelectric applications

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex

    1989-01-01

    It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.

  16. High Mobility Transport Layer Structures for Rhombohedral Si/Ge/SiGe Devices

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Kim, Hyun-Jung (Inventor); Lee, Kunik (Inventor)

    2017-01-01

    An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.

  17. Frequency- and doping-level influence on electric and dielectric properties of PolySi/SiO2/cSi (MOS) structures

    NASA Astrophysics Data System (ADS)

    Doukhane, N.; Birouk, B.

    2018-03-01

    The electric and dielectric characteristics of PolySi/SiO2/cSi (MOS) structure, such as series resistance ( R s), dielectric constants ( ɛ') and ( ɛ″), dielectric losses (tan δ), and the ac electric conductivity ( σ ac), were studied in the frequency range 100 kHz-1 MHz for various doping levels and two thicknesses for the polysilicon layer (100 and 175 nm). The experimental results show that the C and G/ ω characteristics are very sensitive to the frequency due to the presence of interface states. Series resistance R s is deduced from C and G/ ω measurements and is plotted as a function of the frequency for various doping levels. It is found to decrease with frequency and doping level. To determine {ɛ ^' }, ɛ″, tan δ, and {σ _{{ac}}}, the admittance technique was used. An interesting behavior of the constants, {ɛ ^' } and ɛ″, was noticed. The {ɛ ^' } values fit led to relations between {ɛ ^' } and the frequency, on one hand, and between {ɛ ^' } and the electric conductivity of the polysilicon layers on the other. These relations make it possible to interpolate directly between two experimental points for a given frequency. The analysis of the results shows that the values of {ɛ ^' }, ɛ″, and tan δ decrease with increasing frequency. This is due to the fact that in the region of low frequencies, interfacial polarization occurs easily, and the interface states between Si and SiO2 contribute to the improvement of the dielectric properties of the PolySi/SiO2/cSi structures. The study also emphasizes that the ac electric conductivity increases with the increase in frequency and doping level; this causes to the reduction in series resistance.

  18. Doped silicon nanocrystals from organic dopant precursor by a SiCl4-based high frequency nonthermal plasma

    NASA Astrophysics Data System (ADS)

    Zhou, Shu; Ding, Yi; Pi, Xiaodong; Nozaki, Tomohiro

    2014-11-01

    Doped silicon nanocrystals (Si NCs) are of great interest in demanding low-cost nanodevices because of the abundance and nontoxicity of Si. Here, we demonstrate a cost-effective gas phase approach to synthesize phosphorous (P)-doped Si NCs in which the precursors used, i.e., SiCl4, trimethyl phosphite (TMP), are both safe and economical. It is found that the TMP-enabled P-doping does not change the crystalline structure of Si NCs. The surface of P-doped Si NCs is terminated by both Cl and H. The Si-H bond density at the surface of P-doped Si NCs is found to be much higher than that of undoped Si NCs. The X-ray photoelectron spectroscopy and electron spin resonance results indicate that P atoms are doped into the substitutional sites of the Si-NC core and electrically active in Si NCs. Unintentional impurities, such as carbon contained in TMP, are not introduced into Si NCs.

  19. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO₂.

    PubMed

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T; Sun, Luyi

    2017-02-28

    Yb 3+ -doped phosphate glasses containing different amounts of SiO₂ were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO₂ on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO₂ possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm²), the maximum Stark splitting manifold of ²F 7/2 level (781 cm -1 ), and the largest scalar crystal-field N J and Yb 3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO₂ promoted the formation of P=O linkages, but broke the P=O linkages when the SiO₂ content was greater than 26.7 mol %. Based on the previous 29 Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO₆] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb 3+ -doped gain medium for solid-state lasers and optical fiber amplifiers.

  20. Potential thermoelectric material open framework Si24 from a first-principles study

    NASA Astrophysics Data System (ADS)

    Ouyang, Tao; Zhang, Pei; Xiao, Huaping; Tang, Chao; Li, Jin; He, Chaoyu; Zhong, Jianxin

    2017-10-01

    Open framework Si24 is a new synthesis cage-like silicon allotrope with a quasi-direct bandgap and predicted to exhibit outstanding adsorption efficiency, foreshowing the potential applications in the photovoltaic community. In this paper, the thermoelectric property of such new Si structures is investigated by combining first-principles calculation and semiclassical Boltzmann transport theory. The calculations show that the Si24 possesses a superb Seebeck coefficient, and obviously anisotropic electronic conductivity. Owing to more energy extremums existing in the conduction band region, the power factor of Si24 in the n-type doping is always better than that in p-type samples. Anisotropic phonon transport property is observed as well in Si24 with average lattice thermal conductivity of 45.35 W m-1 K-1 at room temperature. Based on the electron relaxation time estimated from the experiment, the thermoelectric figure of merit of Si24 is found to be as high as 0.69 (n-type doping at 700 K) and 0.51 (p-type doping at 700 K) along the xx crystal direction, which is about two orders of magnitude larger than that of diamond Si (d-Si). The findings presented in this work shed light on the thermoelectric performance of Si24 and qualify that such new Si allotrope is a promising platform for achieving the recombination of photovoltaic and thermoelectric technologies together.

  1. Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method

    NASA Astrophysics Data System (ADS)

    Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min

    2015-06-01

    Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.

  2. Ab initio modeling of vacancies, antisites, and Si dopants in ordered InGaAs

    NASA Astrophysics Data System (ADS)

    Wang, Jingyang; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette

    2017-01-01

    In0.53Ga0.47As, a III-V compound semiconductor with high electron mobility, is expected to bring better performance than silicon in next-generation n-type MOSFET devices. However, one major challenge to its wide scale adoption is the difficulty of obtaining high enough dopant activation. For Si-doped InGaAs, the best current experimental result, involving 10 min of furnace annealing at temperatures above 700 °C, yields a free electron concentration of 1.4 ×1019 cm-3, a value that still falls short of requirement for practical applications. In this paper, we investigate the origin of low dopant activation in InGaAs by calculating formation energies for a wide variety of single point defects (Si substutionals, Si tetrahedral interstitials, vacancies, and antisites) in Si-doped In0.5Ga0.5As in a CuAu-I type crystal structure. We find that (1) a high electron concentration can only be achieved under In/Ga-poor growth conditions, while As-poor conditions inhibit n-type doping; and (2) in heavily n-doped samples, cation vacancies VIn/Ga-3 contribute the most to the compensation of excess Si donors via the Si III - VIII mechanism (III = In/Ga), thus becoming the limiting factor to higher dopant activation. Under the most favorable growth conditions for n-doping, we find the maximum carrier concentration to be 5.2 ×1018 cm-3 under thermal equilibrium, within an order of magnitude of the best experimental value.

  3. Deep-level traps in lightly Si-doped n-GaN on free-standing m-oriented GaN substrates

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Chonan, H.; Takahashi, T.; Yamada, T.; Shimizu, M.

    2018-04-01

    In this study, we investigated the deep-level traps in Si-doped GaN epitaxial layers by metal-organic chemical vapor deposition on c-oriented and m-oriented free-standing GaN substrates. The c-oriented and m-oriented epitaxial layers, grown at a temperature of 1000 °C and V/III ratio of 1000, contained carbon atomic concentrations of 1.7×1016 and 4.0×1015 cm-3, respectively. A hole trap was observed at about 0.89 eV above the valence band maximum by minority carrier transient spectroscopy. The trap concentrations in the c-oriented and m-oriented GaN epitaxial layers were consistent with the carbon atomic concentrations from secondary ion mass spectroscopy and the yellow luminescence intensity at 2.21 eV from photoluminescence. The trap concentrations in the m-oriented GaN epitaxial layers were lower than those in the c-oriented GaN. Two electron traps, 0.24 and 0.61 eV below the conduction band (EC) minimum, were observed in the c-oriented GaN epitaxial layer. In contrast, the m-oriented GaN epitaxial layer was free from the electron trap at EC - 0.24 eV, and the trap concentration at EC - 0.61 eV in the m-oriented GaN epitaxial layer was lower than that in the c-oriented GaN epitaxial layer. The m-oriented GaN epitaxial layer exhibited fewer hole and electron traps compared to the c-oriented GaN epitaxial layers.

  4. Ultraviolet/visible photodiode of nanostructure Sn-doped ZnO/Si heterojunction

    NASA Astrophysics Data System (ADS)

    Kheirandish, N.; Mortezaali, A.

    2013-05-01

    Sn doped ZnO nanostructures deposited on Si substrate with (100) orientation by spray pyrolysis method at temperature 450 °C. Sn/Zn atomic ratio varies from 0% to 5%. The scanning electron microscope measurements showed that size of particles reduce with increasing the doping concentration. The X-ray diffraction analysis revealed formation of the wurtzite phase of ZnO. I-V curves of Sn doped ZnO/Si were investigated in dark and shows diode-like rectifying behavior. Among doped ZnO/Si, sample with atomic ratio of Sn/Zn = 5% is a good candidate to study photodiode properties in UV/visible range. Photoelectric effects have been observed under illumination monochromatic laser light with a wavelength of 325 nm and halogen lamp. Measurements demonstrate that the photodiode has high sensitivity and reproducibility to halogen light respect to laser light.

  5. Sb- and Bi-doped Mg2Si: location of the dopants, micro- and nanostructures, electronic structures and thermoelectric properties.

    PubMed

    Farahi, Nader; VanZant, Mathew; Zhao, Jianbao; Tse, John S; Prabhudev, Sagar; Botton, Gianluigi A; Salvador, James R; Borondics, Ferenc; Liu, Zhenxian; Kleinke, Holger

    2014-10-28

    Due to increasing global energy concerns, alternative sustainable methods to create energy such as thermoelectric energy conversion have become increasingly important. Originally, research into thermoelectric materials was focused on tellurides of bismuth and lead because of the exemplary thermoelectric properties of Bi2Te3 and PbTe. These materials, however, contain toxic lead and tellurium, which is also scarce and thus expensive. A viable alternative material may exist in Mg2Si, which needs to be doped and alloyed in order to achieve reasonable thermoelectric efficiency. Doping is a major problem, as p-type doping has thus far not produced competitive efficiencies, and n-type doping is problematic because of the low solubility of the typical dopants Sb and Bi. This investigation shows experimentally that these dopants can indeed replace Si in the crystal lattice, and excess Sb and Bi atoms are present in the grain boundaries in the form of Mg3Sb2 and Mg3Bi2. As a consequence, the carrier concentration is lower than the formal Sb/Bi concentration suggests, and the thermal conductivity is significantly reduced. DFT calculations are in good agreement with the experimental data, including the band gap and the Seebeck coefficient. Overall, this results in competitive efficiencies despite the low carrier concentration. While ball-milling was previously shown to enhance the solubility of the dopants and thus the carrier concentration, this did not lead to enhanced thermoelectric properties.

  6. p-Type and n-type doping of ZnSe: Effects of hydrogen incorporation

    NASA Astrophysics Data System (ADS)

    Fisher, P. A.; Ho, E.; House, J. L.; Petrich, G. S.; Kolodziejski, L. A.; Walker, J.; Johnson, N. M.

    1995-05-01

    The hydrogenation behavior of p- and n-type ZnSe grown on GaAs by gas source molecular beam epitaxy (GSMBE) is presented. Recent advances in p-type doping, using a radio frequency (RF) plasma source with nitrogen, have led to the successful fabrication of blue/green light emitters based on the (Zn,Mg)(S,Se) material system grown by molecular beam epitaxy (MBE). GSMBE replaces the high vapor pressure group VI elements with hydride gases which are amenable to regulation using precision mass flow controllers, and has the potential to deliver improved compositional control and reproducibility. We have found that the presence of hydrogen does not affect the electrical conductivity of ZnSe:Cl grown by GSMBE. In contrast, nitrogen-doped ZnSe is speculated to be electrically passivated by hydrogen for certain growth conditions as evidenced by: (1) coherent tracking of the hydrogen concentration with variations in the nitrogen concentration, which is measured by secondary ion mass spectrometry (SIMS), and (2) indications of high resistivity determined by capacitance-voltage ( C-V) measurements. Conventional and rapid thermal annealing (RTA) have been investigated to modify the degree of hydrogen passivation.

  7. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Ben Haj Othmen, Walid; Ben Hamed, Zied; Sieber, Brigitte; Addad, Ahmed; Elhouichet, Habib; Boukherroub, Rabah

    2018-03-01

    Nanocrystalline highly Fe-doped SnO2 thin films were prepared using a new simple sol-gel method with iron amounts of 5, 10, 15 and 20%. The obtained gel offers a long durability and high quality allowing to reach a sub-5 nm nanocrystalline size with a good crystallinity. The films were structurally characterized through X-ray diffraction (XRD) that confirms the formation of rutile SnO2. High Resolution Transmission Electron Microscopy (HRTEM) images reveals the good crystallinity of the nanoparticles. Raman spectroscopy shows that the SnO2 rutile structure is maintained even for high iron concentration. The variation of the PL intensity with Fe concentration reveals that iron influences the distribution of oxygen vacancies in tin oxide. The optical transmittance results indicate a redshift of the SnO2 band gap when iron concentration increases. The above optical results lead us to assume the presence of a compensation phenomenon between oxygen vacancies and introduced holes following Fe doping. From current-voltage measurements, an inversion of the conduction type from n to p is strongly predicted to follow the iron addition. Electrical characterizations of SnO2:Fe/p-Si and SnO2:Fe/n-Si heterojunctions seem to be in accordance with this deduction. The quantum tunneling mechanism is expected to be important at high Fe doping level, which was confirmed by current-voltage measurements at different temperatures. Both optical and electrical properties of the elaborated films present a particularity for the same iron concentration and adopt similar tendencies with Fe amount, which strongly correlate the experimental observations. In order to evaluate the applicability of the elaborated films, we proceed to the fabrication of the SnO2:Fe/SnO2 homojunction for which we note a good rectifying behavior.

  8. Electronic and transformation properties of a metastable defect introduced in epitaxially grown boron-doped p-type Si by alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Mamor, M.; Auret, F. D.; Goodman, S. A.; Meyer, W. E.; Myburg, G.

    1998-06-01

    Titanium (Ti) Schottky barrier diodes on epitaxially grown boron-doped p-type Si films with a free carrier density of 6-8×1016cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. We report the electronic and transformation characteristics of an α-particle irradiation-induced defect Hα2 in epitaxially grown p-Si with metastable properties. The energy level and apparent capture cross section, as determined by deep-level transient spectroscopy, are Ev+0.43 eV and 1.4×10-15 cm2, respectively. This defect can be removed and re-introduced using a conventional bias-on/off cooling technique.

  9. Positron annihilation spectroscopy in doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Sanyal, D.

    2011-07-01

    Positron annihilation lifetime (PAL) spectroscopy has been used to investigate the vacancy type defect of the Li and N doped ZnO. The mono-vacancies, shallow -vacancies and open volume defects have been found in both the Li and N doped ZnO. The mono-vacancies, shallow-vacancies and open volume defects increase in N-doped ZnO as the size of N is quite high compared to Li. Positron annihilation study showed that the doping above 1-3% Li and 3-4% N in ZnO are not required in order to achieve low resistivity, high hole concentration and good mobility.

  10. Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications

    PubMed Central

    2013-01-01

    GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377

  11. Effect of compressive stress on stability of N-doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Chen, Xingyou; Zhang, Zhenzhong; Yao, Bin; Jiang, Mingming; Wang, Shuangpeng; Li, Binghui; Shan, Chongxin; Liu, Lei; Zhao, Dongxu; Shen, Dezhen

    2011-08-01

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al2O3) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al2O3 degenerated into n-type after a preservation time; however, the one grown on a-Al2O3 showed good stability. The conversion of conductivity in the one grown on c-Al2O3 ascribed to the faster disappearance of NO and the growing N2(O), which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  12. Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene

    DOE PAGES

    Koh, Weon-kyu; Koposov, Alexey Y.; Stewart, John T.; ...

    2013-06-18

    Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through “doping;” however, persistent electronic doping of these NCs remains a challenge. In this paper, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmedmore » by inter- and intra-band optical absorption, as well as by carrier dynamics. In conclusion, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.« less

  13. Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Qin, Xiu-Bo; Li, Dong-Xiang; Li, Rui-Qin; Zhang, Peng; Li, Yu-Xiao; Wang, Bao-Yi

    2014-06-01

    The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.

  14. Fabrication of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) Heterostructures and Study of Current-Voltage, Capacitance-Voltage and Room-Temperature Photoluminescence

    NASA Astrophysics Data System (ADS)

    Shah, M. A. H.; Khan, M. K. R.; Tanveer Karim, A. M. M.; Rahman, M. M.; Kamruzzaman, M.

    2018-01-01

    Heterojunction diodes of n-ZnO/ p-Si (100) and n-ZnO:Al/ p-Si (100) were fabricated by spray pyrolysis technique. X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and field emission scanning electron microscopy (FESEM) were used to characterize the as-prepared samples. The XRD pattern indicates the hexagonal wurzite structure of zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films grown on Si (100) substrate. The compositional analysis by EDX indicates the presence of Al in the AZO structure. The FESEM image indicates the smooth and compact surface of the heterostructures. The current-voltage characteristics of the heterojunction confirm the rectifying diode behavior at different temperatures and illumination intensities. For low forward bias voltage, the ideality factors were determined to be 1.24 and 1.38 for un-doped and Al-doped heterostructures at room temperature (RT), respectively, which indicates the good diode characteristics. The capacitance-voltage response of the heterojunctions was studied for different oscillation frequencies. From the 1/ C 2- V plot, the junction built-in potentials were found 0.30 V and 0.40 V for un-doped and Al-doped junctions at RT, respectively. The differences in built-in potential for different heterojunctions indicate the different interface state densities of the junctions. From the RT photoluminescence (PL) spectrum of the n-ZnO/ p-Si (100) heterostructure, an intense main peak at near band edge (NBE) 378 nm (3.28 eV) and weak deep-level emissions (DLE) centered at 436 nm (2.84 eV) and 412 nm (3.00 eV) were observed. The NBE emission is attributed to the radiative recombination of the free and bound excitons and the DLE results from the radiative recombination through deep level defects.

  15. n-type conversion of SnS by isovalent ion substitution: Geometrical doping as a new doping route

    PubMed Central

    Ran, Fan-Yong; Xiao, Zewen; Toda, Yoshitake; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2015-01-01

    Tin monosulfide (SnS) is a naturally p-type semiconductor with a layered crystal structure, but no reliable n-type SnS has been obtained by conventional aliovalent ion substitution. In this work, carrier polarity conversion to n-type was achieved by isovalent ion substitution for polycrystalline SnS thin films on glass substrates. Substituting Pb2+ for Sn2+ converted the majority carrier from hole to electron, and the free electron density ranged from 1012 to 1015 cm−3 with the largest electron mobility of 7.0 cm2/(Vs). The n-type conduction was confirmed further by the position of the Fermi level (EF) based on photoemission spectroscopy and electrical characteristics of pn heterojunctions. Density functional theory calculations reveal that the Pb substitution invokes a geometrical size effect that enlarges the interlayer distance and subsequently reduces the formation energies of Sn and Pb interstitials, which results in the electron doping. PMID:26020855

  16. Al2O3/SiON stack layers for effective surface passivation and anti-reflection of high efficiency n-type c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin

    2017-02-01

    Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.

  17. Single Schottky junction FETs based on Si:P nanowires with axially graded doping

    NASA Astrophysics Data System (ADS)

    Barreda, Jorge; Keiper, Timothy; Zhang, Mei; Xiong, Peng

    2015-03-01

    Si nanowires (NWs) with a systematic axial increase in phosphorus doping have been synthesized via a vapor-liquid-solid method. Silane and phosphine precursor gases are utilized for the growth and doping, respectively. The phosphorous doping profile is controlled by the flow ratio of the precursor gases. After the as-grown product is ultrasonically agitated into a solution, the Si NWs are dispersed on a SiO2 substrate with a highly doped Si back gate. Individual NWs are identified for the fabrication of field-effect transistors (FETs) with multiple Cr/Ag contacts along the NW. Two-probe and four-probe measurements are taken systematically under vacuum conditions at room temperature and the contribution from each contact and each NW section between adjacent contacts is determined. The graded doping level, produced by a systematic reduction in dopant density along the length of the NWs, is manifested in the regular increases in the channel and contact resistances. Our Si NWs facilitate the fabrication of asymmetric FETs with one ohmic and one Schottky contact. A significant increase in gate modulation is obtained due to the single Schottky-barrier contact. Characterization details and the applicability for sensing purposes will be discussed.

  18. Crystal and electronic structures, luminescence properties of Eu 2+-doped Si 6-zAl zO zN 8-z and M ySi 6-zAl z-yO z+yN 8-z-y ( M=2Li, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Li, Y. Q.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Mitomo, M.

    2008-12-01

    The crystal structure, electronic structure, and photoluminescence properties of Eu xSi 6-zAl z-xO z+xN 8-z-x ( x=0-0.1, 0< z<1) and Eu xM ySi 6-zAl z-x-yO z+x+yN 8-z-x-y ( M=2Li, Mg, Ca, Sr, Ba) have been studied. Single-phase Eu xSi 6-zAl z-xO z+xN 8-z-x can be obtained in very narrow ranges of x⩽0.06 ( z=0.15) and z<0.5 ( x=0.3), indicating that limited Eu 2+ ions can be incorporated into nitrogen-rich Si 6-zAl zO zN 8-z. The Eu 2+ ion is found to occupy the 2 b site in a hexagonal unit cell ( P6 3/ m) and directly connected by six adjacent nitrogen/oxygen atoms ranging 2.4850-2.5089 Å. The calculated host band gaps by the relativistic DV-X α method are about 5.55 and 5.45 eV (without Eu 2+ 4 f5 d levels) for x=0 and 0.013 in Eu xSi 6-zAl z-xO z+xN 8-z-x ( z=0.15), in which the top of the 5 d orbitals overlap with the Si-3 s3 p and N-2 p orbitals within the bottom of the conduction band of the host. Eu xSi 6-zAl z-xO z+xN 8-z-x shows a strong green emission with a broad Eu 2+ band centered at about 530 nm under UV to near-UV excitation range. The excitation and emission spectra are hardly modified by Eu concentration and dual-doping ions of Li and other alkaline-earth ions with Eu. Higher Eu concentrations can significantly quench the luminescence of Eu 2+ and decrease the thermal quenching temperature. In addition, the emission spectrum can only be slightly tuned to the longer wavelengths (˜529-545 nm) by increasing z within the solid solution range of z<0.5. Furthermore, the luminescence intensity of Eu xSi 6-zAl z-xO z+xN 8-z-x can be improved by increasing z and the dual-doping of Li and Ba.

  19. Large area tunnel oxide passivated rear contact n -type Si solar cells with 21.2% efficiency: Large area tunnel oxide passivated rear contact n -type Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yuguo; Upadhyaya, Vijaykumar; Chen, Chia-Wei

    This paper reports on the implementation of carrier-selective tunnel oxide passivated rear contact for high-efficiency screen-printed large area n-type front junction crystalline Si solar cells. It is shown that the tunnel oxide grown in nitric acid at room temperature (25°C) and capped with n+ polysilicon layer provides excellent rear contact passivation with implied open-circuit voltage iVoc of 714mV and saturation current density J0b of 10.3 fA/cm2 for the back surface field region. The durability of this passivation scheme is also investigated for a back-end high temperature process. In combination with an ion-implanted Al2O3-passivated boron emitter and screen-printed front metal grids,more » this passivated rear contact enabled 21.2% efficient front junction Si solar cells on 239 cm2 commercial grade n-type Czochralski wafers.« less

  20. A comparative study of n-channel low temperature poly-Si thin-film transistors with a body terminal or a lightly-doped-drain structure

    NASA Astrophysics Data System (ADS)

    Wu, Yanwen; Wang, Mingxiang; Wang, Huaisheng; Zhang, Dongli

    2018-02-01

    Hot-carrier (HC) induced degradation is a critical reliability issue of n-channel low temperature poly-Si thin-film transistors (TFTs) in TFT-based circuits. In this work, a kind of four-terminal TFT, which has an additional p+-doped lateral body terminal connecting to the floating channel, is systematically compared to conventional n-channel TFT and lightly-doped-drain (LDD) TFT. We demonstrate that the four-terminal TFT can provide similar advantages to that of the LDD TFT such as kink current suppression and DC HC degradation immunity, much superior immunity to the dynamic HC degradation, but without any tradeoffs in device performance and process complexity of the LDD TFT. It has high performance, as well as excellent reliability under both DC and AC conditions.

  1. Boron doping induced thermal conductivity enhancement of water-based 3C-Si(B)C nanofluids.

    PubMed

    Li, Bin; Jiang, Peng; Zhai, Famin; Chen, Junhong; Bei, Guoping; Hou, Xinmei; Chou, Kuo-Chih

    2018-08-31

    In this paper, the fabrication and thermal conductivity (TC) of water-based nanofluids using boron (B)-doped SiC as dispersions are reported. Doping B into the β-SiC phase leads to the shrinkage of the SiC lattice due to the substitution of Si atoms (0.134 nm radius) by smaller B atoms (0.095 nm radius). The presence of B in the SiC phase also promotes crystallization and grain growth of obtained particles. The tailored crystal structure and morphology of B-doped SiC nanoparticles are beneficial for the TC improvement of the nanofluids by using them as dispersions. Using B-doped SiC nanoparticles as dispersions for nanofluids, a remarkable improvement in stability was achieved in SiC-B6 nanofluid at pH 11 by means of the Zeta potential measurement. By dispersing B-doped SiC nanoparticles in water-based fluids, the TC of the as-prepared nanofluids containing only 0.3 vol.% SiC-B6 nanoparticles is remarkably raised to 39.3% at 30 °C compared to the base fluids, and is further enhanced with the increased temperature. The main reasons for the improvement in TC of SiC-B6 nanofluids are more stable dispersion and intensive charge ions vibration around the surface of nanoparticles as well as the enhanced TC of the SiC-B dispersions.

  2. Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping.

    PubMed

    Alphazan, Thibault; Díaz Álvarez, Adrian; Martin, François; Grampeix, Helen; Enyedi, Virginie; Martinez, Eugénie; Rochat, Névine; Veillerot, Marc; Dewitte, Marc; Nys, Jean-Philippe; Berthe, Maxime; Stiévenard, Didier; Thieuleux, Chloé; Grandidier, Bruno

    2017-06-14

    Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO 2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 10 20 cm -3 . Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.

  3. Enhancement of magnetocaloric effect in mischmetal doped La-Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Wang, Gaofeng; Zhao, Zengru; Zhang, Xuefeng; Ma, Qiang; Li, Yongfeng; Liu, Yanli; Mu, Lijuan; Zhang, Yan

    2018-05-01

    The influence of partial substitution of mischmetal on the structure, Curie temperature and magnetocaloric effect has been investigated in La1-xMxFe11.5Si1.5 alloys. X-ray diffraction patterns indicate the alloys crystallize mainly in NaZn13-type cubic structure and the amount of secondary α-Fe phase obviously reduces in the mischmetal doped alloys. As the content of mischmetal increases, the Curie temperature is reduced from 198.1 K for x = 0 to 184.2 K for x = 0.3 and the thermal hysteresis is enlarged from 3.5 K for x = 0 to 8.2 K for x = 0.3. Upon a field change from 0 to 3 T, the obtained maximum isothermal entropy change values are 17.2, 19.8, 37.8 and 47.9 J/kgK for x = 0, 0.1, 0.2 and 0.3, respectively. The entropy changes due to the latent heat of first-order transitions are estimated to be 11.3, 14.7, 18.5 and 23.4 J/kgK for x = 0, 0.1, 0.2 and 0.3, respectively. The enhancement of giant magnetocaloric MCE in La1-xMxFe11.5Si1.5 alloys originates from the strengthened itinerant electron metamagnetic transitions by adding the mischmetal. Our result suggests that the mischmetal doped NaZn13-type La-Fe-Si alloys are potential candidates of refrigerants for magnetic refrigeration.

  4. Defect-related photoluminescence in Mg-doped GaN nanostructures

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Shahedipour-Sandvik, F.; Messer, B. J.; Jindal, V.; Tripathi, N.; Tungare, M.

    2009-12-01

    Thin film of GaN:Mg, pyramidal GaN:Mg on GaN, sapphire and AlN substrates were grown in a MOCVD system under same growth conditions and at the same time. In samples with Mg-doped GaN pyramids on GaN:Si template a strong ultraviolet (UVL) band with few phonon replicas dominated at low temperature and was attributed to transitions from shallow donors to shallow Mg acceptor. In samples grown on sapphire and AlN substrates the UVL band appeared as a structureless band with the maximum at about 3.25 eV. There is a possibility that the structureless UVL band and the UVL band with phonon structure have different origin. In addition to the UVL band, the blue luminescence (BL) band peaking at 2.9 eV was observed in samples representing GaN:Mg pyramids on GaN:Si substrate. It is preliminary attributed to transitions from shallow donors to Zn acceptor in GaN:Si substrate.

  5. Low temperature deactivation of Ge heavily n-type doped by ion implantation and laser thermal annealing

    NASA Astrophysics Data System (ADS)

    Milazzo, R.; Impellizzeri, G.; Piccinotti, D.; De Salvador, D.; Portavoce, A.; La Magna, A.; Fortunato, G.; Mangelinck, D.; Privitera, V.; Carnera, A.; Napolitani, E.

    2017-01-01

    Heavy doping of Ge is crucial for several advanced micro- and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 × 1020 cm-3 by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 °C reaching an active concentration of ˜4 × 1019 cm-3. No significant As diffusion is detected up to 450 °C, where the As activation decreases further to ˜3 × 1019 cm-3. The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge.

  6. Ultra High p-doping Material Research for GaN Based Light Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading inmore » light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences

  7. Superconductivity, critical current density, and flux pinning in MgB2-x(SiC)x/2 superconductor after SiC nanoparticle doping

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.

    2003-08-01

    We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.

  8. Giant Dirac point shift of graphene phototransistors by doped silicon substrate current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimatani, Masaaki; Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke

    2016-03-15

    Graphene is a promising new material for photodetectors due to its excellent optical properties and high-speed response. However, graphene-based phototransistors have low responsivity due to the weak light absorption of graphene. We have observed a giant Dirac point shift upon white light illumination in graphene-based phototransistors with n-doped Si substrates, but not those with p-doped substrates. The source-drain current and substrate current were investigated with and without illumination for both p-type and n-type Si substrates. The decay time of the drain-source current indicates that the Si substrate, SiO{sub 2} layer, and metal electrode comprise a metal-oxide-semiconductor (MOS) capacitor due tomore » the presence of defects at the interface between the Si substrate and SiO{sub 2} layer. The difference in the diffusion time of the intrinsic major carriers (electrons) and the photogenerated electron-hole pairs to the depletion layer delays the application of the gate voltage to the graphene channel. Therefore, the giant Dirac point shift is attributed to the n-type Si substrate current. This phenomenon can be exploited to realize high-performance graphene-based phototransistors.« less

  9. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-01

    Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.

  10. Electronic structure of O-doped SiGe calculated by DFT + U method

    NASA Astrophysics Data System (ADS)

    Zhao, Zong-Yan; Yang, Wen; Yang, Pei-Zhi

    2016-12-01

    To more in depth understand the doping effects of oxygen on SiGe alloys, both the micro-structure and properties of O-doped SiGe (including: bulk, (001) surface, and (110) surface) are calculated by DFT + U method in the present work. The calculated results are as follows. (i) The (110) surface is the main exposing surface of SiGe, in which O impurity prefers to occupy the surface vacancy sites. (ii) For O interstitial doping on SiGe (110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers. (iii) The finding about decreased surface work function of O-doped SiGe (110) surface can confirm previous experimental observations. (iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-SiGe-based solar cells in the future. Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No. 2015FB123), the 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project, China (Grant No. 2015HB015), and the National Natural Science Foundation of China (Grant No. U1037604).

  11. Mixed Al and Si doping in ferroelectric HfO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu; Takmeel, Qanit

    2015-12-14

    Ferroelectric HfO{sub 2} thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO{sub 2} greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ∼20 μC/cm{sup 2} and a coercive field strength of ∼1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO{sub 2} thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO{submore » 2} thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO{sub 2} thin films exhibit a remanent polarization greater than 15 μC/cm{sup 2} up to 10{sup 8} cycles.« less

  12. Nondegenerate n-type doping phenomenon on molybdenum disulfide (MoS{sub 2}) by zinc oxide (ZnO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dong-Ho; Hong, Seong-Taek; Oh, Aely

    Highlights: • We have demonstrated nondegenerate n-type doping phenomenon of MoS{sub 2} by ZnO. • ZnO doping improved the electrical parameters of MoS{sub 2} transistor (I{sub on}↑, μ{sub FE}↑, n↑). • The reduction of ZnO doping effect (ΔV{sub TH}: ∼75% ↓) was observed in air. • The highest photoresponsivity of ZnO-doped MoS{sub 2} photodetector was 3.18 × 10{sup 3} A/W. • The highest detectivity of ZnO-doped MoS{sub 2} photodetector was 5.94 × 10{sup 12} Jones. - Abstract: In this paper, we have demonstrated nondegenerate n-type doping phenomenon of MoS{sub 2} by ZnO. The ZnO doping effects were systematically investigated bymore » Raman spectroscopy and electrical/optical measurements (I{sub D}–V{sub G} with/without exposure to 520, 655, 785, and 850 nm laser sources). The ZnO doping improved the performance parameters of MoS{sub 2}-based electronics (I{sub on}↑, μ{sub FE}↑, n↑) owing to reduction of the effective barrier height between the source and the MoS{sub 2} channel. We also monitored the effects of ZnO doping during exposure to air; reduction in ΔV{sub TH} of about 75% was observed after 156 h. In addition, the optoelectronic performance of the MoS{sub 2} photodetector was enhanced due to the reduction of the recombination rate of photogenerated carriers caused by ZnO doping. In our results, the highest photoresponsivity (about 3.18 × 10{sup 3} A/W) and detectivity (5.94 × 10{sup 12} Jones) of the ZnO-doped photodetector were observed for 520 nm laser exposure.« less

  13. Estimation of free carrier concentrations in high-quality heavily doped GaN:Si micro-rods by photoluminescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohajerani, M. S.; Khachadorian, S.; Nenstiel, C.; Schimpke, T.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-03-01

    The controlled growth of highly n-doped GaN micro rods is one of the major challenges in the fabrication of recently developed three-dimensional (3D) core-shell light emitting diodes (LEDs). In such structures with a large active area, higher electrical conductivity is needed to achieve higher current density. In this contribution, we introduce high quality heavily-doped GaN:Si micro-rods which are key elements of the newly developed 3D core-shell LEDs. These structures were grown by metal-organic vapor phase epitaxy (MOVPE) using selective area growth (SAG). We employed spatially resolved micro-Raman and micro-photoluminescence (PL) in order to directly determine a free-carrier concentration profile in individual GaN micro-rods. By Raman spectroscopy, we analyze the low-frequency branch of the longitudinal optical (LO)-phonon-plasmon coupled modes and estimate free carrier concentrations from ≍ 2.4 × 1019 cm-3 up to ≍ 1.5 × 1020 cm-3. Furthermore, free carrier concentrations are determined by estimating Fermi energy level from the near band edge emission measured by low-temperature PL. The results from both methods reveal a good consistency.

  14. Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)

    1994-01-01

    The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.

  15. Si

    NASA Astrophysics Data System (ADS)

    Fiameni, S.; Famengo, A.; Agresti, F.; Boldrini, S.; Battiston, S.; Saleemi, M.; Johnsson, M.; Toprak, M. S.; Fabrizio, M.

    2014-06-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion in the middle-high temperature range. The detrimental effect of the presence of MgO on the TE properties of Mg2Si based materials is widely known. For this reason, the conditions used for synthesis and sintering were optimized to limit oxygen contamination. The effect of Bi doping on the TE performance of dense Mg2Si materials was also investigated. Synthesis was performed by ball milling in an inert atmosphere starting from commercial Mg2Si powder and Bi powder. The samples were consolidated, by spark plasma sintering, to a density >95%. The morphology, and the composition and crystal structure of samples were characterized by field-emission scanning electronic microscopy and x-ray diffraction, respectively. Moreover, determination of Seebeck coefficients and measurement of electrical and thermal conductivity were performed for all the samples. Mg2Si with 0.1 mol% Bi doping had a ZT value of 0.81, indicative of the potential of this method for fabrication of n-type bulk material with good TE performance.

  16. A comparative study on magnetism in Zn-doped AlN and GaN from first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liang; Wang, Lingling, E-mail: llwang@hnu.edu.cn, E-mail: xiaowenzhi@hnu.edu.cn; Huang, Weiqing

    2014-09-14

    First-principles calculations have been used to comparatively investigate electronic and magnetic properties of Zn-doped AlN and GaN. A total magnetic moment of 1.0 μ B{sub B} induced by Zn is found in AlN, but not in GaN. Analyses show that the origin of spontaneous polarization not only depend on the localized atomic orbitals of N and sufficient hole concentration, but also the relative intensity of the covalency of matrix. The relatively stronger covalent character of GaN with respect to AlN impedes forming local magnetic moment in GaN matrix. Our study offers a fresh sight of spontaneous spin polarization in d⁰more » magnetism. The much stronger ferromagnetic coupling in c-plane of AlN means that it is feasible to realize long-range ferromagnetic order via monolayer delta-doping. This can apply to other wide band-gap semiconductors in wurtzite structure.« less

  17. Do SiO 2 and carbon-doped SiO 2 nanoparticles melt? Insights from QM/MD simulations and ramifications regarding carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Page, Alister J.; Chandrakumar, K. R. S.; Irle, Stephan; Morokuma, Keiji

    2011-05-01

    Quantum chemical molecular dynamics (QM/MD) simulations of pristine and carbon-doped SiO 2 nanoparticles have been performed between 1000 and 3000 K. At temperatures above 1600 K, pristine nanoparticle SiO 2 decomposes rapidly, primarily forming SiO. Similarly, carbon-doped nanoparticle SiO 2 decomposes at temperatures above 2000 K, primarily forming SiO and CO. Analysis of the physical states of these pristine and carbon-doped SiO 2 nanoparticles indicate that they remain in the solid phase throughout decomposition. This process is therefore one of sublimation, as the liquid phase is never entered. Ramifications of these observations with respect to presently debated mechanisms of carbon nanotube growth on SiO 2 nanoparticles will be discussed.

  18. Anisotropic strain relaxation of Si-doped metamorphic InAlAs graded buffers on InP

    NASA Astrophysics Data System (ADS)

    Gu, Yi; Zhang, Yonggang; Chen, Xingyou; Ma, Yingjie; Zheng, Yuanliao; Du, Ben; Zhang, Jian

    2017-09-01

    The effects of Si doping on the strain relaxation of InP-based metamorphic In x Al1-x As graded buffers have been investigated. The highly Si-doped sample shows an increased ridge period along the [1 1 0] direction in the cross-hatch morphology measured by atomic force microscope. X-ray diffraction reciprocal space mapping measurements reveal that the high Si-doping induced incomplete relaxation as well as inhomogeneous residual strain along the [1 -1 0] direction, which was also observed in micro-Raman measurements. The anisotropic strain relaxation is attributed to the Si-doping enhanced anisotropy of misfit dislocations along the orthogonal directions. The α-misfit dislocations along the [1 -1 0] direction are further delayed to generate in highly Si-doped InAlAs buffer, while the β-misfit dislocations along the [1 1 0] direction are not. These results supply useful suggestions on the design and demonstration of semiconductor metamorphic devices.

  19. Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.

    PubMed

    Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho

    2013-04-21

    The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.

  20. Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1-(micron)meter MOSFET's with Epitaxial and (delta)-Doped Channels

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Saini, Subhash

    1999-01-01

    A detailed three-dimensional (3-D) statistical 'atomistic' simulation study of fluctuation-resistant sub-0.1-(micron)meter MOSFET architectures with epitaxial channels and delta doping is presented. The need for enhancing the fluctuation resistance of the sub-0.1-(micron)meter generation transistors is highlighted by presenting summarized results from atomistic simulations of a wide range of conventional devices with uniformly doped channel. According to our atomistic results, the doping concentration dependence of the random dopant-induced threshold voltage fluctuations in conventional devices is stronger than the analytically predicted fourth-root dependence. As a result of this, the scaling of such devices will be restricted by the "intrinsic" random dopant-induced fluctuations earlier than anticipated. Our atomistic simulations confirm that the introduction of a thin epitaxial layer in the MOSFET's channel can efficiently suppress the random dopant-induced threshold voltage fluctuations in sub-0.1-(micron)meter devices. For the first time, we observe an "anomalous" reduction in the threshold voltage fluctuations with an increase in the doping concentration behind the epitaxial channel, which we attribute to screening effects. Also, for the first time we study the effect of a delta-doping, positioned behind the epitaxial layer, on the intrinsic threshold voltage fluctuations. Above a certain thickness of epitaxial layer, we observe a pronounced anomalous decrease in the threshold voltage fluctuation with the increase of the delta doping. This phenomenon, which is also associated with screening, enhances the importance of the delta doping in the design of properly scaled fluctuation-resistant sub-0.1-(micron)meter MOSFET's. Index Terms-Doping, fluctuations, MOSFET, semiconductor device simulation, silicon devices, threshold.

  1. Edge facet dynamics during the growth of heavily doped n-type silicon by the Czochralski-method

    NASA Astrophysics Data System (ADS)

    Stockmeier, L.; Kranert, C.; Raming, G.; Miller, A.; Reimann, C.; Rudolph, P.; Friedrich, J.

    2018-06-01

    During the growth of [0 0 1]-oriented, heavily n-type doped silicon crystals by the Czochralski (CZ) method dislocation formation occurs frequently which leads to a reduction of the crystal yield. In this publication the evolution of the solid-liquid interface and the formation of the {1 1 1} edge facets are analyzed on a microscopic scale as possible reason for dislocation formation in heavily n-type doped [0 0 1]-oriented CZ crystals. A correlation between the length of the {1 1 1} edge facets and the curvature of the interface is found. They ultimately promote supercooled areas and interrupted growth kinetics, which increase the probability for dislocation formation at the boundary between the {1 1 1} edge facets and the atomically rough interface.

  2. Determination of the energy structure of recombination centers in heavily doped AlxGa1-xN:Si epitaxial layers with x > 0.5

    NASA Astrophysics Data System (ADS)

    Osinnykh, I. V.; Malin, T. V.; Zhuravlev, K. S.

    2018-03-01

    The photoluminescence properties of the intensive defect-related emission in heavily doped Al x Ga l-x N:Si layers with x > 0.5 have been investigated by photoluminescence (PL) spectroscopy. The PL band in AlN was attributed to donor-acceptor (DA) transitions. At the lowest Al content, the impurity band merges with the conduction band and DA transitions are replaced by electron-acceptor transitions involving the same acceptor. The energy structure of recombination centers was obtained using the model of configuration coordinates for Al0.67Ga0.33N.

  3. Effects of Mg Doping on the Performance of InGaN Films Made by Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Kuo, Dong-Hau; Li, Cheng-Che; Tuan, Thi Tran Anh; Yen, Wei-Chun

    2015-01-01

    Mg-doped InGaN (Mg-InGaN) films have been deposited directly on Si (100) substrates by radio-frequency reactive sputtering technique with single cermet targets in an Ar/N2 atmosphere. The cermet targets with a constant 5% indium content were made by hot pressing the mixture of metallic In, Ga, and Mg powders and ceramic GaN powder. The Mg-InGaN films had a wurtzite structure with a preferential () growth plane. The SEM images showed that Mg-InGaN films were smooth, continuous, free from cracks and holes, and composed of nanometer-sized grains. As the Mg dopant content in Mg-InGaN increased to 7.7 at.%, the film was directly transformed into p-type conduction without a post-annealing process. It had high hole concentration of 5.53 × 1018 cm-3 and electrical mobility of 15.7 ± 4.2 cm2 V-1 s-1. The over-doping of Mg in InGaN degraded the electrical properties. The bandgap of Mg-InGaN films decreased from 2.92 eV to 2.84 eV, as the Mg content increased from 7.7% to 18.2%. The constructed p-type Mg-InGaN/ n-type GaN diode was used to confirm the realization of the p-type InGaN by sputtering technique.

  4. Structural, thermal, dielectric spectroscopic and AC impedance properties of SiC nanoparticles doped PVK/PVC blend

    NASA Astrophysics Data System (ADS)

    Alghunaim, Naziha Suliman

    2018-06-01

    Nanocomposite films based on poly (N-vinylcarbazole)/polyvinylchloride (PVK/PVC) blend doped with different concentrations of Silicon Carbide (SiC) nanoparticles have been prepared. The X-ray diffraction, Ultra violet-visible spectroscopy, thermogravimetric analysis and electrical spectroscopic has been used to characterize these nanocomposites. The X-ray analysis confirms the semi-crystalline nature of the films. The intensity of the main X-ray peak is decreased due to the interaction between the PVK/PVC and SiC. The main SiC peaks are absent due to complete dissolution of SiC in polymeric matrices. The UV-Vis spectra indicated that the band gap optical energy is affected by adding SiC nanoparticles because the charges transfer complexes between PVK/PVC with amount of SiC. The thermal stability is improved and the estimated values of ε‧ and ε″ are increased with increasing for SiC content due to the free charge carriers which in turn increase the ionic conductivity of the doped samples. The plots of tan δ with frequency are studied. A single peak from the plot between tan δ and Log (f) is appeared and shifted towards the higher frequency confirmed the presence of relaxing dipoles moment.

  5. n-type doping and morphology of GaAs nanowires in Aerotaxy

    DOE PAGES

    Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R.; ...

    2018-05-10

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 and 530 degrees C, respectively, resulted in good morphologicalmore » quality nanowires for a flow ratio of TESn to TMGa up to 2.25 x 10 -3. The wires are pure Zinc-blende for all investigated growth conditions, whereas nanowires grown by MOVPE with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1- 3) x 10 19 cm -3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.« less

  6. n-type doping and morphology of GaAs nanowires in Aerotaxy

    NASA Astrophysics Data System (ADS)

    Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R.; Geijselaers, Irene; Reine Wallenberg, L.; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H.

    2018-07-01

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au–Ga–Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 °C and 530 °C, respectively, resulted in good morphological quality nanowires for a flow ratio of TESn to TMGa up to 2.25 × 10‑3. The wires are pure zinc-blende for all investigated growth conditions, whereas nanowires grown by metal-organic vapor phase epitaxy with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1–3) × 1019 cm‑3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm‑3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.

  7. n-type doping and morphology of GaAs nanowires in Aerotaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metaferia, Wondwosen; sivakumar, sudhakar; R. Persson, Axel

    2018-04-17

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 and 530 degrees C, respectively, resulted in good morphologicalmore » quality nanowires for a flow ratio of TESn to TMGa up to 2.25 x 10-3. The wires are pure Zinc-blende for all investigated growth conditions, whereas nanowires grown by MOVPE with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1- 3) x 1019 cm-3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.« less

  8. n-type doping and morphology of GaAs nanowires in Aerotaxy.

    PubMed

    Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R; Geijselaers, Irene; Wallenberg, L Reine; Deppert, Knut; Samuelson, Lars; Magnusson, Martin H

    2018-04-17

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 °C and 530 °C, respectively, resulted in good morphological quality nanowires for a flow ratio of TESn to TMGa up to 2.25 × 10 -3 . The wires are pure zinc-blende for all investigated growth conditions, whereas nanowires grown by metal-organic vapor phase epitaxy with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1-3) × 10 19 cm -3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 10 19 cm -3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.

  9. n-type doping and morphology of GaAs nanowires in Aerotaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R.

    Controlled doping in semiconductor nanowires modifies their electrical and optical properties, which are important for high efficiency optoelectronic devices. We have grown n-type (Sn) doped GaAs nanowires in Aerotaxy, a new continuous gas phase mass production technique. The morphology of Sn doped nanowires is found to be a strong function of dopant, tetraethyltin to trimethylgallium flow ratio, Au-Ga-Sn alloying, and nanowire growth temperatures. High temperature and high flow ratios result in low morphological quality nanowires and in parasitic growth on the wire base and surface. Alloying and growth temperatures of 400 and 530 degrees C, respectively, resulted in good morphologicalmore » quality nanowires for a flow ratio of TESn to TMGa up to 2.25 x 10 -3. The wires are pure Zinc-blende for all investigated growth conditions, whereas nanowires grown by MOVPE with the same growth conditions are usually mainly Wurtzite. The growth rate of the doped wires is found to be dependent more on the TESn flow fraction than on alloying and nanowire growth temperatures. Our photoluminescence measurements, supported by four-point probe resistivity measurements, reveal that the carrier concentration in the doped wires varies only slightly (1- 3) x 10 19 cm -3 with TESn flow fraction and both alloying and growth temperatures, indicating that good morphological quality wires with high carrier density can be grown with low TESn flow. Carrier concentrations lower than 1019 cm-3 can be grown by further reducing the flow fraction of TESn, which may give better morphology wires.« less

  10. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas

    2016-12-01

    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  11. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panda, Padmalochan; Ramaseshan, R.; Krishna, Nanda Gopala; Dash, S.

    2016-05-01

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N2 concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (HIT) of around 28.2 GPa for a nitrogen concentration of 25%.

  12. Doping of AlxGa1-xN

    NASA Astrophysics Data System (ADS)

    Stampfl, C.; Van de Walle, Chris G.

    1998-01-01

    N-type AlxGa1-xN exhibits a dramatic decrease in the free-carrier concentration for x⩾0.40. Based on first-principles calculations, we propose that two effects are responsible for this behavior: (i) in the case of doping with oxygen (the most common unintentional donor), a DX transition occurs, which converts the shallow donor into a deep level; and (ii) compensation by the cation vacancy (VGa or VAl), a triple acceptor, increases with alloy composition x. For p-type doping, the calculations indicate that the doping efficiency decreases due to compensation by the nitrogen vacancy. In addition, an increase in the acceptor ionization energy is found with increasing x.

  13. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  14. Microwave annealing of Mg-implanted and in situ Be-doped GaN

    NASA Astrophysics Data System (ADS)

    Aluri, Geetha S.; Gowda, Madhu; Mahadik, Nadeemullah A.; Sundaresan, Siddarth G.; Rao, Mulpuri V.; Schreifels, John A.; Freitas, J. A.; Qadri, S. B.; Tian, Y.-L.

    2010-10-01

    An ultrafast microwave annealing method, different from conventional thermal annealing, is used to activate Mg-implants in GaN layer. The x-ray diffraction measurements indicated complete disappearance of the defect sublattice peak, introduced by the implantation process for single-energy Mg-implantation, when the annealing was performed at ≥1400 °C for 15 s. An increase in the intensity of Mg-acceptor related luminescence peak (at 3.26 eV) in the photoluminescence spectra confirms the Mg-acceptor activation in single-energy Mg-implanted GaN. In case of multiple-energy implantation, the implant generated defects persisted even after 1500 °C/15 s annealing, resulting in no net Mg-acceptor activation of the Mg-implant. The Mg-implant is relatively thermally stable and the sample surface roughness is 6 nm after 1500 °C/15 s annealing, using a 600 nm thick AlN cap. In situ Be-doped GaN films, after 1300 °C/5 s annealing have shown Be out-diffusion into the AlN layer and also in-diffusion toward the GaN/SiC interface. The in-diffusion and out-diffusion of the Be increased with increasing annealing temperature. In fact, after 1500 °C/5 s annealing, only a small fraction of in situ doped Be remained in the GaN layer, revealing the inadequateness of using Be-implantation for forming p-type doped layers in the GaN.

  15. EPR and Structural Characterization of Water-Soluble Mn2+-Doped Si Nanoparticles

    PubMed Central

    2016-01-01

    Water-soluble poly(allylamine) Mn2+-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM–1 s–1 and r2 relaxivity of 32.7 ± 4.7 mM–1 s–1 where the concentration is in mM of Mn2+. Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM–1 s–1 and r2 relaxivity of 1078.5 ± 1.9 mM–1 s–1. X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn2+ in these NP’s. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP’s. PMID:28154618

  16. Production and evolution of A-centers in n-type Si1-xGex

    NASA Astrophysics Data System (ADS)

    Sgourou, E. N.; Andrianakis, A.; Londos, C. A.; Chroneos, A.

    2013-03-01

    The vacancy-oxygen pair (VO or A-center) in n-type Si1-xGex crystals (x = 0, 0.025, 0.055) has been studied using infrared (IR) spectroscopy. It is determined that the VO production is suppressed in the case of n-type Si1-xGex as compared to Si. It is observed that the annealing temperature of the VO defect in Si1-xGex is substantially lower as compared to Si. The decay of the VO (830 cm-1) band, in the course of 20 min isochronal anneals, shows two stages: The onset of the first stage is at ˜180 °C and the decrease of the VO signal is accompanied in the spectra by the increase of the intensity of two bands at ˜834 and 839 cm-1. These bands appear in the spectra immediately after irradiation and were previously correlated with (VO-Ge) structures. The onset of the second stage occurs at ˜250 °C were the 830 cm-1 band of VO and the above two bands of (VO-Ge) decrease together in the spectra accompanied by the simultaneous growth of the 885 cm-1 band of the VO2 defect. Interestingly, the percentage of the VO pairs that are converted to VO2 defects is larger in the Si1-xGex samples with intermediate Ge content (x = 0.025) as compared with Si (x = 0) and with the high Ge content samples (x = 0.055). The results are discussed in view of the association of VO pairs with Ge.

  17. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-01

    The lowest-energy structures of neutral and cationic GenM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  18. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    PubMed

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

  19. Sputter-Grown Sb-DOPED Silicon Nanocrystals Embedded in Silicon-Rich Carbide for si Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobo; Tang, Yu; Hao, Jiabo

    Sb-doped silicon nanocrystals (Si-NCs) films were fabricated by magnetron co-sputtering combined with rapid-thermal annealing. The effects of Sb content on the structural and electrical properties of the films were studied. The dot size increased with the increasing Sb content, and could be correlated to the effect of Sb-induced crystallization. The variation in the concentration of Sb shows a significant impact on the film properties, where as doped with 0.8at.% of Sb exhibited major property improvements when compared with other films. By employing Sb-doped Si-NCs films as emitter layers, Si-NCs/monocrystalline silicon heterojunction solar cells were fabricated and the effect of the Sb doping concentration on the photovoltaic properties was studied. It is found that the doping level in the Si-NCs layer is a key factor in determining the short-circuit current density and power conversion efficiency (PCE). With an optimized doping concentration of 0.8at.% of Sb, a maximal PCE of 7.10% was obtained. This study indicates that the Sb-doped Si-NCs can be good candidates for all-silicon tandem solar cells.

  20. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  1. Polytype stability and defects in differently doped bulk SiC

    NASA Astrophysics Data System (ADS)

    Schmitt, Erwin; Straubinger, Thomas; Rasp, Michael; Vogel, Michael; Wohlfart, Andreas

    2008-03-01

    In this work, we present recent results on development and production of n-type 4 H bulk material. From previous studies it is evident that inclusions of foreign polytypes can act as origin of severe structural imperfections [N. Schulze, D.L. Barret, G. Pensl, S. Rohmfeld, M. Hundhausen, Mater. Sci. Eng. B 61-62 (1999) 44; D. Hofmann, E. Schmitt, M. Bickermann, M. Kölbl, P.J. Wellmann, A. Winnacker, Mater. Sci. Eng. B 61-62 (1999) 48], accompanied by defects like micropipes, stacking faults and dislocations. For that reason, we have carried out investigations to sustain polytype stability throughout the entire process, including nucleation and subsequent growth. Assisted by numerical calculations the influence of growth conditions, especially with respect to thermal field, Si/C ratio and doping, was examined. Several methods for the evaluation of material properties were applied to determine the quality most precisely, e.g. KOH-defect etching, optical microscopy, electron microscopy, X-ray diffraction and resistivity mapping. The key experience we gained was that moderate growth conditions with reduced temperature gradients are only one prerequisite for the reduction of defect density. Also stoichiometry in the gas phase and its modulation by nitrogen doping have to be taken into account and must be adjusted on the prevailing growth regime. We finally identified an optimized process that initiated a considerable improvement of material quality. Best values for 3″ 4 H wafers show that EPD<5×10 3 cm -2 and MPD<0.1 cm -2 can be achieved.

  2. Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.

    PubMed

    Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi

    2018-06-05

    SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.

  3. Notes on the plasma resonance peak employed to determine doping in SiC

    DOE PAGES

    Engelbrecht, J. A. A.; van Rooyen, I. J.; Henry, A.; ...

    2015-07-23

    In this study, the doping level of a semiconductor material can be determined using the plasma resonance frequency to obtain the carrier concentration associated with doping. This paper provides an overview of the procedure for the three most common polytypes of SiC. Results for 3C-SiC are presented and discussed. In phosphorus doped samples analysed, it is submitted that the 2nd plasma resonance cannot be detected due to high values of the free carrier damping constant γ.

  4. Dielectric and electrical studies of Pr{sup 3+} doped nano CaSiO{sub 3} perovskite ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Sandhya, E-mail: pappu.sandhyakulkarni@gmail.com; Nagabhushana, B.M.; Parvatikar, Narsimha

    2014-02-01

    Highlights: • CaSiO{sub 3}:Pr{sup 3+} was prepared by facile low temperature solution combustion method. • The crystalline phase of the product is obtained by adopting sintering method. • Samples prepared at 500 °C and calcined at 900 °C for 3 h showed β-phase. • The Pr{sup 3+} doped CaSiO{sub 3} shows “unusual results”. • The electrical microstructure has been accepted to be of internal barrier layer capacitor. - Abstract: CaSiO{sub 3} nano-ceramic powder doped with Pr{sup 3+} has been prepared by solution combustion method. The powder Ca{sub 0.95}Pr{sub 0.05}SiO{sub 3} is investigated for its dielectric and electrical properties at roommore » temperature to study the effect of doping. The sample is characterized by X-ray diffraction and infrared spectroscopy. The size of either of volume elements of CaSiO{sub 3}:Pr{sup 3+} estimated from transmission electron microscopy is about 180–200 nm. The sample shows colossal dielectric response at room temperature. This colossal dielectric behaviour follows Debye-type relaxation and can be explained by Maxwell–Wagner (MW) polarization. However, analysis of impedance and electric modulus data using Cole–Cole plot shows that it deviates from ideal Debye behaviour resulting from the distribution of relaxation times. The distribution in the relaxation times may be attributed to existence of electrically heterogeneous grains, insulating grain boundary, and electrode contact regions. Doping, thus, results in substantial modifications in the dielectric and electrical properties of the nano-ceramic CaSiO{sub 3}.« less

  5. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.

    PubMed

    Zhu, Shiyang; Fang, Q; Yu, M B; Lo, G Q; Kwong, D L

    2009-11-09

    Polycrystalline silicon (polySi) wire waveguides with width ranging from 200 to 500 nm are fabricated by solid-phase crystallization (SPC) of deposited amorphous silicon (a-Si) on SiO(2) at a maximum temperature of 1000 degrees C. The propagation loss at 1550 nm decreases from 13.0 to 9.8 dB/cm with the waveguide width shrinking from 500 to 300 nm while the 200-nm-wide waveguides exhibit quite large loss (>70 dB/cm) mainly due to the relatively rough sidewall of waveguides induced by the polySi dry etch. By modifying the process sequence, i.e., first patterning the a-Si layer into waveguides by dry etch and then SPC, the sidewall roughness is significantly improved but the polySi crystallinity is degraded, leading to 13.9 dB/cm loss in the 200-nm-wide waveguides while larger losses in the wider waveguides. Phosphorus implantation causes an additional loss in the polySi waveguides. The doping-induced optical loss increases relatively slowly with the phosphorus concentration increasing up to 1 x 10(18) cm(-3), whereas the 5 x 10(18) cm(-3) doped waveguides exhibit large loss due to the dominant free carrier absorption. For all undoped polySi waveguides, further 1-2 dB/cm loss reduction is obtained by a standard forming gas (10%H(2) + 90%N(2)) annealing owing to the hydrogen passivation of Si dangling bonds present in polySi waveguides, achieving the lowest loss of 7.9 dB/cm in the 300-nm-wide polySi waveguides. However, for the phosphorus doped polySi waveguides, the propagation loss is slightly increased by the forming gas annealing.

  6. Bn and Si-Doped Bn Coatings on Woven Fabrics

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Scott, John M.; Wheeler, Donald R.; Chayka, Paul V.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    A computer controlled, pulsed chemical vapor infiltration (CVI) system has been developed to deposit BN from a liquid borazine (B3N3H6) source, as well as silicon doped BN coatings using borazine and a silicon source, into 2-D woven ceramic fabric preforms. The coating process was evaluated as a function of deposition temperature, pressure, and precursor flow rate. Coatings were characterized by field emission scanning electron microscopy, electron dispersive spectroscopy and Auger spectroscopy. By controlling the reactant feed ratios, Si incorporation could be controlled over the range of 6-24 atomic percent.

  7. Barrier inhomogeneities and electronic transport of Pt contacts to relatively highly doped n-type 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lingqin, E-mail: lqhuang@jsnu.edu.cn, E-mail: dwang121@dlut.edu.cn; Wang, Dejun, E-mail: lqhuang@jsnu.edu.cn, E-mail: dwang121@dlut.edu.cn

    The barrier characteristics of Pt contacts to relatively highly doped (∼1 × 10{sup 18 }cm{sup −3}) 4H-SiC were investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements in the temperature range of 160–573 K. The barrier height and ideally factor estimated from the I-V characteristics based on the thermionic emission model are abnormally temperature-dependent, which can be explained by assuming the presence of a double Gaussian distribution (GD) of inhomogeneous barrier heights. However, in the low temperature region (160–323 K), the obtained mean barrier height according to GD is lower than the actual mean value from C-V measurement. The values of barrier height determined from themore » thermionic field emission model are well consistent with those from the C-V measurements, which suggest that the current transport process could be modified by electron tunneling at low temperatures.« less

  8. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  9. Vacancy-oxygen defects in p-type Si1-xGex

    NASA Astrophysics Data System (ADS)

    Sgourou, E. N.; Londos, C. A.; Chroneos, A.

    2014-10-01

    Oxygen-vacancy defects and, in particular, the VO pairs (known as A-centers) are common defects in silicon (Si) with a deleterious impact upon its properties. Although oxygen-vacancy defects have been extensively studied in Si there is far less information about their properties in p-type doped silicon germanium (Si1-xGex). Here, we use Fourier transform infrared spectroscopy to determine the production and evolution of oxygen-vacancy defects in p-type Si1-xGex. It was determined that the increase of Ge content affects the production and the annealing behavior of the VO defect as well as its conversion to the VO2 defect. In particular, both the VO production and the VO annealing temperature are reduced with the increase of Ge. The conversion ratio [VO2]/[VO] also decreases with the increase of x, although the ratios [VO3]/[VO2] and [VO4]/[VO3] show a tendency to increase for larger Ge contents. The results are discussed in view of recent experimental and theoretical studies in Si and Si1-xGex.

  10. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Padmalochan; Ramaseshan, R., E-mail: seshan@igcar.gov.in; Dash, S.

    2016-05-23

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.

  11. Improved electrochemical performance of boron-doped SiO negative electrode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Woo, Jihoon; Baek, Seong-Ho; Park, Jung-Soo; Jeong, Young-Min; Kim, Jae Hyun

    2015-12-01

    We introduce a one-step process that consists of thermal disproportionation and impurity doping to enhance the reversible capacity and electrical conductivity of silicon monoxide (SiO)-based negative electrode materials in Li-ion batteries. Transmission electron microscope (TEM) results reveal that thermally treated SiO at 900 °C (H-SiO) consists of uniformly dispersed nano-crystalline Si (nc-Si) in an amorphous silicon oxide (SiOx) matrix. Compared to that of prinstine SiO, the electrochemical performance of H-SiO shows improved specific capacity, due mainly to the increased reversible capacity by nc-Si and to the reduced volume expansion by thermally disproportionated SiOx matrix. Further electrochemical improvements can be obtained by boron-doping on SiO (HB-SiO) using solution dopant during thermal disproportionation. HB-SiO electrode without carbon coating exhibits significantly enhanced specific capacity superior to that of undoped H-SiO electrode, having 947 mAh g-1 at 0.5C rate and excellent capacity retention of 93.3% over 100 cycles. Electrochemical impedance spectroscopy (EIS) measurement reveals that the internal resistance of the HB-SiO electrode is significantly reduced by boron doping.

  12. Doping assessment in GaAs nanowires.

    PubMed

    Goktas, N Isik; Fiordaliso, E M; LaPierre, R R

    2018-06-08

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p-n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs was studied. The GaAs NWs were grown on (111) Si by molecular beam epitaxy using the self-assisted method. The dopant incorporation in the self-assisted GaAs NWs was investigated using Raman spectroscopy, photoluminescence, secondary ion mass spectrometry and electron holography. Be-doped NWs showed similar carrier concentration as compared to thin film (TF) standards. However, Te-doped NWs showed at least a one order of magnitude lower carrier concentration as compared to TF standards. Dopant incorporation mechanisms in NWs are discussed.

  13. Doping assessment in GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Isik Goktas, N.; Fiordaliso, E. M.; LaPierre, R. R.

    2018-06-01

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p–n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs was studied. The GaAs NWs were grown on (111) Si by molecular beam epitaxy using the self-assisted method. The dopant incorporation in the self-assisted GaAs NWs was investigated using Raman spectroscopy, photoluminescence, secondary ion mass spectrometry and electron holography. Be-doped NWs showed similar carrier concentration as compared to thin film (TF) standards. However, Te-doped NWs showed at least a one order of magnitude lower carrier concentration as compared to TF standards. Dopant incorporation mechanisms in NWs are discussed.

  14. Development of MoSi2 coating with Al doping by using high energy milling method

    NASA Astrophysics Data System (ADS)

    Simanjuntak, C. M. S.; Hastuty, S.; Izzuddin, H.; Sundawa, R.; Sudiro, T.; Sukarto, A.; Thosin, K. A. Z.

    2018-03-01

    MoSi2 is well known as a material for high temperature application because it has high oxidation and corrosion resistance. The aim of this research is to develop MoSi2 coating with Al doping on Stainless Steel 316 (SS316) substrate using High-Energy Milling method. Aluminium is added to the coating as a dopant to increase formation of MoSi2 coating layer on the substrate. The variations used here based on the concentrations of doping Al (at.%) and duration of milling. Results show that the MoSi2 coatings with variations of 30 and 50 at.% of Al doping and 3 and 6 hours of milling times were successfully coated on the surface of SS 316 using the high-energy milling method. The most optimum coating result after oxidation test at 1100 °C for 100 hours is shown by MoSi2-30%Al with 3 hours of milling times. From the oxidation results, the Al doping into MoSi2 coating was able to increase the oxidation resistance of the SS 316 substrate.

  15. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Toru, E-mail: katsumat@toyo.jp; Morita, Kentaro; Komuro, Shuji

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900more » K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.« less

  16. The n-type conduction of indium-doped Cu{sub 2}O thin films fabricated by direct current magnetron co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan, E-mail: yefan@szu.edu.cn

    2015-08-24

    Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. Themore » Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.« less

  17. Measurements of Breakdown Field and Forward Current Stability in 3C-SiC P-N Junction Diodes Grown on Step-Free 4H-SiC

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.

    2005-01-01

    This paper reports on initial fabrication and electrical characterization of 3C-SiC p-n junction diodes grown on step-free 4H-SiC mesas. Diodes with n-blocking-layer doping ranging from approx. 2 x 10(exp 16)/cu cm to approx.. 5 x 10(exp 17)/cu cm were fabricated and tested. No optimization of junction edge termination or ohmic contacts was employed. Room temperature reverse characteristics of the best devices show excellent low-leakage behavior, below previous 3C-SiC devices produced by other growth techniques, until the onset of a sharp breakdown knee. The resulting estimated breakdown field of 3C-SiC is at least twice the breakdown field of silicon, but is only around half the breakdown field of <0001> 4H-SiC for the doping range studied. Initial high current stressing of 3C diodes at 100 A/sq cm for more than 20 hours resulted in less than 50 mV change in approx. 3 V forward voltage. 3C-SiC, pn junction, p+n diode, rectifier, reverse breakdown, breakdown field,heteroepitaxy, epitaxial growth, electroluminescence, mesa, bipolar diode

  18. Thermal stability and dielectric properties of nano-SiO2-doped cellulose

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Tang, Chao; Hao, Jian; Wang, Xiaobo

    2017-07-01

    We report the thermal stability and dielectric properties of nano-SiO2-doped cellulose. Molecular dynamics simulations were performed using an undoped cellulose model (C0), a nano-SiO2-doped cellulose model with untreated surface unsaturated bonds (C1), and a nano-SiO2-doped cellulose model for which surface unsaturated O atoms were treated with -H and surface unsaturated Si atoms were treated with -OH (C2). The simulation results showed that the mechanical properties of C1 and C2 were better than those of C0 and were optimal when the content of nano-SiO2 was 5%. The simulation results for C2 were more accurate than those for the other models, and thus, C2 provides theoretical support for the construction of a reasonable model of nano-SiO2 and cellulose in the future. The temperature at which the free volume fraction of C2 jumps was 50 K higher than that for C0, and the thermal stability of C2 was better than that of C0. Experimental results showed that the maximum tensile strength of the insulation paper was obtained when the content of nano-SiO2 was 5%. Moreover, at this content of nano-SiO2, the dielectric constant was lowest and closest to that of transformer insulation oil, which will improve the distribution of the electric field and thus the overall breakdown performance of oil-paper insulation systems.

  19. Au generation centres doped n+-Si: hole-injection adjustable anode for efficient organic light emission

    NASA Astrophysics Data System (ADS)

    Li, Y. Z.; Ran, G. Z.; Zhao, W. Q.; Qin, G. G.

    2008-08-01

    An organic light-emitting diode (OLED) with an n-Si-anode usually has an efficiency evidently lower than the OLED with the same structure with a p-Si-anode due to insufficient hole injection from the n-Si anode compared with the p-Si-anode. In this study, we find that introducing Au as generation centres with a suitable concentration into the n+-Si anode can enhance hole injection to match electron injection and then considerably promote the power efficiency. With optimizing Au generation centre concentration in the n+-Si anode, the OLED with a structure of n+-Si: Au/NPB/AlQ/Sm/Au reaches a highest power efficiency of 1.0 lm W-1, evidently higher than the reported highest power efficiency of 0.2 lm W-1 for its p-Si-anode counterpart. Furthermore, when the electron injection is enhanced by adopting BPhen:Cs2CO3 partly instead of AlQ as the electron transport material, and the Au generation centre concentration in the n+-Si anode is promoted correspondingly, then a highest power efficiency of 1.8 lm W-1 is reached. The role of Au generation centres in the n+-Si anode is discussed.

  20. Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene

    DTIC Science & Technology

    2012-06-29

    dopant forms one σ-bond with its C neighbor, forms σ-bonds to two H (or one N-lone-pair orbital in the unhydrogenated case). Two electrons go into the...pyridinic groups (Table 1), the additional charge from nitrogen is forced to go to the extended carbon π-network, essentially neutralizing the p-doping...T.; Bouchet-Fabre, B.; Granier, A.; Turban, G. XPS and NEXAFS characterisation of plasma deposited vertically aligned N-doped MWCNT . Diamond Relat

  1. Real-time photoelectron spectroscopy study of the oxidation reaction kinetics on p-type and n-type Si (001) surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Zhou

    Silicon oxides thermally grown on Si surface are the core gate materials of metal-oxide-semiconductor field effect transistor (MOSFET). This thin oxide layer insulates the gate terminals and the transistors substrate which make MOSFET has certain advantages over those conventional junctions, such as field-effect transistor (FET) and junction field effect transistor (JFET). With an oxide insulating layer, MOSFET is able to sustain higher input impedance and the corresponding gate leakage current can be minimized. Today, though the oxidation process on Si substrate is popular in industry, there are still some uncertainties about its oxidation kinetics. On a path to clarify and modeling the oxidation kinetics, a study of initial oxidation kinetics on Si (001) surface has attracted attentions due to having a relatively low surface electron density and few adsorption channels compared with other Si surface direction. Based on previous studies, there are two oxidation models of Si (001) that extensively accepted, which are dual oxide species mode and autocatalytic reaction model. These models suggest the oxidation kinetics on Si (001) mainly relies on the metastable oxygen atom on the surface and the kinetic is temperature dependent. Professor Yuji Takakuwa's group, Surface Physics laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, observed surface strain existed during the oxidation kinetics on Si (001) and this is the first time that strain was discovered during Si oxidation. Therefore, it is necessary to explain where the strain comes from since none of previous model research included the surface strain (defects generation) into considerations. Moreover, recent developing of complementary metal-oxide-semiconductor (CMOS) requires a simultaneous oxidation process on p- and n-type Si substrate. However, none of those previous models included the dopant factor into the oxidation kinetic modeling. All of these points that

  2. Using a delta-doped CCD to determine the energy of a low-energy particle

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Croley, Donald R. (Inventor); Murphy, Gerald B. (Inventor)

    2001-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to determine the energy of a very low-energy particle that penetrates less than 1.0 nm into the CCD, such as a proton having energy less than 10 keV.

  3. Synthesis and characterization of AlTiSiN/CrSiN multilayer coatings by cathodic arc ion-plating

    NASA Astrophysics Data System (ADS)

    Yang, B.; Tian, C. X.; Wan, Q.; Yan, S. J.; Liu, H. D.; Wang, R. Y.; Li, Z. G.; Chen, Y. M.; Fu, D. J.

    2014-09-01

    AlTiSiN/CrSiN multilayer coatings were deposited on Si (1 0 0) and cemented carbide substrates using Cr, AlTi cathodes and SiH4 gases by cathodic arc ion plating system. The influences of SiH4 gases flowrate on the structural and mechanical properties of the coatings were investigated, systematically. AlTiSiN/CrSiN coatings exhibit a B1 NaCl-type nano-multilayered structure in which the CrSiN nano-layers alternate with AlTiSiN nano-layers with multiple orientations of crystal planes indicated by XRD patterns and TEM. Si contents of the coatings increase with increasing SiH4 flowrate. The hardness of the coatings increases to the maximum value of 3500 Hv0.05 with increasing SiH4 flowrate from 20 to 40 sccm and then decreases with further addition of SiH4 gases. A higher adhesive force of 73 N is obtained at the flowrate of 48 sccm. The coatings exhibit different tribological performance when the mating materials were varied from Si3N4 to cemented carbide balls and the variation of friction coefficients of the coatings against Si3N4 influenced by SiH4 flowrate are not obvious as against cemented carbide balls.

  4. An Isotope Study of Hydrogenation of poly-Si/SiOx Passivated Contacts for Si Solar Cells: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnabel, Manuel; Nemeth, William; van de Loo, Bas, W.H.

    2017-06-26

    For many years, the record Si solar cell efficiency stood at 25.0%. Only recently have several companies and institutes managed to produce more efficient cells, using passivated contacts of made doped poly-Si or a-Si:H and a passivating intrinsic interlayer in all cases. Common to these designs is the need to passivate the layer stack with hydrogen. In this contribution, we perform a systematic study of passivated contact passivation by hydrogen, using poly-Si/SiOx passivated contacts on n-Cz-Si, and ALD Al2O3 followed by a forming gas anneal (FGA) as the hydrogen source. We study p-type and n-type passivated contacts with implied Vocmore » exceeding 690 and 720 mV, respectively, and perform either the ALD step or the FGA with deuterium instead of hydrogen in order to separate the two processes via SIMS. By examining the deuterium concentration at the SiOx in both types of samples, we demonstrate that the FGA supplies negligible hydrogen species to the SiOx, regardless of whether the FGA is hydrogenated or deuterated. Instead, it supplies the thermal energy needed for hydrogen species in the Al2O3 to diffuse there. Furthermore, the concentration of hydrogen species at the SiOx can saturate while implied Voc continues to increase, showing that the energy from the FGA is also required for hydrogen species already at the SiOx to find recombination-active defects to passivate.« less

  5. Spectroscopic evidence of photogenerated carrier separation by built-in electric field in Sb-doped n-BaSi2/B-doped p-BaSi2 homojunction diodes

    NASA Astrophysics Data System (ADS)

    Kodama, Komomo; Takabe, Ryota; Deng, Tianguo; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    The operation of a BaSi2 homojunction solar cell is first demonstrated. In n+-BaSi2 (20 nm)/p-BaSi2 (500 nm)/p+-BaSi2 (50 nm) homojunction diodes on p+-Si(111) (resistivity ρ < 0.01 Ω cm), the internal quantum efficiency (IQE) under AM1.5 illumination becomes pronounced at wavelengths λ < 800 nm and exceeded 30% at λ = 500 nm. In contrast, the IQE values are small at λ < 600 nm in n+-BaSi2 (300 nm)/p-Si (ρ > 0.1 Ω cm) heterojunction diodes, but are high in the range between 600 and 1200 nm. The difference in spectral response demonstrates the photogenerated carrier separation by the built-in electric field in the homojunction diode.

  6. A concise way to estimate the average density of interface states in an ITO-SiOx/n-Si heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Li, Y.; Han, B. C.; Gao, M.; Wan, Y. Z.; Yang, J.; Du, H. W.; Ma, Z. Q.

    2017-09-01

    On the basis of a photon-assisted high frequency capacitance-voltage (C-V) method (1 MHz C-V), an effective approach is developed to evaluate the average interface state density (Dit) of an ITO-SiOx/n-Si heterojunction structure. Tin-doped indium oxide (ITO) films with different thicknesses were directly deposited on (100) n-type crystalline silicon by magnetron sputtering to fabricate semiconductor-insulator-semiconductor (SIS) hetero-interface regions where an ultra-thin SiOx passivation layer was naturally created. The morphology of the SiOx layer was confirmed by X-ray photoelectron spectroscopy depth profiling and transmission electron microscope analysis. The thinness of this SiOx layer was the main reason for the SIS interface state density being more difficult to detect than that of a typical metal-oxide-semiconductor structure. A light was used for photon injection while measuring the C-V of the device, thus enabling the photon-assisted C-V measurement of the Dit. By quantifying decreases of the light-induced-voltage as a variation of the capacitance caused by parasitic charge at interface states the passivation quality within the interface of ITO-SiOx/n-Si could be reasonably evaluated. The average interface state density of these SIS devices was measured as 1.2-1.7 × 1011 eV-1 cm-2 and declined as the passivation layer was made thicker. The lifetime of the minority carriers, dark leakage current, and the other photovoltaic parameters of the devices were also used to determine the passivation.

  7. In-situ synchrotron x-ray study of MgB2 formation when doped by SiC

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Grivel, J.-C.; Andersen, N. H.; Herrmann, M.; Häßler, W.; Birajdar, B.; Eibl, O.; Saksl, K.

    2008-02-01

    We have studied the evolution of the reaction xMg + 2B + ySiC → zMg1-p(B1-qCq)2 + yMg2Si in samples of 1, 2, 5 and 10 wt% SiC doping. We found a coincident formation of MgB2 and Mg2Si, whereas the crystalline part of the SiC nano particles is not reacting at all. Evidence for incorporation of carbon into the MgB2 phase was established from the decrease of the a-axis lattice parameter upon increasing SiC doping. An estimate of the MgB2 lower limit grain size was found to decrease from L100 = 795 Å and L002 = 337 Å at 1 wt% SiC to L100 = 227 Å and L002= 60 Å at 10 wt% SiC. Thus superconductivity might be suppressed at 10 wt% SiC doping due to the grain size approaching the coherence length.

  8. Si-Doping Effects in Cu(In,Ga)Se2 Thin Films and Applications for Simplified Structure High-Efficiency Solar Cells.

    PubMed

    Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime

    2017-09-13

    We found that elemental Si-doped Cu(In,Ga)Se 2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.

  9. Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Yuki; Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712; Oshiyama, Atsushi

    2015-11-07

    We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ionmore » battery.« less

  10. High-efficiency UV/optical/NIR detectors for large aperture telescopes and UV explorer missions: development of and field observations with delta-doped arrays

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh; Jewell, April D.; Hoenk, Michael E.; Jones, Todd J.; Hennessy, John; Goodsall, Tim; Carver, Alexander G.; Shapiro, Charles; Cheng, Samuel R.; Hamden, Erika T.; Kyne, Gillian; Martin, D. Christopher; Schiminovich, David; Scowen, Paul; France, Kevin; McCandliss, Stephan; Lupu, Roxana E.

    2017-07-01

    Exciting concepts are under development for flagship, probe class, explorer class, and suborbital class NASA missions in the ultraviolet/optical spectral range. These missions will depend on high-performance silicon detector arrays being delivered affordably and in high numbers. To that end, we have advanced delta-doping technology to high-throughput and high-yield wafer-scale processing, encompassing a multitude of state-of-the-art silicon-based detector formats and designs. We have embarked on a number of field observations, instrument integrations, and independent evaluations of delta-doped arrays. We present recent data and innovations from JPL's Advanced Detectors and Systems Program, including two-dimensional doping technology, JPL's end-to-end postfabrication processing of high-performance UV/optical/NIR arrays and advanced coatings for detectors. While this paper is primarily intended to provide an overview of past work, developments are identified and discussed throughout. Additionally, we present examples of past, in-progress, and planned observations and deployments of delta-doped arrays.

  11. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  12. Insertion of a pentacene layer into the gold/poly(methyl methacrylate)/heavily doped p-type Si/indium device leading to the modulation of resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    In order to get a physical insight into the pentacene interlayer-modulated resistive switching (RS) characteristics, the Au/pentacene/poly(methyl methacrylate) (PMMA)/heavily doped p-type Si (p+-Si)/In and Au/PMMA/p+-Si/In devices are fabricated and the device performance is provided. The Au/pentacene/PMMA/p+-Si/In device shows RS behavior, whereas the Au/PMMA/p+-Si/In device exhibits the set/reset-free hysteresis current-voltage characteristics. The insertion of a pentacene layer is a noticeable contribution to the RS characteristic. This is because of the occurrence of carrier accumulation/depletion in the pentacene interlayer. The transition from carrier depletion to carrier accumulation (carrier accumulation to carrier depletion) in pentacene occurring under negative (positive) voltage induces the process of set (reset). The switching conduction mechanism is primarily described as space charge limited conduction according to the electrical transport properties measurement. The concept of a pentacene/PMMA heterostructure opens a promising direction for organic memory devices.

  13. Optoelectrical modeling of solar cells based on c-Si/a-Si:H nanowire array: focus on the electrical transport in between the nanowires.

    PubMed

    Levtchenko, Alexandra; Le Gall, Sylvain; Lachaume, Raphaël; Michallon, Jérôme; Collin, Stéphane; Alvarez, José; Djebbour, Zakaria; Kleider, Jean-Paul

    2018-06-22

    By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell's performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V bi ) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively. Consequently, the solar cell's performance is degraded if either the doping concentration of the c-Si core, or/and the work function of the back contact is too low. By inserting a thin (p) a-Si:H layer between both core/absorber and back contact/absorber, the performance of the solar cell can be improved by partly fixing the V bi at both interfaces due to strong electrostatic screening effect. Depositing such a buffer layer playing the role of an electrostatic screen for charge carriers is a suggested way of enhancing the performance of solar cells based on radial p-i-n or n-i-p nanowire array.

  14. Optoelectrical modeling of solar cells based on c-Si/a-Si:H nanowire array: focus on the electrical transport in between the nanowires

    NASA Astrophysics Data System (ADS)

    Levtchenko, Alexandra; Le Gall, Sylvain; Lachaume, Raphaël; Michallon, Jérôme; Collin, Stéphane; Alvarez, José; Djebbour, Zakaria; Kleider, Jean-Paul

    2018-06-01

    By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell’s performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V bi) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively. Consequently, the solar cell’s performance is degraded if either the doping concentration of the c-Si core, or/and the work function of the back contact is too low. By inserting a thin (p) a-Si:H layer between both core/absorber and back contact/absorber, the performance of the solar cell can be improved by partly fixing the V bi at both interfaces due to strong electrostatic screening effect. Depositing such a buffer layer playing the role of an electrostatic screen for charge carriers is a suggested way of enhancing the performance of solar cells based on radial p-i-n or n-i-p nanowire array.

  15. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko

    2018-02-01

    In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.

  16. A comparative study of three-terminal Hanle signals in CoFe/SiO{sub 2}/n{sup +}-Si and Cu/SiO{sub 2}/n{sup +}-Si tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong-Hyeon; Cho, B. K., E-mail: chobk@gist.ac.kr; Grünberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology

    We performed three-terminal (3T) Hanle measurement for two types of sample series, CoFe/SiO{sub 2}/n{sup +}-Si and Cu/SiO{sub 2}/n{sup +}-Si, with various tunnel resistances. Clear Hanle signal and anomalous scaling between spin resistance-area product and tunnel resistance-area product were observed in CoFe/SiO{sub 2}/n{sup +}-Si devices. In order to explore the origin of the Hanle signal and the impurity-assisted tunneling effect on the Hanle signal in our devices, Hanle measurement in Cu/SiO{sub 2}/n{sup +}-Si devices was performed as well. However, no detectable Hanle signal was observed in Cu/SiO{sub 2}/n{sup +}-Si, even though a lot of samples with various tunnel resistances were studiedmore » in wide temperature and bias voltage ranges. Through a comparative study, it is found that the impurity-assisted tunneling magnetoresistance mechanism would not play a dominant role in the 3T Hanle signal in CoFe/SiO{sub 2}/n{sup +}-Si tunnel junctions, where the SiO{sub 2} was formed by plasma oxidation to minimize impurities.« less

  17. Improvement of minority carrier life time in N-type monocrystalline Si by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Baik, Sungsun; Pang, Ilsun; Kim, Jaemin; Kim, Kwanghun

    2016-07-01

    The installation amount of solar power plants increases every year. Multi-crystalline Si solar cells comprise a large share of the market of solar power plants. Multi-crystalline and single-crystalline Si solar cells are competing against one another in the market. Many single-crystalline companies are trying to develop and produce n-type solar cells with higher cell efficiency than that of p-type. In n-type wafers with high cell efficiency, wafer quality has become increasingly important. In order to make ingots with higher MCLT, the effects of both poly types related to metal impurities and pull speeds related to vacancy concentration on minority carrier life time were studied. In the final part of ingots, poly types related to the metal impurities are a dominant factor on MCLT. In the initial part of ingots, pull speeds related to vacancy concentration are a dominant factor on MCLT. [Figure not available: see fulltext.

  18. Synthesis of SrAl2O4:Eu2+ phosphors co-doped with Dy3+, Tb3+, Si4+ and optimization of co-doping amount by response surface method

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin

    2016-03-01

    Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue

  19. Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    NASA Technical Reports Server (NTRS)

    Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.

    1990-01-01

    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.

  20. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  1. Instability of phosphorous doped SiO2 in 4H-SiC MOS capacitors at high temperatures

    NASA Astrophysics Data System (ADS)

    Idris, M. I.; Weng, M. H.; Chan, H.-K.; Murphy, A. E.; Clark, D. T.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2016-12-01

    In this paper, the effect of inclusion of phosphorous (at a concentration below 1%) on the high temperature characteristics (up to 300 °C) of the SiO2/SiC interface is investigated. Capacitance-voltage measurements taken for a range of frequencies have been utilized to extract parameters including flatband voltage, threshold voltage, effective oxide charge, and interface state density. The variation of these parameters with temperature has been investigated for bias sweeps in opposing directions and a comparison made between phosphorous doped and as-grown oxides. At room temperature, the effective oxide charge for SiO2 may be reduced by the phosphorous termination of dangling bonds at the interface. However, at high temperatures, the effective charge in the phosphorous doped oxide remains unstable and effects such as flatband voltage shift and threshold voltage shift dominate the characteristics. The instability in these characteristics was found to result from the trapped charges in the oxide (±1012 cm-3) or near interface traps at the interface of the gate oxide and the semiconductor (1012-1013 cm-2 eV-1). Hence, the performance enhancements observed for phosphorous doped oxides are not realised in devices operated at elevated temperatures.

  2. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P., E-mail: vlabella@albany.edu

    2013-11-15

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to bemore » below the region of best fit for the power law form of the BK model, demonstrating its region of validity.« less

  3. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    PubMed Central

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN. PMID:28290480

  4. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  5. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice.

    PubMed

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-14

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN) 5 /(GaN) 1 superlattice (SL) in Al 0.83 Ga 0.17 N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as Mg Ga δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using Mg Ga δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  6. Study of subband electronic structure of Si δ-doped GaAs using magnetotransport measurements in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, G.; Hauser, N.; Jagadish, C.; Antoszewski, J.; Xu, W.

    1996-06-01

    Si δ-doped GaAs grown by metal organic vapor phase epitaxy (MOVPE) is characterized using magnetotransport measurements in tilted magnetic fields. Angular dependence of the longitudinal magnetoresistance (Rxx) vs the magnetic field (B) traces in tilted magnetic fields is used to examine the existence of a quasi-two-dimensional electron gas. The subband electron densities (ni) are obtained applying fast Fourier transform (FFT) analysis to the Rxx vs B trace and using mobility spectrum (MS) analysis of the magnetic field dependent Hall data. Our results show that (1) the subband electron densities remain roughly constant when the tilted magnetic field with an angle <30° measured from the Si δ-doped plane normal is ramped up to 13 T; (2) FFT analysis of the Rxx vs B trace and MS analysis of the magnetic field dependent Hall data both give the comparable results on subband electron densities of Si δ-doped GaAs with low δ-doping concentration, however, for Si δ-doped GaAs with very high δ-doping concentration, the occupation of the lowest subbands cannot be well resolved in the MS analysis; (3) the highest subband electron mobility reported to date of 45 282 cm2/s V is observed in Si δ-doped GaAs at 77 K in the dark; and (4) the subband electron densities of Si δ-doped GaAs grown by MOVPE at 700 °C are comparable to those grown by MBE at temperatures below 600 °C. A detailed study of magnetotransport properties of Si δ-doped GaAs in the parallel magnetic fields is then carried out to further confirm the subband electronic structures revealed by FFT and MS analysis. Our results are compared to theoretical calculation previously reported in literature. In addition, influence of different cap layer structures on subband electronic structures of Si δ-doped GaAs is observed and also discussed.

  7. Donor-acceptor-pair emission in fluorescent 4H-SiC grown by PVT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xi, E-mail: liuxi@mail.sic.ac.cn; Zhuo, Shi-Yi; Gao, Pan

    Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystalmore » in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal.« less

  8. n-ZnO/p-4H-SiC diode: Structural, electrical, and photoresponse characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guziewicz, M., E-mail: margu@ite.waw.pl; Jung, W.; Schifano, R.

    Epitaxial n-type ZnO film has been grown, on a commercial 5 μm thick p-type 4H-SiC(00.1) Al doped epilayer, by atomic layer deposition. A full width at half maximum of the ZnO 00.2 diffraction peak rocking curve of 0.34°{sup  }± 0.02° has been measured. Diodes formed on the n-ZnO/p-4H-SiC heterostructure show rectifying behavior with a forward to reverse current ratio at the level of 10{sup 9} at ±4 V, a leakage current density of ∼6 × 10{sup −8} A/cm{sup 2}, and a low ideality factor equal to 1.17 ± 0.04. In addition, the diodes exhibit selective photoresponse with a maximum at 367 nm, and with a current increasemore » of ∼10{sup 3} under illuminations with respect to the dark value, which makes such devices prospective candidates for ultraviolet light sensors.« less

  9. Improvement of carrier injection symmetry and quantum efficiency in InGaN light-emitting diodes with Mg delta-doped barriers

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Can, N.; Hafiz, S.; Monavarian, M.; Das, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-05-01

    The effect of δ-doping of In0.06Ga0.94N barriers with Mg on the quantum efficiency of blue light-emitting-diodes (LEDs) with active regions composed of 6 (hex) 3-nm In0.15Ga0.85N is investigated. Compared to the reference sample, δ-doping of the first barrier on the n-side of the LED structure improves the peak external quantum efficiency (EQE) by 20%, owing to the increased hole concentration in the wells adjacent to the n-side, as confirmed by numerical simulations of carrier distributions across the active region. Doping the second barrier, in addition to the first one, did not further enhance the EQE, which likely indicates compensation of improved hole injection by degradation of the active region quality due to Mg doping. Both LEDs with Mg δ-doped barriers effectively suppress the drop of efficiency at high injection when compared to the reference sample, and the onset of EQE peak roll-off shifts from ˜80 A/cm2 in the reference LED to ˜120 A/cm2 in the LEDs with Mg δ-doped barriers.

  10. On the origin of high ionic conductivity in Na-doped SrSiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen

    Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less

  11. On the origin of high ionic conductivity in Na-doped SrSiO 3

    DOE PAGES

    Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen; ...

    2016-02-17

    Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less

  12. Leakage current conduction and reliability assessment of passivating thin silicon dioxide films on n-4H-SiC

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas; Mandal, Krishna C.

    2016-09-01

    We have analyzed the mechanisms of leakage current conduction in passivating silicon dioxide (SiO2) films grown on (0 0 0 1) silicon (Si) face of n-type 4H-SiC (silicon carbide). It was observed that the experimentally measured gate current density in metal-oxide-silicon carbide (MOSiC) structures under positive gate bias at an oxide field Eox above 5 MV/cm is comprised of Fowler-Nordheim (FN) tunneling of electrons from the accumulated n-4H-SiC and Poole-Frenkel (PF) emission of trapped electrons from the localized neutral traps in the SiO2 gap, IFN and IPF, respectively at temperatures between 27 and 200 °C. In MOSiC structures, PF mechanism dominates FN tunneling of electrons from the accumulation layer of n-4H-SiC due to high density (up to 1013 cm-2) of carbon-related acceptor-like traps located at about 2.5 eV below the SiO2 conduction band (CB). These current conduction mechanisms were taken into account in studying hole injection/trapping into 10 nm-thick tunnel oxide on the Si face of 4H-SiC during electron injection from n-4H-SiC under high-field electrical stress with positive bias on the heavily doped n-type polysilicon (n+-polySi) gate at a wide range of temperatures between 27 and 200 °C. Holes were generated in the n+-polySi anode material by the hot-electrons during their transport through thin oxide films at oxide electric fields Eox from 5.6 to 8.0 MV/cm (prior to the intrinsic oxide breakdown field). Time-to-breakdown tBD of the gate dielectric was found to follow reciprocal field (1/E) model irrespective of stress temperatures. Despite the significant amount of process-induced interfacial electron traps contributing to a large amount of leakage current via PF emission in thermally grown SiO2 on the Si-face of n-4H-SiC, MOSiC devices having a 10 nm-thick SiO2 film can be safely used in 5 V TTL logic circuits over a period of 10 years.

  13. Large old trees influence patterns of delta13C and delta15N in forests.

    PubMed

    Weber, Pascale; Bol, Roland; Dixon, Liz; Bardgett, Richard D

    2008-06-01

    Large old trees are the dominant primary producers of native pine forest, but their influence on spatial patterns of soil properties and potential feedback to tree regeneration in their neighbourhood is poorly understood. We measured stable isotopes of carbon (delta(13)C) and nitrogen (delta(15)N) in soil and litter taken from three zones of influence (inner, middle and outer zone) around the trunk of freestanding old Scots pine (Pinus sylvestris L.) trees, to determine the trees' influence on below-ground properties. We also measured delta(15)N and delta(13)C in wood cores extracted from the old trees and from regenerating trees growing within their three zones of influence. We found a significant and positive gradient in soil delta(15)N from the inner zone, nearest to the tree centre, to the outer zone beyond the tree crown. This was probably caused by the higher input of (15)N-depleted litter below the tree crown. In contrast, the soil delta(13)C did not change along the gradient of tree influence. Distance-related trends, although weak, were visible in the wood delta(15)N and delta(13)C of regenerating trees. Moreover, the wood delta(15)N of small trees showed a weak negative relationship with soil N content in the relevant zone of influence. Our results indicate that large old trees control below-ground conditions in their immediate surroundings, and that stable isotopes might act as markers for the spatial and temporal extent of these below-ground effects. John Wiley & Sons, Ltd

  14. p-type doping by platinum diffusion in low phosphorus doped silicon

    NASA Astrophysics Data System (ADS)

    Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.

    2003-07-01

    In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.

  15. Progress in doping of ruthenium silicide (Ru2Si3)

    NASA Technical Reports Server (NTRS)

    Vining, C. B.; Allevato, C. E.

    1992-01-01

    Ruthenium silicide is currently under development as a promising thermoelectric material suitable for space power applications. Key to realizing the potentially high figure of merit values of this material is the development of appropriate doping techniques. In this study, manganese and iridium have been identified as useful p- and n-type dopants, respectively. Resistivity values have been reduced by more than 3 orders of magnitude. Anomalous Hall effect results, however, complicate interpretation of some of the results and further effort is required to achieve optimum doping levels.

  16. Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Kung-Liang; Lin, Chih-Ming; Lin, Yu-Sheng; Jian, Sheng-Rui; Liao, Yen-Fa; Chuang, Yu-Chun; Wang, Chuan-Sheng; Juang, Jenh-Yih

    2016-02-01

    Pressure-induced phase transitions in n-type silicon-doped gallium arsenide (GaAs:Si ) at ambient temperature were investigated by using angular-dispersive X-ray diffraction (ADXRD) under high pressure up to around 18.6 (1) GPa, with a 4:1 (in volume ratio) methanol-ethanol mixture as the pressure-transmitting medium. In situ ADXRD measurements revealed that n-type GaAs:Si starts to transform from zinc- blende structure to an orthorhombic structure [GaAs-II phase], space group Pmm2, at 16.4 (1) GPa. In contrast to previous studies of pure GaAs under pressure, our results show no evidence of structural transition to Fmmm or Cmcm phase. The fitting of volume compression data to the third-order Birch-Murnaghan equation of state yielded that the zero-pressure isothermal bulk moduli and the first-pressure derivatives were 75 (3) GPa and 6.4 (9) for the B3 phase, respectively. After decompressing to the ambient pressure, the GaAs:Si appears to revert to the B3 phase completely. By fitting to the empirical relations, the Knoop microhardness numbers are between H PK = 6.21 and H A = 5.85, respectively, which are substantially smaller than the values of 7-7.5 for pure GaAs reported previously. A discontinuous drop in the pressure-dependent lattice parameter, N- N distances, and V/ V 0 was observed at a pressure of 11.5 (1) GPa, which was tentatively attributed to the pressure-induced dislocation activities in the crystal grown by vertical gradient freeze method.

  17. Analysis of tellurium as n-type dopant in GaInP: Doping, diffusion, memory effect and surfactant properties

    NASA Astrophysics Data System (ADS)

    García, I.; Rey-Stolle, I.; Galiana, B.; Algora, C.

    2007-01-01

    The use of tellurium as n-type dopant for GaAs and InP has several advantages, including a high incorporation efficiency, the very high doping levels achievable and a low diffusion coefficient. However, its use to dope Ga xIn 1-xP is not straightforward, since it shows several problems like a remarkable memory effect and an acute inertia of the material to become Te-doped, which gives rise to gradual doping profiles. In this paper, all these phenomena are studied and quantified using secondary ion mass spectroscopy (SIMS) and electrochemical CV profiling (ECV) measurements. Concerning the gradual doping profiles, their origin is linked to the interaction of Te and In in the gas phase and on the growth surface. A phenomenological explanation is given for this effect although the exact physical processes behind remain to be defined.

  18. Widely Applicable n-Type Molecular Doping for Enhanced Photovoltaic Performance of All-Polymer Solar Cells.

    PubMed

    Xu, Yalong; Yuan, Jianyu; Sun, Jianxia; Zhang, Yannan; Ling, Xufeng; Wu, Haihua; Zhang, Guobing; Chen, Junmei; Wang, Yongjie; Ma, Wanli

    2018-01-24

    A widely applicable doping design for emerging nonfullerene solar cells would be an efficient strategy in order to further improve device photovoltaic performance. Herein, a family of compound TBAX (TBA= tetrabutylammonium, X = F, Cl, Br, or I, containing Lewis base anions are considered as efficient n-dopants for improving polymer-polymer solar cells (all-PSCs) performance. In all cases, significantly increased fill factor (FF) and slightly increased short-circuit current density (J sc ) are observed, leading to a best PCE of 7.0% for all-PSCs compared to that of 5.8% in undoped devices. The improvement may be attributed to interaction between different anions X - (X = F, Cl, Br, and I) in TBAX with the polymer acceptor. We reveal that adding TBAX at relatively low content does not have a significantly impact on blend morphology, while it can reduce the work function (WF) of the electron acceptor. We find this simple and solution processable n-type doping can efficiently restrain charge recombination in all-polymer solar cell devices, resulting in improved FF and J sc. More importantly, our findings may provide new protocles and insights using n-type molecular dopants in improving the performance of current polymer-polymer solar cells.

  19. High pressure and time resolved studies of optical properties of n-type doped GaN/AlN multi-quantum wells: Experimental and theoretical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminska, A.; Cardinal Stefan Wyszynski University, College of Science, Department of Mathematics and Natural Sciences, Dewajtis 5, 01-815 Warsaw; Jankowski, D.

    High-pressure and time-resolved studies of the optical emission from n-type doped GaN/AlN multi-quantum-wells (MQWs) with various well thicknesses are analysed in comparison with ab initio calculations of the electronic (band structure, density of states) and optical (emission energies and their pressure derivatives, oscillator strength) properties. The optical properties of GaN/AlN MQWs are strongly affected by quantum confinement and polarization-induced electric fields. Thus, the photoluminescence (PL) peak energy decreases by over 1 eV with quantum well (QW) thicknesses increasing from 1 to 6 nm. Furthermore, the respective PL decay times increased from about 1 ns up to 10 μs, due to the strong built-in electricmore » field. It was also shown that the band gap pressure coefficients are significantly reduced in MQWs as compared to bulk AlN and GaN crystals. Such coefficients are strongly dependent on the geometric factors such as the thickness of the wells and barriers. The transition energies, their oscillator strength, and pressure dependence are modeled for tetragonally strained structures of the same geometry using a full tensorial representation of the strain in the MQWs under external pressure. These MQWs were simulated directly using density functional theory calculations, taking into account two different systems: the semi-insulating QWs and the n-doped QWs with the same charge density as in the experimental samples. Such an approach allowed an assessment of the impact of n-type doping on optical properties of GaN/AlN MQWs. We find a good agreement between these two approaches and between theory and experimental results. We can therefore confirm that the nonlinear effects induced by the tetragonal strain related to the lattice mismatch between the substrates and the polar MQWs are responsible for the drastic decrease of the pressure coefficients observed experimentally.« less

  20. Theoretical study on the phenylpropanolamine drug interaction with the pristine, Si and Al doped [60] fullerenes

    NASA Astrophysics Data System (ADS)

    Moradi, Morteza; Nouraliei, Milad; Moradi, Reza

    2017-03-01

    Phenylpropanolamine (PPA) is a popular drug of abuse and its detection is of great importance for police and drug communities. Herein, we investigated the electronic sensitivity and reactivity of pristine, Al and Si doped C60 fullerenes to the PPA drug, using density functional theory calculations. Two adsorption mechanisms were predicted for PPA on the pristine C60 including cycloaddition and adsorption via -NH2 group. It was found that the pristine C60 has a good sensitivity to this drug but suffers from a weak interaction (adsorption energy -0.1 kcal/mol) because of structural deformation and aromaticity break. The PPA is adsorbed on the Al or Si doped C60 from its -OH or -NH2 groups. The Al-doping significantly improves the reactivity of C60 but decreases its electronic sensitivity. Unlike the Al-doping, the Si-doping increases both the reactivity and electronic sensitivity to the PPA drug. At the presence of PPA drug, the conductivity of the Si-doped C60 considerably increases due to the HOMO-LUMO gap reduction by about 30.3%. Different analyses were used to obtain the results including nucleus independent chemical shift (NICS), density of states (DOS), molecular electrostatic potential (MEP), frontier molecular orbitals (FMO), etc.

  1. Effect of aging on ZnO and nitrogen doped P-Type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Bhunia, S.

    2012-06-01

    The withholding of p-type conductivity in as-prepared and 3% nitrogen (N) doped zinc oxide (ZnO) even after 2 months of preparation was systematically studied. The films were grown on glass substrates by pulsed laser deposition (PLD) at 350 °C under different conditions, viz. under vacuum and at oxygen (O) ambience using 2000 laser pulses. In O ambience for as-prepared ZnO the carrier concentration reduces and mobility increases with increasing number of laser shots. The resistivity of as-prepared and 3% N-doped ZnO is found to increase with reduction in hole concentration after 60 days of aging while maintaining its p-type conductivity irrespective of growth condition. AFM and electrical properties showed aging effect on the doped and undoped samples. For as-prepared ZnO, with time, O migration makes the film high resistive by reducing free electron concentrations. But for N-doped p-type ZnO, O-migration, metastable N and hydrogen atom present in the source induced instability in structure makes it less conducting p-type.

  2. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  3. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawbake, Amit; Tata Institute of Fundamental Research, Colaba, Mumbai 400 005; Mayabadi, Azam

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gasmore » mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.« less

  4. Interface-state density estimation of n-type nanocrystalline FeSi2/p-type Si heterojunctions fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nopparuchikun, Adison; Promros, Nathaporn; Sittimart, Phongsaphak; Onsee, Peeradon; Duangrawa, Asanlaya; Teakchaicum, Sakmongkon; Nogami, Tomohiro; Yoshitake, Tsuyoshi

    2017-09-01

    By utilizing pulsed laser deposition (PLD), heterojunctions comprised of n-type nanocrystalline (NC) FeSi2 thin films and p-type Si substrates were fabricated at room temperature in this study. Both dark and illuminated current density-voltage (J-V) curves for the heterojunctions were measured and analyzed at room temperature. The heterojunctions demonstrated a large reverse leakage current as well as a weak near-infrared light response. Based on the analysis of the dark forward J-V curves, at the V value  ⩽  0.2 V, we show that a carrier recombination process was governed at the heterojunction interface. When the V value was  >  0.2 V, the probable mechanism of carrier transportation was a space-charge limited-current process. Both the measurement and analysis for capacitance-voltage-frequency (C-V-f ) and conductance-voltage-frequency (G-V-f ) curves were performed in the applied frequency (f ) range of 50 kHz-2 MHz at room temperature. From the C-V-f and G-V-f curves, the density of interface states (N ss) for the heterojunctions was computed by using the Hill-Coleman method. The N ss values were 9.19  ×  1012 eV-1 cm-2 at 2 MHz and 3.15  ×  1014 eV-1 cm-2 at 50 kHz, which proved the existence of interface states at the heterojunction interface. These interface states are the probable cause of the degraded electrical performance in the heterojunctions. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  5. Chemical shift and surface characteristics of Al-doped ZnO thin film on SiOC dielectrics.

    PubMed

    Oh, Teresa; Lee, Sang Yeol

    2013-10-01

    Aluminum doped zinc oxide (AZO) films were fabricated on SiOC/p-Si wafer and SiOC film was prepared on a p-type Si substrate with the SiC target at oxygen ambient with the gas flow rate of 5-30 sccm by a RF magnetron sputter. C-V curve of SiOC/Si wafer was measured to observe the relationship between the polarity of SiOC dielectrics and the change of capacitance depending on oxygen gas flow rate. The SiOC film could be controlled to be polar or nonpolar, and their surface energy was changed depending on the polarity. Smooth surface is essential to improve the TFT performance. AZO-TFTs used smooth SiOC film with low polarity as a gate insulator was observed to show low leakage current (IL) and low subthreshold voltage swing. It is proposed that SiOC film with high degree amorphous structure as a gate insulator between AZO and Si wafer could solve problems of the mismatched interfaces, which was originated from the electron scattering due to the grain boundary.

  6. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation

    NASA Astrophysics Data System (ADS)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-04-01

    Photoelectrochemical (PEC) water splitting based doping modified one dimensional (1D) titanium dioxide (TiO2) nanostructures provide an efficient method for hydrogen generation. Here we first successfully fabricated 1D Si-doped TiO2 (Ti-Si-O) nanotube arrays through anodizing Ti-Si alloys with different Si amount, and reported the PEC properties for water splitting. The Ti-Si-O nanotube arrays fabricated on Ti-5 wt.% Si alloy and annealed at 600 °C possess higher PEC activity, yielding a higher photocurrent density of 0.83 mA/cm2 at 0 V vs. Ag/AgCl. The maximum photoconversion efficiency was 0.54%, which was 2.7 times the photoconversion efficiency of undoped TiO2.

  7. Enhancement of breakdown voltage for fully-vertical GaN-on-Si p-n diode by using strained layer superlattice as drift layer

    NASA Astrophysics Data System (ADS)

    Mase, Suguru; Hamada, Takeaki; Freedsman, Joseph J.; Egawa, Takashi

    2018-06-01

    We have demonstrated a vertical GaN-on-Si p-n diode with breakdown voltage (BV) as high as 839 V by using a low Si-doped strained layer superlattice (SLS). The p-n vertical diode fabricated by using the n‑-SLS layer as a part of the drift layer showed a remarkable enhancement in BV, when compared with the conventional n‑-GaN drift layer of similar thickness. The vertical GaN-on-Si p-n diodes with 2.3 μm-thick n‑-GaN drift layer and 3.0 μm-thick n‑-SLS layer exhibited a differential on-resistance of 4.0 Ω · cm2 and a BV of 839 V.

  8. Effect of interleaved Si layer on the magnetotransport and semiconducting properties of n-Si/Fe Schottky junctions

    NASA Astrophysics Data System (ADS)

    Das, Sudhansu Sekhar; Kumar, M. Senthil

    2017-12-01

    Heterostructure films of the form n-Si/Si(tSi)/Fe(800 Å) were prepared by DC magnetron sputtering. In these films, the Si and Fe (800 Å) films were deposited onto n-Si(100) substrates. Substrates with different doping concentration ND were used. The thickness tSi of the interleaved Si layer is varied. For tSi = 0, the heterostructures form n-Si/Fe Schottky junctions. Structural studies on the samples as performed through XRD indicate the polycrystalline nature of the films. The magnetization data showed that the samples have in-plane easy axis of magnetization. The coercivity of the samples is of the order of 90 Oe. The I-V measurements on the samples showed nonlinear behavior. The diode ideality factor η = 2.6 is observed for the junction with ND = 1018 cm-3. The leakage current I0 increases with the increase of ND. Magnetic field has less effect on the electrical properties of the junctions. A positive magnetoresistance in the range 1 - 10 % was observed for the Si/Fe Schottky junctions in the presence of magnetic field of strength 2 T. The origin of the MR is analyzed using a model where the ratio of the currents across the junctions with and without the applied magnetic field, IH=2T/IH=0 is studied as a function of the bias voltage Vbias. The ratio IH=2T/IH=0 shows a decreasing trend with the Vbias, suggesting that the contribution to the MR in our n-Si/Fe Schottky junctions due to the spin dependent scattering is very less as compared to that due to the suppression of the impact ionization process.

  9. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    NASA Astrophysics Data System (ADS)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  10. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    PubMed

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  11. Optimal Silicon Doping Layers of Quantum Barriers in the Growth Sequence Forming Soft Confinement Potential of Eight-Period In0.2Ga0.8N/GaN Quantum Wells of Blue LEDs.

    PubMed

    Wang, Hsiang-Chen; Chen, Meng-Chu; Lin, Yen-Sheng; Lu, Ming-Yen; Lin, Kuang-I; Cheng, Yung-Chen

    2017-11-09

    The features of eight-period In 0.2 Ga 0.8 N/GaN quantum wells (QWs) with silicon (Si) doping in the first two to five quantum barriers (QBs) in the growth sequence of blue light-emitting diodes (LEDs) are explored. Epilayers of QWs' structures are grown on 20 pairs of In 0.02 Ga 0.98 N/GaN superlattice acting as strain relief layers (SRLs) on patterned sapphire substrates (PSSs) by a low-pressure metal-organic chemical vapor deposition (LP-MOCVD) system. Temperature-dependent photoluminescence (PL) spectra, current versus voltage (I-V) curves, light output power versus injection current (L-I) curves, and images of high-resolution transmission electron microscopy (HRTEM) of epilayers are measured. The consequences show that QWs with four Si-doped QBs have larger carrier localization energy (41 meV), lower turn-on (3.27 V) and breakdown (- 6.77 V) voltages, and higher output power of light of blue LEDs at higher injection current than other samples. Low barrier height of QBs in a four-Si-doped QB sample results in soft confinement potential of QWs and lower turn-on and breakdown voltages of the diode. HRTEM images give the evidence that this sample has relatively diffusive interfaces of QWs. Uniform spread of carriers among eight QWs and superior localization of carriers in each well are responsible for the enhancement of light output power, in particular, for high injection current in the four-Si-doped QB sample. The results demonstrate that four QBs of eight In 0.2 Ga 0.8 N/GaN QWs with Si doping not only reduce the quantum-confined Stark effect (QCSE) but also improve the distribution and localization of carriers in QWs for better optical performance of blue LEDs.

  12. Optimal Silicon Doping Layers of Quantum Barriers in the Growth Sequence Forming Soft Confinement Potential of Eight-Period In0.2Ga0.8N/GaN Quantum Wells of Blue LEDs

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Chen; Chen, Meng-Chu; Lin, Yen-Sheng; Lu, Ming-Yen; Lin, Kuang-I.; Cheng, Yung-Chen

    2017-11-01

    The features of eight-period In0.2Ga0.8N/GaN quantum wells (QWs) with silicon (Si) doping in the first two to five quantum barriers (QBs) in the growth sequence of blue light-emitting diodes (LEDs) are explored. Epilayers of QWs' structures are grown on 20 pairs of In0.02Ga0.98N/GaN superlattice acting as strain relief layers (SRLs) on patterned sapphire substrates (PSSs) by a low-pressure metal-organic chemical vapor deposition (LP-MOCVD) system. Temperature-dependent photoluminescence (PL) spectra, current versus voltage ( I- V) curves, light output power versus injection current ( L- I) curves, and images of high-resolution transmission electron microscopy (HRTEM) of epilayers are measured. The consequences show that QWs with four Si-doped QBs have larger carrier localization energy (41 meV), lower turn-on (3.27 V) and breakdown (- 6.77 V) voltages, and higher output power of light of blue LEDs at higher injection current than other samples. Low barrier height of QBs in a four-Si-doped QB sample results in soft confinement potential of QWs and lower turn-on and breakdown voltages of the diode. HRTEM images give the evidence that this sample has relatively diffusive interfaces of QWs. Uniform spread of carriers among eight QWs and superior localization of carriers in each well are responsible for the enhancement of light output power, in particular, for high injection current in the four-Si-doped QB sample. The results demonstrate that four QBs of eight In0.2Ga0.8N/GaN QWs with Si doping not only reduce the quantum-confined Stark effect (QCSE) but also improve the distribution and localization of carriers in QWs for better optical performance of blue LEDs.

  13. Piezo-Hall effect and fundamental piezo-Hall coefficients of single crystal n-type 3C-SiC(100) with low carrier concentration

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Dinh, Toan; Iacopi, Alan; Walker, Glenn; Phan, Hoang-Phuong; Hold, Leonie; Dimitrijev, Sima

    2017-04-01

    This article reports the results on the piezo-Hall effect in single crystal n-type 3C-SiC(100) having a low carrier concentration. The effect of the crystallographic orientation on the piezo-Hall effect has been investigated by applying stress to the Hall devices fabricated in different crystallographic directions. Single crystal n-type 3C-SiC(100) and 3C-SiC(111) were grown by low pressure chemical vapor deposition at 1250 °C. Fundamental piezo-Hall coefficients were obtained using the piezo-Hall effect measurements as P11 = (-29 ± 1.3) × 10-11 Pa-1, P12 = (11.06 ± 0.5)× 10-11 Pa-1, and P44 = (-3.4 ± 0.7) × 10-11 Pa-1. It has been observed that the piezo-Hall coefficients of n-type 3C-SiC(100) show a completely different behavior as compared to that of p-type 3C-SiC.

  14. Effects of nitrogen impurities on the microstructure and electronic properties of P-doped Si nanocrystals emebedded in silicon-rich SiNx films

    NASA Astrophysics Data System (ADS)

    Ma, Deng-Hao; Zhang, Wei-Jia; Luo, Rui-Ying; Jiang, Zhao-Yi; Ma, Qiang; Ma, Xiao-Bo; Fan, Zhi-Qiang; Song, Deng-Yuan; Zhang, Lei

    2016-05-01

    Phosphorus doped Si nanocrystals (SNCs) emebedded in silicon-rich SiNx:H films were prepared using plasma enhanced chemical vapor deposition technique, and the effects of nitrogen incorporation on the microstructure and electronic properties of the thin films have been systematically studied. Transmission electron microscope and Raman observation revealed that nitrogen incorporation prevents the growth of Si nanocrystals, and that their sizes can be adjusted by varying the flow rate of NH3. The reduction of photoluminescence (PL) intensity in the range of 2.1-2.6 eV of photon energy was observed with increasing nitrogen impurity, and a maximal PL intensity in the range 1.6-2.0 eV was obtained when the incorporation flow ratio NH3/(SiH4+H2+PH3) was 0.02. The conductivity of the films is improved by means of proper nitrogen impurity doping, and proper doping causes the interface charge density of the heterojunction (H-J) device to be lower than the nc-Si:H/c-Si H-J device. As a result, the proper incorporation of nitrogen could not only reduce the silicon banding bond density, but also fill some carrier capture centers, and suppress the nonradiative recombination of electrons.

  15. n-Type diamond and method for producing same

    DOEpatents

    Anderson, Richard J.

    2002-01-01

    A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

  16. Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellers, D. G.; Chen, E. Y.; Doty, M. F.

    2016-05-21

    We investigate the effect of doping on the mechanisms of carrier escape from intermediate states in delta-doped InAs/GaAs intermediate band solar cells. The intermediate states arise from InAs quantum dots embedded in a GaAs p-i-n junction cell. We find that doping the sample increases the number of excited-state carriers participating in a cycle of trapping and carrier escape via thermal, optical, and tunneling mechanisms. However, we find that the efficiency of the optically-driven carrier escape mechanism is independent of doping and remains small.

  17. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    NASA Astrophysics Data System (ADS)

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  18. Fabrication of p-Si/n-ZnO:Al heterojunction diode and determination of electrical parameters

    NASA Astrophysics Data System (ADS)

    Ilican, Saliha; Gorgun, Kamuran; Aksoy, Seval; Caglar, Yasemin; Caglar, Mujdat

    2018-03-01

    We present a fundamental experimental study of a microwave assisted chemical bath deposition (MW-CBD) method for Al doped ZnO films. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) spectroscopy were used to analyze the microstructures and crystalline structures of these films, respectively. The p-Si/n-ZnO:Al heterojunction diodes were fabricated. The current-voltage (I-V) characteristics of these diodes were measured at room temperature. The important electrical parameters such as series resistance, the ideality factor and the barrier height were determined by performing plots from the forward bias I-V characteristics using different methods. The obtained results indicate that Al doping improve the electrical properties of the p-Si/n-ZnO diode. The best rectification properties were observed in the p-Si/n-ZnO:5%Al heterojunction diode, so only capacitance-voltage (C-V) measurements of this diode were taken. Electrical parameter values such as series resistance, the built-in potential and the acceptor concentration calculated for this heterojunction diode.

  19. p-n Junction Diodes Fabricated on Si-Si/Ge Heteroepitaxial Films

    NASA Technical Reports Server (NTRS)

    Das, K.; Mazumder, M. D. A.; Hall, H.; Alterovitz, Samuel A. (Technical Monitor)

    2000-01-01

    A set of photolithographic masks was designed for the fabrication of diodes in the Si-Si/Ge material system. Fabrication was performed on samples obtained from two different wafers: (1) a complete HBT structure with an n (Si emitter), p (Si/Ge base), and an n/n+ (Si collector/sub-collector) deposited epitaxially (MBE) on a high resistivity p-Si substrate, (2) an HBT structure where epitaxial growth was terminated after the p-type base (Si/Ge) layer deposition. Two different process runs were attempted for the fabrication of Si-Si/Ge (n-p) and Si/Ge-Si (p-n) junction diodes formed between the emitter-base and base-collector layers, respectively, of the Si-Si/Ge-Si HBT structure. One of the processes employed a plasma etching step to expose the p-layer in the structure (1) and to expose the e-layer in structure (2). The Contact metallization used for these diodes was a Cu-based metallization scheme that was developed during the first year of the grant. The plasma-etched base-collector diodes on structure (2) exhibited well-behaved diode-like characteristics. However, the plasma-etched emitter-base diodes demonstrated back-to-back diode characteristics. These back-to back characteristics were probably due to complete etching of the base-layer, yielding a p-n-p diode. The deep implantation process yielded rectifying diodes with asymmetric forward and reverse characteristics. The ideality factor of these diodes were between 1.6 -2.1, indicating that the quality of the MBE grown epitaxial films was not sufficiently high, and also incomplete annealing of the implantation damage. Further study will be conducted on CVD grown films, which are expected to have higher epitaxial quality.

  20. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    NASA Astrophysics Data System (ADS)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  1. Impact of the silicon substrate resistivity and growth condition on the deep levels in Ni-Au/AlN/Si MIS Capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei

    2017-10-01

    Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.

  2. Fabrication of Multilayer-Type Mn-Si Thermoelectric Device

    NASA Astrophysics Data System (ADS)

    Kajitani, T.; Ueno, T.; Miyazaki, Y.; Hayashi, K.; Fujiwara, T.; Ihara, R.; Nakamura, T.; Takakura, M.

    2014-06-01

    This research aims to develop a direct-contact manganese silicon p/ n multilayer-type thermoelectric power generation block. p-type MnSi1.74 and n-type Mn0.7Fe0.3Si1.68 ball-milled powders with diameter of about 10 μm or less were mixed with polyvinyl butyl alcohol diluted with methylbenzene at pigment volume concentration of approximately 70%. The doctor-blade method produced 45- μm-thick p- and n-type pigment plates. The insulator, i.e., powdered glass, was mixed with cellulose to form insulator slurry. Lamination of manganese silicide pigment layers and screen-printed insulator layers was carried out to fabricate multilayer direct-contact thermoelectric devices. Hot pressing and spark plasma sintering were carried out at 450°C and 900°C, respectively. Four to 30 thermoelectric (TE) p/ n pairs were fabricated in a 10 mm × 10 mm × 10 mm sintered TE block. The maximum output was 11.7 mW/cm2 at a temperature difference between 20°C and 700°C, which was about 1/85 of the ideal power generation estimated from the thermoelectric data of the bulk MnSi1.74 and Mn0.7Fe0.3Si1.68 materials. A power generation test using an engine test bench was also carried out.

  3. Simultaneous Perforation and Doping of Si Nanoparticles for Lithium-Ion Battery Anode.

    PubMed

    Lv, Guangxin; Zhu, Bin; Li, Xiuqiang; Chen, Chuanlu; Li, Jinlei; Jin, Yan; Hu, Xiaozhen; Zhu, Jia

    2017-12-27

    Silicon nanostructures have served as promising building blocks for various applications, such as lithium-ion batteries, thermoelectrics, and solar energy conversions. Particularly, control of porosity and doping is critical for fine-tuning the mechanical, optical, and electrical properties of these silicon nanostructures. However, perforation and doping are usually separated processes, both of which are complicated and expensive. Here, we demonstrate that the porous nano-Si particles with controllable dopant can be massively produced through a facile and scalable method, combining ball-milling and acid-etching. Nano-Si with porosity as high as 45.8% can be achieved with 9 orders of magnitude of conductivity changes compared to intrinsic silicon. As an example for demonstration, the obtained nano-Si particles with 45.8% porosity and 3.7 atom % doping can serve as a promising anode for lithium-ion batteries with 2000 mA h/g retained over 100 cycles at the current density of 0.5 C, excellent rate performance with 1600 mA h/g at the current density of 5 C, and a stable cycling performance of above 1500 mA h/g retained over 940 cycles at the current density of 1 C with carbon coating.

  4. Mg doping of GaN by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lieten, R. R.; Motsnyi, V.; Zhang, L.; Cheng, K.; Leys, M.; Degroote, S.; Buchowicz, G.; Dubon, O.; Borghs, G.

    2011-04-01

    We present a systematic study on the influence of growth conditions on the incorporation and activation of Mg in GaN layers grown by plasma-assisted molecular beam epitaxy. We show that high quality p-type GaN layers can be obtained on GaN-on-silicon templates. The Mg incorporation and the electrical properties have been investigated as a function of growth temperature, Ga : N flux ratio and Mg : Ga flux ratio. It was found that the incorporation of Mg and the electrical properties are highly sensitive to the Ga : N flux ratio. The highest hole mobility and lowest resistivity were achieved for slightly Ga-rich conditions. In addition to an optimal Ga : N ratio, an optimum Mg : Ga flux ratio was also observed at around 1%. We observed a clear Mg flux window for p-type doping of GaN : 0.31% < Mg : Ga < 5.0%. A lowest resistivity of 0.98 Ω cm was obtained for optimized growth conditions. The p-type GaN layer then showed a hole concentration of 4.3 × 1017 cm-3 and a mobility of 15 cm2 V-1 s-1. Temperature-dependent Hall effect measurements indicate an acceptor depth in these samples of 100 meV for a hole concentration of 5.5 × 1017 cm-3. The corresponding Mg concentration is 5 × 1019 cm-3, indicating approximately 1% activation at room temperature. In addition to continuous growth of Mg-doped GaN layers we also investigated different modulated growth procedures. We show that a modulated growth procedure has only limited influence on Mg doping at a growth temperature of 800 °C or higher. This result is thus in contrast to previously reported GaN : Mg doping at much lower growth temperatures of 500 °C.

  5. Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant.

    PubMed

    Bao, Qinye; Liu, Xianjie; Braun, Slawomir; Li, Yanqing; Tang, Jianxin; Duan, Chungang; Fahlman, Mats

    2017-10-11

    Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of π-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.

  6. Encapsulating micro-nano Si/SiO x into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang

    2015-01-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge–discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both asmore » binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.« less

  7. Enhancing optical gains in Si nanocrystals via hydrogenation and cerium ion doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong-Chen; Li, Yan-Li; Song, Sheng-Chi

    We report optical gain enhancements in Si nanocrystals (Si-NCs) via hydrogenation and Ce{sup 3+} ion doping. Variable stripe length technique was used to obtain gains. At 0.3 W/cm{sup 2} pumping power density of pulsed laser, net gains were observed together with gain enhancements after hydrogenation and/or Ce{sup 3+} ion doping; gains after loss corrections were between 89.52 and 341.95 cm{sup −1}; and the photoluminescence (PL) lifetime was found to decrease with the increasing gain enhancement. At 0.04 W/cm{sup 2} power density, however, no net gain was found and the PL lifetime increased with the increasing PL enhancement. The results were discussed according tomore » stimulated and spontaneous excitation and de-excitation mechanisms of Si-NCs.« less

  8. Large N{sub c}, constituent quarks, and N, {Delta} charge radii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchmann, Alfons J.; Lebed, Richard F.

    2000-11-01

    We show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N{sub c} limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N{sub c} baryon observables; here we apply it to the case of charge radii of the N and {Delta} states, using minimal dynamical assumptions. For example, one finds the relation r{sub p}{sup 2}-r{sub {Delta}{sup +}}{sup 2}=r{sub n}{sup 2}-r{sub {Delta}{sup 0}}{sup 2} to be broken only by three-body, O(1/N{sub c}{sup 2}) effects for any N{sub c}.

  9. Generation kinetics of boron-oxygen complexes in p-type compensated c-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yichao; Yu, Xuegong, E-mail: yuxuegong@zju.edu.cn; Chen, Peng

    2014-03-10

    Kinetics characteristics of boron-oxygen complexes responsible for light-induced degradation in p-type compensated c-Si have been investigated. The generation of B-O complexes is well fitted by a fast-forming process and a slow-forming one. Activation energies of complexes generation during the fast-forming process are determined to be 0.29 and 0.24 eV in compensated and non-compensated c-Si, respectively, and those during the slow-forming process are the same, about 0.44 eV. Moreover, it is found that the pre-exponential factors of complexes generation in compensated c-Si is proportional to the square of the net doping concentration, which suggests that the latent centers should exist.

  10. Boric acid solution concentration influencing p-type emitter formation in n-type crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-09-01

    Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.

  11. Vibrational spectra and structures of neutral Si(m)C(n) clusters (m + n = 6): sequential doping of silicon clusters with carbon atoms.

    PubMed

    Savoca, Marco; Lagutschenkov, Anita; Langer, Judith; Harding, Dan J; Fielicke, André; Dopfer, Otto

    2013-02-14

    Vibrational spectra of mixed silicon carbide clusters Si(m)C(n) with m + n = 6 in the gas phase are obtained by resonant infrared-vacuum-ultraviolet two-color ionization (IR-UV2CI for n ≤ 2) and density functional theory (DFT) calculations. Si(m)C(n) clusters are produced in a laser vaporization source, in which the silicon plasma reacts with methane. Subsequently, they are irradiated with tunable IR light from an IR free electron laser before they are ionized with UV photons from an F(2) laser. Resonant absorption of one or more IR photons leads to an enhanced ionization efficiency for Si(m)C(n) and provides the size-specific IR spectra. IR spectra measured for Si(6), Si(5)C, and Si(4)C(2) are assigned to their most stable isomers by comparison with calculated linear absorption spectra. The preferred Si(m)C(n) structures with m + n = 6 illustrate the systematic transition from chain-like geometries for bare C(6) to three-dimensional structures for bare Si(6). In contrast to bulk SiC, carbon atom segregation is observed already for the smallest n (n = 2).

  12. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+ ,Dy3+ co-doped Ba2 MgSi2 O7 phosphors.

    PubMed

    Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali

    2016-11-01

    In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The

  13. Effects of annealing gas and drain doping concentration on electrical properties of Ge-source/Si-channel heterojunction tunneling FETs

    NASA Astrophysics Data System (ADS)

    Bae, Tae-Eon; Wakabayashi, Yuki; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Improvement in the performance of Ge-source/Si-channel heterojunction tunneling FETs (TFETs) with high on-current/off-current (I on/I off) ratio and steep subthreshold swing (SS) is demonstrated. In this paper, we experimentally examine the effects of gas ambient [N2 and forming gas (4% H2/N2)] and a doping concentration in the drain regions on the electrical characteristics of Ge/Si heterojunction TFETs. The minimum SS (SSmin) of 70.9 mV/dec and the large I on/I off ratio of 1.4 × 107 are realized by postmetallization annealing in forming gas. Also, the steep SSmin and averaged SS (SSavr) values of 64.2 and 78.4 mV/dec, respectively, are obtained in low drain doping concentration. This improvement is attributable to the reduction in interface state density (D it) in the channel region and to the low leakage current in the drain region.

  14. N-Doped Graphene with Low Intrinsic Defect Densities via a Solid Source Doping Technique.

    PubMed

    Liu, Bo; Yang, Chia-Ming; Liu, Zhiwei; Lai, Chao-Sung

    2017-09-30

    N-doped graphene with low intrinsic defect densities was obtained by combining a solid source doping technique and chemical vapor deposition (CVD). The solid source for N-doping was embedded into the copper substrate by NH₃ plasma immersion. During the treatment, NH₃ plasma radicals not only flattened the Cu substrate such that the root-mean-square roughness value gradually decreased from 51.9 nm to 15.5 nm but also enhanced the nitrogen content in the Cu substrate. The smooth surface of copper enables good control of graphene growth and the decoupling of height fluctuations and ripple effects, which compensate for the Coulomb scattering by nitrogen incorporation. On the other hand, the nitrogen atoms on the pre-treated Cu surface enable nitrogen incorporation with low defect densities, causing less damage to the graphene structure during the process. Most incorporated nitrogen atoms are found in the pyrrolic configuration, with the nitrogen fraction ranging from 1.64% to 3.05%, while the samples exhibit low defect densities, as revealed by Raman spectroscopy. In the top-gated graphene transistor measurement, N-doped graphene exhibits n-type behavior, and the obtained carrier mobilities are greater than 1100 cm²·V -1 ·s -1 . In this study, an efficient and minimally damaging n-doping approach was proposed for graphene nanoelectronic applications.

  15. Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction.

    PubMed

    Liang, Jingwen; Hassan, Mehboob; Zhu, Dongsheng; Guo, Liping; Bo, Xiangjie

    2017-03-15

    Nitrogen-doped graphene (N/GR) has been considered as active metal-free electrocatalysts for oxygen reduction reaction (ORR). However, the nitrogen (N) doping efficiency is very low and only few N atoms are doped into the framework of GR. To boost the N doping efficiency, in this work, a confined pyrolysis method with high N doping efficiency is used for the preparation of cobalt nanoparticles/nitrogen-doped GR (Co/N/GR). Under the protection of SiO 2 , the inorganic ligand NH 3 in cobalt amine complex ([Co(NH 3 ) 6 ] 3+ ) is trapped in the confined space and then can be effectively doped into the framework of GR without the introduction of any carbon residues. Meanwhile, due to the redox reaction between the cobalt ions and carbon atoms of GR, Co nanoparticles are supported into the framework of N/GR. Due to prevention of GR layer aggregation with SiO 2 , the Co/N/GR with high dispersion provides sufficient surface area and maximum opportunity for the exposure of Co nanoparticles and active sites of N dopant. By combination of enhanced N doping efficiency, Co nanoparticles and high dispersion of GR sheets, the Co/N/GR is remarkably active, cheap and selective noble-metal free catalysts for ORR. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A novel yellow-emitting SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Jian; Laboratory of Glasses and Nanostructured Functional Materials, 122 Luoshi Road, Wuhan, Hubei 430070; Xie, Rong-Jun, E-mail: Xie.Rong-Jun@nims.go.jp

    2013-12-15

    Ce{sup 3+}-doped and Ce{sup 3+}/Li{sup +}-codoped SrAlSi{sub 4}N{sub 7} phosphors were synthesized by gas pressure sintering of powder mixtures of Sr{sub 3}N{sub 2}, AlN, α-Si{sub 3}N{sub 4}, CeN and Li{sub 3}N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi{sub 4}N{sub 7}:Ce{sup 3+}(Ce{sup 3+}/Li{sup +}) were investigated in this work. The band structure calculated by the DMol{sup 3} code shows that SrAlSi{sub 4}N{sub 7} has a direct band gap of 3.87 eV. The single crystal analysis of Ce{sup 3+}-doped SrAlSi{sub 4}N{sub 7} indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi{sub 4}N{sub 7} was identified as a majormore » phase of the fired powders, and Sr{sub 5}Al{sub 5}Si{sub 21}N{sub 35}O{sub 2} and AlN as minor phases. Both Ce{sup 3+} and Ce{sup 3+}/Li{sup +} doped SrAlSi{sub 4}N{sub 7} phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce{sup 3+}/Li{sup +}-doped SrAlSi{sub 4}N{sub 7} (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr{sub 0.97}Al{sub 1.03}Si{sub 3.997}N/94/maccounttest14=t0005{sub 1}8193 {sub 7}:Ce{sup 3+}{sub 0.03} with a commercial blue InGaN chip. It indicates that SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce{sup 3+} phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: • We reported a new yellow nitride phosphor suitable for solid state lighting. • We solved the crystal structure and evidenced a disordered Si/Al distribution. • We fabricated a high color

  17. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  18. Correlated vortex pinning in Si-nanoparticle doped MgB 2

    NASA Astrophysics Data System (ADS)

    Kušević, I.; Babić, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.

    2004-12-01

    The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB 2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr( T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr( T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field Bϕ) and is very different from a smooth Birr( T) variation in undoped MgB 2 samples. The microstructure studies of nanoparticle doped MgB 2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.

  19. Stability of the Al/TiB2 interface and doping effects of Mg/Si

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Xu, Ben; Wu, Ping; Li, Qiulin

    2017-12-01

    The Al/TiB2 interface is of significant importance in controlling the mechanical properties of Al-B4C composites and tuning the heterogeneous nucleation of Al/Si alloys in industry. Its stability and bonding conditions are critical for both purposes. In this paper, the interfacial energies were investigated by first-principles calculations, and the results support the reported grain refinement mechanisms in Al/Si alloys. Moreover, to improve the mechanical properties of the interface, Mg and Si were doped at the interface, and our simulations show that the two interfaces will both weaken after doping Mg/Si, thus the formation of TiB2 is inhibited. As a result, the processability of the Al-B4C composites may be improved. Our results provide a theoretical basis and guidance for practical applications.

  20. Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Dou, S. X.; Braccini, V.; Soltanian, S.; Klie, R.; Zhu, Y.; Li, S.; Wang, X. L.; Larbalestier, D.

    2004-12-01

    The effect of nanoscale-SiC doping of MgB2 was investigated in comparison with undoped, clean-limit, and Mg-vapor-exposed samples using transport and magnetic measurements. It was found that there are two distinguishable but related mechanisms that control the critical current-density-field Jc(H ) behavior: increase of upper critical field Hc2 and improvement of flux pinning. There is a clear correlation between the critical temperature Tc, the resistivity ρ, the residual resistivity ratio RRR =R(300K)/R(40K), the irreversibility field H*, and the alloying state in the samples. The Hc2 is about the same within the measured field range for both the Mg-vapor-treated and the SiC-doped samples. However, the Jc(H ) for the latter is higher than the former in a high-field regime by an order of magnitude. Mg vapor treatment induced intrinsic scattering and contributed to an increase in Hc2. SiC doping, on the other hand, introduced many nanoscale precipitates and disorder at B and Mg sites, provoking an increase of ρ(40K ) from 1μΩcm (RRR=15) for the clean-limit sample to 300μΩcm (RRR=1.75) for the SiC-doped sample, leading to significant enhancement of both Hc2 and H * with only a minor effect on Tc. Electron energy-loss spectroscope and transmission electron microscope analysis revealed impurity phases: Mg2Si, MgO, MgB4, BOx, SixByOz, and BC at a scale below 10nm and an extensive domain structure of 2-4-nm domains in the doped sample, which serve as strong pinning centers.

  1. N doped ZnO and ZnO nanorods based p-n homojunction fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Thangavel, R.; Asokan, K.

    2018-05-01

    Nitrogen (N) doped and undoped Zinc Oxide (ZnO) nanorod p-n homojunctions were fabricated by ion implantation method. The structural and optical characterizations showed that the N atoms doped into the ZnO crystal lattice. The UV-Vis absorption spectra revealed shift in optical absorption edge towards higher wavelength with ion implantation on ZnO, which attributed N acceptor levels above the valence band. The current-voltage (I-V) measurements exhibit a typical semiconductor rectification characteristic indicating the electrical conductivity of the N-doped ZnO nanorod have p-type conductivity. Moreover, a high photocurrent response has been observed with these p-n homojunctions.

  2. Effect of 60Co γ-irradiation on the nature of electronic transport in heavily doped n-type GaN based Schottky photodetectors

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhishek; Khamari, Shailesh K.; Porwal, S.; Kher, S.; Sharma, T. K.

    2018-04-01

    GaN Schottky photodetectors are fabricated on heavily doped n-type GaN epitaxial layers grown by the hydride vapour phase epitaxy technique. The effect of 60Co γ-radiation on the electronic transport in GaN epilayers and Schottky detectors is studied. In contrast to earlier observations, a steady rise in the carrier concentration with increasing irradiation dose is clearly seen. By considering a two layer model, the contribution of interfacial dislocations in carrier transport is isolated from that of the bulk layer for both the pristine and irradiated samples. The bulk carrier concentration is fitted by using the charge balance equation which indicates that no new electrically active defects are generated by γ-radiation even at 500 kGy dose. The irradiation induced rise in the bulk carrier concentration is attributed to the activation of native Si impurities that are already present in an electrically inert form in the pristine sample. Further, the rise in interfacial contribution in the carrier concentration is governed by the enhanced rate of formation of nitrogen vacancies by irradiation, which leads to a larger diffusion of oxygen impurities. A large value of the characteristic tunnelling energy for both the pristine and irradiated Au/Ni/GaN Schottky devices confirms that the dislocation-assisted tunnelling dominates the low temperature current transport even after irradiation. The advantage of higher displacement energy and larger bandgap of GaN as compared to GaAs is evident from the change in leakage current after irradiation. Further, a fast recovery of the photoresponse of GaN photodetectors after irradiation signifies their compatibility to operate in high radiation zones. The results presented here are found to be crucial in understanding the interaction of 60Co γ-irradiation with n+-GaN epilayers.

  3. Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes

    DTIC Science & Technology

    2013-03-21

    REPORT TYPE Master’s Thesis 3. DATES COVERED (From – To) 04 Sep 2011 - Mar 2013 4. TITLE AND SUBTITLE ELECTRONIC CHARACTERISTICS OF RARE EARTH ...ELECTRONIC CHARACTERISTICS OF RARE EARTH DOPED GaN SCHOTTKY DIODES THESIS Aaron B. Blanning...United States. AFIT-ENP-13-M-03 Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes THESIS Presented to the Faculty

  4. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent

    NASA Astrophysics Data System (ADS)

    Du, Yongxu; Liu, Libin; Xiang, Yu; Zhang, Qiang

    2018-03-01

    The development of novel energy storage devices with high power density and energy density is highly desired. However, as a promising material, the strong π-π interaction of graphene inhibits its applications. Herein, we provide a new approach that amino-functionalized silica are used as both templates to prevent the restacking of the graphene sheets and doping agents simultaneously. The microstructures, porous properties and chemical composition of the resulted N-doped reduced graphene oxide (RGO) aerogels, characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller measurement, indicate that the amount of SiO2-NH2 has profound effects on the surface area and carbon activity of the graphene sheets. Benefiting from the large specific surface area of 481.8 m2 g-1, low series resistances and high nitrogen doping content (4.4 atom%), the as-fabricated 3D hierarchical porous N-doped RGO aerogel electrode exhibits outstanding electrochemical performance in aqueous and organic electrolyte, such as ultrahigh specific capacitances of 350 F g-1 at a current density of 1 A g-1 and excellent reversibility with a cycling efficiency of 88% after 10000 cycles. In addition, the N-doped RGO aerogels possess high oil-absorbability with long recyclability.

  5. SiCO-doped carbon fibers with unique dual superhydrophilicity/superoleophilicity and ductile and capacitance properties.

    PubMed

    Lu, Ping; Huang, Qing; Mukherjee, Amiya; Hsieh, You-Lo

    2010-12-01

    Silicon oxycarbide (SiCO) glass-doped carbon fibers with an average diameter of 163 nm were successfully synthesized by electrospinning polymer mixtures of preceramic precursor polyureasilazane (PUS) and carbon precursor polyacrylonitrile (PAN) into fibers then converting to ceramic/carbon hybrid via cross-linking, stabilization, and pyrolysis at temperatures up to 1000 °C. The transformation of PUS/PAN polymer precursors to SiCO/carbon structures was confirmed by EDS and FTIR. Both carbon and SiCO/carbon fibers were amorphous and slightly oxidized. Doping with SiCO enhanced the thermal stability of carbon fibers and acquired new ductile behavior in the SiCO/carbon fibers with significantly improved flexibility and breaking elongation. Furthermore, the SiCO/carbon fibers exhibited dual superhydrophilicity and superoleophilicity with water and decane absorbing capacities of 873 and 608%, respectively. The cyclic voltammetry also showed that SiCO/carbon composite fibers possess better capacitor properties than carbon fibers.

  6. Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (1 0 0) by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Minhyeong; Kim, Sungtae; Ko, Dae-Hong

    2018-06-01

    In this work, we investigated the chemical bonding states in highly P-doped Si thin films epitaxially grown on Si (0 0 1) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS). HR-XPS P 2p core-level spectra clearly show spin-orbital splitting between P 2p1/2 and P 2p3/2 peaks in Si films doped with a high concentration of P. Moreover, the intensities of P 2p1/2 and P 2p3/2 peaks for P-doped Si films increase with P concentrations, while their binding energies remained almost identical. These results indicate that more P atoms are incorporated into the substitutional sites of the Si lattice with the increase of P concentrations. In order to identify the chemical states of P-doped Si films shown in XPS Si 2p spectra, the spectra of bulk Si were subtracted from those of Si:P samples, which enables us to clearly identify the new chemical state related to Sisbnd P bonds. We observed that the presence of the two well-resolved new peaks only for the Si:P samples at the binding energy higher than those of a Sisbnd Si bond, which is due to the strong electronegativity of P than that of Si. Experimental findings in this study using XPS open up new doors for evaluating the chemical states of P-doped Si materials in fundamental researches as well as in industrial applications.

  7. Band line-up determination at p- and n-type Al/4H-SiC Schottky interfaces using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kohlscheen, J.; Emirov, Y. N.; Beerbom, M. M.; Wolan, J. T.; Saddow, S. E.; Chung, G.; MacMillan, M. F.; Schlaf, R.

    2003-09-01

    The band lineup of p- and n-type 4H-SiC/Al interfaces was determined using x-ray photoemission spectroscopy (XPS). Al was deposited in situ on ex situ cleaned SiC substrates in several steps starting at 1.2 Å up to 238 Å nominal film thickness. Before growth and after each growth step, the sample surface was characterized in situ by XPS. The analysis of the spectral shifts indicated that during the initial deposition stages the Al films react with the ambient surface contamination layer present on the samples after insertion into vacuum. At higher coverage metallic Al clusters are formed. The band lineups were determined from the analysis of the core level peak shifts and the positions of the valence bands maxima (VBM) depending on the Al overlayer thickness. Shifts of the Si 2p and C 1s XPS core levels occurred to higher (lower) binding energy for the p-(n-)type substrates, which was attributed to the occurrence of band bending due to Fermi-level equilibration at the interface. The hole injection barrier at the p-type interface was determined to be 1.83±0.1 eV, while the n-type interface revealed an electron injection barrier of 0.98±0.1 eV. Due to the weak features in the SiC valence bands measured by XPS, the VBM positions were determined using the Si 2p peak positions. This procedure required the determination of the Si 2p-to-VBM binding energy difference (99.34 eV), which was obtained from additional measurements.

  8. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    NASA Astrophysics Data System (ADS)

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1-xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1-xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm-3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  9. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides.

    PubMed

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-18

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa(1-x)N/GaN superlattice structure, by modulation doping of Mg in the AlxGa(1-x)N barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 10(18) cm(-3) has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  10. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    PubMed Central

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1−xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1−xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm−3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  11. Effect of doping (C or N) and co-doping (C+N) on the photoactive properties of magnetron sputtered titania coatings for the application of solar water-splitting.

    PubMed

    Rahman, M; Dang, B H Q; McDonnell, K; MacElroy, J M D; Dowling, D P

    2012-06-01

    The photocatalytic splitting of water into hydrogen and oxygen using a photoelectrochemical (PEC) cell containing titanium dioxide (TiO2) photoanode is a potentially renewable source of chemical fuels. However, the size of the band gap (-3.2 eV) of the TiO2 photocatalyst leads to its relatively low photoactivity toward visible light in a PEC cell. The development of materials with smaller band gaps of approximately 2.4 eV is therefore necessary to operate PEC cells efficiently. This study investigates the effect of dopant (C or N) and co-dopant (C+N) on the physical, structural and photoactivity of TiO2 nano thick coating. TiO2 nano-thick coatings were deposited using a closed field DC reactive magnetron sputtering technique, from titanium target in argon plasma with trace addition of oxygen. In order to study the influence of doping such as C, N and C+N inclusions in the TiO2 coatings, trace levels of CO2 or N2 or CO2+N2 gas were introduced into the deposition chamber respectively. The properties of the deposited nano-coatings were determined using Spectroscopic Ellipsometry, SEM, AFM, Optical profilometry, XPS, Raman, X-ray diffraction UV-Vis spectroscopy and tri-electrode potentiostat measurements. Coating growth rate, structure, surface morphology and roughness were found to be significantly influenced by the types and amount of doping. Substitutional type of doping in all doped sample were confirmed by XPS. UV-vis measurement confirmed that doping (especially for C doped sample) facilitate photoactivity of sputtered deposited titania coating toward visible light by reducing bandgap. The photocurrent density (indirect indication of water splitting performance) of the C-doped photoanode was approximately 26% higher in comparison with un-doped photoanode. However, coating doped with nitrogen (N or N+C) does not exhibit good performance in the photoelectrochemical cell due to their higher charge recombination properties.

  12. Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si.

    PubMed

    Soh, Edwin; Kolos, Elizabeth; Ruys, Andrew J

    2015-03-13

    Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.

  13. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  14. Effective work function engineering for a TiN/XO(X = La, Zr, Al)/SiO{sub 2} stack structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongjin, E-mail: dongjin0710.lee@samsung.com; Lee, Jieun; Jung, Kyoungho

    In this study, we demonstrated that work function engineering is possible over a wide range (+200 mV to −430 mV) in a TiN/XO (X = La, Zr, or Al)/SiO{sub 2} stack structures. From ab initio simulations, we selected the optimal material for the work function engineering. The work function engineering mechanism was described by metal diffusion into the TiN film and silicate formation in the TiN/SiO{sub 2} interface. The metal doping and the silicate formation were confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling, respectively. In addition, the amount of doped metal in the TiN film depended on the thickness ofmore » the insertion layer XO. From the work function engineering technique, which can control a variety of threshold voltages (Vth), an improvement in transistors with different V{sub th} values in the TiN/XO/SiO{sub 2} stack structures is expected.« less

  15. An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines.

    PubMed

    Amjadi, Mohammad; Hallaj, Tooba; Manzoori, Jamshid L; Shahbazsaghir, Tahmineh

    2018-08-05

    We report on a chemiluminescence (CL) system based on simultaneous enhancing effect of Si-doped carbon dots (Si-CDs) and cetyltrimethylammonium bromide (CTAB) on HCO 3 - -H 2 O 2 reaction . The possible CL mechanism is investigated and discussed. Excited-state Si-CDs was found to be the final emitting species, which are probably produced via electron and hole injection by oxy-radicals. The effect of several other heteroatom-doped CDs and undoped CDs was also investigated and compared with Si-CDs. Furthermore, it was found that catecholamines such as dopamine, adrenaline and noradrenaline remarkably diminish the CL intensity of Si-CD-HCO 3 - -H 2 O 2 -CTAB system. By taking advantage of this fact, a sensitive probe was designed for determination of dopamine, adrenaline and noradrenaline with a limit of detection of 0.07, 0.60 and 0.01 μM, respectively. The method was applied to the determination of catecholamines in human plasma samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions.

    PubMed

    Zhang, Qiang; Cheng, Long; Liu, Wei; Zheng, Yun; Su, Xianli; Chi, Hang; Liu, Huijun; Yan, Yonggao; Tang, Xinfeng; Uher, Ctirad

    2014-11-21

    Mg2Si1-xSnx solid solutions are promising thermoelectric materials for power generation applications in the 500-800 K range. Outstanding n-type forms of these solid solutions have been developed in the past few years with the thermoelectric figure of merit ZT as high as 1.4. Unfortunately, no comparable performance has been achieved so far with p-type forms of the structure. In this work, we use Li doping on Mg sites in an attempt to enhance and control the concentration of hole carriers. We show that Li as well as Ga is a far more effective p-type dopant in comparison to Na or K. With the increasing content of Li, the electrical conductivity rises rapidly on account of a significantly enhanced density of holes. While the Seebeck coefficient decreases concomitantly, the power factor retains robust values supported by a rather high mobility of holes. Theoretical calculations indicate that Mg2Si0.3Sn0.7 intrinsically possesses the almost convergent double valence band structure (the light and heavy band), and Li doping retains a low density of states (DOS) on the top of the valence band, contrary to the Ga doping at the sites of Si/Sn. Low temperature specific heat capacity studies attest to a low DOS effective mass in Li-doped samples and consequently their larger hole mobility. The overall effect is a large power factor of Li-doped solid solutions. Although the thermal conductivity increases as more Li is incorporated in the structure, the enhanced carrier density effectively shifts the onset of intrinsic excitations (bipolar effect) to higher temperatures, and the beneficial role of phonon Umklapp processes as the primary limiting factor to the lattice thermal conductivity is thus extended. The final outcome is the figure of merit ZT ∼ 0.5 at 750 K for x = 0.07. This represents a 30% improvement in the figure of merit of p-type Mg2Si1-xSnx solid solutions over the literature values. Hence, designing low DOS near Fermi level EF for given carrier pockets can serve

  17. Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.

    1993-01-01

    Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.

  18. Evaluation of the Mg doping approach for Si mass fractionation correction on Nu Instruments MC-ICP Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Hsieh, Yu-Te; Belshaw, Nick

    2015-04-01

    Silicon (Si) stable isotopes have been used in a broad range of geochemical and cosmochemical applications. A precise and accurate determination of Si isotopes is desirable to distinguish their small natural variations (< 0.2‰) in many of these studies. In the past decade, the advent of the MC-ICP-MS has spurred a remarkable improvement in the precision and accuracy of Si isotopic analysis. The instrumental mass fractionation correction is one crucial aspect of the analysis of Si isotopes. Two options are currently available: the sample-standard bracketing approach and the Mg doping approach. However, there has been a debate over the validity of the Mg doping approach. Some studies (Cardinal et al., 2003; Engström et al., 2006) favoured it compared to the sample-standard bracketing approach, whereas some other studies (e.g. De La Rocha, 2002) considered it unsuitable. This study investigates the Mg doping approach on both the Nu Plasma II and the Nu Plasma 1700. Experiments were performed in both the wet plasma and the dry plasma modes, using a number of different combinations of cones. A range of different Mg to Si ratios as well as different matrices have been used in the experiments. A sample-standard bracketing approach has also been adopted for the Si mass fractionation correction to compare with the Mg doping approach. Through assessing the mass fractionation behaviours of both Si and Mg under different instrument settings, this study aims to identity the factors which may affect the Mg doping approach and answer some key questions to the debate.

  19. Carbon doped GaN buffer layer using propane for high electron mobility transistor applications: Growth and device results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.; Nilsson, D.; Danielsson, Ö.

    2015-12-28

    The creation of a semi insulating (SI) buffer layer in AlGaN/GaN High Electron Mobility Transistor (HEMT) devices is crucial for preventing a current path beneath the two-dimensional electron gas (2DEG). In this investigation, we evaluate the use of a gaseous carbon gas precursor, propane, for creating a SI GaN buffer layer in a HEMT structure. The carbon doped profile, using propane gas, is a two stepped profile with a high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) epitaxial layer closest to the substrate and a lower doped layer (3 × 10{sup 16 }cm{sup −3}) closest to the 2DEG channel. Secondary Ion Mass Spectrometry measurement showsmore » a uniform incorporation versus depth, and no memory effect from carbon doping can be seen. The high carbon doping (1.5 × 10{sup 18 }cm{sup −3}) does not influence the surface morphology, and a roughness root-mean-square value of 0.43 nm is obtained from Atomic Force Microscopy. High resolution X-ray diffraction measurements show very sharp peaks and no structural degradation can be seen related to the heavy carbon doped layer. HEMTs are fabricated and show an extremely low drain induced barrier lowering value of 0.1 mV/V, demonstrating an excellent buffer isolation. The carbon doped GaN buffer layer using propane gas is compared to samples using carbon from the trimethylgallium molecule, showing equally low leakage currents, demonstrating the capability of growing highly resistive buffer layers using a gaseous carbon source.« less

  20. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    PubMed Central

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-01-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors. PMID:27349378

  1. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  2. Enhancement of the in-field Jc of MgB2 via SiCl4 doping

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lin; Dou, S. X.; Hossain, M. S. A.; Cheng, Z. X.; Liao, X. Z.; Ghorbani, S. R.; Yao, Q. W.; Kim, J. H.; Silver, T.

    2010-06-01

    We present the following results. (1) We introduce a doping source for MgB2 , liquid SiCl4 , which is free of C, to significantly enhance the irreversibility field (Hirr) , the upper critical field (Hc2) , and the critical current density (Jc) with a little reduction in the critical temperature (Tc) . (2) Although Si can not be incorporated into the crystal lattice, a significant reduction in the a -axis lattice parameter was found, to the same extent as for carbon doping. (3) Based on the first-principles calculation, it is found that it is reliable to estimate the C concentration just from the reduction in the a -lattice parameter for C-doped MgB2 polycrystalline samples that are prepared at high sintering temperatures, but not for those prepared at low sintering temperatures. Strain effects and magnesium deficiency might be reasons for the a -lattice reduction in non-C or some of the C-added MgB2 samples. (4) The SiCl4 -doped MgB2 shows much higher Jc with superior field dependence above 20 K compared to undoped MgB2 and MgB2 doped with various carbon sources. (5) We introduce a parameter, RHH (Hc2/Hirr) , which can clearly reflect the degree of flux-pinning enhancement, providing us with guidance for further enhancing Jc . (6) It was found that spatial variation in the charge-carrier mean free path is responsible for the flux-pinning mechanism in the SiCl4 treated MgB2 with large in-field Jc .

  3. Fabrication of Eu doped CdO [Al/Eu-nCdO/p-Si/Al] photodiodes by perfume atomizer based spray technique for opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Ganesh, V.; Shkir, Mohd; Chandramohan, R.; Arun Kumar, K. Deva; Valanarasu, S.; Kathalingam, A.; AlFaify, S.

    2018-05-01

    In this study, thin films of cadmium oxide (CdO) with different concentrations (0, 1, 3, and 5 wt%) of Eu doping were deposited onto Si and glass substrates by a novel and facile spray technique using simple perfume atomizer for the first time. Prepared films were characterized for structural, morphological, optical properties and the photo diode studies, using X-ray diffraction, scanning electron microscope, UV-Vis spectrophotometer, Isbnd V characteristics, and fundamental parameters are reported. All the prepared Eu:CdO films exhibit cubic structure. The preferential orientation is along (200) plane. Scanning electron microscopy study indicates the growth of smooth and pin-hole free films with clusters of homogeneous grains. The values of band gap energy are found to be varying from 2.42 to 2.33 eV for various Eu doping concentration from 0 to 5 wt%. EDAX studies revealed the presence of Eu, Cd and O elements without any other impurities. FTIR spectra showed a peak at 575 cm-1 confirming the stretching mode of Cdsbnd O. The resistivity (ρ), high carrier concentration (n) and carrier mobility (μ) for 3 wt% CdO thin film are found to be 0.452 × 10-3(Ω.cm), 17.82 × 1020 cm-3 and 7.757 cm2/V, respectively. Current-voltage measurements on the fabricated nanostructured Al/Eu-nCdO/p-Si/Al heterojunction device showed a non-linear electric characteristics indicating diode like behaviour.

  4. N-Doped Hybrid Graphene and Boron Nitride Armchair Nanoribbons As Nonmagnetic Semiconductors with Widely Tunable Electronic Properties

    NASA Astrophysics Data System (ADS)

    Habibpour, Razieh; Kashi, Eslam; Vazirib, Raheleh

    2018-03-01

    The electronic and chemical properties of N-doped hybrid graphene and boron nitride armchair nanoribbons (N-doped a-GBNNRs) in comparison with graphene armchair nanoribbon (pristine a-GNR) and hybrid graphene and boron nitride armchair nanoribbon (C-3BN) are investigated using the density functional theory method. The results show that all the mentioned nanoribbons are nonmagnetic direct semiconductors and all the graphitic N-doped a-GBNNRs are n-type semiconductors while the rest are p-type semiconductors. The N-doped graphitic 2 and N-doped graphitic 3 structures have the lowest work function and the highest number of valence electrons (Lowdin charges) which confirms that they are effective for use in electronic device applications.

  5. Structural and electrical properties of trimethylboron-doped silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, K.-K.; Pan Ling; Bogart, Timothy E.

    2004-10-11

    Trimethylboron (TMB) was investigated as a p-type dopant source for the vapor-liquid-solid growth of boron-doped silicon nanowires (SiNWs). The boron concentration in the nanowires was measured using secondary ion mass spectrometry and results were compared for boron-doping using TMB and diborane (B{sub 2}H{sub 6}) sources. Boron concentrations ranging from 1x10{sup 18} to 4x10{sup 19} cm{sup -3} were obtained by varying the inlet dopant/SiH{sub 4} gas ratio. TEM characterization revealed that the B{sub 2}H{sub 6}-doped SiNWs consisted of a crystalline core with a thick amorphous Si coating, while the TMB-doped SiNWs were predominantly single crystal even at high boron concentrations. Themore » difference in structural properties was attributed to the higher thermal stability and reduced reactivity of TMB compared to B{sub 2}H{sub 6}. Four-point resistivity and gate-dependent conductance measurements were used to confirm p-type conductivity in the TMB-doped nanowires and to investigate the effect of dopant concentration on nanowire resistivity.« less

  6. Different annealing temperature suitable for different Mg doped P-GaN

    NASA Astrophysics Data System (ADS)

    Liu, S. T.; Yang, J.; Zhao, D. G.; Jiang, D. S.; Liang, F.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Li, X.; Liu, W.; Zhang, L. Q.; Long, H.; Li, M.

    2017-04-01

    In this work, epitaxial GaN with different Mg doping concentration annealed at different temperature is investigated. Through Hall and PL spectra measurement we found that when Mg doping concentration is different, different annealing temperature is needed for obtaining the best p-type conduction of GaN, and this difference comes from the different influence of annealing on compensated donors. For ultra-heavily Mg doped sample, the process of Mg related donors transferring to non-radiative recombination centers is dominated, so the performance of P-GaN deteriorates with temperature increase. But for low Mg doped sample, the process of Mg related donors transfer to non-raditive recombination is weak compare to the Mg acceptor activation, so along the annealing temperature increase the performance GaN gets better.

  7. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  8. Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinyu, E-mail: xinyu.zhang@anu.edu.au; Wan, Yimao; Bullock, James

    2016-08-01

    This work explores the application of transparent nitrogen doped copper oxide (CuO{sub x}:N) films deposited by reactive sputtering to create hole-selective contacts for p-type crystalline silicon (c-Si) solar cells. It is found that CuO{sub x}:N sputtered directly onto crystalline silicon is able to form an Ohmic contact. X-ray photoelectron spectroscopy and Raman spectroscopy measurements are used to characterise the structural and physical properties of the CuO{sub x}:N films. Both the oxygen flow rate and the substrate temperature during deposition have a significant impact on the film composition, as well as on the resulting contact resistivity. After optimization, a low contactmore » resistivity of ∼10 mΩ cm{sup 2} has been established. This result offers significant advantages over conventional contact structures in terms of carrier transport and device fabrication.« less

  9. Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries.

    PubMed

    Hu, Zhizhong; Zhang, Xiujuan; Xie, Chao; Wu, Chunyan; Zhang, Xiaozhen; Bian, Liang; Wu, Yiming; Wang, Li; Zhang, Yuping; Jie, Jiansheng

    2011-11-01

    Although CdSe nanostructures possess excellent electrical and optical properties, efforts to make nano-optoelectronic devices from CdSe nanostructures have been hampered by the lack of efficient methods to rationally control their structural and electrical characteristics. Here, we report CdSe nanowires (NWs) with doping dependent crystal structures and optoelectronic properties by using gallium (Ga) as the efficient n-type dopant via a simple thermal co-evaporation method. The phase change of CdSe NWs from wurtzite to zinc blende with increased doping level is observed. Systematical measurements on the transport properties of the CdSe:Ga NWs reveal that the NW conductivity could be tuned in a wide range of near nine orders of magnitude by adjusting the Ga doping level and a high electron concentration up to 4.5 × 10(19) cm(-3) is obtained. Moreover, high-performance top-gate field-effect transistors are constructed based on the individual CdSe:Ga NWs by using high-κ HfO(2) as the gate dielectric. The great potential of the CdSe:Ga NWs as high-sensitive photodetectors and nanoscale light emitters is also exploited, revealing the promising applications of the CdSe:Ga NWs in new-generation nano-optoelectronics.

  10. Advanced interface modelling of n-Si/HNO3 doped graphene solar cells to identify pathways to high efficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.

    2018-03-01

    In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.

  11. Enhancement in c-Si solar cells using 16 nm InN nanoparticles

    NASA Astrophysics Data System (ADS)

    Imtiaz Chowdhury, Farsad; Alnuaimi, Aaesha; Alkis, Sabri; Ortaç, Bülend; Aktürk, Selçuk; Alevli, Mustafa; Dietz, Nikolaus; Kemal Okyay, Ali; Nayfeh, Ammar

    2016-05-01

    In this work, 16 nm indium nitride (InN) nanoparticles (NPs) are used to increase the performance of thin-film c-Si HIT solar cells. InN NPs were spin-coated on top of an ITO layer of c-Si HIT solar cells. The c-Si HIT cell is a stack of 2 μm p type c-Si, 4-5 nm n type a-Si, 15 nm n+ type a-Si and 80 nm ITO grown on a p+ type Si substrate. On average, short circuit current density (Jsc) increases from 19.64 mA cm-2 to 21.54 mA cm-2 with a relative improvement of 9.67% and efficiency increases from 6.09% to 7.09% with a relative improvement of 16.42% due to the presence of InN NPs. Reflectance and internal/external quantum efficiency (IQE/EQE) of the devices were also measured. Peak EQE was found to increase from 74.1% to 81.3% and peak IQE increased from 93% to 98.6% for InN NPs coated c-Si HIT cells. Lower reflection of light due to light scattering is responsible for performance enhancement between 400-620 nm while downshifted photons are responsible for performance enhancement from 620 nm onwards.

  12. Effect of small scattering centers on the thermoelectric properties of p-type SiGe alloys

    NASA Technical Reports Server (NTRS)

    Beaty, John S.; Rolfe, Jonathan L.; Vandersande, Jan W.

    1991-01-01

    Theory predicts that the addition of ultra-fine, inert, phonon-scattering centers to thermoelectric materials will reduce their thermal conductivity. To investigate this prediction, ultrafine particulates (20 to 120 A) of silicon nitride have been added to boron-doped, p-type, 80/20 SiGe. All of the SiGe samples produced from ultrafine powder have lower thermal conductivities than standard SiGe, but high-temperature heat treatment increases the thermal conductivity back to the value for standard SiGe. However, the SiGe samples with silicon nitride, inert, phonon-scattering centers retained the lower thermal conductivity after several heat treatments. A reduction of approximately 25 percent in thermal conductivity has been achieved in these samples. The magnitude of the reduction agrees with theoretical predictions.

  13. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  14. Electrical and optical evaluation of n-type doping in In x Ga(1-x)P nanowires.

    PubMed

    Zeng, Xulu; Mourão, Renato T; Otnes, Gaute; Hultin, Olof; Dagytė, Vilgailė; Heurlin, Magnus; Borgström, Magnus T

    2018-06-22

    To harvest the benefits of III-V nanowires in optoelectronic devices, the development of ternary materials with controlled doping is needed. In this work, we performed a systematic study of n-type dopant incorporation in dense In x Ga (1-x) P nanowire arrays using tetraethyl tin (TESn) and hydrogen sulfide (H 2 S) as dopant precursors. The morphology, crystal structure and material composition of the nanowires were characterized by use of scanning electron microscopy, transmission electron microscopy and energy dispersive x-ray analysis. To investigate the electrical properties, the nanowires were broken off from the substrate and mechanically transferred to thermally oxidized silicon substrates, after which electron beam lithography and metal evaporation were used to define electrical contacts to selected nanowires. Electrical characterization, including four-probe resistivity and Hall effect, as well as back-gated field effect measurements, is combined with photoluminescence spectroscopy to achieve a comprehensive evaluation of the carrier concentration in the doped nanowires. We measure a carrier concentration of ∼1 × 10 16 cm -3 in nominally intrinsic nanowires, and the maximum doping level achieved by use of TESn and H 2 S as dopant precursors using our parameters is measured to be ∼2 × 10 18 cm -3 , and ∼1 × 10 19 cm -3 , respectively (by Hall effect measurements). Hence, both TESn and H 2 S are suitable precursors for a wide range of n-doping levels in In x Ga (1-x) P nanowires needed for optoelectronic devices, grown via the vapor-liquid-solid mode.

  15. Defect phase diagram for doping of Ga2O3

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.

  16. Oxide Structure Dependence of SiO2/SiOx/3C-SiC/n-Type Si Nonvolatile Resistive Memory on Memory Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuichiro; Shouji, Masatsugu; Suda, Yoshiyuki

    2012-11-01

    We have investigated the dependence of the oxide layer structure of our previously proposed metal/SiO2/SiOx/3C-SiC/n-Si/metal metal-insulator-semiconductor (MIS) resistive memory device on the memory operation characteristics. The current-voltage (I-V) measurement and X-ray photoemission spectroscopy results suggest that SiOx defect states mainly caused by the oxidation of 3C-SiC at temperatures below 1000 °C are related to the hysteresis memory behavior in the I-V curve. By restricting the SiOx interface region, the number of switching cycles and the on/off current ratio are more enhanced. Compared with a memory device formed by one-step or two-step oxidation of 3C-SiC, a memory device formed by one-step oxidation of Si/3C-SiC exhibits a more restrictive SiOx interface with a more definitive SiO2 layer and higher memory performances for both the endurance switching cycle and on/off current ratio.

  17. Doping effects in InN/GaN short-period quantum well structures-Theoretical studies based on density functional methods

    NASA Astrophysics Data System (ADS)

    Strak, Pawel; Kempisty, Pawel; Sakowski, Konrad; Krukowski, Stanislaw

    2014-09-01

    Density functional theory studies were conducted to determine an influence of the carrier concentration on the optical and electronic properties of InN/GaN superlattice system. The oscillator strength values, energy gaps and the band profiles were obtained. The band profiles were found to be strongly affected for technically possible heavy n-type doping while for p-type doping the carrier influence, both screening and band shift, is negligible. Blue shift of the transition energy between conduction band minima and valence band maxima was observed for high concentrations of both type carriers.

  18. Thermoelectric properties of Si/CoSi2 sub-micrometer composites prepared by melt-spinning technique

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Ohishi, Yuji; Ichikawa, Satoshi; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-05-01

    We here report on the influence of CoSi2 precipitates on the thermoelectric properties of heavily doped p-type Si. A simple self-assembly process using a melt-spinning technique followed by spark plasma sintering is introduced to prepare bulk Si/CoSi2 composites with a nominal composition of (Si0.99B0.01)95Co5. Scanning and transmission electron microscopy observations present clear evidence of a sub-micrometer CoSi2 phase with a size ranging from 50 to 500 nm. These sub-micrometer precipitates resulted in a retention of the high electrical performance of heavily doped Si, while simultaneously reducing thermal conductivity by over 20% compared to a coarse CoSi2 phase (1-10 μm) in a comparative sample prepared by arc melting and spark plasma sintering. As a result, a figure of merit ZT value of 0.21 at 1073 K was achieved in the sub-micrometer Si/CoSi2, an increase of 16% compared with the ZT value for homogeneous p-type Si with a similar carrier concentration. This suggests that the self-assembled sub-micrometer inclusions effectively enhanced the thermoelectric performance of Si-based thermoelectric materials.

  19. Compositionally modulated multilayer diamond-like carbon coatings with AlTiSi multi-doping by reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin

    2017-12-01

    Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.

  20. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    NASA Astrophysics Data System (ADS)

    Malinverni, M.; Lamy, J.-M.; Martin, D.; Feltin, E.; Dorsaz, J.; Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C.; Grandjean, N.

    2014-12-01

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH3-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10-4 Ω cm2, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH3-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm2 ridge dimension and a threshold current density of ˜5 kA cm-2 in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al0.06Ga0.94N:Mg despite the low growth temperature.

  1. Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; Chen, Yanjun; He, Shengnan

    2018-02-01

    The Li2MnSiO4 as a novel cathode material for lithium ion batteries, performs high specific capacity, high thermal stability, low cost and etc. However, it suffers from relatively low electronic conductivity and lithium ion diffusion rate. Herein, we successfully introduce fluorine to Li2MnSiO4 (Li2MnSiO4-xFx, x = 0.00, 0.01, 0.03 and 0.05) to overcome these obstacles. The results show that F doping not only enlarges the lattice parameters but also decreases the particle size, synergistically improving the lithium ion diffusion of Li2MnSiO4. Moreover, F doping increase electronic conductivity of Li2MnSiO4/C by inhibiting the formation of C-O bonds in the carbon layers. Meanwhile, F doping improves the crystallinity and stabilizes the crystal structure of Li2MnSiO4. Finally, the Li2MnSiO3.97F0.03/C with the best electrochemical performances delivers the initial specific discharge capacity of 279 mA h g-1 at 25mA g-1 current density from 1.5 V to 4.8 V. Also, it maintains a higher capacity (201 mA h g-1) than F-free Li2MnSiO4 (145 mA h g-1) after 50 cycles.

  2. Thermoelectric Properties of Cu-Doped n-Type Bi2Te2.85Se0.15 Prepared by Liquid Phase Growth Using a Sliding Boat

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Matsuura, Tsukasa; Kato, Toshihito; Kamata, Kin-ya

    2015-06-01

    N-type Bi2Te2.85Se0.15 thermoelectric materials were prepared by liquid phase growth (LPG) using a sliding boat, a simple and short fabrication process for Bi2Te3-related materials. Cu was selected as a donor dopant, and its effect on thermoelectric properties was investigated. Thick sheets and bars of Cu x Bi2 Te2.85Se0.15 ( x=0-0.25) of 1-2mm in thickness were obtained using the process. X-ray diffraction patterns and scanning electron micrographs showed that the in-plane direction tended to correspond to the hexagonal c-plane, which is the preferred direction for thermoelectric conversion. Cu-doping was effective in controlling conduction type and carrier (electron) concentration. The conduction type was p-type for undoped Bi2Te2.85Se0.15 and became n-type after Cu-doping. The Hall carrier concentration was increased by Cu-doping. Small resistivity was achieved in Cu0.02Bi2Te2.85Se0.15 owing to an optimized amount of Cu-doping and high crystal orientation. As a result, the maximum power factor near 310K for Cu0.02Bi2Te2.85Se0.15 was approximately 4×10-3W/K2m and had good reproducibility. Furthermore, the thermal stability of Cu0.02Bi2Te2.85Se0.15 was also confirmed by thermal cycling measurements of electrical resistivity. Thus, n-type Bi2Te2.85Se0.15 with a large power factor was prepared using the present LPG process.

  3. Origin of Photovoltage Enhancement via Interfacial Modification with Silver Nanoparticles Embedded in an a-SiC:H p-Type Layer in a-Si:H Solar Cells.

    PubMed

    Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan

    2017-03-29

    We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.

  4. Characterization of a n+3C/n−4H SiC heterojunction diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minamisawa, R. A.; Mihaila, A.; Farkas, I.

    We report on the fabrication of n + 3C/n-4H SiC heterojunction diodes (HJDs) potentially promising the ultimate thermal stability of the junction. The diodes were systematically analyzed by TEM, X-ray diffraction, AFM, and secondary ion mass spectroscopy, indicating the formation of epitaxial 3C-SiC crystal on top of 4H-SiC substrate with continuous interface, low surface roughness, and up to ∼7 × 10{sup 17 }cm{sup −3} dopant impurity concentration. The conduction band off-set is about 1 V as extracted from CV measurements, while the valence bands of both SiC polytypes are aligned. The HJDs feature opening voltage of 1.65 V, consistent with the barrier height of about 1.5 eV extractedmore » from CV measurement. We finally compare the electrical results of the n + 3C/n-4H SiC heterojunction diodes with those featuring Si and Ge doped anodes in order to evaluate current challenges involved in the fabrication of such devices.« less

  5. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-01

    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 1019 cm-3 with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 1020 cm-3 show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 1019 cm-3. The p-GaN and p-Al0.11Ga0.89N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3-3.5 V and series resistances of 6-10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  6. Y1Ba2Cu3O(6+delta) growth on thin Y-enhanced SiO2 buffer layers on silicon

    NASA Technical Reports Server (NTRS)

    Robin, T.; Mesarwi, A.; Wu, N. J.; Fan, W. C.; Espoir, L.; Ignatiev, A.; Sega, R.

    1991-01-01

    SiO2 buffer layers as thin as 2 nm have been developed for use in the growth of Y1Ba2Cu3O(6+delta) thin films on silicon substrates. The SiO2 layers are formed through Y enhancement of silicon oxidation, and are highly stoichiometric. Y1Ba2Cu3O(6+delta) film growth on silicon with thin buffer layers has shown c orientation and Tc0 = 78 K.

  7. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer

    NASA Astrophysics Data System (ADS)

    Yu, Zhao; Bingfeng, Fan; Yiting, Chen; Yi, Zhuo; Zhoujun, Pang; Zhen, Liu; Gang, Wang

    2016-07-01

    We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. ).

  8. Characterization of the transport properties of channel delta-doped structures by light-modulated Shubnikov-de Haas measurements

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.

    1995-01-01

    The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 K down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magneto-resistance used to characterize the two-dimensional electron gas (2DEG) by conventional SdH measurements. By light-modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 tesla, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.

  9. Isoelectronic bound-exciton photoluminescence in strained beryllium-doped Si0.92Ge0.08 epilayers and Si0.92Ge0.08/Si superlattices at ambient and elevated hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Kim, Sangsig; Chang, Ganlin; Herman, Irving P.; Bevk, Joze; Moore, Karen L.; Hall, Dennis G.

    1997-03-01

    Photoluminescence (PL) from a beryllium-doped Si0.92Ge0.08 epilayer and three different beryllium-doped Si0.92Ge0.08/Si superlattices (SL's) commensurately grown on Si(100) substrates is examined at 9 K at ambient pressure and, for the epilayer and one SL, as a function of hydrostatic pressure. In each structure, excitons bind to the isoelectronic Be pairs in the strained Si0.92Ge0.08 layers. The zero-phonon PL peaks of the epilayer and the in situ doped 50-Å Si0.92Ge0.08/100-Å Si SL shift linearly with pressure toward lower energy at the rate of 0.68+/-0.03 and 0.97+/-0.03 meV/kbar, respectively, which are near the 0.77-meV/kbar value for Si:Be. The PL energies at ambient and elevated pressure are analyzed by accounting for strain, quantum confinement, and exciton binding. A modified Hopfield-Thomas-Lynch model is used to model exciton binding to the Be pairs. This model, in which potential wells bind electrons to a site (that then trap holes), predicts a distribution of electron binding energies when an inhomogeneous distribution of potential-well depths is used. This accounts for the large PL linewidth and the decrease of linewidth with increasing pressure, among other observations. In SL's, the exciton binding energy is shown to depend on the width of the wells as well as the spatial distribution of Be dopants in the superlattice. Also, at and above 58 kbar a very unusual peak is observed in one of the SL's, which is associated with a free-exciton peak in Si, that shifts very fast with pressure (-6.02+/-0.03 meV/kbar).

  10. Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Rajakarunanayake, Yasantha; Mcgill, Tom C.

    1990-01-01

    Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength infrared radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice detectors is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice detectors, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.

  11. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  12. High density and taper-free boron doped Si{sub 1−x}Ge{sub x} nanowire via two-step growth process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Periwal, Priyanka; Salem, Bassem; Bassani, Franck

    2014-07-01

    The authors study Au catalyzed chemical vapor growth of Si{sub 1−x}Ge{sub x} alloyed nanowires in the presence of diborane, serving as a dopant precursor. Our experiments reveal that introduction of diborane has a significant effect on doping and morphology. Boron exposure poisons the Au catalyst surface, suppresses catalyst activity, and causes significantly tapered wires, as a result of conformal growth. The authors develop here a two-step method to obtain high density and taper-free boron doped Si{sub 1−x}Ge{sub x} alloy nanowires. The two-step process consists of: (1) growth of a small undoped Si{sub 1−x}Ge{sub x} section and (2) introduction of diboranemore » to form a boron doped Si{sub 1−x}Ge{sub x} section. The catalyst preparation step remarkably influences wire yield, quality and morphology. The authors show that dopant-ratio influences wire resistivity and morphology. Resistivity for high boron doped Si{sub 1−x}Ge{sub x} nanowire is 6 mΩ-cm. Four probe measurements show that it is possible to dope Si{sub 1−x}Ge{sub x} alloy nanowires with diborane.« less

  13. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors.

    PubMed

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-08-18

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.

  14. Measurement of N-Type 6H SiC Minority-Carrier Diffusion Lengths by Electron Bombardment of Schottky Barriers

    NASA Technical Reports Server (NTRS)

    Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.

    2004-01-01

    Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.

  15. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.

    1986-01-01

    The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.

  16. Defect charge states in Si doped hexagonal boron-nitride monolayer

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Molepo, M. P.; Andrew, R. C.; Chetty, N.

    2016-02-01

    We perform ab initio density functional theory calculations to investigate the energetics, electronic and magnetic properties of isolated stoichiometric and non-stoichiometric substitutional Si complexes in a hexagonal boron-nitride monolayer. The Si impurity atoms substituting the boron atom sites SiB giving non-stoichiometric complexes are found to be the most energetically favourable, and are half-metallic and order ferromagnetically in the neutral charge state. We find that the magnetic moments and magnetization energies increase monotonically when Si defects form a cluster. Partial density of states and standard Mulliken population analysis indicate that the half-metallic character and magnetic moments mainly arise from the Si 3p impurity states. The stoichiometric Si complexes are energetically unfavorable and non-magnetic. When charging the energetically favourable non-stoichiometric Si complexes, we find that the formation energies strongly depend on the impurity charge states and Fermi level position. We also find that the magnetic moments and orderings are tunable by charge state modulation q  =  -2, -1, 0, +1, +2. The induced half-metallic character is lost (retained) when charging isolated (clustered) Si defect(s). This underlines the potential of a Si doped hexagonal boron-nitride monolayer for novel spin-based applications.

  17. The effects of layering in ferroelectric Si-doped HfO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu; Takmeel, Qanit

    2014-08-18

    Atomic layer deposited Si-doped HfO{sub 2} thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO{sub 2} thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.

  18. Effect of Ga and P dopants on the thermoelectric properties of n-type SiGe

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Vandersande, J. W.; Wood, C.; Masters, R.; Raag, V.

    1989-01-01

    The purpose of this study was to hot-press improved n-type Si80Ge20/GaP samples directly (without any heat treatment) and to confirm that a Ga/P ratio less than one increases the solubility of P and, hence, improves the power factor and Z. One of the three samples (Ga/P = 0.43) had an improvement in Z of about 20 percent between 400 and 1000 C over that for standard SiGe. This demonstrates that improved samples can be pressed directly and that a Ga/P ratio less than one is necessary. The other two samples (Ga/P = 0.33 and 0.50) had Z's equal to or less than that of standard SiGe but had a lower hot-pressing temperature than the improved sample.

  19. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  20. Experimental verification of the model for formation of double Shockley stacking faults in highly doped regions of PVT-grown 4H–SiC wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide

    Recently, we reported on the formation of overlapping rhombus-shaped stacking faults from scratches left over by the chemical mechanical polishing during high temperature annealing of PVT-grown 4H–SiC wafer. These stacking faults are restricted to regions with high N-doped areas of the wafer. The type of these stacking faults were determined to be Shockley stacking faults by analyzing the behavior of their area contrast using synchrotron white beam X-ray topography studies. A model was proposed to explain the formation mechanism of the rhombus shaped stacking faults based on double Shockley fault nucleation and propagation. In this paper, we have experimentally verifiedmore » this model by characterizing the configuration of the bounding partials of the stacking faults on both surfaces using synchrotron topography in back reflection geometry. As predicted by the model, on both the Si and C faces, the leading partials bounding the rhombus-shaped stacking faults are 30° Si-core and the trailing partials are 30° C-core. Finally, using high resolution transmission electron microscopy, we have verified that the enclosed stacking fault is a double Shockley type.« less

  1. Delta(13)C, delta(15)N and delta(2)H isotope ratio mass spectrometry of ephedrine and pseudoephedrine: application to methylamphetamine profiling.

    PubMed

    Collins, Michael; Cawley, Adam T; Heagney, Aaron C; Kissane, Luke; Robertson, James; Salouros, Helen

    2009-07-01

    Conventional chemical profiling of methylamphetamine has been used for many years to determine the synthetic route employed and where possible to identify the precursor chemicals used. In this study stable isotope ratio analysis was investigated as a means of determining the origin of the methylamphetamine precursors, ephedrine and pseudoephedrine. Ephedrine and pseudoephedrine may be prepared industrially by several routes. Results are presented for the stable isotope ratios of carbon (delta(13)C), nitrogen (delta(15)N) and hydrogen (delta(2)H) measured in methylamphetamine samples synthesized from ephedrine and pseudoephedrine of known provenance. It is clear from the results that measurement of the delta(13)C, delta(15)N and delta(2)H stable isotope ratios by elemental analyzer/thermal conversion isotope ratio mass spectrometry (EA/TC-IRMS) in high-purity methylamphetamine samples will allow determination of the synthetic source of the ephedrine or pseudoephedrine precursor as being either of a natural, semi-synthetic, or fully synthetic origin. Copyright (c) 2009 Commonwealth of Australia.

  2. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as theirmore » stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  3. Large N[sub c], constituent quarks, and N, [Delta] charge radii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfons J. Buchmann; Richard F. Lebed.

    2000-03-01

    The authors show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N[sub c] limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N[sub c] baryon observables; here they apply it to the case of charge radii of the N and [Delta] states. For example, one finds the relation r[sub p][sup 2] [minus] r[sub [Delta][sup +

  4. Characterization of Carrier Concentration and Mobility in n-type SiC Wafers Using Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Narita, Katsutoshi; Hijikata, Yasuto; Yaguchi, Hiroyuki; Yoshida, Sadafumi; Nakashima, Shinichi

    2004-08-01

    We have estimated the free-carrier concentration and drift mobility in n-type 6H-SiC wafers in the carrier concentration range of 1017-1019 cm-3 from far- and mid-infrared (30-2000 cm-1) reflectance spectra obtained at room temperature. A modified classical dielectric function model was employed for the analysis. We found good agreement between the electrical properties derived from infrared reflectance spectroscopy and those derived from Hall effect measurements. We have demonstrated the spatial mapping of carrier concentration and mobility for commercially produced 2 inch SiC wafers.

  5. Capacitance spectroscopy on n-type GaNAs/GaAs embedded quantum structure solar cells

    NASA Astrophysics Data System (ADS)

    Venter, Danielle; Bollmann, Joachim; Elborg, Martin; Botha, J. R.; Venter, André

    2018-04-01

    In this study, both deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) have been used to study the properties of electrically active deep level centers present in GaNAs/GaAs quantum wells (QWs) embedded in p-i-n solar cells. The structures were grown by molecular beam epitaxy (MBE). In particular, the electrical properties of samples with Si (n-type) doping of the QWs were investigated. DLTS revealed four deep level centers in the material, whereas only three were detected by AS. NextNano++ simulation software was used to model the sample band-diagrams to provide reasoning for the origin of the signals produced by both techniques.

  6. Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.

    PubMed

    Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L

    2015-12-01

    The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of Cl2 plasma treatment and annealing on vanadium based metal contacts to Si-doped Al0.75Ga0.25N

    NASA Astrophysics Data System (ADS)

    Lapeyrade, Mickael; Alamé, Sabine; Glaab, Johannes; Mogilatenko, Anna; Unger, Ralph-Stephan; Kuhn, Christian; Wernicke, Tim; Vogt, Patrick; Knauer, Arne; Zeimer, Ute; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2017-09-01

    In order to understand the electrical properties of V/Al/Ni/Au metal contacts to Si-doped Al0.75Ga0.25N layers, X-ray photoelectron spectroscopy analysis was performed on differently treated AlGaN:Si surfaces before metal deposition, and transmission electron microscopy was used to study the semiconductor-metal interface after contact annealing at 900 °C. Cl2 plasma etching of AlGaN increases the aluminum/nitrogen ratio at the surface, and Al oxide or oxynitride is always formed by any surface treatment applied after etching. After contact annealing, a complex interface structure including amorphous AlOx and different metal phases such as Al-Au-Ni, V-Al, and V2N were found. The electrical properties of the contacts were determined by thermionic emission and/or thermionic field emission in the low voltage regime. Nearly ohmic contacts on AlGaN surfaces exposed to a Cl2 plasma were only obtained by annealing the sample at a temperature of 815 °C under N2/NH3 prior to metallization. By this treatment, the oxygen contamination on the surface could be minimized, resulting in a larger semiconductor area to be in direct contact with metal phases such as Al-rich Al-Au-Ni or V-Al and leading to a contact resistivity of 2.5 × 10-2 Ω cm2. This treatment can be used to significantly reduce the operating voltage of current deep ultraviolet light emitting diodes which will increase their wall plug efficiency and lower the thermal stress during their operation.

  8. Electrical and optical evaluation of n-type doping in In x Ga(1‑x)P nanowires

    NASA Astrophysics Data System (ADS)

    Zeng, Xulu; Mourão, Renato T.; Otnes, Gaute; Hultin, Olof; Dagytė, Vilgailė; Heurlin, Magnus; Borgström, Magnus T.

    2018-06-01

    To harvest the benefits of III–V nanowires in optoelectronic devices, the development of ternary materials with controlled doping is needed. In this work, we performed a systematic study of n-type dopant incorporation in dense In x Ga(1‑x)P nanowire arrays using tetraethyl tin (TESn) and hydrogen sulfide (H2S) as dopant precursors. The morphology, crystal structure and material composition of the nanowires were characterized by use of scanning electron microscopy, transmission electron microscopy and energy dispersive x-ray analysis. To investigate the electrical properties, the nanowires were broken off from the substrate and mechanically transferred to thermally oxidized silicon substrates, after which electron beam lithography and metal evaporation were used to define electrical contacts to selected nanowires. Electrical characterization, including four-probe resistivity and Hall effect, as well as back-gated field effect measurements, is combined with photoluminescence spectroscopy to achieve a comprehensive evaluation of the carrier concentration in the doped nanowires. We measure a carrier concentration of ∼1 × 1016 cm‑3 in nominally intrinsic nanowires, and the maximum doping level achieved by use of TESn and H2S as dopant precursors using our parameters is measured to be ∼2 × 1018 cm‑3, and ∼1 × 1019 cm‑3, respectively (by Hall effect measurements). Hence, both TESn and H2S are suitable precursors for a wide range of n-doping levels in In x Ga(1‑x)P nanowires needed for optoelectronic devices, grown via the vapor–liquid–solid mode.

  9. First principle study of electronic structures and optical properties of Ce-doped SiO2

    NASA Astrophysics Data System (ADS)

    Cong, Wei-Yan; Lu, Ying-Bo; Zhang, Peng; Guan, Cheng-Bo

    2018-05-01

    Electronic structures and optical properties of Silicon dioxide (SiO2) systems with and without cerium(Ce) dopant were calculated using the density functional theory. We find that after the Ce incorporation, a new localized impurity band appears between the valance band maximum (VBM) and the conduction band minimum (CBM) of SiO2 system, which is induced mainly by the Ce-4f orbitals. The localized impurity band constructs a bridge between the valence band and the conduction band, making the electronic transition much easier. The calculated optical properties show that in contrast from the pure SiO2 sample, absorption in the visible-light region is found in Ce-doped SiO2 system, which originates from the transition between the valence band and Ce-4f dominated impurity band, as well as the electronic transition from Ce-4f states to Ce-5d states. All calculated results indicate that Ce doping is an effective strategy to improve the optical performance of SiO2 sample, which is in agreement with the experimental results.

  10. Enhanced Electrical Activation in In-Implanted Si 0.35Ge 0.65 by C Co-Doping

    DOE PAGES

    Feng, Ruixing; Kremer, Felipe; Sprouster, David J.; ...

    2016-04-21

    In this report, we have achieved a significant increase in the electrically active dopant fraction in Indium (In)-implanted Si 0.35Ge 0.65, by co-doping with the isovalent element Carbon (C). Electrical measurements have been correlated with X-ray absorption spectroscopy to determine the electrical properties and the In atom lattice location. With C+In co-doping, the solid solubility of In in Si 0.35Ge 0.65 was at least tripled from between 0.02 and 0.06 at% to between 0.2 and 0.6 at% as a result of C–In pair formation, which suppressed In metal precipitation. A dramatic improvement of electrical properties was thus attained in themore » co-doped samples.« less

  11. Molecular approaches to p- and n-nanoscale doping of Ge 1-ySn y semiconductors: Structural, electrical and transport properties

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Tolle, J.; D'Costa, V. R.; Weng, C.; Chizmeshya, A. V. G.; Menendez, J.; Kouvetakis, J.

    2009-08-01

    We report the development of practical doping protocols via designer molecular sources to create n- and p-type doped Ge 1-ySn y layers grown directly upon Si(1 0 0). These materials will have applications in the fabrication of advanced PIN devices that are intended to extend the infrared optical response beyond that of Ge by utilizing the Sn composition as an additional design parameter. Highly controlled and efficient n-doping of single-layer structures is achieved using custom built P(GeH 3) 3 and As(GeH 3) 3, precursors containing preformed Ge-As and Ge-P near-tetrahedral bonding arrangements compatible with the structure of the host Ge-Sn lattice. Facile substitution and complete activation of the P and As atoms at levels ˜10 17-10 19 cm -3 is obtained via in situ depositions at low temperatures (350 °C). Acceptor doping is readily achieved using conventional diborane yielding carrier concentrations between 10 17-10 19 cm -3 under similar growth conditions. Full activation of the as-grown dopant concentrations is demonstrated by combined SIMS and Hall experiments, and corroborated using a contactless spectroscopic ellipsometry approach. RTA processing of the samples leads to a significant increase in carrier mobility comparable to that of bulk Ge containing similar doping levels. The alloy scattering contribution appears to be negligible for electron carrier concentrations beyond 10 19 cm -3 in n-type samples and hole concentrations beyond 10 18 cm -3 in p-type samples. A comparative study using the classical lower-order hydrides PH 3 and AsH 3 produced n-doped films with carrier densities (up to 9 × 10 19 cm -3) similar to those afforded by P(GeH 3) 3 and As(GeH 3) 3. However, early results indicate that the simpler PH 3 and AsH 3 sources yield materials with inferior morphology and microstructure. Calculations of surface energetics using bond enthalpies suggest that the latter massive compounds bind to the surface via strong Ge-Ge bonds and likely act as

  12. Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers

    NASA Astrophysics Data System (ADS)

    Sharma, Venus; Srivastava, Sunita

    2018-04-01

    Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.

  13. Heavily doped n-type a-IGZO by F plasma treatment and its thermal stability up to 600 °C

    NASA Astrophysics Data System (ADS)

    Um, Jae Gwang; Jang, Jin

    2018-04-01

    We report the electrical properties and thermal stability of heavily doped, amorphous indium-gallium-zinc-oxide (a-IGZO) treated with fluorine (F) plasma. When the F doping concentration in a-IGZO is 17.51 × 1021/cm-3, the a-IGZO exhibits a carrier concentration of 6 × 1019 cm-3, a resistivity of 3 × 10-3 Ω cm, and a Hall mobility of 20 cm2/V s. This indicates that F is a suitable n-type dopant in a-IGZO. The similarity of the ionic radius of F to that of oxygen (O) allows substitutional doping by replacing O with F or the occupation of the oxygen vacancy (VO) site by F and consequent reduction in defect density. The semiconducting property of a-IGZO can change into metallic behavior by F doping. The defect passivation by F incorporation is confirmed by the XPS depth profile, which reveals the significant reduction in the VO concentration due to the formation of In-F bonds. The heavily doped a-IGZO exhibits thermally stable conductivity up to 600 °C annealing and thus can be widely used for the ohmic contact of a-IGZO devices.

  14. In-plane electrical transport in n-type selectively doped GaSb/AlGaSb multiquantum wells

    NASA Astrophysics Data System (ADS)

    Ghezzi, C.; Cioce, B.; Magnanini, R.; Parisini, A.

    2001-11-01

    Results are reported regarding in-plane electrical transport in n-type selectively doped GaSb/AlGaSb multiquantum wells. In the samples, which were grown by molecular beam epitaxy, only the central regions of the Al0.40Ga0.60Sb barriers were Te doped. Low-field, low-temperature Hall measurements in the dark demonstrated the presence in the GaSb wells of a degenerate electron gas with nonzero occupancy only for the lowest miniband. A positive persistent photoconductivity effect, related to the DX character of the Te impurity, was also observed. This behavior enabled the μ electron mobility to be measured at T=10 K as a function of the nS sheet carrier density. Since the experimental data were consistent with a dominant role of the interface roughness scattering in the limiting of μ, the height, Δ, and the lateral size, Λ, of the interface roughness were determined from the analysis of the μ=μ(nS) dependence. Acceptable values of Δ were obtained, consistent with results of structural investigations in single quantum well samples of GaSb/Al0.40Ga0.60Sb [E. Kh. Mukhamedzhanov, C. Bocchi, S. Franchi, A. Baraldi, R. Magnanini, and L. Nasi, J. Appl. Phys. 87, 4234 (2000)].

  15. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  16. Correlation between defect transition levels and thermoelectric operational temperature of doped CrSi2

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek; Pandey, Tribhuwan

    2014-03-01

    The performance of a thermoelectric material is quantified by figure of merit ZT. The challenge in achieving high ZT value requires simultaneously high thermopower, high electrical conductivity and low thermal conductivity at optimal carrier concentration. So far doping is the most versatile approach used for modifying thermoelectric properties. Previous studies have shown that doping can significantly improve the thermoelectric performance, however the tuning the operating temperature of a thermoelectric device is a main issue. Using first principles density functional theory, we report for CrSi2, a linear relationship between thermodynamic charge state transition levels of defects and temperature at which thermopower peaks. We show for doped CrSi2 that the peak of thermopower occurs at the temperature Tm, which corresponds to the position of defect transition level. Therefore, by modifying the defect transition level, a thermoelectric material with a given operational temperature can be designed. The authors thankfully acknowledge support from ADA under NpMASS.

  17. Defect phase diagram for doping of Ga 2O 3

    DOE PAGES

    Lany, Stephan

    2018-04-01

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  18. Defect phase diagram for doping of Ga 2O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less

  19. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  20. Structure-Dependent Spectroscopic Properties of Yb3+-Doped Phosphosilicate Glasses Modified by SiO2

    PubMed Central

    Wang, Ling; Zeng, Huidan; Yang, Bin; Ye, Feng; Chen, Jianding; Chen, Guorong; Smith, Andew T.; Sun, Luyi

    2017-01-01

    Yb3+-doped phosphate glasses containing different amounts of SiO2 were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO2 on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO2 possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm2), the maximum Stark splitting manifold of 2F7/2 level (781 cm−1), and the largest scalar crystal-field NJ and Yb3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO2 promoted the formation of P=O linkages, but broke the P=O linkages when the SiO2 content was greater than 26.7 mol %. Based on the previous 29Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO6] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb3+-doped gain medium for solid-state lasers and optical fiber amplifiers. PMID:28772601