Science.gov

Sample records for n-well cmos process

  1. Development of deep N-well monolithic active pixel sensors in a 0.13 μm CMOS technology

    NASA Astrophysics Data System (ADS)

    Bettarini, S.; Bardi, A.; Batignani, G.; Bosi, F.; Calderini, G.; Cenci, R.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morsani, F.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J.; Andreoli, C.; Pozzati, E.; Ratti, L.; Speziali, V.; Manghisoni, M.; Re, V.; Traversi, G.; Bosisio, L.; Giacomini, G.; Lanceri, L.; Rachevskaia, I.; Vitale, L.; Bruschi, M.; Giacobbe, B.; Semprini, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Gamba, D.; Giraudo, G.; Mereu, P.; Dalla Betta, G. F.; Soncini, G.; Fontana, G.; Pancheri, L.; Verzellesi, G.

    2007-03-01

    By exploiting the triple-well option available in a deep-submicron CMOS process, we developed monolithic active pixel sensors (MAPS) with the unique features of full analog signal processing and digital functionality implemented at the pixel level. After briefly reviewing the results achieved with the first prototype chip, we report on the extensive measurements on the second prototype, containing both single-channel sensors, with an improved noise figure, and an 8×8 pixel array. For the pixel having a collecting electrode area of 900 μm2 we measured an equivalent noise charge of about 40 electrons. Using the Fe55 5.9 keV line, we obtained a Signal-to-noise (S/N) ratio of about 30. The pixel matrix (50×50 μm2) has been successfully readout up to 30 MHz. Through noise scans, an expected significant threshold dispersion has been measured. The measurements presented in this paper confirm the capability of our MAPS, based on the deep n-well concept, to be operated as ionizing radiation detectors and suggest a series of improvements we are already implementing in the design of the next prototype chip.

  2. The first fully functional 3D CMOS chip with Deep N-well active pixel sensors for the ILC vertex detector

    NASA Astrophysics Data System (ADS)

    Traversi, G.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Re, V.

    2013-12-01

    This work presents the characterization of Deep N-well (DNW) active pixel sensors fabricated in a vertically integrated technology. The DNW approach takes advantage of the triple well structure to lay out a sensor with relatively large charge collecting area (as compared to standard three transistor MAPS), while the readout is performed by a classical signal processing chain for capacitive detectors. This new 3D design relies upon stacking two homogeneous tiers fabricated in a 130 nm CMOS process where the top tier is thinned down to about 12 μm to expose through silicon vias (TSV), therefore making connection to the buried circuits possible. This technology has been used to design a fine pitch 3D CMOS sensor with sparsification capabilities, in view of vertexing applications to the International Linear Collider (ILC) experiments. Results from the characterization of different kind of test structures, including single pixels, 3×3 and 8×8 matrices, are presented.

  3. Carbon Nanotube Integration with a CMOS Process

    PubMed Central

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  4. End-of-fabrication CMOS process monitor

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hannaman, D. J.; Lieneweg, U.; Lin, Y.-S.; Sayah, H. R.

    1990-01-01

    A set of test 'modules' for verifying the quality of a complementary metal oxide semiconductor (CMOS) process at the end of the wafer fabrication is documented. By electrical testing of specific structures, over thirty parameters are collected characterizing interconnects, dielectrics, contacts, transistors, and inverters. Each test module contains a specification of its purpose, the layout of the test structure, the test procedures, the data reduction algorithms, and exemplary results obtained from 3-, 2-, or 1.6-micrometer CMOS/bulk processes. The document is intended to establish standard process qualification procedures for Application Specific Integrated Circuits (ASIC's).

  5. A Standard CMOS Humidity Sensor without Post-Processing

    PubMed Central

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2011-01-01

    A 2 ?W power dissipation, voltage-output, humidity sensor accurate to 5% relative humidity was developed using the LFoundry 0.15 ?m CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a Intervia Photodielectric 802310 humidity-sensitive layer, and a CMOS capacitance to voltage converter. PMID:22163949

  6. An approach to the optical interconnect made in standard CMOS process

    NASA Astrophysics Data System (ADS)

    Changliang, Yu; Luhong, Mao; Xindong, Xiao; Sheng, Xie; Shilin, Zhang

    2009-05-01

    A standard CMOS optical interconnect is proposed, including an octagonal-annular emitter, a field oxide, metal 1-PSG/BPSG-metal 2 dual waveguide, and an ultra high-sensitivity optical receiver integrated with a fingered P+/N-well/P-sub dual photodiode detector. The optical interconnect is implemented in a Chartered 3.3-V 0.35-μm standard analog CMOS process with two schemes for the research of the substrate noise coupling effect on the optical interconnect performance: with or without a GND-guardring around the emitter. The experiment results show that the optical interconnect can work at 100 kHz, and it is feasible to implement optical interconnects in standard CMOS processes.

  7. IGBT scaling principle toward CMOS compatible wafer processes

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Omura, Ichiro

    2013-02-01

    A scaling principle for trench gate IGBT is proposed. CMOS technology on large diameter wafer enables to produce various digital circuits with higher performance and lower cost. The transistor cell structure becomes laterally smaller and smaller and vertically shallower and shallower. In contrast, latest IGBTs have rather deeper trench structure to obtain lower on-state voltage drop and turn-off loss. In the aspect of the process uniformity and wafer warpage, manufacturing such structure in the CMOS factory is difficult. In this paper, we show the scaling principle toward shallower structure and better performance. The principle is theoretically explained by our previously proposed "Structure Oriented" analytical model. The principle represents a possibility of technology direction and roadmap for future IGBT for improving the device performance consistent with lower cost and high volume productivity with CMOS compatible large diameter wafer technologies.

  8. Logic compatible process technology for embedded atom switches in CMOS

    NASA Astrophysics Data System (ADS)

    Okamoto, Koichiro; Tada, Munehiro; Banno, Naoki; Iguchi, Noriyuki; Sakamoto, Toshitsugu; Hada, Hiromitsu

    2015-05-01

    We have developed a CMOS logic compatible process for embedding Cu atom switches in a Cu/low-k back-end-of-line without degrading interconnect and switch performance characteristics. The key technologies are (i) burying a via-interlayer dielectric layer between the switches without voids, followed by surface planarization using chemical mechanical polishing, and (ii) introducing a Ta protective second top electrode, which realizes simultaneous via-openings to both the switches and the lower interconnects without degrading physical morphology and electric properties of the switches. The developed process enables us to integrate the atom switches on logic with only two additional masks at low cost.

  9. Device and process integration for a 0.55-um channel length CMOS device

    NASA Astrophysics Data System (ADS)

    Waldo, Whitson G.; Turkman, Ibrahim; Brownson, Rickey

    1996-09-01

    The device and process integration for a 5 V 0.55 micron effective channel length double layer poly, triple layer metal CMOS device is presented. The n-well doping has been optimized to minimize punchthrough currents on PMOS devices. Surface and bulk leakage current components have been analyzed for p-channel Leff and n-well doping variation to evaluate the process latitude. A comparison is made with the n-channel transistor leakage due to drain induced barrier lowering. Yield dependence on threshold voltage is discussed by reviewing the results of a threshold voltage matrix. Weff is recovered with LOCOS isolation using a pre-sacrificial oxide etch and the etch time effect on field threshold voltage is presented. The backend development has stressed process simplicity for low cost manufacturing. Scaling in z has enabled via aspect ratios to stay fixed after the shrink. The effect on sidewall coverage by the via angular geometry is discussed. The metallization process has been improved to aid in better sidewall coverage by the sputtered Al alloy. The consequences of interconnect delay are discussed.

  10. Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Lin; Tsai, Ming-Han; Fang, Weileun

    2015-02-01

    Many standard CMOS processes, provided by existing foundries, are available. These standard CMOS processes, with stacking of various metal and dielectric layers, have been extensively applied in integrated circuits as well as micro-electromechanical systems (MEMS). It is of importance to determine the material properties of the metal and dielectric films to predict the performance and reliability of micro devices. This study employs an existing approach to determine the coefficients of thermal expansion (CTEs) of metal and dielectric films for standard CMOS processes. Test cantilevers with different stacking of metal and dielectric layers for standard CMOS processes have been designed and implemented. The CTEs of standard CMOS films can be determined from measurements of the out-of-plane thermal deformations of the test cantilevers. To demonstrate the feasibility of the present approach, thin films prepared by the Taiwan Semiconductor Manufacture Company 0.35 μm 2P4M CMOS process are characterized. Eight test cantilevers with different stacking of CMOS layers and an auxiliary Si cantilever on a SOI wafer are fabricated. The equivalent elastic moduli and CTEs of the CMOS thin films including the metal and dielectric layers are determined, respectively, from the resonant frequency and static thermal deformation of the test cantilevers. Moreover, thermal deformations of cantilevers with stacked layers different to those of the test beams have been employed to verify the measured CTEs and elastic moduli.

  11. Design rules for RCA self-aligned silicon-gate CMOS/SOS process

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The CMOS/SOS design rules prepared by the RCA Solid State Technology Center (SSTC) are described. These rules specify the spacing and width requirements for each of the six design levels, the seventh level being used to define openings in the passivation level. An associated report, entitled Silicon-Gate CMOS/SOS Processing, provides further insight into the usage of these rules.

  12. Monolithic integration of high bandwidth waveguide coupled Ge photodiode in a photonic BiCMOS process

    NASA Astrophysics Data System (ADS)

    Lischke, S.; Knoll, D.; Zimmermann, L.

    2015-03-01

    Monolithic integration of photonic functionality in the frontend-of-line (FEOL) of an advanced microelectronics technology is a key step towards future communication applications. This combines photonic components such as waveguides, couplers, modulators, and photo detectors with high-speed electronics plus shortest possible interconnects crucial for high-speed performance. Integration of photonics into CMOS FEOL is therefore in development for quite some time reaching 90nm node recently [1]. However, an alternative to CMOS is high-performance BiCMOS, offering significant advantages for integrated photonics-electronics applications with regard to cost and RF performance. We already presented results of FEOL integration of photonic components in a high-performance SiGe:C BiCMOS baseline to establish a novel, photonic BiCMOS process. Process cornerstone is a local-SOI approach which allows us to fabricate SOI-based, thus low-loss photonic components in a bulk BiCMOS environment [2]. A monolithically integrated 10Gbit/sec Silicon modulator with driver was shown here [3]. A monolithically integrated 25Gbps receiver was presented in [4], consisting of 200GHz bipolar transistors and CMOS devices, low-loss waveguides, couplers, and highspeed Ge photo diodes showing 3-dB bandwidth of 35GHz, internal responsivity of more than 0.6A/W at λ= 1.55μm, and ~ 50nA dark current at 1V. However, the BiCMOS-given thermal steps cause a significant smearing of the Germanium photo diodes doping profile, limiting the photo diode performance. Therefore, we introduced implantation of non-doping elements to overcome such limiting factors, resulting in photo diode bandwidths of more than 50GHz even under the effect of thermal steps necessary when the diodes are integrated in a high performance BiCMOS process.

  13. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  14. Integration of complex optical functionality in a production CMOS process

    NASA Astrophysics Data System (ADS)

    Gunn, Lawrence C., III

    Optical functionality has been developed within the confines of an existing CMOS process. As of this writing, 10Gigabit modulators, electrically tunable optical filters, waveguides, and grating coupler technology have been successfully implemented alongside the existing transistors in the Freescale Hip7SOI process. This technology will be used to manufacture high bandwidth optical interconnections directly on silicon chips, allowing a new type of network and computing infrastructure to be developed. This work is covered in two distinct phases. First, the exploratory work done to gain experience with high index contrast silicon waveguides primarily served to uncover challenges related with simulation of these devices, and with the practical limitations of efficiently coupling the resulting waveguide devices with the outside world. The second phase began as the grating coupler emerged to address the coupling challenge. It became feasible to conceive of a commercially viable technology based on silicon photonics. The coupler has been evolved to a high level, currently achieving coupling loss of less than 1dB. Once the light is on chip, filtering and modulation technology are implemented. The reverse-biased plasma dispersion modulator has a 3dB roll-off of 10GHz, and an insertion loss less than 5dB. Optical filters based on ring resonators, arrayed waveguide gratings, and interleavers have all been implemented, often with world record performance, and many of the devices have been made electronically tunable to compensate for manufacturing variations and environmental excursions. Finally, circuitry has been designed and constructed on the same die with the optical functionality, fully demonstrating the ability to achieve monolithic integration of these devices.

  15. A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS

    NASA Astrophysics Data System (ADS)

    Yasaitis, John A.; Judy, Michael; Brosnihan, Tim; Garone, Peter M.; Pokrovskiy, Nikolay; Sniderman, Debbie; Limb, Scott; Howe, Roger T.; Boser, Bernhard E.; Palaniapan, Moorthi; Jiang, Xuesong; Bhave, Sunil

    2003-01-01

    A new MEMS process module, called Mod MEMS, has been developed to monolithically integrate thick (5-10um), multilayer polysilicon MEMS structures with sub-micron CMOS. This process is particularly useful for advanced inertial MEMS products such as automotive airbag accelerometers where reduced cost and increased functionality is required, or low cost, high performance gyroscopes where thick polysilicon (>6um) and CMOS integration is required to increase poly mass and stiffness, and reduce electrical parasitics in order to optimize angular rate sensing. In this paper we will describe the new modular process flow, development of the critical unit process steps, integration of the module with a foundry sub-micron CMOS process, and provide test data on several inertial designs fabricated with this process.

  16. A 3-D optoelectronic integration methodology utilizing CMOS post-backend process

    NASA Astrophysics Data System (ADS)

    Zhang, Zan; Huang, Beiju; Zhang, Zanyun; Cheng, Chuantong; Mao, Xurui; Chen, Hongda

    2014-10-01

    The integration of optical devices and electronic integrated circuits (IC) is a main issue for optoelectronic convergence. In this work, a CMOS post-backend process flow is proposed to potentially achieve a 3-D monolithic optoelectronic integrated chip. The proposed integrated chip is composed of an IC die as electronic layer and a waveguide device layer as photonic layer above electronic layer. The photonic layer is fabricated by CMOS post-backend process with a temperature blow 450 ºC, which would do no harm to the performance of the CMOS ICs. We also fabricated Si3N4 mircoring add-drop filters on a bulk Si wafer. The cross-section of the waveguide is 400 nm × 1 μm, and the radius of microring is 30μm. Measured results match well with numerical simulations.

  17. Overview of CMOS process and design options for image sensor dedicated to space applications

    NASA Astrophysics Data System (ADS)

    Martin-Gonthier, P.; Magnan, P.; Corbiere, F.

    2005-10-01

    With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.

  18. Efficient smart CMOS camera based on FPGAs oriented to embedded image processing.

    PubMed

    Bravo, Ignacio; Baliñas, Javier; Gardel, Alfredo; Lázaro, José L; Espinosa, Felipe; García, Jorge

    2011-01-01

    This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely. PMID:22163739

  19. Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing

    PubMed Central

    Bravo, Ignacio; Baliñas, Javier; Gardel, Alfredo; Lázaro, José L.; Espinosa, Felipe; García, Jorge

    2011-01-01

    This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS) sensor and a Field Programmable Gate Array (FPGA). The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC) microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely. PMID:22163739

  20. Respiration detection chip with integrated temperature-insensitive MEMS sensors and CMOS signal processing circuits.

    PubMed

    Wei, Chia-Ling; Lin, Yu-Chen; Chen, Tse-An; Lin, Ren-Yi; Liu, Tin-Hao

    2015-02-01

    An airflow sensing chip, which integrates MEMS sensors with their CMOS signal processing circuits into a single chip, is proposed for respiration detection. Three micro-cantilever-based airflow sensors were designed and fabricated using a 0.35 μm CMOS/MEMS 2P4M mixed-signal polycide process. Two main differences were present among these three designs: they were either metal-covered or metal-free structures, and had either bridge-type or fixed-type reference resistors. The performances of these sensors were measured and compared, including temperature sensitivity and airflow sensitivity. Based on the measured results, the metal-free structure with fixed-type reference resistors is recommended for use, because it has the highest airflow sensitivity and also can effectively reduce the output voltage drift caused by temperature change. PMID:24956395

  1. Alternative Post-Processing on a CMOS Chip to Fabricate a Planar Microelectrode Array

    PubMed Central

    López-Huerta, Francisco; Herrera-May, Agustín L.; Estrada-López, Johan J.; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S.

    2011-01-01

    We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+-type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications. PMID:22346681

  2. Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder

    2009-01-01

    There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.

  3. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1977-01-01

    Progress in developing the application of ion implantation techniques to silicon gate CMOS/SOS processing is described. All of the conventional doping techniques such as in situ doping of the epi-film and diffusion by means of doped oxides are replaced by ion implantation. Various devices and process parameters are characterized to generate an optimum process by the use of an existing SOS test array. As a result, excellent circuit performance is achieved. A general description of the all ion implantation process is presented.

  4. Photo-Spectrometer Realized In A Standard Cmos Ic Process

    DOEpatents

    Simpson, Michael L.; Ericson, M. Nance; Dress, William B.; Jellison, Gerald E.; Sitter, Jr., David N.; Wintenberg, Alan L.

    1999-10-12

    A spectrometer, comprises: a semiconductor having a silicon substrate, the substrate having integrally formed thereon a plurality of layers forming photo diodes, each of the photo diodes having an independent spectral response to an input spectra within a spectral range of the semiconductor and each of the photo diodes formed only from at least one of the plurality of layers of the semiconductor above the substrate; and, a signal processing circuit for modifying signals from the photo diodes with respective weights, the weighted signals being representative of a specific spectral response. The photo diodes have different junction depths and different polycrystalline silicon and oxide coverings. The signal processing circuit applies the respective weights and sums the weighted signals. In a corresponding method, a spectrometer is manufactured by manipulating only the standard masks, materials and fabrication steps of standard semiconductor processing, and integrating the spectrometer with a signal processing circuit.

  5. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  6. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  7. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process

    NASA Astrophysics Data System (ADS)

    Uddin, A.; Yemenicioglu, S.; Chen, C.-H.; Corigliano, E.; Milaninia, K.; Theogarajan, L.

    2013-04-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.

  8. 0.8V ultralow-power CMOS analog multiplexer for remote biological and chemical signal processing

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Srivastava, Ashok; Ajmera, Pratul K.

    2004-07-01

    A CMOS analog multiplexer circuit has been designed for operation at 0.8 V. The circuit consists of transmission gates as switches and an inverter. MOSFETs in the design of multiplexer use the dynamic body bias method. The forward body bias is limited to no more than 0.4 V to avoid CMOS latch-up. The reverse body bias is limited to 0.4 V and allows the MOSFET to turn-off fully and suppresses the sub-threshold leakage. The improved dynamic threshold MOSFET (DTMOS) inverter is engaged to achieve low voltage operation. The CMOS multiplexer chip was designed in standard 1.5 ?m n-well CMOS technology and simulated using SPICE. Excellent agreement was obtained between the simulated output waveform and corresponding experimentally measured behavior. The power dissipation is close to 70 nW and signal-to-leakage ratio is 120 dB. The proposed low voltage, ultra-low power analog multiplexer would find application for on-chip neural microprobes and other applications.

  9. Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength.

    PubMed

    Meng, Huaiyu; Atabaki, Amir; Orcutt, Jason S; Ram, Rajeev J

    2015-12-14

    We report a defect state based guided-wave photoconductive detector at 1360-1630 nm telecommunication wavelength directly in standard microelectronics CMOS processes, with zero in-foundry process modification. The defect states in the polysilicon used to define a transistor gate assists light absorption. The body crystalline silicon helps form an inverse ridge waveguide to confine optical mode. The measured responsivity and dark current at 25 V forward bias are 0.34 A/W and 1.4 μA, respectively. The 3 dB bandwidth of the device is 1 GHz. PMID:26699053

  10. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.

  11. Multi-channel high-speed CMOS image acquisition and pre-processing system

    NASA Astrophysics Data System (ADS)

    Sun, Chun-feng; Yuan, Feng; Ding, Zhen-liang

    2008-10-01

    A new multi-channel high-speed CMOS image acquisition and pre-processing system is designed to realize the image acquisition, data transmission, time sequential control and simple image processing by high-speed CMOS image sensor. The modular structure design, LVDS and ping-pong cache techniques used during the designed image data acquisition sub-system design ensure the real-time data acquisition and transmission. Furthermore, a new histogram equalization algorithm of adaptive threshold value based on the reassignment of redundant gray level is incorporated in the image preprocessing module of FPGA. The iterative method is used in the course of setting threshold value, and a redundant graylevel is redistributed rationally according to the proportional gray level interval. The over-enhancement of background is restrained and the feasibility of mergence of foreground details is reduced. The experimental certificates show that the system can be used to realize the image acquisition, transmission, memory and pre-processing to 590MPixels/s data size, and make for the design and realization of the subsequent system.

  12. Lithography with infrared illumination alignment for advanced BiCMOS backside processing

    NASA Astrophysics Data System (ADS)

    Kulse, P.; Schulz, K.; Behrendt, U.; Wietstruck, M.; Kaynak, M.; Marschmeyer, S.; Tillack, B.

    2014-10-01

    Driven by new applications such as BiCMOS embedded RF-MEMS, high-Q passives, Si-based microfluidics for bio sensing and InP-Si BiCMOS heterointegration [1-4], accurate alignment between back and front side is highly desired. In this paper, we present an advanced back to front side alignment technique and implementation of it into the back side processing module of IHP's 0.25/0.13 μm high performance SiGe:C BiCMOS technology. Using the Nikon i-line Stepper NSR-SF150, a new infrared alignment system has been introduced. The developed technique enables a high resolution and accurate lithography on the back side of the BiCMOS-processed Si wafers for additional backside processing, such as backside routing metallization. In comparison to previous work [5] with overlay values of 500 nm and the requirement of two-step lithography, the new approach provides significant improvement in the overlay accuracy with overlay values of 200 nm and a significant increase of the fabrication throughput by eliminating the need of the two-step lithography. The new non-contact alignment procedure allows a direct back to front side alignment using any front side alignment mark (Fig. 2), which generated a signal by reflecting the IR light beam. Followed by a measurement of the misalignment between both front to back side overlay marks (Fig. 3) using EVG®NT40 automated measurement system, a final lithography process with wafer interfield corrections is applied to obtain a minimum overlay of 200 nm. For the specific application of deep Si etching using Bosch process, the etch profile angle deviation across the wafer (tilting) has to be considered as well. From experimental data, an etch profile angle deviation of 8 μm across the wafer has been measured (Fig. 7). The overlay error caused by tilting was corrected by optimization and adjustment of the stepper offset parameters. All measurements of back to front side misalignment were performed with the EVG®40NT automated measurement system whereas the deep etch tilting errors were measured with an optical microscope using special vernier scales embedded in the backend-of-line metallization layer (Fig 4 and Fig. 5) of the IHP's 0.25/0.13 μm SiGe:C BiCMOS technology. By applying the proposed method of back to front side alignment using infrared illumination alignment, the accuracy of backside fabrication processes like deep Si etching can be significantly improved. The developed technique is very promising to shrink the dimensions by minimizing the back to front side misalignment to improve the device performance of backside integrated components and technologies.

  13. Device oriented statistical modeling method for process variability in 45nm analog CMOS technology

    NASA Astrophysics Data System (ADS)

    Ajayan, K. R.; Bhat, Navakanta

    2012-10-01

    With the rapid scaling down of the semiconductor process technology, the process variation aware circuit design has become essential today. Several statistical models have been proposed to deal with the process variation. We propose an accurate BSIM model for handling variability in 45nm CMOS technology. The MOSFET is designed to meet the specification of low standby power technology of International Technology Roadmap for Semiconductors (ITRS).The process parameters variation of annealing temperature, oxide thickness, halo dose and title angle of halo implant are considered for the model development. One parameter variation at a time is considered for developing the model. The model validation is done by performance matching with device simulation results and reported error is less than 10%.

  14. A robust color signal processing with wide dynamic range WRGB CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Kawada, Shun; Kuroda, Rihito; Sugawa, Shigetoshi

    2011-01-01

    We have developed a robust color reproduction methodology by a simple calculation with a new color matrix using the formerly developed wide dynamic range WRGB lateral overflow integration capacitor (LOFIC) CMOS image sensor. The image sensor was fabricated through a 0.18 μm CMOS technology and has a 45 degrees oblique pixel array, the 4.2 μm effective pixel pitch and the W pixels. A W pixel was formed by replacing one of the two G pixels in the Bayer RGB color filter. The W pixel has a high sensitivity through the visible light waveband. An emerald green and yellow (EGY) signal is generated from the difference between the W signal and the sum of RGB signals. This EGY signal mainly includes emerald green and yellow lights. These colors are difficult to be reproduced accurately by the conventional simple linear matrix because their wave lengths are in the valleys of the spectral sensitivity characteristics of the RGB pixels. A new linear matrix based on the EGY-RGB signal was developed. Using this simple matrix, a highly accurate color processing with a large margin to the sensitivity fluctuation and noise has been achieved.

  15. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  16. Ge microdisk with lithographically-tunable strain using CMOS-compatible process.

    PubMed

    Sukhdeo, David S; Petykiewicz, Jan; Gupta, Shashank; Kim, Daeik; Woo, Sungdae; Kim, Youngmin; Vu?kovi?, Jelena; Saraswat, Krishna C; Nam, Donguk

    2015-12-28

    We present germanium microdisk optical resonators under a large biaxial tensile strain using a CMOS-compatible fabrication process. Biaxial tensile strain of ~0.7% is achieved by means of a stress concentration technique that allows the strain level to be customized by carefully selecting certain lithographic dimensions. The partial strain relaxation at the edges of a patterned germanium microdisk is compensated by depositing compressively stressed silicon nitride layer. Two-dimensional Raman spectroscopy measurements along with finite-element method simulations confirm a relatively homogeneous strain distribution within the final microdisk structure. Photoluminescence results show clear optical resonances due to whispering gallery modes which are in good agreement with finite-difference time-domain optical simulations. Our bandgap-customizable microdisks present a new route towards an efficient germanium light source for on-chip optical interconnects. PMID:26831991

  17. Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-I.; Tsai, Ming-Han; Liu, Yu-Chia; Sun, Chih-Ming; Fang, Weileun

    2013-09-01

    This study exploits the foundry available complimentary metal-oxide-semiconductor (CMOS) process and the packaging house available pick-and-place technology to implement a capacitive type micromachined 2-axis tilt sensor. The suspended micro mechanical structures such as the spring, stage and sensing electrodes are fabricated using the CMOS microelectromechanical systems (MEMS) processes. A bulk block is assembled onto the suspended stage by pick-and-place technology to increase the proof-mass of the tilt sensor. The low temperature UV-glue dispensing and curing processes are employed to bond the block onto the stage. Thus, the sensitivity of the CMOS MEMS capacitive type 2-axis tilt sensor is significantly improved. In application, this study successfully demonstrates the bonding of a bulk solder ball of 100 µm in diameter with a 2-axis tilt sensor fabricated using the standard TSMC 0.35 µm 2P4M CMOS process. Measurements show the sensitivities of the 2-axis tilt sensor are increased for 2.06-fold (x-axis) and 1.78-fold (y-axis) after adding the solder ball. Note that the sensitivity can be further improved by reducing the parasitic capacitance and the mismatch of sensing electrodes caused by the solder ball.

  18. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    PubMed Central

    He, Diwei; Nguyen, Hoang C.; Hayes-Gill, Barrie R.; Zhu, Yiqun; Crowe, John A.; Gill, Cally; Clough, Geraldine F.; Morgan, Stephen P.

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue. PMID:24051525

  19. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu

    2014-11-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.

  20. A CMOS high resolution, process/temperature variation tolerant RSSI for WIA-PA transceiver

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Yu, Jiang; Jie, Li; Jiangfei, Guo; Hua, Chen; Jingyu, Han; Guiliang, Guo; Yuepeng, Yan

    2015-08-01

    This paper presents a high resolution, process/temperature variation tolerant received signal strength indicator (RSSI) for wireless networks for industrial automation process automation (WIA-PA) transceiver fabricated in 0.18 μm CMOS technology. The active area of the RSSI is 0.24 mm2. Measurement results show that the proposed RSSI has a dynamic range more than 70 dB and the linearity error is within ±0.5 dB for an input power from -70 to 0 dBm (dBm to 50 Ω), the corresponding output voltage is from 0.81 to 1.657 V and the RSSI slope is 12.1 mV/dB while consuming all of 2 mA from a 1.8 V power supply. Furthermore, by the help of the integrated compensation circuit, the proposed RSSI shows the temperature error within ±1.5 dB from -40 to 85 °C, and process variation error within ±0.25 dB, which exhibits good temperature-independence and excellent robustness against process variation characteristics. Project supported by the National High Technology Research and Development Program of China (No. 2011AA040102).

  1. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1982-01-01

    The procedure used to generate MEBES masks and produce test wafers from the 10X Mann 1600 Pattern Generator Tape using existing CAD utility programs and the MEBES machine in the RCA Solid State Technology Center are described. The test vehicle used is the MSFC-designed SC102 Solar House Timing Circuit. When transforming the Mann 1600 tapes into MEBES tapes, extreme care is required in order to obtain accurate minimum linewidths when working with two different coding systems because the minimum grid sizes may be different for the two systems. The minimum grid sizes are 0.025 mil for MSFC Mann 1600 and 0.02 mil for MEBES. Some snapping to the next grid is therefore inevitable, and the results of this snapping effect are significant when submicron lines are present. However, no problem was noticed in the SC102 circuit because its minimum linewidth is 0.3 mil (7.6 microns). MEBES masks were fabricated and wafers were processed using the silicon-gate CMOS/SOS and aluminum-gate COS/MOS processing.

  2. Design and implementation of non-linear image processing functions for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel

    2012-11-01

    Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.

  3. Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit

    NASA Technical Reports Server (NTRS)

    Bolton, Eric K.; Sayler, Gary S.; Nivens, David E.; Rochelle, James M.; Ripp, Steven; Simpson, Michael L.

    2002-01-01

    We report an integrated CMOS microluminometer optimized for the detection of low-level bioluminescence as part of the bioluminescent bioreporter integrated circuit (BBIC). This microluminometer improves on previous devices through careful management of the sub-femtoampere currents, both signal and leakage, that flow in the front-end processing circuitry. In particular, the photodiode is operated with a reverse bias of only a few mV, requiring special attention to the reset circuitry of the current-to-frequency converter (CFC) that forms the front-end circuit. We report a sub-femtoampere leakage current and a minimum detectable signal (MDS) of 0.15 fA (1510 s integration time) using a room temperature 1.47 mm2 CMOS photodiode. This microluminometer can detect luminescence from as few as 5000 fully induced Pseudomonas fluorescens 5RL bacterial cells. c2002 Elsevier Science B.V. All rights reserved.

  4. Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Han; Sun, Chih-Ming; Liu, Yu-Chia; Wang, Chuanwei; Fang, Weileun

    2009-10-01

    This study presents a process design methodology to improve the performance of a CMOS-MEMS gap-closing capacitive sensor. In addition to the standard CMOS process, the metal wet-etching approach is employed as the post-CMOS process to realize the present design. The dielectric layers of the CMOS process are exploited to form the main micro mechanical structures of the sensor. The metal layers of the CMOS process are used as the sensing electrodes and sacrificial layers. The advantages of the sensor design are as follows: (1) the parasitic capacitance is significantly reduced by the dielectric structure, (2) in-plane and out-of-plane sensing gaps can be reduced to increase the sensitivity, and (3) plate-type instead of comb-type out-of-plane sensing electrodes are available to increase the sensing electrode area. To demonstrate the feasibility of the present design, a three-axis capacitive CMOS-MEMS accelerometers chip is implemented and characterized. Measurements show that the sensitivities of accelerometers reach 11.5 mV G-1 (in the X-, Y-axes) and 7.8 mV G-1 (in the Z-axis), respectively, which are nearly one order larger than existing designs. Moreover, the detection of 10 mG excitation using the three-axis accelerometer is demonstrated for both in-plane and out-of-plane directions.

  5. Characterization of ultrathin insulators in CMOS technology: Wearout and failure mechanisms due to processing and operation

    NASA Astrophysics Data System (ADS)

    Okandan, Murat

    In the CMOS technology the gate dielectric is the most critical layer, as its condition directly dictates the ultimate performance of the devices. In this thesis, the wear-out and failure mechanisms in ultra-thin (around 50A and lower) oxides are investigated. A new degradation phenomenon, quasi-breakdown (or soft-breakdown), and the annealing and stressing behavior of devices after quasi-breakdown are considered in detail. Devices that are in quasi-breakdown continue to operate as switches, but the gate leakage current is two orders of magnitude higher than the leakage in healthy devices and the stressing/annealing behavior of the devices are completely altered. This phenomenon is of utmost interest, since the reduction in SiO2 dielectric thickness has reached its physical limits, and the quasi-breakdown behavior is seen to dominate as a failure mode in this regime. The quasi-breakdown condition can be brought on by stresses during operation or processing. To further study this evolution through stresses and anneals, cyclic current-voltage (I-V) measurement has been further developed and utilized in this thesis. Cyclic IV is a simple and fast, two terminal measurement technique that looks at the transient current flowing in an MOS system during voltage sweeps from accumulation to inversion and back. During these sweeps, carrier trapping/detrapping, generation and recombination are observed. An experimental setup using a fast electrometer and analog to digital conversion (A/D) card and the software for control of the setup and data analysis were also developed to gain further insight into the detailed physics involved. Overall, the crucial aspects of wear-out and quasi-breakdown of ultrathin dielectrics, along with the methods for analyzing this evolution are presented in this thesis.

  6. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  7. Thermal Radiometer Signal Processing using Radiation Hard CMOS Application Specific Integrated Circuits for use in Harsh Planetary Environments

    NASA Astrophysics Data System (ADS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-10-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  8. Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing

    NASA Astrophysics Data System (ADS)

    Little, Jeffrey W.; Tyrrell, Brian M.; D'Onofrio, Richard; Berger, Paul J.; Fernandez-Cull, Christy

    2014-06-01

    A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization occurs at the pixel level, enabling in-pixel DSP and noiseless data transfer from the pixel array to the peripheral processing units. The pipelined processing of row and column image data prior to off chip readout reduces the required output bandwidth of the image sensor, thus reducing the latency of computations necessary to implement various image processing systems. Data volume reductions of over 80% lead to sub 10μs latency for completing various tracking and sensor algorithms. This paper details the architecture of the pixel-processing imager (PPI) and presents some initial results from a prototype device fabricated in a standard 65nm CMOS process hybridized to a commercial off-the-shelf short-wave infrared (SWIR) detector array.

  9. CMOS dot matrix microdisplay

    NASA Astrophysics Data System (ADS)

    Venter, Petrus J.; Bogalecki, Alfons W.; du Plessis, Monuko; Goosen, Marius E.; Nell, Ilse J.; Rademeyer, P.

    2011-03-01

    Display technologies always seem to find a wide range of interesting applications. As devices develop towards miniaturization, niche applications for small displays may emerge. While OLEDs and LCDs dominate the market for small displays, they have some shortcomings as relatively expensive technologies. Although CMOS is certainly not the dominating semiconductor for photonics, its widespread use, favourable cost and robustness present an attractive potential if it could find application in the microdisplay environment. Advances in improving the quantum efficiency of avalanche electroluminescence and the favourable spectral characteristics of light generated through the said mechanism may afford CMOS the possibility to be used as a display technology. This work shows that it is possible to integrate a fully functional display in a completely standard CMOS technology mainly geared towards digital design while using light sources completely compatible with the process and without any post processing required.

  10. Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications

    NASA Astrophysics Data System (ADS)

    Michaelis, Sven; Timme, Hans-Jörg; Wycisk, Michael; Binder, Josef

    2000-06-01

    This paper presents an acceleration-threshold sensor fabricated with an electroplating technology which can be integrated on top of a pre-processed CMOS signal processing circuit. The device can be manufactured using a standard low-cost CMOS production line and then adding the mechanical sensor elements via a specialized back-end process. This makes the system especially interesting for automotive applications, such as airbag safety systems or transportation shock monitoring systems, where smaller size, improved functionality, high reliability and low costs are important.

  11. Design and implementation of IEEE 802.11ac MAC controller in 65 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Bin, Wu; Yong, Hei

    2016-02-01

    An IEEE-802.11ac-1*1 wireless LAN system-on-a-chip (SoC) that integrates an analog front end, a digital base-band processor and a media access controller has been implemented in 65 nm CMOS technology. It can provide significantly increased throughput, high efficiency rate selection, and fully backward compatibility with the existing 802.11a/n WLAN protocols. Especially the measured maximum throughput of UDP traffic can be up to 267 Mbps. Project supported by the National Great Specific Project of China (No. 2012ZX03004004_001).

  12. Analysis of pixel circuits in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Mei, Zou; Chen, Nan; Yao, Li-bin

    2015-04-01

    CMOS image sensors (CIS) have lower power consumption, lower cost and smaller size than CCD image sensors. However, generally CCDs have higher performance than CIS mainly due to lower noise. The pixel circuit used in CIS is the first part of the signal processing circuit and connected to photodiode directly, so its performance will greatly affect the CIS or even the whole imaging system. To achieve high performance, CMOS image sensors need advanced pixel circuits. There are many pixel circuits used in CIS, such as passive pixel sensor (PPS), 3T and 4T active pixel sensor (APS), capacitive transimpedance amplifier (CTIA), and passive pixel sensor (PPS). At first, the main performance parameters of each pixel structure including the noise, injection efficiency, sensitivity, power consumption, and stability of bias voltage are analyzed. Through the theoretical analysis of those pixel circuits, it is concluded that CTIA pixel circuit has good noise performance, high injection efficiency, stable photodiode bias, and high sensitivity with small integrator capacitor. Furthermore, the APS and CTIA pixel circuits are simulated in a standard 0.18-μm CMOS process and using a n-well/p-sub photodiode by SPICE and the simulation result confirms the theoretical analysis result. It shows the possibility that CMOS image sensors can be extended to a wide range of applications requiring high performance.

  13. Development of Etch Processes for High-k Dielectric CMOS Devices with LaOx/HfO2 and LaOx/HfSiO Gate Oxides

    NASA Astrophysics Data System (ADS)

    Rader, Kelly; Ventrice, Carl; Lysaght, Patrick

    2009-10-01

    High-k dielectric CMOS devices for low standby power applications require a low workfunction oxide on the n-MOSFET side of the CMOS device to reduce the threshold voltage and gate leakage. A promising candidate for this application is LaOx. However, a process for etching the LaOx from the p-MOSFET, which leaves the n-side intact, is required. A wet etch study, which enables the creation of a simplified process flow for CMOS devices using LaOx on the n-side intact, is presented. The oxidation states and stoichiometry of the LaOx films is investigated via x-ray photoelectron spectroscopy (XPS).

  14. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  15. Micro ethanol sensors with a heater fabricated using the commercial 0.18 μm CMOS process.

    PubMed

    Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 µm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm. PMID:24072022

  16. Ionization versus displacement damage effects in proton irradiated CMOS sensors manufactured in deep submicron process

    NASA Astrophysics Data System (ADS)

    Goiffon, V.; Magnan, P.; Saint-Pé, O.; Bernard, F.; Rolland, G.

    2009-10-01

    Proton irradiation effects have been studied on CMOS image sensors manufactured in a 0.18 μm technology dedicated to imaging. The ionizing dose and displacement damage effects were discriminated and localized thanks to 60Co irradiations and large photodiode reverse current measurements. The only degradation observed was a photodiode dark current increase. It was found that ionizing dose effects dominate this rise by inducing generation centers at the interface between shallow trench isolations and depleted silicon regions. Displacement damages are is responsible for a large degradation of dark current non-uniformity. This work suggests that designing a photodiode tolerant to ionizing radiation can mitigate an important part of proton irradiation effects.

  17. An Unassisted Low-Voltage-Trigger ESD Protection Structure in a 0.18-µm CMOS Process without Extra Process Cost

    NASA Astrophysics Data System (ADS)

    Li, Bing; Shan, Yi

    In order to quickly discharge the electrostatic discharge (ESD) energy, an unassisted low-voltage-trigger ESD protection structure is proposed in this work. Under transmission line pulsing (TLP) stress, the trigger voltage, turn-on speed and second breakdown current can be obviously improved, as compared with the traditional protection structure. Moreover there is no need to add any extra mask or do any process modification for the new structure. The proposed structure has been verified in foundry's 0.18-µm CMOS process.

  18. Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes

    NASA Astrophysics Data System (ADS)

    Goiffon, Vincent; Virmontois, Cédric; Magnan, Pierre; Cervantes, Paola; Corbière, Franck; Estribeau, Magali; Pinel, Philippe

    2010-10-01

    This paper presents a summary of the main results we observed after several years of study on irradiated custom imagers manufactured using 0.18 μm CMOS processes dedicated to imaging. These results are compared to irradiated commercial sensor test results provided by the Jet Propulsion Laboratory to enlighten the differences between standard and pinned photodiode behaviors. Several types of energetic particles have been used (gamma rays, X-rays, protons and neutrons) to irradiate the studied devices. Both total ionizing dose (TID) and displacement damage effects are reported. The most sensitive parameter is still the dark current but some quantum efficiency and MOSFET characteristics changes were also observed at higher dose than those of interest for space applications. In all these degradations, the trench isolations play an important role. The consequences on radiation testing for space applications and radiation-hardening-by-design techniques are also discussed.

  19. The 1.2 micron CMOS technology

    NASA Technical Reports Server (NTRS)

    Pina, C. A.

    1985-01-01

    A set of test structures was designed using the Jet Propulsion Laboratory (JPL) test chip assembler and was used to evaluate the first CMOS-bulk foundry runs with feature sizes of 1.2 microns. In addition to the problems associated with the physical scaling of the structures, this geometry provided an additional set of problems, since the design files had to be generated in such a way as to be capable of being processed through p-well, n-well, and twin-well processing lines. This requirement meant that the files containing the geometric design rules as well as the structure design files had to produce process-insensitive designs, a requirement that does not apply to the more mature 3.0-micron CMOS feature size technology. Because of the photolithographic steps required with this feature size, the maximum allowable chip size was 10 x 10 mm, and this chip was divided into 24 project areas, with each area being 1.6 x 1.6 mm in size. The JPL-designed structures occupied 13 out of the 21 allowable project sizes and provided the only test information obtained from these three preliminary runs. The structures were used to successfully evaluate three different manufacturing runs through two separate foundries.

  20. Particle evaluation/control of the Ti/TiN barrier layer in BiCMOS processing

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Liu, Bin; May, Mike; Granum, Mark

    1993-01-01

    Snake/comb defect test structures and an in-line patterned wafer inspection system (Inspex) are very effective for monitoring, investigating, and controlling contamination in modern silicon wafer manufacturing. These techniques have been widely used in our wafer fabrication facility to monitor silicon wafer processing, and to diagnose device failures. In this paper, the methodology of using these techniques to evaluate and control Ti/TiN barrier layer particles is demonstrated. The correlation between these two techniques was studied. A defectivity control baseline for Ti/TiN deposition process was established using statistical analysis. New and improved preventative maintenance procedures were implemented based on the data from snake and Inspex monitors. As a result, the particle defectivity of the Ti/TiN sputtering process has been dramatically reduced in the Ti/TiN process. The column failures of BiCMOS fast SRAM devices have been reduced by approximately 30%, and the probe yield of the SRAM product line has increased by over 14%.

  1. CMOS array design automation techniques

    NASA Technical Reports Server (NTRS)

    Lombardi, T.; Feller, A.

    1976-01-01

    The design considerations and the circuit development for a 4096-bit CMOS SOS ROM chip, the ATL078 are described. Organization of the ATL078 is 512 words by 8 bits. The ROM was designed to be programmable either at the metal mask level or by a directed laser beam after processing. The development of a 4K CMOS SOS ROM fills a void left by available ROM chip types, and makes the design of a totally major high speed system more realizable.

  2. Micro Ethanol Sensors with a Heater Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm. PMID:24072022

  3. Designing a ring-VCO for RFID transponders in 0.18 μm CMOS process.

    PubMed

    Jalil, Jubayer; Reaz, Mamun Bin Ibne; Bhuiyan, Mohammad Arif Sobhan; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5-2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of -126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency. PMID:24587731

  4. Designing a Ring-VCO for RFID Transponders in 0.18 μm CMOS Process

    PubMed Central

    Jalil, Jubayer; Reaz, Mamun Bin Ibne; Bhuiyan, Mohammad Arif Sobhan; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5–2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of −126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency. PMID:24587731

  5. Radiation Characteristics of a 0.11 Micrometer Modified Commercial CMOS Process

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Kim, Hak; Berg, Melanie D.; Forney, Jim; Seidleck, Christina; Vilchis, Miguel A.; Phan, Anthony; Irwin, Tim; LaBel, Kenneth A.; Saigusa, Rajan K.; Mirabedini, Mohammad R.; Finlinson, Rick; Suvkhanov, Agajan; Hornback, Verne; Sung, Jun; Tung, Jeffrey

    2006-01-01

    We present radiation data, Total Ionizing Dose and Single Event Effects, on the LSI Logic 0.11 micron commercial process and two modified versions of this process. Modified versions include a buried layer to guarantee Single Event Latchup immunity.

  6. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  7. Process optimization of developer soluble organic BARC and its characteristics in CMOS devices

    NASA Astrophysics Data System (ADS)

    Lim, Yeon Hwa; Kim, Young Keun; Choi, Jae Sung; Lee, Jeong Gun

    2005-05-01

    As the IC industry is moving toward 90nm node or below, the critical dimension size of implant layers has shrunk to 250nm or smaller. To achieve better CD uniformity, dyed KrF resist and top anti-reflective coating (TARC) are commonly used in advanced photo process of implant layers, while typical organic BARC are not used because it requires dry etch process that damages the substrate and needs additional process steps. In order to overcome those shortcomings, developable BARC is introduced. It is a new type of BARC which is soluble to developer, TMAH solution, in the resist development step. This developer-soluble KrF BARC consists of polyamic acid and its solubility to alkaline could be adjusted by changing bake condition. In this experiment, we evaluated the margin of developable BARC process. Developable BARC reduces the standing wave of photoresist and improves the ID bias and CD uniformity as applied to implant feature printing. However, Developable BARC has a narrow thermal process margin. It is the profile of developable BARC that easily changes according to the coating thickness or thermal process conditions. Even in the same bake conditions, developable BARC profile changes according to the pattern densities. To observe the effects of developable BARC on the device performance, we compare electrical data of devices produced with and without developable BARC. They have the differences in the threshold voltage, leakage current and saturation current. Probably, the residues of the developable BARC after the development bring about the differences.

  8. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 μm process with a high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Senyukov, S.; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz 0.18 μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 1013neq /cm2 was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz 0.18 μm CMOS process for the ALICE ITS upgrade.

  9. A hybrid CMOS-imager with a solution-processable polymer as photoactive layer.

    PubMed

    Baierl, Daniela; Pancheri, Lucio; Schmidt, Morten; Stoppa, David; Dalla Betta, Gian-Franco; Scarpa, Giuseppe; Lugli, Paolo

    2012-01-01

    The solution-processability of organic photodetectors allows a straightforward combination with other materials, including inorganic ones, without increasing cost and process complexity significantly compared with conventional crystalline semiconductors. Although the optoelectronic performance of these organic devices does not outmatch their inorganic counterparts, there are certain applications exploiting the benefit of the solution-processability. Here we demonstrate that the small pixel fill factor of present complementary metal oxide semiconductor-imagers, decreasing the light sensitivity, can be increased up to 100% by replacing silicon photodiodes with an organic photoactive layer deposited with a simple low-cost spray-coating process. By performing a full optoelectronic characterization on this first solution-processable hybrid complementary metal oxide semiconductor-imager, including the first reported observation of different noise types in organic photodiodes, we demonstrate the suitability of this novel device for imaging. Furthermore, by integrating monolithically different organic materials to the chip, we show the cost-effective portability of the hybrid concept to different wavelength regions. PMID:23132025

  10. Fabrication and Structural Characterization of Co-implanted Ultra Shallow Junctions for Integration in Piezoresistive Silicon Sensors Compatible with CMOS Processing

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Mustafa, R.

    2013-12-01

    Fabrication and structural characterization of Indium and Carbon implanted n-type Silicon layers forming ultra-shallow junction for integration in piezoresistive sensors compatible with CMOS processing is studied in detail. The co-implantation technology together with medium range annealing temperature regimes seem to play an important role at atomistic level and provide a process control to engineer the strain and maintain the quality of surface/layer/active device region for further manufacturing process cycle. This is likely to impact the yield and reliability for the fabrication of these devices for diverse applications.

  11. High Electron Mobility Transistor Structures on Sapphire Substrates Using CMOS Compatible Processing Techniques

    NASA Technical Reports Server (NTRS)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced electron mobility as well as the processes that limit mobility, and will be presented.

  12. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18 μm standard CMOS process

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Qi, Zhang; Nanjian, Wu

    2011-11-01

    This paper presents a passive EPC Gen-2 UHF RFID tag chip with a dual-resolution temperature sensor. The chip tag integrates a temperature sensor, an RF/analog front-end circuit, an NVM memory and a digital baseband in a standard CMOS process. The sensor with a low power sigma—delta (ΣΔ) ADC is designed to operate in low and high resolution modes. It can not only achieve the target accuracy but also reduce the power consumption and the sensing time. A CMOS-only RF rectifier and a single-poly non-volatile memory (NVM) are designed to realize a low cost tag chip. The 192-bit-NVM tag chip with an area of 1 mm2 is implemented in a 0.18-μm standard CMOS process. The sensitivity of the tag is -10.7 dBm/-8.4 dBm when the sensor is disabled/enabled. It achieves a maximum reading/sensing distance of 4 m/3.1 m at 2 W EIRP. The inaccuracy of the sensor is -0.6 °C/0.5 °C (-1.0 °C/1.2 °C) in the operating range from 5 to 15 °C in high resolution mode (-30 to 50 °C in low resolution mode). The resolution of the sensor achieves 0.02 °C (0.18 °C) in high (low) resolution mode.

  13. Very low drift and high sensitivity of nanocrystal-TiO2 sensing membrane on pH-ISFET fabricated by CMOS compatible process

    NASA Astrophysics Data System (ADS)

    Bunjongpru, W.; Sungthong, A.; Porntheeraphat, S.; Rayanasukha, Y.; Pankiew, A.; Jeamsaksiri, W.; Srisuwan, A.; Chaisriratanakul, W.; Chaowicharat, E.; Klunngien, N.; Hruanun, C.; Poyai, A.; Nukeaw, J.

    2013-02-01

    High sensitivity and very low drift rate pH sensors are successfully prepared by using nanocrystal-TiO2 as sensing membrane of ion sensitive field effect transistor (ISFET) device fabricated via CMOS process. This paper describes the physical properties and sensing characteristics of the TiO2 membrane prepared by annealing Ti and TiN thin films that deposited on SiO2/p-Si substrates through reactive DC magnetron sputtering system. The X-ray diffraction, scanning electron microscopy and Auger electron spectroscopy were used to investigate the structural and morphological features of deposited films after they had been subjected to annealing at various temperatures. The experimental results are interpreted in terms of the effects of amorphous-to-crystalline phase transition and subsequent oxidation of the annealed films. The electrolyte-insulator-semiconductor (EIS) device incorporating Tisbnd Osbnd N membrane that had been obtained by annealing of TiN thin film at 850 °C exhibited a higher sensitivity (57 mV/pH), a higher linearity (1), a lower hysteresis voltage (1 mV in the pH cycle of 7 → 4 → 7 → 10 → 7), and a smaller drift rate (0.246 mV/h) than did those devices prepared at the other annealing temperatures. Furthermore, this pH-sensing device fabrication process is fully compatible with CMOS fabrication process technology.

  14. An On-Chip Multi-Voltage Power Converter With Leakage Current Prevention Using 0.18 μm High-Voltage CMOS Process.

    PubMed

    Lo, Yi-Kai; Chen, Kuanfu; Gad, Parag; Liu, Wentai

    2016-02-01

    In this paper, we present an on-chip multi-voltage power converter incorporating of a quad-voltage timing-control rectifier and regulators to produce ±12 V and ±1.8 V simultaneously through inductive powering. The power converter achieves a PCE of 77.3% with the delivery of more than 100 mW to the implant. The proposed rectifier adopts a two-phase start-up scheme and mixed-voltage gate controller to avoid substrate leakage current. This current cannot be prevented by the conventional dynamic substrate biasing technique when using the high-voltage CMOS process with transistor threshold voltage higher than the turn-on voltage of parasitic diodes. High power conversion efficiency is achieved by 1) substrate leakage current prevention, 2) operating all rectifying transistors as switches with boosted gate control voltages, and 3) compensating the delayed turn-on and preventing reverse leakage current of rectifying switches with the proposed look-ahead comparator. This chip occupies an area of 970 μm × 4500 μm in a 0.18 μ m 32 V HV CMOS process. The quad-voltage timing-control rectifier alone is able to output a high DC voltage at the range of [2.5 V, 25 V]. With this power converter, both bench-top experiment and in-vivo power link test using a rat model were validated. PMID:25616076

  15. Optimization of pre-gate clean technology for a 0.35-μm dual-oxide/dual-voltage CMOS process

    NASA Astrophysics Data System (ADS)

    Brugge, Hunter B.; Karnett, Martin P.; de Muizon, Emmanuel; Zhou, Jingrong; Page, Allen; Vines, Landon B.; Haby, Bradley J.

    1997-08-01

    As voltages scale with device miniaturization, it is desirable to maintain dual-voltage operation for efficient system integration. While this dual-voltage approach is commonly used for CMOS EEPROM circuits, its use in an ASIC environment is relatively new. The effects of pre-gate clean processing technology on oxide integrity were investigated for both low (3.3 V) and high (5 V) voltage gate oxides in a 0.35 micrometer triple level metal CMOS process with dual gate oxide. Significant improvements in the high-voltage gate oxide quality were realized by reducing the temperature of the pre- gate SC1 (NH4OH/H2O2/H2O) cleaning solution and by minimizing the exposure time of the high-voltage gate oxide to HF. Also, addition of HCl to dilute HF as the final step in the pre-gate cleaning improved the high-voltage gate oxide quality. These improvements to the high-voltage gate oxide quality were achieved without compromising the quality of the low-voltage gate oxide.

  16. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fossum, E.; Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Zhou, Z.; Ackland, B.; Dickinson, A.; Eid, E.; Inglis, D.

    1994-01-01

    This paper describes ongoing research and development of CMOS active pixel image sensors for low cost commercial applications. A number of sensor designs have been fabricated and tested in both p-well and n-well technologies. Major elements in the development of the sensor include on-chip analog signal processing circuits for the reduction of fixed pattern noise, on-chip timing and control circuits and on-chip analog-to-digital conversion (ADC). Recent results and continuing efforts in these areas will be presented.

  17. Graphene/Si CMOS hybrid hall integrated circuits.

    PubMed

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-01-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222

  18. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  19. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    PubMed Central

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-01-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222

  20. Back-illuminated CMOS APS with low crosstalk level

    NASA Astrophysics Data System (ADS)

    David, Y.; Efron, U.

    2007-09-01

    A new technological solution for backside illuminated CMOS imagers is proposed. The pixel area consists of an n-well/ substrate photo diode and a deep p-well, which contains the APS pixel circuitry as well as additional application specific circuits. This structure was analyzed using Silvaco's ATLAS device simulator. Simulation results show that this structure provides low cross-talk, high photo response and effectively shields the pixel circuitry from the photo charges generated in the substrate. The deep p-well pixel technology allows increasing the thickness of the die up to 30 micrometers, thus improving its mechanical ruggedness following the thinning process. Such deep p-well imager structure will also be integrated into the Image Transceiver Device, which combines a front side LCOS micro display with a back-illuminated imager.

  1. A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS process.

    PubMed

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294

  2. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  3. Design of High Speed and Low Offset Dynamic Latch Comparator in 0.18 µm CMOS Process

    PubMed Central

    Rahman, Labonnah Farzana; Reaz, Mamun Bin Ibne; Yin, Chia Chieu; Ali, Mohammad Alauddin Mohammad; Marufuzzaman, Mohammad

    2014-01-01

    The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2. PMID:25299266

  4. A 200 mV low leakage current subthreshold SRAM bitcell in a 130 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Na, Bai; Baitao, Lü

    2012-06-01

    A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage (200 mV) applications. Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes. To minimize leakage, a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty. Combined with buffering circuit and reconfigurable operation, the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region. Compared to the referenced subthreshold SRAM bitcell, the proposed bitcell shows: (1) a better critical state noise margin, and (2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13 μW power consumption at 138 kHz frequency.

  5. A 50Mbit/Sec. CMOS Video Linestore System

    NASA Astrophysics Data System (ADS)

    Jeung, Yeun C.

    1988-10-01

    This paper reports the architecture, design and test results of a CMOS single chip programmable video linestore system which has 16-bit data words with 1024 bit depth. The delay is fully programmable from 9 to 1033 samples by a 10 bit binary control word. The large 16 bit data word width makes the chip useful for a wide variety of digital video signal processing applications such as DPCM coding, High-Definition TV, and Video scramblers/descramblers etc. For those applications, the conventional large fixed-length shift register or static RAM scheme is not very popular because of its lack of versatility, high power consumption, and required support circuitry. The very high throughput of 50Mbit/sec is made possible by a highly parallel, pipelined dynamic memory architecture implemented in a 2-um N-well CMOS technology. The basic cell of the programmable video linestore chip is an four transistor dynamic RAM element. This cell comprises the majority of the chip's real estate, consumes no static power, and gives good noise immunity to the simply designed sense amplifier. The chip design was done using Bellcore's version of the MULGA virtual grid symbolic layout system. The chip contains approximately 90,000 transistors in an area of 6.5 x 7.5 square mm and the I/Os are TTL compatible. The chip is packaged in a 68-pin leadless ceramic chip carrier package.

  6. Review of radiation damage studies on DNW CMOS MAPS

    NASA Astrophysics Data System (ADS)

    Traversi, G.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Re, V.; Zucca, S.; Bettarini, S.; Rizzo, G.; Morsani, F.; Bosisio, L.; Rashevskaya, I.; Cindro, V.

    2013-12-01

    Monolithic active pixel sensors fabricated in a bulk CMOS technology with no epitaxial layer and standard resistivity (10 Ω cm) substrate, featuring a deep N-well as the collecting electrode (DNW MAPS), have been exposed to γ-rays, up to a final dose of 10 Mrad (SiO2), and to neutrons from a nuclear reactor, up to a total 1 MeV neutron equivalent fluence of about 3.7 ·1013cm-2. The irradiation campaign was aimed at studying the effects of radiation on the most significant parameters of the front-end electronics and on the charge collection properties of the sensors. Device characterization has been carried out before and after irradiations. The DNW MAPS irradiated with 60Co γ-rays were also subjected to high temperature annealing (100 °C for 168 h). Measurements have been performed through a number of different techniques, including electrical characterization of the front-end electronics and of DNW diodes, laser stimulation of the sensors and tests with 55Fe and 90Sr radioactive sources. This paper reviews the measurement results, their relation with the damage mechanisms underlying performance degradation and provides a new comparison between DNW devices and MAPS fabricated in a CMOS process with high resistivity (1 kΩ cm) epitaxial layer.

  7. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.

    PubMed

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2011-10-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  8. Buried layer/connecting layer high energy implantation for improved CMOS latch-up

    SciTech Connect

    Morris, W.; Rubin, L.; Wristers, D.

    1996-12-31

    An integrated P-Buried Layer formed by MeV ion implantation combined with a localized P-Connecting Layer has been studied for latch-up isolation improvements for advanced CMOS technology. Latch-up trigger currents have been characterized with regards to buried layer dose/energy, connecting layer dose/energy, and n-well retrograde dose. Simulation results confirmed by data indicate that P+ injection trigger currents > 450 {mu}A/{mu}m can be achieved by utilizing certain combinations of B.L./C.L. and n-well retrograde doses for n+/p+ spacings = 2.0{mu}m. The B.L./C.L. process architecture shows great promise for providing an alternative isolation technique for latch-up improvement that is easy to implement, and for eliminating the dependence on epi silicon for latch-up control.

  9. Ion traps fabricated in a CMOS foundry

    SciTech Connect

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.; Chuang, I. L.; Bruzewicz, C. D.; Sage, J. M. Chiaverini, J.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  10. Ion traps fabricated in a CMOS foundry

    NASA Astrophysics Data System (ADS)

    Mehta, K. K.; Eltony, A. M.; Bruzewicz, C. D.; Chuang, I. L.; Ram, R. J.; Sage, J. M.; Chiaverini, J.

    2014-07-01

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  11. A diffractive multispectral image sensor with on- and off-die signal processing and on-die optics in 0.18-micron CMOS

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher; Hornsey, Richard

    2007-02-01

    On-die optics have been proposed for imaging, spectral analysis, and communications applications. These systems typically require extra process steps to fabricate on-die optics. Fabrication of diffractive optics using the metal layers in commercial CMOS processes circumvents this requirement, but produces optical elements with poor imaging behavior. This paper discusses the application of Wiener filtering to reconstruction of images suffering from blurring and chromatic aberration, and to identification of the position and wavelength of point sources. Adaptation of this approach to analog and digital FIR implementations are discussed, and the design of a multispectral imaging sensor using analog FIR filtering is presented. Simulations indicate that off-die post-processing can determine point source wavelength to within 5% and position to within +/-0.05 radian, and resolve features 0.4 radian in size in images illuminated by white light. The analog hardware implementation is simulated to resolve features 0.4 radian in size illuminated by monochromatic light, and 0.7 radian with white light.

  12. Fundamental performance differences of CMOS and CCD imagers: part V

    NASA Astrophysics Data System (ADS)

    Janesick, James R.; Elliott, Tom; Andrews, James; Tower, John; Pinter, Jeff

    2013-02-01

    Previous papers delivered over the last decade have documented developmental progress made on large pixel scientific CMOS imagers that match or surpass CCD performance. New data and discussions presented in this paper include: 1) a new buried channel CCD fabricated on a CMOS process line, 2) new data products generated by high performance custom scientific CMOS 4T/5T/6T PPD pixel imagers, 3) ultimate CTE and speed limits for large pixel CMOS imagers, 4) fabrication and test results of a flight 4k x 4k CMOS imager for NRL's SoloHi Solar Orbiter Mission, 5) a progress report on ultra large stitched Mk x Nk CMOS imager, 6) data generated by on-chip sub-electron CDS signal chain circuitry used in our imagers, 7) CMOS and CMOSCCD proton and electron radiation damage data for dose levels up to 10 Mrd, 8) discussions and data for a new class of PMOS pixel CMOS imagers and 9) future CMOS development work planned.

  13. Radiation tolerant back biased CMOS VLSI

    NASA Technical Reports Server (NTRS)

    Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)

    2003-01-01

    A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.

  14. SEMICONDUCTOR INTEGRATED CIRCUITS: A fully integrated UHF RFID reader SoC for handheld applications in the 0.18 μm CMOS process

    NASA Astrophysics Data System (ADS)

    Jingchao, Wang; Chun, Zhang; Zhihua, Wang

    2010-08-01

    A low cost fully integrated single-chip UHF radio frequency identification (RFID) reader SoC for short distance handheld applications is presented. The SoC integrates all building blocks—including an RF transceiver, a PLL frequency synthesizer, a digital baseband and an MCU—in a 0.18 μm CMOS process. A high-linearity RX front-end is designed to handle the large self-interferer. A class-E power amplifier with high power efficiency is also integrated to fulfill the function of a UHF passive RFID reader. The measured maximum output power of the transmitter is 20.28 dBm and the measured receiver sensitivity is -60 dBm. The digital baseband including MCU core consumes 3.91 mW with a clock of 10 MHz and the analog part including power amplifier consumes 368.4 mW. The chip has a die area of 5.1 × 3.8 mm2 including pads.

  15. A 0.23 pJ 11.05-bit ENOB 125-MS/s pipelined ADC in a 0.18 μm CMOS process

    NASA Astrophysics Data System (ADS)

    Yong, Wang; Jianyun, Zhang; Rui, Yin; Yuhang, Zhao; Wei, Zhang

    2015-05-01

    This paper describes a 12-bit 125-MS/s pipelined analog-to-digital converter (ADC) that is implemented in a 0.18 μm CMOS process. A gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enhance the sampling linearity. The measured differential and integral nonlinearities of the prototype are less than 0.79 least significant bit (LSB) and 0.86 LSB, respectively, at the full sampling rate. The ADC exhibits an effective number of bits (ENOB) of more than 11.05 bits at the input frequency of 10.5 MHz. The ADC also achieves a 10.5 bits ENOB with the Nyquist input frequency at the full sample rate. In addition, the ADC consumes 62 mW from a 1.9 V power supply and occupies 1.17 mm2, which includes an on-chip reference buffer. The figure-of-merit of this ADC is 0.23 pJ/step. Project supported by the Foundation of Shanghai Municipal Commission of Economy and Informatization (No. 130311).

  16. Hybrid phase-locked loop with fast locking time and low spur in a 0.18-μm CMOS process

    NASA Astrophysics Data System (ADS)

    Zhu, Si-Heng; Si, Li-Ming; Guo, Chao; Shi, Jun-Yu; Zhu, Wei-Ren

    2014-07-01

    We propose a novel hybrid phase-locked loop (PLL) architecture for overcoming the trade-off between fast locking time and low spur. To reduce the settling time and meanwhile suppress the reference spurs, we employ a wide-band single-path PLL and a narrow-band dual-path PLL in a transient state and a steady state, respectively, by changing the loop bandwidth according to the gain of voltage controlled oscillator (VCO) and the resister of the loop filter. The hybrid PLL is implemented in a 0.18-μm complementary metal oxide semiconductor (CMOS) process with a total die area of 1.4×0.46 mm2. The measured results exhibit a reference spur level of lower than -73 dB with a reference frequency of 10 MHz and a settling time of 20 μs with 40 MHz frequency jump at 2 GHz. The total power consumption of the hybrid PLL is less than 27 mW with a supply voltage of 1.8 V.

  17. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

    SciTech Connect

    MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

  18. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  19. CMOS floating-point vector-arithmetic unit

    NASA Astrophysics Data System (ADS)

    Timmermann, D.; Rix, B.; Hahn, H.; Hosticka, B. J.

    1994-05-01

    This work describes a floating-point arithmetic unit based on the CORDIC algorithm. The unit computes a full set of high level arithmetic and elementary functions: multiplication, division, (co)sine, hyperbolic (co)sine, square root, natural logarithm, inverse (hyperbolic) tangent, vector norm, and phase. The chip has been integrated in 1.6 micron double-metal n-well CMOS technology and achieves a normalized peak performance of 220 MFLOPS.

  20. On-wafer measurements and characterization of poly-si resistors for evaluation of selected CMOS manufacturing processes

    NASA Astrophysics Data System (ADS)

    Głuszko, Grzegorz; Tomaszewski, Daniel; Malesińska, Jolanta; Kucharski, Krzysztof

    2013-07-01

    In this study, measurements of resistance of polysilicon resistors with different widths have been done over the whole surface of the SOI wafers. The obtained results have been used to determine changes in their width, which is equivalent with shortening of the channel length in the photoli-thography process. By studying the elements distributed across the wafers it was possible to assess the homogeneity of the MOS transistor gate manufacturing process. the abstract two lines below author names and addresses.

  1. An advanced, radiation hardened bulk CMOS/LSI technology

    NASA Technical Reports Server (NTRS)

    Schroeder, J. E.; Lichtel, R. L.; Gingerich, B. L.

    1981-01-01

    An advanced, second generation, bulk, Si-gate CMOS process is described. This process is capable of producing LSI and VLSI parts that are latch-up free and hardened to total dose levels in excess of 2 x 10 to the 5th rad-Si for applications in space and weapons radiation environments. Two memories designed to use this process are also described. Both circuits are 4096-bit, static CMOS RAMs.

  2. Delta Doping High Purity CCDs and CMOS for LSST

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Nikzad, Shouleh; Hoenk, Michael; Elliott, S. Tom; Bebek, Chris; Holland, Steve; Kolbe, Bill

    2006-01-01

    A viewgraph presentation describing delta doping high purity CCD's and CMOS for LSST is shown. The topics include: 1) Overview of JPL s versatile back-surface process for CCDs and CMOS; 2) Application to SNAP and ORION missions; 3) Delta doping as a back-surface electrode for fully depleted LBNL CCDs; 4) Delta doping high purity CCDs for SNAP and ORION; 5) JPL CMP thinning process development; and 6) Antireflection coating process development.

  3. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    NASA Technical Reports Server (NTRS)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  4. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  5. Ink-Jet Printed CMOS Electronics from Oxide Semiconductors.

    PubMed

    Garlapati, Suresh Kumar; Baby, Tessy Theres; Dehm, Simone; Hammad, Mohammed; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2015-08-01

    Complementary metal oxide semiconductor (CMOS) technology with high transconductance and signal gain is mandatory for practicable digital/analog logic electronics. However, high performance all-oxide CMOS logics are scarcely reported in the literature; specifically, not at all for solution-processed/printed transistors. As a major step toward solution-processed all-oxide electronics, here it is shown that using a highly efficient electrolyte-gating approach one can obtain printed and low-voltage operated oxide CMOS logics with high signal gain (≈21 at a supply voltage of only 1.5 V) and low static power dissipation. PMID:25867029

  6. All-CMOS night vision viewer with integrated microdisplay

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Faure, Nicolaas M.; Janse van Rensburg, Christo; Rademeyer, Pieter

    2014-02-01

    The unrivalled integration potential of CMOS has made it the dominant technology for digital integrated circuits. With the advent of visible light emission from silicon through hot carrier electroluminescence, several applications arose, all of which rely upon the advantages of mature CMOS technologies for a competitive edge in a very active and attractive market. In this paper we present a low-cost night vision viewer which employs only standard CMOS technologies. A commercial CMOS imager is utilized for near infrared image capturing with a 128x96 pixel all-CMOS microdisplay implemented to convey the image to the user. The display is implemented in a standard 0.35 μm CMOS process, with no process alterations or post processing. The display features a 25 μm pixel pitch and a 3.2 mm x 2.4 mm active area, which through magnification presents the virtual image to the user equivalent of a 19-inch display viewed from a distance of 3 meters. This work represents the first application of a CMOS microdisplay in a low-cost consumer product.

  7. A low leakage power-rail ESD detection circuit with a modified RC network for a 90-nm CMOS process

    NASA Astrophysics Data System (ADS)

    Zhaonian, Yang; Hongxia, Liu; Shulong, Wang

    2013-04-01

    An electrostatic discharge (ESD) detection circuit with a modified RC network for a 90-nm process clamp circuit is proposed. The leakage current is reduced to 4.6 nA at 25 °C. Under the ESD event, it injects a 38.7 mA trigger current into the P-substrate to trigger SCR, and SCR can be turned on the discharge of the ESD energy. The capacitor area used is only 4.2 μm2. The simulation result shows that the proposed circuit can save power consumption and layout area when achieving the same trigger efficiency, compared with the previous circuits.

  8. Application of the modified voltage-dividing potentiometer to overlay metrology in a CMOS/bulk process

    SciTech Connect

    Allen, R.A.; Cresswell, M.W.; Linholm, L.W.; Owen, J.C. III; Ellenwood, C.H.; Hill, T.A.; Benecke, J.D.; Volk, S.R.; Stewart, H.D.

    1994-02-01

    The measurement of layer-to-layer feature overlay will, in the foreseeable future, continue to be a critical metrological requirement for the semiconductor industry. Meeting the image placement metrology demands of accuracy, precision, and measurement speed favors the use of electrical test structures. In this paper, a two-dimensional, modified voltage-dividing potentiometer is applied to a short-loop VLSI process to measure image placement. The contributions of feature placement on the reticle and overlay on the wafer to the overall measurement are analyzed and separated. Additional sources of uncertainty are identified, and methods developed to monitor and reduce them are described.

  9. Fully CMOS-compatible titanium nitride nanoantennas

    NASA Astrophysics Data System (ADS)

    Briggs, Justin A.; Naik, Gururaj V.; Petach, Trevor A.; Baum, Brian K.; Goldhaber-Gordon, David; Dionne, Jennifer A.

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  10. A novel spiral CMOS compatible micromachined thermoelectric IR microsensor

    NASA Astrophysics Data System (ADS)

    Socher, E.; Bochobza-Degani, O.; Nemirovsky, Y.

    2001-09-01

    A novel sensing structure and realization method is proposed for complementary metal-oxide semiconductor (CMOS) compatible thermoelectric uncooled infrared microsensors. The structure enables high sensitivity and excellent thermal isolation in sensor pixels with small dimensions suitable for two-dimensional thermal imaging. Front-side dry micromachining allows fast CMOS post-processing, small pixel pitch and integration with on-chip CMOS readout. Prototype sensors with an area of 70×70 µm2 achieved a measured noise equivalent power of 0.36 nW Hz-1/2 and a response time of 3 ms.

  11. A CMOS Smart Thermal Sensor for Biomedical Application

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Yin; Chen, Shih-Lun; Luo, Ching-Hsing

    This paper describes a smart thermal sensing chip with an integrated vertical bipolar transistor sensor, a Sigma Delta Modulator (SDM), a Micro-Control Unit (MCU), and a bandgap reference voltage generator for biomedical application by using 0.18?m CMOS process. The npn bipolar transistors with the Deep N-Well (DNW) instead of the pnp bipolar transistor is first adopted as the sensor for good isolation from substrate coupling noise. In addition to data compression, Micro-Control Unit (MCU) plays an important role for executing auto-calibration by digitally trimming the bipolar sensor in parallel to save power consumption and to reduce feedback complexity. It is different from the present analog feedback calibration technologies. Using one sensor, instead of two sensors, to create two differential signals in 180 phase difference input to SDM is also a novel design of this work. As a result, in the range of 0C to 80C or body temperature (375C), the inaccuracy is less than 0.1C or 0.05C respectively with one-point calibration after packaging. The average power consumption is 268.4?W with 1.8V supply voltage.

  12. A 16-channel CMOS preamplifier for laser ranging radar receivers

    NASA Astrophysics Data System (ADS)

    Liu, Ru-qing; Zhu, Jing-guo; Jiang, Yan; Li, Meng-lin; Li, Feng

    2015-10-01

    A 16-channal front-end preamplifier array has been design in a 0.18um CMOS process for pulse Laser ranging radar receiver. This front-end preamplifier array incorporates transimpedance amplifiers(TIAs) and differential voltage post-amplifier(PAMP),band gap reference and other interface circuits. In the circuit design, the regulated cascade (RGC) input stage, Cherry-Hooper and active inductor peaking were employed to enhance the bandwidth. And in the layout design, by applying the layout isolation structure combined with P+ guard-ring(PGR), N+ guard-ring(NGR),and deep-n-well(DNW) for amplifier array, the crosstalk and the substrate noise coupling was reduced effectively. The simulations show that a single channel receiver front-end preamplifier achieves 95 dBΩ transimpedance gain and 600MHz bandwidth for 3 PF photodiode capacitance. The total power of 16-channel front-end amplifier array is about 800mW for 1.8V supply.

  13. Interferometric comparison of the performance of a CMOS and sCMOS detector

    NASA Astrophysics Data System (ADS)

    Flores-Moreno, J. M.; De la Torre I., Manuel H.; Hernández-Montes, M. S.; Pérez-López, Carlos; Mendoza S., Fernando

    2015-08-01

    We present an analysis of the imaging performance of two state-of-the-art sensors widely used in the nondestructive- testing area (NDT). The analysis is based on the quantification of the signal-to-noise (SNR) ratio from an optical phase image. The calculation of the SNR is based on the relation of the median (average) and standard deviation measurements over specific areas of interest in the phase images of both sensors. This retrieved phase is coming from the vibrational behavior of a large object by means of an out-of-plane holographic interferometer. The SNR is used as a figure-of-merit to evaluate and compare the performance of the CMOS and scientific CMOS (sCMOS) camera as part of the experimental set-up. One of the cameras has a high speed CMOS sensor while the other has a high resolution sCMOS sensor. The object under study is a metallically framed table with a Formica cover with an observable area of 1.1 m2. The vibration induced to the sample is performed by a linear step motor with an attached tip in the motion stage. Each camera is used once at the time to record the deformation keeping the same experimental conditions for each case. These measurements may complement the conventional procedures or technical information commonly used to evaluate a camerás performance such as: quantum efficiency, spatial resolution and others. Results present post processed images from both cameras, but showing a smoother and easy to unwrap optical phase coming from those recorded with the sCMOS camera.

  14. Advancement of CMOS Doping Technology in an External Development Framework

    NASA Astrophysics Data System (ADS)

    Jain, Amitabh; Chambers, James J.; Shaw, Judy B.

    2011-01-01

    The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.

  15. Performance of CMOS ternary full adder at liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Venkatapathy, K.

    We have designed, implemented and studied the performance at liquid nitrogen temperature (77 K) of a CMOS ternary full adder and its building blocks, the simple ternary inverter (STI), positive ternary inverter (PTI) and negative ternary inverter (NTI), and compared the corresponding performance at room temperature (300 K). The ternary full adder has been fabricated in 2 μm, n-well CMOS through MOSIS. In a ternary full adder, the basic building blocks, the PTI and NTI, have been developed using combinations of a CMOS inverter and transmission gate(s). There is close agreement between the simulated and measured voltage transfer characteristics and noise margins of ternary-valued devices. The measured transient times for the NTI, PTI and ternary full adder at 77 K show an improvement by a factor of ≈1.5-2.5 over the corresponding values at 300 K. The present design does not use linear resistors and depletion-mode MOSFETs to implement the ternary full adder and its building blocks, and is fully compatible with current CMOS technology.

  16. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  17. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  18. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  19. Advanced CMOS Radiation Effects Testing Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan Allen; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  20. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  1. Enhanced Carrier Mobility for Improved CMOS Performance

    NASA Astrophysics Data System (ADS)

    Mooney, P. M.

    Various methods of increasing the carrier mobility in the Si channel of CMOS devices have been investigated with the goal of improving their performance. Enhanced mobility was first achieved in devices fabricated from engineered substrates having a surface layer of Si(100) under biaxial tensile strain. More recently increased hole mobility has been achieved using hybrid crystal orientation wafers with p-MOS devices fabricated on surface layers of Si(110) and n-MOS devices fabricated on Si(100) surfaces. Enhanced mobility has also been demonstrated in devices fabricated from engineered substrates having a surface layer of Ge. Uniaxial stress, applied locally to the Si channel, is achieved by certain device fabrication processes in the strained Si technology first commercialized by IBM and Intel. Examples of these different approaches to enhanced carrier mobility in CMOS devices are discussed in this chapter.

  2. Ultralow-Loss CMOS Copper Plasmonic Waveguides.

    PubMed

    Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S

    2016-01-13

    Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips. PMID:26654281

  3. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  4. A CMOS clock and data recovery circuit for intraocular microsystems.

    PubMed

    Prmassing, F; Pttjer, D; Buss, R; Jger, D

    2002-01-01

    This paper presents the implementation of a clock and data recovery circuit (CDR) for intraocular microsystems. The CDR was designed to minimize chip area and power consumption and to recover the clock and data signals from the incoming data stream. Since the CDR has been designed without any external components it is well suited for being integrated in an intraocular microsystem. Simulation results show that this CDR works with power dissipation of less than 2.4 mW with a single 3.3 V power supply. The simulations are based on a 0.6 micron n-well CMOS single-polysilicon, three-metal technology. PMID:12451805

  5. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    SciTech Connect

    Maj, Piotr; Grybos, P.; Szczgiel, R.; Kmon, P.; Drozd, A.; Deptuch, G.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 m. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largest charge deposition. The chip architecture and preliminary measurements are reported.

  6. Current-mode CMOS hybrid image sensor

    NASA Astrophysics Data System (ADS)

    Benyhesan, Mohammad Kassim

    Digital imaging is growing rapidly making Complimentary Metal-Oxide-Semi conductor (CMOS) image sensor-based cameras indispensable in many modern life devices like cell phones, surveillance devices, personal computers, and tablets. For various purposes wireless portable image systems are widely deployed in many indoor and outdoor places such as hospitals, urban areas, streets, highways, forests, mountains, and towers. However, the increased demand on high-resolution image sensors and improved processing features is expected to increase the power consumption of the CMOS sensor-based camera systems. Increased power consumption translates into a reduced battery life-time. The increased power consumption might not be a problem if there is access to a nearby charging station. On the other hand, the problem arises if the image sensor is located in widely spread areas, unfavorable to human intervention, and difficult to reach. Given the limitation of energy sources available for wireless CMOS image sensor, an energy harvesting technique presents a viable solution to extend the sensor life-time. Energy can be harvested from the sun light or the artificial light surrounding the sensor itself. In this thesis, we propose a current-mode CMOS hybrid image sensor capable of energy harvesting and image capture. The proposed sensor is based on a hybrid pixel that can be programmed to perform the task of an image sensor and the task of a solar cell to harvest energy. The basic idea is to design a pixel that can be configured to exploit its internal photodiode to perform two functions: image sensing and energy harvesting. As a proof of concept a 40 x 40 array of hybrid pixels has been designed and fabricated in a standard 0.5 microm CMOS process. Measurement results show that up to 39 microW of power can be harvested from the array under 130 Klux condition with an energy efficiency of 220 nJ /pixel /frame. The proposed image sensor is a current-mode image sensor which has several advantages over the voltage-mode. The most important advantages of using current-mode technique are: reduced power consumption of the chip, ease of arithmetic operations implementation, simplification of the circuit design and hence reduced layout complexity.

  7. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  8. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    SciTech Connect

    Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

  9. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  10. High-speed CMOS optical communication using silicon light emitters

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Nell, Ilse J.; Bogalecki, Alfons W.; Rademeyer, Pieter

    2011-01-01

    The idea of moving CMOS into the mainstream optical domain remains an attractive one. In this paper we discuss our recent advances towards a complete silicon optical communication solution. We prove that transmission of baseband data at multiples of megabits per second rates are possible using improved silicon light sources in a completely native standard CMOS process with no post processing. The CMOS die is aligned to a fiber end and the light sources are directly modulated. An optical signal is generated and transmitted to a silicon Avalanche Photodiode (APD) module, received and recovered. Signal detectability is proven through eye diagram measurements. The results show an improvement of more than tenfold over our previous results, also demonstrating the fastest optical communication from standard CMOS light sources. This paper presents an all silicon optical data link capable of 2 Mb/s at a bit error rate of 10-10, or alternatively 1 Mb/s at a bit error rate of 10-14. As the devices are not operating at their intrinsic switching speed limit, we believe that even higher transmission rates are possible with complete integration of all components in CMOS.

  11. Large area CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Turchetta, R.; Guerrini, N.; Sedgwick, I.

    2011-01-01

    CMOS image sensors, also known as CMOS Active Pixel Sensors (APS) or Monolithic Active Pixel Sensors (MAPS), are today the dominant imaging devices. They are omnipresent in our daily life, as image sensors in cellular phones, web cams, digital cameras, ... In these applications, the pixels can be very small, in the micron range, and the sensors themselves tend to be limited in size. However, many scientific applications, like particle or X-ray detection, require large format, often with large pixels, as well as other specific performance, like low noise, radiation hardness or very fast readout. The sensors are also required to be sensitive to a broad spectrum of radiation: photons from the silicon cut-off in the IR down to UV and X- and gamma-rays through the visible spectrum as well as charged particles. This requirement calls for modifications to the substrate to be introduced to provide optimized sensitivity. This paper will review existing CMOS image sensors, whose size can be as large as a single CMOS wafer, and analyse the technical requirements and specific challenges of large format CMOS image sensors.

  12. An equivalent doping profile for CMOS substrate characterization

    NASA Astrophysics Data System (ADS)

    Quaresma, Henrique J.; Mendonça dos Santos, P.; Cruz Serra, A.

    2013-01-01

    This work presents a non-destructive methodology to accurately estimate an equivalent substrate doping profile of a typical CMOS process. The methodology is based on simple experimental resistive measurements at different temperatures, obtained from a set of basic integrated test structures, and in 3D semiconductor simulations, to compute an estimate for the unknown CMOS process parameters. It is demonstrated that the resultant box distribution equivalent doping profile could be used to evaluate the variation of the substrate impedance as a function of temperature and substrate contact distance.

  13. Figures of merit for CMOS SPADs and arrays

    NASA Astrophysics Data System (ADS)

    Bronzi, D.; Villa, F.; Bellisai, S.; Tisa, S.; Ripamonti, G.; Tosi, A.

    2013-05-01

    SPADs (Single Photon Avalanche Diodes) are emerging as most suitable photodetectors for both single-photon counting (Fluorescence Correlation Spectroscopy, Lock-in 3D Ranging) and single-photon timing (Lidar, Fluorescence Lifetime Imaging, Diffuse Optical Imaging) applications. Different complementary metal-oxide semiconductor (CMOS) implementations have been reported in literature. We present some figure of merit able to summarize the typical SPAD performances (i.e. Dark Counting Rate, Photo Detection Efficiency, afterpulsing probability, hold-off time, timing jitter) and to identify a proper metric for SPAD comparison, both as single detectors and also as imaging arrays. The goal is to define a practical framework within which it is possible to rank detectors based on their performances in specific experimental conditions, for either photon-counting or photon-timing applications. Furthermore we review the performances of some CMOS and custom-made SPADs. Results show that CMOS SPADs performances improve as the technology scales down; moreover, miniaturization of SPADs and new solutions adopted to counteract issues related with the SPAD design (electric field uniformity, premature edge breakdown, tunneling effects, defect-rich STI interface) along with advances in standard CMOS processes led to a general improvement in all fabricated photodetectors; therefore, CMOS SPADs can be suitable for very dense and cost-effective many-pixels imagers with high performances.

  14. High gain CMOS image sensor design and fabrication on SOI and bulk technology

    NASA Astrophysics Data System (ADS)

    Zhang, Weiquan

    2000-12-01

    The CMOS imager is now competing with the CCD imager, which still dominates the electronic imaging market. By taking advantage of the mature CMOS technology, the CMOS imager can integrate AID converters, digital signal processing (DSP) and timing control circuits on the same chip. This low cost and high-density integration solution to the image capture is the strong driving force in industry. Silicon on insulator (SOI) is considered as the coming mainstream technology. It challenges the current bulk CMOS technology because of its reduced power consumption, high speed, radiation hardness etc. Moving the CMOS imager from the bulk to the SOI substrate will benefit from these intrinsic advantages. In addition, the blooming and the cross-talk between the pixels of the sensor array can be ideally eliminated, unlike those on the bulk technology. Though there are many advantages to integrate CMOS imager on SOI, the problem is that the top silicon film is very thin, such as 2000Å. Many photons can just pass through this layer without being absorbed. A good photo-detector on SOI is critical to integrate SOI CMOS imagers. In this thesis, several methods to make photo-detectors on SOI substrate are investigated. A floating gate MOSFET on SOI substrate, operating in its lateral bipolar mode, is photon sensitive. One step further, the SOI MOSFET gate and body can be tied together. The positive feedback between the body and gate enables this device have a high responsivity. A similar device can be found on the bulk CMOS technology: the gate-well tied PMOSFET. A 32 x 32 CMOS imager is designed and characterized using such a device as the light-sensing element. I also proposed the idea of building hybrid active pixels on SOI substrate. Such devices are fabricated and characterized. The work here represents my contribution on the CMOS imager, especially moving the CMOS imager onto the SOI substrate.

  15. Challenges of nickel silicidation in CMOS technologies

    SciTech Connect

    Breil, Nicolas; Lavoie, Christian; Ozcan, Ahmet; Baumann, Frieder; Klymko, Nancy; Nummy, Karen; Sun, Bing; Jordan-Sweet, Jean; Yu, Jian; Zhu, Frank; Narasimha, Shreesh; Chudzik, Michael

    2015-04-01

    In our paper, we review some of the key challenges associated with the Ni silicidation process in the most recent CMOS technologies. The introduction of new materials (e.g.SiGe), and of non-planar architectures bring some important changes that require fundamental investigation from a material engineering perspective. Following a discussion of the device architecture and silicide evolution through the last CMOS generations, we focus our study on a very peculiar defect, termed NiSi-Fangs. We describe a mechanism for the defect formation, and present a detailed material analysis that supports this mechanism. We highlight some of the possible metal enrichment processes of the nickel monosilicide such as oxidation or various RIE (Reactive Ion Etching) plasma process, leading to a metal source available for defect formation. Furthermore, we investigate the NiSi formation and re-formation silicidation differences between Si and SiGe materials, and between (1 0 0) and (1 1 1) orientations. Finally, we show that the thermal budgets post silicidation can lead to the formation of NiSi-Fangs if the structure and the processes are not optimized. Beyond the understanding of the defect and the discussion on the engineering solutions used to prevent its formation, the interest of this investigation also lies in the fundamental learning within the Ni–Pt–Si–Ge system and some additional perspective on Ni-based contacts to advanced microelectronic devices.

  16. Advantages of a vertical integration process in the design of DNW MAPS

    NASA Astrophysics Data System (ADS)

    Ratti, L.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Re, V.; Traversi, G.

    2015-06-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 ?m pitch for a point resolution of about 5 ?m and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 33 and 88 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors.

  17. Optimum Design of CMOS DC-DC Converter for Mobile Applications

    NASA Astrophysics Data System (ADS)

    Katayama, Yasushi; Edo, Masaharu; Denta, Toshio; Kawashima, Tetsuya; Ninomiya, Tamotsu

    In recent years, low output power CMOS DC-DC converters which integrate power stage MOSFETs and a PWM controller using CMOS process have been used in many mobile applications. In this paper, we propose the calculation method of CMOS DC-DC converter efficiency and report optimum design of CMOS DC-DC converter based on this method. By this method, converter efficiencies are directly calculated from converter specifications, dimensions of power stage MOSFET and device parameters. Therefore, this method can be used for optimization of CMOS DC-DC converter design, such as dimensions of power stage MOSFET and switching frequency. The efficiency calculated by the proposed method agrees well with the experimental results.

  18. Integration of GMR-based spin torque oscillators and CMOS circuitry

    NASA Astrophysics Data System (ADS)

    Chen, Tingsu; Eklund, Anders; Sani, Sohrab; Rodriguez, Saul; Malm, B. Gunnar; kerman, Johan; Rusu, Ana

    2015-09-01

    This paper demonstrates the integration of giant magnetoresistance (GMR) spin torque oscillators (STO) with dedicated high frequency CMOS circuits. The wire-bonding-based integration approach is employed in this work, since it allows easy implementation, measurement and replacement. A GMR STO is wire-bonded to the dedicated CMOS integrated circuit (IC) mounted on a PCB, forming a (GMR STO + CMOS IC) pair. The GMR STO has a lateral size of 70 nm and more than an octave of tunability in the microwave frequency range. The proposed CMOS IC provides the necessary bias-tee for the GMR STO, as well as electrostatic discharge (ESD) protection and wideband amplification targeting high frequency GMR STO-based applications. It is implemented in a 65 nm CMOS process, offers a measured gain of 12 dB, while consuming only 14.3 mW and taking a total silicon area of 0.329 mm2. The measurement results show that the (GMR STO + CMOS IC) pair has a wide tunability range from 8 GHz to 16.5 GHz and improves the output power of the GMR STO by about 10 dB. This GMR STO-CMOS integration eliminates wave reflections during the signal transmission and therefore exhibits good potential for developing high frequency GMR STO-based applications, which combine the features of CMOS and STO technologies.

  19. Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators

    PubMed Central

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869

  20. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators.

    PubMed

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K. PMID:22205869

  1. A CMOS image sensor using floating capacitor load readout operation

    NASA Astrophysics Data System (ADS)

    Wakashima, S.; Goda, Y.; Li, T. L.; Kuroda, R.; Sugawa, S.

    2013-02-01

    In this paper, a CMOS image sensor using floating capacitor load readout operation has been discussed. The floating capacitor load readout operation is used during pixel signals readout. And this operation has two features: 1. in-pixel driver transistor drives load capacitor without current sources, 2. parasitic capacitor of pixel output vertical signal line is used as a sample/hold capacitor. This operation produces three advantages: a smaller chip size, a lower power consumption, and a lower output noise than conventional CMOS image sensors. The prototype CMOS image sensor has been produced using 0.18 μm 1-Poly 3-Metal CMOS process technology with pinned photodiodes. The chip size is 2.5 mmH x 2.5 mmV, the pixel size is 4.5 μmH x 4.5 μmV, and the number of pixels is 400H x 300V. This image sensor consists of only a pixel array, vertical and horizontal shift registers, column source followers of which height is as low as that of some pixels and output buffers. The size of peripheral circuit is reduced by 90.2 % of a conventional CMOS image sensor. The power consumption in pixel array is reduced by 96.9 %. Even if the power consumption of column source follower is included, it reduced by 39.0 %. With an introduction of buried channel transistors as in-pixel driver transistors, the dark random noise of pixels of the floating capacitor load readout operation CMOS image sensor is 168 μVrms. The noise of conventional image sensor is 466 μVrms therefore, reduction of 63.8 % of noise was achieved.

  2. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  3. Real-time reconfigurable subthreshold CMOS perceptron.

    PubMed

    Aunet, S; Oelmann, B; Norseng, P A; Berg, Y

    2008-04-01

    In this paper, a new, real-time reconfigurable perceptron circuit element is presented. A six-transistor version used as a threshold gate, having a fan-in of three, producing adequate outputs for threshold of T =1, 2 and 3 is demonstrated by chip measurements. Subthreshold operation for supply voltages in the range of 100-350 mV is shown. The circuit performs competitively with a standard static complimentary metal-oxide-semiconductor (CMOS) implementation when maximum speed and energy delay product are taken into account, when used in a ring oscillator. Functionality per transistor is, to our knowledge, the highest reported for a variety of comparable circuits not based on floating gate techniques. Statistical simulations predict probabilities for making working circuits under mismatch and process variations. The simulations, in 120-nm CMOS, also support discussions regarding lower limits to supply voltage and redundancy. A brief discussion on how the circuit may be exploited as a basic building block for future defect tolerant mixed signal circuits, as well as neural networks, exploiting redundancy, is included. PMID:18390310

  4. Fully CMOS analog and digital SiPMs

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Villa, Federica; Bronzi, Danilo; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2015-03-01

    Silicon Photomultipliers (SiPMs) are emerging single photon detectors used in many applications requiring large active area, photon-number resolving capability and immunity to magnetic fields. We present three families of analog SiPM fabricated in a reliable and cost-effective fully standard planar CMOS technology with a total photosensitive area of 11 mm2. These three families have different active areas with fill-factors (21%, 58.3%, 73.7%) comparable to those of commercial SiPM, which are developed in vertical (current flow) custom technologies. The peak photon detection efficiency in the near-UV tops at 38% (fill-factor included) comparable to commercial custom-process ones and dark count rate density is just a little higher than the best-in-class commercial analog SiPMs. Thanks to the CMOS processing, these new SiPMs can be integrated together with active components and electronics both within the microcell and on-chip, in order to act at the microcell level or to perform global pre-processing. We also report CMOS digital SiPMs in the same standard CMOS technology, based on microcells with digitalized processing, all integrated on-chip. This CMOS digital SiPMs has four 321 cells (128 microcells), each consisting of SPAD, active quenching circuit with adjustable dead time, digital control (to switch off noisy SPADs and readout position of detected photons), and fast trigger output signal. The achieved 20% fill-factor is still very good.

  5. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  6. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  7. Digital-Centric RF CMOS Technologies

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Akira

    Analog-centric RFCMOS technology has played an important role in motivating the change of technology from conventional discrete device technology or bipolar IC technology to CMOS technology. However it introduces many problems such as poor performance, susceptibility to PVT fluctuation, and cost increase with technology scaling. The most important advantage of CMOS technology compared with legacy RF technology is that CMOS can use more high performance digital circuits for very low cost. In fact, analog-centric RF-CMOS technology has failed the FM/AM tuner business and the digital-centric CMOS technology is becoming attractive for many users. It has many advantages; such as high performance, no external calibration points, high yield, and low cost. From the above facts, digital-centric CMOS technology which utilizes the advantages of digital technology must be the right path for future RF technology. Further investment in this technology is necessary for the advancement of RF technology.

  8. Research on evaluation method of CMOS camera

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoqiang; Han, Weiqiang; Cui, Lanfang

    2014-09-01

    In some professional image application fields, we need to test some key parameters of the CMOS camera and evaluate the performance of the device. Aiming at this requirement, this paper proposes a perfect test method to evaluate the CMOS camera. Considering that the CMOS camera has a big fixed pattern noise, the method proposes the `photon transfer curve method' based on pixels to measure the gain and the read noise of the camera. The advantage of this method is that it can effectively wipe out the error brought by the response nonlinearity. Then the reason of photoelectric response nonlinearity of CMOS camera is theoretically analyzed, and the calculation formula of CMOS camera response nonlinearity is deduced. Finally, we use the proposed test method to test the CMOS camera of 2560*2048 pixels. In addition, we analyze the validity and the feasibility of this method.

  9. Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh

    2009-01-01

    In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.

  10. A multi-mode multi-band RF receiver front-end for a TD-SCDMA/LTE/LTE-advanced in 0.18-μm CMOS process

    NASA Astrophysics Data System (ADS)

    Rui, Guo; Haiying, Zhang

    2012-09-01

    A fully integrated multi-mode multi-band directed-conversion radio frequency (RF) receiver front-end for a TD-SCDMA/LTE/LTE-advanced is presented. The front-end employs direct-conversion design, and consists of two differential tunable low noise amplifiers (LNA), a quadrature mixer, and two intermediate frequency (IF) amplifiers. The two independent tunable LNAs are used to cover all the four frequency bands, achieving sufficient low noise and high gain performance with low power consumption. Switched capacitor arrays perform a resonant frequency point calibration for the LNAs. The two LNAs are combined at the driver stage of the mixer, which employs a folded double balanced Gilbert structure, and utilizes PMOS transistors as local oscillator (LO) switches to reduce flicker noise. The front-end has three gain modes to obtain a higher dynamic range. Frequency band selection and mode of configuration is realized by an on-chip serial peripheral interface (SPI) module. The front-end is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.3 mm2. The measured double-sideband (DSB) noise figure is below 3.5 dB and the conversion gain is over 43 dB at all of the frequency bands. The total current consumption is 31 mA from a 1.8-V supply.

  11. CMOS self-powered monolithic light-direction sensor with digitalized output.

    PubMed

    Wang, Hongyi; Luo, Tao; Lu, Zhijian; Song, Hongjiang; Christen, Jennifer Blain

    2014-05-01

    We present a novel self-powered chip to detect the direction of incident light. This chip directly provides digitized output without the need of any off-chip power supply or optical or mechanical components. The chip was implemented in a standard 0.5 μm CMOS process. A microscale metal baffle was created by stacking all metal layers, contacts, and vias available in the process to produce on-chip shadowing. N-well/p+ photodiode arrays are located on both sides of the baffle to sense light. The photocurrent generated by a photodiode depends on the size of the photodiode and the shadowing. The shadowed area depends on the incident angle of the light. A current mirror circuit is used to compare the currents generated by the photodiodes on the opposite sides of the baffle and, consequently, provide a digital signal to indicate the incident light angle. Compared with the ideal linear digital light-angle detector with the same resolution, the presented sensor achieved the maximum error of only 2 deg over 110 deg test range. PMID:24784060

  12. A platform for monolithic CMOS-MEMS integration on SOI wafers

    NASA Astrophysics Data System (ADS)

    Villarroya, María; Figueras, Eduard; Montserrat, Josep; Verd, Jaume; Teva, Jordi; Abadal, Gabriel; Pérez Murano, Francesc; Esteve, Jaume; Barniol, Núria

    2006-10-01

    A new platform for micro- and nano-electromechanical systems based on crystalline silicon as the structural layer in CMOS substrates is presented. This platform is fabricated using silicon on insulator (SOI) substrates, which allows the monolithic integration of the mechanical transducer on crystalline silicon while the characteristics of the structural layer are kept independent from the CMOS technology. We report the design characteristics, the fabrication process and an example of application of the CMOS SOI-MEMS platform to obtain a mass sensor based on a crystalline silicon resonating cantilever.

  13. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  14. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  15. A programmable second order oversampling CMOS sigma-delta analog-to-digital converter for low-power sensor interface electronics

    NASA Astrophysics Data System (ADS)

    Soundararajan, R.; Srivastava, A.; Xu, Y.

    2010-04-01

    A programmable second order oversampling sigma-delta analog-to-digital converter (ADC) is designed and fabricated in 0.5 μm n-well CMOS process for low-power interface electronics of a sensor node in wireless sensor networks. The sigma-delta ADC can be programmed to operate at three different oversampling ratios of 16, 32, and 64 to give three different resolutions of 9, 12 and 14 bits, respectively which impact the power consumption of the sensor module. The major part of power is consumed in the decimator of the ADC by the integrators which operate at the highest sampling rate. Hence, an alternate design is introduced in the integrator stages by inserting sign extension coder circuits and reusing the same integrators for different resolutions and oversampling ratios. The programmable ADC can be interfaced with on or off-chip nanosensors for detection of traces of toxic gases and chemicals.

  16. Novel CMOS readout techniques for uncooled pyroelectric IR FPA

    NASA Astrophysics Data System (ADS)

    Sun, Tai-Ping; Chin, Yuan-Lung; Chung, Wen-Yaw; Hsiung, Shen-Kan; Chou, Jung-Chuan

    1998-09-01

    Based on the application of the source follower per detector (SFD) input biasing technique, a new redout structure for the IR focal-plane-array (FPA), called the variable gain source follower per detector (VGSFD) is proposed and analyzed. The readout circuit of VGSFD of a unit cell of pyroelectric sensor under investigation, is composed of a source follower per detector circuit, high gain amplifier, and the reset switch. The VGSFD readout chip has been designed in 0.5 micrometers double-poly-double-metal n-well CMOS technology in various formats from 8 by 8 to 128 by 128. The experimental 8 by 8 VGSFD measurement results of the fabricated readout chip at room temperature have successfully verified both the readout function and performance. The high gain, low power, high sensitivity readout performances are achieved in a 50 by 50 micrometers (superscript 2) pixel size.

  17. Analysis of CMOS-compatible lateral insulated base transistors

    NASA Astrophysics Data System (ADS)

    Narayanan, E. M. S.; Amaratunga, G. A. J.; Milne, W. I.; Huang, Q.; Humphrey, J. I.

    1991-07-01

    Performance results are reported for various lateral insulated-base transistors (LIBTs) fabricated with a 2.5-micron digital CMOS-compatible high-voltage integrated circuit (HVIC) process. Structural modifications have been proposed to the LIBTs reported to date, in order to improve their on-stage performance. The modifications have been achieved with the use of charge-controlled n(+) buried layers incorporated within the device structures. The fabrication process utilizes three additional steps carried out prior to the CMOS fabrication sequence. An important feature of this HVIC process is the use of a 40-nm gate oxide, which makes the power devices fully compatible with the low-voltage digital circuits. During this work, a specific on-resistance of 0.016 ohm sq cm and a turn-off delay of 90 nsec have been obtained in an improved LIBT structure which is capable of withstanding up to 250 V.

  18. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  19. CMOS foveal image sensor chip

    NASA Technical Reports Server (NTRS)

    Bandera, Cesar (Inventor); Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  20. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.

    PubMed

    Lu, Yan; Ki, Wing-Hung

    2013-07-01

    A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω. PMID:23846494

  1. A CMOS microdisplay with integrated controller utilizing improved silicon hot carrier luminescent light sources

    NASA Astrophysics Data System (ADS)

    Venter, Petrus J.; Alberts, Antonie C.; du Plessis, Monuko; Joubert, Trudi-Heleen; Goosen, Marius E.; Janse van Rensburg, Christo; Rademeyer, Pieter; Fauré, Nicolaas M.

    2013-03-01

    Microdisplay technology, the miniaturization and integration of small displays for various applications, is predominantly based on OLED and LCoS technologies. Silicon light emission from hot carrier electroluminescence has been shown to emit light visibly perceptible without the aid of any additional intensification, although the electrical to optical conversion efficiency is not as high as the technologies mentioned above. For some applications, this drawback may be traded off against the major cost advantage and superior integration opportunities offered by CMOS microdisplays using integrated silicon light sources. This work introduces an improved version of our previously published microdisplay by making use of new efficiency enhanced CMOS light emitting structures and an increased display resolution. Silicon hot carrier luminescence is often created when reverse biased pn-junctions enter the breakdown regime where impact ionization results in carrier transport across the junction. Avalanche breakdown is typically unwanted in modern CMOS processes. Design rules and process design are generally tailored to prevent breakdown, while the voltages associated with breakdown are too high to directly interact with the rest of the CMOS standard library. This work shows that it is possible to lower the operating voltage of CMOS light sources without compromising the optical output power. This results in more efficient light sources with improved interaction with other standard library components. This work proves that it is possible to create a reasonably high resolution microdisplay while integrating the active matrix controller and drivers on the same integrated circuit die without additional modifications, in a standard CMOS process.

  2. A back-illuminated megapixel CMOS image sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Nikzad, Shouleh; Hoenk, Michael; Jones, Todd; Wrigley, Chris; Hancock, Bruce

    2005-01-01

    In this paper, we present the test and characterization results for a back-illuminated megapixel CMOS imager. The imager pixel consists of a standard junction photodiode coupled to a three transistor-per-pixel switched source-follower readout [1]. The imager also consists of integrated timing and control and bias generation circuits, and provides analog output. The analog column-scan circuits were implemented in such a way that the imager could be configured to run in off-chip correlated double-sampling (CDS) mode. The imager was originally designed for normal front-illuminated operation, and was fabricated in a commercially available 0.5 pn triple-metal CMOS-imager compatible process. For backside illumination, the imager was thinned by etching away the substrate was etched away in a post-fabrication processing step.

  3. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  4. Development of a silicon gate CMOS technology with small structures

    NASA Astrophysics Data System (ADS)

    Milosevic, I.; Tilenschi, L.; Luft, R.; Cornwell, D.

    1982-09-01

    The development of HCMOS technology for 3 to 4 microns structures in order to improve packing density and performance for very large scale integration CMOS circuits, operating at 1,5V, is outlined. Design rule definition, photolithography/contact and projection, layout techniques, and process development (high value polysilicon resistors) are discussed. The technology developed was successfully demonstrated on an advanced 4 MHz (1,5V) watch circuit.

  5. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  6. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.

    PubMed

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052

  7. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass

    PubMed Central

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052

  8. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris, was simulated. For the space-based scenario the simulations showed a 20 130 % improvement of the accuracy of all orbital parameters when varying the frame rate from 1/3 fps, which is the fastest rate for a typical CCD detector, to 50 fps, which represents the highest rate of scientific CMOS cameras. Changing the epoch registration accuracy from a typical 20.0 ms for a mechanical shutter to 0.025 ms, the theoretical value for the electronic shutter of a CMOS camera, improved the orbit accuracy by 4 to 190 %. The ground-based scenario also benefit from the specific CMOS characteristics, but to a lesser extent.

  9. A single-supply, monolithic, MIL-STD-1553 transceiver implemented in BiCMOS wafer fabrication technology

    NASA Astrophysics Data System (ADS)

    Albrecht, Thomas L.; Molinari, Lou

    An integrated circuit has been designed for use as a single supply, MIL-STD-1553 transceiver using BiCMOS technology. Use of the BiCMOS fabrication process has advantages over both Bipolar and CMOS technologies. These advantages include: reduced standby current drain, increased flexibility in mating the transceiver to various remote terminals, increased control over output amplitude and rise/fall times, easier methods for adjusting filter response and residual voltage, and reduced chip size (over a CMOS transceiver). Development of this monolithic transceiver opens the door to future advances in remote terminal design. By combining the current driving capacity of Bipolar with the digital design capability of CMOS, the next probable step in the progression of MIL-STD-1553 technology would be a fully monolithic remote terminal. This device would combine a transceiver with the encoder/decoder and protocol logic on a single semiconductor device.

  10. Low-frequency noise reduction in vertical MOSFETs having tunable threshold voltage fabricated with 60 nm CMOS technology on 300 mm wafer process

    NASA Astrophysics Data System (ADS)

    Imamoto, Takuya; Ma, Yitao; Muraguchi, Masakazu; Endoh, Tetsuo

    2015-04-01

    In this paper, DC and low-frequency noise (LFN) characteristics have been investigated with actual measurement data in both n- and p-type vertical MOSFETs (V-MOSFETs) for the first time. The V-MOSFETs which was fabricated on 300 mm bulk silicon wafer process have realized excellent DC performance and a significant reduction of flicker (1/f) noise. The measurement results show that the fabricated V-MOSFETs with 60 nm silicon pillar and 100 nm gate length achieve excellent steep sub-threshold swing (69 mV/decade for n-type and 66 mV/decade for p-type), good on-current (281 µA/µm for n-type 149 µA/µm for p-type), low off-leakage current (28.1 pA/µm for n-type and 79.6 pA/µm for p-type), and excellent on-off ratio (1 × 107 for n-type and 2 × 106 for p-type). In addition, it is demonstrated that our fabricated V-MOSFETs can control the threshold voltage (Vth) by changing the channel doping condition, which is the useful and low-cost technique as it has been widely used in the conventional bulk planar MOSFET. This result indicates that V-MOSFETs can control Vth more finely and flexibly by the combined the use of the doping technique with other techniques such as work function engineering of metal-gate. Moreover, it is also shown that V-MOSFETs can suppress 1/f noise (L\\text{gate}WS\\text{Id}/I\\text{d}2 of 10-13-10-11 µm2/Hz for n-type and 10-12-10-10 µm2/Hz for p-type) to one or two order lower level than previously reported nanowire type MOSFET, FinFET, Tri-Gate, and planar MOSFETs. The results have also proved that both DC and 1/f noise performances are independent from the bias voltage which is applied to substrate or well layer. Therefore, it is verified that V-MOSFETs can eliminate the effects from substrate or well layer, which always adversely affects the circuit performances due to this serial connection.

  11. Forced Chaos Generator with CMOS Variable Active Inductor Circuit

    NASA Astrophysics Data System (ADS)

    Tsubaki, Yusuke; Sekikawa, Munehisa; Horio, Yosihiko

    We propose a forced chaos generator with a CMOS variable active inductor circuit. The equivalent inductance of the variable active inductor in the proposed circuit can be controlled by an external voltage. Therefore, the oscillation frequencies of the circuit can be altered by applying an external periodic square waveform. As a result, we can generate chaos from the circuit. We then confirm the folding-and-stretching mechanism of the chaotic motion in the circuit. Complex phenomena, observed in the proposed circuit, are analyzed through the Poincaré sections from the SPICE simulations with TSMC 0.35μm CMOS semiconductor process parameters. In addition, we define a return map on the Poincaré section to examine the properties of the observed attractors. Moreover, we investigate the bifurcation phenomena when the amplitude and period of the external signal are changed as bifurcation parameters.

  12. Fundamental performance differences between CMOS and CCD imagers: Part II

    NASA Astrophysics Data System (ADS)

    Janesick, James; Andrews, James; Tower, John; Grygon, Mark; Elliott, Tom; Cheng, John; Lesser, Michael; Pinter, Jeff

    2007-09-01

    A new class of CMOS imagers that compete with scientific CCDs is presented. The sensors are based on deep depletion backside illuminated technology to achieve high near infrared quantum efficiency and low pixel cross-talk. The imagers deliver very low read noise suitable for single photon counting - Fano-noise limited soft x-ray applications. Digital correlated double sampling signal processing necessary to achieve low read noise performance is analyzed and demonstrated for CMOS use. Detailed experimental data products generated by different pixel architectures (notably 3TPPD, 5TPPD and 6TPG designs) are presented including read noise, charge capacity, dynamic range, quantum efficiency, charge collection and transfer efficiency and dark current generation. Radiation damage data taken for the imagers is also reported.

  13. Monolithic CMOS-MEMS integration for high-g accelerometers

    NASA Astrophysics Data System (ADS)

    Narasimhan, Vinayak; Li, Holden; Tan, Chuan Seng

    2014-10-01

    This paper highlights work-in-progress towards the conceptualization, simulation, fabrication and initial testing of a silicon-germanium (SiGe) integrated CMOS-MEMS high-g accelerometer for military, munition, fuze and shock measurement applications. Developed on IMEC's SiGe MEMS platform, the MEMS offers a dynamic range of 5,000 g and a bandwidth of 12 kHz. The low noise readout circuit adopts a chopper-stabilization technique implementing the CMOS through the TSMC 0.18 µm process. The device structure employs a fully differential split comb-drive set up with two sets of stators and a rotor all driven separately. Dummy structures acting as protective over-range stops were designed to protect the active components when under impacts well above the designed dynamic range.

  14. A high precision CMOS weak current readout circuit

    NASA Astrophysics Data System (ADS)

    Qisong, Wu; Haigang, Yang; Tao, Yin; Chong, Zhang

    2009-07-01

    This paper presents a high precision CMOS weak current readout circuit. This circuit is capable of converting a weak current into a frequency signal for amperometric measurements with high precision and further delivering a 10-bit digital output. A fast stabilization-enhanced potentiostat has been proposed in the design, which is used to maintain a constant bias potential for amperometric biochemical sensors. A technique based on source voltage shifting that reduces the leakage current of the MOS transistor to the reverse diode leakage level at room temperature was employed in the circuit. The chip was fabricated in the 0.35 μm chartered CMOS process, with a single 3.3 V power supply. The interface circuit maintains a dynamic range of more than 100 dB. Currents from 1 pA to 300 nA can be detected with a maximum nonlinearity of 0.3% over the full scale.

  15. Diffuse reflectance measurements using lensless CMOS imaging chip

    NASA Astrophysics Data System (ADS)

    Schelkanova, I.; Pandya, A.; Shah, D.; Lilge, L.; Douplik, A.

    2014-10-01

    To assess superficial epithelial microcirculation, a diagnostic tool should be able to detect the heterogeneity of microvasculature, and to monitor qualitative derangement of perfusion in a diseased condition. Employing a lensless CMOS imaging chip with an RGB Bayer filter, experiments were conducted with a microfluidic platform to obtain diffuse reflectance maps. Haemoglobin (Hb) solution (160 g/l) was injected in the periodic channels (grooves) of the microfluidic phantom which were covered with ~250 μm thick layer of intralipid to obtain a diffusive environment. Image processing was performed on data acquired on the surface of the phantom to evaluate the diffuse reflectance from the subsurface periodic pattern. Thickness of the microfluidic grooves, the wavelength dependent contrast between Hb and the background, and effective periodicity of the grooves were evaluated. Results demonstrate that a lens-less CMOS camera is capable of capturing images of subsurface structures with large field of view.

  16. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors, which, by virtue of being identical to the input transistors, would reproduce the input differential potential at the output

  17. Cryogenic CMOS circuits for single charge digital readout

    NASA Astrophysics Data System (ADS)

    Eng, Kevin; Gurrieri, T. M.; Hamlet, J.; Carroll, M. S.

    2010-03-01

    The readout of a solid state qubit often relies on single charge sensitive electrometry. However the combination of fast and accurate measurements is non trivial due to large RC time constants due to the electrometers resistance and shunt capacitance from wires between the cold stage and room temperature. Currently fast sensitive measurements are accomplished through rf reflectrometry. I will present an alternative single charge readout technique based on cryogenic CMOS circuits in hopes to improve speed, signal-to-noise, power consumption and simplicity in implementation. The readout circuit is based on a current comparator where changes in current from an electrometer will trigger a digital output. These circuits were fabricated using Sandia's 0.35μm CMOS foundry process. Initial measurements of comparators with an addition a current amplifier have displayed current sensitivities of < 1nA at 4.2K, switching speeds up to ˜120ns, while consuming ˜10μW. I will also discuss an investigation of noise characterization of our CMOS process in hopes to obtain a better understanding of the ultimate limit in signal to noise performance.

  18. Cryogenic CMOS circuits for single charge digital readout.

    SciTech Connect

    Gurrieri, Thomas M.; Longoria, Erin Michelle; Eng, Kevin; Carroll, Malcolm S.; Hamlet, Jason R.; Young, Ralph Watson

    2010-03-01

    The readout of a solid state qubit often relies on single charge sensitive electrometry. However the combination of fast and accurate measurements is non trivial due to large RC time constants due to the electrometers resistance and shunt capacitance from wires between the cold stage and room temperature. Currently fast sensitive measurements are accomplished through rf reflectrometry. I will present an alternative single charge readout technique based on cryogenic CMOS circuits in hopes to improve speed, signal-to-noise, power consumption and simplicity in implementation. The readout circuit is based on a current comparator where changes in current from an electrometer will trigger a digital output. These circuits were fabricated using Sandia's 0.35 {micro}m CMOS foundry process. Initial measurements of comparators with an addition a current amplifier have displayed current sensitivities of < 1nA at 4.2K, switching speeds up to {approx}120ns, while consuming {approx}10 {micro}W. I will also discuss an investigation of noise characterization of our CMOS process in hopes to obtain a better understanding of the ultimate limit in signal to noise performance.

  19. Organic thin-film transistors for flexible CMOS integration

    NASA Astrophysics Data System (ADS)

    Perez, Michael Ramon

    In this work a fully photolithographically defined complementary metal oxide semiconductor (CMOS) device is fabricated. Particular focus was on the use of solution based materials for device integration. P-type and n-type materials were evaluated for use in an organic thin film transistor (OTFT) device. The reliability and organic thin-film transistor performance of solution based dielectric polymeric dielectric materials are presented. Fabrication and characterization of integrated hybrid complementary metal oxide semiconductor devices (CMOS) using 6, 13-bis (triisopropylsilylethynyl) pentacene (TIPS-PC) and cadmium sulfide (CdS) as the active layers deposited using solution based processes are demonstrated. The hybrid CMOS technology demonstrated is compatible with large-area and mechanically flexible substrates given the low temperature processing (<100°C) and scalable design. Devices evaluated are diodes, n- and p-type thin film transistors (TFTs), inverters, NAND and NOR gates. The inverters exhibited a DC gain of ≈52 V/V with full rail-to-rail switching. The NAND logic gates switch rail-to-rail with a transition point of V DD/2.

  20. A CMOS TDI image sensor for Earth observation

    NASA Astrophysics Data System (ADS)

    Rushton, Joseph E.; Stefanov, Konstantin D.; Holland, Andrew D.; Endicott, James; Mayer, Frederic; Barbier, Frederic

    2015-09-01

    Time Delay and Integration (TDI) is used to increase the Signal to Noise Ratio (SNR) in image sensors when imaging fast moving objects. One important TDI application is in Earth observation from space. In order to operate in the space radiation environment, the effect that radiation damage has on the performance of the image sensors must be understood. This work looks at prototype TDI sensor pixel designs, produced by e2v technologies. The sensor is a CCD-like charge transfer device, allowing in-pixel charge summation, produced on a CMOS process. The use of a CMOS process allows potential advantages such as lower power consumption, smaller pixels, higher line rate and extra on-chip functionality which can simplify system design. CMOS also allows a dedicated output amplifier per column allowing fewer charge transfers and helping to facilitate higher line rates than CCDs. In this work the effect on the pixels of radiation damage from high energy protons, at doses relevant to a low Earth orbit mission, is presented. This includes the resulting changes in Charge Transfer inefficiency (CTI) and dark signal.

  1. Aluminum nitride on titanium for CMOS compatible piezoelectric transducers

    PubMed Central

    Doll, Joseph C; Petzold, Bryan C; Ninan, Biju; Mullapudi, Ravi; Pruitt, Beth L

    2010-01-01

    Piezoelectric materials are widely used for microscale sensors and actuators but can pose material compatibility challenges. This paper reports a post-CMOS compatible fabrication process for piezoelectric sensors and actuators on silicon using only standard CMOS metals. The piezoelectric properties of aluminum nitride (AlN) deposited on titanium (Ti) by reactive sputtering are characterized and microcantilever actuators are demonstrated. The film texture of the polycrystalline Ti and AlN films is improved by removing the native oxide from the silicon substrate in situ and sequentially depositing the films under vacuum to provide a uniform growth surface. The piezoelectric properties for several AlN film thicknesses are measured using laser doppler vibrometry on unpatterned wafers and released cantilever beams. The film structure and properties are shown to vary with thickness, with values of d33f, d31 and d33 of up to 2.9, −1.9 and 6.5 pm V−1, respectively. These values are comparable with AlN deposited on a Pt metal electrode, but with the benefit of a fabrication process that uses only standard CMOS metals. PMID:20333316

  2. CMOS-sensors for energy-resolved X-ray imaging

    NASA Astrophysics Data System (ADS)

    Doering, D.; Amar-Youcef, S.; Baudot, J.; Deveaux, M.; Dulinski, W.; Kachel, M.; Linnik, B.; Müntz, C.; Stroth, Joachim

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ``color sensitive" X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors.

  3. Nanowatt-Power-Level Automatic Switch Combining ED-CMOS Circuit and LED

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Fumiyasu; Douseki, Takakuni

    A nanowatt-power-level automatic switch that combines a multi-Vth CMOS level converter and an LED as a photodiode has been developed for a sensor application. The level converter is a single-input latch-type multi-Vth CMOS circuit featuring the use of an enhancement-mode nMOSFET and a depletion-mode common-gate nMOSFET as a pair of driver transistors. The ED-CMOS level converter cuts the DC current path; and the LED, which generates a high output voltage under illumination, suppresses the leakage current of the depletion-mode common-gate nMOSFET in the ED-CMOS level converter, resulting in nanowatt-order power dissipation. To verify the effectiveness of the ED-CMOS circuit, a prototype level converter was fabricated on a 0.6-µm CMOS process and used in an automatic switch in a wireless mouse. The switch is composed of two LEDs, a current-mirror circuit, the level converter, and a power switch MOSFET. It senses when a hand grabs or releases the mouse and automatically turns the mouse on or off, respectively. The measured power dissipation of the mouse is 3nW in the standby mode.

  4. Neutron spectrum and dose in a CMOS

    NASA Astrophysics Data System (ADS)

    Vega-Carrillo, H. R.; Paredes-Gutierrez, L.; Borja-Hernandez, C. G.

    2012-10-01

    Using Monte Carlo methods the neutron spectrum in a pacemaker's CMOS has been estimated. A 18 MV LINAC model was used to expose a cell used to define the prostate located in a tissue equivalent phantom model. Neutron fluence at the CMOS is 2.6E(7) n/cm2-Gyx, the spectrum has thermal, epithermal and fast neutrons that will induce secondary, low and high LET, particles whose ionization could induce malfunction and failure of pacemaker in the oncological patient.

  5. Application of CMOS APS in star tracker

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Wang, Yefan; Yang, Jingyi; Hao, Zhihang

    2002-09-01

    Small satellites are now capable of performing missions that require accurate attitude determination and control. However, low weight, size, power, and cost requirements limit the types of attitude sensors that can be used on a small craft, making attitude estimation difficult. In particular, star trackers -- often the attitude sensors of choice for spacecraft, ballistic missile etc., are not practical for small satellites, and CMOS APS is a good substitute for attitude sensors. Some of the technical advantages of CMOS APS are no blooming, low power consumption, direct digital output, small size and little support circuitry, simple to design, etc. This paper discusses the application probability of CMOS APS technology in star tracker for use in small satellites. A ground-based prototype vision system based on CMOS APS has been built to demonstrate the advantages of using CMOS APS in star tracker. Resolving capability, noise, radiation hardening and some other characteristics are discussed in detail. CMOS image sensor is sure to be a potential replacement of CCD in the field of attitude sensors.

  6. Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Clarke, A.; Stefanov, K.; Johnston, N.; Holland, A.

    2015-04-01

    The Centre for Electronic Imaging (CEI) has an active programme of evaluating and designing Complementary Metal-Oxide Semiconductor (CMOS) image sensors with high quantum efficiency, for applications in near-infrared and X-ray photon detection. This paper describes the performance characterisation of CMOS devices made on a high resistivity 50 μ m thick p-type substrate with a particular focus on determining the depletion depth and the quantum efficiency. The test devices contain 8 × 8 pixel arrays using CCD-style charge collection, which are manufactured in a low voltage CMOS process by ESPROS Photonics Corporation (EPC). Measurements include determining under which operating conditions the devices become fully depleted. By projecting a spot using a microscope optic and a LED and biasing the devices over a range of voltages, the depletion depth will change, causing the amount of charge collected in the projected spot to change. We determine if the device is fully depleted by measuring the signal collected from the projected spot. The analysis of spot size and shape is still under development.

  7. Latest results of the R&D on CMOS MAPS for the Layer0 of the SuperB SVT

    NASA Astrophysics Data System (ADS)

    Balestri, G.; Batignani, G.; Beck, G.; Bernardelli, A.; Berra, A.; Bettarini, S.; Bevan, |A.; Bombelli, L.; Bosi, F.; Bosisio, L.; Casarosa, G.; Ceccanti, M.; Cenci, R.; Citterio, M.; Coelli, S.; Comotti, D.; Dalla Betta, G.-F.; Fabbri, L.; Fiorini, C.; Fontana, G.; Forti, F.; Gabrielli, A.; Gaioni, L.; Gannaway, F.; Giorgi, F.; Giorgi, M. A.; Lanceri, L.; Liberali, V.; Lietti, D.; Lusiani, A.; Mammini, P.; Manazza, A.; Manghisoni, M.; Monti, M.; Morris, J.; Morsani, F.; Nasri, B.; Neri, N.; Oberhof, B.; Palombo, F.; Pancheri, L.; Paoloni, E.; Pellegrini, G.; Perez, A.; Petragnani, G.; Prest, M.; Povoli, M.; Profeti, A.; Quartieri, E.; Rashevskaya, I.; Ratti, L.; Re, V.; Rizzo, G.; Sbarra, C.; Semprini-Cesari, N.; Soldani, A.; Stabile, A.; Stella, C.; Traversi, G.; Valentinetti, S.; Verzellesi, G.; Villa, M.; Vitale, L.; Walsh, J.; Wilson, F.; Zoccoli, A.; Zucca, S.

    2013-12-01

    Physics and high background conditions set very challenging requirements on readout speed, material budget and resolution for the innermost layer of the SuperB Silicon Vertex Tracker operated at the full luminosity. Monolithic Active Pixel Sensors (MAPS) are very appealing in this application since the thin sensitive region allows grinding the substrate to tens of microns. Deep N-Well MAPS, developed in the ST 130 nm CMOS technology, achieved in-pixel sparsification and fast time stamping. Further improvements are being explored with an intense R&D program, including both vertical integration and 2D MAPS with the INMAPS quadruple well. We present the results of the characterization with IR laser, radioactive sources and beam of several chips produced with the 3D (Chartered/Tezzaron) process. We have also studied prototypes exploiting the features of the quadruple well and the high resistivity epitaxial layer of the INMAPS 180 nm process. Promising results from an irradiation campaign with neutrons on small matrices and other test-structures, as well as the response of the sensors to high energy charged tracks are presented.

  8. CMOS compatible avalanche photodetector and its application in communications

    NASA Astrophysics Data System (ADS)

    Tang, Miangang; Wu, Zhigang; Li, Guohui

    2014-11-01

    CMOS compatible avalanche photodiodes (CMOS APDs) can be fabricated with standard CMOS technology, which make CMOS APDs are considered as a key optoelectronic device for optical communication systems and optical wireless communication systems. The guard-ring (GR) structure in CMOS APDs can alleviate the premature edge breakdown (PEB) effects and greatly improve the device performance. In this paper, the influence of various type GR structure on CMOS APDs performance are discussed, and its important applications in radio-over-fibre (RoF) are reviewed.

  9. Flexible packaging and integration of CMOS IC with elastomeric microfluidics

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-05-01

    We have demonstrated flexible packaging and integration of CMOS IC chips with PDMS microfluidics. Microfluidic channels are used to deliver both liquid samples and liquid metals to the CMOS die. The liquid metals are used to realize electrical interconnects to the CMOS chip. As a demonstration we integrated a CMOS magnetic sensor die and matched PDMS microfluidic channels in a flexible package. The packaged system is fully functional under 3cm bending radius. The flexible integration of CMOS ICs with microfluidics enables previously unavailable flexible CMOS electronic systems with fluidic manipulation capabilities, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing.

  10. CMOS compatible thin-film ALD tungsten nanoelectromechanical devices

    NASA Astrophysics Data System (ADS)

    Davidson, Bradley Darren

    This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies. The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures. In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters. Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.

  11. Multiband CMOS sensor simplify FPA design

    NASA Astrophysics Data System (ADS)

    Wang, Weng Lyang B.; Ling, Jer

    2015-10-01

    Push broom multi-band Focal Plane Array (FPA) design needs to consider optics, image sensor, electronic, mechanic as well as thermal. Conventional FPA use two or several CCD device as an image sensor. The CCD image sensor requires several high speed, high voltage and high current clock drivers as well as analog video processors to support their operation. Signal needs to digitize using external sample / hold and digitized circuit. These support circuits are bulky, consume a lot of power, must be shielded and placed in close to the CCD to minimize the introduction of unwanted noise. The CCD also needs to consider how to dissipate power. The end result is a very complicated FPA and hard to make due to more weighs and draws more power requiring complex heat transfer mechanisms. In this paper, we integrate microelectronic technology and multi-layer soft / hard Printed Circuit Board (PCB) technology to design electronic portion. Since its simplicity and integration, the optics, mechanic, structure and thermal design will become very simple. The whole FPA assembly and dis-assembly reduced to a few days. A multi-band CMOS Sensor (dedicated as C468) was used for this design. The CMOS Sensor, allow for the incorporation of clock drivers, timing generators, signal processing and digitization onto the same Integrated Circuit (IC) as the image sensor arrays. This keeps noise to a minimum while providing high functionality at reasonable power levels. The C468 is a first Multiple System-On-Chip (MSOC) IC. This device used our proprietary wafer butting technology and MSOC technology to combine five long sensor arrays into a size of 120 mm x 23.2 mm and 155 mm x 60 mm for chip and package, respectively. The device composed of one Panchromatic (PAN) and four different Multi- Spectral (MS) sensors. Due to its integration on the electronic design, a lot of room is clear for the thermal design. The optical and mechanical design is become very straight forward. The flight model FPA passed all of the reliability testing.

  12. Nanostructured metallic surfaces for enhanced transmission and polarization filtering in CMOS fabricated photodetectors

    NASA Astrophysics Data System (ADS)

    Dunbar, L. A.; Guillaumée, M.; de León-Pérez, F.; Rüedi, P.-F.; Spassov, V.; Eckert, R.; Lopez-Tejeira, F.; García-Vidal, F. J.; Franzi, E.; Martín-Moreno, L.; Stanley, R. P.

    2010-05-01

    The miniaturization of photodetectors often comes at the expense of a smaller photosensitive area. This can reduce the signal and thus limit the image quality. One way to overcome this limitation is to reduce the photosensitive area but with no reduction of signal i.e. harvest the light. Here we investigate, theoretically and experimentally, light harvesting with nanostructured metals. Nanostructured metals can also give additional functionality such as polarization filtering which is also investigated. After defining the figure of merits used when characterizing light harvesting and polarization filtering structures, we detail the fabrication and measurement process. Structures were made on glass substrate, as a post process step on CMOS fabricated detectors and directly in the CMOS fabrication of the detectors. The optical characterization results are presented and compared with theory. Finally, we discuss the challenges and advantages of integrating metallic nanostructures within the CMOS process.

  13. Future of nano CMOS technology

    NASA Astrophysics Data System (ADS)

    Iwai, Hiroshi

    2015-10-01

    Although Si MOS devices have dominated the integrated circuit applications over the four decades, it has been anticipated that the development of CMOS would reach its limits after the next decade because of the difficulties in the technologies for further downscaling and also because of some fundamental limits of MOSFETs. However, there have been no promising candidates yet, which can replace Si MOSFETs with better performance with low cost. Thus, for the moment, it seems that we have to stick to the Si MOSFET devices until their end. The downsizing is limited by the increase of off-leakage current between source and drain. In order to suppress the off-leakage current, multi-gate structures (FinFET, Tri-gate, and Si-nanowire MOSFETs) are replacing conventional planar MOSFETs, and continuous innovation of high-k/metal gate technologies has enabled EOT scaling down to 0.9 nm in production. However, it was found that the multi-gate structures have a future big problem of significant conduction reduction with decrease in fin width. Also it is not easy to further decrease EOT because of the mobility and reliability degradation. Furthermore, the development of EUV (Extremely Ultra-Violet) lithography, which is supposed to be essential for sub-10 nm lithography, delays significantly because of insufficient illumination intensity for production. Thus, it is now expected that the reduction rate of the gate length, which has a strong influence on the off-leakage current, will become slower in near future.

  14. Simulation of SEU transients in CMOS ICs

    SciTech Connect

    Kaul, N.; Bhuva, B.L.; Kerns, S.E. )

    1991-12-01

    This paper reports that available analytical models of the number of single-event-induced errors (SEU) in combinational logic systems are not easily applicable to real integrated circuits (ICs). An efficient computer simulation algorithm set, SITA, predicts the vulnerability of data stored in and processed by complex combinational logic circuits to SEU. SITA is described in detail to allow researchers to incorporate it into their error analysis packages. Required simulation algorithms are based on approximate closed-form equations modeling individual device behavior in CMOS logic units. Device-level simulation is used to estimate the probability that ion-device interactions produce erroneous signals capable of propagating to a latch (or n output node), and logic-level simulation to predict the spread of such erroneous, latched information through the IC. Simulation results are compared to those from SPICE for several circuit and logic configurations. SITA results are comparable to this established circuit-level code, and SITA can analyze circuits with state-of-the-art device densities (which SPICE cannot). At all IC complexity levels, SITAS offers several factors of 10 savings in simulation time over SPICE.

  15. NSC 800, 8-bit CMOS microprocessor

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1984-01-01

    The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.

  16. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.

    PubMed

    Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer

    2016-02-01

    Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications. PMID:26780441

  17. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Guilloux, F.; Orsini, F.

    2014-05-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented.

  18. A scalable neural chip with synaptic electronics using CMOS integrated memristors

    NASA Astrophysics Data System (ADS)

    Cruz-Albrecht, Jose M.; Derosier, Timothy; Srinivasa, Narayan

    2013-09-01

    The design and simulation of a scalable neural chip with synaptic electronics using nanoscale memristors fully integrated with complementary metal-oxide-semiconductor (CMOS) is presented. The circuit consists of integrate-and-fire neurons and synapses with spike-timing dependent plasticity (STDP). The synaptic conductance values can be stored in memristors with eight levels, and the topology of connections between neurons is reconfigurable. The circuit has been designed using a 90 nm CMOS process with via connections to on-chip post-processed memristor arrays. The design has about 16 million CMOS transistors and 73 728 integrated memristors. We provide circuit level simulations of the entire chip performing neuronal and synaptic computations that result in biologically realistic functional behavior.

  19. Design and analysis of a highly-integrated CMOS power amplifier for RFID readers

    NASA Astrophysics Data System (ADS)

    Tongqiang, Gao; Chun, Zhang; Baoyong, Chi; Zhihua, Wang

    2009-06-01

    To implement a fully-integrated on-chip CMOS power amplifier (PA) for RFID readers, the resonant frequency of each matching network is derived in detail. The highlight of the design is the adoption of a bonding wire as the output-stage inductor. Compared with the on-chip inductors in a CMOS process, the merit of the bondwire inductor is its high quality factor, leading to a higher output power and efficiency. The disadvantage of the bondwire inductor is that it is hard to control. A highly integrated class-E PA is implemented with 0.18-μm CMOS process. It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm. The maximum power-added efficiency (PAE) is 32.1%. Also, the spectral performance of the PA is analyzed for the specified RFID protocol.

  20. A CMOS-compatible, surface-micromachined pressure sensor for aqueous ultrasonic application

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1994-12-31

    A surface micromachined pressure sensor array is under development at the Integrated Micromechanics, Microsensors, and CMOS Technologies organization at Sandia National Laboratories. This array is designed to sense absolute pressures from ambient pressure to 650 psia with frequency responses from DC to 2 MHz. The sensor is based upon a sealed, deformable, circular LPCVD silicon nitride diaphragm. Absolute pressure is determined from diaphragm deflection, which is sensed with low-stress, micromechanical, LPCVD polysilicon piezoresistors. All materials and processes used for sensor fabrication are CMOS compatible, and are part of Sandia`s ongoing effort of CMOS integration with Micro-ElectroMechanical Systems (MEMS). Test results of individual sensors are presented along with process issues involving the release etch and metal step coverage.

  1. CMOS sensors in 90 nm fabricated on high resistivity wafers: Design concept and irradiation results

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Costa, M.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rousset, J.; Silvestrin, L.; Wyss, J.

    2013-12-01

    The LePix project aims at improving the radiation hardness and the readout speed of monolithic CMOS sensors through the use of standard CMOS technologies fabricated on high resistivity substrates. In this context, high resistivity means beyond 400 Ω cm, which is at least one order of magnitude greater than the typical value (1 - 10 Ω cm) adopted for integrated circuit production. The possibility of employing these lightly doped substrates was offered by one foundry for an otherwise standard 90 nm CMOS process. In the paper, the case for such a development is first discussed. The sensor design is then described, along with the key challenges encountered in fabricating the detecting element in a very deep submicron process. Finally, irradiation results obtained on test matrices are reported.

  2. 60-GHz array antenna with standard CMOS technology on Schott Borofloat

    NASA Astrophysics Data System (ADS)

    Jun, Luo; Yan, Wang; Ruifeng, Yue

    2013-11-01

    This design is presented of a 2 × 2 planar array, with a half-wave dipole antenna to be its element, on a new substrate material, Schott Borofloat, with CMOS technology in the 60 GHz band. In the proposed structure, all the designs are based on the CMOS technology and similar performance could be achieved with the same size in contrast to the design on low-temperature co-fired ceramic (LTCC). This could lead to the improving of the compatibility with the CMOS IC process, the design cost and the design precision which is restricted in the LTCC process. The simulated -10 dB bandwidth of the array is from 58 to 64 GHz. A peak gain of 9.4 dBi is achieved. Good agreement on return loss is achieved between simulations and measurements.

  3. Spectrometry with consumer-quality CMOS cameras.

    PubMed

    Scheeline, Alexander

    2015-01-01

    Many modern spectrometric instruments use diode arrays, charge-coupled arrays, or CMOS cameras for detection and measurement. As portable or point-of-use instruments are desirable, one would expect that instruments using the cameras in cellular telephones and tablet computers would be the basis of numerous instruments. However, no mass market for such devices has yet developed. The difficulties in using megapixel CMOS cameras for scientific measurements are discussed, and promising avenues for instrument development reviewed. Inexpensive alternatives to use of the built-in camera are also mentioned, as the long-term question is whether it is better to overcome the constraints of CMOS cameras or to bypass them. PMID:25626545

  4. Noise Immunity Improvement in Dynamic CMOS circuits

    NASA Astrophysics Data System (ADS)

    Khare, Kavita; Ambulker, Sunanda

    2010-11-01

    For the purpose of high system performance dynamic CMOS circuits are widely use in high performance VLSI chips. But dynamic CMOS gates are found to be less noise resistant then static CMOS gates. Due to aggressive technology scaling, stringent noise requirement has been increased, hence the noise tolerance of dynamic circuits has to be first improved for the over all reliable operation of VLSI chip. A new technique (Transparency window technique) which increases the noise immunity with the precharge of one internal node of N-logic and isolating the precharge dynamic node-and consequently the output from the inputs during the evaluation phase, is introduced to improve the noise tolerance of digital circuits. Simulation result on Pspice 9.1 and 0.65 μm technology shows that this technique improves noise immunity of the dynamic circuits as compared to conventional and previous noise tolerance technique.

  5. Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor.

    PubMed

    Guha, S; Warsinke, A; Tientcheu, Ch M; Schmalz, K; Meliani, C; Wenger, Ch

    2015-05-01

    In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm(2) reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process. PMID:25782697

  6. Resistor Extends Life Of Battery In Clocked CMOS Circuit

    NASA Technical Reports Server (NTRS)

    Wells, George H., Jr.

    1991-01-01

    Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.

  7. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  8. Low power, CMOS digital autocorrelator spectrometer for spaceborne applications

    NASA Technical Reports Server (NTRS)

    Chandra, Kumar; Wilson, William J.

    1992-01-01

    A 128-channel digital autocorrelator spectrometer using four 32 channel low power CMOS correlator chips was built and tested. The CMOS correlator chip uses a 2-bit multiplication algorithm and a full-custom CMOS VLSI design to achieve low DC power consumption. The digital autocorrelator spectrometer has a 20 MHz band width, and the total DC power requirement is 6 Watts.

  9. Self-Vth-Cancellation High-Efficiency CMOS Rectifier Circuit for UHF RFIDs

    NASA Astrophysics Data System (ADS)

    Kotani, Koji; Ito, Takashi

    A high-efficiency CMOS rectifier circuit for UHF RFID applications was developed. The rectifier utilizes a self-Vth-cancellation (SVC) scheme in which the threshold voltage of MOSFETs is cancelled by applying gate bias voltage generated from the output voltage of the rectifier itself. A very simple circuit configuration and zero power dissipation characteristics in biasing enable excellent power conversion efficiency (PCE), especially under small RF input power conditions. At higher RF input power conditions, the PCE of the rectifier automatically decreases. This is the built-in self-power-regulation function. The proposed SVC CMOS rectifier was fabricated with a 0.35-m CMOS process and the measured performance was compared with those of conventional nMOS, pMOS, and CMOS rectifiers and other types of Vth cancellation rectifiers as well. The SVC CMOS rectifier achieves 32% of PCE at the -10dBm RF input power condition. This PCE is larger than rectifiers reported to date under this condition.

  10. A high speed CMOS A/D converter

    NASA Technical Reports Server (NTRS)

    Wiseman, Don R.; Whitaker, Sterling R.

    1992-01-01

    This paper presents a high speed analog-to-digital (A/D) converter. The converter is a 7 bit flash converter with one half LSB accuracy. Typical parts will function at approximately 200 MHz. The converter uses a novel comparator circuit that is shown to out perform more traditional comparators, and thus increases the speed of the converter. The comparator is a clocked, precharged circuit that offers very fast operation with a minimal offset voltage (2 mv). The converter was designed using a standard 1 micron digital CMOS process and is 2,244 microns by 3,972 microns.

  11. Performance Analysis of Visible Light Communication Using CMOS Sensors.

    PubMed

    Do, Trong-Hop; Yoo, Myungsik

    2016-01-01

    This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis. PMID:26938535

  12. Performance Analysis of Visible Light Communication Using CMOS Sensors

    PubMed Central

    Do, Trong-Hop; Yoo, Myungsik

    2016-01-01

    This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis. PMID:26938535

  13. Measurements with a CMOS pixel sensor in magnetic fields

    NASA Astrophysics Data System (ADS)

    de Boer, W.; Bartsch, V.; Bol, J.; Dierlamm, A.; Grigoriev, E.; Hauler, F.; Herz, O.; Jungermann, L.; Koppenhöfer, M.; Sopczak, A.; Schneider, Th.

    2002-07-01

    CMOS technique, which is the standard process used by most of the semiconductor factories worldwide, allows the production of both cheap and highly integrated sensors. The prototypes MIMOSA -I and MIMOSA-II were designed by the IReS-LEPSI collaboration in order to investigate the potential of this new technique for charged particle tracking (Design and Testing of Monolithic Active Pixel Sensors for Charged Particle Tracking, LEPSI, IN2P3, Strasbourg, France). For this purpose it is necessary to study the effects of magnetic fields as they appear in high-energy physics on these sensors. MIMOSA: Minimum Ionizing particle MOS Active pixel sensor.

  14. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique.

    PubMed

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz. PMID:22454581

  15. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique

    PubMed Central

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz. PMID:22454581

  16. A 340-nm-band ultraviolet laser diode composed of GaN well layers.

    PubMed

    Yamashita, Yoji; Kuwabara, Masakazu; Torii, Kousuke; Yoshida, Harumasa

    2013-02-11

    We have demonstrated the laser operation of a short-wavelength ultraviolet laser diode with multiple-quantum-wells composed of GaN well layers. The laser action has been achieved in 340-nm-band far from the wavelength corresponding to GaN band gap under the pulsed current mode at room temperature. The device has been realized on the Al(0.2)Ga(0.8)N underlying layer. The AlN mole fraction of the underlying layer is 0.1 lower than that of the underlying layer which was used for the previously reported 342 nm laser diode. These results provide a chance to the next step for a shorter-wavelength ultraviolet laser diode. PMID:23481771

  17. A CMOS image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Takehara, Hironari; Miyazawa, Kazuya; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Kim, Soo Hyeon; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun

    2014-01-01

    A CMOS image sensor with stacked photodiodes was fabricated using 0.18 µm mixed signal CMOS process technology. Two photodiodes were stacked at the same position of each pixel of the CMOS image sensor. The stacked photodiodes consist of shallow high-concentration N-type layer (N+), P-type well (PW), deep N-type well (DNW), and P-type substrate (P-sub). PW and P-sub were shorted to ground. By monitoring the voltage of N+ and DNW individually, we can observe two monochromatic colors simultaneously without using any color filters. The CMOS image sensor is suitable for fluorescence imaging, especially contact imaging such as a lensless observation system of digital enzyme-linked immunosorbent assay (ELISA). Since the fluorescence increases with time in digital ELISA, it is possible to observe fluorescence accurately by calculating the difference from the initial relation between the pixel values for both photodiodes.

  18. Prototyping of an HV-CMOS demonstrator for the High Luminosity-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Vilella, E.; Benoit, M.; Casanova, R.; Casse, G.; Ferrere, D.; Iacobucci, G.; Peric, I.; Vossebeld, J.

    2016-01-01

    HV-CMOS sensors can offer important advantages in terms of material budget, granularity and cost for large area tracking systems in high energy physics experiments. This article presents the design and simulated results of an HV-CMOS pixel demonstrator for the High Luminosity-LHC. The pixel demonstrator has been designed in the 0.35 μm HV-CMOS process from ams AG and submitted for fabrication through an engineering run. To improve the response of the sensor, different wafers with moderate to high substrate resistivities are used to fabricate the design. The prototype consists of four large analog and standalone matrices with several pixel flavours, which are all compatible for readout with the FE-I4 ASIC. Details about the matrices and the pixel flavours are provided in this article.

  19. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  20. Optimal design of phase change random access memory based on 130nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Cai, Daolin; Chen, Houpeng; Wang, Qian; Hong, Xiao; Chen, Yifeng; Xu, Linhai; Li, Xi; Wang, Zhaomin; Zhang, Yiyun; Song, Zhitang

    An 8Mb phase change random access memory (PCRAM) has been developed by a 130nm 4-ML standard CMOS technology based on the Resistor-on-Via-stacked-Plug (RVP) storage cell structure. This phase change resistor is formed after CMOS logic fabrication. PCRAM can be embedded without changing any logic device and process. The memory cell selector is implemented by a standard 1.2V NMOS device. Aimed at the resistance distributions, lowering the operation current and improving the bit yield, some methods are used to optimize the design of the chip.

  1. Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips

    NASA Astrophysics Data System (ADS)

    Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.

    2014-03-01

    We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.

  2. Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors

    PubMed Central

    Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287

  3. Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor

    NASA Astrophysics Data System (ADS)

    Chin, C. H.; Li, C. S.; Li, M. H.; Wang, Y. L.; Li, S. S.

    2014-09-01

    A high-frequency charge-biased CMOS-MEMS resonant gate field effect transistor (RGFET) composed of a metal-oxide composite resonant-gate structure and an FET transducer has been demonstrated utilizing the TSMC 0.35 μm CMOS technology with Q > 1700 and a signal-to-feedthrough ratio greater than 35 dB under a direct two-port measurement configuration. As compared to the conventional capacitive-type MEMS resonators, the proposed CMOS-MEMS RGFET features an inherent transconductance gain (gm) offered by the FET transduction capable of enhancing the motional signal of the resonator and relaxing the impedance mismatch issue to its succeeding electronics or 50 Ω-based test facilities. In this work, we design a clamped-clamped beam resonant-gate structure right above a floating gate FET transducer as a high-Q building block through a maskless post-CMOS process to combine merits from the large capacitive transduction areas of the large-width beam resonator and the high gain of the underneath FET. An analytical model is also provided to simulate the behavior of the charge-biased RGFET; the theoretical prediction is in good agreement with the experimental results. Thanks to the deep-submicrometer gap spacing enabled by the post-CMOS polysilicon release process, the proposed resonator under a purely capacitive transduction already attains motional impedance less than 10 kΩ, a record-low value among CMOS-MEMS capacitive resonators. To go one step further, the motional signal of the proposed RGFET is greatly enhanced through the FET transduction. Such a strong transmission and a sharp phase transition across 0° pave a way for future RGFET-type oscillators in RF and sensor applications. A time-elapsed characterization of the charge leakage rate for the floating gate is also carried out.

  4. Radiation Tolerance of 65nm CMOS Transistors

    SciTech Connect

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  5. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  6. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGESBeta

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  7. Radiation tolerance of 65 nm CMOS transistors

    NASA Astrophysics Data System (ADS)

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-01

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately ?20 C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  8. Swap intensified WDR CMOS module for I2/LWIR fusion

    NASA Astrophysics Data System (ADS)

    Ni, Yang; Noguier, Vincent

    2015-05-01

    The combination of high resolution visible-near-infrared low light sensor and moderate resolution uncooled thermal sensor provides an efficient way for multi-task night vision. Tremendous progress has been made on uncooled thermal sensors (a-Si, VOx, etc.). It's possible to make a miniature uncooled thermal camera module in a tiny 1cm3 cube with <1W power consumption. For silicon based solid-state low light CCD/CMOS sensors have observed also a constant progress in terms of readout noise, dark current, resolution and frame rate. In contrast to thermal sensing which is intrinsic day&night operational, the silicon based solid-state sensors are not yet capable to do the night vision performance required by defense and critical surveillance applications. Readout noise, dark current are 2 major obstacles. The low dynamic range at high sensitivity mode of silicon sensors is also an important limiting factor, which leads to recognition failure due to local or global saturations & blooming. In this context, the image intensifier based solution is still attractive for the following reasons: 1) high gain and ultra-low dark current; 2) wide dynamic range and 3) ultra-low power consumption. With high electron gain and ultra low dark current of image intensifier, the only requirement on the silicon image pickup device are resolution, dynamic range and power consumption. In this paper, we present a SWAP intensified Wide Dynamic Range CMOS module for night vision applications, especially for I2/LWIR fusion. This module is based on a dedicated CMOS image sensor using solar-cell mode photodiode logarithmic pixel design which covers a huge dynamic range (> 140dB) without saturation and blooming. The ultra-wide dynamic range image from this new generation logarithmic sensor can be used directly without any image processing and provide an instant light accommodation. The complete module is slightly bigger than a simple ANVIS format I2 tube with <500mW power consumption.

  9. Strained SOI/SGOI dual-channel CMOS technology based on the Ge condensation technique

    NASA Astrophysics Data System (ADS)

    Tezuka, Tsutomu; Nakaharai, Shu; Moriyama, Yoshihiko; Hirashita, Norio; Toyoda, Eiji; Numata, Toshinori; Irisawa, Toshifumi; Usuda, Koji; Sugiyama, Naoharu; Mizuno, Tomohisa; Takagi, Shin-ichi

    2007-01-01

    Ge-rich strained SiGe-on-insulator (SGOI) pMOSFETs were fabricated by oxidizing strained SiGe layers on SOI substrates at high temperatures. It was found that strain was accumulated in the SGOI channels during this process, called Ge condensation, associated with the increase in the Ge fraction. Significant hole-mobility enhancements up to a factor of 10 were observed due to the high Ge fractions over 0.5 and large strain values over 1%. The SGOI pMOSFETs were also co-integrated with strained SOI nMOSFETs or ultra-thin SOI nMOSFETs to form dual-channel CMOS devices. The dual-channel structures were fabricated by conventional CMOS processes combined with the Ge condensation process and selective epitaxial growth processes. High hole mobility was observed in the SGOI pMOSFETs of the CMOS devices, whereas an enhancement or no degradation of electron mobility was observed in the strained or the unstrained SOI nMOSFETs. Based on the measured carrier mobility of the long-channel nMOSFETs and pMOSFETs, short-channel CMOS performance enhancement of around 30% was estimated.

  10. A 64 single photon avalanche diode array in 0.18 µm CMOS standard technology with versatile quenching circuit for quick prototyping

    NASA Astrophysics Data System (ADS)

    Uhring, Wilfried; Le Normand, Jean-Pierre; Zint, Virginie; Dumas, Norbert; Dadouche, Foudil; Malasse, Imane; Scholz, Jeremy

    2012-04-01

    Several works have demonstrated the successfully integration of Single-photon avalanche photodiodes (SPADs) operating in Geiger mode in a standard CMOS circuit for the last 10 years. These devices offer an exceptional temporal resolution as well as a very good optical sensitivity. Nevertheless, it is difficult to predict the expected performances of such a device. Indeed, for a similar structure of SPAD, some parameter values can differ by two orders of magnitude from a technology to another. We proposed here a procedure to identify in just one or two runs the optimal structure of SPAD available for a given technology. A circuit with an array of 64 SPAD has been realized in the Tower-Jazz 0.18 μm CMOS image sensor process. It encompasses an array of 8 different structures of SPAD reproduced in 8 diameters in the range from 5 μm up to 40 μm. According to the SPAD structures, efficient shallow trench insulator and/or P-Well guard ring are used for preventing edge breakdown. Low dark count rate of about 100 Hz are expected thanks to the use of buried n-well layer and a high resistivity substrate. Each photodiode is embedded in a pixel which includes a versatile quenching circuitry and an analog output of its cathode voltage. The quenching system is configurable in four operation modes; the SPAD is disabled, the quenching is completely passive, the reset of the photodiode is active and the quenching is fully active. The architecture of the array makes possible the characterization of every single photodiode individually. The parameters to be measured for a SPAD are the breakdown avalanche voltage, the dark count rate, the dead time, the timing jitter, the photon detection probability and the after-pulsing rate.

  11. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  12. A CMOS active pixel sensor for retinal stimulation

    NASA Astrophysics Data System (ADS)

    Prydderch, Mark L.; French, Marcus J.; Mathieson, Keith; Adams, Christopher; Gunning, Deborah; Laudanski, Jonathan; Morrison, James D.; Moodie, Alan R.; Sinclair, James

    2006-02-01

    Degenerative photoreceptor diseases, such as age-related macular degeneration and retinitis pigmentosa, are the most common causes of blindness in the western world. A potential cure is to use a microelectronic retinal prosthesis to provide electrical stimulation to the remaining healthy retinal cells. We describe a prototype CMOS Active Pixel Sensor capable of detecting a visual scene and translating it into a train of electrical pulses for stimulation of the retina. The sensor consists of a 10 x 10 array of 100 micron square pixels fabricated on a 0.35 micron CMOS process. Light incident upon each pixel is converted into output current pulse trains with a frequency related to the light intensity. These outputs are connected to a biocompatible microelectrode array for contact to the retinal cells. The flexible design allows experimentation with signal amplitudes and frequencies in order to determine the most appropriate stimulus for the retina. Neural processing in the retina can be studied by using the sensor in conjunction with a Field Programmable Gate Array (FPGA) programmed to behave as a neural network. The sensor has been integrated into a test system designed for studying retinal response. We present the most recent results obtained from this sensor.

  13. 3D integration of sub-surface photonics with CMOS

    NASA Astrophysics Data System (ADS)

    Jalali, Bahram; Indukuri, Tejaswi; Koonath, Prakash

    2006-02-01

    The integration of photonics and electronics on a single silicon substrate requires technologies that can add optical functionalities without significantly sacrificing valuable wafer area. To this end, we have developed an innovative fabrication process, called SIMOX 3-D Sculpting, that enables monolithic optoelectronic integration in a manner that does not compromise the economics of CMOS manufacturing. In this technique, photonic devices are realized in subsurface silicon layers that are separated from the surface silicon layer by an intervening SiO II layer. The surface silicon layer may then be utilized for electronic circuitry. SIMOX 3-D sculpting involves (1) the implantation of oxygen ions into a patterned silicon substrate followed by (2) high temperature anneal to create buried waveguide-based photonic devices. This process has produced subterranean microresonators with unloaded quality factors of 8000 and extinction ratios >20dB. On the surface silicon layers, MOS transistor structures have been fabricated. The small cross-sectional area of the waveguides lends itself to the realization of nonlinear optical devices. We have previously demonstrated spectral broadening and continuum generation in silicon waveguides utilizing Kerr optical nonlinearity. This may be combined with microresonator filters for on-chip supercontiuum generation and spectral carving. The monolithic integration of CMOS circuits and optical modulators with such multi-wavelength sources represent an exciting avenue for silicon photonics.

  14. Amorphous selenium direct detection CMOS digital x-ray imager with 25 micron pixel pitch

    NASA Astrophysics Data System (ADS)

    Scott, Christopher C.; Abbaszadeh, Shiva; Ghanbarzadeh, Sina; Allan, Gary; Farrier, Michael; Cunningham, Ian A.; Karim, Karim S.

    2014-03-01

    We have developed a high resolution amorphous selenium (a-Se) direct detection imager using a large-area compatible back-end fabrication process on top of a CMOS active pixel sensor having 25 micron pixel pitch. Integration of a-Se with CMOS technology requires overcoming CMOS/a-Se interfacial strain, which initiates nucleation of crystalline selenium and results in high detector dark currents. A CMOS-compatible polyimide buffer layer was used to planarize the backplane and provide a low stress and thermally stable surface for a-Se. The buffer layer inhibits crystallization and provides detector stability that is not only a performance factor but also critical for favorable long term cost-benefit considerations in the application of CMOS digital x-ray imagers in medical practice. The detector structure is comprised of a polyimide (PI) buffer layer, the a-Se layer, and a gold (Au) top electrode. The PI layer is applied by spin-coating and is patterned using dry etching to open the backplane bond pads for wire bonding. Thermal evaporation is used to deposit the a-Se and Au layers, and the detector is operated in hole collection mode (i.e. a positive bias on the Au top electrode). High resolution a-Se diagnostic systems typically use 70 to 100 μm pixel pitch and have a pre-sampling modulation transfer function (MTF) that is significantly limited by the pixel aperture. Our results confirm that, for a densely integrated 25 μm pixel pitch CMOS array, the MTF approaches the fundamental material limit, i.e. where the MTF begins to be limited by the a-Se material properties and not the pixel aperture. Preliminary images demonstrating high spatial resolution have been obtained from a frst prototype imager.

  15. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor

    PubMed Central

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly measures humidity in % RH. PMID:26184204

  16. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.

    PubMed

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly measures humidity in % RH. PMID:26184204

  17. Design and fabrication of a CMOS-compatible MHP gas sensor

    SciTech Connect

    Li, Ying; Yu, Jun Wu, Hao; Tang, Zhenan

    2014-03-15

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ∼19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.

  18. CMOS-TDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten

    2014-10-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.

  19. W-CMOS blanking device for projection multibeam lithography

    NASA Astrophysics Data System (ADS)

    Jurisch, Michael; Irmscher, Mathias; Letzkus, Florian; Eder-Kapl, Stefan; Klein, Christof; Loeschner, Hans; Piller, Walter; Platzgummer, Elmar

    2010-05-01

    As the designs of future mask nodes become more and more complex the corresponding pattern writing times will rise significantly when using single beam writing tools. Projection multi-beam lithography [1] is one promising technology to enhance the throughput compared to state of the art VSB pattern generators. One key component of the projection multi-beam tool is an Aperture Plate System (APS) to form and switch thousands of individual beamlets. In our present setup a highly parallel beam is divided into 43,008 individual beamlets by a Siaperture- plate. These micrometer sized beams pass through larger openings in a blanking-plate and are individually switched on and off by applying a voltage to blanking-electrodes which are placed around the blanking-plate openings. A charged particle 200x reduction optics demagnifies the beamlet array to the substrate. The switched off beams are filtered out in the projection optics so that only the beams which are unaffected by the blanking-plate are projected to the substrate with 200x reduction. The blanking-plate is basically a CMOS device for handling the writing data. In our work the blanking-electrodes are fabricated using CMOS compatible add on processes like SiO2-etching or metal deposition and structuring. A new approach is the implementation of buried tungsten electrodes for beam blanking.

  20. High-stage analog accumulator for TDI CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Jianxin, Li; Fujun, Huang; Yong, Zong; Jing, Gao

    2016-02-01

    The impact of the parasitic phenomenon on the performance of the analog accumulator in TDI CMOS image sensor is analyzed and resolved. A 128-stage optimized accumulator based on 0.18-μm one-poly four-metal 3.3 V CMOS technology is designed and simulated. A charge injection effect from the top plate sampling is employed to compensate the un-eliminated parasitics based on the accumulator with a decoupling switch, and then a calibration circuit is designed to restrain the mismatch and Process, Voltage and Temperature (PVT) variations. The post layout simulation indicates that the improved SNR of the accumulator upgrades from 17.835 to 21.067 dB, while an ideal value is 21.072 dB. In addition, the linearity of the accumulator is 99.62%. The simulation results of two extreme cases and Monte Carlo show that the mismatch and PVT variations are restrained by the calibration circuit. Furthermore, it is promising to design a higher stage accumulator based on the proposed structure. Project supported by the National Natural Science Foundation of China (Nos. 61404090, 61434004).

  1. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  2. CMOS-compatible active thermopiles for noise-added theory

    NASA Astrophysics Data System (ADS)

    Shen, Chih-Hsiung; Hou, Kuan-Chou

    2004-05-01

    Recently a novel signal processing theory related with noise has grown and proven. Certain complex systems can improve performance with added optimal noise that classical theory cannot explain. Their behavior may be represented by a simplified scheme that combines both a deterministic and stochastic source. To that end, we are using noise in remote temperature sensing system to enhance their function without altering the system. A new investigation of noise added scheme has been realized by an embedded heater for CMOS compatible thermoelectric infrared sensor. The design and fabrication of thermopile sensors are realized by using 1.2μm CMOS IC technology combined with a subsequent anisotropic front-side etching. We firstly develop an active thermopile with a heater embedded which is easily and naturally driven by a noise generation circuit. The stochastic resonance theory can be realized as a reduction in threshold of temperature detection. We have shown the possibility of improving the performance of remote temperature sensing system in the presence of noise. The strategy depends on the application. Stochastic resonance can reduce threshold detection resolution and greatly improve the temperature detection limit with a low cost scheme without using higher resolution ADC.

  3. Planarization for the integration of CMOS and micromirror arrays

    NASA Astrophysics Data System (ADS)

    Zheng, Yun; Dutta, Mitra B.; Kotecki, Carl A.; Zincke, Christian A.

    2002-07-01

    A large format individually addressable Micro-Mirror-Array (MMA) has been developed at NASA, GSFC for possible application in the Next Generation Space Telescope (NGST). The 100micron X100micron aluminum micro-mirrors are built on top of CMOS driven address and driver circuit for individual addressing. The high voltage CMOS fabrication process produces about 2.8microns surface roughness on the silicon wafer. The wafer surface is planarized before integration of the MMA. Three different planarization materials were evaluated; polyimide, spin-on glass and BCB. BCB showed the best results for our application. A single layer of BCB coating reduced the surface topology from 2.8micron to less than 1,700Angstroms and two layers of BCB coating reduced the surface topology to about 600Angstroms. Since the MMA has to operate at 30K for the NGST application, a wafer coated with cured BCB was dunk tested in liquid nitrogen at 77K and no cracks were found after thermal cycling. For specific application in NGST, the optical reflectance of BCB was measured at 40K over 1-5micron wavelength range and the results showed that BCB could absorb 30-40 percent of infrared light over this range. Details of coating, curing and etching properties of BCB are discussed along with its low temperature optical properties.

  4. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-01-01

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA. PMID:25230305

  5. Single donor electronics and quantum functionalities with advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Jehl, Xavier; Niquet, Yann-Michel; Sanquer, Marc

    2016-03-01

    Recent progresses in quantum dots technology allow fundamental studies of single donors in various semiconductor nanostructures. For the prospect of applications figures of merits such as scalability, tunability, and operation at relatively large temperature are of prime importance. Beyond the case of actual dopant atoms in a host crystal, similar arguments hold for small enough quantum dots which behave as artificial atoms, for instance for single spin control and manipulation. In this context, this experimental review focuses on the silicon-on-insulator devices produced within microelectronics facilities with only very minor modifications to the current industrial CMOS process and tools. This is required for scalability and enabled by shallow trench or mesa isolation. It also paves the way for real integration with conventional circuits, as illustrated by a nanoscale device coupled to a CMOS circuit producing a radio-frequency drive on-chip. At the device level we emphasize the central role of electrostatics in etched silicon nanowire transistors, which allows to understand the characteristics in the full range from zero to room temperature.

  6. Single donor electronics and quantum functionalities with advanced CMOS technology.

    PubMed

    Jehl, Xavier; Niquet, Yann-Michel; Sanquer, Marc

    2016-03-16

    Recent progresses in quantum dots technology allow fundamental studies of single donors in various semiconductor nanostructures. For the prospect of applications figures of merits such as scalability, tunability, and operation at relatively large temperature are of prime importance. Beyond the case of actual dopant atoms in a host crystal, similar arguments hold for small enough quantum dots which behave as artificial atoms, for instance for single spin control and manipulation. In this context, this experimental review focuses on the silicon-on-insulator devices produced within microelectronics facilities with only very minor modifications to the current industrial CMOS process and tools. This is required for scalability and enabled by shallow trench or mesa isolation. It also paves the way for real integration with conventional circuits, as illustrated by a nanoscale device coupled to a CMOS circuit producing a radio-frequency drive on-chip. At the device level we emphasize the central role of electrostatics in etched silicon nanowire transistors, which allows to understand the characteristics in the full range from zero to room temperature. PMID:26871255

  7. A CMOS Smart Temperature and Humidity Sensor with Combined Readout

    PubMed Central

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-01-01

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 μA. PMID:25230305

  8. Development of a low power Delay-Locked Loop in two 130 nm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2016-02-01

    The design and measurement results of two low power DLL prototypes for applications in particle physics readout systems are presented. The DLLs were fabricated in two different 130 nm CMOS technologies, called process A and process B, giving the opportunity to compare these two CMOS processes. Both circuits generate 64 uniform clock phases and operate at similar frequency range, from 20 MHz up to 60 MHz (10 MHz - 90 MHz in process B). The period jitter of both DLLs is in the range 2.5 ps - 12.1 ps (RMS) and depends on the selected output phase. The complete DLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption of around 0.7 mW at typical 40 MHz input. The DLL prototype, designed in process A, occupies 680 μm × 210 μm, while the same circuit designed in process B occupies 430 μm × 190 μm.

  9. Evaluation of a CMOS image detector for low-cost and power medical x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Scott T.; Bednarek, Daniel R.; Wobschall, Darold C.; Jeong, Myoungki; Kim, Hyunkeun; Rudin, Stephen

    1999-05-01

    Recent developments in CMOS image detectors are changing the way digital imaging is performed for many applications. The replacement of charge coupled devices (CCDs), with CMOS detectors is a desirable paradigm shift that will depend on the ability to match the high performance characteristics of CCDs. Digital X-ray imaging applications (chest X-ray, mammography) would benefit greatly from this shift because CMOS detectors have the following inherent characteristics: (1) Low operating power (5 - 10 times lower than CCD/processing electronics). (2) Standard CMOS manufacturing process (CCD requires special manufacturing). (3) On-chip integration of analog/digital processing functions (difficult with CCD). (4) Low Cost (5 - 10 times lower cost than CCD). The achievement of both low cost and low power is highly desirable for portable applications as well as situations where large, expensive X-ray imaging machines are not feasible (small hospitals and clinics, emergency medical vehicles, remote sites). Achieving this goal using commercially available components would allow rapid development of such digital X-ray systems as compared with the development difficulties incurred through specialized direct detectors and systems. The focus of this paper is to evaluate a CMOS image detector for medical X-ray applications and to demonstrate the results obtained from a prototype CMOS digital X-ray camera. Results from the images collected from this optically-coupled camera are presented for a particular lens, X-ray conversion screen, and demagnification factor. Further, an overview of the overall power consumption and cost of a multi-sensor CMOS mosaic compared to its CCD counterpart are also reported.

  10. GaAs heteroepitaxy with submicron Si CMOS: an experimental compatibility study

    NASA Astrophysics Data System (ADS)

    Hornak, Lawrence A.; Tewksbury, Stuart K.; Nariman, Homi E.

    1993-07-01

    Routine use of optical interconnections in MCM based computing systems ideally favors monolithic integration to achieve both high density and manufacturability. The central issue facing this monolithic evolutionary path is the compatibility of both III-V semiconductor growth and subsequent optoelectronic device and passive optical interconnection processing with existing and future generations of CMOS and advanced packaging technology. The influence of GaAs heteroepitaxy and device processing on submicron CMOS is the subject of an ongoing program seeking to experimentally determine compatibility conflicts and through understanding of their physical mechanisms identify directions for achieving GaAs heteroepitaxy compatibility with future CMOS generations. Following a brief review of GaAs heteroepitaxy compatibility concerns, preliminary results from the current experimental program exploring the influence of both thermally simulated and actual GaAs heteroepitaxy on commercial 0.9 micrometers (0.6 micrometers minimum channel length) CMOS are presented including parametric device modeling, interface state, and hot electron measurements of experimental test lot devices.

  11. High-performance VGA-resolution digital color CMOS imager

    NASA Astrophysics Data System (ADS)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be suitable for a variety of color imaging applications including still/full motion imaging, security/surveillance, and teleconferencing/multimedia among other high performance, cost sensitive, low power consumer applications.

  12. Cmos spdt switch for wlan applications

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. S.; Reaz, M. B. I.; Rahman, L. F.; Minhad, K. N.

    2015-04-01

    WLAN has become an essential part of our today's life. The advancement of CMOS technology let the researchers contribute low power, size and cost effective WLAN devices. This paper proposes a single pole double through transmit/receive (T/R) switch for WLAN applications in 0.13 μm CMOS technology. The proposed switch exhibit 1.36 dB insertion loss, 25.3 dB isolation and 24.3 dBm power handling capacity. Moreover, it only dissipates 786.7 nW power per cycle. The switch utilizes only transistor aspect ratio optimization and resistive body floating technique to achieve such desired performance. In this design the use of bulky inductor and capacitor is avoided to evade imposition of unwanted nonlinearities to the communication signal.

  13. Using diode-stacked NMOS as high voltage tolerant ESD protection device for analog applications in deep submicron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hui; Fang, Yean-Kuen; Wang, Wen-De; Tsai, Chien-Chun; Tu, Shen; Chen, Mark K. L.; Chang, Mi-Chang

    2003-05-01

    A new high voltage tolerant (HVT) electro-static discharge (ESD) design adopts one forward biased P+/N-well diode in series of one stacked NMOS, called the diode-stacked NMOS, is proposed to reduce the total capacitance and maintain the high ESD performance. The device has been implemented in 0.18 ?m CMOS logic technologies and finds the measured human body model and machine-model ESD levels of the HVT pin exceed 6 kV and 550 V, respectively, while the measured input capacitance is only 250 fF.

  14. Low-Power CMOS Digital Autocorrelator Spectrometer

    NASA Technical Reports Server (NTRS)

    Chandra, Kumar M.; Wilson, William J.

    1994-01-01

    Prototype digital autocorrelator spectrometer circuit designed and built as assembly of few very-large-scale integrated (VLSI) complementary metal oxide/semiconductor (CMOS) circuit chips. Spectrometer contains 128 frequency channels and operates at clock rate of as much as 40 MHz. Total dc power needed is only 6 W. Digital autocorrelator spectrometer consists of four 32-channel autocorrelator chips that collectively produce 128-point spectrum of input signal as computed by use of Fourier transform.

  15. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  16. Radiation effects on scientific CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Yuanfu, Zhao; Liyan, Liu; Xiaohui, Liu; Xiaofeng, Jin; Xiang, Li

    2015-11-01

    A systemic solution for radiation hardened design is presented. Besides, a series of experiments have been carried out on the samples, and then the photoelectric response characteristic and spectral characteristic before and after the experiments have been comprehensively analyzed. The performance of the CMOS image sensor with the radiation hardened design technique realized total-dose resilience up to 300 krad(Si) and resilience to single-event latch up for LET up to 110 MeV·cm2/mg.

  17. CMOS-controlled rapidly tunable photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Ray

    With rapidly increasing data bandwidth demands, wavelength-division-multiplexing (WDM) optical access networks seem unavoidable in the near future. To operate WDM optical networks in an efficient scheme, wavelength reconfigurability and scalability of the network are crucial. Unfortunately, most of the existing wavelength tunable technologies are neither rapidly tunable nor spectrally programmable. This dissertation presents a tunable photodetector that is designed for dynamic-wavelength allocation WDM network environments. The wavelength tuning mechanism is completely different from existing technologies. The spectrum of this detector is programmable through low-voltage digital patterns. Since the wavelength selection is achieved by electronic means, the device wavelength reconfiguration time is as fast as the electronic switching time. In this dissertation work, we have demonstrated a tunable detector that is hybridly integrated with its customized CMOS driver and receiver with nanosecond wavelength reconfiguration time. In addition to its nanosecond wavelength reconfiguration time, the spectrum of this detector is digitally programmable, which means that it can adapt to system changes without re-fabrication. We have theoretically developed and experimentally demonstrated two device operating algorithms based on the same orthogonal device-optics basis. Both the rapid wavelength tuning time and the scalability make this novel device very viable for new reconfigurable WDM networks. By taking advantage of CMOS circuit design, this detector concept can be further extended for simultaneous multiple wavelength detection. We have developed one possible chip architecture and have designed a CMOS tunable optical demux for simultaneous controllable two-wavelength detection.

  18. Design and Fabrication of High-Efficiency CMOS/CCD Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the device silicon layer during micro-fabrication.

  19. Behavior of faulty double BJT BiCMOS logic gates

    NASA Technical Reports Server (NTRS)

    Menon, Sankaran M.; Malaiya, Yashwant K.; Jayasumana, Anura P.

    1992-01-01

    Logic Behavior of a Double BJT BiCMOS device under transistor level shorts and opens is examined. In addition to delay faults, faults that cause the gate to exhibit sequential behavior were observed. Several faults can be detected only by monitoring the current. The faulty behavior of Bipolar (TTL) and CMOS logic families is compared with BiCMOS, to bring out the testability differences.

  20. A CMOS frequency generation module for 60-GHz applications

    NASA Astrophysics Data System (ADS)

    Chunyuan, Zhou; Lei, Zhang; Hongrui, Wang; He, Qian

    2012-08-01

    A frequency generation module for 60-GHz transceivers and phased array systems is presented in this paper. It is composed of a divide-by-2 current mode logic divider (CML) and a doubler in push-push configuration. Benefiting from the CML structure and push-push configuration, the proposed frequency generation module has a wide operating frequency range to cover process, voltage, and temperature variation. It is implemented in a 90-nm CMOS process, and occupies a chip area of 0.64 × 0.65 mm2 including pads. The measurement results show that the designed frequency generation module functions properly with input frequency over 15 GHz to 25 GHz. The whole chip dissipates 12.1 mW from a 1.2-V supply excluding the output buffers.

  1. A radiation hardened SONOS/CMOS EEPROM family

    NASA Astrophysics Data System (ADS)

    Klein, V. F.; Wood, G. M.; Buller, J. F.; Murray, J. R.; Rodriquez, J. L.

    1990-07-01

    There has long been a need for fast read nonvolatile, rad hard memories for military and space applications. Recent advances in Electrically Erasably Programmable Read Only Memory (EEPROM) technology now allow this need to be met for many applications. Harris/Sandia have developed a 16k and a 256k rad hard EEPROM. The EEPROMs utilize a Silicon Oxide Nitride Oxide Silicon (SONOS) memory transistor integrated into a 2 microns rad hard two level metal CMOS process. Both the 16k and the 256k parts were designed to interface with the Intel 8085 or 80C51 and National 32000 series microprocessors and feature page and block clear modes. Both parts are functionally identical, and are produced by the same fabrication process. They are also pin for pin compatible with each other, except for the extra address and ground pins on the 256k. The characteristics of this EEPROM family are described.

  2. Envelope tracking CMOS power amplifier with high-speed CMOS envelope amplifier for mobile handsets

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Sakai, Yasufumi; Oishi, Kazuaki; Yamazaki, Hiroshi; Mori, Toshihiko; Yamaura, Shinji; Suto, Kazuo; Tanaka, Tetsu

    2014-01-01

    A high-efficiency CMOS power amplifier (PA) based on envelope tracking (ET) has been reported for a wideband code division multiple access (W-CDMA) and long term evolution (LTE) application. By adopting a high-speed CMOS envelope amplifier with current direction sensing, a 5% improvement in total power-added efficiency (PAE) and a 11 dB decrease in adjacent channel leakage ratio (ACLR) are achieved with a W-CDMA signal. Moreover, the proposed PA achieves a PAE of 25.4% for a 10 MHz LTE signal at an output power (Pout) of 25.6 dBm and a gain of 24 dB.

  3. A CMOS-MEMS arrayed resonant-gate field effect transistor (RGFET) oscillator

    NASA Astrophysics Data System (ADS)

    Chin, Chi-Hang; Li, Ming-Huang; Chen, Chao-Yu; Wang, Yu-Lin; Li, Sheng-Shian

    2015-11-01

    A high-frequency CMOS-MEMS arrayed resonant-gate field effect transistor (RGFET) fabricated by a standard 0.35 μm 2-poly-4-metal CMOS-MEMS platform is implemented to enable a Pierce-type oscillator. The proposed arrayed RGFET exhibits low motional impedance of only 5 kΩ under a purely capacitive transduction and decent power handling capability. With such features, the implemented oscillator shows impressive phase noise of  -117 dBc Hz-1 at the far-from-carrier offset (1 MHz). In this work, we design a clamped-clamped beam (CCB) arrayed resonator utilizing a high-velocity mechanical coupling scheme to serve as the resonant-gate array. To achieve a functional arrayed RGFET, a corresponding FET array is directly placed underneath the resonant gate array to convert the motional current on the resonant-gate array into a voltage output with a tunable transconductance gain. To understand the behavior of the proposed device, an equivalent circuit model consisting of the resonant unit and FET is also provided. To verify the effects of the post-CMOS process on device performance, a conventional MOS I D current measurement is carried out. Finally, a CMOS-MEMS arrayed RGFET oscillator is realized by utilizing a Pierce oscillator architecture, showing decent phase noise performance that benefits from the array design to alleviate the nonlinear effect of the resonant gate.

  4. INVITED PAPER: Electromagnetic design methods in systems-on-chip: integrated filters for wireless CMOS RFICs

    NASA Astrophysics Data System (ADS)

    Contopanagos, Harry

    2005-01-01

    We present general methods for designing on-chip CMOS passives and utilizing these integrated elements to design on-chip CMOS filters for wireless communications. These methods rely on full-wave electromagnetic numerical calculations that capture all the physics of the underlying foundry technologies. This is especially crucial for deep sub-micron CMOS technologies as it is important to capture the physical effects of finite (and mediocre) Q-factors limited by material losses and constraints on expensive die area, low self-resonance frequencies and dual parasitics that are particularly prevalent in deep sub-micron CMOS processes (65 nm-0.18 μm. We use these integrated elements in an ideal synthesis of a Bluetooth/WLAN pass-band filter in single-ended or differential architectures, and show the significant deviations of the on-chip filter response from the ideal one. We identify which elements in the filter circuit need to maximize their Q-factors and which Q-factors do not affect the filter performance. This saves die area, and predicts the FET parameters (especially transconductances) and negative-resistance FET topologies that have to be integrated in the filter to restore its performance.

  5. Wide Range CMOS Voltage Detector with Low Current Consumption and Low Temperature Variation

    NASA Astrophysics Data System (ADS)

    Takakubo, Kawori; Takakubo, Hajime

    A wide range CMOS voltage detector with low current consumption consisting of CMOS inverters operating in both weak inversion and saturation region is proposed. A terminal of power supply for CMOS inverter can be expanded to a signal input terminal. A voltage-detection point and hysteresis characteristics of the proposed circuit can be designed by geometrical factor in MOSFET and an external bias voltage. The core circuit elements are fabricated in standard 0.18µm CMOS process and measured to confirm the operation. The detectable voltage is from 0.3V to 1.8V. The current consumption of voltage detection, standby current, is changed from 65pA for Vin =0.3V to 5.5µA for Vin =1.8V. The thermal characteristics from 250K to 400K are also considered. The measured temperature coefficient of the proposed voltage-detector core operating in weak inversion region is 4ppm/K and that in saturation region is 10ppm/K. The proposed voltage detector can be implemented with tiny chip area and is expected to an on-chip voltage detector of power supply for mobile application systems.

  6. Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 μm technology

    NASA Astrophysics Data System (ADS)

    Pellion, D.; Jradi, K.; Brochard, N.; Prêle, D.; Ginhac, D.

    2015-07-01

    Some decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 μm CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm2) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters1

  7. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    PubMed

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented. PMID:27104122

  8. CMOS VCSEL driver circuit for 25+Gbps/channel short-reach parallel optical links

    NASA Astrophysics Data System (ADS)

    Shibata, Masumi

    This thesis proposes a new CMOS driver for Vertical Cavity Surface Emitting LASER (VCSEL) diode arrays. A VCSEL is a promising light source for optical communication. However, its threshold voltage (1.5V for a 850-nm VCSEL) exceeds the rated supply voltage of nanoscale CMOS technologies. This makes difficult designing a driver sourcing a modulated current to a VCSELs anode directly, an arrangement suitable for low-cost parallel optical links. To overcome this problem, a combination of analog circuit techniques is proposed including a novel pad shield driving technique. A prototype fabricated in a 65-nm CMOS technology achieved 26-Gb/s bit-rate and 1.80-pJ/b power efficiency with an optical modulation amplitude (OMA) of +1.8dBm and 3.1ps-rms jitter when driving a 850-nm 14Gb/s commercial VCSEL. This is the highest-speed anode-driving CMOS VCSEL driver reported to date. Also it has the best power efficiency and the smallest area (0:024 mm2) amongst anode-driving drivers in any process technology.

  9. X-ray characterization of CMOS imaging detector with high resolution for fluoroscopic imaging application

    NASA Astrophysics Data System (ADS)

    Cha, Bo Kyung; Kim, Cho Rong; Jeon, Seongchae; Kim, Ryun Kyung; Seo, Chang-Woo; Yang, Keedong; Heo, Duchang; Lee, Tae-Bum; Shin, Min-Seok; Kim, Jong-Boo; Kwon, Oh-Kyung

    2013-12-01

    This paper introduces complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS)-based X-ray imaging detectors with high spatial resolution for medical imaging application. In this study, our proposed X-ray CMOS imaging sensor has been fabricated by using a 0.35 μm 1 Poly 4 Metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 24×96 pixels, which provide a field-of-view (FOV) of 9.6 mm×2.4 mm. The 14.3-bit extend counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. Both thallium-doped CsI (CsI:Tl) and Gd2O2S:Tb scintillator screens were used as converters for incident X-rays to visible light photons. The optical property and X-ray imaging characterization such as X-ray to light response as a function of incident X-ray exposure dose, spatial resolution and X-ray images of objects were measured under different X-ray energy conditions. The measured results suggest that our developed CMOS-based X-ray imaging detector has the potential for fluoroscopic imaging and cone-beam computed tomography (CBCT) imaging applications.

  10. Electroabsorption modulators for CMOS compatible optical interconnects in III-V and group IV materials

    NASA Astrophysics Data System (ADS)

    Roth, Jonathan Edgar

    While electrical systems excel at information processing, photonics is useful in systems for high-bandwidth, low-loss signal transmission. As photonics technology has become increasingly widespread and has been deployed at shorter distance scales than traditional long-haul networks, it has become important to efficiently integrate photonics components with electrical integrated circuits. Optoelectronic modulators used as transmitters are an important class of device for use in optical interconnects. Many optoelectronic modulator designs use waveguides. Coupling light into waveguides requires a difficult alignment step. This dissertation will describe a number of optoelectronic modulators that do not have the tight alignment constraints associated with waveguide-based modulators. The eased alignment constraints may be important for the practical manufacturing and packaging of systems using optical interconnects. Most currently deployed photonics technologies also use substrates other than silicon and materials incompatible with CMOS manufacturing. Recently we discovered a strong quantum-confined Stark effect in Ge/SiGe quantum well structures that can be used to create efficient optoelectronic modulators on silicon substrates. Optoelectronic modulators using this technology can be fabricated with conventional CMOS foundry processes, possibly on the same chips as CMOS circuits. In this dissertation, an optical interconnect operating in the C-band will be presented. We believe this is the first such device employing an optical transmitter flip-chip bonded to silicon CMOS. A number of novel modulators will be presented, which are fabricated on silicon substrates, and employ Ge/SiGe quantum well structures. These modulators include a novel architecture known as the side-entry modulator, which is designed for monolithic integration with electronics. One side-entry modulator achieved over 3 dB of contrast in the telecommunications C-band for a voltage swing of 1V. Such a device is compatible with both the voltage swing of modern CMOS circuits, and long-distance telecommunications technologies including low-loss optical fiber and erbium-doped fiber amplifiers.

  11. A complementary MOS process

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D.

    1977-01-01

    The complete sequence used to manufacture complementary metal oxide semiconductor (CMOS) integrated circuits is described. The fixed-gate array concept is presented as a means of obtaining CMOS integrated circuits in a fast and reliable fashion. Examples of CMOS circuits fabricated by both the conventional method and the fixed-gate array method are included. The electrical parameter specifications and characteristics are given along with typical values used to produce CMOS circuits. Temperature-bias stressing data illustrating the thermal stability of devices manufactured by this process are presented. Results of a preliminary study on the radiation sensitivity of circuits manufactured by this process are discussed. Some process modifications are given which have improved the radiation hardness of our CMOS devices. A formula description of the chemicals and gases along with the gas flow rates is also included.

  12. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    PubMed Central

    Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884

  13. Radiation Hardening of CMOS Microelectronics

    NASA Astrophysics Data System (ADS)

    McCarthy, A.; Sigmon, T. W.

    2000-02-01

    A unique methodology, silicon transfer to arbitrary substrates, has been developed under this program and is being investigated as a technique for significantly increasing the radiation insensitivity of limited quantities of conventional silicon microelectronic circuits. In this approach, removal of the that part of the silicon substrate not required for circuit operation is carried out, following completion of the circuit fabrication process. This post-processing technique is therefore applicable to state-of-the-art ICs, effectively bypassing the 3-generation technology/performance gap presently separating today's electronics from available radiation-hard electronics. Also, of prime concern are the cost savings that result by eliminating the requirement for costly redesign of commercial circuits for Rad-hard applications. Successful deployment of this technology will result in a major impact on the radiation hard electronics community in circuit functionality, design and software availability and fabrication costs.

  14. Ultra low power CMOS technology

    NASA Technical Reports Server (NTRS)

    Burr, J.; Peterson, A.

    1991-01-01

    This paper discusses the motivation, opportunities, and problems associated with implementing digital logic at very low voltages, including the challenge of making use of the available real estate in 3D multichip modules, energy requirements of very large neural networks, energy optimization metrics and their impact on system design, modeling problems, circuit design constraints, possible fabrication process modifications to improve performance, and barriers to practical implementation.

  15. Novel CMOS electron imaging sensor

    NASA Astrophysics Data System (ADS)

    Finkelstein, Hod; Ginosar, Ran

    1998-09-01

    Electron detector arrays are employed in numerous imaging applications, from low-light-light-level imaging to astronomy, electron microscopy, and nuclear instrumentation. The majority of these detectors are fabricated with dedicated processes, use the semiconductor as a stopping and detecting layer, and utilize CCD-type charge transfer and detection. We present a new detector, wherein electrons are stopped by an exposed metal layer, and are subsequently detected either through charge collection in a CCD-type well, or by a measurement of a potential drop across a capacitor which is discharged by these electrons. Spatial localization is achieved by use of two metal planes, one for protecting the underlying gate structures, and another, with metal pixel structures, for 2D detection. The new device does not suffer from semiconductor non-uniformities, and blooming effects are minimized. It is effective for electrons with energies of 2-6 keV. The unique structure makes it possible to achieve a high fill factor, and to incorporate on-chip processing. An imaging chip implementing several test structures incorporating the new detector has been fabricated using a 2 micron double-poly double-metal process, and tested inside a JEOL 640 electron microscope.

  16. A new visible watermarking technique applied to CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Yu, Pingping; Shang, Yan; Li, Chunming

    2013-10-01

    This paper presents a new visible watermarking solution for CMOS image sensor which can enhance secure features of captured images. Visible watermarks are embedded in the Bayer format image data and can be transferred by the subsequent interpolation process. A piecewise function is setup based on the gray scale resolution characteristics of human eyes. Watermark stretch factor can be adaptively chosen according to the gray value of the current pixel. The advantage of this algorithm is that the watermark has the same visibility in different image brightness region. A number of color images have been used to test the method. In order to check the robustness of watermarked images, we conducted adding noise and filtering experiments, results show that the visibility of watermark is also good after the experiments. The approach allows a digital watermark to be embedded in an image immediately upon its capture, before leaving the imaging chip.

  17. Design of a CMOS multi-mode GNSS receiver VCO

    NASA Astrophysics Data System (ADS)

    Qiang, Long; Yiqi, Zhuang; Yue, Yin; Zhenrong, Li

    2012-05-01

    A voltage-controlled oscillator (VCO) with dual stages of accumulation mode varactors for a multi-mode global navigation satellite system (GNSS) application, which adopts sigma-delta fractional-N technology in the synthesizer, is presented. The structure is selected to optimize the frequency coverage and tuning linearity, based on a general analysis of the parasitic capacitance in the coarse tuning switch bank cells, which cover the global positioning system (GPS) and Beidou (BD) bands. The VCO implemented in the 0.18 μm CMOS process can cover the GPS L1, BD B1, B2 and B3 bands with sufficient margin, and exhibits low phase noise by using this tuning curve linearization technique. The equalized Kvco characteristic behavior further offers a wide voltage tuning range and improves the stability of the closed loop.

  18. Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor

    PubMed Central

    Wang, Wei-Song; Kuo, Wei-Ting; Huang, Hong-Yi; Luo, Ching-Hsing

    2010-01-01

    Presented is a single-ended potentiostat topology with a new interface connection between sensor electrodes and potentiostat circuit to avoid deviation of cell voltage and linearly convert the cell current into voltage signal. Additionally, due to the increased harmonic distortion quantity when detecting low-level sensor current, the performance of potentiostat linearity which causes the detectable current and dynamic range to be limited is relatively decreased. Thus, to alleviate these irregularities, a fully-differential potentiostat is designed with a wide output voltage swing compared to single-ended potentiostat. Two proposed potentiostats were implemented using TSMC 0.18-μm CMOS process for biomedical application. Measurement results show that the fully differential potentiostat performs relatively better in terms of linearity when measuring current from 500 pA to 10 uA. Besides, the dynamic range value can reach a value of 86 dB. PMID:22294899

  19. Enabling Solutions for 28 nm CMOS Advanced Junction Formation

    NASA Astrophysics Data System (ADS)

    Li, C. I.; Kuo, P.; Lai, H. H.; Ma, K.; Liu, R.; Wu, H. H.; Chan, M.; Yang, C. L.; Wu, J. Y.; Guo, B. N.; Colombeau, B.; Thirumal, T.; Arevalo, E.; Toh, T.; Shim, K. H.; Sun, H. L.; Wu, T.; Lu, S.

    2011-01-01

    Controlling short channel effects for further scaled CMOS is required to take full advantage of the introduction of high K/metal gate or stress induced carrier mobility enhancement. Ultra-Shallow junction formation is necessary to minimize the short channel effects. In this paper, we will discuss the challenges for 28 nm Ultra-Shallow Junction formations in terms of figure of merits of Rs/Xj and junction leakage. We will demonstrate that by adopting and integrating Carborane (CBH, C2B10H12) molecular implant and Phosphorus along with co-implantation and PTC II (VSEA Process Temperature Control) technology, sub-32 nm pLDD and nLDD junction targets can be timely achieved using traditional anneals. Those damage engineering solutions can be readily implemented on state-of-the-art 28 nm device manufacturing.

  20. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  1. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  2. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  3. CMOS-compatible RF MEMS switch

    NASA Astrophysics Data System (ADS)

    Lakamraju, Narendra V.; Kim, Bruce; Phillips, Stephen M.

    2004-08-01

    Mobile technologies have relied on RF switches for a long time. Though the basic function of the switch has remained the same, the way they have been made has changed in the recent past. In the past few years work has been done to use MEMS technologies in designing and fabricating an RF switch that would in many ways replace the electronic and mechanical switches that have been used for so long. The work that is described here is an attempt to design and fabricate an RF MEMS switch that can handle higher RF power and have CMOS compatible operating voltages.

  4. Vertical Isolation for Photodiodes in CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  5. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and spectrally resolved without saturation. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting x-ray astronomy. These features include read noise, x-ray spectral response and quantum efficiency. Funding for this work has been provided in large part by NASA Grant NNX09AE86G and a grant from the Betty and Gordon Moore Foundation.

  6. Design of high speed camera based on CMOS technology

    NASA Astrophysics Data System (ADS)

    Park, Sei-Hun; An, Jun-Sick; Oh, Tae-Seok; Kim, Il-Hwan

    2007-12-01

    The capacity of a high speed camera in taking high speed images has been evaluated using CMOS image sensors. There are 2 types of image sensors, namely, CCD and CMOS sensors. CMOS sensor consumes less power than CCD sensor and can take images more rapidly. High speed camera with built-in CMOS sensor is widely used in vehicle crash tests and airbag controls, golf training aids, and in bullet direction measurement in the military. The High Speed Camera System made in this study has the following components: CMOS image sensor that can take about 500 frames per second at a resolution of 1280*1024; FPGA and DDR2 memory that control the image sensor and save images; Camera Link Module that transmits saved data to PC; and RS-422 communication function that enables control of the camera from a PC.

  7. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    NASA Astrophysics Data System (ADS)

    Esposito, M.; Anaxagoras, T.; Konstantinidis, A. C.; Zheng, Y.; Speller, R. D.; Evans, P. M.; Allinson, N. M.; Wells, K.

    2014-07-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, x-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications.

  8. A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device.

    PubMed

    Lee, Myung-Jae; Sun, Pengfei; Charbon, Edoardo

    2015-05-18

    This paper reports on the first implementation of a single-photon avalanche diode (SPAD) in standard silicon on insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. The SPAD is realized in a circular shape, and it is based on a P(+)/N-well junction along with a P-well guard-ring structure formed by lateral diffusion of two closely spaced N-well regions. The SPAD electric-field profile is analyzed by means of simulation to predict the breakdown voltage and the effectiveness of premature edge breakdown. Measurements confirm these predictions and also provide a complete characterization of the device, including current-voltage characteristics, dark count rate (DCR), photon detection probability (PDP), afterpulsing probability, and photon timing jitter. The SOI CMOS SPAD has a PDP above 25% at 490-nm wavelength and, thanks to built-in optical sensitivity enhancement mechanisms, it is as high as 7.7% at 850-nm wavelength. The DCR is 244 Hz/μm2, and the afterpulsing probability is less than 0.1% for a dead time longer than 200 ns. The SPAD exhibits a timing response without exponential tail and provides a remarkable timing jitter of 65 ps (FWHM). The new device is well suited to operate in backside illumination within complex three-dimensional (3D) integrated circuits, thus contributing to a great improvement of fill factor and jitter uniformity in large arrays. PMID:26074572

  9. Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project.

    NASA Astrophysics Data System (ADS)

    Huffman, B. T.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hoeferkamp, M.; Hommels, L. B. A.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, J.; Liang, Z.; Mandić, I.; Maneuski, D.; Martinez-Mckinney, F.; McMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2016-02-01

    The LHC luminosity upgrade, known as the High Luminosity LHC (HL-LHC), will require the replacement of the existing silicon strip tracker and the transistion radiation tracker. Although a baseline design for this tracker exists the ATLAS collaboration and other non-ATLAS groups are exploring the feasibility of using CMOS Monolithic Active Pixel Sensors (MAPS) which would be arranged in a strip-like fashion and would take advantage of the service and support structure already being developed for the upgrade. Two test devices made with the AMS H35 process (a High voltage or HV CMOS process) have been subjected to various radiation environments and have performed well. The results of these tests are presented in this paper.

  10. Design of a Tunable All-Digital UWB Pulse Generator CMOS Chip for Wireless Endoscope.

    PubMed

    Chul Kim; Nooshabadi, S

    2010-04-01

    A novel tunable all-digital, ultrawideband pulse generator (PG) has been implemented in a standard 0.18-¿ m complementary metal-oxide semiconductor (CMOS) process for implantable medical applications. The chip shows that an ultra-low dynamic energy consumption of 27 pJ per pulse without static current flow at a 200-MHz pulse repetition frequency (PRF) with a 1.8-V power supply and low area of 90 × 50 ¿m(2). The PG generates tunable pulsewidth, amplitude, and transmit (Tx) power by using simple circuitry, through precise timing control of the H-bridge output stage. The all-digital architecture allows easy integration into a standard CMOS process, thus making it the most suitable candidate for in-vivo biotelemetry applications. PMID:23853319

  11. IR CMOS: the digital nightvision solution to sub-1 mLux imaging

    NASA Astrophysics Data System (ADS)

    Pralle, M. U.; Carey, J. E.; Vineis, C.; Palsule, C.; Jiang, J.; Joy, T.

    2015-05-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux at 60 FPS with a 720P CMOS image sensor in a compact, low latency camera. The camera contains a 1 inch (16 mm) optical format sensor and streams uncompressed video over CameraLink with row wise image latency below 1 msec. Sub mLux imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancement is achieved by utilizing SiOnyx's proprietary ultrafast laser semiconductor processing technology that enhances the absorption of light within a thin pixel layer. Our technology demonstrates a 10 fold improvement in infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see-spot.

  12. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. PMID:26500051

  13. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis.

    PubMed

    Hageman, Kristin N; Kalayjian, Zaven K; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A; Fridman, Gene Y; Dai, Chenkai; Pouliquen, Philippe O; Georgiou, Julio; Della Santina, Charles C; Andreou, Andreas G

    2016-04-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45±0.06 mA with durations as short as 10 μs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68-130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9-16.7 (°)/s for the MVP2 and 2.0-14.2 (°)/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference ( t-test, p=0.34), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  14. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis

    PubMed Central

    Hageman, Kristin N.; Kalayjian, Zaven K.; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A.; Fridman, Gene Y.; Dai, Chenkai; Pouliquen, Philippe O.; Georgiou, Julio; Della Santina, Charles C.; Andreou, Andreas G.

    2015-01-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  15. Packaging commercial CMOS chips for lab on a chip integration.

    PubMed

    Datta-Chaudhuri, Timir; Abshire, Pamela; Smela, Elisabeth

    2014-05-21

    Combining integrated circuitry with microfluidics enables lab-on-a-chip (LOC) devices to perform sensing, freeing them from benchtop equipment. However, this integration is challenging with small chips, as is briefly reviewed with reference to key metrics for package comparison. In this paper we present a simple packaging method for including mm-sized, foundry-fabricated dies containing complementary metal oxide semiconductor (CMOS) circuits within LOCs. The chip is embedded in an epoxy handle wafer to yield a level, large-area surface, allowing subsequent photolithographic post-processing and microfluidic integration. Electrical connection off-chip is provided by thin film metal traces passivated with parylene-C. The parylene is patterned to selectively expose the active sensing area of the chip, allowing direct interaction with a fluidic environment. The method accommodates any die size and automatically levels the die and handle wafer surfaces. Functionality was demonstrated by packaging two different types of CMOS sensor ICs, a bioamplifier chip with an array of surface electrodes connected to internal amplifiers for recording extracellular electrical signals and a capacitance sensor chip for monitoring cell adhesion and viability. Cells were cultured on the surface of both types of chips, and data were acquired using a PC. Long term culture (weeks) showed the packaging materials to be biocompatible. Package lifetime was demonstrated by exposure to fluids over a longer duration (months), and the package was robust enough to allow repeated sterilization and re-use. The ease of fabrication and good performance of this packaging method should allow wide adoption, thereby spurring advances in miniaturized sensing systems. PMID:24682025

  16. High-speed modulator with interleaved junctions in zero-change CMOS photonics

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Cheian, D.; Ram, R. J.

    2016-03-01

    A microring depletion modulator is demonstrated with T-shaped lateral p-n junctions used to realize efficient modulation while maximizing the RC limited bandwidth. The device having a 3 dB bandwidth of 13 GHz has been fabricated in a standard 45 nm microelectronics CMOS process. The cavity has a linewidth of 17 GHz and an average wavelength-shift of 9 pm/V in reverse-bias conditions.

  17. A low jitter all - digital phase - locked loop in 180 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Shumkin, O. V.; Butuzov, V. A.; Normanov, D. D.; Ivanov, P. Yu

    2016-02-01

    An all-digital phase locked loop (ADPLL) was implemented in 180 nm CMOS technology. The proposed ADPLL uses a digitally controlled oscillator to achieve 3 ps resolution. The pure digital phase locked loop is attractive because it is less sensitive to noise and operating conditions than its analog counterpart. The proposed ADPLL can be easily applied to different process as a soft IP block, making it very suitable for system-on-chip applications.

  18. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings.

    PubMed

    Rutkowska, K A; Duchesne, D; Strain, M J; Morandotti, R; Sorel, M; Azaña, J

    2011-09-26

    We report the first realization of integrated, all-optical first- and higher-order photonic differentiators operating at terahertz (THz) processing speeds. This is accomplished in a Silicon-on-Insulator (SOI) CMOS-compatible platform using a simple integrated geometry based on (π-)phase-shifted Bragg gratings. Moreover, we achieve on-chip generation of sub-picosecond Hermite-Gaussian pulse waveforms, which are noteworthy for applications in next-generation optical telecommunications. PMID:21996892

  19. A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip

    NASA Technical Reports Server (NTRS)

    Timoc, C.; Tran, T.; Wongso, J.

    1992-01-01

    This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.

  20. Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems

    NASA Astrophysics Data System (ADS)

    Popović, Miloš A.; Wade, Mark T.; Orcutt, Jason S.; Shainline, Jeffrey M.; Sun, Chen; Georgas, Michael; Moss, Benjamin; Kumar, Rajesh; Alloatti, Luca; Pavanello, Fabio; Chen, Yu-Hsin; Nammari, Kareem; Notaros, Jelena; Atabaki, Amir; Leu, Jonathan; Stojanović, Vladimir; Ram, Rajeev J.

    2015-02-01

    We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a "More-than- Moore" technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology.

  1. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    PubMed Central

    Wei, Liping.; Doughan, Samer.; Han, Yi.; DaCosta, Matthew V.; Krull, Ulrich J.; Ho, Derek.

    2014-01-01

    Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies. PMID:25211198

  2. The intersection of CMOS microsystems and upconversion nanoparticles for luminescence bioimaging and bioassays.

    PubMed

    Wei, Liping; Doughan, Samer; Han, Yi; DaCosta, Matthew V; Krull, Ulrich J; Ho, Derek

    2014-01-01

    Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies. PMID:25211198

  3. Lower-Dark-Current, Higher-Blue-Response CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce

    2008-01-01

    Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.

  4. 3D integration of planar crossbar memristive devices with CMOS substrate

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Pi, Shuang; Xia, Qiangfei

    2014-10-01

    Planar memristive devices with bottom electrodes embedded into the substrates were integrated on top of CMOS substrates using nanoimprint lithography to implement hybrid circuits with a CMOL-like architecture. The planar geometry eliminated the mechanically and electrically weak parts, such as kinks in the top electrodes in a traditional crossbar structure, and allowed the use of thicker and thus less resistive metal wires as the bottom electrodes. Planar memristive devices integrated with CMOS have demonstrated much lower programing voltages and excellent switching uniformity. With the inclusion of the Moiré pattern, the integration process has sub-20 nm alignment accuracy, opening opportunities for 3D hybrid circuits in applications in the next generation of memory and unconventional computing.

  5. A New Fully Differential CMOS Capacitance to Digital Converter for Lab-on-Chip Applications.

    PubMed

    Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Mirzaei, Maryam; Ayala-Charca, Giancarlo; Awwad, Falah; Sawan, Mohamad

    2015-06-01

    In this paper, we present a new differential CMOS capacitive sensor for Lab-on-Chip applications. The proposed integrated sensor features a DC-input ΣΔ capacitance to digital converter (CDC) and two reference and sensing microelectrodes integrated on the top most metal layer in 0.35 μm CMOS process. Herein, we describe a readout circuitry with a programmable clocking strategy using a Charge Based Capacitance Measurement technique. The simulation and experimental results demonstrate a high capacitive dynamic range of 100 fF-110 fF, the sensitivity of 350 mV/fF and the minimum detectable capacitance variation of as low as 10 aF. We also demonstrate and discuss the use of this device for environmental applications through various chemical solvents. PMID:25134090

  6. Design of a total-dose radiation hardened monolithic CMOS DC-DC boost converter

    NASA Astrophysics Data System (ADS)

    Zhi, Liu; Hongying, Ning; Hongbo, Yu; Youbao, Liu

    2011-07-01

    This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation. In order to improve its radiation tolerant abilities, circuit-level and device-level RHBD (radiation-hardening by design) techniques were employed. Adaptive slope compensation was used to improve the inherent instability. The H-gate MOS transistors, annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose. A boost converter was fabricated by a standard commercial 0.35 μm CMOS process. The hardened design converter can work properly in a wide range of total dose radiation environments, with increasing total dose radiation. The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance.

  7. A Review of the CMOS Buried Double Junction (BDJ) Photodetector and its Applications

    PubMed Central

    Feruglio, Sylvain; Lu, Guo-Neng; Garda, Patrick; Vasilescu, Gabriel

    2008-01-01

    A CMOS Buried Double Junction PN (BDJ) photodetector consists of two vertically-stacked photodiodes. It can be operated as a photodiode with improved performance and wavelength-sensitive response. This paper presents a review of this device and its applications. The CMOS implementation and operating principle are firstly described. This includes the description of several key aspects directly related to the device performances, such as surface reflection, photon absorption and electron-hole pair generation, photocurrent and dark current generation, etc. SPICE modelling of the detector is then presented. Next, design and process considerations are proposed in order to improve the BDJ performance. Finally, several BDJ-detector-based image sensors provide a survey of their applications.

  8. Characterization of zeolite-trench-embedded microcantilevers with CMOS strain gauge for integrated gas sensor applications

    NASA Astrophysics Data System (ADS)

    Inoue, Shu; Denoual, Matthieu; Awala, Hussein; Grand, Julien; Mintova, Sveltana; Tixier-Mita, Agnès; Mita, Yoshio

    2016-04-01

    Custom-synthesized zeolite is coated and fixed into microcantilevers with microtrenches of 1 to 5 µm width. Zeolite is a porous material that absorbs chemical substances; thus, it is expected to work as a sensitive chemical-sensing head. The total mass increases with gas absorption, and the cantilever resonance frequency decreases accordingly. In this paper, a thick zeolite cantilever sensor array system for high sensitivity and selectivity is proposed. The system is composed of an array of microcantilevers with silicon deep trenches. The cantilevers are integrated with CMOS-made polysilicon strain gauges for frequency response electrical measurement. The post-process fabrication of such an integrated array out of a foundry-made CMOS chip is successful. On the cantilevers, three types of custom zeolite (FAU-X, LTL, and MFI) are integrated by dip and heating methods. The preliminary measurement has shown a clear shift of resonance frequency by the chemical absorbance of ethanol gas.

  9. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  10. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  11. A CMOS analog front-end chip for amperometric electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Zhichao, Li; Yuntao, Liu; Min, Chen; Jingbo, Xiao; Jie, Chen

    2015-07-01

    This paper reports a complimentary metal-oxide-semiconductor (CMOS) analog front-end chip for amperometric electrochemical sensors. The chip includes a digital configuration circuit, which can communicate with an external microcontroller by employing an I2C interface bus, and thus is highly programmable. Digital correlative double samples technique and an incremental sigma-delta analog to digital converter (Σ-Δ ADC) are employed to achieve a new proposed system architecture with double samples. The chip has been fabricated in a standard 0.18-μm CMOS process with high-precision and high-linearity performance occupying an area of 1.3 × 1.9 mm2. Sample solutions with various phosphate concentrations have been detected with a step concentration of 0.01 mg/L. Project supported by the National Key Basic Research and Development Project (No. 2015CB352103).

  12. CMOS On-Chip Optoelectronic Neural Interface Device with Integrated Light Source for Optogenetics

    NASA Astrophysics Data System (ADS)

    Sawadsaringkarn, Y.; Kimura, H.; Maezawa, Y.; Nakajima, A.; Kobayashi, T.; Sasagawa, K.; Noda, T.; Tokuda, T.; Ohta, J.

    2012-03-01

    A novel optoelectronic neural interface device is proposed for target applications in optogenetics for neural science. The device consists of a light emitting diode (LED) array implemented on a CMOS image sensor for on-chip local light stimulation. In this study, we designed a suitable CMOS image sensor equipped with on-chip electrodes to drive the LEDs, and developed a device structure and packaging process for LED integration. The prototype device produced an illumination intensity of approximately 1 mW with a driving current of 2.0 mA, which is expected to be sufficient to activate channelrhodopsin (ChR2). We also demonstrated the functions of light stimulation and on-chip imaging using a brain slice from a mouse as a target sample.

  13. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  14. Development of a CMOS time memory cell VLSI and CAMAC module with 0. 5 ns resolution

    SciTech Connect

    Arai, Y.; Ikeno, M. ); Matsumura, T. )

    1992-08-01

    A CMOS time-to-digital converter chip, the Time Memory Cell (TMC), for high-rate wire chamber application has been developed. The chip has a timing resolution of 0.52 ns, dissipates only 7 mW/channel, and contains 4 channels in a chip. Each channel has 1024 memory locations which act as a buffer 1[mu]s deep. The chip was fabricated in a 0.8 [mu]m CMOS process and is 5.0 mm by 5.6 mm. Using the TMC chip, a CAMAC module with 32 input channels was developed. This module is designed to operate in both 'Common Start' and 'Common Stop' modes. The circuit of the module and test results are described in this paper.

  15. A new CMOS electro-optical modulator based on the charge pumping phenomenon

    NASA Astrophysics Data System (ADS)

    Massari, Nicola; Gottardi, Massimo

    2006-04-01

    In this paper, we report on a new type of CMOS electro-optical modulator (EOM), called Photonic Mixer Device (PMD), based on the Charge Pumping (CP) phenomenon, which is capable of mixing and accumulating photo-generated charge-packets synchronously with respect to a pulsed light source. The device uses two PMOS transistors with embedded photodiode to detect the intensity and phase of a modulated light signal. Using clocking between accumulation and inversion, the two transistors transfer to output charge packets which are synchronized and proportional to the light intensity. The device operates at 3.3V with no dc power consumption and is implemented in a standard 0.35μm CMOS process. Using a 1.5mW/cm2 light source pulsed at 25KHz, the device estimates a phase delay with an accuracy of 0.8%.

  16. Latchup in CMOS devices from heavy ions

    NASA Technical Reports Server (NTRS)

    Soliman, K.; Nichols, D. K.

    1983-01-01

    It is noted that complementary metal oxide semiconductor (CMOS) microcircuits are inherently latchup prone. The four-layer n-p-n-p structures formed from the parasitic pnp and npn transistors make up a silicon controlled rectifier. If properly biased, this rectifier may be triggered 'ON' by electrical transients, ionizing radiation, or a single heavy ion. This latchup phenomenon might lead to a loss of functionality or device burnout. Results are presented from tests on 19 different device types from six manufacturers which investigate their latchup sensitivity with argon and krypton beams. The parasitic npnp paths are identified in general, and a qualitative rationale is given for latchup susceptibility, along with a latchup cross section for each type of device. Also presented is the correlation between bit-flip sensitivity and latchup susceptibility.

  17. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  18. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  19. CMOS micromachined probes by die-level fabrication for extracellular neural recording

    NASA Astrophysics Data System (ADS)

    Ho, Meng-Han; Chen, Hsin; Tseng, Fouriers; Yeh, Shih-Rung; S-C Lu, Michael

    2007-02-01

    In this paper, we present the design, fabrication and characterization of CMOS micromachined probes for extracellular neural recording. A convenient fabrication process is proposed for making integrated recording probes at the die level, providing a low-cost solution for academic research as compared to the more expensive wafer-level approach adopted in prior work. The devices are fabricated in a standard 0.35 m CMOS process, followed by post-CMOS micromachining steps to form the probes. The on-chip circuit, used for recording action potential signals of neural activities, provides a stable dc bias when operating in electrolyte. The subthreshold transistor at the circuit input provides a tunable resistance value between 10 M? up to G?. The circuit consumes a total power of 790 W and has an output noise of 19.3 V Hz-1/2 at 100 Hz. The recorded action potential from the stimulated ventral nerve cord of a crayfish is about 0.6 mV with a pulse width of about 1.2 ms.

  20. Design of an ultra low power CMOS pixel sensor for a future neutron personal dosimeter

    SciTech Connect

    Zhang, Y.; Hu-Guo, C.; Husson, D.; Hu, Y.

    2011-07-01

    Despite a continuously increasing demand, neutron electronic personal dosimeters (EPDs) are still far from being completely established because their development is a very difficult task. A low-noise, ultra low power consumption CMOS pixel sensor for a future neutron personal dosimeter has been implemented in a 0.35 {mu}m CMOS technology. The prototype is composed of a pixel array for detection of charged particles, and the readout electronics is integrated on the same substrate for signal processing. The excess electrons generated by an impinging particle are collected by the pixel array. The charge collection time and the efficiency are the crucial points of a CMOS detector. The 3-D device simulations using the commercially available Synopsys-SENTAURUS package address the detailed charge collection process. Within a time of 1.9 {mu}s, about 59% electrons created by the impact particle are collected in a cluster of 4 x 4 pixels with the pixel pitch of 80 {mu}m. A charge sensitive preamplifier (CSA) and a shaper are employed in the frond-end readout. The tests with electrical signals indicate that our prototype with a total active area of 2.56 x 2.56 mm{sup 2} performs an equivalent noise charge (ENC) of less than 400 e - and 314 {mu}W power consumption, leading to a promising prototype. (authors)

  1. CMOS-compatible fabrication, micromachining, and bonding strategies for silicon photonics

    NASA Astrophysics Data System (ADS)

    Heck, John; Jones, Richard; Paniccia, Mario J.

    2011-02-01

    The adoption of optical technologies by high-volume consumer markets is severely limited by the cost and complexity of manufacturing complete optical transceiver systems. This is in large part because "boutique" semiconductor fabrication processes are required for III-V lasers, modulators, and photodetectors; furthermore, precision bonding and painstaking assembly are needed to integrate or assemble such dissimilar devices and materials together. On the other hand, 200mm and 300mm silicon process technology has been bringing ever-increasing computing power to the masses by relentless cost reduction for several decades. Intel's silicon photonics program aims to marry this CMOS infrastructure and recent developments in MEMS manufacturing with the burgeoning field of microphotonics to make low cost, high-speed optical links ubiquitous. In this paper, we will provide an overview of several aspects of silicon photonics technology development in a CMOS fabrication line. First, we will describe fabrication strategies from the MEMS industry for micromachining silicon to create passive optical devices such as mirrors, waveguides, and facets, as well as alignment features. Second, we will discuss some of the challenges of fabricating hybrid III-V lasers on silicon, including such aspects as hybrid integration of InP-based materials with silicon using various bonding methods, etching of InP films, and contact formation using CMOS-compatible metals.

  2. Advanced source/drain and contact design for nanoscale CMOS

    NASA Astrophysics Data System (ADS)

    Vega, Reinaldo

    The development of nanoscale MOSFETs has given rise to increased attention paid to the role of parasitic source/drain and contact resistance as a performance-limiting factor. Dopant-segregated Schottky (DSS) source/drain MOSFETs have become popular in recent years to address this series resistance issue, since DSS source/drain regions comprise primarily of metal or metal silicide. The small source/drain extension (SDE) regions extending from the metallic contact regions are an important design parameter in DSS MOSFETs, since their size and concentration affect contact resistance, series resistance, band-to-band tunneling (BTBT), SDE tunneling, and direct source-to-drain tunneling (DSDT) leakage. This work investigates key design issues surrounding DSS MOSFETs from both a modeling and experimental perspective, including the effect of SDE design on ambipolar leakage, the effect of random dopant fluctuation (RDF) on specific contact resistivity, 3D FinFET source/drain and contact design optimization, and experimental methods to achieve tuning of the SDE region. It is found that DSS MOSFETs are appropriate for thin body high performance (HP) and low operating power (LOP) MOSFETs, but not low standby power (LSTP) MOSFETs, due to a trade-off between ambipolar leakage and contact resistance. It is also found that DSDT will not limit DSS MOSFET scalability, nor will RDF limit contact resistance scaling, at the end of the CMOS roadmap. Furthermore, it is found that SDE tunability in DSS MOSFETs is achievable in the real-world, for an implant-to-silicide (ITS) process, by employing fluorine implant prior to metal deposition and silicidation. This is found to open up the DSS process design space for the trade-off between SDE junction depth and contact resistance. Si1-xGex process technology is also explored, and Ge melt processing is found to be a promising low-cost alternative to epitaxial Si1-xGex growth for forming crystalline Si1-xGe x films. Finally, a new device structure is proposed, wherein a bulk Tri-Gate MOSFET utilizes high-k trench isolation (HTI) to achieve enhanced control over short channel effects. This structure (the HTI MOSFET) is shown, through 3D TCAD modeling, to extend bulk LSTP scalability to the end of the CMOS roadmap. In a direct performance comparison to FinFETs, the HTI MOSFET achieves competitive circuit delay.

  3. Design and Experimental Evaluation of a 3rd Generation Addressable CMOS Piezoresistive Stress Sensing Test Chip

    SciTech Connect

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.

    1999-04-13

    Piezoresistive stress sensing chips have been used extensively for measurement of assembly related die surface stresses. Although many experiments can be performed with resistive structures which are directly bonded, for extensive stress mapping it is necessary to have a large number of sensor cells which can be addressed using CMOS logic circuitry. Our previous test chip, the ATC04, has 100 cells, each approximately 0.012 in. on a side, on a chip with a side dimension of 0.45 in. When a cell resistor is addressed, it is connected to a four terminal measurement bus through CMOS transmission gates. In theory, the gate resistances do not affect the measurement. In practice, there may be subtle effects which appear when very high accuracy is required. At high temperatures, gate leakage can increase to a point at which the resistor measurement becomes inaccurate. For ATC04 this occurred at or above 50 C. Here, we report on the first measurements obtained with a new prototype test chip, the ATC06. This prototype was fabricated in a 0.5 micron feature size silicided CMOS process using the MOSIS prototyping facility. The cell size was approximately 0.004 in. on a side. In order to achieve piezoresistive behavior for the implanted resistors it was necessary to employ a non-standard silicide ''blocking'' process. The stress sensitivity of both implanted and polysilicon blocked resistors is discussed. Using a new design strategy for the CMOS logic, it was possible to achieve a design in which only 5 signals had to be routed to a cell for addressing vs. 9 for ATC04. With our new design, the resistor under test is more effectively electrically isolated from other resistors on the chip, thereby improving high temperature performance. We present data showing operation up to 140 C.

  4. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  5. High-speed multicolour photometry with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Zhilyaev, B. E.; Reshetnyk, V. M.

    2012-11-01

    We present the results of testing the commercial digital camera Nikon D90 with a CMOS sensor for high-speed photometry with a small telescope Celestron 11'' at the Peak Terskol Observatory. CMOS sensor allows to perform photometry in 3 filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system of CMOS sensors is close to the Johnson BVR system. The results of testing show that one can carry out photometric measurements with CMOS cameras for stars with the V-magnitude up to ≃14^{m} with the precision of 0.01^{m}. Stars with the V-magnitude up to ˜10 can be shot at 24 frames per second in the video mode.

  6. Formal specification of a high speed CMOS correlator

    NASA Technical Reports Server (NTRS)

    Windley, P. J.

    1991-01-01

    The formal specification of a high speed CMOS correlator is presented. The specification gives the high-level behavior of the correlator and provides a clear, unambiguous description of the high-level architecture of the device.

  7. Implementation of CMOS Millimeter-Wave Devices for Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Drouin, Brian; Tang, Adrian; Schlecht, Erich T.; Daly, Adam M.; Brageot, Emily; Gu, Qun Jane; Ye, Yu; Shu, Ran; Chang, M.-C. Frank; Kim, Rod M.

    2015-06-01

    The extension of radio-frequency CMOS circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now exploring the use of CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in-situ detection of gas composition during space missions. This effort focuses on the development of a semi-confocal Fabry-Perot cavity with mm-wavelength CMOS transmitter and receiver attached directly to a cavity coupler. Placement of the devices within the cavity structure bypasses problems encountered with signal injection and extraction in traditional cavity designs and simultaneously takes full advantage of the miniaturized form of the CMOS hardware. The presentation will provide an overview of the project and details of the accomplishments thus far, including the development and testing of a pulse modulated 83-98 GHz transmitter.

  8. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  9. CMOS Image Sensors: Electronic Camera On A Chip

    NASA Technical Reports Server (NTRS)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  10. Automation of CMOS technology migration illustrated by RGB to YCrCb analogue converter

    NASA Astrophysics Data System (ADS)

    Naumowicz, M.; Melosik, M.; Katarzynski, P.; Handkiewicz, A.

    2013-09-01

    The paper illustrates a practical example of technology migration applied to the colour space converter realized in CMOS technology. The element has analogue excitation and response signals expressed in current mode. Such converter may be incorporated into an integrated vision sensor for preconditioning acquired image data. The idea of a computer software tool supporting the automated migration and design reuse is presented as the major contribution. The mentioned tools implement the Hooke-Jeeves direct search method for performing the multivariable optimization. Our purpose is to ensure transferring the circuit between usable fabrication technologies and preserving its functional properties. The colour space converter is treated as the case study for performance evaluation of the proposed tool in cooperation with HSPICE simulation software. The original CMOS technology files for Taiwan semiconductor (TSMC) plant were utilized for the research. The automated design migration from 180 nm into 90 nm resulted with obtaining compact IC layout characterized by a smaller area and lower power consumption. The paper is concluded with a brief summary that proves the usability of the proposed tool in designing CMOS cells dedicated for low power image processing.

  11. RF Design of a Wideband CMOS Integrated Receiver for Phased Array Applications

    NASA Astrophysics Data System (ADS)

    Jackson, Suzy A.

    2004-06-01

    New silicon CMOS processes developed primarily for the burgeoning wireless networking market offer significant promise as a vehicle for the implementation of highly integrated receivers, especially at the lower end of the frequency range proposed for the Square Kilometre Array (SKA). An RF-CMOS ‘Receiver-on-a-Chip’ is being developed as part of an Australia Telescope program looking at technologies associated with the SKA. The receiver covers the frequency range 500 1700 MHz, with instantaneous IF bandwidth of 500 MHz and, on simulation, yields an input noise temperature of < 50 K at mid-band. The receiver will contain all active circuitry (LNA, bandpass filter, quadrature mixer, anti-aliasing filter, digitiser and serialiser) on one 0.18 μm RF-CMOS integrated circuit. This paper outlines receiver front-end development work undertaken to date, including design and simulation of an LNA using noise cancelling techniques to achieve a wideband input-power-match with little noise penalty.

  12. A new circuit technique for reduced leakage current in Deep Submicron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tielert, R.

    2005-05-01

    Modern CMOS processes in the Deep Submicron regime are restricted to supply voltages below 2 volts and further to account for the transistors' field strength limitations and to reduce the power per logic gate. To maintain the high switching performance, the threshold voltage must be scaled according with the supply voltage. However, this leads to an increased subthreshold current of the transistors in standby mode (VGS=0). Another source of leakage is gate current, which becomes significant for gate oxides of 3nm and below. We propose a Self-Biasing Virtual Rails (SBVR) - CMOS technique which acts like an adaptive local supply voltage in case of standby mode. Most important sources of leakage currents are reduced by this technique. Moreover, SBVR-CMOS is capable of conserving stored information in sleep mode, which is vital for memory circuits. Memories are exposed to radiation causing soft errors. This well-known problem becomes even worse in standby mode of typical SRAMs, that have low driving performance to withstand alpha particle hits. In this paper, a 16-transistor SRAM cell is proposed, which combines the advantage of extremely low leakage currents with a very high soft error stability.

  13. Implementation of the CMOS MEMS Condenser Microphone with Corrugated Metal Diaphragm and Silicon Back-Plate

    PubMed Central

    Huang, Chien-Hsin; Lee, Chien-Hsing; Hsieh, Tsung-Min; Tsao, Li-Chi; Wu, Shaoyi; Liou, Jhyy-Cheng; Wang, Ming-Yi; Chen, Li-Che; Yip, Ming-Chuen; Fang, Weileun

    2011-01-01

    This study reports a CMOS-MEMS condenser microphone implemented using the standard thin film stacking of 0.35 μm UMC CMOS 3.3/5.0 V logic process, and followed by post-CMOS micromachining steps without introducing any special materials. The corrugated diaphragm for the microphone is designed and implemented using the metal layer to reduce the influence of thin film residual stresses. Moreover, a silicon substrate is employed to increase the stiffness of the back-plate. Measurements show the sensitivity of microphone is −42 ± 3 dBV/Pa at 1 kHz (the reference sound-level is 94 dB) under 6 V pumping voltage, the frequency response is 100 Hz–10 kHz, and the S/N ratio >55 dB. It also has low power consumption of less than 200 μA, and low distortion of less than 1% (referred to 100 dB). PMID:22163953

  14. Implementation of the CMOS MEMS condenser microphone with corrugated metal diaphragm and silicon back-plate.

    PubMed

    Huang, Chien-Hsin; Lee, Chien-Hsing; Hsieh, Tsung-Min; Tsao, Li-Chi; Wu, Shaoyi; Liou, Jhyy-Cheng; Wang, Ming-Yi; Chen, Li-Che; Yip, Ming-Chuen; Fang, Weileun

    2011-01-01

    This study reports a CMOS-MEMS condenser microphone implemented using the standard thin film stacking of 0.35 μm UMC CMOS 3.3/5.0 V logic process, and followed by post-CMOS micromachining steps without introducing any special materials. The corrugated diaphragm for the microphone is designed and implemented using the metal layer to reduce the influence of thin film residual stresses. Moreover, a silicon substrate is employed to increase the stiffness of the back-plate. Measurements show the sensitivity of microphone is -42 ± 3 dBV/Pa at 1 kHz (the reference sound-level is 94 dB) under 6 V pumping voltage, the frequency response is 100 Hz-10 kHz, and the S/N ratio >55 dB. It also has low power consumption of less than 200 μA, and low distortion of less than 1% (referred to 100 dB). PMID:22163953

  15. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    NASA Astrophysics Data System (ADS)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of circulator shows how crucial this device is to many industries and the need for smaller, cost effective RF components.

  16. Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS

    SciTech Connect

    Smith, J.H.; Montague, S.; Sniegowski, J.J.; Murray, J.R.

    1996-10-01

    Recently, a great deal of interest has developed in manufacturing processes that allow the monolithic integration of MicroElectroMechanical Systems (MEMS) with driving, controlling, and signal processing electronics. This integration promises to improve the performance of micromechanical devices as well as lower the cost of manufacturing, packaging, and instrumenting these devices by combining the micromechanical devices with a electronic devices in the same manufacturing and packaging process. In order to maintain modularity and overcome some of the manufacturing challenges of the CMOS-first approach to integration, we have developed a MEMS-first process. This process places the micromechanical devices in a shallow trench, planarizes the wafer, and seals the micromechanical devices in the trench. Then, a high-temperature anneal is performed after the devices are embedded in the trench prior to microelectronics processing. This anneal stress-relieves the micromechanical polysilicon and ensures that the subsequent thermal processing associated with fabrication of the microelectronic processing does not adversely affect the mechanical properties of the polysilicon structures. These wafers with the completed, planarized micromechanical devices are then used as starting material for conventional CMOS processes. The circuit yield for the process has exceeded 98%. A description of the integration technology, the refinements to the technology, and wafer-scale parametric measurements of device characteristics is presented. Additionally, the performance of integrated sensing devices built using this technology is presented.

  17. A CMOS ASIC Design for SiPM Arrays

    PubMed Central

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2012-01-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM). PMID:24825923

  18. A CMOS ASIC Design for SiPM Arrays.

    PubMed

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2011-12-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM). PMID:24825923

  19. Process architectures using MeV implanted blanket buried layers for latch-up improvements on bulk silicon

    SciTech Connect

    Rubin, L.M.; Simonton, R.B.; Wilson, S.D.; Morris, W.

    1996-12-31

    Doped buried layers formed by MeV ion implantation are attractive alternatives to expensive epitaxial substrates for controlling latch-up in CMOS devices. Two different process architecture approaches for forming effective buried layers are discussed. P+ Around Boundary (PAB), and a more recent derivative, BILLI are compared to a Buried Layer/Connecting Layer (BUCL) architecture, with regards to latch-up resistance, process flexibility, and future scalability. While both architectures have been shown to increase latch-up trigger current on bulk silicon, the BUCL process provides greater latch-up control and process/device flexibility. Process and device simulations as well as experimental data indicate that a properly chosen set of implants for both n-well, p-well, and buried layer structures can yield latch-up isolation superior to 3mm epi.

  20. A CMOS readout circuit for microstrip detectors

    NASA Astrophysics Data System (ADS)

    Nasri, B.; Fiorini, C.

    2015-03-01

    In this work, we present the design and the results of a CMOS analog channel for silicon microstrips detectors. The readout circuit was initially conceived for the outer layers of the SuperB silicon vertex tracker (SVT), but can serve more generally other microstrip-based detection systems. The strip detectors considered show a very high stray capacitance and high series resistance. Therefore, the noise optimization was the first priority design concern. A necessary compromise on the best peaking time to achieve an acceptable noise level together with efficiency and timing accuracy has been investigated. The ASIC is composed by a preamplifier, shaping amplifier and a Time over Threshold (T.o.T) block for the digitalization of the signals. The chosen shaping function is the third-order semi-Gaussian function implemented with complex poles. An inverter stage is employed in the analog channel in order to operate with signals delivered from both p and n strips. The circuit includes the possibility to select the peaking time of the shaper output from four values: 250 ns, 375 ns, 500 ns and 750 ns. In this way, the noise performances and the signal occupancy can be optimized according to the real background during the experiment. The ASIC prototype has been fabricated in the 130 nm IBM technology which is considered intrinsically radiation hard. The results of the experimental characterization of a produced prototype are satisfactorily matched with simulation.

  1. A High-Speed Thermoelectric Infrared Sensor Fabricated by CMOS Technology and Micromachining

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki

    A high-speed thermoelectric infrared sensor has been fabricated by the CMOS process and micromachining. The time constant of the sensor has been reduced by means of a reduction of sensor size and a thin Si3N4 membrane structure. The sensitivity has been improved with a precisely patterned Au black infrared absorption layer formed by a PSG lift-off process. The characteristics of the sensor have been simulated using a thermal equivalent circuit model. A time constant of 270 μsec and sensitivity of 60 V/W at atmospheric pressure have been achieved. This time constant is smaller than any other reported value of thermopiles.

  2. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    PubMed

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display. PMID:26726359

  3. An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC

    NASA Astrophysics Data System (ADS)

    Torres, Erick Omar

    Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz mechanical variable capacitor. The precharger, harvester, monitoring, and control microelectronics of the first prototype draw sufficient power to operate and at the same time produce experimentally 1.27, 2.14, and 2.87 nJ per vibration cycle for battery voltages at 2.7, 3.5, and 4.2 V, which with 30-Hz vibrations produce 38.1, 64.2, and 86.1 nW. By incorporating into the system a self-tuning loop that adapts optimally the inductor-based precharger to varying battery voltages, the second prototype harnessed and gained 1.93, 2.43, and 3.89 nJ per vibration cycle at battery voltages 2.7, 3.5, and 4.2 V, generating 57.89, 73.02, and 116.55 nW at 30 Hz. The harvester ultimately charges from 2.7 to 4.2 V a 1-muF capacitor (which emulates a small thin-film Li Ion) in approximately 69 s, harnessing in the same length of time 47.9% more energy than with a non-adapting harvester.

  4. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  5. A CMOS pressure sensor tag chip for passive wireless applications.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-01-01

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868

  6. Noise analysis of a fully integrated CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Singh, Kalwant

    1999-03-01

    The read noise characteristics of a 3T photodiode-based CMOS active pixel image sensor IC is described. The sensor is fabricated in Hewlett Packard's standard 0.5 micrometers and 3.3V mixed-signal process. The read noise characteristic of the analog signal path is theoretically estimated by adding together the noise contributions of the pixel, column amplifier and programmable gain amplifier (PGA). The read noise of the imager is then measured as a function of the on-chip programmable gain with a HP9494 mixed-signal production tester. An analysis of the measured read noise is performed to separate the noise contribution into pre-PGA and post-PGA components. The measured pre-PGA noise component is compared to the calculated estimate of the analog signal path noise. The measured pre-PGA noise is found to be much smaller than the calculated estimate. Consistency is substantially improved if pixel kTC reset noise is excluded from the calculated estimate.

  7. A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-01-01

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of −20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868

  8. Charge collection studies in irradiated HV-CMOS particle detectors

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  9. CMOS-based chemical microsensors: components of a micronose system

    NASA Astrophysics Data System (ADS)

    Hierlemann, Andreas; Koll, Andreas; Lange, Dirk; Hagleitner, Christoph; Kerness, Nicole; Brand, Oliver; Baltes, Henry

    1999-11-01

    We report on results achieved with three different types of polymer-coated chemical microsensors fabricated in industrial CMOS technology. The first and most extensively studied transducer is a microcapacitor sensitive to changes in dielectric properties of the polymer layer due to analyte absorption. An on-chip integrated (Sigma) (Delta) -converter allows for detecting the minute capacitance changes. The second transducer is a resonant cantilever sensitive to predominantly mass changes. The cantilever is electrothermally excited, its vibrations are detected using a piezoresistive Wheatstone bridge. In analogy to acoustic wave devices, analyte absorption in the polymer causes resonance frequency shifts as a consequent of changes in the vibrating mass. The last transducer is a microcalorimeter consisting of a polymer-coated sensing thermopile and an uncoated reference thermopile each on micromachined membranes. The measurand is the absorption or desorption heat of organic volatiles in the polymer layer. The difference between the resulting thermovoltages is processed with an on-chip low-noise differential amplifier. Enthalpy changes on the order of (mu) J have been detected.

  10. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  11. Smart CMOS sensor for wideband laser threat detection

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Sonkusale, Sameer

    2015-09-01

    The proliferation of lasers has led to their widespread use in applications ranging from short range standoff chemical detection to long range Lidar sensing and target designation operating across the UV to LWIR spectrum. Recent advances in high energy lasers have renewed the development of laser weapons systems. The ability to measure and assess laser source information is important to both identify a potential threat as well as determine safety and nominal hazard zone (NHZ). Laser detection sensors are required that provide high dynamic range, wide spectral coverage, pulsed and continuous wave detection, and large field of view. OPTRA, Inc. and Tufts have developed a custom ROIC smart pixel imaging sensor architecture and wavelength encoding optics for measurement of source wavelength, pulse length, pulse repetition frequency (PRF), irradiance, and angle of arrival. The smart architecture provides dual linear and logarithmic operating modes to provide 8+ orders of signal dynamic range and nanosecond pulse measurement capability that can be hybridized with the appropriate detector array to provide UV through LWIR laser sensing. Recent advances in sputtering techniques provide the capability for post-processing CMOS dies from the foundry and patterning PbS and PbSe photoconductors directly on the chip to create a single monolithic sensor array architecture for measuring sources operating from 0.26 - 5.0 microns, 1 mW/cm2 - 2 kW/cm2.

  12. CMOS solid state photomultipliers for ultra-low light levels

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, Xaio Jie; Whitney, Chad; Chapman, Eric C.; Alberghini, Guy; Rines, Rich; Augustine, Frank; Christian, James

    2011-05-01

    Detection of single photons is crucial for a number of applications. Geiger photodiodes (GPD) provide large gains with an insignificant amount of multiplication noise exclusively from the diode. When the GPD is operated above the reverse bias breakdown voltage, the diode can avalanche due to charged pairs generated from random noise (typically thermal) or incident photons. The GPD is a binary device, as only one photon is needed to trigger an avalanche, regardless of the number of incident photons. A solid-state photomultiplier (SSPM) is an array of GPDs, and the output of the SSPM is proportional to the incident light intensity, providing a replacement for photomultiplier tubes. We have developed CMOS SSPMs using a commercial fabrication process for a myriad of applications. We present results on the operation of these devices for low intensity light pulses. The data analysis provides a measured of the junction capacitance (~150 fF), which affects the rise time (~2 ns), the fall time (~32 ns), and gain (>106). Multipliers for the cross talk and after pulsing are given, and a consistent picture within the theory of operation of the expected dark current and photodetection efficiency is demonstrate. Enhancement of the detection efficiency with respect to the quantum efficiency at unity gain for shallow UV photons is measured, indicating an effect due to fringe fields within the diode structure. The signal and noise terms have been deconvolved from each other, providing the fundamental model for characterizing the behavior at low-light intensities.

  13. Fabrication and Electrical Characterization of Strained Si-on-insulator/Strained SiGe-on-insulator Dual Channel CMOS structures with High-Mobility Channels

    NASA Astrophysics Data System (ADS)

    Tezuka, Tsutomu; Nakaharai, Shu; Moriyama, Yoshihiko; Hirashita, Norio; Toyoda, Eiji; Sugiyama, Naoharu; Mizuno, Tomohisa; Takagi, Shinichi

    Mobility enhancement technologies by incorporating strain in MOSFETs have been recognized as key technologies for scaled CMOS devices. The most promising channel materials for n- and p-channel MOSFETs are tensily-strained Si and compressively-strained Ge (SiGe), respectively, from the viewpoint of their high mobility values. In this paper, dual channel CMOS structures with strained Si-on-insulator (strained-SOI)-nMOSFETs and strained SiGe-on-insulator (strained-SGOI)-pMOSFETs are demonstrated as well as their high channel mobility and current drive enhancements. Strained Si channels on a relaxed SGOI substrate and Ge-rich strained SGOI channels are located on the nMOS and pMOS regions of the same wafer, respectively. The dual channel structure was fabricated by a CMOS process combined with the Ge condensation process, in which the epitaxially grown SiGe layer on the SOI substrate was locally oxidized at high temperatures. As a result, significant electron- and hole-mobility enhancements for the strained SOI and SGOI channels were observed as well as the drain current enhancements. Based on the measured mobility for the nMOS and pMOS channels in the CMOS devices, CMOS performance enhancement of 30% was estimated.

  14. CMOS Cell Sensors for Point-of-Care Diagnostics

    PubMed Central

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies. PMID:23112587

  15. CMOS APS imaging system application in star tracker

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Jinguo; Li, Xuekui; Liu, Yaxia; Hao, Zhihang

    2005-01-01

    Small satellites are capable of performing space explore missions that require accurate attitude determination and control. However, low weight, size, power and cost requirements limit the types of attitude sensor of small craft, such as CCD, are not practical for small satellites. CMOS APS is a good substitute for attitude sensors of small craft. Some of the technical advantages of CMOS APS are no blooming, single power, low power consumption, small size and little support circuitry, direct digital output, simple to system design, in particular, radiation-hard characteristic compare with CCD. This paper discusses the application probability of CMOS APS in star tracker for small satellites, further more, a prototype ground-based star camera based on STAR250 CMOS image sensor has been built. In order to extract stars positions coordinates, subpixel accuracy centroiding algorithm has been developed and tested on some ground-based images. Moreover, the camera system star sensitivity and noise model are analyzed, and the system accuracy is been evaluated. Experimental results indicate that a star camera based on CMOS APS is a viable practical attitude sensor appropriate for space small satellites.

  16. Bench-level characterization of a CMOS standard-cell D-latch using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Soli, G. A.; Buehler, M. G.

    1991-01-01

    A methodology is described for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-micron n-well CMOS 4-kb test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 micron was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 MeV sq cm/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV sq cm/mg was determined.

  17. Bench-level characterization of a CMOS standard-cell D-latch using alpha-particle sensitive test circuits

    SciTech Connect

    Blaes, B.R.; Soli, G.A.; Buehler, M.G. )

    1991-12-01

    This paper describes a methodology for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-{mu}m n-well CMOS 4k-bit test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 {mu}m was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 Mev cm{sup 2}/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV cm{sup 2}/mg was determined.

  18. Post-CMOS compatible high-throughput fabrication of AlN-based piezoelectric microcantilevers

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, A.; Iriarte, G. F.; Hernando-Garcia, J.; Calle, F.

    2015-02-01

    A post-complementary metal oxide semiconductor (CMOS) compatible microfabrication process of piezoelectric cantilevers has been developed. The fabrication process is suitable for standard silicon technology and provides low-cost and high-throughput manufacturing. This work reports design, fabrication and characterization of piezoelectric cantilevers based on aluminum nitride (AlN) thin films synthesized at room temperature. The proposed microcantilever system is a sandwich structure composed of chromium (Cr) electrodes and a sputtered AlN film. The key issue for cantilever fabrication is the growth at room temperature of the AlN layer by reactive sputtering, making possible the innovative compatibility of piezoelectric MEMS devices with CMOS circuits already processed. AlN and Cr have been etched by inductively coupled plasma (ICP) dry etching using a BCl3-Cl2-Ar plasma chemistry. As part of the novelty of the post-CMOS micromachining process presented here, a silicon Si (1 0 0) wafer has been used as substrate as well as the sacrificial layer used to release the microcantilevers. In order to achieve this, the Si surface underneath the structure has been wet etched using an HNA (hydrofluoric acid + nitric acid + acetic acid) based solution. X-ray diffraction (XRD) characterization indicated the high crystalline quality of the AlN film. An atomic force microscope (AFM) has been used to determine the Cr electrode surface roughness. The morphology of the fabricated devices has been studied by scanning electron microscope (SEM). The cantilevers have been piezoelectrically actuated and their out-of-plane vibration modes were detected by vibrometry.

  19. Electron lithography STAR design guidelines. Part 3: The mosaic transistor array applied to custom microprocessors. Part 4: Stores logic arrays, SLAs implemented with clocked CMOS

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.

    1982-01-01

    The Mosaic Transistor Array is an extension of the STAR system developed by NASA which has dedicated field cells designed to be specifically used in semicustom microprocessor applications. The Sandia radiation hard bulk CMOS process is utilized in order to satisfy the requirements of space flights. A design philosophy is developed which utilizes the strengths and recognizes the weaknesses of the Sandia process. A style of circuitry is developed which incorporates the low power and high drive capability of CMOS. In addition the density achieved is better than that for classic CMOS, although not as good as for NMOS. The basic logic functions for a data path are designed with compatible interface to the STAR grid system. In this manner either random logic or PLA type structures can be utilized for the control logic.

  20. Etch challenges for DSA implementation in CMOS via patterning

    NASA Astrophysics Data System (ADS)

    Pimenta Barros, P.; Barnola, S.; Gharbi, A.; Argoud, M.; Servin, I.; Tiron, R.; Chevalier, X.; Navarro, C.; Nicolet, C.; Lapeyre, C.; Monget, C.; Martinez, E.

    2014-03-01

    This paper reports on the etch challenges to overcome for the implementation of PS-b-PMMA block copolymer's Directed Self-Assembly (DSA) in CMOS via patterning level. Our process is based on a graphoepitaxy approach, employing an industrial PS-b-PMMA block copolymer (BCP) from Arkema with a cylindrical morphology. The process consists in the following steps: a) DSA of block copolymers inside guiding patterns, b) PMMA removal, c) brush layer opening and finally d) PS pattern transfer into typical MEOL or BEOL stacks. All results presented here have been performed on the DSA Leti's 300mm pilot line. The first etch challenge to overcome for BCP transfer involves in removing all PMMA selectively to PS block. In our process baseline, an acetic acid treatment is carried out to develop PMMA domains. However, this wet development has shown some limitations in terms of resists compatibility and will not be appropriated for lamellar BCPs. That is why we also investigate the possibility to remove PMMA by only dry etching. In this work the potential of a dry PMMA removal by using CO based chemistries is shown and compared to wet development. The advantages and limitations of each approach are reported. The second crucial step is the etching of brush layer (PS-r-PMMA) through a PS mask. We have optimized this step in order to preserve the PS patterns in terms of CD, holes features and film thickness. Several integrations flow with complex stacks are explored for contact shrinking by DSA. A study of CD uniformity has been addressed to evaluate the capabilities of DSA approach after graphoepitaxy and after etching.

  1. VHF NEMS-CMOS piezoresistive resonators for advanced sensing applications

    NASA Astrophysics Data System (ADS)

    Arcamone, Julien; Dupré, Cécilia; Arndt, Grégory; Colinet, Eric; Hentz, Sébastien; Ollier, Eric; Duraffourg, Laurent

    2014-10-01

    This work reports on top-down nanoelectromechanical resonators, which are among the smallest resonators listed in the literature. To overcome the fact that their electromechanical transduction is intrinsically very challenging due to their very high frequency (100 MHz) and ultimate size (each resonator is a 1.2 μm long, 100 nm wide, 20 nm thick silicon beam with 100 nm long and 30 nm wide piezoresistive lateral nanowire gauges), they have been monolithically integrated with an advanced fully depleted SOI CMOS technology. By advantageously combining the unique benefits of nanomechanics and nanoelectronics, this hybrid NEMS-CMOS device paves the way for novel breakthrough applications, such as NEMS-based mass spectrometry or hybrid NEMS/CMOS logic, which cannot be fully implemented without this association.

  2. Design of CMOS logic gates for TID radiation

    NASA Astrophysics Data System (ADS)

    Attia, John Okyere; Sasabo, Maria L.

    The rise time, fall time and propagation delay of the logic gates were derived. The effects of total ionizing dose (TID) radiation on the fall and rise times of CMOS logic gates were obtained using C program calculations and PSPICE simulations. The variations of mobility and threshold voltage on MOSFET transistors when subjected to TID radiation were used to determine the dependence of switching times on TID. The results of this work indicate that by increasing the size of P-channel transistor with respect to the N-channel transistors of the CMOS gates, the propagation delay of CMOS logic gate can be made to decrease with, or be independent of an increase in TID radiation.

  3. A CMOS image sensor method of focal spot size measurement.

    PubMed

    Tuchyna, T; Paix, D

    2004-06-01

    A phosphor opto-coupled monochrome CMOS image sensor with a slit diaphragm was used to investigate focal spot characteristics. Images were captured during x-ray exposure with a triggered frame grabber and subsequently enhanced. Dimensions of the focal spot width (1.39mm) and length (1.92mm) were determined from the focal spot intensity profiles and their corresponding Full Width at Half Maxima (FWHM) in two orthogonal orientations. The CMOS image sensor measurements demonstrated differences in the measured width and length dimensions when compared to film measurements. The obtained nominal focal spot values however showed that image-sensor determined focal spot dimensions agreed with the direct film and film-screen methods when based on the AS/NZS defined nominal focal spot values. The CMOS image sensor tested appears to lack the measurement accuracy required for the measurement of small focal spot sizes due in part to its limited camera sensitivity. PMID:15462588

  4. A hybrid CMOS-microfluidic contact imaging microsystem

    NASA Astrophysics Data System (ADS)

    Singh, Ritu Raj; Leng, Lian; Guenther, Axel; Genov, Roman

    2009-08-01

    A hybrid CMOS/Microfluidic microsystem is presented. The microsystem integrates a soft polymer microfluidic network with a 64x128 pixel imager fabricated in low-cost standard 0.35 micron CMOS technology. The multiple microfluidic channels facilitate in-situ photochemical reactions of analytes and their detection directly on the surface of the CMOS photosensor array. The promixity between the analyte and the photosensor enhances the microsystem sensitivity, thus requiring only microliter volumes of the sample. Circuit techniques such as pixel binning and a two transistor reset path technique are employed to improve the imager sensitivity. The integrated microsystem is validated in on-chip chemiluminescence detection of luminol for the two microfluidic network prototypes designed.

  5. Design of CMOS logic gates for TID radiation

    NASA Technical Reports Server (NTRS)

    Attia, John Okyere; Sasabo, Maria L.

    1993-01-01

    The rise time, fall time and propagation delay of the logic gates were derived. The effects of total ionizing dose (TID) radiation on the fall and rise times of CMOS logic gates were obtained using C program calculations and PSPICE simulations. The variations of mobility and threshold voltage on MOSFET transistors when subjected to TID radiation were used to determine the dependence of switching times on TID. The results of this work indicate that by increasing the size of P-channel transistor with respect to the N-channel transistors of the CMOS gates, the propagation delay of CMOS logic gate can be made to decrease with, or be independent of an increase in TID radiation.

  6. 77 FR 26787 - Certain CMOS Image Sensors and Products Containing Same; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... COMMISSION Certain CMOS Image Sensors and Products Containing Same; Notice of Receipt of Complaint... complaint entitled Certain CMOS Image Sensors and Products Containing Same, DN 2895; the Commission is... importation of certain CMOS image sensors and products containing same. The complaint names as...

  7. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders — from Optical Triangulation to the Automotive Field

    PubMed Central

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-01-01

    With their significant features, the applications of complementary metal-oxide semiconductor (CMOS) image sensors covers a very extensive range, from industrial automation to traffic applications such as aiming systems, blind guidance, active/passive range finders, etc. In this paper CMOS image sensor-based active and passive range finders are presented. The measurement scheme of the proposed active/passive range finders is based on a simple triangulation method. The designed range finders chiefly consist of a CMOS image sensor and some light sources such as lasers or LEDs. The implementation cost of our range finders is quite low. Image processing software to adjust the exposure time (ET) of the CMOS image sensor to enhance the performance of triangulation-based range finders was also developed. An extensive series of experiments were conducted to evaluate the performance of the designed range finders. From the experimental results, the distance measurement resolutions achieved by the active range finder and the passive range finder can be better than 0.6% and 0.25% within the measurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests on applications of the developed CMOS image sensor-based range finders to the automotive field were also conducted. The experimental results demonstrated that our range finders are well-suited for distance measurements in this field.

  8. A 0.5-GHz CMOS digital RF memory chip

    NASA Astrophysics Data System (ADS)

    Schnaitter, W. M.; Lewis, E. T.; Gordon, B. E.

    1986-10-01

    Digital RF memories (DRFM's) are key elements for modern radar jamming. An RF signal is sampled, stored in random access memory (RAM), and later recreated from the stored data. Here the first CMOS DRFM chip, integrating static RAM, control circuitry, and two channels of shift registers, on a single chip is described. The sample rate achieved was 0.5 GHz, VLSI density was made possible by the low-power dissipation of quiescent CMOS circuits. An 8K RAM prototype chip has been built and tested.

  9. A 65 nm CMOS LNA for Bolometer Application

    NASA Astrophysics Data System (ADS)

    Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei

    2016-01-01

    Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.

  10. CMOS 6-T SRAM cell design subject to ``atomistic'' fluctuations

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Roy, S.; Asenov, A.

    2007-04-01

    Intrinsic parameter fluctuations adversely affect SRAM cell stability, and will become one of the major factors limiting future CMOS 6-T SRAM scaling. In this work, using the driveability ratio and cell ratio parameters, and employing 'Write Assist' technology, we present a compromise design methodology which can balance WNM and SNM performance, improving CMOS 6-T SRAM scalability in the decananometer regime. The feasibility of the approach is demonstrated through detailed statistical SRAM simulations using models calibrated against MOSFETs with physical gate length of 35 nm.

  11. A 65 nm CMOS LNA for Bolometer Application

    NASA Astrophysics Data System (ADS)

    Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei

    2016-04-01

    Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.

  12. Modifications in CMOS Dynamic Logic Style: A Review Paper

    NASA Astrophysics Data System (ADS)

    Meher, Preetisudha; Mahapatra, Kamalakanta

    2015-12-01

    Dynamic logic style is used in high performance circuit design because of its fast speed and less transistors requirement as compared to CMOS logic style. But it is not widely accepted for all types of circuit implementations due to its less noise tolerance and charge sharing problems. A small noise at the input of the dynamic logic can change the desired output. Domino logic uses one static CMOS inverter at the output of dynamic node which is more noise immune and consuming very less power as compared to other proposed circuit. In this paper, an overview and classification of these techniques are first presented and then compared according to their performance.

  13. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current.

    PubMed

    DeRose, Christopher T; Trotter, Douglas C; Zortman, William A; Starbuck, Andrew L; Fisher, Moz; Watts, Michael R; Davids, Paul S

    2011-12-01

    We present a compact 1.3 × 4 μm2 Germanium waveguide photodiode, integrated in a CMOS compatible silicon photonics process flow. This photodiode has a best-in-class 3 dB cutoff frequency of 45 GHz, responsivity of 0.8 A/W and dark current of 3 nA. The low intrinsic capacitance of this device may enable the elimination of transimpedance amplifiers in future optical data communication receivers, creating ultra low power consumption optical communications. PMID:22273883

  14. Prototype Active Silicon Sensor in 150 nm HR-CMOS technology for ATLAS Inner Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Rymaszewski, P.; Barbero, M.; Breugnon, P.; Godiot, S.; Gonella, L.; Hemperek, T.; Hirono, T.; Hügging, F.; Krüger, H.; Liu, J.; Pangaud, P.; Peric, I.; Rozanov, A.; Wang, A.; Wermes, N.

    2016-02-01

    The LHC Phase-II upgrade will lead to a significant increase in luminosity, which in turn will bring new challenges for the operation of inner tracking detectors. A possible solution is to use active silicon sensors, taking advantage of commercial CMOS technologies. Currently ATLAS R&D programme is qualifying a few commercial technologies in terms of suitability for this task. In this paper a prototype designed in one of them (LFoundry 150 nm process) will be discussed. The chip architecture will be described, including different pixel types incorporated into the design, followed by simulation and measurement results.

  15. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors

    PubMed Central

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed. PMID:22389592

  16. Detailed study of particle detectors OTA-based CMOS Semi-Gaussian shapers

    NASA Astrophysics Data System (ADS)

    Noulis, T.; Deradonis, C.; Siskos, S.; Sarrabayrouse, G.

    2007-12-01

    An analysis of readout front-end electronics Semi-Gaussian (S-G) shapers is carried out. An innovative design methodology is proposed and advanced filter design techniques based on Operational Transconductance Amplifiers (OTA) are used. Five CMOS shaper topologies are designed using OTAs and compared in terms of noise performance, total harmonic distortion, dynamic range and power consumption in order to examine which is the most preferable in readout applications. Although all shaper architectures are fully integrated, they exhibit a large peaking time. The results are obtained from SPICE simulations for implementations in a 0.6 μm process of Austria Mikro Systeme (AMS).

  17. Built-in self-test (BIST) techniques for millimeter wave CMOS transceivers

    NASA Astrophysics Data System (ADS)

    Mahzabeen, Tabassum

    The seamless integration of complementary metal oxide semiconductor (CMOS) transceivers with a digital CMOS process enhances on-chip testability, thus reducing production and testing costs. Built in self testability also improves yield by offering on-chip compensation. This work focuses on built in self test techniques for CMOS based millimeter wave (mm-wave) transceivers. Built-in-self-test (BIST) using the loopback method is one cost-effective method for testing these transceivers. Since the loopback switch is always present during the normal operation of the transceiver, the requirement of the switch is different than for a conventional switch. The switch needs to have high isolation and high impedance during its OFF period. Two 80 GHz single pole single throw (SPST) switches have been designed, fabricated in standard CMOS process, and measured to connect the loopback path for BIST applications. The loopback switches in this work provide the required criteria for loopback BIST. A stand alone 80 GHz low noise amplifier (LNA) and the same LNA integrated with one of the loopback switches have been fabricated, and measured to observe the difference in performance when the loopback switch is present. Besides the loopback switch, substrate leakage also forms a path between the transmitter and receiver. Substrate leakage has been characterized as a function of distance between the transmitter and receiver for consideration in using the BIST method. A BIST algorithm has been developed to estimate the process variation in device sizes by probing a low frequency ring oscillator to estimate the device variation and map this variation to the 80 GHz LNA. Probing a low frequency circuit is cheaper compared to the probing of a millimeter wave circuit and reduces the testing costs. The performance of the LNA degrades due to variation in device size. Once the shift in the device size is being estimated (from the ring oscillator's shifted frequency), the LNA's performance can be recovered using several methods; for example, using tunable transmission line lengths in the amplifier or using a variable supply voltage. This concept of estimating process variation has been demonstrated in Agilent Design System (ADS).

  18. Application of high pressure deuterium annealing for improving the hot carrier reliability of CMOS transistors

    SciTech Connect

    Lee, J.; Cheng, K.; Chen, Z.; Hess, K.; Lyding, J.W.; Kim, Y.K.; Lee, H.S.; Kim, Y.W.; Suh, K.P.

    2000-05-01

    The authors present the effect of high pressure deuterium annealing on hot carrier reliability improvements of CMOS transistors. High pressure annealing increases the rate of deuterium incorporation at the SiO{sub 2}/Si interface. They have achieved a significant lifetime improvement (90 {times}) from fully processed wafers (four metal layers) with nitride sidewall spacers and SiON cap layers. The improvement was determined by comparing to wafers that were annealed in a conventional hydrogen forming gas anneal. The annealing time to achieve the same level of improvement is also significantly reduced. The increased incorporation of D at high pressure was confirmed by the secondary ion mass spectrometry characterization.

  19. Depleted Monolithic Active Pixel Sensors (DMAPS) implemented in LF-150 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Kishishita, T.; Hemperek, T.; Krüger, H.; Wermes, N.

    2015-03-01

    We present the recent development of Depleted Monolithic Active Pixel Sensors (DMAPS), implemented with an LFoundry (LF) 150 nm CMOS process. MAPS detectors based on an epi-layer have been matured in recent years and have attractive features in terms of reducing material budget and handling cost compared to conventional hybrid pixel detectors. However, the obtained signal is relatively small (~1000 e-) due to the thin epi-layer, and charge collection time is relatively slow, e.g., in the order of 100 ns, because charges are mainly collected by diffusion. Modern commercial CMOS technology, however, offers advanced process options to overcome such difficulties and enable truly monolithic devices as an alternative to hybrid pixel sensors and charge coupled devices. Unlike in the case of the standard MAPS technologies with epi-layers, the LF process provides a high-resistivity substrate that enables large signal and fast charge collection by drift in a ~50 μm thick depleted layer. Since this process also enables the use of deep n- and p-wells to isolate the collection electrode from the thin active device layer, PMOS and NMOS transistors are available for the readout electronics in each pixel cell. In order to evaluate the sensor and transistor characteristics, several collection electrodes variants and readout architectures have been implemented. In this report, we focus on its design aspect of the LF-DMAPS prototype chip.

  20. Fabrication and functional demonstration of a smart electrode with a built-in CMOS microchip for neural stimulation of a retinal prosthesis.

    PubMed

    Noda, Toshihiko; Fujisawa, Takumi; Kawasaki, Ryohei; Tashiro, Hiroyuki; Takehara, Hiroaki; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-08-01

    In this study, we propose an advanced architecture of a smart electrode for neural stimulation of a retinal prosthesis. A feature of the proposed architecture is embedding CMOS microchips into the core of the stimulus electrodes. Microchip integration without dead space on the array is possible. Additionally, higher durability can be expected because the microchips are protected by the stimulus electrodes like a metal casing. Dedicated circular-shaped CMOS microchips were designed and fabricated. The microchip measured 400 μm in diameter. Stimulus electrodes that had a microcavity for embedding the microchip were also fabricated. In the assembly process, the CMOS microchip was mounted on a flexible substrate, and then the stimulus electrode was mounted to cover the microchip. The microchip was completely built into the inside of the electrode. By performing an ex-vivo experiment using the extracted eyeball of a pig, stimulus function of the electrode was demonstrated successfully. PMID:26737011

  1. Materials issues in the integration of magnetic structures on CMOS-MEMS

    NASA Astrophysics Data System (ADS)

    Min, Seungook

    A MEMS-based data storage is being developed at CMU for low power, high access speed and low cost. Multi magnetic heads and their actuators are proposed to be fabricated on top of CMOS and to be released with proper masking. We describe the development of a magnetic head process integrated with a CMOS-MEMS process for actuator fabrication. Process integration depends on an understanding of the structure-process-properties relationship of many different processes. Several materials problems were encountered and solved in the course of the process development. The experiment work and rationale for particular choices is discussed. Low stress (<25 MPa), magnetically soft films of permalloy (Ni 80Fe20) were deposited for a MEMS-based data storage application without significant plasma-induced substrate heating. Optimization of film properties was performed using a designed experiment, response surface methodology. The relationship between the results of the factorial experiment is explained based on Murayama's stripe domain theory. The properties of AMR sensors fabricated on structures released by the CMOS post process are characterized. The AMR sensor on the released MEMS structure functions properly and the MR head shows 0.4% MR change. According to our analysis of the required MR properties and its specification, the characteristics of TMR sensor, high intensity signal and low power consumption, well satisfy the requirement of MEMS-based data storage system. A TMR sensor has been built on our yoke type head. We have investigated the planarized surface with AFM for higher accuracy. The polishing mechanisms for oxide and permalloy are studied based on the materials corrosion theory using Pourbaix diagram. In addition, the uniformity of wafer and a cleaning process as a post CMP process were also studied. For simple fabrication processes, a photoresist layer was used as a side wall insulation which reduces process steps such as oxide or nitride deposition, lift-off and/or other additional etching processes. The sensor shows good tunneling I-V characteristics without shunting but it doesn't respond to the magnetic field. It is believed that the over oxidation would oxides the bottom electrode, permalloy, that ruins spin-preserved tunneling.

  2. Enhancing the far-UV sensitivity of silicon CMOS imaging arrays

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Bai, Yibin; Ryu, Kevin K.; Gregory, J. A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winter, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2014-07-01

    We report our progress toward optimizing backside-illuminated silicon PIN CMOS devices developed by Teledyne Imaging Sensors (TIS) for far-UV planetary science applications. This project was motivated by initial measurements at Southwest Research Institute (SwRI) of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures described in Bai et al., SPIE, 2008, which revealed a promising QE in the 100-200 nm range as reported in Davis et al., SPIE, 2012. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include: 1) Representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory (LL); 2) Preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; 3) Detector fabrication was completed through the pre-MBE step; and 4) Initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments. Early results suggest that potential challenges in optimizing the UV-sensitivity of silicon PIN type CMOS devices, compared with similar UV enhancement methods established for CCDs, have been mitigated through our newly developed methods. We will discuss the potential advantages of our approach and briefly describe future development steps.

  3. High dynamic range CMOS image sensor with pixel level ADC and in-situ image enhancement

    NASA Astrophysics Data System (ADS)

    Harton, Austin V.; Ahmed, Mohamed I.; Beuhler, Allyson; Castro, Francisco; Dawson, Linda M.; Herold, Barry W.; Kujawa, Gregory; Lee, King F.; Mareachen, Russell D.; Scaminaci, Tony J.

    2005-03-01

    We describe a CMOS image sensor with pixel level analog to digital conversion (ADC) having high dynamic range (>100db) and the capability of performing many image processing functions at the pixel level during image capture. The sensor has a 102x98 pixel array and is implemented in a 0.18um CMOS process technology. Each pixel is 15.5um x15.5um with 15% fill factor and is comprised of a comparator, two 10 bit memory registers and control logic. A digital to analog converter and system processor are located off-chip. The photodetector produces a photocurrent yielding a photo-voltage proportional to the impinging light intensity. Once the photo-voltage is less than a predetermined global reference voltage; a global code value is latched into the pixel data buffer. This process prevents voltage saturation resulting in high dynamic range imaging. Upon completion of image capture, a digital representation of the image exists at the pixel array, thereby, allowing image data to be accessed in a parallel fashion from the focal plane array. It is demonstrated that by appropriate variation of the global reference voltage with time, it is possible to perform, during image capture, thresholding and image enhancement operations, such as, contrast stretching in a parallel manner.

  4. Compact CMOS Camera Demonstrator (C3D) for Ukube-1

    NASA Astrophysics Data System (ADS)

    Harriss, R. D.; Holland, A. D.; Barber, S. J.; Karout, S.; Burgon, R.; Dryer, B. J.; Murray, N. J.; Hall, D. J.; Smith, P. H.; Grieg, T.; Tutt, J. H.; Endicott, J.; Jerram, P.; Morris, D.; Robbins, M.; Prevost, V.; Holland, K.

    2011-09-01

    The Open University, in collaboration with e2v technologies and XCAM Ltd, have been selected to fly an EO (Earth Observation) technology demonstrator and in-orbit radiation damage characterisation instrument on board the UK Space Agency's UKube-1 pilot Cubesat programme. Cubesat payloads offer a unique opportunity to rapidly build and fly space hardware for minimal cost, providing easy access to the space environment. Based around the e2v 1.3 MPixel 0.18 micron process eye-on-Si CMOS devices, the instrument consists of a radiation characterisation imager as well as a narrow field imager (NFI) and a wide field imager (WFI). The narrow and wide field imagers are expected to achieve resolutions of 25 m and 350 m respectively from a 650 km orbit, providing sufficient swathe width to view the southern UK with the WFI and London with the NFI. The radiation characterisation experiment has been designed to verify and reinforce ground based testing that has been conducted on the e2v eye-on-Si family of devices and includes TEC temperature control circuitry as well as RADFET in-orbit dosimetry. Of particular interest are SEU and SEL effects. The novel instrument design allows for a wide range of capabilities within highly constrained mass, power and space budgets providing a model for future use on similarly constrained missions, such as planetary rovers. Scheduled for launch in December 2011, this 1 year low cost programme should not only provide valuable data and outreach opportunities but also help to prove flight heritage for future missions.

  5. sCMOS detector for imaging VNIR spectrometry

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian

    2013-09-01

    The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.

  6. High speed CMOS/SOS standard cell notebook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The NASA/MSFC high speed CMOS/SOS standard cell family, designed to be compatible with the PR2D (Place, Route in 2-Dimensions) automatic layout program, is described. Standard cell data sheets show the logic diagram, the schematic, the truth table, and propagation delays for each logic cell.

  7. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  8. CMOS image sensors as an efficient platform for glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo

    2013-10-01

    Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications. PMID:23900281

  9. Attributes and drawbacks of submicron CMOS for IR FPA readouts

    NASA Astrophysics Data System (ADS)

    Kozlowski, L. J.

    1998-09-01

    The availability of submicron CMOS has enabled the development of shingle-chip IR cameras having performance capabilities and on-chip functions which were previously impossible. Sensor designers are, however, encoutering and overcoming several challanges including steadily decreasing operating voltage.

  10. Single Event Upset Behavior of CMOS Static RAM Cells

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Jeppson, Kjell O.; Buehler, Martin G.

    1993-01-01

    An improved state-space analysis of the CMOS static RAM cell is presented. Introducing theconcept of the dividing line, the critical charge for heavy-ion-induced upset of memory cells can becalculated considering symmetrical as well as asymmetrical capacitive loads. From the criticalcharge, the upset-rate per bit-day for static RAMs can be estimated.

  11. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  12. CMOS VLSI Layout and Verification of a SIMD Computer

    NASA Technical Reports Server (NTRS)

    Zheng, Jianqing

    1996-01-01

    A CMOS VLSI layout and verification of a 3 x 3 processor parallel computer has been completed. The layout was done using the MAGIC tool and the verification using HSPICE. Suggestions for expanding the computer into a million processor network are presented. Many problems that might be encountered when implementing a massively parallel computer are discussed.

  13. Mechanically Flexible and High-Performance CMOS Logic Circuits

    NASA Astrophysics Data System (ADS)

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-10-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.

  14. Mechanically Flexible and High-Performance CMOS Logic Circuits.

    PubMed

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  15. Mechanically Flexible and High-Performance CMOS Logic Circuits

    PubMed Central

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  16. Low light level CMOS sensor for night vision systems

    NASA Astrophysics Data System (ADS)

    Gross, Elad; Ginat, Ran; Nesher, Ofer

    2015-05-01

    For many years image intensifier tubes were used for night vision systems. In 2014, Elbit systems developed a digital low-light level CMOS sensor, with similar sensitivity to a Gen II image-intensifiers, down to starlight conditions. In this work we describe: the basic principle behind this sensor, physical model for low-light performance estimation and results of field testing.

  17. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  18. CCD AND PIN-CMOS DEVELOPMENTS FOR LARGE OPTICAL TELESCOPE.

    SciTech Connect

    RADEKA, V.

    2006-04-03

    Higher quantum efficiency in near-IR, narrower point spread function and higher readout speed than with conventional sensors have been receiving increased emphasis in the development of CCDs and silicon PIN-CMOS sensors for use in large optical telescopes. Some key aspects in the development of such devices are reviewed.

  19. CMOS Ultra Low Power Radiation Tolerant (CULPRiT) Microelectronics

    NASA Technical Reports Server (NTRS)

    Yeh, Penshu; Maki, Gary

    2007-01-01

    Space Electronics needs Radiation Tolerance or hardness to withstand the harsh space environment: high-energy particles can change the state of the electronics or puncture transistors making them disfunctional. This viewgraph document reviews the use of CMOS Ultra Low Power Radiation Tolerant circuits for NASA's electronic requirements.

  20. CMOS-based avalanche photodiodes for direct particle detection

    NASA Astrophysics Data System (ADS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-08-01

    Active Pixel Sensors (APSs) in complementary metal-oxide-semiconductor (CMOS) technology are augmenting Charge-Coupled Devices (CCDs) as imaging devices and cameras in some demanding optical imaging applications. Radiation Monitoring Devices are investigating the APS concept for nuclear detection applications and has successfully migrated avalanche photodiode (APD) pixel fabrication to a CMOS environment, creating pixel detectors that can be operated with internal gain as proportional detectors. Amplification of the signal within the diode allows identification of events previously hidden within the readout noise of the electronics. Such devices can be used to read out a scintillation crystal, as in SPECT or PET, and as direct-conversion particle detectors. The charge produced by an ionizing particle in the epitaxial layer is collected by an electric field within the diode in each pixel. The monolithic integration of the readout circuitry with the pixel sensors represents an improved design compared to the current hybrid-detector technology that requires wire or bump bonding. In this work, we investigate designs for CMOS APD detector elements and compare these to typical values for large area devices. We characterize the achievable detector gain and the gain uniformity over the active area. The excess noise in two different pixel structures is compared. The CMOS APD performance is demonstrated by measuring the energy spectra of X-rays from 55Fe.

  1. First measurement of the in-pixel electron multiplying with a standard imaging CMOS technology: Study of the EMCMOS concept

    NASA Astrophysics Data System (ADS)

    Brugire, Timothe; Mayer, Frderic; Fereyre, Pierre; Gurin, Cyrille; Dominjon, Agns; Barbier, Rmi

    2015-07-01

    Scientific low light imaging devices benefit today from designs for pushing the mean noise to the single electron level. When readout noise reduction reaches its limit, signal-to-noise ratio improvement can be driven by an electron multiplication process, driven by impact ionization, before adding the readout noises. This concept already implemented in CCD structures using extra-pixel shift registers can today be integrated inside each pixel in CMOS technology. The EBCMOS group at IPNL is in charge of the characterization of new prototypes developed by E2V using this concept: the electron multiplying CMOS (EMCMOS). The CMOS technology enables electron multiplication inside the photodiode itself, and thus, an overlap of the charge integration and multiplication. A new modeling has been developed to describe the output signal mean and variance after the impact ionization process in such a case. In this paper the feasibility of impact ionization process inside a 8 ?m-pitch pixel is demonstrated. The new modeling is also validated by data and a value of 0.32% is obtained for the impact ionization parameter ? with an electric field intensity of 24 V / ?m.

  2. Optical interconnects to silicon CMOS: Integrated optoelectronic modulators and short pulse systems

    NASA Astrophysics Data System (ADS)

    Keeler, Gordon Arthur

    The performance of silicon CMOS integrated circuits has increased dramatically over the past three decades due to the steady reduction in transistor feature sizes. For these advances to continue, a new hurdle must be overcome: the stagnant performance of the electrical wiring used between and within computers. Optical interconnects promise to solve many of the challenges imposed by electrical interconnects because of the favorable physics governing optical signaling. This dissertation describes investigations of optoelectronic devices for use in optical interconnects, as well as several systems-level experiments. The approaches taken in existing optical networks will need to be radically altered for use in future optical interconnects. Factors such as cost, bandwidth density, and power dissipation will necessitate the dense integration of two-dimensional optoelectronic device arrays with conventionally-processed silicon CMOS chips. Hence, arrays of surface-normal GaAs-based electroabsorption modulators and photodiodes were fabricated and flip-chip bonded directly to CMOS microelectronics. The process steps developed for fabricating the quantum-well modulators will be highlighted in this dissertation, and the resulting device performance will be discussed. Resonant-cavity enhancement was used to increase the low-voltage performance of the modulators, making them compatible with future generations of CMOS. A Fabry-Perot cavity-tuning technique will be described, as well as a novel modulator design that employs a first-order cavity to maintain a broad spectral bandwidth at very low voltages. Using these integrated optoelectronic components, a free-space chip-to-chip optical interconnect demonstrator was constructed. The work described herein shows that ultrafast techniques can provide several benefits in such an optically-interconnected system. Bit error rate measurements were used to quantify the improvement in receiver sensitivity that can be achieved by employing "short pulse signaling" instead of the conventional non-return-to-zero (NRZ) data format. The short pulse duration and low jitter output of a modelocked laser enables the removal of transmitter skew and jitter, which was demonstrated using the link. The results of a short pulse pump-probe experiment will also be presented, in which precise time-domain measurements of circuit delay are used to determine the latency of interconnect transmitters and receivers. Finally, several additional advantages of using short pulses for optical interconnection will be described.

  3. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit simulation of extracted netlist is 768 MHz under typical, and 463 MHz under worst case technology and application corner conditions, respectively. Simulated dynamic power dissipation is 0.24 uW MHz-1 at 0.9 V; static power is 38 uW in slow corner, 65 uW in typical corner and 518 uW in fast corner, respectively. The latter can be reduced by 43% in a 40-nm CMOS technology using 0.5 V reverse-backbias. These features are compared with the results from different design styles as well as with an implementation in 28-nm CMOS technology. It is interesting that in the latter case area scales as expected, but worst case performance and energy do not scale well anymore.

  4. Distinct development patterns of c-mos protooncogene expression in female and male mouse germ cells

    SciTech Connect

    Mutter, G.L.; Wolgemuth, D.J.

    1987-08-01

    The protooncogene c-mos is expressed in murine reproductive tissues, producing transcripts of 1.7 and 1.4 kilobases in testis and ovary, respectively. In situ hybridization analysis of c-mos expression in histological sections of mouse ovaries revealed that oocytes are the predominant if not exclusive source of c-mos transcripts. /sup 35/S- or /sup 32/P-labelled RNA probes were transcribed. c-mos transcripts accumulate in growing oocytes, increasing 40- to 90-fold during oocyte and follicular development. c-mos transcripts were also detected in male germ cells and are most abundant after the cells have entered the haploid stage of spermatogenesis. This developmentally regulated pattern of c-mos expression in oocytes and spermatogenic cells suggest that the c-mos gene product may have a function in normal germ-cell differentiation or early embryogenesis.

  5. Hybrid CMOS SiPIN detectors as astronomical imagers

    NASA Astrophysics Data System (ADS)

    Simms, Lance Michael

    Charge Coupled Devices (CCDs) have dominated optical and x-ray astronomy since their inception in 1969. Only recently, through improvements in design and fabrication methods, have imagers that use Complimentary Metal Oxide Semiconductor (CMOS) technology gained ground on CCDs in scientific imaging. We are now in the midst of an era where astronomers might begin to design optical telescope cameras that employ CMOS imagers. The first three chapters of this dissertation are primarily composed of introductory material. In them, we discuss the potential advantages that CMOS imagers offer over CCDs in astronomical applications. We compare the two technologies in terms of the standard metrics used to evaluate and compare scientific imagers: dark current, read noise, linearity, etc. We also discuss novel features of CMOS devices and the benefits they offer to astronomy. In particular, we focus on a specific kind of hybrid CMOS sensor that uses Silicon PIN photodiodes to detect optical light in order to overcome deficiencies of commercial CMOS sensors. The remaining four chapters focus on a specific type of hybrid CMOS Silicon PIN sensor: the Teledyne Hybrid Visible Silicon PIN Imager (HyViSI). In chapters four and five, results from testing HyViSI detectors in the laboratory and at the Kitt Peak 2.1m telescope are presented. We present our laboratory measurements of the standard detector metrics for a number of HyViSI devices, ranging from 1k×1k to 4k×4k format. We also include a description of the SIDECAR readout circuit that was used to control the detectors. We then show how they performed at the telescope in terms of photometry, astrometry, variability measurement, and telescope focusing and guiding. Lastly, in the final two chapters we present results on detector artifacts such as pixel crosstalk, electronic crosstalk, and image persistence. One form of pixel crosstalk that has not been discussed elsewhere in the literature, which we refer to as Interpixel Charge Transfer (IPCT), is introduced. This effect has an extremely significant impact on x-ray astronomy. For persistence, a new theory and accompanying simulations are presented to explain latent images in the HyViSI. In consideration of these artifacts and the overall measured performance, we argue that HyViSI sensors are ready for application in certain regimes of astronomy, such as telescope guiding, measurements of fast planetary transits, and x-ray imaging, but not for others, such as deep field imaging and large focal plane astronomical surveys.

  6. A large area CMOS detector for shutterless collection of x-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Westbrook, E. M.; Lavender, W. M.; Nix, J. C.

    2014-03-01

    Recent developments in CMOS devices have improved their radiation hardness, response linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large (14.8 x 9.4 cm) CMOS sensors with a pixel size of 100 x100 microns are now available that can be butted together on three sides. We have fabricated a 6-tile system in a 2x3 array with a 28.2 x 29.5 cm continuous imaging area. To make an x-ray detector the CMOS sensor is covered with a 3 mm flat fibre-optic plate (for radiation protection) and a Gd2O2S:Tb scintillator screen. A special feature of these systems is that they can be read out continuously at 10 frames/sec with excellent dynamic range without interrupting data collection. We have installed this system at beamline 4.4.2 of the Advanced Light Source synchrotron. Anomalous diffraction data were recorded without an x-ray shutter, rotating the crystal sample continuously with an exposure time of 0.1 sec/frame and a rotation speed of 1°/sec for 180 degrees. The 1,800 frame datasets were processed in D*TREK and XDS data analysis programs and experimental phases were determined in PHENIX. The crystallographic results are typically significantly better than equivalent data recorded on a conventional CCD system, due to the 10X finer angular resolution of the recorded data. Very large systems can now be made that would have an active area of 56 x 59 cm2 with 33 x 106 pixels.

  7. A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology.

    PubMed

    Huang, C-W; Huang, Y-J; Yen, P-W; Tsai, H-H; Liao, H-H; Juang, Y-Z; Lu, S-S; Lin, C-T

    2013-11-21

    As developments of modern societies, an on-field and personalized diagnosis has become important for disease prevention and proper treatment. To address this need, in this work, a polysilicon nanowire (poly-Si NW) based biosensor system-on-chip (bio-SSoC) is designed and fabricated by a 0.35 μm 2-Poly-4-Metal (2P4M) complementary metal-oxide-semiconductor (CMOS) process provided by a commercialized semiconductor foundry. Because of the advantages of CMOS system-on-chip (SoC) technologies, the poly-Si NW biosensor is integrated with a chopper differential-difference amplifier (DDA) based analog-front-end (AFE), a successive approximation analog-to-digital converter (SAR ADC), and a microcontroller to have better sensing capabilities than a traditional Si NW discrete measuring system. In addition, an on-off key (OOK) wireless transceiver is also integrated to form a wireless bio-SSoC technology. This is pioneering work to harness the momentum of CMOS integrated technology into emerging bio-diagnosis technologies. This integrated technology is experimentally examined to have a label-free and low-concentration biomolecular detection for both Hepatitis B Virus DNA (10 fM) and cardiac troponin I protein (3.2 pM). Based on this work, the implemented wireless bio-SSoC has demonstrated a good biomolecular sensing characteristic and a potential for low-cost and mobile applications. As a consequence, this developed technology can be a promising candidate for on-field and personalized applications in biomedical diagnosis. PMID:24080725

  8. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    PubMed

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS. PMID:26357405

  9. CMOS compatible micro-scintillators for wireless multi-species radiation detection and tracking

    NASA Astrophysics Data System (ADS)

    Waguespack, Randy; Wilson, Chester G.

    2010-04-01

    This paper reports on an integrated system of wirelessly linked radiation detectors that are sensitive to alpha, beta, gamma, and neutron radiation. The detectors use glass and quartz doped with 10B nanoparticles to detect impinging radiation producing varying optical pulses which exit the material. The varying optical pulses are differentiated by onchip pulse height spectroscopy. Signal discrimination is done with on-chip CMOS circuitry using a 0.35 μm process and a photodiode or photo-multiplier (PM) tube. On-chip CMOS interfacing is key to the production of small integrated radiation detection packages that are cheaper, more reliable, and easier to produce than assembled devices that use commercial off-the-shelf parts. CMOS packages are designed for low power consumption with maximum battery life; this lends itself to creating small, hard to detect radiation sensor packages that are easy to integrate with wireless sensor nodes. The network would use a mesh configuration and transmit real time radiation information from each node to a local hub. As a radiation source enters the coverage area, the data from sensors in the immediate area is transmitted and compared to find the location of the source. Pinpointing the source is achieved by comparing data received from each node. Radiation testing was done using 241Am, 90Sr, and 60Co sources for alpha, beta, and gamma particles. Initial results show that quartz and glass scintillators doped with boron are able to detect each form of radiation. The quartz scintillator is also able to detect neutron radiation particles, which being neutral, are undetected with traditional solid state radiation detectors.

  10. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  11. An RF Energy Harvester System Using UHF Micropower CMOS Rectifier Based on a Diode Connected CMOS Transistor

    PubMed Central

    Shokrani, Mohammad Reza; Hamidon, Mohd Nizar B.; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18 μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology. PMID:24782680

  12. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    PubMed

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology. PMID:24782680

  13. Real-time optically sectioned wide-field microscopy employing structured light illumination and a CMOS detector

    NASA Astrophysics Data System (ADS)

    Mitic, Jelena; Anhut, Tiemo; Serov, Alexandre; Lasser, Theo; Bourquin, Stephane

    2003-07-01

    Real-time optically sectioned microscopy is demonstrated using an AC-sensitive detection concept realized with smart CMOS image sensor and structured light illumination by a continuously moving periodic pattern. We describe two different detection systems based on CMOS image sensors for the detection and on-chip processing of the sectioned images in real time. A region-of-interest is sampled at high frame rate. The demodulated signal delivered by the detector corresponds to the depth discriminated image of the sample. The measured FWHM of the axial response depends on the spatial frequency of the projected grid illumination and is in the ?m-range. The effect of using broadband incoherent illumination is discussed. The performance of these systems is demonstrated by imaging technical as well as biological samples.

  14. Note: All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, You-Ting; Liu, Keng-Chih

    2015-12-01

    This paper presents an all-digital CMOS pulse-shrinking mechanism suitable for time-to-digital converters (TDCs). A simple MOS capacitor is used as a pulse-shrinking cell to perform time attenuation for time resolving. Compared with a previous pulse-shrinking mechanism, the proposed mechanism provides an appreciably improved temporal resolution with high linearity. Furthermore, the use of a binary-weighted pulse-shrinking unit with scaled MOS capacitors is proposed for achieving a programmable resolution. A TDC involving the proposed mechanism was fabricated using a TSMC (Taiwan Semiconductor Manufacturing Company) 0.18-μm CMOS process, and it has a small area of nearly 0.02 mm2 and an integral nonlinearity error of ±0.8 LSB for a resolution of 24 ps.

  15. CMOS image sensor with lateral electric field modulation pixels for fluorescence lifetime imaging with sub-nanosecond time response

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2016-04-01

    This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.

  16. Note: All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters.

    PubMed

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, You-Ting; Liu, Keng-Chih

    2015-12-01

    This paper presents an all-digital CMOS pulse-shrinking mechanism suitable for time-to-digital converters (TDCs). A simple MOS capacitor is used as a pulse-shrinking cell to perform time attenuation for time resolving. Compared with a previous pulse-shrinking mechanism, the proposed mechanism provides an appreciably improved temporal resolution with high linearity. Furthermore, the use of a binary-weighted pulse-shrinking unit with scaled MOS capacitors is proposed for achieving a programmable resolution. A TDC involving the proposed mechanism was fabricated using a TSMC (Taiwan Semiconductor Manufacturing Company) 0.18-μm CMOS process, and it has a small area of nearly 0.02 mm(2) and an integral nonlinearity error of ±0.8 LSB for a resolution of 24 ps. PMID:26724094

  17. Design of dynamic-floating-gate technique for output ESD protection in deep-submicron CMOS technology

    NASA Astrophysics Data System (ADS)

    Chang, Hun-Hsien; Ker, Ming-Dou; Wu, Jiin-Chuan

    1999-02-01

    A novel dynamic-floating-gate technique is proposed to improve ESD robustness of the CMOS output buffers with small driving/sinking currents. This dynamic-floating-gate design can effectively solve the ESD protection issue which is due to the different circuit connections on the output devices. By adding suitable time delay to dynamically float the gates of the output NMOS/PMOS devices which are originally unused in the output buffer, the human-body-model (machine-model) ESD failure threshold of a 2-mA output buffer can be practically improved from the original 1.0 kV (100 V) up to greater than 8 kV (1500 V) in a 0.35-?m bulk CMOS process.

  18. Development of a CMOS MEMS pressure sensor with a mechanical force-displacement transduction structure

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Lin; Chang, Heng-Chung; Chang, Chun-I.; Fang, Weileun

    2015-12-01

    This study presents a capacitive pressure sensor with a mechanical force-displacement transduction structure based on the commercially available standard CMOS process (the TSMC 0.18 μm 1P6M CMOS process). The pressure sensor has a deformable diaphragm to support a movable plate with an embedded sensing electrode. As the diaphragm is deformed by the ambient pressure, the movable plate and its embedded sensing electrode are displaced. Thus, the pressure is detected from the capacitance change between the movable and fixed electrodes. The undeformed movable electrode will increase the effective sensing area between the sensing electrodes, thereby improving the sensitivity. Experimental results show that the proposed pressure sensor with a force-displacement transducer will increase the sensitivity by 126% within the 20 kPa-300 kPa absolute pressure range. Moreover, this study extends the design to add pillars inside the pressure sensor to further increase its sensing area as well as sensitivity. A sensitivity improvement of 117% is also demonstrated for a pressure sensor with an enlarged sensing electrode (the overlap area is increased two fold).

  19. A CMOS pressure sensor with integrated interface for passive RFID applications

    NASA Astrophysics Data System (ADS)

    Deng, Fangming; He, Yigang; Wu, Xiang; Fu, Zhihui

    2014-12-01

    This paper presents a CMOS pressure sensor with integrated interface for passive RFID sensing applications. The pressure sensor consists of three parts: top electrode, dielectric layer and bottom electrode. The dielectric layer consists of silicon oxide and an air gap. The bottom electrode is made of polysilicon. The gap is formed by sacrificial layer release and the Al vapor process is used to seal the gap and form the top electrode. The sensor interface is based on phase-locked architecture, which allows the use of fully digital blocks. The proposed pressure sensor and interface is fabricated in a 0.18 μm CMOS process. The measurement results show the pressure sensor achieves excellent linearity with a sensitivity of 1.2 fF kPa-1. The sensor interface consumes only 1.1 µW of power at 0.5 V voltage supply, which is at least an order of magnitude better than state-of-the-art designs.

  20. Design of a Programmable Gain, Temperature Compensated Current-Input Current-Output CMOS Logarithmic Amplifier.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-15

    This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μ m CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/ (°)C (27 (°)C- 57(°)C), while consuming less than 100 nW of power. PMID:23955789

  1. CMOS-Compatible Silicon-Nanowire-Based Coulter Counter for Cell Enumeration.

    PubMed

    Chen, Yu; Guo, Jinhong; Muhammad, Hamidullah; Kang, Yuejun; Ary, Sunil K

    2016-02-01

    A silicon-nanowire-based Coulter counter has been designed and fabricated for particle/cell enumeration. The silicon nanowire was fabricated in a fully complementary metal-oxide-semiconductor (CMOS)-compatible process and used as a field effect transistor (FET) device. The Coulter counter device worked on the principle of potential change detection introduced by the passing of microparticles/cells through a sensing channel. Device uniformity was confirmed by scanning electron microscopy and transmission electron microscopy. Current-voltage measurement showed the high sensitivity of the nanowire FET device to the surface potential change. The results revealed that the silicon-nanowire-based Coulter counter can differentiate polystyrene beads with diameters of 8 and 15 μm. Michigan Cancer Foundation-7 (MCF-7) cells have been successfully counted to validate the device. A fully CMOS-compatible fabrication process can help the device integration and facilitate the development of sensor arrays for high throughput application. With appropriate sample preparation steps, it is also possible to expand the work to applications such as rare-cells detection. PMID:26799578

  2. Scaling studies of CMOS SRAM soft-error tolerances - From 16 K to 256 K

    NASA Astrophysics Data System (ADS)

    Fu, J. S.; Hewlett, F. W.; Flores, R.; Lee, K. H.; Koga, R.

    1987-12-01

    The processing and design geometric scaling effects on the soft-error tolerance levels of the 16 K 2-micron technology and the 256 K 1-micron technology CMOS SRAMs are separated by fabricating the 16 K 2-micron design with the 1-micron process. Although the 1-micron twin-tub process is inherently more tolerant than the p-well process to soft errors, the densely packed 1-micron memory cells become very soft because of the dominant effect of the channel width reduction. An advanced device-plus-circuit simulator was used to calculate the differential contribution from each of the vertical and lateral dimensional changes involved in the technology transition. Good agreement between the simulations and the experimental data is reached by properly correcting the two-dimensional model to account for the phenomenal saturation effect involving very heavy ions.

  3. Efficient design method for cell allocation in hybrid CMOS/nanodevices using a cultural algorithm with chaotic behavior

    NASA Astrophysics Data System (ADS)

    Pan, Zhong-Liang; Chen, Ling; Zhang, Guang-Zhao

    2016-04-01

    The hybrid CMOS molecular (CMOL) circuit, which combines complementary metal-oxide-semiconductor (CMOS) components with nanoscale wires and switches, can exhibit significantly improved performance. In CMOL circuits, the nanodevices, which are called cells, should be placed appropriately and are connected by nanowires. The cells should be connected such that they follow the shortest path. This paper presents an efficient method of cell allocation in CMOL circuits with the hybrid CMOS/nanodevice structure; the method is based on a cultural algorithm with chaotic behavior. The optimal model of cell allocation is derived, and the coding of an individual representing a cell allocation is described. Then the cultural algorithm with chaotic behavior is designed to solve the optimal model. The cultural algorithm consists of a population space, a belief space, and a protocol that describes how knowledge is exchanged between the population and belief spaces. In this paper, the evolutionary processes of the population space employ a genetic algorithm in which three populations undergo parallel evolution. The evolutionary processes of the belief space use a chaotic ant colony algorithm. Extensive experiments on cell allocation in benchmark circuits showed that a low area usage can be obtained using the proposed method, and the computation time can be reduced greatly compared to that of a conventional genetic algorithm.

  4. A built-in SRAM for radiation hard CMOS pixel sensors dedicated to high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Wei, Xiaomin; Gao, Deyuan; Doziere, Guy; Hu, Yann

    2013-02-01

    CMOS pixel sensors (CPS) are attractive candidates for charged particle tracking in high energy physics experiments. However, CPS chips fabricated with standard CMOS processes, especially the built-in SRAM IP cores, are not radiation hard enough for this application. This paper presents a radiation hard SRAM for improving the CPS radiation tolerance. The SRAM cell is hardened by increasing the static noise margin (SNM) and adding P+ guard rings in layout. The peripheral circuitry is designed by building a radiation-hardened logic library. The SRAM internal timing control is hardened by a self-adaptive timing design. Finally, the SRAM design was implemented and tested in the Austriamicrosystems (AMS) 0.35 μm standard CMOS process. The prototype chips are adapted to work with frequencies up to 80 MHz, power supply voltages from 2.9 V to 3.3 V and temperatures from 0 °C to 60 °C. The single event latchup (SEL) tolerance is improved from 5.2 MeV cm2/mg to above 56 MeV cm2/mg. The total ionizing dose (TID) tolerance is enhanced by the P+ guard rings and the self-adaptive timing design. The single event upset (SEU) effects are also alleviated due to the high SNM SRAM cell and the P+ guard rings. In the near future, the presented SRAM will be integrated in the CPS chips for the STAR experiments.

  5. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The diagonal-switch and memory addresses would be generated by the on-chip controller. The memory array would be large enough to hold differential signals acquired from all 8 windows during a frame period. Following the rapid sampling from all the windows, the contents of the memory array would be read out sequentially by use of a capacitive transimpedance amplifier (CTIA) at a maximum data rate of 10 MHz. This data rate is compatible with an update rate of almost 10 Hz, even in full-frame operation

  6. Automatic Synthesis of CMOS Algorithmic Analog To-Digital Converter.

    NASA Astrophysics Data System (ADS)

    Jusuf, Gani

    The steady decrease in technological feature size is allowing increasing levels of integration in analog/digital interface functions. These functions consist of analog as well as digital circuits. While the turn around time for an all digital IC chip is very short due to the maturity of digital IC computer-aided design (CAD) tools over the last ten years, most analog circuits have to be designed manually due to the lack of analog IC CAD tools. As a result, analog circuit design becomes the bottleneck in the design of mixed signal processing chips. One common analog function in a mixed signal processing chip is an analog-to-digital conversion (ADC) function. This function recurs frequently but with varying performance requirements. The objective of this research is to study the design methodology of a compilation program capable of synthesizing ADC's with a broad range of sampling rates and resolution, and silicon area and performance comparable with the manual approach. The automatic compilation of the ADC function is a difficult problem mainly because ADC techniques span such a wide spectrum of performance, with radically different implementations being optimum for different ranges of conversion range, resolution, and power dissipation. We will show that a proper choice of the ADC architectures and the incorporation of many analog circuit design techniques will simplify the synthesis procedure tremendously. Moreover, in order to speed up the device sizing, hierarchical optimization procedure and behavioral simulation are implemented into the ADC module generation steps. As a result of this study, a new improved algorithmic ADC without the need of high precision comparators has been developed. This type of ADC lends itself to automatic generation due to its modularity, simplicity, small area consumption, moderate speed, low power dissipation, and single parameter trim capability that can be added at high resolution. Furthermore, a performance-driven CMOS ADC module generator, CADICS based on design rules and spice parameters has been developed. CADICS takes a set of input files and generates the complete ADC netlist, layout, and performance summary. A prototype of the automatically generated ADC has also been fabricated and tested.

  7. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    NASA Astrophysics Data System (ADS)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; Han, Mikyung; Ji, Rong; Li, Xiaoting; Mei, Yuan; Sun, Quan; Sun, Xiangming; Wang, Kai; Xiao, Le; Yang, Ping; Zhou, Wei

    2016-02-01

    We report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a < 15e- analog noise and a 200e- minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.

  8. A 3.1-4.8 GHz CMOS receiver for MB-OFDM UWB

    NASA Astrophysics Data System (ADS)

    Guang, Yang; Wang, Yao; Jiangwei, Yin; Renliang, Zheng; Wei, Li; Ning, Li; Junyan, Ren

    2009-01-01

    An integrated fully differential ultra-wideband CMOS receiver for 3.1-4.8 GHz MB-OFDM systems is presented. A gain controllable low noise amplifier and a merged quadrature mixer are integrated as the RF front-end. Five order Gm-C type low pass filters and VGAs are also integrated for both I and Q IF paths in the receiver. The ESD protected chip is fabricated in a Jazz 0.18 μm RF CMOS process and achieves a maximum total voltage gain of 65 dB, an AGC range of 45 dB with about 6 dB/step, an averaged total noise figure of 6.4 to 8.8 dB over 3 bands and an in-band IIP3 of -5.1 dBm. The receiver occupies 2.3 mm2 and consumes 110 mA from a 1.8 V supply including test buffers and a digital module.

  9. A CMOS Energy Harvesting and Imaging (EHI) Active Pixel Sensor (APS) Imager for Retinal Prosthesis.

    PubMed

    Ay, S U

    2011-12-01

    A CMOS image sensor capable of imaging and energy harvesting on same focal plane is presented for retinal prosthesis. The energy harvesting and imaging (EHI) active pixel sensor (APS) imager was designed, fabricated, and tested in a standard 0.5 μm CMOS process. It has 54 × 50 array of 21 × 21 μm(2) EHI pixels, 10-bit supply boosted (SB) SAR ADC, and charge pump circuits consuming only 14.25 μW from 1.2 V and running at 7.4 frames per second. The supply boosting technique (SBT) is used in an analog signal chain of the EHI imager. Harvested solar energy on focal plane is stored on an off-chip capacitor with the help of a charge pump circuit with better than 70% efficiency. Energy harvesting efficiency of the EHI pixel was measured at different light levels. It was 9.4% while producing 0.41 V open circuit voltage. The EHI imager delivers 3.35 μW of power was delivered to a resistive load at maximum power point operation. The measured pixel array figure of merit (FoM) was 1.32 pW/frame/pixel while imager figure of merit (iFoM) including whole chip power consumption was 696 fJ/pixel/code for the EHI imager. PMID:23852551

  10. CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones

    NASA Astrophysics Data System (ADS)

    Yoo, Youngjin; Lee, SeongDeok; Choe, Wonhee; Kim, Chang-Yong

    2007-02-01

    Digital images captured from CMOS image sensors suffer Gaussian noise and impulsive noise. To efficiently reduce the noise in Image Signal Processor (ISP), we analyze noise feature for imaging pipeline of ISP where noise reduction algorithm is performed. The Gaussian noise reduction and impulsive noise reduction method are proposed for proper ISP implementation in Bayer domain. The proposed method takes advantage of the analyzed noise feature to calculate noise reduction filter coefficients. Thus, noise is adaptively reduced according to the scene environment. Since noise is amplified and characteristic of noise varies while the image sensor signal undergoes several image processing steps, it is better to remove noise in earlier stage on imaging pipeline of ISP. Thus, noise reduction is carried out in Bayer domain on imaging pipeline of ISP. The method is tested on imaging pipeline of ISP and images captured from Samsung 2M CMOS image sensor test module. The experimental results show that the proposed method removes noise while effectively preserves edges.

  11. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.

    PubMed

    Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang

    2015-08-24

    Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS. PMID:26368174

  12. Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  13. A high efficiency PWM CMOS class-D audio power amplifier

    NASA Astrophysics Data System (ADS)

    Zhangming, Zhu; Lianxi, Liu; Yintang, Yang; Han, Lei

    2009-02-01

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 × 1.52 mm2. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  14. Room temperature lasing in GeSn alloys: A path to CMOS-compatible infrared lasers

    NASA Astrophysics Data System (ADS)

    Li, Zairui; Zhao, Yun; Gallagher, James; Menéndez, José; Kouvetakis, John; Agha, Imad; Mathews, Jay

    The semiconductor industry has been pushing silicon photonics development for many years, resulting in the realization of many CMOS-compatible optoelectronic devices. However, one challenge that has not been overcome is the development of Si-based lasers. Recently, GeSn alloys grown on Si have shown much promise in the field of infrared optoelectronics. These alloy films are compatible with CMOS processing, have band gaps in the infrared, and the band structure of GeSn can be tuned via Sn concentration to induce direct band gap emission. In this work, we report on room temperature lasing in optically-pumped waveguides fabricated from GeSn films grown epitaxially on Si(100) substrates. The waveguides were defined using standard UV photolithography and dry-etched in a Cl plasma. The end facets were mirror polished, and Al was deposited on one facet to enhance cavity quality. The waveguides were optically-pumped using a 976nm wavelength solid-state laser, and the corresponding emission was measured. The dependence of the emission power on the pump power shows a clear transition between spontaneous and stimulated emission, thereby demonstrating room temperature lasing.

  15. Nanoscaled Semiconductor Heterostructures for CMOS Transistors Formed by Ion Implantation and Hydrogen Transfer

    NASA Astrophysics Data System (ADS)

    Popov, Vladimir; Tyschenko, Ida; Cherkov, Alexander; Voelskow, Matthias

    Bulk silicon devices are unlikely to be feasible for the planar 22 nm technological node due to commensurate degradation of carrier mobility. New types of substrate are therefore needed for further scaling in CMOS microelectronics. We consider here semiconductor heterostructure on insulator (HOI) which are compatible with current silicon planar CMOS technology. Specfically, we investigate effects associated with interface mediated endotaxial (IME) growth of thin semiconductor film at Si/SiO2 bonded interface which are experimentally observed and investigated for the first time. The semiconductor material stack was obtained by hydrogen transfer of one layer material (silicon) and a second one (germanium or indium antimonide) placed on amorphous silicon dioxide film. Firstly, thin film dual layer Si-Ge heterostructure properties were considered. Si-Ge HOI structures were obtained using Ge ion implantation into silicon dioxide followed by Ge segregation to the interface between the directly bonded silicon and silicon dioxide wafers. The method is also compatible with A3B5 thin film formation, as shown for an InSb film. Thermodynamic, kinetic and lattice mismatch parameter influences on IME process are considered.

  16. Advances in CMOS Solid-state Photomultipliers for Scintillation Detector Applications

    PubMed Central

    Christian, James F.; Stapels, Christopher J.; Johnson, Erik B.; McClish, Mickel; Dokhale, Purushotthom; Shah, Kanai S.; Mukhopadhyay, Sharmistha; Chapman, Eric; Augustine, Frank L.

    2014-01-01

    Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries. This work describes the characterization and performance of these devices for scintillation detector applications. This work also describes the terms contributing to device noise in terms of the excess noise of the SSPM, the binomial statistics governing the number of pixels triggered by a scintillation event, and the background, or thermal, count rate. The fluctuations associated with these terms limit the resolution of the signal pulse amplitude. We explore the use of pixel-level signal conditioning, and characterize the performance of a prototype SSPM device that preserves the digital nature of the signal. In addition, we explore designs of position-sensitive SSPM detectors for medical imaging applications, and characterize their performance. PMID:25540471

  17. Using a large area CMOS APS for direct chemiluminescence detection in Western blotting electrophoresis

    NASA Astrophysics Data System (ADS)

    Esposito, Michela; Newcombe, Jane; Anaxagoras, Thalis; Allinson, Nigel M.; Wells, Kevin

    2012-03-01

    Western blotting electrophoretic sequencing is an analytical technique widely used in Functional Proteomics to detect, recognize and quantify specific labelled proteins in biological samples. A commonly used label for western blotting is Enhanced ChemiLuminescence (ECL) reagents based on fluorescent light emission of Luminol at 425nm. Film emulsion is the conventional detection medium, but is characterized by non-linear response and limited dynamic range. Several western blotting digital imaging systems have being developed, mainly based on the use of cooled Charge Coupled Devices (CCDs) and single avalanche diodes that address these issues. Even so these systems present key drawbacks, such as a low frame rate and require operation at low temperature. Direct optical detection using Complementary Metal Oxide Semiconductor (CMOS) Active Pixel Sensors (APS)could represent a suitable digital alternative for this application. In this paper the authors demonstrate the viability of direct chemiluminescent light detection in western blotting electrophoresis using a CMOS APS at room temperature. Furthermore, in recent years, improvements in fabrication techniques have made available reliable processes for very large imagers, which can be now scaled up to wafer size, allowing direct contact imaging of full size western blotting samples. We propose using a novel wafer scale APS (12.8 cm×13.2 cm), with an array architecture using two different pixel geometries that can deliver an inherently low noise and high dynamic range image at the same time representing a dramatic improvement with respect to the current western blotting imaging systems.

  18. A 12-bit 500KSPS cyclic ADC for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Li, Zhaohan; Wang, Gengyun; Peng, Leli; Ma, Cheng; Chang, Yuchun

    2015-03-01

    At present, single-slope analog-to-digital convertor (ADC) is widely used in the readout circuits of CMOS image sensor (CIS) while its main drawback is the high demand for the system clock frequency. The more pixels and higher ADC resolution the image sensor system needs, the higher system clock frequency is required. To overcome this problem in high dynamic range CIS system, this paper presents a 12-bit 500-KS/s cyclic ADC, in which the system clock frequency is 5MHz. Therefore, comparing with the system frequency of 2N×fS for the single-slope ADC, where fS, N is the sampling frequency and resolution, respectively, the higher ADC resolution doesn't need the higher system clock frequency. With 0.18μm CMOS process, the circuit layout is realized and occupies an area of 8μm×374μm. Post simulation results show that Signal-to-Noise-and-Distortion-Ratio (SNDR) and Efficient Number of Bit (ENOB) reaches 63.7dB and 10.3bit, respectively.

  19. Using Polynomials to Simplify Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS Image Sensors

    PubMed Central

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-01-01

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient. PMID:26501287

  20. A CMOS integrating amplifier for the PHENIX Ring Imaging Cherenkov detector

    SciTech Connect

    Wintenberg, A.L.; Jones, J.P.; Young, G.R.; Moscone, C.G.

    1998-06-01

    A CMOS integrating amplifier has been developed for use in the PHENIX Ring Imaging Cherenkov (RICH) detector. The amplifier, consisting of a charge-integrating amplifier followed by a variable gain amplifier (VGA), is an element of a photon measurement system comprising a photomultiplier tube, a wideband, gain-of-10 amplifier, the integrating amplifier, and an analog memory followed by an ADC and double correlated sampling implemented in software. The integrating amplifier is designed for a nominal full scale input of 160 pC with a gain of 20 mV/pC and a dynamic range of 1,000:1. The VGA is used for equalizing gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held to approximately 20 ns using switched compensation in the VGA. Details of the design and results from several prototype devices fabricated in 1.2 {micro}m Orbit CMOS are presented. A complete noise analysis of the integrating amplifier and the correlated sampling process is included as well as a comparison of calculated, simulated and measured results.

  1. A CMOS Integrating Amplifier for the PHENIX Ring Imaging Cherenkov detector

    SciTech Connect

    Wintenberg, A.L.; Jones, J.P. Jr.; Young, G.R.; Moscone, C.G.

    1997-11-01

    A CMOS integrating amplifier has been developed for use in the PHENIX Ring Imaging Cherenkov (RICH) detector. The amplifier, consisting of a charge-integrating amplifier followed by a variable gain amplifier (VGA), is an element of a photon measurement system comprising a photomultiplier tube, a wideband, gain of 10 amplifier, the integrating amplifier, and an analog memory followed by an ADC and double correlated sampling implemented in software. The integrating amplifier is designed for a nominal full scale input of 160 pC with a gain of 20 mV/pC and a dynamic range of 1000:1. The VGA is used for equalizing gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5 bits digital control, and the risetime is held to approximately 20 ns using switched compensation in the VGA. Details of the design and results from several prototype devices fabricated in 1.2 {micro}m Orbit CMOS are presented. A complete noise analysis of the integrating amplifier and the correlated sampling process is included as well as a comparison of calculated, simulated and measured results.

  2. A Low-power CMOS BFSK Transceiver for Health Monitoring Systems

    PubMed Central

    Kim, Sungho; Lepkowski, William; Wilk, Seth J.; Thornton, Trevor J.; Bakkaloglu, Bertan

    2014-01-01

    A CMOS low-power transceiver for implantable and external health monitoring devices operating in the MICS band is presented. The LNA core has an integrated mixer in a folded configuration to reuse the bias current, allowing high linearity with a low power supply levels. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. An all digital frequency-locked loop is used for LO generation in the RX mode and for driving a class AB power amplifier in the TX mode. The MICS transceiver is designed and fabricated in a 0.18μm 1-poly, 6-metal CMOS process. The sensitivities of −70dBm and −98dBm were achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600μW and 1.5mW at 1.2V and 1.8V, respectively. The BERs are less than 10−3 at the input powers of −70dBm at 1.2V and −98dBm at 1.8V at the data rate of 100kb/s. Finally, the output power of the transmitter is 0dBm for a power consumption of 1.8mW. PMID:24473462

  3. A Wideband Noise-canceling CMOS LNA Using Cross-coupled Feedback and Bulk Effect

    NASA Astrophysics Data System (ADS)

    Guo, Benqing; Yang, Guoning; An, Shiquan

    2014-05-01

    An improved wideband common-gate (CG) and common-source (CS) CMOS LNA with noise cancellation is proposed. The cross-coupled feedback between the CG input transistor and the cascode transistor of CS input stage is used to increase the input transconductance of the LNA. And the bulk effect of CS input transistors is utilized to enhance gm-boosting coefficient. Thus, comparable gain and noise are achieved by reduced bias currents of the LNA while the resulted additional NF degradation is negligible. Fabricated in a 0.13 ?m RF CMOS process, the LNA achieves a flat voltage gain of 18 dB, an NF of 2.7~3.2 dB, and an IIP3 of -4.5~-7.4 dBm over a 3 dB bandwidth of 0.1~4.4 GHz. It consumes only 4.1 mA from a 1 V supply and occupies an area of 520 490 um2. In contrast to those of reported wideband LNAs, the proposed LNA has the merit of lower power consumption and lower supply voltage.

  4. Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Pui, Tze-Sian; Agarwal, Ajay; Ye, Feng; Tou, Zhi-Qiang; Huang, Yinxi; Chen, Peng

    2009-09-01

    Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes.Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes. Electronic supplementary information (ESI) available: Process diagram of nanowire fabrication; specificity of nanowire detection; induced differentiation of 3T3-L1 cells. See DOI: 10.1039/b9nr00092e

  5. 12-inch-wafer-scale CMOS active-pixel sensor for digital mammography

    NASA Astrophysics Data System (ADS)

    Heo, Sung Kyn; Kosonen, Jari; Hwang, Sung Ha; Kim, Tae Woo; Yun, Seungman; Kim, Ho Kyung

    2011-03-01

    This paper describes the development of an active-pixel sensor (APS) panel, which has a field-of-view of 23.1×17.1 cm and features 70-μm-sized pixels arranged in a 3300×2442 array format, for digital mammographic applications. The APS panel was realized on 12-inch wafers based on the standard complementary metal-oxide-semiconductor (CMOS) technology without physical tiling processes of several small-area sensor arrays. Electrical performance of the developed panel is described in terms of dark current, full-well capacity and leakage current map. For mammographic imaging, the optimized CsI:Tl scintillator is experimentally determined by being combined with the developed panel and analyzing im aging characteristics, such as modulation-transfer function, noise-power spectrum, detective quantum efficiency, image l ag, and contrast-detail analysis by using the CDMAM 3.4 phantom. With these results, we suggest that the developed CMOS-based detector can be used for conventional and advanced digital mammographic applications.

  6. A 16 × 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell.

    PubMed

    Couniot, Numa; Francis, Laurent A; Flandre, Denis

    2016-04-01

    We present a 16 × 16 CMOS biosensor array aiming at impedance detection of whole-cell bacteria. Each 14 μm×16 μm pixel comprises high-sensitive passivated microelectrodes connected to an innovative readout interface based on charge sharing principle for capacitance-to-voltage conversion and subthreshold gain stage to boost the sensitivity. Fabricated in a 0.25 μm CMOS process, the capacitive array was experimentally shown to perform accurate dielectric measurements of the electrolyte up to electrical conductivities of 0.05 S/m, with maximal sensitivity of 55 mV/fF and signal-to-noise ratio (SNR) of 37 dB. As biosensing proof of concept, real-time detection of Staphylococcus epidermidis binding events was experimentally demonstrated and provides detection limit of ca. 7 bacteria per pixel and sensitivity of 2.18 mV per bacterial cell. Models and simulations show good matching with experimental results and provide a comprehensive analysis of the sensor and circuit system. Advantages, challenges and limits of the proposed capacitive biosensor array are finally described with regards to literature. With its small area and low power consumption, the present capacitive array is particularly suitable for portable point-of-care (PoC) diagnosis tools and lab-on-chip (LoC) systems. PMID:25974947

  7. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    PubMed Central

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U.

    2015-01-01

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle. PMID:25756863

  8. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors

    PubMed Central

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-01-01

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within −Tclk~+Tclk. A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration. PMID:26561819

  9. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-01-01

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration. PMID:26561819

  10. Novel CMOS time-delay integration using single-photon counting for high-speed industrial and aerospace applications

    NASA Astrophysics Data System (ADS)

    El-Desouki, Munir M.; Al-Azem, Badeea

    2014-03-01

    Time-delay integration (TDI) is a popular imaging technique that is used in many applications such as machine vision, dental scanning and satellite earth observation. One of the main advantages of using TDI imagers is the increased effective integration time that is achieved while maintaining high frame-rates. Another use for TDI imagers is with moving objects, such as the earth's surface or industrial machine vision applications, where integration time is limited in order to avoid motion blurs. Such technique may even find its way in mobile and consumer based imaging applications where the reduction in pixel size can limit the performance during low-light and high speed applications. Until recently, TDI was only used with charge-coupled devices (CCDs) mainly due to their charge transfer characteristics. CCDs however, are power consuming and slow when compared to CMOS technology and are no longer favorable for mobile applications. In this work, we report on novel single-photon counting based TDI technique that is implemented in standard CMOS technology allowing for complete camera-on-a-chip solution. The imager was fabricated in a standard CMOS 150 nm 5-metal digital process from LFoundry.

  11. A CMOS integrated timing discriminator circuit for fast scintillation counters

    SciTech Connect

    Jochmann, M.W.

    1998-06-01

    Based on a zero-crossing discriminator using a CR differentiation network for pulse shaping, a new CMOS integrated timing discriminator circuit is proposed for fast (t{sub r} {ge} 2 ns) scintillation counters at the cooler synchrotron COSY-Juelich. By eliminating the input signal`s amplitude information by means of an analog continuous-time divider, a normalized pulse shape at the zero-crossing point is gained over a wide dynamic input amplitude range. In combination with an arming comparator and a monostable multivibrator this yields in a highly precise timing discriminator circuit, that is expected to be useful in different time measurement applications. First measurement results of a CMOS integrated logarithmic amplifier, which is part of the analog continuous-time divider, agree well with the corresponding simulations. Moreover, SPICE simulations of the integrated discriminator circuit promise a time walk well below 200 ps (FWHM) over a 40 dB input amplitude dynamic range.

  12. A Brief Discussion of Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    Myers, D.R.

    1998-12-18

    Commercial microchips work well in their intended environments. However, generic microchips will not fimction correctly if exposed to sufficient amounts of ionizing radiation, the kind that satellites encounter in outer space. Modern CMOS circuits must overcome three specific concerns from ionizing radiation: total-dose, single-event, and dose-rate effects. Minority-carrier devices such as bipolar transistors, optical receivers, and solar cells must also deal with recombination-generation centers caused by displacement damage, which are not major concerns for majority-carrier CMOS devices. There are ways to make the chips themselves more resistant to radiation. This extra protection, called radiation hardening, has been called both a science and an art. Radiation hardening requires both changing the designs of the chips and altering the ways that the chips are manufactured.

  13. On testing stuck-open faults in CMOS combinational circuits

    NASA Technical Reports Server (NTRS)

    Chandramouli, R.

    1982-01-01

    Recently it has been found that a class of failure related to a particular technology (CMOS) cannot be modelled as the conventional stuck-at fault model. These failures change the combinational behavior of CMOS logic gates into a sequential one. Such a failure is modelled as a fault, called the Stuck-Open fault (SOP). The object of this paper is to develop a procedure to detect single SOPs in combinational circuits. It is shown, that in general, tests generated for stuck-at faults when applied in a particular sequence will detect all single SOP faults. In case of single redundancy in the network, the SOP fault on the redundant line cannot be detected. When there is reconvergent fan-out in the network, there is a one-one correspondence between the conditions for stuck-at fault and stuck-open fault detectability.

  14. An electrochemical dopamine sensor with a CMOS detection circuit

    NASA Astrophysics Data System (ADS)

    Chan, Feng-Lin; Chang, Wen-Ying; Kuo, Li-Min; Lin, Chih-Heng; Wang, Shi-Wei; Yang, Yuh-Shyong; S-C Lu, Michael

    2008-07-01

    This paper presents the integration of interdigitated microelectrodes and a CMOS circuit for electrochemical sensing of the neurotransmitter dopamine. Gold electrodes with a gap of 3 µm are fabricated by the lift-off technique. The CMOS sensing circuit has a current gain of 10, an integrating capacitor of 4 pF, and a measured dynamic range of 60 dB. The applied reduction and oxidation potentials are determined by voltammetry at about -0.2 V and 0.6 V, respectively. The measured collection efficiency can reach up to 84%. The produced oxidation current with respect to dopamine concentration averages 0.44 nA µM-1.

  15. High dynamic range CMOS (HDRC) imagers for safety systems

    NASA Astrophysics Data System (ADS)

    Strobel, Markus; Döttling, Dietmar

    2013-04-01

    The first part of this paper describes the high dynamic range CMOS (HDRC®) imager - a special type of CMOS image sensor with logarithmic response. The powerful property of a high dynamic range (HDR) image acquisition is detailed by mathematical definition and measurement of the optoelectronic conversion function (OECF) of two different HDRC imagers. Specific sensor parameters will be discussed including the pixel design for the global shutter readout. The second part will give an outline on the applications and requirements of cameras for industrial safety. Equipped with HDRC global shutter sensors SafetyEYE® is a high-performance stereo camera system for safe three-dimensional zone monitoring enabling new and more flexible solutions compared to existing safety guards.

  16. Attenuation of single event induced pulses in CMOS combinational logic

    SciTech Connect

    Baze, M.P.; Buchner, S.P.

    1997-12-01

    Results are presented of a study of SEU generated transient pulse attenuation in combinational logic structures built using common digital CMOS design practices. SPICE circuit analysis, heavy ion tests, and pulsed, focused laser simulations were used to examine the response characteristics of transient pulse behavior in long logic strings. Results show that while there is an observable effect, it cannot be generally assumed that attenuation will significantly reduce observed circuit bit error rates.

  17. Linear dynamic range enhancement in a CMOS imager

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A CMOS imager with increased linear dynamic range but without degradation in noise, responsivity, linearity, fixed-pattern noise, or photometric calibration comprises a linear calibrated dual gain pixel in which the gain is reduced after a pre-defined threshold level by switching in an additional capacitance. The pixel may include a novel on-pixel latch circuit that is used to switch in the additional capacitance.

  18. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  19. CMOS integration of inkjet-printed graphene for humidity sensing.

    PubMed

    Santra, S; Hu, G; Howe, R C T; De Luca, A; Ali, S Z; Udrea, F; Gardner, J W; Ray, S K; Guha, P K; Hasan, T

    2015-01-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10-80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things. PMID:26616216

  20. CMOS integration of inkjet-printed graphene for humidity sensing

    NASA Astrophysics Data System (ADS)

    Santra, S.; Hu, G.; Howe, R. C. T.; de Luca, A.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Ray, S. K.; Guha, P. K.; Hasan, T.

    2015-11-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10-80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things.

  1. CMOS integration of inkjet-printed graphene for humidity sensing

    PubMed Central

    Santra, S.; Hu, G.; Howe, R. C. T.; De Luca, A.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Ray, S. K.; Guha, P. K.; Hasan, T.

    2015-01-01

    We report on the integration of inkjet-printed graphene with a CMOS micro-electro-mechanical-system (MEMS) microhotplate for humidity sensing. The graphene ink is produced via ultrasonic assisted liquid phase exfoliation in isopropyl alcohol (IPA) using polyvinyl pyrrolidone (PVP) polymer as the stabilizer. We formulate inks with different graphene concentrations, which are then deposited through inkjet printing over predefined interdigitated gold electrodes on a CMOS microhotplate. The graphene flakes form a percolating network to render the resultant graphene-PVP thin film conductive, which varies in presence of humidity due to swelling of the hygroscopic PVP host. When the sensors are exposed to relative humidity ranging from 10–80%, we observe significant changes in resistance with increasing sensitivity from the amount of graphene in the inks. Our sensors show excellent repeatability and stability, over a period of several weeks. The location specific deposition of functional graphene ink onto a low cost CMOS platform has the potential for high volume, economic manufacturing and application as a new generation of miniature, low power humidity sensors for the internet of things. PMID:26616216

  2. Development of CMOS Imager Block for Capsule Endoscope

    NASA Astrophysics Data System (ADS)

    Shafie, S.; Fodzi, F. A. M.; Tung, L. Q.; Lioe, D. X.; Halin, I. A.; Hasan, W. Z. W.; Jaafar, H.

    2014-04-01

    This paper presents the development of imager block to be associated in a capsule endoscopy system. Since the capsule endoscope is used to diagnose gastrointestinal diseases, the imager block must be in small size which is comfortable for the patients to swallow. In this project, a small size 1.5V button battery is used as the power supply while the voltage supply requirements for other components such as microcontroller and CMOS image sensor are higher. Therefore, a voltage booster circuit is proposed to boost up the voltage supply from 1.5V to 3.3V. A low power microcontroller is used to generate control pulses for the CMOS image sensor and to convert the 8-bits parallel data output to serial data to be transmitted to the display panel. The results show that the voltage booster circuit was able to boost the voltage supply from 1.5V to 3.3V. The microcontroller precisely controls the CMOS image sensor to produce parallel data which is then serialized again by the microcontroller. The serial data is then successfully translated to 2fps image and displayed on computer.

  3. An integrated CMOS detection system for optical short-pulse

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Gun; Hong, Nam-Pyo; Choi, Young-Wan

    2014-03-01

    We present design of a front-end readout system consisting of charge sensitive amplifier (CSA) and pulse shaper for detection of stochastic and ultra-small semiconductor scintillator signal. The semiconductor scintillator is double sided silicon detector (DSSD) or avalanche photo detector (APD) for high resolution and peak signal reliability of γ-ray or X-ray spectroscopy. Such system commonly uses low noise multichannel CSA. Each CSA in multichannel includes continuous reset system based on tens of MΩ and charge-integrating capacitor in feedback loop. The high value feedback resistor requires large area and huge power consumption for integrated circuits. In this paper, we analyze these problems and propose a CMOS short pulse detection system with a novel CSA. The novel CSA is composed of continuous reset system with combination of diode connected PMOS and 100 fF. This structure has linearity with increased input charge quantity from tens of femto-coulomb to pico-coulomb. Also, the front-end readout system includes both slow and fast shapers for detecting CSA output and preventing pile-up distortion. Shaping times of fast and slow shapers are 150 ns and 1.4 μs, respectively. Simulation results of the CMOS detection system for optical short-pulse implemented in 0.18 μm CMOS technology are presented.

  4. Single photon detection and localization accuracy with an ebCMOS camera

    NASA Astrophysics Data System (ADS)

    Cajgfinger, T.; Dominjon, A.; Barbier, R.

    2015-07-01

    The CMOS sensor technologies evolve very fast and offer today very promising solutions to existing issues facing by imaging camera systems. CMOS sensors are very attractive for fast and sensitive imaging thanks to their low pixel noise (1e-) and their possibility of backside illumination. The ebCMOS group of IPNL has produced a camera system dedicated to Low Light Level detection and based on a 640 kPixels ebCMOS with its acquisition system. After reminding the principle of detection of an ebCMOS and the characteristics of our prototype, we confront our camera to other imaging systems. We compare the identification efficiency and the localization accuracy of a point source by four different photo-detection devices: the scientific CMOS (sCMOS), the Charge Coupled Device (CDD), the Electron Multiplying CCD (emCCD) and the Electron Bombarded CMOS (ebCMOS). Our ebCMOS camera is able to identify a single photon source in less than 10 ms with a localization accuracy better than 1 μm. We report as well efficiency measurement and the false positive identification of the ebCMOS camera by identifying more than hundreds of single photon sources in parallel. About 700 spots are identified with a detection efficiency higher than 90% and a false positive percentage lower than 5. With these measurements, we show that our target tracking algorithm can be implemented in real time at 500 frames per second under a photon flux of the order of 8000 photons per frame. These results demonstrate that the ebCMOS camera concept with its single photon detection and target tracking algorithm is one of the best devices for low light and fast applications such as bioluminescence imaging, quantum dots tracking or adaptive optics.

  5. CMOS Integrated Single Electron Transistor Electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out.

    SciTech Connect

    Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.

    2008-08-01

    Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.

  6. Scaled CMOS Reliability and Considerations for Spacecraft Systems: Bottom-Up and Top-Down Perspective

    NASA Technical Reports Server (NTRS)

    White, Mark

    2012-01-01

    New space missions will increasingly rely on more advanced technologies because of system requirements for higher performance, particularly in instruments and high-speed processing. Component-level reliability challenges with scaled CMOS in spacecraft systems from a bottom-up perspective have been presented. Fundamental Front-end and Back-end processing reliability issues with more aggressively scaled parts have been discussed. Effective thermal management from system-level to the componentlevel (top-down) is a key element in overall design of reliable systems. Thermal management in space systems must consider a wide range of issues, including thermal loading of many different components, and frequent temperature cycling of some systems. Both perspectives (top-down and bottom-up) play a large role in robust, reliable spacecraft system design.

  7. Design Considerations for CMOS-Integrated Hall-Effect Magnetic Bead Detectors for Biosensor Applications

    PubMed Central

    Skucha, K.; Gambini, S.; Liu, P.; Megens, M.; Kim, J.; Boser, BE

    2014-01-01

    We describe a design methodology for on-chip magnetic bead label detectors based on Hall-effect sensors. Signal errors caused by the label-binding process and other factors that limit the minimum detection area are quantified and adjusted to meet typical assay accuracy standards. The methodology is demonstrated by designing an 8192 element Hall sensor array, implemented in a commercial 0.18 μm CMOS process with single-mask postprocessing. The array can quantify a 1% surface coverage of 2.8 μm beads in 30 seconds with a coefficient of variation of 7.4%. This combination of accuracy and speed makes this technology a suitable detection platform for biological assays based on magnetic bead labels. PMID:25031503

  8. Design Considerations for CMOS-Integrated Hall-Effect Magnetic Bead Detectors for Biosensor Applications.

    PubMed

    Skucha, K; Gambini, S; Liu, P; Megens, M; Kim, J; Boser, Be

    2013-06-01

    We describe a design methodology for on-chip magnetic bead label detectors based on Hall-effect sensors. Signal errors caused by the label-binding process and other factors that limit the minimum detection area are quantified and adjusted to meet typical assay accuracy standards. The methodology is demonstrated by designing an 8192 element Hall sensor array, implemented in a commercial 0.18 μm CMOS process with single-mask postprocessing. The array can quantify a 1% surface coverage of 2.8 μm beads in 30 seconds with a coefficient of variation of 7.4%. This combination of accuracy and speed makes this technology a suitable detection platform for biological assays based on magnetic bead labels. PMID:25031503

  9. Rapid detection of E. coli bacteria using potassium-sensitive FETs in CMOS.

    PubMed

    Nikkhoo, Nasim; Gulak, P Glenn; Maxwell, Karen

    2013-10-01

    A novel integrated system for the detection of live bacteria in less than 10 minutes is presented. It utilizes the specificity of bacteriophages as biological detection elements with the sensitivity of integrated ion-selective field-effect transistors (ISFETs) implemented in conventional 0.18 μm CMOS with additional post-processes PVC-based potassium-sensitive membrane to provide a rapid, low-cost bacteria detection platform. Experimental methods to cancel ISFET non-idealities as well as data processing techniques to enhance detection capability of the bacteria sensor are demonstrated. Three groups of experimental results are provided using four strains of E. coli with two bacteriophages at two different temperatures. Measurements incorporating positive and negative control experiments are presented that successfully exhibit sensor specificity as well detection capability. PMID:24107977

  10. Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture

    NASA Astrophysics Data System (ADS)

    Rotta, Davide; De Michielis, Marco; Ferraro, Elena; Fanciulli, Marco; Prati, Enrico

    2016-03-01

    Scalability from single-qubit operations to multi-qubit circuits for quantum information processing requires architecture-specific implementations. Semiconductor hybrid qubit architecture is a suitable candidate to realize large-scale quantum information processing, as it combines a universal set of logic gates with fast and all-electrical manipulation of qubits. We propose an implementation of hybrid qubits, based on Si metal-oxide-semiconductor (MOS) quantum dots, compatible with the CMOS industrial technological standards. We discuss the realization of multi-qubit circuits capable of fault-tolerant computation and quantum error correction, by evaluating the time and space resources needed for their implementation. As a result, the maximum density of quantum information is extracted from a circuit including eight logical qubits encoded by the [[7, 1, 3

  11. Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation.

    PubMed

    Sheets, M D; Wu, M; Wickens, M

    1995-04-01

    c-mos protein, encoded by a proto-oncogene, is essential for the meiotic maturation of frog oocytes. Polyadenylation of c-mos messenger RNA is shown here to be a pivotal regulatory step in meiotic maturation. Maturation is prevented by selective amputation of polyadenylation signals from c-mos mRNA. Injection of a prosthetic RNA, which restores c-mos polyadenylation signals by base pairing to the amputated mRNA, rescues maturation and can stimulate translation in trans. Prosthetic RNAs may provide a general strategy by which to alter patterns of mRNA expression in vivo. PMID:7700377

  12. CMOS Imager Has Better Cross-Talk and Full-Well Performance

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas J.

    2011-01-01

    A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the dopings and the lower supply potentials in area I can be tailored to optimize imager performance. In area I, the device layer includes an n+ -doped silicon layer on which is grown an n-doped silicon layer. A p-doped silicon layer is grown on top of the n -doped layer. The total imaging device thickness is the sum of the thickness of the n+, n, and p layers. A pixel photodiode is formed between a surface n+ implant, a p implant underneath it, the aforementioned p layer, and the n and n+ layers. Adjacent to the diode is a gate for transferring photogenerated charges out of the photodiode and into a floating diffusion formed by an implanted p+ layer on an implanted n-doped region. Metal contact pads are added to the back-side for providing back-side bias.

  13. A 12-Bit High-Speed Column-Parallel Two-Step Single-Slope Analog-to-Digital Converter (ADC) for CMOS Image Sensors

    PubMed Central

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-01-01

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors. PMID:25407903

  14. SPICE Level 3 and BSIM3v3.1 characterization of monolithic integrated CMOS-MEMS devices

    SciTech Connect

    Staple, B.D.; Watts, H.A.; Dyck, C.; Griego, A.P.; Hewlett, F.W.; Smith, J.H.

    1998-08-01

    The monolithic integration of MicroElectroMechanical Systems (MEMS) with the driving, controlling, and signal processing electronics promises to improve the performance of micromechanical devices as well as lower their manufacturing, packaging, and instrumentation costs. Key to this integration is the proper interleaving, combining, and customizing of the manufacturing processes to produce functional integrated micromechanical devices with electronics. The authors have developed a MEMS-first monolithic integrated process that first seals the micromechanical devices in a planarized trench and then builds the electronics in a conventional CMOS process. To date, most of the research published on this technology has focused on the performance characteristics of the mechanical portion of the devices, with little information on the attributes of the accompanying electronics. This work attempts to reduce this information void by presenting the results of SPICE Level 3 and BSIM3v3.1 model parameters extracted for the CMOS portion of the MEMS-first process. Transistor-level simulations of MOSFET current, capacitance, output resistance, and transconductance versus voltage using the extracted model parameters closely match the measured data. Moreover, in model validation efforts, circuit-level simulation values for the average gate propagation delay in a 101-stage ring oscillator are within 13--18% of the measured data. In general, the BSIM3v3.1 models provide improved accuracy over the SPICE Level 3 models. These results establish the following: (1) the MEMS-first approach produces functional CMOS devices integrated on a single chip with MEMS devices and (2) the devices manufactured in the approach have excellent transistor characteristics. Thus, the MEMS-first approach renders a solid technology foundation for customers designing in the technology.

  15. Inverse lithography technique for advanced CMOS nodes

    NASA Astrophysics Data System (ADS)

    Villaret, Alexandre; Tritchkov, Alexander; Entradas, Jorge; Yesilada, Emek

    2013-04-01

    Resolution Enhancement Techniques have continuously improved over the last decade, driven by the ever growing constraints of lithography process. Despite the large number of RET applied, some hotspot configurations remain challenging for advanced nodes due to aggressive design rules. Inverse Lithography Technique (ILT) is evaluated here as a substitute to the dense OPC baseline. Indeed ILT has been known for several years for its near-to-ideal mask quality, while also being potentially more time consuming in terms of OPC run and mask processing. We chose to evaluate Mentor Graphics' ILT engine "pxOPCTM" on both lines and via hotspot configurations. These hotspots were extracted from real 28nm test cases where the dense OPC solution is not satisfactory. For both layer types, the reference OPC consists of a dense OPC engine coupled to rule-based and/or model-based assist generation method. The same CM1 model is used for the reference and the ILT OPC. ILT quality improvement is presented through Optical Rule Check (ORC) results with various adequate detectors. Several mask manufacturing rule constraints (MRC) are considered for the ILT solution and their impact on process ability is checked after mask processing. A hybrid OPC approach allowing localized ILT usage is presented in order to optimize both quality and runtime. A real mask is prepared and fabricated with this method. Finally, results analyzed on silicon are presented to compare localized ILT to reference dense OPC.

  16. Optical scanning tests of complex CMOS microcircuits

    NASA Technical Reports Server (NTRS)

    Levy, M. E.; Erickson, J. J.

    1977-01-01

    The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.

  17. A tunable CMOS constant current source

    NASA Technical Reports Server (NTRS)

    Thelen, D.

    1991-01-01

    A constant current source has been designed which makes use of on chip electrically erasable memory to adjust the magnitude and temperature coefficient of the output current. The current source includes a voltage reference based on the difference between enhancement and depletion transistor threshold voltages. Accuracy is +/- 3% over the full range of power supply, process variations, and temperature using eight bits for tuning.

  18. Multi-channel measurement for hetero-core optical fiber sensor by using CMOS camera

    NASA Astrophysics Data System (ADS)

    Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro

    2015-07-01

    Fiber optic smart structures have been developed over several decades by the recent fiber optic sensor technology. Optical intensity-based sensors, which use LD or LEDs, can be suitable for the monitor system to be simple and cost effective. In this paper, a novel fiber optic smart structure with human-like perception has been demonstrated by using intensity-based hetero-core optical fiber sensors system with the CMOS detector. The optical intensity from the hetero-core optical fiber bend sensor is obtained as luminance spots indicated by the optical power distributions. A number of optical intensity spots are simultaneously readout by taking a picture of luminance pattern. To recognize the state of fiber optic smart structure with the hetero-core optical fibers, the template matching process is employed with Sum of Absolute Differences (SAD). A fiber optic smart glove having five optic fiber nerves have been employed to monitor hand postures. Three kinds of hand postures have been recognized by means of the template matching process. A body posture monitoring has also been developed by placing the wearable hetero-core optical fiber bend sensors on the body segments. In order for the CMOS system to be a human brain-like, the luminescent spots in the obtained picture were arranged to make the pattern corresponding to the position of body segments. As a result, it was successfully demonstrated that the proposed fiber optic smart structure could recognize eight kinds of body postures. The developed system will give a capability of human brain-like processing to the existing fiber optic smart structures.

  19. Mobility Enhancement Technology for Scaling of CMOS Devices: Overview and Status

    NASA Astrophysics Data System (ADS)

    Song, Yi; Zhou, Huajie; Xu, Qiuxia; Luo, Jun; Yin, Haizhou; Yan, Jiang; Zhong, Huicai

    2011-07-01

    The aggressive downscaling of complementary metal-oxide-semiconductor (CMOS) technology to the sub-21-nm technology node is facing great challenges. Innovative technologies such as metal gate/high- k dielectric integration, source/drain engineering, mobility enhancement technology, new device architectures, and enhanced quasiballistic transport channels serve as possible solutions for nanoscaled CMOS. Among them, mobility enhancement technology is one of the most promising solutions for improving device performance. Technologies such as global and process-induced strain technology, hybrid-orientation channels, and new high-mobility channels are thoroughly discussed from the perspective of technological innovation and achievement. Uniaxial strain is superior to biaxial strain in extending metal-oxide-semiconductor field-effect transistor (MOSFET) scaling for various reasons. Typical uniaxial technologies, such as embedded or raised SiGe or SiC source/drains, Ge pre-amorphization source/drain extension technology, the stress memorization technique (SMT), and tensile or comprehensive capping layers, stress liners, and contact etch-stop layers (CESLs) are discussed in detail. The initial integration of these technologies and the associated reliability issues are also addressed. The hybrid-orientation channel is challenging due to the complicated process flow and the generation of defects. Applying new high-mobility channels is an attractive method for increasing carrier mobility; however, it is also challenging due to the introduction of new material systems. New processes with new substrates either based on hybrid orientation or composed of group III-V semiconductors must be simplified, and costs should be reduced. Different mobility enhancement technologies will have to be combined to boost device performance, but they must be compatible with each other. The high mobility offered by mobility enhancement technologies makes these technologies promising and an active area of device research down to the 21-nm technology node and beyond.

  20. Monolithic 3D CMOS Using Layered Semiconductors.

    PubMed

    Sachid, Angada B; Tosun, Mahmut; Desai, Sujay B; Hsu, Ching-Yi; Lien, Der-Hsien; Madhvapathy, Surabhi R; Chen, Yu-Ze; Hettick, Mark; Kang, Jeong Seuk; Zeng, Yuping; He, Jr-Hau; Chang, Edward Yi; Chueh, Yu-Lun; Javey, Ali; Hu, Chenming

    2016-04-01

    Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications. PMID:26833783

  1. 0.13μm BiCMOS emitter window lithography with KrF scanners

    NASA Astrophysics Data System (ADS)

    Chou, Li-Heng; Patel, Neil S.; McCarthy, Patrick M.

    2009-03-01

    Defining the emitter window is one of the most critical lithographic steps in a BiCMOS process. Step-and-scan exposure tools are typically the largest component of fixed capital expense so the industry is constantly trying to push the resolution limit without purchasing new equipment. As the industry extends KrF scanner to 0.13μm BiCMOS process, the lithography process window of shallow trenches patterns which are typical for emitter windows will be challenged. Generally speaking, printing these patterns with conventional single exposure methods will suffer from lack of sufficient process window and severe line-end shortening. In this paper, we present a method that uses KrF scanners and several resolution enhancement techniques including attenuated phase shift masks (att-PSM), model-based optical proximity correction (MbOPC), and a multi-focal exposure technique, to improve the process window of 0.13μm emitter window features. Characterization results are shown for the process window, side lobe printability margin, and line-end shortening. Comparisons are made to a traditional exposure method. The results demonstrate a significant increase in depth of focus as well as improvements in line-end shortening and intra-wafer CD uniformity.

  2. Integrating metal-oxide-decorated CNT networks with a CMOS readout in a gas sensor.

    PubMed

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  3. A reticle size CMOS pixel sensor dedicated to the STAR HFT

    NASA Astrophysics Data System (ADS)

    Valin, I.; Hu-Guo, C.; Baudot, J.; Bertolone, G.; Besson, A.; Colledani, C.; Claus, G.; Dorokhov, A.; Dozière, G.; Dulinski, W.; Gelin, M.; Goffe, M.; Himmi, A.; Jaaskelainen, K.; Morel, F.; Pham, H.; Santos, C.; Senyukov, S.; Specht, M.; Voutsinas, G.; Wang, J.; Winter, M.

    2012-01-01

    ULTIMATE is a reticle size CMOS Pixel Sensor (CPS) designed to meet the requirements of the STAR pixel detector (PXL). It includes a pixel array of 928 rows and 960 columns with a 20.7 μm pixel pitch, providing a sensitive area of ~ 3.8 cm2. Based on the sensor designed for the EUDET beam telescope, the device is a binary output sensor with integrated zero suppression circuitry featuring a 320 Mbps data throughput capability. It was fabricated in a 0.35 μm OPTO process early in 2011. The design and preliminary test results, including charged particle detection performances measured at the CERN-SPS, are presented.

  4. 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning.

    PubMed

    Li, Guoliang; Zheng, Xuezhe; Yao, Jin; Thacker, Hiren; Shubin, Ivan; Luo, Ying; Raj, Kannan; Cunningham, John E; Krishnamoorthy, Ashok V

    2011-10-10

    We report a high-speed ring modulator that fits many of the ideal qualities for optical interconnect in future exascale supercomputers. The device was fabricated in a 130 nm SOI CMOS process, with 7.5 μm ring radius. Its high-speed section, employing PN junction that works at carrier-depletion mode, enables 25 Gb/s modulation and an extinction ratio >5 dB with only 1V peak-to-peak driving. Its thermal tuning section allows the device to work in broad wavelength range, with a tuning efficiency of 0.19 nm/mW. Based on microwave characterization and circuit modeling, the modulation energy is estimated ~7 fJ/bit. The whole device fits in a compact 400 μm2 footprint. PMID:21997052

  5. Patterning of CMOS device structures for 40-80nm pitches and beyond

    NASA Astrophysics Data System (ADS)

    Engelmann, S. U.; Martin, R.; Bruce, R. L.; Miyazoe, H.; Fuller, N. C. M.; Graham, W. S.; Sikorski, E. M.; Glodde, M.; Brink, M.; Tsai, H.; Bucchignano, J.; Klaus, D.; Kratschmer, E.; Guillorn, M. A.

    2012-03-01

    CMOS device patterning for aggressively scaled pitches (smaller than 80nm pitch) faces many challenges. Maybe one of the most crucial issues during device formation is the pattern transfer from a soft mask (carbon based) material into a hard mask material. A very characteristic phenomenon is that mechanical failure of the soft material may be observed. While this was observed first for patterning below 80nm pitch, it becomes increasingly important for even smaller pitches (<= 40 nm). Further process optimization by various pre- and post-treatments has enabled robust pattern transfer down to 40nm pitch. A systematic study of the parameters impacting this phenomenon will be shown. Other challenges for patterning devices include profile control and material loss during gate stack patterning and spacer formation. Lastly, initial patterning experiments at an even more aggressive pitch show that the mechanical failure previously observed for larger pitches once again becomes an increasingly important issue to consider.

  6. A low-power CMOS WIA-PA transceiver with a high sensitivity GFSK demodulator

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Yu, Jiang; Shengyou, Liu; Guiliang, Guo; Yuepeng, Yan

    2015-06-01

    This paper presents a low power, high sensitivity Gaussian frequency shift keying (GFSK) demodulator with a flexible frequency offset canceling method for wireless networks for industrial automation process automation (WIA-PA) transceiver fabricated in 0.18 μm CMOS technology. The receiver uses a low-IF (1.5 MHz) architecture, and the transmitter uses a sigma delta PLL based modulation with Gaussian low-pass filter for low power consumption. The active area of the demodulator is 0.14 mm2. Measurement results show that the proposed demodulator operates without harmonic distortion, deals with ± 180 kHz frequency offset, needs SNR only 18.5 dB at 0.1% bit-error rate (BER), and consumes no more than 0.26 mA from a 1.8 V power supply. Project supported by the National High Technology Research and Development Program of China (No. 2011AA040102).

  7. A fully integrated 3.5 GHz CMOS differential power amplifier driver

    NASA Astrophysics Data System (ADS)

    Xiaodong, Xu; Haigang, Yang; Tongqiang, Gao; Hongfeng, Zhang

    2013-07-01

    A fully integrated CMOS differential power amplifier driver (PAD) is proposed for WiMAX applications. In order to fulfill the differential application requirements, a transmission line transformer is used as the output matching network. A differential inductance constitutes an inter-stage matching network. Meanwhile, an on chip balun realizes input matching as well as single-end to differential conversion. The PAD is fabricated in a 0.13 μm RFCMOS process. The chip size is 1.1 × 1.1 mm2 with all of the matching network integrated on chip. The saturated power is around 10 dBm and power gain is about 12 dB.

  8. A 14-bit 250-MS/s current-steering CMOS digital-to-analog converter

    NASA Astrophysics Data System (ADS)

    Xueqing, Li; Hua, Fan; Qi, Wei; Zhen, Xu; Jianan, Liu; Huazhong, Yang

    2013-08-01

    A 14-bit 250-MS/s current-steering digital-to-analog converter (DAC) was fabricated in a 0.13 ?m CMOS process. In conventional high-speed current-steering DACs, the spurious-free dynamic range (SFDR) is limited by nonlinear distortions in the code-dependent switching glitches. In this paper, the bottleneck is mitigated by the time-relaxed interleaving digital-random-return-to-zero (TRI-DRRZ). Under 250-MS/s sampling rate, the measured SFDR is 86.2 dB at 5.5-MHz signal frequency and 77.8 dB up to 122 MHz. The DAC occupies an active area of 1.58 mm2 and consumes 226 mW from a mixed power supply of 1.2/2.5 V.

  9. Design, Characterization and Analysis of a 0.35 μm CMOS SPAD

    PubMed Central

    Jradi, Khalil; Pellion, Denis; Ginhac, Dominique

    2014-01-01

    Most of the works about single-photon detectors rely on Single Photon Avalanche Diodes (SPADs) designed with dedicated technological processes in order to achieve single-photon sensitivity and excellent timing resolution. Instead, this paper focuses on the implementation of high-performance SPADs detectors manufactured in a standard 0.35-micron opto-CMOS technology provided by AMS. We propose a series of low-noise SPADs designed with a variable pitch from 20 μm down to 5 μm. This opens the further way to the integration of large arrays of optimized SPAD pixels with pitch of a few micrometers in order to provide high-resolution single-photon imagers. We experimentally demonstrate that a 20-micron SPAD appears as the most relevant detector in terms of Signal-to-Noise ratio, enabling emergence of large arrays of SPAD. PMID:25470491

  10. Speed optimized linear-mode high-voltage CMOS avalanche photodiodes with high responsivity.

    PubMed

    Enne, R; Steindl, B; Zimmermann, H

    2015-10-01

    Two different speed optimized avalanche photodiodes (APDs) fabricated in a 0.35 μm standard high-voltage (HV) complementary metal-oxide-semiconductor (CMOS) process with a high unamplified responsivity (avalanche gain M=1) of 0.41 A/W at 670 nm are presented. These APDs differ regarding the effective doping of the deep p well (90% and 75%), using lateral well modulation doping. Compared to the -3  dB bandwidth of the unmodulated APD with 100% doping (850 MHz), this optimization leads to an improved bandwidth of 1.02 and 1.25 GHz for the 75% APD and 90% APD, respectively, both at a gain of M=50. PMID:26421541

  11. Accurate dynamic power estimation for CMOS combinational logic circuits with real gate delay model

    PubMed Central

    Fadl, Omnia S.; Abu-Elyazeed, Mohamed F.; Abdelhalim, Mohamed B.; Amer, Hassanein H.; Madian, Ahmed H.

    2015-01-01

    Dynamic power estimation is essential in designing VLSI circuits where many parameters are involved but the only circuit parameter that is related to the circuit operation is the nodes’ toggle rate. This paper discusses a deterministic and fast method to estimate the dynamic power consumption for CMOS combinational logic circuits using gate-level descriptions based on the Logic Pictures concept to obtain the circuit nodes’ toggle rate. The delay model for the logic gates is the real-delay model. To validate the results, the method is applied to several circuits and compared against exhaustive, as well as Monte Carlo, simulations. The proposed technique was shown to save up to 96% processing time compared to exhaustive simulation. PMID:26843974

  12. Two-phase low-power analogue CMOS peak detector with high dynamic range

    NASA Astrophysics Data System (ADS)

    Malankin, E.

    2016-02-01

    A low-power two-phase peak detector with wide dynamic range was developed. The PD was designed on the basis ofthe CMOS UMC 180 nm process. This block is considered as a part of the read-out electronics of the CBM experiment at upcoming FAIR accelerator (Germany). Peak detector has the following advantages: wide dynamic range of 5 - 1000 mV, low power consumption of 500 µW. The designed PD meets the requirements to the muon chamber read-out electronics of the CBM experiment. Due to the area efficiency (100×90 μm2) and low power consumption it can be used in different applications for high-energy physics read-out electronics.

  13. High-performance low-power CMOS memories using silicon-on-sapphire technology.

    NASA Technical Reports Server (NTRS)

    Boleky, E. J.; Meyer, J. E.

    1972-01-01

    MOS/silicon-on-sapphire (SOS) technology is shown to permit the realization of large-scale integrated arrays that combine the best features of monolithic bipolar and MOS technologies. The perfect isolation and reduced capacitance of SOS technology make possible static MOS circuits with nearly an order-of-magnitude improvement in speed and dynamic power dissipation over their monolithic counterparts. CMOS/SOS memory arrays have been fabricated with speeds comparable to TTL bipolar memory arrays even when operated at TTL compatible levels. Quiescent power dissipation of two described arrays is typically less than 1 microwatt/bit. The SOS/MOS technology is compatible with both aluminum and self-aligned silicon-gate processing.

  14. CMOS-compatible 75 mW erbium-doped distributed feedback laser.

    PubMed

    Hosseini, Ehsan Shah; Purnawirman; Bradley, Jonathan D B; Sun, Jie; Leake, Gerald; Adam, Thomas N; Coolbaugh, Douglas D; Watts, Michael R

    2014-06-01

    On-chip, high-power, erbium-doped distributed feedback lasers are demonstrated in a CMOS-compatible fabrication flow. The laser cavities consist of silicon nitride waveguide and grating features, defined by wafer-scale immersion lithography and an erbium-doped aluminum oxide layer deposited as the final step in the fabrication process. The large mode size lasers demonstrate single-mode continuous wave operation with a maximum output power of 75 mW without any thermal damage. The laser output power does not saturate at high pump intensities and is, therefore, capable of delivering even higher on-chip signals if a stronger pump is utilized. The amplitude noise of the laser is investigated and the laser is shown to be stable and free from self-pulsing when the pump power is sufficiently above threshold. PMID:24875988

  15. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    PubMed Central

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  16. In depth characterization of electron transport in 14 nm FD-SOI CMOS devices

    NASA Astrophysics Data System (ADS)

    Shin, Minju; Shi, Ming; Mouis, Mireille; Cros, Antoine; Josse, Emmanuel; Kim, Gyu-Tae; Ghibaudo, Gérard

    2015-10-01

    In this paper, carrier transport properties in highly scaled (down to 14 nm-node) FDSOI CMOS devices are presented from 77 K to 300 K. At first, we analyzed electron transport characteristics in terms of different gate-oxide stack in NMOS long devices. So, we found that SOP and RCS can be the dominant contribution of additional mobility scatterings in different temperature regions. Then, electron mobility degradation in short channel devices was deeply investigated. It can be stemmed from additional scattering mechanisms, which were attributed to process-induced defects near source and drain. Finally, we found that mobility enhancement by replacing Si to SiGe channel in PMOS devices was validated and this feature was not effective anymore in sub-100 nm devices. The critical lengths were around 50 nm and 100 nm for NMOS and PMOS devices, respectively.

  17. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer

    NASA Astrophysics Data System (ADS)

    Shanli, Long; Yan, Liu; Kejun, He; Xinggang, Tang; Qian, Chen

    2014-09-01

    A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 ?m one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5 2.5 mm2 and the current is 3.5 mA.

  18. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray

    PubMed Central

    Schwartz, David Eric; Gong, Ping; Shepard, Kenneth L.

    2008-01-01

    We present an active oligonucleotide microarray platform for time-resolved Förster resonance energy transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors. PMID:18515059

  19. Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager

    PubMed Central

    Giraud, Gerard; Schulze, Holger; Li, Day-Uei; Bachmann, Till T.; Crain, Jason; Tyndall, David; Richardson, Justin; Walker, Richard; Stoppa, David; Charbon, Edoardo; Henderson, Robert; Arlt, Jochen

    2010-01-01

    Fluorescence lifetime of dye molecules is a sensitive reporter on local microenvironment which is generally independent of fluorophores concentration and can be used as a means of discrimination between molecules with spectrally overlapping emission. It is therefore a potentially powerful multiplexed detection modality in biosensing but requires extremely low light level operation typical of biological analyte concentrations, long data acquisition periods and on-chip processing capability to realize these advantages. We report here fluorescence lifetime data obtained using a CMOS-SPAD imager in conjunction with DNA microarrays and TIRF excitation geometry. This enables acquisition of single photon arrival time histograms for a 320 pixel FLIM map within less than 26 seconds exposure time. From this, we resolve distinct lifetime signatures corresponding to dye-labelled HCV and quantum-dot-labelled HCMV nucleic acid targets at concentrations as low as 10 nM. PMID:21258550

  20. An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors

    PubMed Central

    Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi

    2014-01-01

    In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process. PMID:25517692