Sample records for n2o-n m-2 h-1

  1. Infrared spectra of seeded hydrogen clusters: (para-H2)N-N2O and (ortho-H2)N-N2O, N = 2-13.

    PubMed

    Tang, Jian; McKellar, A R W

    2005-09-15

    High-resolution infrared spectra of clusters containing para-H2 and/or ortho-H2 and a single nitrous oxide molecule are studied in the 2225-cm(-1) region of the upsilon1 fundamental band of N2O. The clusters are formed in pulsed supersonic jet expansions from a cooled nozzle and probed using a tunable infrared diode laser spectrometer. The simple symmetric rotor-type spectra generally show no resolved K structure, with prominent Q-branch features for ortho-H2 but not para-H2 clusters. The observed vibrational shifts and rotational constants are reported. There is no obvious indication of superfluid effects for para-H2 clusters up to N=13. Sharp transitions due to even larger clusters are observed, but no definite assignments are possible. Mixed (para-H2)N-(ortho-H2)M-N2O cluster line positions can be well predicted by linear interpolation between the corresponding transitions of the pure clusters.

  2. X-ray diffraction analysis of 4- and 4'-substituted C n H2 n + 1O-C6H3(OH)-CH=N-C6H4-C m H2 m + 1 ( n/ m = 2/1 and 3/4) salicylideneanilines

    NASA Astrophysics Data System (ADS)

    Kuz'mina, L. G.; Navasardyan, M. A.; Mikhailov, A. A.

    2017-11-01

    X-ray diffraction study of two crystalline modifications of C2H5O-C6H3(OH)-CH=N-C6H4-CH3 ( 1a, sp. gr. P21/ n, and 1b, sp. gr. C2/c) and C3H7O-C6H3(OH)-CH=N-C6H4-C4H9 ( 2, sp. gr. P212121) has been performed. The 1a crystal structure contains two independent molecules. The molecules are conformationally nonrigid with respect to the mutual rotation of benzene rings; the dihedral angles between their planes are 29.19° and 26.00° in the independent molecules of 1a, 18.72° in the molecule of 1b, and 50.35° in the molecule of 2. The crystal packing of the compounds is discussed.

  3. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  4. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1).

    PubMed

    Li, Xiang; Wang, Haopeng; Bowen, Kit H

    2010-10-14

    The hydrated nucleoside anions, uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1), have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine(-)(H(2)O)(1) and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  5. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.

    2010-10-01

    The hydrated nucleoside anions, uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1, have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine-(H2O)1 and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  6. Isotope exchange in reactions between D2O and size-selected ionic water clusters containing pyridine, H+ (pyridine)m(H2O)n.

    PubMed

    Ryding, Mauritz Johan; Zatula, Alexey S; Andersson, Patrik Urban; Uggerud, Einar

    2011-01-28

    Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.

  7. Ab initio studies on Al(+)(H(2)O)(n), HAlOH(+)(H(2)O)(n-1), and the size-dependent H(2) elimination reaction.

    PubMed

    Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S

    2002-09-11

    We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations

  8. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  9. Infrared Spectra of M^+(2-AMINO-1-PHENYL ETHANOL)(H_2O)_{n=0-2}Ar (M=Na, K)

    NASA Astrophysics Data System (ADS)

    Nicely, Amy L.; Lisy, James M.

    2009-06-01

    A balance of competing electrostatic and hydrogen bonding interactions directs the structure of hydrated gas-phase cluster ions. Because of this, a biologically relevant model of cluster structures should include the effects of surrounding water molecules and metal ions such as sodium and potassium, which are found in high concentrations in the bloodstream. The molecule 2-amino-1-phenyl ethanol (APE) serves as a model for the neurotransmitters ephedrine and adrenaline. The neutral APE molecule contains an internal hydrogen bond between the amino and hydroxyl groups. In the M^+(APE) complex, the cation can either interrupt the internal hydrogen bond or position itself above the phenyl group, leaving the internal hydrogen bond intact. The former is preferred based on DFT calculations (B3LYP/6-31+G*) for both K^+ and Na^+ across the entire range from 0-400K, but infrared photodissociation (IRPD) spectra indicate a preference for the latter configuration at low temperatures. The IRPD spectra of M^+(H_2O)_{n=1-2} and M^+(H_2O)_{n=0-2}Ar (M=Na, K) will be presented along with parallel DFT and thermodynamics calculations to assist with the identification of the isomers present in each experiment.

  10. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O.

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-14

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  11. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  12. Theoretical study of the interaction of N/sub 2/ with water molecules. (H/sub 2/O)/sub n/:N/sub 2/, n = 1--8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-03-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H/sub 2/O molecule with N/sub 2/. The potential energy surface for H/sub 2/O:N/sub 2/ is found to have a minimum corresponding to a HOH xxx N/sub 2/ structure with a weak (<2 kcal mol/sup -1/) hydrogen bond. A second, less stable, configuration corresponding to a H/sub 2/O xxx N/sub 2/ structure with N/sub 2/ bonded side on to the oxygen of H/sub 2/O was found to be either a minimum or a saddle point in the potential energy surface depending on themore » level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H/sub 2/O molecules with N/sub 2/. Two types of clusters, one containing only HOH xxx N/sub 2/ interactions and the other containing both HOH xxxN/sub 2/ and H/sub 2/O xxx N/sub 2/ interactions, were investigated for (N/sub 2/:(H/sub 2/O)/sub n/, n = 2--8).« less

  13. Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m.

    PubMed

    Heinbuch, S; Dong, F; Rocca, J J; Bernstein, E R

    2006-10-21

    Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.

  14. Infrared photodissociation spectroscopy of H(+)(H2O)6·M(m) (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O(+) and H5O2(+) core isomers.

    PubMed

    Mizuse, Kenta; Fujii, Asuka

    2011-04-21

    Although messenger mediated spectroscopy is a widely-used technique to study gas phase ionic species, effects of messengers themselves are not necessarily clear. In this study, we report infrared photodissociation spectroscopy of H(+)(H(2)O)(6)·M(m) (M = Ne, Ar, Kr, Xe, H(2), N(2), and CH(4)) in the OH stretch region to investigate messenger(M)-dependent cluster structures of the H(+)(H(2)O)(6) moiety. The H(+)(H(2)O)(6), the protonated water hexamer, is the smallest system in which both the H(3)O(+) (Eigen) and H(5)O(2)(+) (Zundel) hydrated proton motifs coexist. All the spectra show narrower band widths reflecting reduced internal energy (lower vibrational temperature) in comparison with bare H(+)(H(2)O)(6). The Xe-, CH(4)-, and N(2)-mediated spectra show additional band features due to the relatively strong perturbation of the messenger. The observed band patterns in the Ar-, Kr-, Xe-, N(2)-, and CH(4)-mediated spectra are attributed mainly to the "Zundel" type isomer, which is more stable. On the other hand, the Ne- and H(2)-mediated spectra are accounted for by a mixture of the "Eigen" and "Zundel" types, like that of bare H(+)(H(2)O)(6). These results suggest that a messenger sometimes imposes unexpected isomer-selectivity even though it has been thought to be inert. Plausible origins of the isomer-selectivity are also discussed.

  15. High Level ab initio Predictions of the Energetics of mCO2•(H2O)n (n = 1-3, m = 1-12) Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanthiriwatte, Sahan; Duke, Jessica R.; Jackson, Virgil E.

    Electronic structure calculations at the correlated molecular orbital theory and density functional theory levels have been used to generate a reliable set of clustering energies for up to three water molecules in carbon dioxide clusters up to n = 12. The structures and energetics are dominated by Lewis acid-base interactions with hydrogen bonding interactions playing a lesser energetic role. The actual binding energies are somewhat larger than might be expected. The correlated molecular orbital MP2 method and density functional theory with the ωB97X exchange-correlation functional provide good results for the energetics of the clusters but the B3LYP and ωB97X-D functionalsmore » do not. Seven CO2 molecules form the first solvent shell about a single H2O with four CO2 molecules interacting with the H2O via Lewis acid-base interactions, two CO2 interacting with the H2O by hydrogen bonds, and the seventh CO2 completing the shell. The Lewis acid-base and weak hydrogen bond interactions between the water molecules and the CO2 molecules are strong enough to disrupt the trimer ring configuration for as few as seven CO2 molecules. Calculated 13C NMR chemical shifts for mCO2•(H2O)n show little change with respect to the number of H2O or CO2 molecules in the cluster. The O-H stretching frequencies do exhibit shifts that can provide information about the interactions between water and CO2 molecules.« less

  16. A theoretical study of the positive and dipositive ions of M(NH3)n and M(H2O)n for M = Mg, Ca, or Sr

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Partridge, Harry

    1992-01-01

    The structure and binding energies are determined for many of the M(H2O)n(+) and M(H2O)n(2+) species, for n = 1-3 and M = Mg, Ca, or Sr. The trends are explained in terms of metal sp or sd-sigma hybridization and core polarization. The M(NH3)n(+) systems, with M = Mg or Sr, are also studied. For the positive ions, the low-lying excited states are also studied and compared with experiment. The calculations suggest an alternative interpretation of the SrNH3(+) spectrum.

  17. Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4.nH2O (M = H, Na).

    PubMed

    Solbrå, S; Allison, N; Waite, S; Mikhalovsky, S V; Bortun, A I; Bortun, L N; Clearfield, A

    2001-02-01

    The ion exchange properties of the titanium silicate, M2Ti2O3SiO4.nH2O (M = H, Na), toward stable and radioactive 137Cs+ and 89Sr2+, have been examined. By studying the cesium and strontium uptake in the presence of NaNO3, CaCl2, NaOH, and HNO3 (in the range of 0.01-6 M) the sodium titanium silicate was found to be an efficient Cs+ ion exchanger in acid, neutral, and alkaline media and an efficient Sr2+ ion exchanger in neutral and alkaline media, which makes it promising for treatment of contaminated environmental media and biological systems.

  18. Studies of CW lasing action in CO2-CO, N2O-CO, CO2-H2O, and N2O-H2O mixtures pumped by blackbody radiation

    NASA Technical Reports Server (NTRS)

    Abel, Robert W.; Christiansen, Walter H.; Li, Jian-Guo

    1988-01-01

    A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28 percent for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power.

  19. KCd2[N(CN)2]5(H2O)4: an enmeshed honeycomb grid.

    PubMed

    Schlueter, John A; Geiser, Urs; Funk, Kylee A

    2008-02-01

    The title compound, poly[potassium [diaquapenta-micro(2)-dicyanamido-dicadmium(II)] dihydrate], {K[Cd(2)(C(2)N(3))(5)(H(2)O)(2)].2H(2)O}(n), contains two-dimensional anionic sheets of {[Cd(2){N(CN)(2)}(H(2)O)(2)](-)}(n) with a modified (6,3)-net (layer group cm2m, No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.

  20. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    PubMed

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  1. Spectroscopic and electrochemical properties of group 12 acetates of di-2-pyridylketone thiophene-2-carboxylic acid hydrazone (dpktch-H) complexes. The structure of [Cd(η³-N,N,O-dpktch-H)₂].

    PubMed

    Bakir, Mohammed; Lawrence, Mark A W; McBean, Shameal

    2015-07-05

    The reaction between [dpktch] and [M(OAc)2] (M=group 12 metal atom) in refluxing CH3CN gave [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O (n=0 or 1). The infrared and (1)H NMR spectra are consistent with the coordination of [η(2)-O,O-OAc] and [η(3)-N,N,O-dpktch-H](-) and the proposed formulations. The electronic absorption spectra of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O measured in non-aqueous solvents revealed a highly intense intra-ligand-charge transfer (ILCT) transition due to π-π∗ of dpk followed by dpk→thiophene charge transfer. The electronic transitions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O are solvent and concentration dependent. Spectrophotometric titrations of dmso solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O with benzoic acid revealed irreversible inter-conversion between [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O and it conjugate acid [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch)]·nH2O pointing to ligand exchange between the acetate and benzoate anions. When CH2Cl2 solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O were titrated with dmso, changes appeared pointing to solvolysis or ligand exchange reactions. Electrochemical measurements on dmso solutions of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O divulged irreversible redox transformations consistent with electrochemical decomposition of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O. The solid state structure of a single crystal of [Cd(η(3)-N,N,O-dpktch-H)2] obtained from a dmso solution of [Cd(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O confirmed the ligand scrambling of [M(η(2)-O,O-OAc)(η(3)-N,N,O-dpktch-H)]·nH2O. The extended structure of [Cd(η(3)-N,N,O-dpktch-H)2] revealed stacks of [Cd(η(3)-N,N,O-dpktch-H)2] locked via a network of hydrogen bonds. A significant amount of empty space (35.5%) was observed in the solid state structure of [Cd(η(3)-N,N,O-dpktch-H)2]. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    PubMed

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  3. Crystal structure of aqua-1κO-{μ-2-[(2-hydroxy-ethyl)methylamino]ethanolato-2:1κ(4) O (1),N,O (2):O (1)}[μ-2,2'-(methylimino)diethanolato-1:2κ(4) O,N,O':O]dithiocyanato-1κN,2κN-chromium(III)copper(II).

    PubMed

    Rusanova, Julia A; Semenaka, Valentina V; Dyakonenko, Viktoriya V; Shishkin, Oleg V

    2015-09-01

    The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal Cu(II)/Cr(III) complex. The mol-ecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thio-cyanato ligands. The Cu(II) ion adopts a distorted square-pyramidal coordination while the Cr(III) ion has a distorted octa-hedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O-H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two -CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1).

  4. Syntheses and structures of [UO2( L)5](ClO4)2 and [U( L')4(H2O)4](ClO4)4 ( L is dimethylformamide, L' is N,N-dimethylcarbamide)

    NASA Astrophysics Data System (ADS)

    Serezhkin, V. N.; Vologzhanina, A. V.; Pushkin, D. V.; Astashkina, D. A.; Savchenkov, A. V.; Serezhkina, L. B.

    2017-09-01

    The reaction of aqueous solutions of uranyl perchlorate with selected organic amides was studied in the dark and under the sunlight. The complexes [UVIO2(C3H7NO)5](ClO4)2 ( I) and [UIV(C3H8N2O)4(H2O)4](ClO4)4 ( II), where C3H7NO is N,N-dimethylformamide ( Dmfa) and C3H8N2O is N,N-dimethylcarbamide ( a-Dmur), were studied by X-ray diffraction. Complex II and the complex UIV( s-Dmur)4(H2O)4(ClO4)4 ( III), where s-Dmur is N,N'-dimethylcarbamide, were studied by IR spectroscopy. Crystals I and II are composed of mononuclear [UO2( Dmfa)5]2+ and [U( Dmur)4(H2O)4]4+ groups as uranium-containing structural units belonging to the crystal-chemical groups AM 7 1 ( A = UVI, M 1 = O2- and Dmfa) and AM 8 1 ( A = UIV, M 1 = Dmur and H2O) of uranium complexes, respectively. The mononuclear uranium- containing complexes in the crystals of U(IV) and U(VI) perchlorates were found to obey the 14 neighbors rule.

  5. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth

    NASA Astrophysics Data System (ADS)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2018-04-01

    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  6. A new series of oxycarbonate superconductors (Cu(0.5)C(0.5))(m)Ba(m+1)Ca(n-1)Cu(n)O2(m+n)+1

    NASA Technical Reports Server (NTRS)

    Takayama-Muromachi, E.; Kawashima, T.; Matsui, Y.

    1995-01-01

    We found a new series of oxycarbonate superconductors in the Ba-CaCu-C-O system under high pressure of 5 GPa. Their ideal formula is (Cu(0.5)C(0.5)(m)Ba(m+1)Ca(n-1)Cu(n)O2)((m+n)+1) ((Cu,C)-m(m+1)(n-1)n). Thus far, n = 3, 4 members of the m = 1 series, (Cu,C)-1223 and (Cu,C)-1234, have been prepared in bulk while n = 4, 5 members, (Cu,C)-2334 and (Cu,C)-2345, have been prepared for the m = 2 series. (Cu,C)-1223 shows superconductivity below 67 K while T(sub c)'s of other compounds are above 110 K. In particular, (Cu,C)-1234 has the highest T(sub c) of 117 K.

  7. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    PubMed

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  8. The denitrification paradox: The role of O2 in sediment N2O production

    NASA Astrophysics Data System (ADS)

    Barnes, Jonathan; Upstill-Goddard, Robert C.

    2018-01-01

    We designed a novel laboratory sediment flux chamber in which we maintained the headspace O2 partial pressure at preselected values, allowing us to experimentally regulate "in-situ" O2 to evaluate its role in net N2O production by an intertidal estuarine sediment (Tyne, UK). In short-term (30 h) incubations with 10 L of overlying estuarine water (∼3 cm depth) and headspace O2 regulation (headspace: sediment/water ratio ∼9:1), net N2O production was highest at 1.2% O2 (sub-oxic; 32.3 nmol N2O m-2 d-1), an order of magnitude higher than at either 0.0% (anoxic; 2.5 N2O nmol m-2 d-1) or 20.85% (ambient; 2.3 nmol N2O m-2 d-1) O2. In a longer-term sealed incubation (∼490 h) without O2 control, time-dependent behaviour of N2O in the tank headspace was highly non-linear with time, showing distinct phases: (i) an initial period of no or little change in O2 or N2O up to ∼ 100 h; (ii) a quasi-linear, inverse correlation between O2 and N2O to ∼360 h, in which O2 declined to ∼2.1% and N2O rose to ∼7800 natm; (iii) over the following 50 h a slower O2 decline, to ∼1.1%, and a more rapid N2O increase, to ∼12000 natm; (iv) over the next 24 h a slowed O2 decline towards undetectable levels and a sharp fall in N2O to ∼4600 natm; (iv) a continued N2O decrease at zero O2, to ∼3000 natm by ∼ 490 h. These results show clearly that rapid N2O consumption (∼115 nmol m-2 d-1), presumably via heterotrophic denitrification (HD), occurs under fully anoxic conditions and therefore that N2O production, which was optimal for sub-oxic O2, results from other nitrogen transformation processes. In experiments in which we amended sediment overlying water to either 1 mM NH4+ or 1 mM NO3-, N2O production rates were 2-134 nmol N2O m-2 d-1 (NH4+ addition) and 0.4-2.2 nmol N2O m-2 d-1 (NO3- addition). We conclude that processes involving NH4+ oxidation (nitrifier nitrification; nitrifier denitrification; nitrification-coupled denitrification) are principally responsible for N2O

  9. Empirical electronic polarizabilities: deviations from the additivity rule. I. M2+SO4·nH2O, blödite Na2M2+(SO4)2·4H2O, and kieserite-related minerals with sterically strained structures

    NASA Astrophysics Data System (ADS)

    Gagné, Olivier; Hawthorne, Frank; Shannon, Robert D.; Fischer, Reinhard X.

    2017-09-01

    Empirical electronic polarizabilities allow the prediction of total mineral polarizabilities and mean refractive indices of the vast majority of minerals and synthetic oxides. However, deviations from the valence-sum rule at cations in some minerals are associated with large deviations of observed from calculated total polarizabilities. We have identified several groups of minerals and compounds where deviations from the valence-sum rule at cations lead to polarizability deviations of 2-5%: M(SO4)·nH2O, n = 1-6, blödite-group minerals [Na2M2+(SO4)2·4H2O], and the kieserite-related minerals: isokite, panasqueiraite and tilasite. In these minerals, the environment of the M ions contains both O and H2O: Mg[O4(H2O)2] in kieserite, szmikite, and szomolnokite; Mg[O2(H2O)4] in starkeyite, ilesite, and rozenite, and Mg[(H2O)6] in hexahydrite. In compounds where the ligands are only H2O, deviations from the valence-sum rule at the M(H2O)6 groups are not accompanied by significant polarizability deviations. This is the case for epsomite, MgSO4·7H2O; bieberite, CoSO4·7H2O; goslarite, ZnSO4·7H2O, six silicofluorides, MSiF6·6H2O; eighteen Tutton's salts, M2M'(SO4)2·6H2O, where M = K, Rb, Cs and M' = Mg, Mn, Fe, Co, Ni, Cu, and Zn; and eleven MM'(SO4)2·12H2O alums, where M = Na, K, Rb and Cs, and M' = Al, Cr, Ga and In. This is also the case for the sulfates alunogen, Al2(SO4)3·17H2O and halotrichite, FeAl2(SO4)4·22H2O; three hydrated nitrates; one phosphate; three antimonates and two hydrated perchlorates. A possible explanation for this different behavior is that the bond-valence model treats O and H separately, whereas polarizability calculations treat the polarizability of the entire H2O molecule.

  10. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    PubMed

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  11. Crystal structure of aqua-1κO-{μ-2-[(2-hydroxy­ethyl)methylamino]ethanolato-2:1κ4 O 1,N,O 2:O 1}[μ-2,2′-(methylimino)diethanolato-1:2κ4 O,N,O′:O]dithiocyanato-1κN,2κN-chromium(III)copper(II)

    PubMed Central

    Rusanova, Julia A.; Semenaka, Valentina V.; Dyakonenko, Viktoriya V.; Shishkin, Oleg V.

    2015-01-01

    The title compound, [CrCu(C5H11NO2)(C5H12NO2)(NCS)2(H2O)] or [Cr(μ-mdea)Cu(μ-Hmdea)(NCS)2H2O], (where mdeaH2 is N-methylethanolamine, C5H13NO2) is formed as a neutral heterometal CuII/CrIII complex. The mol­ecular structure of the complex is based on a binuclear {CuCr(μ-O)2} core. The coordination environment of each metal atom involves the N,O,O atoms of the tridentate ligand, one bridging O atom of the ligand and the N atom of the thio­cyanato ligands. The CuII ion adopts a distorted square-pyramidal coordination while the CrIII ion has a distorted octa­hedral coordination geometry completed by the aqua ligand. In the crystal, the binuclear complexes are linked via two pairs of O—H⋯O hydrogen bonds to form inversion dimers, which are arranged in columns parallel to the a axis. In the μ-mdea ligand two –CH2 groups and the methyl group were refined as disordered over two sets of sites with equal occupancies. The structure was refined as a two-component twin with a twin scale factor of 0.242 (1). PMID:26396853

  12. On the production of N2O from the reaction of O(1 D) with N2

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Lissi, E.; Heicklen, J.

    1972-01-01

    Ozone was photolyzed at 2537 A and 25 C in the presence of 42-115 torr of O2 and about 880 torr of N2 to test the relative importance of the two reactions: (1) O(1D) + N2 + M yields N2O + M, and (2) O(1D) + N2 yields O(3P) + N2. N2O was not found as a product. Thus from our detectability limit for N2O (0.3 micron), an upper limit to the efficiency of the first reaction relative to the second of 0.0000025 at 1000 torr total pressure was computed. This corresponds to k1/k2 smaller than 0.8 x 10 to the minus 25 power cu cm/particle.

  13. Reactions of CH3SH and CH3SSCH3 with gas-phase hydrated radical anions (H2O)n(•-), CO2(•-)(H2O)n, and O2(•-)(H2O)n.

    PubMed

    Höckendorf, Robert F; Hao, Qiang; Sun, Zheng; Fox-Beyer, Brigitte S; Cao, Yali; Balaj, O Petru; Bondybey, Vladimir E; Siu, Chi-Kit; Beyer, Martin K

    2012-04-19

    The chemistry of (H(2)O)(n)(•-), CO(2)(•-)(H(2)O)(n), and O(2)(•-)(H(2)O)(n) with small sulfur-containing molecules was studied in the gas phase by Fourier transform ion cyclotron resonance mass spectrometry. With hydrated electrons and hydrated carbon dioxide radical anions, two reactions with relevance for biological radiation damage were observed, cleavage of the disulfide bond of CH(3)SSCH(3) and activation of the thiol group of CH(3)SH. No reactions were observed with CH(3)SCH(3). The hydrated superoxide radical anion, usually viewed as major source of oxidative stress, did not react with any of the compounds. Nanocalorimetry and quantum chemical calculations give a consistent picture of the reaction mechanism. The results indicate that the conversion of e(-) and CO(2)(•-) to O(2)(•-) deactivates highly reactive species and may actually reduce oxidative stress. For reactions of (H(2)O)(n)(•-) with CH(3)SH as well as CO(2)(•-)(H(2)O)(n) with CH(3)SSCH(3), the reaction products in the gas phase are different from those reported in the literature from pulse radiolysis studies. This observation is rationalized with the reduced cage effect in reactions of gas-phase clusters. © 2012 American Chemical Society

  14. {μ-2-[(3-Amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1:2κ(5)O(1),O(6):N,N',O(1)}{2-[(3-amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1κ(3)N,N',O(1)}-μ-azido-1:2κ(2)N:N-azido-2κN-methanol-2κO-dinickel(II).

    PubMed

    Ghaemi, Akbar; Rayati, Saeed; Fayyazi, Kazem; Ng, Seik Weng; Tiekink, Edward R T

    2012-08-01

    Two distinct coordination geometries are found in the binuclear title complex, [Ni(2)(C(13)H(19)N(2)O(2))(2)(N(3))(2)(CH(3)OH)], as one Schiff base ligand is penta-dentate, coordinating via the anti-cipated oxide O, imine N and amine N atoms (as for the second, tridentate, ligand) but the oxide O is bridging and coordination also occurs through the meth-oxy O atom. The Ni(II) atoms are linked by a μ(2)-oxide atom and one end of a μ(2)-azide ligand, forming an Ni(2)ON core. The coordination geometry for the Ni(II) atom coordinated by the tridentate ligand is completed by the meth-oxy O atom derived from the penta-dentate ligand, with the resulting N(3)O(3) donor set defining a fac octa-hedron. The second Ni(II) atom has its cis-octa-hedral N(4)O(2) coordination geometry completed by the imine N and amine N atoms of the penta-dentate Schiff base ligand, a terminally coordinated azide N and a methanol O atom. The arrangement is stabilized by an intra-molecular hydrogen bond between the methanol H and the oxide O atom. Linear supra-molecular chains along the a axis are formed in the crystal packing whereby two amine H atoms from different amine atoms hydrogen bond to the terminal N atom of the monodentate azide ligand.

  15. On the production of N2O from the reaction of O/1D/with N2.

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Lissi, E.; Heicklen, J.

    1972-01-01

    Ozone was photolyzed at 2537 A and at 25 C in the presence of 42-115 torr of O2 and about 880 torr of N2 to test the relative importance of the two reactions O(1D) + N2 + M leading to N2O + M and O(1D) + N2 leading to O(3P) + N2. In this study N2O was not found as a product. Thus from our detectability limit for N2O an upper limit to the efficiency of the first reaction relative to the second of 2.5 times 10 to the -6 power at 1000-torr total pressure was computed.

  16. Vibrational spectroscopy of (SO4(2-)).(H2O)n clusters, n=1-5: harmonic and anharmonic calculations and experiment.

    PubMed

    Miller, Yifat; Chaban, Galina M; Zhou, Jia; Asmis, Knut R; Neumark, Daniel M; Gerber, R Benny

    2007-09-07

    The vibrational spectroscopy of (SO4(2-)).(H2O)n is studied by theoretical calculations for n=1-5, and the results are compared with experiments for n=3-5. The calculations use both ab initio MP2 and DFT/B3LYP potential energy surfaces. Both harmonic and anharmonic calculations are reported, the latter with the CC-VSCF method. The main findings are the following: (1) With one exception (H2O bending mode), the anharmonicity of the observed transitions, all in the experimental window of 540-1850 cm(-1), is negligible. The computed anharmonic coupling suggests that intramolecular vibrational redistribution does not play any role for the observed linewidths. (2) Comparison with experiment at the harmonic level of computed fundamental frequencies indicates that MP2 is significantly more accurate than DFT/B3LYP for these systems. (3) Strong anharmonic effects are, however, calculated for numerous transitions of these systems, which are outside the present observation window. These include fundamentals as well as combination modes. (4) Combination modes for the n=1 and n=2 clusters are computed. Several relatively strong combination transitions are predicted. These show strong anharmonic effects. (5) An interesting effect of the zero point energy (ZPE) on structure is found for (SO4(2-)).(H2O)(5): The global minimum of the potential energy corresponds to a C(s) structure, but with incorporation of ZPE the lowest energy structure is C2v, in accordance with experiment. (6) No stable structures were found for (OH-).(HSO4-).(H2O)n, for n

  17. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006.

    PubMed

    Bauer, Katja; Richter, Martina; Wutzler, Peter; Schmidtke, Michaela

    2009-04-01

    In the flu season 2005/2006 amantadine-resistant human influenza A viruses (FLUAV) of subtype H3N2 circulated in Germany. This raises questions on the neuraminidase inhibitor (NAI) susceptibility of FLUAV. To get an answer, chemiluminescence-based neuraminidase inhibition assays were performed with 51 H1N1, H1N2, and H3N2 FLUAV isolated in Germany from 2001 to 2005/2006. According to the mean IC(50) values (0.38-0.91 nM for oseltamivir and 0.76-1.13 nM for zanamivir) most H1N1 and H3N2 FLUAV were NAI-susceptible. But, about four times higher zanamivir concentrations were necessary to inhibit neuraminidase activity of H1N2 viruses. Two H1N1 isolates were less susceptible to both drugs in NA inhibition as well as virus yield reduction assays. Results from sequence analysis of viral hemagglutinin and neuraminidase genes and evolutionary analysis of N2 gene revealed (i) different subclades for N2 in H1N2 and H3N2 FLUAV that could explain the differences in zanamivir susceptibility among these viruses and (ii) specific amino acid substitutions in the neuraminidase segment of the two less NAI-susceptible H1N1 isolates. One H3N2 was isolate proved to be a mixture of a NA deletion mutant and full-length NA viruses.

  18. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    PubMed

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  19. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem.

    PubMed

    Van den Heuvel, R N; Bakker, S E; Jetten, M S M; Hefting, M M

    2011-05-01

    Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils. © 2011 Blackwell Publishing Ltd.

  20. O2(b1Σg+) Quenching by O2, CO2, H2O, and N2 at Temperatures of 300-800 K.

    PubMed

    Zagidullin, M V; Khvatov, N A; Medvedkov, I A; Tolstov, G I; Mebel, A M; Heaven, M C; Azyazov, V N

    2017-10-05

    Rate constants for the removal of O 2 (b 1 Σ g + ) by collisions with O 2 , N 2 , CO 2 , and H 2 O have been determined over the temperature range from 297 to 800 K. O 2 (b 1 Σ g + ) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b 1 Σ g + -X 3 Σ g - fluorescence. The removal rate constants for CO 2 , N 2 , and H 2 O were not strongly dependent on temperature and could be represented by the expressions k CO2 = (1.18 ± 0.05) × 10 -17 × T 1.5 × exp[Formula: see text], k N2 = (8 ± 0.3) × 10 -20 × T 1.5 × exp[Formula: see text], and k H2O = (1.27 ± 0.08) × 10 -16 × T 1.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . Rate constants for O 2 (b 1 Σ g + ) removal by O 2 (X), being orders of magnitude lower, demonstrated a sharp increase with temperature, represented by the fitted expression k O2 = (7.4 ± 0.8) × 10 -17 × T 0.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

  1. 2,4-Dinitrophenylhydrazine, redetermined at 120 K: a three-dimensional framework built from N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

    PubMed

    Wardell, James L; Low, John N; Glidewell, Christopher

    2006-06-01

    In the title compound, C6H6N4O4, the bond distances indicate significant bond fixation, consistent with charge-separated polar forms. The molecules are almost planar and there is an intramolecular N-H...O hydrogen bond. The molecules are linked into a complex three-dimensional framework structure by a combination of N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

  2. Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.

    In the low energy structures of the (TiO 2) n(H 2O) m (n ≤ 4, m2n) and (TiO 2) 8(H 2O) m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO 2 clusters. Dissociative adsorption is the dominant reaction for the first two H 2O adsorption reactions for n = 1, 2, and 4, for the first three H 2O adsorption reactions for n = 3, and for the first four Hmore » 2O adsorption reactions for n = 8. As more H 2O’s are added to the hydrated (TiO 2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO 2 clusters: a Lewis acid–base Ti–O(H 2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H 2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H 2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH) 4 to form the monocyclic ring cluster (TiO 3H 2) n + nH 2O. E D is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO 2) n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad 2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption

  3. Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4

    DOE PAGES

    Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.

    2015-10-20

    In the low energy structures of the (TiO 2) n(H 2O) m (n ≤ 4, m2n) and (TiO 2) 8(H 2O) m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO 2 clusters. Dissociative adsorption is the dominant reaction for the first two H 2O adsorption reactions for n = 1, 2, and 4, for the first three H 2O adsorption reactions for n = 3, and for the first four Hmore » 2O adsorption reactions for n = 8. As more H 2O’s are added to the hydrated (TiO 2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO 2 clusters: a Lewis acid–base Ti–O(H 2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H 2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H 2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH) 4 to form the monocyclic ring cluster (TiO 3H 2) n + nH 2O. E D is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO 2) n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad 2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption

  4. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  5. 2′-O-[2-[(N,N-dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo

    PubMed Central

    Prakash, Thazha P.; Johnston, Joseph F.; Graham, Mark J.; Condon, Thomas P.; Manoharan, Muthiah

    2004-01-01

    Synthesis and antisense activity of oligonucleotides modified with 2′-O-[2-[(N,N-dimethylamino)oxy] ethyl] (2′-O-DMAOE) are described. The 2′-O-DMAOE-modified oligonucleotides showed superior metabolic stability in mice. The phosphorothioate oligonucleotide ‘gapmers’, with 2′-O-DMAOE- modified nucleoside residues at the ends and 2′-deoxy nucleosides residues in the central region, showed dose-dependent inhibition of mRNA expression in cell culture for two targets. ‘Gapmer’ oligonucleotides have one or two 2′-O-modified regions and a 2′-deoxyoligonucleotide phosphorothioate region that allows RNase H digestion of target mRNA. To determine the in vivo potency and efficacy, BalbC mice were treated with 2′-O-DMAOE gapmers and a dose-dependent reduction in the targeted C-raf mRNA expression was observed. Oligonucleotides with 2′-O-DMAOE modifications throughout the sequences reduced the intercellular adhesion molecule-1 (ICAM-1) protein expression very efficiently in HUVEC cells with an IC50 of 1.8 nM. The inhibition of ICAM-1 protein expression by these uniformly modified 2′-O-DMAOE oligonucleotides may be due to selective interference with the formation of the translational initiation complex. These results demonstrate that 2′-O-DMAOE- modified oligonucleotides are useful for antisense-based therapeutics when either RNase H-dependent or RNase H-independent target reduction mechanisms are employed. PMID:14762210

  6. Tris(5,6-dimethyl-1H-benzimidazole-κN(3))(pyridine-2,6-dicarboxyl-ato-κ(3)O(2),N,O(6))nickel(II).

    PubMed

    Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan

    2012-06-01

    The title mononuclear complex, [Ni(C(7)H(3)NO(4))(C(9)H(10)N(2))(3)], shows a central Ni(II) atom which is coordinated by two carboxyl-ate O atoms and the N atom from a pyridine-2,6-dicarboxyl-ate ligand and by three N atoms from different 5,6-dimethyl-1H--benzimidazole ligands in a distorted octa-hedral geometry. The crystal structure shows intermolecular N-H⋯O hydrogen bonds.

  7. Reaction of N2O5 with H2O on carbonaceous surfaces

    NASA Technical Reports Server (NTRS)

    Brouwer, L.; Rossi, M. J.; Golden, D. M.

    1986-01-01

    The heterogeneous reaction of N2O5 with commercially available ground charcoal in the absence of H2O revealed a physisorption process (gamma = 0.003), together with a redox reaction generating mostly NO. Slow HNO3 formation was the result of the interaction of N2O5 with H2O that was still adsorbed after prolonged pumping at 0.0001 torr. In the presence of H2O, the same processes with gamma = 0.005 are observed. The redox reaction dominates in the early stages of the reaction, whereas the hydrolysis gains importance later at the expense of the redox reaction. The rate law for HNO3 generation was found to be d(HNO3)/dt = k(bi)(H2O)(N2O5) with k(bi), the effective bimolecular rate constants, for 10 mg of carbon being (1.6 + or - 0.3) x 10 to the -13th cu cm/s.

  8. Hydrogen bonding in microsolvation: photoelectron imaging and theoretical studies on Au(x)(-)-(H2O)(n) and Au(x)(-)-(CH3OH)(n) (x = 1, 2; n = 1, 2) complexes.

    PubMed

    Wu, Xia; Tan, Kai; Tang, Zichao; Lu, Xin

    2014-03-14

    We have combined photoelectron velocity-map imaging (VMI) spectroscopy and theoretical calculations to elucidate the geometry and energy properties of Aux(-)(Solv)n clusters with x = 1, 2; n = 1, 2; and Solv = H2O and CH3OH. Besides the blue-shifted vertical electron detachment energies (VDEs) of the complexes Au1,2(-)(Solv)n with the increase of the solvation number (n), we independently probed two distinct Au(-)(CH3OH)2 isomers, which combined with MP2/aug-cc-pVTZ(pp) calculations represent a competition between O···H-O hydrogen bonds (HBs) and Au···H-O nonconventional hydrogen bonds (NHBs). Complementary calculations provide the total binding energies of the low-energy isomers. Moreover, the relationship between the total binding energies and total VDEshift is discussed. We found that the Au1,2(-) anions exhibit halide-analogous behavior in microsolvation. These findings also demonstrate that photoelectron velocity map imaging spectroscopy with the aid of the ab initio calculations is an effective tool for investigating weak-interaction complexes.

  9. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    PubMed

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  10. A pure inorganic 1D chain based on {Mo8O28} clusters and Mn(II) ions: [Mn(H2O)2Mo8O28 ] n 6 n -

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofen; Yan, Yonghong; Wu, Lizhou; Yu, Chengxin; Dong, Xinbo; Hu, Huaiming; Xue, Ganglin

    2016-01-01

    A new pure inorganic polymer, (NH4)6n[Mn(H2O)2Mo8O28)]n(H2O)2n(1), has been synthesized and characterized by elemental analyses, IR spectrum, UV-vis absorption spectra, TG-DSC and electrochemical studies. In 1, [Mo8O28]8- anions act as tetradentate ligands and are alternately linked by Mn(H2O)2 2 + ions into a one-dimensional chain structure. It is interesting that 1 represents the first example of pure inorganic-inorganic hybrid based on octamolybdate and transition metal ions. Moreover, it was indicated that 1 had definite catalytic activities on the probe reaction of benzyl alcohol oxidation to benzaldehyde with H2O2.

  11. N2/O2/H2 Dual-Pump Cars: Validation Experiments

    NASA Technical Reports Server (NTRS)

    OByrne, S.; Danehy, P. M.; Cutler, A. D.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method is used to measure temperature and the relative species densities of N2, O2 and H2 in two experiments. Average values and root-mean-square (RMS) deviations are determined. Mean temperature measurements in a furnace containing air between 300 and 1800 K agreed with thermocouple measurements within 26 K on average, while mean mole fractions agree to within 1.6 % of the expected value. The temperature measurement standard deviation averaged 64 K while the standard deviation of the species mole fractions averaged 7.8% for O2 and 3.8% for N2, based on 200 single-shot measurements. Preliminary measurements have also been performed in a flat-flame burner for fuel-lean and fuel-rich flames. Temperature standard deviations of 77 K were measured, and the ratios of H2 to N2 and O2 to N2 respectively had standard deviations from the mean value of 12.3% and 10% of the measured ratio.

  12. Ti n O2n-1-Coated Li4Ti5O12 Composite Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Xu, Wen; Liu, Wanying; Li, Xing; Zhong, Xiaoxi; Lin, Yuanhua

    2018-01-01

    In an effort to enhance the rate capability of Li4Ti5O12, the Ti n O2n-1-coated Li4Ti5O12 (Li4Ti5O12-Ti n O2n-1, 3 < n < 10) composite has been synthesized through a sol-gel process followed by heat treatment in H2 atmosphere. Compared with pure Li4Ti5O12, Li4Ti5O12-Ti n O2n-1 composite shows higher specific capacity, better rate capability and cycle stability. The initial discharge capacity of the Li4Ti5O12-Ti n O2n-1 composite electrode is 171.2 mAh g-1 at 0.2°C, and 103.8 mAh g-1 at 20°C. Moreover, the discharge capacity remains 79.5 mAh g-1 after 100 cycles at 20°C with a capacity loss of 23.4%. The improved rate capacity and cycling stability clarify the positive effects of Ti n O2n-1 coating layer in Li4Ti5O12-Ti n O2n-1 composite as an anode material for lithium ion batteries.

  13. Infrared spectra of N2O-(ortho-D2)N and N2O-(HD)N clusters trapped in bulk solid parahydrogen.

    PubMed

    Lorenz, Britney D; Anderson, David T

    2007-05-14

    High-resolution infrared spectra of the clusters N2O-(ortho-D2)N and N2O-(HD)N, N=1-4, isolated in bulk solid parahydrogen at liquid helium temperatures are studied in the 2225 cm-1 region of the nu3 antisymmetric stretch of N2O. The clusters form during vapor deposition of separate gas streams of a precooled hydrogen mixture (ortho-D2para-H2 or HDpara-H2) and N2O onto a BaF2 optical substrate held at approximately 2.5 K in a sample-in-vacuum liquid helium cryostat. The cluster spectra reveal the N2O nu3 vibrational frequency shifts to higher energy as a function of N, and the shifts are larger for ortho-D2 compared to HD. These vibrational shifts result from the reduced translational zero-point energy for N2O solvated by the heavier hydrogen isotopomers. These spectra allow the N=0 peak at 2221.634 cm-1, corresponding to the nu3 vibrational frequency of N2O isolated in pure solid parahydrogen, to be assigned. The intensity of the N=0 absorption feature displays a strong temperature dependence, suggesting that significant structural changes occur in the parahydrogen solvation environment of N2O in the 1.8-4.9 K temperature range studied.

  14. Overlap corrections for emissivity calculations of H2O-CO2-CO-N2 mixtures

    NASA Astrophysics Data System (ADS)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2018-01-01

    Calculations of total gas emissivities of gas mixtures containing several radiatively active species require corrections for band overlapping. In this paper, we generate such overlap correction charts for H2O-CO2-N2, H2O-CO-N2, and CO2-CO-N2 mixtures. These charts are applicable in the 0.1-40 bar total pressure range and in the 500 K-2500 K temperature range. For H2O-CO2-N2 mixtures, differences between our charts and Hottel's graphs as well as models of Leckner and Modak are highlighted and analyzed.

  15. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.

    1983-12-01

    Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.

  16. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    PubMed

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  17. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4.nH2O nanorods

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasis; Giri, Soumen; Das, Chapal Kumar

    2013-10-01

    One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene based composite, which exhibited a high specific capacitance of 367 F g-1 at 5 A g-1 current density and a high energy density of 10.32 W h kg-1 at a power density of 1125 W kg-1 accompanied with long term cyclic stability.One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene

  18. Synthesis of opioidmimetics, 3-[H-Dmt-NH(CH(2))(m)]-6-[H-Dmt-NH(CH(2))(n)]-2(1H)-pyrazinones, and studies on structure-activity relationships.

    PubMed

    Shiotani, Kimitaka; Miyazaki, Anna; Li, Tingyou; Tsuda, Yuko; Yokoi, Toshio; Ambo, Akihiro; Sasaki, Yusuke; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H; Okada, Yoshio

    2007-11-01

    Opioidmimetics containing 3-[H-Dmt-NH-(CH(2))(m)]-6-[H-Dmt-NH-(CH(2))(n)]-2(1H)-pyrazinone symmetric (m = n, 1-4) (1 - 4) and asymmetric (m, n = 1 - 4) aliphatic chains (5 - 16) were synthesized using dipeptidyl chloromethylketone intermediates. They had high mu-affinity (K(i)mu = 0.021 - 2.94 nM), delta-affinity (K(i)delta = 1.06 - 152.6 nM), and mu selectivity (K(i)delta/K(i)mu = 14 - 3,126). The opioidmimetics (1 - 16) exhibited mu agonism in proportion to their mu-receptor affinity. delta-Agonism was essentially lacking in the compounds except (4) and (16), and (1) and (2) indicated weak delta antagonism (pA(2) = 6.47 and 6.56, respectively). The data verify that a specific length of aliphatic linker is required between the Dmt pharmacophore and the pyrazinone ring to produce unique mu-opioid receptor ligands.

  19. Broadband Dielectric Spectroscopy of Ruddlesden-Popper Srn+1TinO3n+1 (n = 1,2,3) Thin Films

    DTIC Science & Technology

    2009-01-29

    permittivity, strontium compounds N. D. Orloff, W. Tian, C. J. Fennie , C. H. Lee, D. Gu, J. Mateu, X. X. Xi, K. M. Rabe, D. G. Schlom, I. Takeuchi, J...of Ruddlesden–Popper Srn+1TinO3n+1 (n = 1,2,3) thin films N. D. Orloff, W. Tian, C. J. Fennie , C. H. Lee, D. Gu et al. Citation: Appl. Phys. Lett... Fennie ,4 C. H. Lee,3,5 D. Gu,2 J. Mateu,6 X. X. Xi,5 K. M. Rabe,7 D. G. Schlom,3 I. Takeuchi,1 and J. C. Booth2 1Department of Materials Science and

  20. [((H)L)2Fe6(NCMe)m]n+ (m = 0, 2, 4, 6; n = -1, 0, 1, 2, 3, 4, 6): an electron-transfer series featuring octahedral Fe6 clusters supported by a hexaamide ligand platform.

    PubMed

    Zhao, Qinliang; Harris, T David; Betley, Theodore A

    2011-06-01

    Using a trinucleating hexaamide ligand platform, the all-ferrous hexanuclear cluster ((H)L)(2)Fe(6) (1) is obtained from reaction of 3 equiv of Fe(2)(Mes)(4) (Mes = 2,4,6-Me(3)C(6)H(2)) with 2 equiv of the ligand ((H)L)H(6). Compound 1 was characterized by X-ray diffraction analysis, (57)Fe Mössbauer, SQUID magnetometry, mass spectrometry, and combustion analysis, providing evidence for an S=6 ground state and delocalized electronic structure. The cyclic voltammogram of [((H)L)(2)Fe(6)](n+) in acetonitrile reveals a rich redox chemistry, featuring five fully reversible redox events that span six oxidation states ([((H)L)(2)Fe(6)](n+), where n=-1→4) within a 1.3 V potential range. Accordingly, each of these species is readily accessed chemically to provide the electron-transfer series [((H)L)(2)Fe(6)(NCMe)(m)][PF(6)](n) (m=0, n=-1 (2); m=2, n=1 (3); m=4, n=2 (4); m=6, n=3 (5); m=6, n=4 (6)). Compounds 2-6 were isolated and characterized by X-ray diffraction, (57)Fe Mössbauer and multinuclear NMR spectroscopy, and combustion analysis. Two-electron oxidation of the tetracationic cluster in 6 by 2 equiv of [NO](+) generates the thermally unstable hexacationic cluster [((H)L)(2)Fe(6)(NCMe)(m)](6+), which is characterized by NMR and (57)Fe Mössbauer spectroscopy. Importantly, several stepwise systematic metrical changes accompany oxidation state changes to the [Fe(6)] core, namely trans ligation of solvent molecules and variation in Mössbauer spectra, spin ground state, and intracluster Fe-Fe separation. The observed metrical changes are rationalized by considering a qualitative, delocalized molecular orbital description, which provides a set of frontier orbitals populated by Fe 3d electrons. © 2011 American Chemical Society

  1. (C6N2H16)[Co(H2O)6](SO4)2.2H2O: A new hybrid material based on sulfate templated by diprotonated trans-1,4-diaminocyclohexane

    NASA Astrophysics Data System (ADS)

    Hamdi, N.; Ngopoh, F. A. I.; da Silva, I.; El Bali, B.; Lachkar, M.

    2018-03-01

    Employing trans-1,4-diaminocyclohexane (DACH) as template, the new hybrid sulphate (C6N2H16)[Co(H2O)6](SO4)2.2H2O was prepared in solution. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic system (S.G.: P 21/n), with the following unit-cell parameters (Å,°): a = 6.2897(2), b = 12.3716(6), c = 13.1996(4), β = 98.091(3) V = 1016.89(7) Å3, Z = 4. Its 3D crystal structure is made upon isolated [Co(H2O)6] octahedra, regular [SO4] tetrahedra, protonated DACH and free H2O molecules, which interact through N-H···O and O-H···O hydrogen bonds. The Fourier transform infrared result exhibits bands corresponding to the vibrations of DACH, sulfate group and water molecules. The thermal decomposition of the phase consists mainly in the loss of the organic moiety and one sulfate group, leading thus to the formation of anhydrous cobalt sulfate.

  2. Ab initio electron correlated studies on the intracluster reaction of NO+ (H2O)(n) → H3O+ (H2O)(n-2) (HONO) (n = 4 and 5).

    PubMed

    Asada, Toshio; Nagaoka, Masataka; Koseki, Shiro

    2011-01-28

    Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.

  3. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    PubMed

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  4. Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O

    NASA Astrophysics Data System (ADS)

    Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M. J.; Buckman, S. J.; Cho, H.; Blanco, F.; Garcia, G.; Limão-Vieira, P.; Ingólfsson, O.

    2012-02-01

    We review earlier cross section data sets for electron-collisions with H2, O2, CO, CO2, H2O and N2O, updated here by experimental results for their electronic states. Based on our recent measurements of differential cross sections for the electronic states of those molecules, integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis and then assessed against theory (BE f-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]). As they now represent benchmark electronic state cross sections, those ICSs for the above molecules are added into the original cross section sets taken from the data reviews for H2, O2, CO2 and H2O (the Itikawa group), and for CO and N2O (the Zecca group).

  5. Tris(5,6-dimethyl-1H-benzimidazole-κN 3)(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)nickel(II)

    PubMed Central

    Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan

    2012-01-01

    The title mononuclear complex, [Ni(C7H3NO4)(C9H10N2)3], shows a central NiII atom which is coordinated by two carboxyl­ate O atoms and the N atom from a pyridine-2,6-dicarboxyl­ate ligand and by three N atoms from different 5,6-dimethyl-1H-­benzimidazole ligands in a distorted octa­hedral geometry. The crystal structure shows intermolecular N—H⋯O hydrogen bonds. PMID:22719301

  6. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Hassan, M. Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    Summary In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra- and inter-clade reassortant; its HA, PB1, PA and NS genes come from subclade 2.3.2.1a; PB2 from subclade 2.3.2.1c; and NA, NP, and M from clade 2.3.4.2. The H9N2 influenza viruses co-circulating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from a HPAI H7N3 virus previously isolated in Pakistan. Despite frequent co-infection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried 7 genes from HPAI H5N1 clade 2.3.2.1a and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although, the live birds which we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans. PMID:27309046

  7. Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Zn, Cu, Co, Ni) metal-organic framework polymers: X-ray photoelectron spectroscopy, QTAIM and ELF study

    NASA Astrophysics Data System (ADS)

    Kozlova, S. G.; Ryzhikov, M. R.; Samsonenko, D. G.; Kalinkin, A. V.

    2017-12-01

    Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic framework polymers have been studied with the methods of quantum chemistry and X-ray photoelectron spectroscopy. Interactions of C6H12N2 molecules and C8H4O42- anions with metal atoms are shown to be of closed-shell type. C6H12N2 molecules are positively charged, the value of the charge slightly depends on the type of the metal atoms. Msbnd M interactions are described as "intermediate interactions" with some covalence contribution which reaches maximum for the interactions between cobalt atoms. The obtained quantum-chemical data agree with those obtained from photoelectron spectroscopy measurements.

  8. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    PubMed

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  9. Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model.

    PubMed

    Opriessnig, Tanja; Gauger, Phillip C; Gerber, Priscilla F; Castro, Alessandra M M G; Shen, Huigang; Murphy, Lita; Digard, Paul; Halbur, Patrick G; Xia, Ming; Jiang, Xi; Tan, Ming

    2018-01-01

    Swine influenza A viruses (IAV-S) found in North American pigs are diverse and the lack of cross-protection among heterologous strains is a concern. The objective of this study was to compare a commercial inactivated A/H1N1/pdm09 (pH1N1) vaccine and two novel subunit vaccines, using IAV M2 ectodomain (M2e) epitopes as antigens, in a growing pig model. Thirty-nine 2-week-old IAV negative pigs were randomly assigned to five groups and rooms. At 3 weeks of age and again at 5 weeks of age, pigs were vaccinated intranasally with an experimental subunit particle vaccine (NvParticle/M2e) or a subunit complex-based vaccine (NvComplex/M2e) or intramuscularly with a commercial inactivated vaccine (Inact/pH1N1). At 7 weeks of age, the pigs were challenged with pH1N1 virus or sham-inoculated. Necropsy was conducted 5 days post pH1N1 challenge (dpc). At the time of challenge one of the Inact/pH1N1 pigs had seroconverted based on IAV nucleoprotein-based ELISA, Inact/pH1N1 pigs had significantly higher pdm09H1N1 hemagglutination inhibition (HI) titers compared to all other groups, and M2e-specific IgG responses were detected in the NvParticle/M2e and the NvComplex/M2e pigs with significantly higher group means in the NvComplex/M2e group compared to SHAMVAC-NEG pigs. After challenge, nasal IAV RNA shedding was significantly reduced in Inact/pH1N1 pigs compared to all other pH1N1 infected groups and this group also had reduced IAV RNA in oral fluids. The macroscopic lung lesions were characterized by mild-to-severe, multifocal-to-diffuse, cranioventral dark purple consolidated areas typical of IAV infection and were similar for NvParticle/M2e, NvComplex/M2e and SHAMVAC-IAV pigs. Lesions were significantly less severe in the SHAMVAC-NEG and the Inact/pH1N1pigs. Under the conditions of this study, a commercial Inact/pH1N1 specific vaccine effectively protected pigs against homologous challenge as evidenced by reduced clinical signs, virus shedding in nasal secretions and oral fluids

  10. Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model

    PubMed Central

    Gauger, Phillip C.; Gerber, Priscilla F.; Castro, Alessandra M. M. G.; Shen, Huigang; Murphy, Lita; Digard, Paul; Halbur, Patrick G.; Xia, Ming; Jiang, Xi; Tan, Ming

    2018-01-01

    Swine influenza A viruses (IAV-S) found in North American pigs are diverse and the lack of cross-protection among heterologous strains is a concern. The objective of this study was to compare a commercial inactivated A/H1N1/pdm09 (pH1N1) vaccine and two novel subunit vaccines, using IAV M2 ectodomain (M2e) epitopes as antigens, in a growing pig model. Thirty-nine 2-week-old IAV negative pigs were randomly assigned to five groups and rooms. At 3 weeks of age and again at 5 weeks of age, pigs were vaccinated intranasally with an experimental subunit particle vaccine (NvParticle/M2e) or a subunit complex-based vaccine (NvComplex/M2e) or intramuscularly with a commercial inactivated vaccine (Inact/pH1N1). At 7 weeks of age, the pigs were challenged with pH1N1 virus or sham-inoculated. Necropsy was conducted 5 days post pH1N1 challenge (dpc). At the time of challenge one of the Inact/pH1N1 pigs had seroconverted based on IAV nucleoprotein-based ELISA, Inact/pH1N1 pigs had significantly higher pdm09H1N1 hemagglutination inhibition (HI) titers compared to all other groups, and M2e-specific IgG responses were detected in the NvParticle/M2e and the NvComplex/M2e pigs with significantly higher group means in the NvComplex/M2e group compared to SHAMVAC-NEG pigs. After challenge, nasal IAV RNA shedding was significantly reduced in Inact/pH1N1 pigs compared to all other pH1N1 infected groups and this group also had reduced IAV RNA in oral fluids. The macroscopic lung lesions were characterized by mild-to-severe, multifocal-to-diffuse, cranioventral dark purple consolidated areas typical of IAV infection and were similar for NvParticle/M2e, NvComplex/M2e and SHAMVAC-IAV pigs. Lesions were significantly less severe in the SHAMVAC-NEG and the Inact/pH1N1pigs. Under the conditions of this study, a commercial Inact/pH1N1 specific vaccine effectively protected pigs against homologous challenge as evidenced by reduced clinical signs, virus shedding in nasal secretions and oral fluids

  11. Methyl transfer from Fe (and Mo) to Sn: formation of (eta(5)-C(5)H(5))M(CO)(n)Sn(t)Bu(2)Me (M = Fe, n = 2; M = Mo, n = 3) complexes from photochemical irradiation of (eta(5)-C(5)H(5))M(CO)(n)Me and (t)Bu(2)SnH(2).

    PubMed

    Sharma, Hemant K; Arias-Ugarte, Renzo; Metta-Magana, Alejandro; Pannell, Keith H

    2010-07-07

    Formation of an Sn-CH(3) bond, concomitantly with an Sn-M (M = Fe, Mo), is readily achieved from the photochemical reactions of (t)Bu(2)SnH(2) with (eta(5)-C(5)H(5))M(CO)(n)Me (M = Fe, n = 2; M = Mo, n = 3) via the intermediacy of (eta(5)-C(5)H(5))M(CO)(n)Sn(t)Bu(2)H.

  12. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012

    PubMed Central

    Grgić, Helena; Costa, Marcio; Friendship, Robert M.; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors. PMID:26030614

  13. (1H-pyrazole-κN2)(2,2':6',2''-terpyridine-κ3N,N',N'')platinum(II) bis(perchlorate) nitromethane monosolvate.

    PubMed

    Akerman, Matthew; Akerman, Kate; Jaganyi, Deogratius; Reddy, Desigan

    2011-09-01

    The reaction between [PtCl(terpy)]·2H(2)O (terpy is 2,2':6',2''-terpyridine) and pyrazole in the presence of two equivalents of AgClO(4) in nitromethane yields the title compound, [Pt(C(3)H(4)N(2))(C(15)H(11)N(3))](ClO(4))(2)·CH(3)NO(2), as a yellow crystalline solid. Single-crystal X-ray diffraction shows that the dicationic platinum(II) chelate is square planar with the terpyridine ligand occupying three sites and the pyrazole ligand occupying the fourth. The torsion angle subtended by the pyrazole ring relative to the terpyridine chelate is 62.4 (6)°. Density functional theory calculations at the LANL2DZ/PBE1PBE level of theory show that in vacuo the lowest-energy conformation has the pyrazole ligand in an orientation perpendicular to the terpyridine ligand (i.e. 90°). Seemingly, the stability gained by the formation of hydrogen bonds between the pyrazole NH group and the perchlorate anion in the solid-state structure is sufficient for the chelate to adopt a higher-energy conformation.

  14. Octa-akis(4-amino-pyridine)-1κN,2κN-aqua-2κO-μ-carbonato-1:2κO,O':O''-dinickel(II) dichloride penta-hydrate.

    PubMed

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S

    2008-10-18

    In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.

  15. Ab initio calculations of anharmonic vibrational spectroscopy for hydrogen fluoride (HF)n (n = 3, 4) and mixed hydrogen fluoride/water (HF)n(H2O)n (n = 1, 2, 4) clusters

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny

    2002-01-01

    Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n, with n = 3, 4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n = 1, 2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the Moller-Plesset (MP2) potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.

  16. A new series of oxycarbonate superconductors (Cu{sub 0.5}C{sub 0.5}){sub m}Ba{sub m+1}Ca{sub n-1}Cu{sub n}O{sub 2}({sub m+n})+1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama-Muromachi, E.; Kawashima, T.; Matsui, Y.

    1994-12-31

    We found a new series of oxycarbonate superconductors in the Ba-Ca-Cu-C-O system under high pressure of 5 GPa. Their ideal formula is (Cu{sub 0.5}C{sub 0.5}){sub m}Ba{sub m+1}Ca{sub n-1}Cu{sub n}O{sub 2}({sub m+n})+1 ((Cu,C)-m(m+1)(n-1)n). Thus far, n=3, 4 members of the m=1 series, (Cu,C)-1223 and (Cu,C)-1234, have been prepared in bulk while n=4, 5 members, (Cu,C)-2334 and (Cu,C)-2345, have been prepared for the m=2 series. (Cu,C)-1223 shows superconductivity below 67 K while T{sub c}`s of other compounds are above 110 K. In particular, (Cu,C)=1234 has the highest T{sub c} of 117 K.

  17. Vibrational spectroscopy of (SO42-).(H2O)n clusters, n=1-5: Harmonic and anharmonic calculations and experiment

    NASA Astrophysics Data System (ADS)

    Miller, Yifat; Chaban, Galina M.; Zhou, Jia; Asmis, Knut R.; Neumark, Daniel M.; Benny Gerber, R.

    2007-09-01

    The vibrational spectroscopy of (SO42-)•(H2O)n is studied by theoretical calculations for n =1-5, and the results are compared with experiments for n =3-5. The calculations use both ab initio MP2 and DFT/B3LYP potential energy surfaces. Both harmonic and anharmonic calculations are reported, the latter with the CC-VSCF method. The main findings are the following: (1) With one exception (H2O bending mode), the anharmonicity of the observed transitions, all in the experimental window of 540-1850cm-1, is negligible. The computed anharmonic coupling suggests that intramolecular vibrational redistribution does not play any role for the observed linewidths. (2) Comparison with experiment at the harmonic level of computed fundamental frequencies indicates that MP2 is significantly more accurate than DFT/B3LYP for these systems. (3) Strong anharmonic effects are, however, calculated for numerous transitions of these systems, which are outside the present observation window. These include fundamentals as well as combination modes. (4) Combination modes for the n=1 and n =2 clusters are computed. Several relatively strong combination transitions are predicted. These show strong anharmonic effects. (5) An interesting effect of the zero point energy (ZPE) on structure is found for (SO42-)•(H2O)5: The global minimum of the potential energy corresponds to a Cs structure, but with incorporation of ZPE the lowest energy structure is C2v, in accordance with experiment. (6) No stable structures were found for (OH-)•(HSO4-)•(H2O)n, for n ⩽5.

  18. Quenching of I(2P1/2) by NO2, N2O4, and N2O.

    PubMed

    Kabir, Md Humayun; Azyazov, Valeriy N; Heaven, Michael C

    2007-10-11

    Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.

  19. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  20. [(S)-1-Carbamoylethyl]bis(dimethylglyoximato-kappa2N,N')[(S)-1-phenylethylamine]cobalt(III) and bis(dimethylglyoximato-kappa2N,N')[(R)-1-(N-methylcarbamoyl)ethyl][(R)-1-phenylethylamine]cobalt(III) monohydrate.

    PubMed

    Orisaku, Keiko Komori; Hagiwara, Mieko; Ohgo, Yoshiki; Arai, Yoshifusa; Ohgo, Yoshiaki

    2005-04-01

    The title complexes, [Co(C3H6NO)(C4H7N2O2)2(C8H11N)] and [Co(C4H8NO)(C4H7N2O2)2(C8H11N)].H2O, were resolved from [(RS)-1-carbamoylethyl]bis(dimethylglyoximato)[(S)-1-phenylethylamine]cobalt(III) and bis(dimethylglyoximato)[(RS)-1-(N-methylcarbamoyl)ethyl][(R)-1-phenylethylamine]cobalt(III), respectively, and their crystal structures were determined in order to reveal the absolute configuration of the major enantiomer produced in the photoisomerization of each series of 2-carbamoylethyl and 2-(N-methylcarbamoyl)ethyl cobaloxime complexes.

  1. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    PubMed Central

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate-induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH-control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils. PMID:24249526

  2. 1,2-Dibenzyl and -Diaryltetradimethylamido-dimolybdenum and -Ditungsten Compounds: M2R2(NMe2)4 (M=M). Structural Effects of Me2N-to-M Alpha-Bonding.

    DTIC Science & Technology

    1982-07-07

    CHETCUTI, M H CHISHOLM. K FOLTING N00OON 79-C 00144 UNCL’ASS IF IED INDU/DC/TR-82/2-MC NL mh~hEhEEo. OFFICE OF NAVAL RESEARCH Contract No. N00014-79...ldo i, n,.aowy a"d Identf ’ mko.) ’ / a, From the reactions between RMgCI (R = CH C H and CH-p-tolyl) or LiR.(R C6H, ~~,-- ;n 6o5 C"-tolyl) (2euv . 6...ligands u-donate to metal atomic Availability Codes V Avail and/or D special 4 orbitals which would otherwise be available for mischevious M--- H -C

  3. Experimental and theoretical investigation of homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → products (n = 1, 2).

    PubMed

    Li, Zhuangjie; Zhang, Baoquan

    2012-09-13

    Decreasing CO2 emissions into the atmosphere is key for reducing global warming. To facilitate the CO2 emission reduction efforts, our laboratory conducted experimental and theoretical investigations of the homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → (NH4)HCO3(s)/(NH4)2CO3(s) (n = 1 and 2) using Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and ab initio molecular orbital theory. Our FTIR-ATR experimental results indicate that (NH4)2CO3(s) and (NH4)HCO3(s) are formed as aerosol particulate matter when carbon dioxide reacts with ammonia and water in the gaseous phase at room temperature. Ab initio study of this chemical system suggested that the reaction may proceed through formation of NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes. Subsequent complexes, NH3·H2O·CO2 and (NH3)2·H2O·CO2, can be formed by adding gaseous reactants to the NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes, respectively. The NH3·H2O·CO2 and (NH3)2·H2O·CO2 complexes can then be rearranged to produce (NH4)HCO3 and (NH4)2CO3 as final products via a transition state, and the NH3 molecule acts as a medium accepting and donating hydrogen atoms in the rearrangement process. Our computational results also reveal that the presence of an additional water molecule can reduce the activation energy of the rearrangement process. The high activation energy predicted in the present work suggests that the reaction is kinetically not favored, and our experimental observation of (NH4)HCO3(s) and (NH4)2CO3(s) may be attributed to the high concentrations of reactants increasing the reaction rate of the title reactions in the reactor.

  4. trans-Bis(azido-kappaN)bis(pyridine-2-carboxamide-kappa2N1,O2)nickel(II).

    PubMed

    Daković, Marijana; Popović, Zora

    2007-11-01

    In the title compound, [Ni(N(3))(2)(C(6)H(6)N(2)O)(2)], the Ni(II) atom lies on an inversion centre. The distorted octahedral nickel(II) coordination environment contains two planar trans-related N,O-chelating picolinamide ligands in one plane and two monodentate azide ligands perpendicular to this plane. Molecules are linked into a three-dimensional framework by N-H...N hydrogen bonds.

  5. Crystal structure of tetra­aqua­[2-(pyridin-2-yl)-1H-imidazole-κ2 N 2,N 3]iron(II) sulfate

    PubMed Central

    Setifi, Zouaoui; Setifi, Fatima; Francuski, Bojana M.; Novaković, Sladjana B.; Merazig, Hocine

    2015-01-01

    In the title compound, [Fe(C8H7N3)(H2O)4]SO4, the central FeII ion is octa­hedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl)-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octa­hedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1)°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17) and 2.243 (2) Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18) to 2.1340 (17) Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H⋯O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further inter­connect by N—H⋯O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H⋯O, C—H⋯π and π–π inter­actions. PMID:26029386

  6. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  7. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses

    PubMed Central

    Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui

    2012-01-01

    Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background  The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives  We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods  We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions  Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301

  8. Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nilima S.; Warule, Sambhaji S.; Dhanmane, Sushil A.; Kulkarni, Milind V.; Valant, Matjaz; Kale, Bharat B.

    2013-09-01

    Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and

  9. Detection of interstellar N2O: A new molecule containing an N-O bond

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Hollis, J. M.; Snyder, L. E.

    1994-01-01

    A new interstellar molecule, N2O, known as nitrous oxide or 'laughing gas,' has been detected using the NRAO 12 m telescope. The J = 3 - 2, 4 - 3, 5 - 4, and 6 - 5 rotational transitions of this species at 75, 100, 125, and 150 GHz, respectively, were observed toward Sgr B2(M). The column density derived for N2O in this source is N(sub tot) approx. 10(exp 15)/sq. cm, which corresponds to a fractional abundance of approx. 10(exp -9), relative to H2. This value implies abundance ratios of N2O/NO approx. 0.1 and N2O/HNO approx. 3 in the Galactic center. Such ratios are in excellent agreement with predictions of ion-molecule models of interstellar chemistry using early-time calculations and primarily neutral-neutral reactions. N2O is the third interstellar molecule detected thus far containing an N-O bond. Such bonds cannot be so rare as previously thought.

  10. Infrared spectra and anharmonic coupling of proton-bound nitrogen dimers N2-H+-N2, N2-D+-N2, and 15N2-H+-15N2 in solid para-hydrogen.

    PubMed

    Liao, Hsin-Yi; Tsuge, Masashi; Tan, Jake A; Kuo, Jer-Lai; Lee, Yuan-Pern

    2017-08-09

    The proton-bound nitrogen dimer, N 2 -H + -N 2 , and its isotopologues were investigated by means of vibrational spectroscopy. These species were produced upon electron bombardment of mixtures of N 2 (or 15 N 2 ) and para-hydrogen (p-H 2 ) or normal-D 2 (n-D 2 ) during deposition at 3.2 K. Reduced-dimension anharmonic vibrational Schrödinger equations were constructed to account for the strong anharmonic effects in these protonated species. The fundamental lines of proton motions in N 2 -H + -N 2 were observed at 715.0 (NH + N antisymmetric stretch, ν 4 ), 1129.6 (NH + N bend, ν 6 ), and 2352.7 (antisymmetric NN/NN stretch, ν 3 ) cm -1 , in agreement with values of 763, 1144, and 2423 cm -1 predicted with anharmonic calculations using the discrete-variable representation (DVR) method at the CCSD/aug-cc-pVDZ level. The lines at 1030.2 and 1395.5 cm -1 were assigned to combination bands involving nν 2 + ν 4 (n = 1 and 2) according to theoretical calculations; ν 2 is the N 2 N 2 stretching mode. For 15 N 2 -H + - 15 N 2 in solid p-H 2 , the corresponding major lines were observed at 710.0 (ν 4 ), 1016.7 (ν 2 + ν 4 ), 1124.3 (ν 6 ), 1384.8 (2ν 2 + ν 4 ), and 2274.9 (ν 3 ) cm -1 . For N 2 -D + -N 2 in solid n-D 2 , the corresponding major lines were observed at 494.0 (ν 4 ), 840.7 (ν 2 + ν 4 ), 825.5 (ν 6 ), and 2356.2 (ν 3 ) cm -1 . In addition, two lines at 762.0 (weak) and 808.3 cm -1 were tentatively assigned to be some modes of N 2 -H + -N 2 perturbed or activated by a third N 2 near the proton.

  11. Aqua­(dicyanamido-κN 1)(nitrato-κ2 O,O′)(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)manganese(II)

    PubMed Central

    Callejo, Lorena; De la Pinta, Noelia; Vitoria, Pablo; Cortés, Roberto

    2009-01-01

    In the title compound, [Mn(C2N3)(NO3)(C24H16N6)(H2O)], the central manganese(II) ion is hepta­coordinated to a tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand (tppz), a bidentate nitrate ligand, a terminal monodentate dicyanamide ligand (dca) and a water mol­ecule. The structure contains isolated neutral complexes, which are linked by O(water)—H⋯N hydrogen bonds generating chains along [010]. PMID:21581535

  12. Molecular evidence for interspecies transmission of H3N2pM/H3N2v influenza A viruses at an Ohio agricultural fair, July 2012

    PubMed Central

    Bowman, Andrew S; Sreevatsan, Srinand; Killian, Mary L; Page, Shannon L; Nelson, Sarah W; Nolting, Jacqueline M; Cardona, Carol; Slemons, Richard D

    2012-01-01

    Evidence accumulating in 2011–2012 indicates that there is significant intra- and inter-species transmission of influenza A viruses at agricultural fairs, which has renewed interest in this unique human/swine interface. Six human cases of influenza A (H3N2) variant (H3N2v) virus infections were epidemiologically linked to swine exposure at fairs in the United States in 2011. In 2012, the number of H3N2v cases in the Midwest had exceeded 300 from early July to September, 2012. Prospective influenza A virus surveillance among pigs at Ohio fairs resulted in the detection of H3N2pM (H3N2 influenza A viruses containing the matrix (M) gene from the influenza A (H1N1) pdm09 virus). These H3N2pM viruses were temporally and spatially linked to several human H3N2v cases. Complete genomic analyses of these H3N2pM isolates demonstrated >99% nucleotide similarity to the H3N2v isolates recovered from human cases. Actions to mitigate the bidirectional interspecies transmission of influenza A virus between people and animals at agricultural fairs may be warranted. PMID:26038404

  13. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza

  14. Molecular dynamic simulations of selective self-diffusion of CH4/CO2/H2O/N2 in coal

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jiang, B.; Li, F. L.

    2017-06-01

    The self-diffusion coefficients (D) of CH4/CO2/H2O/N2 at a relatively broad range of temperatures(298.15∼ 458.15K)and pressures (1∼6MPa) under the NPT, NPH, NVE, and NVT ensembles were obtained after the calculations of molecular mechanics(MM), annealing kinetics(AK), giant canonical Monte Carlo(GCMC), and molecular dynamics (MD) based on Wiser bituminous coal model (WM). The Ds of the adsorbates at the saturated adsorption configurations are D CH42H2ON2(NPT, 298.15K, 0.1MPa). The diffusion activation energy (E) is E H2O (1.07kJ/mol)N2(1.82kJ/mol)2 (2.94kJ/mol)N2 and H2O to the lowest. The order of different ensembles is D N2 (NVE)< D N2 (NVT)≈D N2 (NPH)≈D N2 (NPT) (T<418K) and D N2 (NVE) is remarkable higher than other ensembles when T>418K. The average swelling ratios manifest as H2O (14.7∼35.18%)>CO2 (13.38∼32.25%)>CH4 (15.35∼23.71%)> N2 (11.47∼22.14%) (NPH, 1∼6MPa). There exits differences in D, swelling ratios and E among various ensembles, indicating that the selection of ensembles has an important influence on the MD calculations for self-diffusion coefficients.

  15. Diaqua­bis­(5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4)cadmium N,N-dimethyl­formamide disolvate

    PubMed Central

    Tong, Shao-Wei; Li, Shi-Jie; Song, Wen-Dong; Miao, Dong-Liang; An, Jing-Bo

    2011-01-01

    In the title complex, [Cd(C8H9N2O4)2(H2O)22C3H7NO, the six-coordinate CdII ion is in a slightly distorted octa­hedral environment, defined by two O atoms from two coordinated water mol­ecules and two carboxyl­ate O atoms and two N atoms from two N,O-bidentate 5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ate ligands. In the crystal, complex mol­ecules and dimethyl­formamide solvent mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds into a two-dimensional supra­molecular structure. The propyl groups of the ligands are disordered over two conformations with refined occupancies of 0.680 (7) and 0.320 (7). PMID:22199635

  16. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs, United States.

    PubMed

    Ali, Ahmed; Khatri, Mahesh; Wang, Leyi; Saif, Yehia M; Lee, Chang-Won

    2012-07-06

    In October and November 2010, novel H1N2 reassortant influenza viruses were identified from pigs showing mild respiratory signs that included cough and depression. Sequence and phylogenetic analysis showed that the novel H1N2 reassortants possesses HA and NA genes derived from recent H1N2 swine isolates similar to those isolated from Midwest. Compared to the majority of reported reassortants, both viruses preserved human-like host restrictive and putative antigenic sites in their HA and NA genes. The four internal genes, PB2, PB1, PA, and NS were similar to the contemporary swine triple reassortant viruses' internal genes (TRIG). Interestingly, NP and M genes of the novel reassortants were derived from the 2009 pandemic H1N1. The NP and M proteins of the two isolates demonstrated one (E16G) and four (G34A, D53E, I109T, and V313I) amino acid changes in the M2 and NP proteins, respectively. Similar amino acid changes were also noticed upon incorporation of the 2009 pandemic H1N1 NP in other reassortant viruses reported in the U.S. Thus the role of those amino acids in relation to host adaptation need to be further investigated. The reassortments of pandemic H1N1 with swine influenza viruses and the potential of interspecies transmission of these reassortants from swine to other species including human indicate the importance of systematic surveillance of swine population to determine the origin, the prevalence of similar reassortants in the U.S. and their impact on both swine production and public health. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Detection of interstellar N2O: A new molecule containing an N-O bond

    NASA Astrophysics Data System (ADS)

    Ziurys, L. M.; Apponi, A. J.; Hollis, J. M.; Snyder, L. E.

    1994-12-01

    A new interstellar molecule, N2O, known as nitrous oxide or 'laughing gas,' has been detected using the NRAO 12 m telescope. The J = 3 - 2, 4 - 3, 5 - 4, and 6 - 5 rotational transitions of this species at 75, 100, 125, and 150 GHz, respectively, were observed toward Sgr B2(M). The column density derived for N2O in this source is Ntot approx. 1015/sq. cm, which corresponds to a fractional abundance of approx. 10-9, relative to H2. This value implies abundance ratios of N2O/NO approx. 0.1 and N2O/HNO approx. 3 in the Galactic center. Such ratios are in excellent agreement with predictions of ion-molecule models of interstellar chemistry using early-time calculations and primarily neutral-neutral reactions. N2O is the third interstellar molecule detected thus far containing an N-O bond. Such bonds cannot be so rare as previously thought.

  18. Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.

    PubMed

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin

    2017-02-08

    We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.

  19. Electronic and vibrational spectroscopic studies of jet-cooled 5-cyanoindole and its water clusters, 5CI-(H2O)n, (n = 0-2)

    NASA Astrophysics Data System (ADS)

    Min, Ahreum; Moon, Cheol Joo; Ahn, Ahreum; Lee, Ji Hoon; Kim, Seong Keun; Choi, Myong Yong

    2016-08-01

    Mass-selected resonant two-photon ionization (R2PI) and UV-UV hole-burning, and infrared-dip spectra of 5-cyanoindole (5CI) and its water clusters, 5CI-(H2O)n (n = 1 and 2) were measured. Although, the structures of 5CI-(H2O)1-2 are similar to those of 3CI-(H2O)1-2, the photofragmentation behaviors of the two systems are quite different due to the La-Lb state energy lowering and higher binding energies of 5CI-(H2O)1-2 compared to those of 3CI-(H2O)1-2. Especially for the case of 5CI-(H2O)2 cluster, shortening excited-state lifetime of 5CI-(H2O)2 causes the broad background in the R2PI spectrum of 5CI-(H2O)2.

  20. Direct N2H4/H2O2 Fuel Cells Powered by Nanoporous Gold Leaves

    PubMed Central

    Yan, Xiuling; Meng, Fanhui; Xie, Yun; Liu, Jianguo; Ding, Yi

    2012-01-01

    Dealloyed nanoporous gold leaves (NPGLs) are found to exhibit high electrocatalytic properties toward both hydrazine (N2H4) oxidation and hydrogen peroxide (H2O2) reduction. This observation allows the implementation of a direct hydrazine-hydrogen peroxide fuel cell (DHHPFC) based on these novel porous membrane catalysts. The effects of fuel and oxidizer flow rate, concentration and cell temperature on the performance of DHHPFC are systematically investigated. With a loading of ~0.1 mg cm−2 Au on each side, an open circuit voltage (OCV) of 1.2 V is obtained at 80°C with a maximum power density 195 mW cm−2, which is 22 times higher than that of commercial Pt/C electrocatalyst at the same noble metal loading. NPGLs thus hold great potential as effective and stable electrocatalysts for DHHPFCs. PMID:23230507

  1. Microhydration effects on the electronic spectra of protonated polycyclic aromatic hydrocarbons: [naphthalene-(H2O)n = 1,2]H+

    NASA Astrophysics Data System (ADS)

    Alata, Ivan; Broquier, Michel; Dedonder-Lardeux, Claude; Jouvet, Christophe; Kim, Minho; Sohn, Woon Yong; Kim, Sang-su; Kang, Hyuk; Schütz, Markus; Patzer, Alexander; Dopfer, Otto

    2011-02-01

    Vibrational and electronic spectra of protonated naphthalene (NaphH+) microsolvated by one and two water molecules were obtained by photofragmentation spectroscopy. The IR spectrum of the monohydrated species is consistent with a structure with the proton located on the aromatic molecule, NaphH+-H2O. Similar to isolated NaphH+, the first electronic transition of NaphH+-H2O (S1) occurs in the visible range near 500 nm. The doubly hydrated species lacks any absorption in the visible range (420-600 nm) but absorbs in the UV range, similar to neutral Naph. This observation is consistent with a structure, in which the proton is located on the water moiety, Naph-(H2O)2H+. Ab initio calculations for [Naph-(H2O)n]H+ confirm that the excess proton transfers from Naph to the solvent cluster upon attachment of the second water molecule.

  2. Synthesis, characterization and antimicrobial activity of novel platinum(IV) and palladium(II) complexes with meso-1,2-diphenyl-ethylenediamine-N,N‧-di-3-propanoic acid - Crystal structure of H2-1,2-dpheddp·2HCl·H2O

    NASA Astrophysics Data System (ADS)

    Radić, Gordana P.; Glođović, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Garcia-Granda, Santiago; Roces, Laura; Menéndez-Taboada, Laura; Radojević, Ivana D.; Stefanović, Olgica D.; Čomić, Ljiljana R.; Trifunović, Srećko R.

    2012-12-01

    In the reaction of meso-1,2-diphenyl-ethylenediamine (1,2-dphen) with neutralized 3-chlor-propanoic acid, the new linear tetradentate edda-like ligand (edda = ethylenediamine-N,N'-diacetic ion) meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoic acid dihydrochloride monohydrate (H2-1,2-dpheddp·2HCl·H2O) was prepared. The corresponding platinum(IV) complex, s-cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-platinum(IV) ([PtCl2(1,2-dpheddp)]) was synthesized by heating potassium-hexachloridoplatinate(IV) and H2-1,2-dpheddp·2HCl·H2O on steam bath for 12 h with neutralization by means of lithium-hydroxide. The palladium(II) complex, cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-palladium(II) ([PdCl2(1,2-dpheddp)]) was obtained in the similar way using potassium-tetrachloridopalladate(II), H2-1,2-dpheddp·2HCl·H2O and lithium-hydroxide. The compounds were characterized by elemental analysis and infrared spectroscopy. The spectroscopically predicted structure of the synthesized tetradentate ligand was confirmed by X-ray analysis of the H2-1,2-dpheddp·2HCl·H2O. Antimicrobial activity of the ligand and corresponding palladium(II) and platinum(IV) complexes is investigated against 25 species of microorganisms. Testing is preformed by microdilution method and minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) have been determined. The difference between antimicrobial activity of the ligand and corresponding platinum(IV) and palladium(II) complex is noticed and, in general, palladium(II) complex was the most active.

  3. Reactions of hydrated electrons (H2O)n- with carbon dioxide and molecular oxygen: hydration of the CO2- and O2- ions.

    PubMed

    Balaj, O Petru; Siu, Chi-Kit; Balteanu, Iulia; Beyer, Martin K; Bondybey, Vladimir E

    2004-10-04

    The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.

  4. Multiplex RT-PCR assay for differentiating European swine influenza virus subtypes H1N1, H1N2 and H3N2.

    PubMed

    Chiapponi, Chiara; Moreno, Ana; Barbieri, Ilaria; Merenda, Marianna; Foni, Emanuela

    2012-09-01

    In Europe, three major swine influenza viral (SIV) subtypes (H1N1, H1N2 and H3N2) have been isolated in pigs. Developing a test that is able to detect and identify the subtype of the circulating strain rapidly during an outbreak of respiratory disease in the pig population is of essential importance. This study describes two multiplex RT-PCRs which distinguish the haemagglutinin (HA) gene and the neuraminidase (NA) gene of the three major subtypes of SIV circulating in Europe. The HA PCR was able to identify the lineage (avian or human) of the HA of H1 subtypes. The analytical sensitivity of the test, considered to be unique, was assessed using three reference viruses. The detection limit corresponded to 1×10(-1) TCID(50)/200μl for avian-like H1N1, 1×10(0) TCID(50)/200μl for human-like H1N2 and 1×10(1) TCID(50)/200μl for H3N2 SIV. The multiplex RT-PCR was first carried out on a collection of 70 isolated viruses showing 100% specificity and then on clinical samples, from which viruses had previously been isolated, resulting in an 89% positive specificity of the viral subtype. Finally, the test was able to identify the viral subtype correctly in 56% of influenza A positive samples, from which SIV had not been isolated previously. It was also possible to identify mixed viral infections and the circulation of a reassortant strain before performing genomic studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Zhang; Bandaru, Sateesh; Liu, Jin; Li, Li-Li; Wang, Zhenling

    2018-02-01

    Motivated by the photocatalytic reactions of small molecules on g-C3N4 by these insights, we sought to explore the adsorption of H2O and CO2 molecules on the graphene side and H2O, H2, O2, CO, NO, and CO2 molecules on the g-C3N4 side of hybrid g-C3N4/graphene nanocomposite using first-principles calculations. The atomic structure and electronic properties of hybrid g-C3N4/graphene nanocomposite is explored. The adsorption of small molecules on graphene/g-C3N4 nanocomposite is thoroughly investigated. The computational studies revels that all small molecules on graphene/g-C3N4 nanocomposite are the physisorption. The adsorption characteristics of H2O and CO2 molecules on the graphene side are similar to that on graphene. The adsorption of H2O, H2, O2, CO, NO, and CO2 molecules on the g-C3N4 side always leads to a buckle structure of graphene/g-C3N4 nanocomposite. Graphene as a substrate can significantly relax the buckle degree of g-C3N4 in g-C3N4/graphene nanocomposite.

  6. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  7. Triaqua-1κO,2κ2 O-bis­(2,2′-bipyridine)-1κ2 N,N′;2κ2 N,N′-chlorido-1κCl-μ-terephthalato-1:2κ2 O 1:O 4-dicopper(II) nitrate monohydrate

    PubMed Central

    Liu, Yang; Feng, Yong-Lan; Kuang, Dai-Zhi

    2012-01-01

    In the binuclear title compound, [Cu2(C8H4O4)Cl(C10H8N2)2(H2O)3]NO3·H2O, the two crystallographically independent CuII ions have similar coordination environments. One of the CuII ions has a square-pyramidal arrangement, which is defined by a water mol­ecule occupying the apical position, with the equatorial ligators consisting of two N atoms from a 2,2′-bipyridine mol­ecule, one carboxyl­ate O atom from a terephthalate ligand and one O atom from a water mol­ecule. The other CuII ion has a similar coordination environment, except that the apical position is occupied by a chloride ligand instead of a water mol­ecule. An O—H⋯O and O—H⋯Cl hydrogen-bonded three-dimensional network is formed between the components. PMID:22719307

  8. Open-Structured V 2 O 5 · n H 2 O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huali; Bi, Xuanxuan; Bai, Ying

    The high-capacity cathode material V2OnH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self-assembly V2OnH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well-layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathinmore » flower petals deliver a stable capacity of 250 mA h g-1 in a Li-ion cell, 110 mA h g-1 in a Na-ion cell, and 80 mA h g-1 in an Al-ion cell in their respective potential ranges (2.0–4.0 V for Li and Na-ion batteries and 0.12.5 V for Al-ion battery) after 100 cycles.« less

  9. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  10. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    NASA Astrophysics Data System (ADS)

    Werner, C.; Reiser, K.; Dannenmann, M.; Hutley, L. B.; Jacobeit, J.; Butterbach-Bahl, K.

    2014-11-01

    Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil-atmosphere exchange of nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2) is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture) under controlled soil temperatures (ST) and soil moisture (SM) we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2). Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (<7.0 ± 5.0 μg NO-N m-2 h-1; <0.0 ± 1.4 μg N2O-N m-2 h-1) or in the case of N2O, even a net soil uptake was observed. Substantial NO (max: 306.5 μg N m-2 h-1) and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m-2 h-1) were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4-99.3% of total N lost), although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%). N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha-1 yr-1 (N2O), 0.68 kg N ha-1 yr-1 (NO) and 6.65 kg N ha-1 yr-1 (N2). The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events

  11. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  12. Theoretical characterization of stable eta1-N2O-, eta2-N2O-, eta1-N2-, and eta2-N2-bound species: intermediates in the addition reactions of nitrogen hydrides with the pentacyanonitrosylferrate(II) ion.

    PubMed

    Olabe, José A; Estiú, Guillermina L

    2003-08-11

    The addition of nitrogen hydrides (hydrazine, hydroxylamine, ammonia, azide) to the pentacyanonitrosylferrate(II) ion has been analyzed by means of density functional calculations, focusing on the identification of stable intermediates along the reaction paths. Initial reversible adduct formation and further decomposition lead to the eta(1)- and eta(2)-linkage isomers of N(2)O and N(2), depending on the nucleophile. The intermediates (adducts and gas-releasing precursors) have been characterized at the B3LYP/6-31G level of theory through the calculation of their structural and spectroscopic properties, modeling the solvent by means of a continuous approach. The eta(2)-N(2)O isomer is formed at an initial stage of adduct decompositions with the hydrazine and azide adducts. Further conversion to the eta(1)-N(2)O isomer is followed by Fe-N(2)O dissociation. Only the eta(1)-N(2)O isomer is predicted for the reaction with hydroxylamine, revealing a kinetically controlled N(2)O formation. eta(1)-N(2) and eta(2)-N(2) isomers are also predicted as stable species.

  13. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    PubMed

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  14. X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)

    NASA Technical Reports Server (NTRS)

    Romanova, A. V.; Skryshevskiy, A. F.

    1979-01-01

    Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.

  15. 2D polymeric cadmium(II) complexes containing 1,3-imidazolidine-2-thione (Imt) ligand, [Cd(Imt)(H2O)2(SO4)]n and [Cd(Imt)2(N3)2]n

    NASA Astrophysics Data System (ADS)

    Mahmood, Rashid; Ahmad, Saeed; Fettouhi, Mohammed; Roisnel, Thierry; Gilani, Mazhar Amjad; Mehmood, Kashif; Murtaza, Ghulam; Isab, Anvarhusein A.

    2018-03-01

    The present study aims at preparing and carrying out the structural investigation of two polymeric cadmium(II) complexes of imidazolidine-2-thione (Imt) based on sulfate or azide ions, [Cd(Imt)(H2O)2(SO4)]n (1) and [Cd(Imt)2(N3)2]n (2). The structures of the complexes were determined by single crystal X-ray analysis. Both compounds, 1 and 2 crystallize in the form of 2D coordination polymers and the cadmium(II) ion is six-coordinate having a distorted octahedral geometry in each compound. In 1, the metal ion is bonded to one sulfur atom of Imt and five oxygen atoms with two from water and three of bridging sulfate ions. In 2, the cadmium coordination sphere is completed by two Imt molecules binding through the sulfur atoms and four nitrogen atoms of bridging azide ions. The crystal structures are stabilized by intra and intermolecular hydrogen bonding interactions. The complexes were also characterized by IR and NMR spectroscopy and the spectroscopic data is consistent with the binding of the ligands.

  16. Synthesis, crystal structure and thermal study of the hybrid nickel sulfate: C6N2H16[Ni(H2O)6(SO4)2].2H2O

    NASA Astrophysics Data System (ADS)

    Ngopoh, F. A. I.; Hamdi, N.; Chaouch, S.; Lachkar, M.; da Silva, I.; El Bali, B.

    2018-03-01

    A new inorganic-organic hybrid open framework nickel sulfate C6N2H16[Ni(H2O)6(SO4)2].2H2O has been synthesized by slow evaporation in aqueous solution using trans-1,4-diaminocyclohexane as structure-directing agent. It was characterized by single-crystal X-ray diffraction, infrared spectroscopy and analyzed by TGA-DSC. The compound crystallizes in the monoclinic space group P21/n, with the unit cell parameters of a = 6.2586 Å, b = 12.3009 Å, c = 13.2451 Å, β = 98,047°, Z = 4. Its crystal structure consists of isolated polyhedrons [Ni(H2O)6]2+ and [SO4]2- and free water which connects through hydrogen bonds. This association results in the porous framework where the protonated organic molecule trans-1,4-diaminocyclohexane is located as a counter ion. The IR spectra Shows the bands corresponding to the sulfate anion, water molecule and diprotonated trans-1-4-diaminocyclohexane. Thermal study indicates the loss of water molecules and the degradation of trans-1-4-diaminocyclohexane.

  17. CW EC-QCL-based sensor for simultaneous detection of H 2O, HDO, N 2O and CH 4 using multi-pass absorption spectroscopy

    DOE PAGES

    Yu, Yajun; Sanchez, Nancy P.; Griffin, Robert J.; ...

    2016-05-03

    A sensor system based on a continuous wave, external-cavity quantum-cascade laser (CW EC-QCL) was demonstrated for simultaneous detection of atmospheric H 2O, HDO, N 2O and CH 4 using a compact, dense pattern multi-pass gas cell with an effective path-length of 57.6 m. The EC-QCL with a mode-hop-free spectral range of 1225-1285 cm -1 operating at similar to 7.8 mu m was scanned covering four neighboring absorption lines, for H 2O at 1281.161 cm -1, HDO at 1281.455 cm -1, N 2O at 1281.53 cm -1 and CH 4 at 1281.61 cm -1. A first-harmonic-normalized wavelength modulation spectroscopy with second-harmonicmore » detection (WMS-2f/1f) strategy was employed for data processing. An Allan-Werle deviation analysis indicated that minimum detection limits of 1.77 ppmv for H 2O, 3.92 ppbv for HDO, 1.43 ppbv for N 2O, and 2.2 ppbv for CH 4 were achieved with integration times of 50-s, 50-s, 100-s and 129-s, respectively. In conclusion, experimental measurements of ambient air are also reported.« less

  18. Large hydrogen-bonded pre-nucleation (HSO4-)(H2SO4)m(H2O)k and (HSO4-)(NH3)(H2SO4)m(H2O)k clusters in the earth's atmosphere.

    PubMed

    Herb, Jason; Xu, Yisheng; Yu, Fangqun; Nadykto, A B

    2013-01-10

    The importance of pre-nucleation cluster stability as the key parameter controlling nucleation of atmospheric airborne ions is well-established. In this Article, large ternary ionic (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(H(2)O)(n) clusters have been studied using Density Functional Theory (DFT) and composite ab initio methods. Twenty classes of clusters have been investigated, and thermochemical properties of common atmospheric (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(0)(H(2)O)(k) and (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(1)(H(2)O)(n) clusters (with m, k, and n up to 3) have been obtained. A large amount of new themochemical and structural data ready-to-use for constraining kinetic nucleation models has been reported. We have performed a comprehensive thermochemical analysis of the obtained data and have investigated the impacts of ammonia and negatively charged bisulfate ion on stability of binary clusters in some detail. The comparison of theoretical predictions and experiments shows that the PW91PW91/6-311++G(3df,3pd) results are in very good agreement with both experimental data and high level ab initio CCSD(T)/CBS values and suggest that the PW91PW91/6-311++G(3df,3pd) method is a viable alternative to higher level ab initio methods in studying large pre-nucleation clusters, for which the higher level computations are prohibitively expensive. The uncertainties in both theory and experiments have been investigated, and possible ways of their reduction have been proposed.

  19. [Zn(C 7H 3O 5N)] n · nH 2O: A third-order NLO Zn coordination polymer with spiroconjugated structure

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Wei; Lan, You-Zhao; Zheng, Fa-Kun; Zhang, Xin; Lin, Meng-Hai; Guo, Guo-Cong; Huang, Jin-Shun

    2006-08-01

    [Zn(C 7H 3O 5N)] n · nH 2O ( 1) possesses an anticlockwise windmill-like framework structure and formats spiroconjugation over the infinite molecular layer that is predicted to have large static third-order polarizability and the convergence value of γxxxx reaches 6.86 × 10 -33 esu in the case of zero input photon energy. The third-order NLO properties of 1 were investigated via Z-scan techniques at wavelength of 532 nm. It showed strong third-order NLO absorptive properties, and its n2 value was calculated to be 4.15 × 10 -11 esu. The relationship between the spiroconjugated structure and the NLO property has been discussed, which supposed to be more valuable for the NLO research.

  20. Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5-7, M = Mg, Ca, Sr, and Ba.

    PubMed

    Rodriguez-Cruz, S E; Jockusch, R A; Williams, E R

    1999-09-29

    The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.

  1. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co

  2. Poly[[sesqui[mu2-1,4-bis(imidazol-1-ylmethyl)benzene-kappa(2)N:N'](carbonato-kappa(2)O,O')copper(II)] 1,4-bis(imidazol-1-ylmethyl)benzene hemisolvate pentahydrate].

    PubMed

    Dai, Yu-Mei; Tang, En; Huang, Jin-Feng; Yang, Qiu-Yan

    2008-10-01

    The asymmetric unit of the title compound, {[Cu(CO(3))(C(14)H(14)N(4))(1.5)] x 0.5 C(14)H(14)N(4) x 5 H(2)O}(n), contains one Cu(II) cation in a slightly distorted square-pyramidal coordination environment, one CO(3)(2-) anion, one full and two half 1,4-bis(imidazol-1-ylmethyl)benzene (bix) ligands, one half-molecule of which is uncoordinated, and five uncoordinated water molecules. One of the coordinated bix ligands and the uncoordinated bix molecule are situated about centers of symmetry, located at the centers of the benzene rings. The coordinated bix ligands link the copper(II) ions into a [Cu(bix)(1.5)](n) molecular ladder. These molecular ladders do not form interpenetrated ladders but are arranged in an ABAB parallel terrace, i.e. with the ladders arranged one above another, with sequence A translated with respect to B by 8 A. To best of our knowledge, this arrangement has not been observed in any of the molecular ladder frameworks synthesized to date. The coordination environment of the Cu(II) atom is completed by two O atoms of the CO(3)(2-) anion. The framework is further strengthened by extensive O-H...O and O-H...N hydrogen bonds involving the water molecules, the O atoms of the CO(3)(2-) anion and the N atoms of the bix ligands. This study describes the first example of a molecular ladder coordination polymer based on bix and therefore demonstrates further the usefulness of bix as a versatile multidentate ligand for constructing coordination polymers with interesting architectures.

  3. π-stacking and C-X...D (X = H, NO2; D = O, π) interactions in the crystal network of both C-H...N and π-stacked dimers of 1,2-bis(4-bromophenyl)-1H-benzimidazole and 2-(4-bromophenyl)-1-(4-nitrophenyl)-1H-benzimidazole.

    PubMed

    González-Padilla, Jazmin E; Rosales-Hernández, Martha C; Padilla-Martínez, Itzia I; García-Báez, Efren V; Rojas-Lima, Susana; Salazar-Pereda, Veronica

    2014-01-01

    Molecules of 1,2-bis(4-bromophenyl)-1H-benzimidazole, C19H12Br2N2, (I), and 2-(4-bromophenyl)-1-(4-nitrophenyl)-1H-benzimidazole, C19H12BrN3O2, (II), are arranged in dimeric units through C-H...N and parallel-displaced π-stacking interactions favoured by the appropriate disposition of N- and C-bonded phenyl rings with respect to the mean benzimidazole plane. The molecular packing of the dimers of (I) and (II) arises by the concurrence of a diverse set of weak intermolecular C-X...D (X = H, NO2; D = O, π) interactions.

  4. The First Molybdenum(VI) and Tungsten(VI) Oxoazides MO2(N3)2, MO2(N3)22 CH3CN, (bipy)MO2(N3)2, and [MO2(N3)4](2-) (M=Mo, W).

    PubMed

    Haiges, Ralf; Skotnitzki, Juri; Fang, Zongtang; Dixon, David A; Christe, Karl O

    2015-08-10

    Molybdenum(VI) and tungsten(VI) dioxodiazide, MO2(N3)2 (M=Mo, W), were prepared through fluoride-azide exchange reactions between MO2F2 and Me3SiN3 in SO2 solution. In acetonitrile solution, the fluoride-azide exchange resulted in the isolation of the adducts MO2(N3)22 CH3CN. The subsequent reaction of MO2(N3)2 with 2,2'-bipyridine (bipy) gave the bipyridine adducts (bipy)MO2(N3)2. The hydrolysis of (bipy)MoO2(N3)2 resulted in the formation and isolation of [(bipy)MoO2N3]2O. The tetraazido anions [MO2(N3)4](2-) were obtained by the reaction of MO2(N3)2 with two equivalents of ionic azide. Most molybdenum(VI) and tungsten(VI) dioxoazides were fully characterized by their vibrational spectra, impact, friction, and thermal sensitivity data and, in the case of (bipy)MoO2(N3)2, (bipy)WO2(N3)2, [PPh4]2[MoO2(N3)4], [PPh4]2[WO2(N3)4], and [(bipy)MoO2N3]2O by their X-ray crystal structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh Between 2013 and 2014.

    PubMed

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Hasan, M Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-05-01

    In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra-and interclade reassortant; its HA, polymerase basic 1 (PB1), polymerase (PA), and nonstructural (NS) genes come from subclade 2.3.2.1a; the polymerase basic 2 (PB2) comes from subclade 2.3.2.1c; and the NA, nucleocapsid protein (NP), and matrix (M) gene from clade 2.3.4.2. The H9N2 influenza viruses cocirculating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from an HPAI H7N3 virus previously isolated in Pakistan. Despite frequent coinfection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried seven genes from the local HPAI H5N1 lineage and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although the live birds we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans.

  6. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  7. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2 O production.

    PubMed

    Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie; Valverde-Pérez, Borja; Domingo-Félez, Carlos; Jensen, Marlene Mark; Smets, Barth F

    2018-05-01

    Nitrous oxide (N 2 O) is emitted during microbiological nitrogen (N) conversion processes, when N 2 O production exceeds N 2 O consumption. The magnitude of N 2 O production vs. consumption varies with pH and controlling net N 2 O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N 2 O production with pH. Ammonia oxidizing bacteria are of highest relevance for N 2 O production, while heterotrophic denitrifiers are relevant for N 2 O consumption at pH > 7.5. Net N 2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N 2 O production at acidic pH is dominated by N 2 O production, whereas N 2 O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N 2 O production. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  9. A novel amido-pyrophosphate Mn(II) chelate complex with the synthetic ligand O{P(O)[NHC(CH3)3]2}2 (L): [Mn(L)2{OC(H)N(CH3)2}2]Cl2·2H2O.

    PubMed

    Tarahhomi, Atekeh; Pourayoubi, Mehrdad; Fejfarová, Karla; Dušek, Michal

    2013-03-01

    The title complex, trans-bis(dimethylformamide-κO)bis{N,N'-N'',N'''-tetra-tert-butyl[oxybis(phosphonic diamide-κO)]}manganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis-chelate amido-pyrophosphate (pyrophosphoramide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water molecule. The Mn(II) atom, located on an inversion centre, is octahedrally coordinated, with a slight elongation towards the monodentate dimethylformamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six-membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six-membered chelate rings are less puckered in pyrophosphoramide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N-H...O and N-H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O-H...Cl hydrogen bonds.

  10. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    PubMed

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  11. Iron-Catalyzed Intramolecular C(sp(2))-N Cyclization of 1-(N-Arylpyrrol-2-yl)ethanone O-Acetyl Oximes toward Pyrrolo[1,2-a]quinoxaline Derivatives.

    PubMed

    Zhang, Zhiguo; Li, Junlong; Zhang, Guisheng; Ma, Nana; Liu, Qingfeng; Liu, Tongxin

    2015-07-02

    An efficient and convenient iron-catalyzed protocol has been developed for the synthesis of substituted pyrrolo[1,2-a]quinoxalines from 1-(N-arylpyrrol-2-yl)ethanone O-acetyl oximes through N-O bond cleavage and intramolecular directed C-H arylation reactions in acetic acid.

  12. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    PubMed

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  13. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  14. The role of electric field in enhancing separation of gas molecules (H2S, CO2, H2O) on VIB modified g-C3N4 (0 0 1)

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Li, Penghui; Wei, Shiqian; Guo, Jiaxing; Dan, Meng; Zhou, Ying

    2018-07-01

    In this study, the first-principles calculations were performed to investigate the adsorption behaviors of gas molecules H2S, CO2 and H2O on Cr, Mo and W modified g-C3N4 (0 0 1) surface. The results show that H2S, CO2 and H2O are physically adsorbed on the pristine g-C3N4, while the adsorption becomes chemisorbed due to the introduction of transition metals which significantly improve the interfacial electron transfer and narrow the band gap of g-C3N4 (0 0 1). Furthermore, it is found that the adsorption behaviors can be greatly influenced by the applied electric field. The adsorption energy is generally arranged in the order of Eads(H2S) > Eads(H2O) > Eads(CO2), and W/g-C3N4 (0 0 1) exhibits the best separation capability. The study could provide a versatile approach to selectively capture and separate the mixed gases in the catalytic reactions by controlling the applied intensity of electric field.

  15. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes.

    PubMed

    Khaliq, Zeeshan; Leijon, Mikael; Belák, Sándor; Komorowski, Jan

    2016-07-29

    The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the species barrier are complex and yet to be understood completely. Several studies have been published identifying singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature, defining adaptation to hosts. We used computational rule-based modeling to identify combinatorial sets of interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 subtypes. We built highly accurate rule-based models for each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found 68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 host-specific signatures (HSSs). To sum it up, we computationally constructed simple IF-THEN rule-based models that could distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of adaptation of IAVs to a new host is more complex than previously suggested

  17. The reactions of HO2 with CO and NO and the reaction of O(1D) with H2O

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1973-01-01

    HO2 radicals were generated by the photolysis of N2O at 2139 A in the presence of excess H2O or H2 and smaller amounts of CO and O2. The O(1D) atoms produced from the photolysis of N2O to give HO radicals or H2 to give HO + H. With H2O two HO radicals are produced for each O(1D) removed low pressures (i.e. approximately 20 torr H2O), but the HO yield drops as the pressure is raised. This drop is attributed to the insertion reaction: O(1D) + H2O + M yields H2O2 +M. The HO radicals generated can react with either CO or H2 to produce H atoms which then add to O2 to produce HO2. Two reactions are given for the reactions of the HO radicals, in the absence of NO.

  18. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    PubMed

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish

  19. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    PubMed Central

    2013-01-01

    Background The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. Methods Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. Results The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene and a European “swine-like” N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish “avian-like” H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. Conclusions The “avian-like” H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant

  20. Synthesis, spectral and antifungal analysis of diaryldithiophosphates of mono- and dibutyltin(IV): x-ray structure of [{(3,5-CH3)2C6H3O)2PS2}2Sn(nBu)2].

    PubMed

    Syed, Atiya; Khajuria, Ruchi; Kumar, Sandeep; Jassal, Amanpreet Kaur; Hundal, Maninder S; Pandey, Sushil K

    2014-01-01

    Diaryldithiophosphate complexes of mono- and dibutyltin(IV) corresponding to [(ArO)(2)PS(2)(n)Sn(nBu)xCl(4-x-n)] (Ar = o-CH(3)C(6)H(4), m-CH(3)C(6)H(4), p-CH(3)C(6)H(4), 4-Cl-3-CH(3)C(6)H(3), (3,5-CH(3))(2)C(6)H(3); n = 1, 2 for x = 1 and n = 2 for x = 2) were successfully isolated and characterized by elemental analyses, IR, multinuclear NMR ((1)H, (13)C, (31)P and (119)Sn) spectroscopy and X-ray analysis. The thermal properties of the complex [(3,5-CH(3))(2)C(6)H(3)O(2)PS(2)](2)Sn(nBu)(2) (12) have been examined by combined DTA/ DTG thermal analyses. Single crystal X-ray analysis of [(3,5-CH(3))(2)C(6)H(3)O(2)PS(2)](2)S(n)(nBu)(2) (12) revealed that two diaryldithiophosphate ions are coordinated to tin atom in an anisobidentate fashion through the sulfur atoms of each dithiophosphate moiety leading to distorted skew-trapezoidal bipyramidal geometry. The antifungal activity depicts that these complexes are active against fungus Penicillium chrysogenium.

  1. Diode laser measurements of linestrength and temperature-dependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Jeffries, Jay B.; Hanson, Ronald K.

    2013-11-01

    Absorption lineshapes for two unresolved H2O doublets near 4029.52 and 4041.92 cm-1 were measured at high-resolution in a heated static cell using two distributed-feedback diode lasers. Measurements were acquired for H2O, CO2, and N2 perturbers over a temperature and pressure range of 650-1325 K and 2-760 Torr, respectively. Strong collisional narrowing effects were observed in CO2 and N2, but not in pure H2O. The Galatry profile was used to infer collisional-broadening and -narrowing coefficients and their respective temperature dependence for CO2 and N2 perturbers. The collisional-broadening and -narrowing coefficients for CO2 perturbers were found to decrease with increasing temperature in a similar manner. For N2 perturbers, the collisional-broadening coefficients increased with temperature while the collisional-narrowing coefficients decreased with increasing temperature. Self-broadening coefficients were inferred from Voigt profile fits and are compared with HITEMP 2010. The linestrengths of 17 H2O transitions are also reported.

  2. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique

    NASA Astrophysics Data System (ADS)

    Hsu, T.-C.; Kao, S.-J.

    2013-12-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes complicate the absolute rate estimations of gaseous nitrogen production from individual pathways. The classical isotope pairing technique (IPT), the most common 15N nitrate enrichment method to quantify denitrification, has recently been modified by different researchers to (1) discriminate between the N2 produced by denitrification and anammox or to (2) provide a more accurate denitrification rate under considering production of both N2O and N2. In case 1, the revised IPT focused on N2 production being suitable for the environments of a low N2O-to-N2 production ratio, while in case 2, anammox was neglected. This paper develops a modified method to refine previous versions of IPT. Cryogenic traps were installed to separately preconcentrate N2 and N2O, thus allowing for subsequent measurement of the two gases generated in one sample vial. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, the 15N nitrate traceable processes including N2 and N2O from denitrification and N2 from anammox were estimated. Meanwhile, N2O produced by nitrification was estimated via the production rate of unlabeled 44N2O. To validate the applicability of our modified method, incubation experiments were conducted using sediment cores taken from the Danshuei Estuary in Taiwan. Rates of the aforementioned nitrogen removal processes were successfully determined. Moreover, N2O yield was as high as 66%, which would significantly bias previous IPT approaches if N2O was not considered. Our modified method not only complements previous versions of IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics of the water-sediment interface.

  3. Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny

    PubMed Central

    Phipps, Kara L.; Marshall, Nicolle; Tao, Hui; Danzy, Shamika; Onuoha, Nina; Steel, John

    2017-01-01

    ABSTRACT Reassortment of gene segments between coinfecting influenza A viruses (IAVs) facilitates viral diversification and has a significant epidemiological impact on seasonal and pandemic influenza. Since 1977, human IAVs of H1N1 and H3N2 subtypes have cocirculated with relatively few documented cases of reassortment. We evaluated the potential for viruses of the 2009 pandemic H1N1 (pH1N1) and seasonal H3N2 lineages to reassort under experimental conditions. Results of heterologous coinfections with pH1N1 and H3N2 viruses were compared to those obtained following coinfection with homologous, genetically tagged, pH1N1 viruses as a control. High genotype diversity was observed among progeny of both coinfections; however, diversity was more limited following heterologous coinfection. Pairwise analysis of genotype patterns revealed that homologous reassortment was random while heterologous reassortment was characterized by specific biases. pH1N1/H3N2 reassortant genotypes produced under single-cycle coinfection conditions showed a strong preference for homologous PB2-PA combinations and general preferences for the H3N2 NA, pH1N1 M, and H3N2 PB2 except when paired with the pH1N1 PA or NP. Multicycle coinfection results corroborated these findings and revealed an additional preference for the H3N2 HA. Segment compatibility was further investigated by measuring chimeric polymerase activity and growth of selected reassortants in human tracheobronchial epithelial cells. In guinea pigs inoculated with a mixture of viruses, parental H3N2 viruses dominated but reassortants also infected and transmitted to cage mates. Taken together, our results indicate that strong intrinsic barriers to reassortment between seasonal H3N2 and pH1N1 viruses are few but that the reassortants formed are attenuated relative to parental strains. IMPORTANCE The genome of IAV is relatively simple, comprising eight RNA segments, each of which typically encodes one or two proteins. Each viral protein

  4. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    NASA Astrophysics Data System (ADS)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  5. Di-μ-cyanido-1:2κC:N,2:3κN:C-hexa-cyanido-1κC,3κC-tetra-kis(1,10-phenanthroline)-1κN,N';2κN,N';3κN,N'-1,3-dicobalt(III)-2-iron(II) tetra-hydrate.

    PubMed

    Zhang, Ying; Yuan, Ai-Hua; Zhou, Hu; Guo, Ji-Xi; Liu, Lang

    2009-08-08

    The hydro-thermal reaction of CoCl(2)·6H(2)O, 1,10-phenanthroline (phen) and K(3)[Fe(CN)(6)] in deionized water yielded the title cyanide-bridged trinuclear cluster, [Co(2)Fe(CN)(8)(C(12)H(8)N(2))(4)]·4H(2)O or [{Co(III)(phen)(CN)(4)}(2){Fe(II)(phen)(2)}]·4H(2)O, which contains two Co(III) centers and one Fe(II) center linked by cyanide bridges. The combination of coordinative bonds, O-H⋯N and O-H⋯O hydrogen bonds and π-π stacking inter-actions [centroid-centroid distance = 3.630 (2) Å] results in the stabilization of a supra-molecular structure. All uncoordinated water molecules are disordered. Thermogravimetric analysis reveals that the title complex loses the four crystal water mol-ecules at about 333 K, then the anhydrous phase loses no further mass up to about 573 K, above which decomposition occurs.

  6. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick

    2017-05-01

    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.

  7. Chanabayaite, Cu2(N3C2H2)Cl(NH3,Cl,H2O,□)4, a new mineral containing triazolate anion

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Möhn, G.; Pekov, I. V.; Pushcharovsky, D. Yu.; Zadov, A. E.

    2015-12-01

    A new mineral, chanabayaite, has been discovered at a guano deposit located at Mt. Pabellón de Pica near the village of Chanabaya, Iquique Province, Tarapacá region, Chile. It is associated with salammoniac, halite, joanneumite, nitratine and earlier chalcopyrite. Chanabayaite occurs as blue translucent imperfect prismatic crystals, up to 0.05 × 0.1 × 0.5 mm in size, and their radial aggregates. Chanabayaite is brittle, with a Mohs' hardness of 2. The cleavage is perfect on (001) and imperfect on (100) and (010). D meas = 1.48(2) g/cm3, D calc = 1.464 g/cm3. The mineral is optically biaxial (-), α = 1.561(2), β = 1.615(3), γ = 1.620(2), 2 V meas = 25(10)°, 2 V calc = 33°. Pleochroism is strong, Z ≈ Y (deep blue) ≫ X (pale blue with gray tint). IR spectrum is given. The chemical composition (electron microprobe data for Cu, Fe and Cl; gas chromatography data for H, N, C and O) is as follows (wt %): 32.23 Cu, 1.14 Fe, 16.13 Cl, 3.1 H, 29.9 N, 12.2 C, 3.4 O, total is 98.1. The empirical formula is ( Z = 4): Cu1.92Fe0.08Cl1.72N8.09C3.85H11.66O0.81. The structural model was based on the single-crystal X-ray diffraction data ( R = 0.1627). Chanabayaite is orthorhombic, space group Imma, a = 19.484(3), b = 7.2136(10), c = 11.999(4) Å, V = 1686.5(7) Å3, Z = 2. In chanabayaite, chains of the corner-sharing Cu(l)-centered octahedra and single Cu(2)-centered octahedra are linked via 1,2,4-triazolate anions C2N3H2 -. NH3 and Cl- are additional ligands coordinating Cu2+. Chanabayaite is a transformational mineral species formed by leaching of Na and one third of Cl and partial dehydration of the protophase Na2Cu2Cl3(N3C2H2)2(NH3)2 • 4H2O. The strongest reflections in the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are detected: 10.19 (100) (101), 6.189 (40) (011), 5.729 (23) (301), 5.216 (75) (211, 202), 4.964 (20) (400), 2.830 (20) (602, 413, 503), 2.611 (24) (123, 422, 404).

  8. N-[2-(2,2-Di-methyl-propanamido)-pyrimidin-4-yl]-2,2-di-methyl-propanamide n-hexane 0.25-solvate hemihydrate.

    PubMed

    Ośmiałowski, Borys; Valkonen, Arto; Chęcińska, Lilianna

    2013-10-05

    The asymmetric unit of the title compound, C14H22N4O2·0.25C6H14·0.5H2O, contains two independent mol-ecules of 2,4-bis-(pivaloyl-amino)-pyrimidine (M) with similar conformations, one water mol-ecule and one-half n-hexane solvent mol-ecule situated on an inversion center. In one independent M mol-ecule, one of the two tert-butyl groups is rotationally disordered between two orientations in a 3:2 ratio. The n-hexane solvent mol-ecule is disordered between two conformations in the same ratio. The water mol-ecule bridges two independent M mol-ecules via O-H⋯O, N-H⋯O and O-H⋯N hydrogen bonds into a 2H2O unit, and these units are further linked by N-H⋯N hydrogen bonds into chains running in the [010] direction. Weak C-H⋯O inter-actions are observed between the adjacent chains.

  9. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands.

    PubMed

    McCracken, John; Cappillino, Patrick J; McNally, Joshua S; Krzyaniak, Matthew D; Howart, Michael; Tarves, Paul C; Caradonna, John P

    2015-07-06

    Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate.

  10. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  11. A phase transition caught in mid-course: independent and concomitant analyses of the monoclinic and triclinic structures of (nBu4N)[Co(orotate)2(bipy)]·3H2O.

    PubMed

    Castro, Miguel; Falvello, Larry R; Forcén-Vázquez, Elena; Guerra, Pablo; Al-Kenany, Nuha A; Martínez, Gema; Tomás, Milagros

    2017-09-01

    The preparation and characterization of the n Bu 4 N + salts of two bis-orotate(2-) complexes of cobalt, namely bis(tetra-n-butylammonium) diaquabis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide-6-carboxylato-κ 2 N 1 ,O 6 )cobalt(II) 1.8-hydrate, (C 16 H 36 N) 2 [Co(C 5 H 2 N 2 O 4 ) 2 (H 2 O) 21.8H 2 O, (1), and tetra-n-butylammonium (2,2'-bipyridine-κ 2 N,N')bis(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide-6-carboxylato-κ 2 N 1 ,O 6 )cobalt(III) trihydrate, (C 16 H 36 N)[Co(C 5 H 2 N 2 O 4 ) 2 (C 10 H 8 N 2 )]·3H 2 O, (2), are reported. The Co III complex, (2), which is monoclinic at room temperature, presents a conservative single-crystal-to-single-crystal phase transition below 200 K, producing a triclinic twin. The transition, which involves a conformational change in one of the n Bu groups of the cation, is reversible and can be cycled. Both end phases have been characterized structurally and the system was also characterized structurally in a two-phase intermediate state, using single-crystal diffraction techniques, with both the monoclinic and triclinic phases present. Thermal analysis allows a rough estimate of the small energy content, viz. 0.25 kJ mol -1 , for both the monoclinic-to-triclinic transformation and the reverse transition, in agreement with the nature of the structural changes involving only the n Bu 4 N + cation.

  12. Evolution of resistive switching mechanism through H2O2 sensing by using TaOx-based material in W/Al2O3/TaOx/TiN structure

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Somsubhra; Panja, Rajeswar; Roy, Sourav; Roy, Anisha; Samanta, Subhranu; Dutta, Mrinmoy; Ginnaram, Sreekanth; Maikap, Siddheswar; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Jana, Debanjan; Qiu, Jian-Tai; Yang, Jer-Ren

    2018-03-01

    Understanding of resistive switching mechanism through H2O2 sensing and improvement of switching characteristics by using TaOx-based material in W/Al2O3/TaOx/TiN structure have been reported for the first time. Existence of amorphous Al2O3/TaOx layer in the RRAM devices has been confirmed by transmission electron microscopy. By analyzing the oxidation states of Ta2+/Ta5+ for TaOx switching material and W0/W6+ for WOx layer at the W/TaOx interface through X-ray photoelectron spectroscopy and H2O2 sensing, the reduction-oxidation mechanism under Set/Reset occurs only in the TaOx layer for the W/Al2O3/TaOx/TiN structures. This leads to higher Schottky barrier height at the W/Al2O3 interface (0.54 eV vs. 0.46 eV), higher resistance ratio, and long program/erase endurance of >108 cycles with 100 ns pulse width at a low operation current of 30 μA. Stable retention of more than 104 s at 85 °C is also obtained. Using conduction mechanism and reduction-oxidation reaction, current-voltage characteristic has been simulated. Both TaOx and WOx membranes have high pH sensitivity values of 47.65 mV/pH and 49.25 mV/pH, respectively. Those membranes can also sense H2O2 with a low concentration of 1 nM in an electrolyte-insulator-semiconductor structure because of catalytic activity, while the Al2O3 membrane does not show sensing. The TaOx material in W/Al2O3/TaOx/TiN structure does not show only a path towards high dense, small size memory application with understanding of switching mechanism but also can be used for H2O2 sensors.

  13. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells.

    PubMed

    Choi, Doo Jin; Kim, Sun-Lim; Choi, Ji Won; Park, Yong Il

    2014-07-25

    Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated. Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting. Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5-50 μg/ml) for 2h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells. These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Intramolecular chalcogen-tin interactions in [(o-MeE-C6H4)CH2]2SnPh2-nCln; E = S, O, CH2, n = 0, 1, 2 and intermolecular chlorine-tin interactions in the meta and para-methoxy isomers

    PubMed Central

    Vargas-Pineda, Diana Gabriela; Guardado, Tanya; Cervantes-Lee, Francisco; Metta-Magana, Alejandro J.

    2010-01-01

    Organotin(IV) compounds of the type [(o-MeE-C6H4)CH2]2SnPh2-nCln were synthesized, E = O, n = 0 (1), n = 1 (2), n = 2 (3), E = S, n = 0 (4), n = 1 (5), n = 2 (6) and E = CH2, n = 0 (7), n = 1 (8), n = 2 (9). The dichloro compounds 3 and 6 have been investigated by single crystal X-ray diffraction and exhibit bi-capped tetrahedral geometry at the tin atom as a consequence of significant intramolecular Sn⋯O (3) and Sn⋯S (6) secondary bonding, in monomolecular units. Compound 3 when crystallized from a hexane/thf solvent mixture shows two different conformers, 3′ and 3″, in the crystal structure, 3′ has two equivalent Sn⋯O interactions, while 3″ has two non-equivalent Sn⋯O interactions. Upon recrystallization of 3 from hexane only a single structural form is observed, 3′. The Sn⋯E distances in 3′, 3″, and 6 are 71.3; 73.5, 72.9; and 76.3% of the ΣvdW radii, respectively. The meta and para-substituted isomers of 3 (10, 11) exhibit a distortion at the tin atom due to self-association via intermolecular Sn⋯Cl interactions resulting in polymeric structures. 119Sn NMR spectroscopy suggests that the intramolecular Sn⋯E interactions persist in solution for the dichloride compounds 3 and 6. PMID:20047301

  15. Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2′-O methylations

    PubMed Central

    Laudenbach, Beatrice Theres; Martínez-Montero, Saúl; Cencic, Regina; Habjan, Matthias; Pichlmair, Andreas; Damha, Masad J.; Pelletier, Jerry; Nagar, Bhushan

    2017-01-01

    IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2′-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2′-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA. PMID:28251928

  16. N-(2,3-Dimethyl-phen-yl)-4-hydr-oxy-2-methyl-2H-1,2-benzothia-zine-3-carboxamide 1,1-dioxide.

    PubMed

    Siddiqui, Waseeq Ahmad; Bukahari, Iftikhar Hussain; Zia-Ur-Rehman, Muhammad; Khan, Islam Ullah; Tizzard, Graham John

    2009-02-28

    In the crystal structure of the title compound, C(18)H(18)N(2)O(4)S, the thia-zine ring adopts a distorted half-chair conformation. 1,2-Benzothia-zines of this kind have a wide range of biological activities and are mainly used as medicines in the treatment of inflammation and rheumatoid arthritis. The enolic H atom is involved in an intra-molecular O-H⋯O hydrogen bond, forming a six-membered ring. The mol-ecules arrange themselves into centrosymmetric dimers by means of inter-molecular N-H⋯O hydrogen bonds. A weak inter-molcular C-H⋯O inter-action is also present.

  17. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    PubMed

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  18. A phase transition caught in mid-course: independent and concomitant analyses of the monoclinic and triclinic structures of (nBu4N)[Co(orotate)2(bipy)]·3H2O

    PubMed Central

    Castro, Miguel; Falvello, Larry R.; Forcén-Vázquez, Elena; Al-Kenany, Nuha A.; Martínez, Gema

    2017-01-01

    The preparation and characterization of the nBu4N+ salts of two bis-orotate(2−) complexes of cobalt, namely bis­(tetra-n-butyl­ammonium) di­aqua­bis­(2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ide-6-carboxyl­ato-κ2 N 1,O 6)cobalt(II) 1.8-hydrate, (C16H36N)2[Co(C5H2N2O4)2(H2O)21.8H2O, (1), and tetra-n-butyl­ammonium (2,2′-bi­pyridine-κ2 N,N′)bis­(2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ide-6-carbox­yl­ato-κ2 N 1,O 6)cobalt(III) trihydrate, (C16H36N)[Co(C5H2N2O4)2(C10H8N2)]·3H2O, (2), are reported. The CoIII complex, (2), which is monoclinic at room tem­perature, presents a conservative single-crystal-to-single-crystal phase transition below 200 K, producing a triclinic twin. The transition, which involves a conformational change in one of the nBu groups of the cation, is reversible and can be cycled. Both end phases have been characterized structurally and the system was also characterized structurally in a two-phase inter­mediate state, using single-crystal diffraction techniques, with both the monoclinic and triclinic phases present. Thermal analysis allows a rough estimate of the small energy content, viz. 0.25 kJ mol−1, for both the monoclinic-to-triclinic transformation and the reverse transition, in agreement with the nature of the structural changes involving only the nBu4N+ cation. PMID:28872072

  19. Protective Efficacy of an H5N1 Inactivated Vaccine Against Challenge with Lethal H5N1, H5N2, H5N6, and H5N8 Influenza Viruses in Chickens.

    PubMed

    Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan

    2016-05-01

    The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses.

  20. 3-Methyl-7-(2-thienyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione: pi-stacked bilayers built from N-H...O, C-H...O and C-H...pi hydrogen bonds.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    In the title compound, C(12)H(9)N(3)O(2)S, the thienyl substituent is disordered over two sets of sites with occupancies of 0.749 (3) and 0.251 (3). A combination of N-H...O, C-H...O and C-H...pi hydrogen bonds links the molecules into bilayers and these bilayers are themselves linked into a continuous structure by pi-pi stacking interactions.

  1. Oxygen vibrations in the series Bi2Sr2Ca{_{n-1}}Cu{n}O{_{4+2 n+y}}

    NASA Astrophysics Data System (ADS)

    Faulques, E.; Dupouy, P.; Lefrant, S.

    1991-06-01

    We present a discussion of the oxygen vibrations in the Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} high T_c superconductors with the aim of interpreting Raman spectra in the case of the non-symmorphic Amaa structure. Group theory shows that the oxygen atoms belonging to the central CuO{2} plane generate a Raman activity for the n=1,3 phases. Consequently, we propose a novel assignment for the lines of weak intensity at 297, 316 and 333 cm^{-1}. It is shown that the two components of the 460 cm^{-1} band may be consistent with the Amma structure. Spectra recorded in crossed polarization exhibit weak lines which could be assigned to B {1g} modes expected for the three phases. Nous présentons une discussion sur les vibrations des atomes d'oxygène dans la série des supraconducteurs Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} dans le but d'interpréter les spectres Raman. L'analyse des modes normaux de vibration de la structure Amaa pour les phases n=1 ou 3 montre que les atomes d'oxygène du plan CuO{2} contenant les centres d'inversion donnent lieu à une activité Raman. En conséquence, nous proposons une nouvelle attribution pour les raies de faible intensité à 297, 316 et 333 cm^{-1}. Nous montrons que le dédoublement de la bande à 460 cm^{-1} pourrait être dû à la structure Amaa. Les spectres enregistrés en polarization croisée montrent de faibles bandes qui peuvent être attribuées aux modes B {1g} attendus pour les trois phases.

  2. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    PubMed

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  3. Prior Infection of Chickens with H1N1 or H1N2 Avian Influenza Elicits Partial Heterologous Protection against Highly Pathogenic H5N1

    PubMed Central

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70–80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody. PMID:23240067

  4. The structure, stability, and infrared spectrum of B 2N, B 2N +, B 2N -, BO, B 2O and B 2N 2.

    NASA Astrophysics Data System (ADS)

    Martin, J. M. L.; François, J. P.; Gijbels, R.

    1992-05-01

    The structure, infrared spectrum, and heat of formation of B 2N, B 2N -, BO, and B 2O have been studied ab initio. B 2N is very stable; B 2O even more so. B 2N, B 2N -, B 2O, and probably B 2N + have symmetric linear ground-state structures; for B 2O, an asymmetric linear structure lies about 12 kcal/mol above the ground state. B 2N +, B 2N - and B 2O have intense asymmetric stretching frequencies, predicted near 870, 1590 and 1400 cm -1, respectively. Our predicted harmonic frequencies and isotopic shifts for B 2O confirm the recent experimental identification by Andrews and Burkholder. Absorptions at 1889.5 and 1998.5 cm -1 in noble-gas trapped boron nitride vapor belong the BNB and BNBN ( 3Π), respectively; a tentative assignment of 882.5 cm -1 to BNB + is proposed. Total atomization energies Σ De (Σ D0) are computed (accuracy ±2 kcal/mol) as: BO 193.1 (190.4), B 2O 292.5 (288.7), B 2N 225.0 (250.3) kcal/mol. The ionization potential and electron affinity of B 2N are predicted to be 8.62±0.1 and 3.34±0.1 eV. The MP4-level additivity approximations involved in G1 theory results in errors on the order of 1 kcal/mol in the Σ De values.

  5. Raman study of HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-02-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) high- Tc superconductor family using different laser frequencies. Local laser annealing measurements were carried out to investigate the variation of the Raman spectra with the excess oxygen content, δ. A systematic evolution of the spectra, which display mainly peaks near 590, 570, 540 and 470 cm -1, with increasing number of CuO 2 layers has been observed; its origin has been shown to lie in the variation of the interstitial oxygen content. In addition to confirming that the 590 cm -1 mode represents vibration of apical oxygens in the absence of neighboring excess oxygen, the 570 cm -1 mode, which may be composed of some finer structures, has been assigned to the vibration of the apical oxygen modified by the presence of the neighboring excess oxygens. The 540 and 470 cm -1 modes may represent the direct vibration of excess oxygens. The implication of possible different distribution sites of excess oxygens is discussed. All other observed lower-frequency modes are also assigned.

  6. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    PubMed

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search.

    PubMed

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-07

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H + (H 2 O) n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H 2 O molecule to form a H 3 O + ion in all H + (H 2 O) 10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H + (H 2 O) 10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H 3 O + ion since the Wiberg bond order of the O-H bond in the H 3 O + ion is smaller than that in H 2 O molecules, which causes a red shift of the O-H stretching mode in the H 3 O + ion.

  8. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    NASA Astrophysics Data System (ADS)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  9. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    PubMed

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  10. Infrared Absorption of Methanol-Water Clusters Mn(H2O), n = 1-4, Recorded with the Vuv-Ionization Techniques

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fang; Lee, Yuan-Pern

    2016-06-01

    We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol-water clusters, Mn(H_2O) with M representing CH_3OH and n = 1-4, in a pulsed supersonic jet by using the VUV (vacuum-ultraviolet)-ionization/IR-depletion technique. The VUV light at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser served as a source of dissociation for clusters before ionization. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increase, whereas spectra in the CH region are similar. For M(H_2O), absorption of a structure with H_2O as a proton donor was observed at 3570, 3682, and 3722 wn, whereas that of methanol as a proton donor was observed at 3611 and 3753 wn. For M2(H_2O), the OH-stretching band of the dangling OH of H_2O was observed at 3721 wn, whereas overlapped bands near 3425, 3472, and 3536 wn correspond to the OH-stretching modes of three hydrogen-bonded OH in a cyclic structure. For M3(H_2O), the dangling OH shifts to 3715 wn, and the hydrogen-bonded OH-stretching bands become much broader, with a band near 3179 wn having the smallest wavenumber. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted for the methanol-water clusters with the M06-2X/aug-cc-pVTZ method are consistent with our experimental results. For M4(H_2O), observed spectrum agree less with theoretical predictions, indicating the presence of isomers other than the most stable cyclic one. Spectra of Mn(H_2O) and Mn+1 are compared and the cooperative hydrogen-bonding is discussed.

  11. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  12. Outbreaks of pandemic (H1N1) 2009 and seasonal influenza A (H3N2) on cruise ship.

    PubMed

    Ward, Kate A; Armstrong, Paul; McAnulty, Jeremy M; Iwasenko, Jenna M; Dwyer, Dominic E

    2010-11-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship's childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks.

  13. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    NASA Astrophysics Data System (ADS)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  14. Canine susceptibility to human influenza viruses (A/pdm 09H1N1, A/H3N2 and B).

    PubMed

    Song, Daesub; Kim, Hyekwon; Na, Woonsung; Hong, Minki; Park, Seong-Jun; Moon, Hyoungjoon; Kang, Bokyu; Lyoo, Kwang-Soo; Yeom, Minjoo; Jeong, Dae Gwin; An, Dong-Jun; Kim, Jeong-Ki

    2015-02-01

    We investigated the infectivity and transmissibility of the human seasonal H3N2, pandemic (pdm) H1N1 (2009) and B influenza viruses in dogs. Dogs inoculated with human seasonal H3N2 and pdm H1N1 influenza viruses exhibited nasal shedding and were seroconverted against the viruses; this did not occur in the influenza B virus-inoculated dogs. Transmission of human H3N2 virus between dogs was demonstrated by observing nasal shedding and seroconversion in naïve dogs after contact with inoculated dogs. The seroprevalence study offered evidence of human H3N2 infection occurring in dogs since 2008. Furthermore, serological evidence of pdm H1N1 influenza virus infection alone and in combination with canine H3N2 virus was found in the serum samples collected from field dogs during 2010 and 2011. Our results suggest that dogs may be hosts for human seasonal H3N2 and pdm H1N1 influenza viruses. © 2015 The Authors.

  15. Infrared absorption of methanol-water clusters (CH3OH)n(H2O), n = 1-4, recorded with the VUV-ionization/IR-depletion technique.

    PubMed

    Lee, Yu-Fang; Kelterer, Anne-Marie; Matisz, Gergely; Kunsági-Máté, Sándor; Chung, Chao-Yu; Lee, Yuan-Pern

    2017-04-14

    We recorded infrared (IR) spectra in the CH- and OH-stretching regions of size-selected clusters of methanol (M) with one water molecule (W), represented as M n W, n = 1-4, in a pulsed supersonic jet using the photoionization/IR-depletion technique. Vacuum ultraviolet emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer to detect clusters M n W as protonated forms M n-1 WH + . The variations in intensities of M n-1 WH + were monitored as the wavelength of the IR laser light was tuned across the range 2700-3800 cm -1 . IR spectra of size-selected clusters were obtained on processing of the observed action spectra of the related cluster-ions according to a mechanism that takes into account the production and loss of each cluster due to IR photodissociation. Spectra of methanol-water clusters in the OH region show significant variations as the number of methanol molecules increases, whereas those in the CH region are similar for all clusters. Scaled harmonic vibrational wavenumbers and relative IR intensities predicted with the M06-2X/aug-cc-pVTZ method for the methanol-water clusters are consistent with our experimental results. For dimers, absorption bands of a structure WM with H 2 O as a hydrogen-bond donor were observed at 3570, 3682, and 3722 cm -1 , whereas weak bands of MW with methanol as a hydrogen-bond donor were observed at 3611 and 3753 cm -1 . For M 2 W, the free OH band of H 2 O was observed at 3721 cm -1 , whereas a broad feature was deconvoluted to three bands near 3425, 3472, and 3536 cm -1 , corresponding to the three hydrogen-bonded OH-stretching modes in a cyclic structure. For M 3 W, the free OH shifted to 3715 cm -1 , and the hydrogen-bonded OH-stretching bands became much broader, with a weak feature near 3179 cm -1 corresponding to the symmetric OH-stretching mode of a cyclic structure. For M 4 W, the observed spectrum agrees unsatisfactorily with predictions for the most stable cyclic structure

  16. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing-Fang; Wei, Dong-Qing, E-mail: dqwei@gordonlifescience.org; Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2more » channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.« less

  17. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus.

    PubMed

    Wang, Jing-Fang; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-10-16

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.

  18. Communication: H-atom reactivity as a function of temperature in solid parahydrogen: The H + N2O reaction

    NASA Astrophysics Data System (ADS)

    Mutunga, Fredrick M.; Follett, Shelby E.; Anderson, David T.

    2013-10-01

    We present low temperature kinetic measurements for the H + N2O association reaction in solid parahydrogen (pH2) at liquid helium temperatures (1-5 K). We synthesize 15N218O doped pH2 solids via rapid vapor deposition onto an optical substrate attached to the cold tip of a liquid helium bath cryostat. We then subject the solids to short duration 193 nm irradiations to generate H-atoms produced as byproducts of the in situ N2O photodissociation, and monitor the subsequent reaction kinetics using rapid scan FTIR. For reactions initiated in solid pH2 at 4.3 K we observe little to no reaction; however, if we then slowly reduce the temperature of the solid we observe an abrupt onset to the H + N2O → cis-HNNO reaction at temperatures below 2.4 K. This abrupt change in the reaction kinetics is fully reversible as the temperature of the solid pH2 is repeatedly cycled. We speculate that the observed non-Arrhenius behavior (negative activation energy) is related to the stability of the pre-reactive complex between the H-atom and 15N218O reagents.

  19. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    NASA Astrophysics Data System (ADS)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  20. Degradation of n-butylparaben and 4- tert-octylphenol in H 2O 2/UV system

    NASA Astrophysics Data System (ADS)

    BŁędzka, Dorota; Gryglik, Dorota; Olak, Magdalena; Gębicki, Jerzy L.; Miller, Jacek S.

    2010-04-01

    The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4- tert-octylphenol (OP) in the H 2O 2/UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8×10 9 and 4.2×10 9 M -1 s -1, respectively. For BP the rate constant equal to 2.0×10 10 M -1 s -1was also determined using water radiolysis as a source of hydroxyl radicals.

  1. Phylogenetic and functional potential links pH and N2O emissions in pasture soils.

    PubMed

    Samad, Md Sainur; Biswas, Ambarish; Bakken, Lars R; Clough, Timothy J; de Klein, Cecile A M; Richards, Karl G; Lanigan, Gary J; Morales, Sergio E

    2016-10-26

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N 2 O and N 2 emissions. Soil pH regulates the reduction of N 2 O to N 2 , however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N 2 O emission ratio (N 2 O/(NO + N 2 O + N 2 )) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N 2 O emission ratio and community changes. Soil pH was negatively associated with N 2 O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir &nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N 2 O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N 2 O emission ratio through more efficient conversion of N 2 O to N 2 .

  2. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    NASA Astrophysics Data System (ADS)

    Samad, M. D. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-10-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.

  3. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    PubMed Central

    Samad, M. d. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2. PMID:27782174

  4. Potassium (2,2'-bipyridine-κN,N')bis-(carbonato-κO,O')cobaltate(III) dihydrate.

    PubMed

    Wang, Jian-Fei; Lin, Jian-Li

    2010-09-30

    In the title compound, K[Co(CO(3))(2)(C(10)H(8)N(2))]·2H(2)O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa-hedral N(2)O(4) environment. The [Co(bipy)(CO(3))(2)](-) (bipy is 2,2'-bipyridine) -units are stacked along [100] via π-π stacking inter-actions, with inter-planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O-H⋯O hydrogen-bonding inter-actions link the chains, forming channels along (100) in which the K(+) ions reside and leading to a three-dimensional supra-molecular architecture.

  5. Chemical stabilization and high pressure synthesis of Ba-free Hg-based superconductors, (Hg,M)Sr2Ca(n-1)Cu(n)O(y)(n=1 to approximately 3)

    NASA Technical Reports Server (NTRS)

    Kishio, K.; Shimoyama, J.; Hahakura, S.; Kitazawa, K.; Yamaura, K.; Hiroi, Z.; Takano, M.

    1995-01-01

    A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr2Ca(n - 1)Cu(n)P(y) with n = 1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M = Cr, Mo and Re. While the Hgl2O1(n = 1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n = 2) phase. On the other hand, single-phase Y-free Hg1212(n = 2) and Hg1223 (n = 3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba containing compounds, all the samples prepared in the present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.

  6. Outbreaks of Pandemic (H1N1) 2009 and Seasonal Influenza A (H3N2) on Cruise Ship

    PubMed Central

    Ward, Kate A.; Armstrong, Paul; Iwasenko, Jenna M.; Dwyer, Dominic E.

    2010-01-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship’s childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks. PMID:21029531

  7. N-(3,4-Dimethyl-phen-yl)-4-hydr-oxy-2-methyl-2H-1,2-benzothia-zine-3-carboxamide 1,1-dioxide.

    PubMed

    Siddiqui, Waseeq Ahmad; Ali, Muhammad; Zia-Ur-Rehman, Muhammad; Sharif, Saima; Tizzard, Graham John

    2009-03-28

    1,2-Benzothia-zines similar to the title compound, C(18)H(18)N(2)O(4)S, are well known in the literature for their biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis. The thia-zine ring adopts a distorted half-chair conformation. The enolic H atom is involved in an intra-molecular O-H⋯O hydrogen bond, forming a six-membered ring. In the crystal, mol-ecules arrange themselves into centrosymmetric dimers by means of pairs of weak inter-molecular N-H⋯O hydrogen bonds.

  8. The effect of pH on N2O production under aerobic conditions in a partial nitritation system.

    PubMed

    Law, Yingyu; Lant, Paul; Yuan, Zhiguo

    2011-11-15

    Ammonia-oxidising bacteria (AOB) are a major contributor to nitrous oxide (N(2)O) emissions during nitrogen transformation. N(2)O production was observed under both anoxic and aerobic conditions in a lab-scale partial nitritation system operated as a sequencing batch reactor (SBR). The system achieved 55 ± 5% conversion of the 1g NH(4)(+)-N/L contained in a synthetic anaerobic digester liquor to nitrite. The N(2)O emission factor was 1.0 ± 0.1% of the ammonium converted. pH was shown to have a major impact on the N(2)O production rate of the AOB enriched culture. In the investigated pH range of 6.0-8.5, the specific N(2)O production was the lowest between pH 6.0 and 7.0 at a rate of 0.15 ± 0.01 mg N(2)O-N/h/g VSS, but increased with pH to a maximum of 0.53 ± 0.04 mg N(2)O-N/h/g VSS at pH 8.0. The same trend was also observed for the specific ammonium oxidation rate (AOR) with the maximum AOR reached at pH 8.0. A linear relationship between the N(2)O production rate and AOR was observed suggesting that increased ammonium oxidation activity may have promoted N(2)O production. The N(2)O production rate was constant across free ammonia (FA) and free nitrous acid (FNA) concentrations of 5-78 mg NH(3)-N/L and 0.15-4.6 mg HNO(2)-N/L, respectively, indicating that the observed pH effect was not due to changes in FA or FNA concentrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    PubMed

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  10. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  11. Partial nitrogen loss in SrTaO2N and LaTiO2N oxynitride perovskites

    NASA Astrophysics Data System (ADS)

    Chen, Daixi; Habu, Daiki; Masubuchi, Yuji; Torii, Shuki; Kamiyama, Takashi; Kikkawa, Shinichi

    2016-04-01

    SrTaO2N heated in a helium atmosphere began to release nitrogen of approximately 30 at% at 950 °C while maintaining the perovskite structure and its color changed from orange to dark green. Then it decomposed above 1200 °C to a black mixture of Sr1.4Ta0.6O2.73, Ta2N, and Sr5Ta4O15. The second decomposition was not clearly observed when SrTaO2N was heated in a nitrogen atmosphere below 1550 °C. After heating at 1500 °C for 3 h under a 0.2 MPa nitrogen atmosphere, the perovskite product became dark green and conductive. Structure refinement results suggested that the product was a mixture of tetragonal and cubic perovskites with a decreased ordering of N3-/O2-. The sintered body was changed to an n-type semiconductor after a partial loss of nitrogen to be reduced from the originally insulating SrTaO2N perovskite lattice. LaTiO2N was confirmed to have a similar cis-configuration of the TiO4N2 octahedron as that of TaO4N2 in SrTaO2N. It also released some of its nitrogen at 800 °C changing its color from brown to black and then decomposed to a mixture of LaTiO3, La2O3, and TiN at 1100 °C. These temperatures are lower than those in SrTaO2N.

  12. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  13. Solid state coordination chemistry: structural consequences of variations in tether length in the oxovanadium-copper-bisterpy-[O3P(CH2)nPO3]4- system, n= 1-6 (bisterpy = 2,2':4',4'':2'',2'''-quarterpyridyl-6',6''-di-2-pyridine).

    PubMed

    Ouellette, Wayne; Koo, Bon-Kweon; Burkholder, Eric; Golub, Vladimir; O'Connor, C J; Zubieta, Jon

    2004-05-21

    Hydrothermal reactions of Na3VO4, an appropriate Cu(II) source, bisterpy and an organodiphosphonate, H2O3P(CH2)nPO3H2 (n = 1-6) yielded a family of materials of the type [Cu2(bisterpy)]4+/VxOy(n-)/[O3P(CH2)nPO3]4-. This family of bimetallic oxides is characterized by an unusual structural diversity. The oxides [[Cu2(bisterpy)]V2O4[O3PCH2PO3H]2] (1), [[Cu2(bisterpy)(H2O)]VO2[O3P(CH2)3PO3][HO3P(CH2)3PO3H2

  14. Synthesis, structure, and properties of nickel complexes with nitrilotris(methylenephosphonic acid) [Ni(H{sub 2}O)3N(CH2PO{sub 3}H){sub 3}] and Na{sub 4}[Ni(H{sub 2}O)N(CH{sub 2}PO{sub 3}){sub 3}] ∙ 11H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@yandex.ru; Zakirova, R. M.

    2016-03-15

    Nitrilotris(methylenephosphonato)triaquanickel and tetrasodium nitrilotris(methylenephosphonato) aquanickelate undecahydrate were synthesized and characterized. The crystal of [Ni(H{sub 2}O){sub 3}N(CH{sub 2}PO{sub 3}H){sub 3}] is composed of linear coordination polymers and belongs to sp. gr. P2{sub 1}/c, Z = 4, a = 9.17120(10) Å, b = 16.05700(10) Å, c = 9.70890(10) Å, β = 115.830(2)°. The Ni atom is in an octahedral coordination formed by two oxygen atoms of one phosphonate ligand, one oxygen atom of another ligand molecule, and three water molecules in a meridional configuration. The crystal of Na{sub 4}[Ni(H{sub 2}O)N(CH{sub 2}PO{sub 3}){sub 3}] ∙ 11H{sub 2}O has an island dimeric chelate structuremore » and belongs to sp. gr. C2/c, Z = 8, a = 18.7152(2) Å, b = 12.05510(10) Å, c = 21.1266(2) Å, β = 104.4960(10)°. The Ni atom has a slightly distorted octahedral coordination involving one nitrogen atom and closes three five-membered N–C–P–O–Ni rings sharing the Ni–N bond.« less

  15. Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses.

    PubMed

    Kandeil, Ahmed; Moatasim, Yassmin; Gomaa, Mokhtar R; Shehata, Mahmoud M; El-Shesheny, Rabeh; Barakat, Ahmed; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-04

    Avian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells. To investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens. We observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding. Our findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1): Synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides

    NASA Astrophysics Data System (ADS)

    Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min

    2011-04-01

    Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF 5· nH 2O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A2TiF 5· nH 2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.

  17. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    NASA Astrophysics Data System (ADS)

    Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-04-01

    Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.

  18. Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells

    PubMed Central

    2011-01-01

    Background The infectivity of influenza A viruses can differ among the various primary cells and continuous cell lines used for such measurements. Over many years, we observed that all things equal, the cytopathic effects caused by influenza A subtype H1N1, H3N2, and H5N1 viruses were often detected earlier in a mink lung epithelial cell line (Mv1 Lu) than in MDCK cells. We asked whether virus yields as measured by the 50% tissue culture infectious dose and plaque forming titer also differed in MDCK and Mv1 Lu cells infected by the same influenza virus subtypes. Results The 50% tissue culture infectious dose and plaque forming titer of many influenza A subtype H1N1, H3N2, and H5N1 viruses was higher in Mv1 Lu than in MDCK cells. Conclusions The yields of influenza subtype H1N1, H3N2, and H5N1 viruses can be higher in Mv1 Lu cells than in MDCK cells. PMID:21314955

  19. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection.

    PubMed

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung

    2012-01-01

    Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.

  1. Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.

    PubMed

    Castro, Miguel

    2012-06-14

    Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.

  2. Temperature sensitivity on growth and/or replication of H1N1, H1N2 and H3N2 influenza A viruses isolated from pigs and birds in mammalian cells.

    PubMed

    Massin, Pascale; Kuntz-Simon, Gaëlle; Barbezange, Cyril; Deblanc, Céline; Oger, Aurélie; Marquet-Blouin, Estelle; Bougeard, Stéphanie; van der Werf, Sylvie; Jestin, Véronique

    2010-05-19

    Influenza A viruses have been isolated from a wide range of animal species, aquatic birds being the reservoir for their genetic diversity. Avian influenza viruses can be transmitted to humans, directly or indirectly through an intermediate host like pig. This study aimed to define in vitro conditions that could prove useful to evaluate the potential of influenza viruses to adapt to a different host. Growth of H1N1, H1N2 and H3N2 influenza viruses belonging to different lineages isolated from birds or pigs prior to 2005 was tested on MDCK or NPTr cell lines in the presence or absence of exogenous trypsin. Virus multiplication was compared at 33, 37 and 40 degrees C, the infection site temperatures in human, swine and avian hosts, respectively. Temperature sensitivity of PB2-, NP- and M-RNA replication was also tested by quantitative real-time PCR. Multiplication of avian viruses was cold-sensitive, whatever cell type. By contrast, temperature sensitivity of swine viruses was found to depend on the virus and the host cell: for an H1N1 swine isolate from 1982, multiplication was cold-sensitive on NPTr cells and undetectable at 40 degrees C. From genetic analyses, it appears that temperature sensitivity could involve other residues than PB2 residue 627 and could affect other steps of the replication cycle than replication. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Structure of Co(H2)n + Clusters, for n = 1-6

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Maitre, Philippe

    1995-01-01

    The geometries and H2 binding energies have been determined for Co(H2)n (sup +), for n = 1-6. The binding energies are in good agreement with experiment. The shape of the clusters is used to explain the pairwise decrease in the binding energies. The bonding in CoH2 (sup +) and Co(H2)2 (sup +) is very similar and is enhanced by sd (sigma) hybridization. The next two H2 molecules add to the side of Co(H2)2 (sup +). These two additional H2 molecules cannot benefit from sd (sigma) hybridization and are less strongly bound. The addition of the fifth and sixth H2 molecules eliminates sd (sigma) hybridization as a mechanism for reducing Co-H2 repulsion. This coupled with the smaller Co to H2 (sigma *) donation results in another decrease in the binding energies.

  4. Titanium isopropoxide complexes of a series of sterically demanding aryloxo based [N2O2]2- ligands as precatalysts for ethylene polymerization.

    PubMed

    Panda, Manas K; Kaur, Sukhdeep; Reddy, Annapureddy Rajasekhar; Shaikh, Mobin M; Butcher, Ray J; Gupta, Virendrakumar; Ghosh, Prasenjit

    2010-12-07

    Several titanium isopropoxide complexes [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-p-R(3)-C(6)H(4))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = H (1b); R(1) = R(2) = t-Bu, R(3) = H, (2b); R(1) = R(2) = Cl, R(3) = H, (3b), R(1) = t-Bu, R(2) = Me, R(3) = Cl (4b); R(1) = R(2) = t-Bu, R(3) = Cl, (5b); R(1) = R(2) = R(3) = Cl, (6b)] supported over sterically demanding aryloxy based [N(2)O(2)]H(2) ligands have been designed as precatalysts for the ethylene polymerization. Specifically, the 1b-6b complexes, when treated with methylaluminoxane (MAO) under 88 ± 0.5 psi of ethylene at 30 °C for 3 h, produced polyethylene polymers of high molecular weight (M(w) = ca. 7.2-8.3 × 10(5) g mol(-1)) having broad molecular weight distribution (PDI = ca. 13.1-14.6). The 1b-6b complexes were conveniently synthesized from the direct reaction of the [N(2)O(2)]H(2) ligands, 1a-6a, with Ti(O(i)Pr)(4) in 69-86% yield.

  5. Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.

  6. N2O emissions from a nitrogen-enriched river

    USGS Publications Warehouse

    McMahon, P.B.; Dennehy, K.F.

    1999-01-01

    Nitrous oxide (N2O) emissions from the South Platte River in Colorado were measured using closed chambers in the fall, winter, and summer of 1994- 1995. The South Platte River was enriched in inorganic N (9-800 ??M) derived from municipal wastewater effluent and groundwater return flows from irrigated agricultural fields. River water was as much as 2500% supersaturated with N2O, and median N2O emission rates from the river surface ranged from less than 90 to 32 600 ??g-N m-2 d-1. Seventy-nine percent of the variance in N2O emission rates was explained by concentrations of total inorganic N in river water and by water temperature. The estimated total annual N2O emissions from the South Platte River were 2 x 1013-6 x 1013 ??g-N yr-1. This amount of annual N2O emissions was similar to the estimated annual N2O emissions from all primary municipal wastewater treatment processes in the United States (1). Results from this study indicate that N-enriched rivers could be important anthropogenic sources of N2O to the atmosphere. However, N2O emission measurements from other N-enriched rivers are needed to better quantify this source.Nitrous oxide (N2O) emissions from the South Platte River in Colorado were measured using closed chambers in the fall, winter, and summer of 1994-1995. The South Platte River was enriched in inorganic N (9-800 ??M) derived from municipal wastewater effluent and groundwater return flows from irrigated agricultural fields. River water was as much as 2500% supersaturated with N2O, and median N2O emission rates from the river surface ranged from less than 90 to 32 600 ??g-N m-2 d-1. Seventy-nine percent of the variance in N2O emission rates was explained by concentrations of total inorganic N in river water and by water temperature. The estimated total annual N2O emissions from the South Platte River were 2??1013-6??1013 ??g-N yr-1. This amount of annual N2O emissions was similar to the estimated annual N2O emissions from all primary municipal

  7. Phase coexistence and exchange-bias effect in LiM n2O4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhang, X. K.; Yuan, J. J.; Xie, Y. M.; Yu, Y.; Kuang, F. G.; Yu, H. J.; Zhu, X. R.; Shen, H.

    2018-03-01

    In this paper, the magnetic properties of LiM n2O4 nanorods with an average diameter of ˜100 nm and length of ˜1 μ m are investigated. The temperature dependences of dc and ac susceptibility measurements show that LiM n2O4 nanorods experience multiple magnetic phase transitions upon cooling, i.e., paramagnetic (PM), antiferromagnetic (AFM), canted antiferromagnetic (CAFM), and cluster spin glass (SG). The coexistence between a long-range ordered AFM phase due to a M n4 +-M n4 + interaction and a cluster SG phase originating from frozen AFM clusters at low temperature in LiM n2O4 nanorods is elucidated. Field-cooled hysteresis loops (FC loops) and magnetic training effect (TE) measurements confirm the presence of an exchange-bias (EB) effect in LiM n2O4 nanorods below the Néel temperature (TN˜60 K ) . Furthermore, by analyzing the TE, we conclude that the observed EB effect originates completely from an exchange coupling interaction at the interface between the AFM and cluster SG states. A phenomenological model based on phase coexistence is proposed to interpret the origin of the EB effect below 60 K in the present compound. In turn, the appearance of the EB effect further supports the coexistence of AFM order along with a cluster SG state in LiM n2O4 nanorods.

  8. Co(II) and Ni(II) complexes based on anthraquinone-1,4,5,8-tetracarboxylic acid (H4AQTC): canted antiferromagnetism and slow magnetization relaxation in {[Co2(AQTC)(H2O)6]·6H2O}.

    PubMed

    Yan, Wei-Hong; Bao, Song-Song; Huang, Jian; Ren, Min; Sheng, Xiao-Li; Cai, Zhong-Sheng; Lu, Chang-Sheng; Meng, Qing-Jin; Zheng, Li-Min

    2013-06-21

    Three coordination polymers {[Co2(AQTC)(H2O)6]·6H2O}n (1), {[M2(AQTC)(bpym)(H2O)6]·6H2O}n (M = Co(2), Ni(3)) have been synthesized and structurally characterized, where H4AQTC is anthraquinone-1,4,5,8-tetracarboxylic acid and bpym is 2,2'-bipyrimidine. Complex 1 features a 3-D structure, where layers of Co2(AQTC) are cross-linked by Co-H2O chains. Complexes 2 and 3 are isostructural and display 1-D chain structures. The chains are connected through hydrogen-bonding interactions to form 3-D supramolecular structures. Magnetic properties of these complexes are investigated. Compound 1 shows canted antiferromagnetism and slow relaxation below 4.0 K. For complexes 2 and 3, dominant antiferromagnetic interactions are observed. The luminescent properties of the three complexes are investigated as well.

  9. Mannose-Binding Lectin Contributes to Deleterious Inflammatory Response in Pandemic H1N1 and Avian H9N2 Infection

    PubMed Central

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K. W.; Peiris, J. S. Malik; Takahashi, K.

    2012-01-01

    Background. Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. Methods. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Results. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Conclusions. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response. PMID:22080095

  10. Infrared spectroscopic and theoretical study of the HC2n+1O+ (n = 2-5) cations

    NASA Astrophysics Data System (ADS)

    Jin, Jiaye; Li, Wei; Liu, Yuhong; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    The carbon chain cations, HC2n+1O+ (n = 2-5), are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC2n+1O.CO]+ cation complexes in the 1600-3500 cm-1 region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra compared to the predications of theoretical calculations. All of the HC2n+1O+ (n = 2-5) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen, which have the closed-shell singlet ground states with polyyne-like carbon chain structures.

  11. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2OnH2O.

    PubMed

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 < x < 0.32) were prepared by careful control of an ion exchange process. The water content (0.23 > n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  12. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  13. Comparison of the frequencies of NH3, CO2, H2O, N2O, CO, and CH4 as infrared calibration standards

    NASA Technical Reports Server (NTRS)

    Brown, L. R.; Toth, R. A.

    1985-01-01

    The absolute accuracies of infrared calibration standards for the line positions have been investigated using a 0.0056-kayser-resolution (unapodized) Fourier-transform spectrum recorded from 550 to 5000 kayser. The spectrum has been obtained using a multicell arrangement containing the various molecular species. Detailed comoparisons reveal that standards for CO2, CH4, and N2O obtained from laser research and NH3 from Fourier-transform spectrometer research are consistent within the accuracies of the present data (+ or 0.0001 kayser). However, certain N2O, H2O, and CO values in the 1100-to 2300 kayser region are systematically high by 0.0001 to 0.0004 kayser. Correction factors for the H2O and CO standards are obtained to bring these into agreement with the laser values. In addition, corrected values for the 2nu-2 and nu-1 bands of N2O at 9 microns are reported.

  14. Analysis of SAW properties in ZnO/AlxGa1-xN/c-Al2O3 structures.

    PubMed

    Chen, Ying; Emanetoglu, Nuri William; Saraf, Gaurav; Wu, Pan; Lu, Yicheng; Parekh, Aniruddh; Merai, Vinod; Udovich, Eric; Lu, Dong; Lee, Dong S; Armour, Eric A; Pophristic, Milan

    2005-07-01

    Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.

  15. Infrared predissociation spectroscopy of M+ (C6H6)(1-4)(H2O)(1-2)Ar(0-1) cluster ions, M = Li, Na.

    PubMed

    Beck, Jordan P; Lisy, James M

    2011-05-05

    Infrared predissociation (IRPD) spectra of Li(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar(0-1) and Na(+)(C(6)H(6))(2-4)(H(2)O)(1-2)Ar(1) are presented along with ab initio calculations. The results indicate that the global minimum energy structure for Li(+)(C(6)H(6))(2)(H(2)O)(2) has each water forming a π-hydrogen bond with the same benzene molecule. This bonding motif is preserved in Li(+)(C(6)H(6))(3-4)(H(2)O)(2)Ar(0-1) with the additional benzene ligands binding to the available free OH groups. Argon tagging allows high-energy Li(+)(C(6)H(6))(2-4)(H(2)O)(2)Ar isomers containing water-water hydrogen bonds to be trapped and detected. The monohydrated, Li(+) containing clusters contain benzene-water interactions with varying strength as indicated by shifts in OH stretching frequencies. The IRPD spectra of M(+)(C(6)H(6))(1-4)(H(2)O)(1-2)Ar are very different for lithium-bearing versus sodium-bearing cluster ions emphasizing the important role of ion size in determining the most favorable balance of competing noncovalent interactions.

  16. Probing the electronic properties of ternary A n M3n-1B2n (n = 1: A = Ca, Sr; M = Rh, Ir and n = 3: A = Ca, Sr; M = Rh) phases: observation of superconductivity.

    PubMed

    Takeya, Hiroyuki; ElMassalami, Mohammed; Terrazos, Luis A; Rapp, Raul E; Capaz, Rodrigo B; Fujii, Hiroki; Takano, Yoshihiko; Doerr, Mathias; Granovsky, Sergey A

    2013-06-01

    We follow the evolution of the electronic properties of the titled homologous series when n as well as the atomic type of A and M are varied where for n = 1, A = Ca, Sr and M = Rh, Ir while for n = 3, A = Ca, Sr and M = Rh. The crystal structure of n = 1 members is known to be CaRh 2 B 2 -type ( Fddd ), while that of n = 3 is Ca 3 Rh 8 B 6 -type ( Fmmm ); the latter can be visualized as a stacking of structural fragments from AM 3 B 2 ( P 6/ mmm ) and AM 2 B 2 . The metallic properties of the n = 1 and 3 members are distinctly different: on the one hand, the n = 1 members are characterized by a linear coefficient of the electronic specific heat γ ≈ 3 mJ mol -1 K -2 , a Debye temperature θ D ≈ 300 K, a normal conductivity down to 2 K and a relatively strong linear magnetoresistivity for fields up to 150 kOe. The n = 3 family, on the other hand, exhibits γ ≈ 18 mJ mol -1 K -2 , θ D ≈ 330 K, a weak linear magnetoresistivity and an onset of superconductivity (for Ca 3 Rh 8 B 6 , T c = 4.0 K and H c2 = 14.5 kOe, while for Sr 3 Rh 8 B 6 , T c = 3.4 K and H c2 ≈ 4.0 kOe). These remarkable differences are consistent with the findings of the electronic band structures and density of state (DOS) calculations. In particular, satisfactory agreement between the measured and calculated γ was obtained. Furthermore, the Fermi level, E F , of Ca 3 Rh 8 B 6 lies at almost the top of a pronounced local DOS peak, while that of CaRh 2 B 2 lies at a local valley: this is the main reason behind the differences between the, e.g., superconducting properties. Finally, although all atoms contribute to the DOS at E F , the contribution of the Rh atoms is the strongest.

  17. Structural evolution of the [(CO2)n(H2O)]- cluster anions: quantifying the effect of hydration on the excess charge accommodation motif.

    PubMed

    Muraoka, Azusa; Inokuchi, Yoshiya; Hammer, Nathan I; Shin, Joong-Won; Johnson, Mark A; Nagata, Takashi

    2009-08-06

    The [(CO2)n(H2O)]- cluster anions are studied using infrared photodissociation (IPD) spectroscopy in the 2800-3800 cm(-1) range. The observed IPD spectra display a drastic change in the vibrational band features at n = 4, indicating a sharp discontinuity in the structural evolution of the monohydrated cluster anions. The n = 2 and 3 spectra are composed of a series of sharp bands around 3600 cm(-1), which are assignable to the stretching vibrations of H2O bound to C2O4- in a double ionic hydrogen-bonding (DIHB) configuration, as was previously discussed (J. Chem. Phys. 2005, 122, 094303). In the n > or = 4 spectrum, a pair of intense bands additionally appears at approximately 3300 cm(-1). With the aid of ab initio calculations at the MP2/6-31+G* level, the 3300 cm(-1) bands are assigned to the bending overtone and the hydrogen-bonded OH vibration of H2O bound to CO2- via a single O-H...O linkage. Thus, the structures of [(CO2)n(H2O)]- evolve with cluster size such that DIHB to C2O4- is favored in the smaller clusters with n = 2 and 3 whereas CO2- is preferentially stabilized via the formation of a single ionic hydrogen-bonding (SIHB) configuration in the larger clusters with n > or = 4.

  18. Optimization of photoelectrochemical performance in Pt-modified p-Cu2O/n-Cu2O nanocomposite

    NASA Astrophysics Data System (ADS)

    Wang, Yichen; Lou, Zirui; Niu, Wenzhe; Ye, Zhizhen; Zhu, Liping

    2018-04-01

    As it is expected to be one of the most promising materials for utilizing solar energy, Cu2O has attracted considerable attention with respect to the achievement of solar energy conversion. Until now, the photocurrent densities of all planar structure of the Cu2O photocathode have not even come close to the theoretical value of -14.7 mA cm-2 due to the incompatible light absorption and charge carrier diffusion lengths. Here, we have fabricated p-n Cu2O homojunction nanocomposite by multiple steps of electrochemical deposition processing with the optimization of deposition periods. The p-Cu2O/n-Cu2O nanocomposite fabricated by optimized pH (4.9) and deposition time (4 min) exhibited double the photocurrent density of that of the bare p-Cu2O photocathode. And the highest photocurrent density of nanostructured p-n Cu2O nanorod homojunction photocathode with a p-Cu2O blocking layer reached -10.0 mA cm-2 at 0 V versus the reversible hydrogen electrode under simulated AM 1.5G illumination (100 mW cm-2).

  19. The series Bi2Sr2Ca(n-1) Cu(n)O(2n+4) (1 less than or equal to n less than or equal to 5): Phase stability and superconducting properties

    NASA Technical Reports Server (NTRS)

    Deguire, Mark R.; Bansal, Narottam P.; Farrell, David E.; Finan, Valerie; Kim, Cheol J.; Hills, Bethanie J.; Allen, Christopher J.

    1989-01-01

    Phase relations at 850 and 870 C, melting transitions in air, oxygen, and helium were studied for Bi(2.1)Sr(1.9) CuO6 and for the Bi2Sr2Ca(n-1) Cu(n)O(2n+4) for n = 1, 2, 3, 4, 5, and infinity (CaCuO2). Up to 870 C, the n = 2 composition resides in the compatibility tetrahedron bounded by Bi(2+x)(Sr,Ca)(3-y) Cu2O8, (Sr,Ca)14 Cu24O41, Ca2CuO3, and a Bi-Sr-Ca-O phase. The n is greater than or equal to 3 compositions reside in the compatibility tetrahedron Bi(2+x)(Sr,Ca)(3-y) Cu2O8 - (Sr,Ca)14 Cu24O41 - Ca2CuO3 - CuO up to 850 C. However, Bi(2+x)Sr(4-y) Cu3O10 forms for n is greater than or equal to 3 after extended heating at 870 C. Bi(2+x)Sr(2-y) CuO6 and Bi(2+x)(Sr,Ca)(3-y) Cu2O8 melt in air at 914 C and 895 C respectively. During melting, all of the compositions studied lose 1 to 2 percent by weight of oxygen from the reduction of copper. Bi(2+x)Sr(2-y) CuO6, Bi(2+n)(Sr,Ca)(3-y) Cu2O8, and Bi(2+x)(Sr,Ca)(4-y) Cu3O10 exhibit crystallographic alignment in a magnetic field, with the c-axes orienting parallel to the field.

  20. Synthesis, characterization, electrochemical investigation and antioxidant activities of a new hybrid cyclohexaphosphate: Cu1.5Li(C2H10N2)P6O18·7H2O

    NASA Astrophysics Data System (ADS)

    Sleymi, Samira; Lahbib, Karima; Rahmouni, Nihed; Rzaigui, Mohamed; Besbes-Hentati, Salma; Abid, Sonia

    2017-09-01

    A new organic-inorganic hybrid transition metal phosphate, Cu1.5Li(C2H10N2)P6O18·7H2O, has been prepared and characterized by X-ray diffraction, spectroscopy (infrared, Raman, diffuse reflectance and UV-Vis) and thermal analysis (TG). In addition, its electrochemical behaviors, as well as its antioxidant and antibacterial activities, have been investigated. Its structure is built up by the alternate linkages between copper and phosphate polyhedra, forming puckered layers with intersecting 12-membered rings, in which the ethylenediammonium cations reside. This compound is the first framework structure constructed from cyclohexaphosphates and three distinct copper cations. Cyclic voltammetry study in an acetonitrile solution reveals the facile anodic oxidation of its organic part on a platinum disk and a progressive growing of a thin film, though the repetitive cycling of potential. The title compound was tested for its in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Ferrous chelating ability (FIC) and Ferric Reducing Power (FRP) methods. The antioxidant activity of Cu1.5Li(C2H10N2)P6O18·7H2O was analyzed simultaneously with its antibacterial capacity against Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium, Streptococcus agalactiae and Candida albicans. The tested compound showed significant antioxidant activities with low antibacterial properties.

  1. X-ray crystallographic and tungsten-183 nuclear magnetic resonance structural studies of the [M4(H2O)2(XW9O34) 2]10- heteropolyanions (M = COII or Zn, X = P or As)

    USGS Publications Warehouse

    Evans, H.T.; Tourne, C.M.; Tourne, G.F.; Weakley, T.J.R.

    1986-01-01

    The crystal structures of K10[Co4(H2O)2(PW9O 34)2]??22H2O (1) and isomorphous K10[Zn4(H2O)2(AsW9O 34)2]??23H2O (2) have been determined {Mo-K?? radiation, space group P21/n, Z = 2; (1) a = 15.794(2), b = 21.360(2), c = 12.312(1) A??, ?? = 91.96??, R = 0.084 for 3 242 observed reflections [I ??? 3??(I)]; (2) a = 15.842(4), b = 21.327(5), c = 12.308(4) A??, ?? = 92.42(4)??, R = 0.066 for 4 675 observed reflections [F ??? 3??(F)]}. The anions have crystallographic symmetry 1 and non-crystallographic symmetry very close to 2/m (C2h). Each consists of two [XW9O34]9- moieties [??-B isomers; X = P (1) or As (2)] linked via four CoIIO6 or ZnO6 groups. Two Co or Zn atoms each carry a water ligand. The 183W n.m.r. spectra of the anions [Zn4(H2O)2(XW9O34) 2]10- (X = P or As) confirm that the anions retain 2/m symmetry in aqueous solution. Homonuclear coupling constants between 183W atoms are 5.8-9.0 Hz for adjacent WO6 octahedra sharing edges, and 19.6-25.0 Hz for octahedra sharing corners.

  2. A Historical Perspective of Influenza A(H1N2) Virus

    PubMed Central

    McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals. PMID:24377419

  3. A historical perspective of influenza A(H1N2) virus.

    PubMed

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  4. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.H.; Lee, W.C.

    1996-05-01

    Acid gases such as CO{sub 2} and H{sub 2}S are frequently removed from natural gas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanol-amine solutions. The solubility and diffusivity of N{sub 2}O in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water) were measured at (30, 35, and 40)C and at atmospheric pressure. Five (diethanolamine + N-methyldiethanolamine + water) and four (diethanolamine + 2-amino-2-methyl-1-propanol + water) systems were studied. The total amine mass percent in all cases was 30. A solubility apparatus was used to measure the solubility of N{sub 2}Omore » in amine solutions. The diffusivity was measured by a wetted wall column absorber. The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water).« less

  5. Catena-poly[[bis(1H-benzotriazole-kappaN3)cobalt(II)]-di-mu-tricyanomethanido-kappa2N:N'] and catena-poly[[bis(3,5-dimethyl-1H-pyrazole-kappaN2)manganese(II)]-di-mu-tricyanomethanido-kappa2N:N'].

    PubMed

    Shao, Ze-Huai; Luo, Jun; Cai, Rui-Fang; Zhou, Xi-Geng; Weng, Lin-Hong; Chen, Zhen-Xia

    2004-06-01

    Two new one-dimensional coordination polymers, viz. the title compounds, [Co[C(CN)(3)](2)(C(6)H(5)N(3))(2)](n), (I), and [Mn[C(CN)(3)](2)(C(5)H(8)N(2))(2)](n), (II), have been synthesized and characterized by X-ray diffraction. Both complexes consist of linear chains with double 1,5-tricyanomethanide bridges between neighbouring divalent metal ions. The Co and Mn atoms are located on centres of inversion. In (I), the coordination environment of the Co(II) atom is that of an elongated octahedron. The Co(II) atom is coordinated in the equatorial plane by four nitrile N atoms of four bridging tricyanomethanide ions, with Co-N distances of 2.106 (2) and 2.110 (2) A, and in the apical positions by two N atoms from the benzotriazole ligands, with a Co-N distance of 2.149 (2) A. The [Co[C(CN)(3)](2)(C(6)H(5)N(3))(2)] units form infinite chains extending along the a axis. These chains are crosslinked via a hydrogen bond between the uncoordinated nitrile N atom of a tricyanomethanide anion and the H atom on the uncoordinated N atom of a benzotriazole ligand from an adjacent chain, thus forming a three-dimensional network structure. In (II), the Mn(II) atom also adopts a slightly distorted octahedral geometry, with four nitrile N atoms of tricyanomethanide ligands [Mn-N = 2.226 (2) and 2.227 (2) A] in equatorial positions and two N atoms of the monodentate 3,5-dimethylpyrazole ligands [Mn-N = 2.231 (2) A] in the axial sites. In (II), one-dimensional polymeric chains extending along the b axis are formed, with tricyanomethanide anions acting as bidentate bridging ligands. A hydrogen bond between the uncoordinated nitrile N atom of the tricyanomethanide ligand and the H atom on the uncoordinated N atom of a 3,5-dimethylpyrazole group from a neighbouring chain links the molecule into a two-dimensional layered structure.

  6. Hydration Energies and Structures of Alkaline Earth Metal Ions, M2+ (H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba

    PubMed Central

    Rodriguez-Cruz, Sandra E.; Jockusch, Rebecca A.

    2005-01-01

    The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M2+(H2O)n (M = Mg, Ca, and Sr for n = 5–7, and M = Ba for n = 4–7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (Eo) are determined. These reactions should have a negligible reverse activation barrier; therefore, Eo values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca2+, Sr2+, and Ba2+ are consistent with structures in which all the water molecules are located in the first solvation shell. PMID:16429612

  7. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    NASA Astrophysics Data System (ADS)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  8. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  9. UV and fluorescence spectral changes induced by neodymium binding of N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] and N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N' diacetic acid.

    PubMed

    Wang, Zhijun; Yang, Binsheng

    2006-11-01

    In 0.01 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes), pH 7.4 and room temperature, the binding of neodymium to N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] (EHPG), or N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N' diacetic acid (HBED) had been studied from 210 to 330 nm by means of difference UV spectra. Two peaks at 240 and 292 nm appear in difference UV spectra after neodymium binding to EHPG or HBED. The 1:1 stable complex can be confirmed from spectral titration curves. The molar extinction coefficient of Nd-EHPG and Nd-HBED complexes are Deltaepsilon(Nd-EHPG)=(12.93+/-0.21) x 10(3)cm(-1)M(-1), Deltaepsilon(Nd-HBED)=(14.45+/-0.51) x 10(5)cm(-1)M(-1) at 240 nm, respectively. Using EDTA as a competitor, the conditional equilibrium constants of the complexes are logK(Nd-EHPG)=11.89+/-0.09 and logK(Nd-HBED)=12.19+/-0.15, respectively. At the same conditions, fluorescence measurements show that neodymium binding to EHPG leads to a quenching of the fluorescence of EHPG at near 310 nm. However, there is no obvious fluorescence change of HBED at 318 nm with the binding of neodymium to HBED.

  10. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  11. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  12. Crystal structure of tri-aqua-(1,10-phen-anthroline-κ(2) N,N')(2,4,5-tri-fluoro-3-meth-oxy-benzoato-κO (1))cobalt(II) 2,4,5-tri-fluoro-3-meth-oxy-benzoate.

    PubMed

    Sun, Junshan

    2014-11-01

    The title salt, [Co(C8H4F3O3)(C12H8N2)(H2O)3](C8H4F3O3), was obtained under solvothermal conditions by the reaction of 2,4,5-tri-fluoro-3-meth-oxy-benzoic acid with CoCl2 in the presence of 1,10-phenanthroline (phen). The Co(II) ion is octa-hedrally coordinated by two N atoms [Co-N = 2.165 (2) and 2.129 (2) Å] from the phen ligand, by one carboxyl-ate O atom [Co-O = 2.107 (1) Å] and by three O atoms from water mol-ecules [Co-O = 2.093 (1), 2.102 (1) and 2.114 (1) Å]. The equatorial positions of the slightly distorted octa-hedron are occupied by the N atoms, the carboxyl-ate O and one water O atom. An intra- and inter-molecular O-H⋯O hydrogen-bonding network between the water-containing complex cation and the organic anion leads to the formation of ribbons parallel to [010].

  13. Octa­akis(4-amino­pyridine)-1κ4 N 1,2κ4 N 1-aqua-2κO-μ-carbonato-1:2κ3 O,O′:O′′-dinickel(II) dichloride penta­hydrate

    PubMed Central

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B.; Alfred Cecil Raj, S.

    2008-01-01

    In the title compound, [Ni2(CO3)(C5H6N2)8(H2O)]Cl2·5H2O, one of the the NiII ions is six-coordinated in a distorted octa­hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino­pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other NiII ion is also six-coordinated, by four other pyridine N atoms from four other amino­pyridine ligands and two carbonate O atoms to complete a distorted octa­hedral geometry. In the crystal structure, mol­ecules are linked into an infinite three-dimensional network by O—H⋯O, N—H⋯Cl, N—H⋯O, O—H⋯N, C—H⋯O, C—H⋯N and C/N—H⋯π inter­actions involving the pyridine rings. PMID:21580879

  14. Production of N2O/+/ by reaction of metastable O2/+/ ions with N2

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Rayermann, P.

    1975-01-01

    Photoionization mass spectrometry examination of the production of N2O(+) was undertaken to determine whether N2(+) or O2(+) ions are responsible for onset of N2O(+). It appears that the N2(+) ion does not contribute significantly to the production of N2O(+) in this experiment. Therefore, it is clear that excited O2(+) is responsible for the formation of N2O(+) near the appearance potential of these ions.

  15. A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) based on eight-fold coordinated metals: Synthesis, crystal structure from single-crystal and powder diffraction data and thermal behaviour

    NASA Astrophysics Data System (ADS)

    Gavilan, Elisabeth; Audebrand, Nathalie; Jeanneau, Erwann

    2007-11-01

    A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) has been prepared. The crystal structures have been solved from single-crystal and powder diffraction data. The isotypical compounds crystallise with space group P2 1/ c (No. 14). The structures consist of honeycomb layers formed by eight-fold coordinated metals, in a distorted square-based antiprismatic conformation, connected together via oxalates which act as bidentate ligands and also as monodentate in a less-common μ3-bridging mode. Sheets are built from two shifted honeycomb layers and linked to each other through a hydrogen network. The resulting frameworks of the series display a compact two-dimensional arrangement of polyhedra MO 8 and M'O 8. Weakly-bonded water molecules are located between and within the sheets. Comparisons with the 3D open-framework structures of related metal oxalates are made. The dehydration processes occur in three or four steps. The final products are MO, M'O 2 and PbZrO 3 resulting from the sublimation of PbO in air. The size of PbZrO 3 crystallites, which are on average isotropic, has been evaluated to be 1055 Å from line-broadening analysis.

  16. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    NASA Astrophysics Data System (ADS)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  17. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    PubMed

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  18. Selective Encaging of N2O in N2O-N2 Binary Gas Hydrates via Hydrate-Based Gas Separation.

    PubMed

    Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho

    2017-03-21

    The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N 2 O-N 2 ) binary gas hydrates formed from N 2 O/N 2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N 2 O-N 2 binary gas hydrates is identified as the structure I (sI) hydrate. Raman spectra for the N 2 O-N 2 binary gas hydrate formed from N 2 O/N 2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N 2 O molecules occupy both large and small cages of the sI hydrate. In contrast, there is a single Raman band of N 2 O molecules for the N 2 O-N 2 binary gas hydrate formed from the N 2 O/N 2 (20/80 mol %) gas mixture, indicating that N 2 O molecules are trapped in only large cages of the sI hydrate. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N 2 O-N 2 binary gas hydrates in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N 2 O molecules rather than N 2 molecules in the hydrate cages, leading to a possible process for separating N 2 O from gas mixtures via hydrate formation. The phase equilibrium conditions, pseudo-pressure-composition (P-x) diagram, and gas storage capacity of N 2 O-N 2 binary gas hydrates are discussed in detail.

  19. Visible spectrum photofragmentation of O{sub 3}{sup −}(H{sub 2}O){sub n}, n ≤ 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, Julia H.; Lineberger, W. Carl, E-mail: wcl@jila.colorado.edu

    2014-10-21

    Photofragmentation of ozonide solvated in water clusters, O{sub 3}{sup −}(H{sub 2}O){sub n}, n ≤ 16, has been studied as a function of photon energy as well as the degree of solvation. Using mass selection, the effect of the presence of the solvent molecule on the O{sub 3}{sup −} photodissociation process is assessed one solvent molecule at a time. The O{sub 3}{sup −} acts as a visible light chromophore within the water cluster, namely the O{sub 3}{sup −}(H{sub 2}O) total photodissociation cross-section exhibits generally the same photon energy dependence as isolated O{sub 3}{sup −} throughout the visible wavelength range studied (430–620more » nm). With the addition of a single solvent molecule, new photodissociation pathways are opened, including the production of recombined O{sub 3}{sup −}. As the degree of solvation of the parent anion increases, recombination to O{sub 3}{sup −}-based products accounts for close to 40% of photoproducts by n = 16. The remainder of the photoproducts exist as O{sup −}-based; no O{sub 2}{sup −}-based products are observed. Upper bounds on the O{sub 3}{sup −} solvation energy (530 meV) and the O{sup −}-OO bond dissociation energy in the cluster (1.06 eV) are derived.« less

  20. (Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.

    PubMed

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-04-01

    In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.

  1. Novel reassortant of swine influenza H1N2 virus in Germany.

    PubMed

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  2. Synthesis, structure and reactivity of rare-earth metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2.

    PubMed

    Yang, Jingying; Xie, Zuowei

    2015-04-14

    Rare-earth metallacarborane alkyls can be stabilized by the incorporation of a functional sidearm into both π and σ ligands. Reaction of [Me3NH][7,8-O(CH2)2-7,8-C2B9H10] with one equiv. of Ln(CH2C6H4-o-NMe2)3 gave metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2 (Ln = Y (), Gd (), Er ()) via alkane elimination. They represent the first examples of rare-earth metallacarborane alkyls. Treatment of with RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = Cy, (i)Pr) or 2-benzoylpyridine afforded the corresponding mono-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[η(2)-(RN)2C(CH2C6H4-o-NMe2)](DME) (R = Cy (), (i)Pr ()) or [η(1):η(5)-O(CH2)2C2B9H9]Y[C5H4NC(Ph)(CH2C6H4-o-NMe2)O](THF)2 (), respectively. Complex also reacted with ArNCO or ArNC (Ar = 2,6-diisopropylphenyl, 2,6-dimethylphenyl) to give di-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[OC([double bond, length as m-dash]NC6H3Me2)N(C6H3Me2)C(CH2C6H4-o-NMe2)O](THF)2 () or [η(1):η(5)-O(CH2)2C2B9H9]Y[C([double bond, length as m-dash]NC6H3(i)Pr2)C([double bond, length as m-dash]NC6H3(i)Pr2)(CH2C6H4-o-NMe2)](DME) (). These results showed that the reactivity pattern of the Ln-C σ bond in rare-earth metallacarborane alkyls was dependent on the nature of the unsaturated organic molecules. New complexes were characterized by various spectroscopic techniques and elemental analysis. Some were further confirmed by single-crystal X-ray analysis.

  3. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    NASA Astrophysics Data System (ADS)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  4. Electron-temperature dependence of the recombination of H3O+(H2O)n ions with electrons

    NASA Technical Reports Server (NTRS)

    Johnsen, R.

    1993-01-01

    The T(e) dependence of the recombination of H3O+(H2O)n cluster-ions with electrons has been measured in an afterglow experiment in which the electrons were heated by a radio-frequency electric field. The recombination coefficients were found to vary with T(e) as about T(e) exp -1/2 in better agreement with theoretical expectations than earlier results of microwave-afterglow measurements.

  5. Crystal and molecular structure of Sr{sub 2}(Edta) . 5H{sub 2}O, Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O, and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O strontium ethylenediaminetetraacetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Poznyak, A. L.; Sergienko, V. S.

    2009-03-15

    Three Sr{sup 2+} compounds with the Edta{sup 4-} and H{sub 2}Edta{sup 2-} ligands-Sr{sub 2}(Edta) . 5H{sub 2}O (I), Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O (II), and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O (III)-are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta{sup 4-} ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with threemore » O atoms of the Edta{sup 4-} ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)-2.656(3) and 2.527(3)-2.683(2) A, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) A long. In II and III, the H{sub 2}Edta{sup 2-} anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H{sub 2}Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H{sub 2}Edta{sup 2-} ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)-2.732(2) and 2.482(2)-2.746(3) A, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) A, respectively. In II, all the structural elements are linked into wavy layers. The O-H-O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr{sup 2+} cations and H{sub 2}Edta{sup -} anions form a three-dimensional [Sr{sub 2}(H{sub 2}Edta)(H{sub 2}O){sub 3}]{sub n}{sup 2n+} framework. The Cl{sup -} anions are fixed in channels of the framework by hydrogen bonds with four water

  6. Influence of Ar/O2/H2O Feed Gas and N2/O2/H2O Environment on the Interaction of Time Modulated MHz Atmospheric Pressure Plasma Jet (APPJ) with Model Polymers

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb; Luan, Pingshan; Knoll, Andrew; Kondeti, Santosh; Bruggeman, Peter

    2016-09-01

    An Ar/O2/H2O fed time modulated MHz atmospheric pressure plasma jet (APPJ) in a sealed chamber was used to study plasma interaction with model polymers (polystyrene, poly-methyl methacrylate, etc.). The amount of H2O in the feed gas and/or present in the N2, O2, or N2/O2 environment was controlled. Short lived species such as O atoms and OH radicals play a crucial role in polymer etching and surface modifications (obtained from X-ray photoelectron spectroscopy of treated polymers without additional atmospheric exposure). Polymer etching depth for Ar/air fed APPJ mirrors the decay of gas phase O atoms with distance from the APPJ nozzle in air and is consistent with the estimated O atom flux at the polymer surface. Furthermore, whereas separate O2 or H2O admixture to Ar enhances polymer etching, simultaneous addition of O2 and H2O to Ar quenches polymer etching. This can be explained by the mutual quenching of O with OH, H and HO2 in the gas phase. Results where O2 and/or H2O in the environment were varied are consistent with these mechanisms. All results will be compared with measured and simulated species densities reported in the literature. We gratefully acknowledge funding from US Department of Energy (DE-SC0001939) and National Science Foundation (PHY-1415353).

  7. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures.

    PubMed

    Liu, Shurong; Berns, Anne E; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH 2 OH) to nitrous oxide (N 2 O) is a possible mechanism of N 2 O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO 2 ) and organic matter (OM) content of soil as well as soil pH are important control variables of N 2 O formation in the soil. But until now, their combined effect on abiotic N 2 O formation from NH 2 OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO 2 and OM, respectively, and quantified the interactive effects of the three variables on the NH 2 OH-to-N 2 O conversion ratio (R NH2OH-to-N2O ). Furthermore, the effect of OM quality on R NH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO 2 and OM on R NH2OH-to-N2O . In general, increasing MnO 2 and decreasing pH increased R NH2OH-to-N2O , while increasing OM content was associated with a decrease in R NH2OH-to-N2O . Organic matter quality also affected R NH2OH-to-N2O . However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  8. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Shurong; Berns, Anne E.; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH2OH) to nitrous oxide (N2O) is a possible mechanism of N2O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO2) and organic matter (OM) content of soil as well as soil pH are important control variables of N2O formation in the soil. But until now, their combined effect on abiotic N2O formation from NH2OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO2 and OM, respectively, and quantified the interactive effects of the three variables on the NH2OH-to-N2O conversion ratio (RNH2OH-to-N2O). Furthermore, the effect of OM quality on RNH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO2 and OM on RNH2OH-to-N2O. In general, increasing MnO2 and decreasing pH increased RNH2OH-to-N2O, while increasing OM content was associated with a decrease in RNH2OH-to-N2O. Organic matter quality also affected RNH2OH-to-N2O. However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  9. Conversion of nitrogen oxides in N2:O2:CO2 and N2:O2:CO2:NO2 mixtures subjected to a dc corona discharge

    NASA Astrophysics Data System (ADS)

    Dors, Mirosław; Mizeraczyk, Jerzy

    1996-10-01

    This paper concerns the influence of a direct current (dc) corona discharge on production and reduction of NO, NO2 and N2O in N2:O2:CO2 and N2:O2:CO2:NO2 mixtures. The corona discharge was generated in a needle-to-plate reactor. The positively polarized electrode consisted of 7 needles. The grounded electrode was a stainless steel plate. The gas flow rate through the reactor was varied from 28 to 110 cm3/s. The time-averaged discharge current ranged from 0 to 6 mA. It was found that in the N2:O2:CO2 mixture the corona discharge produced NO, NO2 and N2O. In the N2:O2:CO2:NO2 mixture the reduction of NO2 was between 6-56%, depending on the concentration of O2, gas flow rate and corona discharge current. The NO2 reduction was accompanied by production of NO and N2O. The results show that efficient reduction of nitrogen oxides by a corona discharge cannot be expected in the mixtures containing N2 and O2 if reducing additives are not employed.

  10. Structure of (Ga2O3)2(ZnO)13 and a unified description of the homologous series (Ga2O3)2(ZnO)(2n + 1).

    PubMed

    Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao

    2012-06-01

    The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.

  11. Simple radiosensitizing of hypoxic tumor tissues by N2O/Br(-) mixture.

    PubMed

    Billik, P

    2015-07-01

    The radiosensitization model of hypoxic tumor tissues based on the N2O/Br(-) mixture is described. The well-documented radiolysis of water in the presence of N2O and Br(-) ions at a low concentration supports this model. An aqueous solution saturated with N2O gas during the radiolysis generates OH radicals in a large extent. In N2O/Br- media at pH<9, Br2 is formed. Br2 hydrolyzes in an aqueous solution to form a very reactive hypobromous (HOBr) acid. Such process is described by the following chemical reaction: H2O + Br(-) + N2O + ionizing radiation (IR) --> HOBr + OH(-). In vivo formed HOBr as a long-lived product with a high biological activity induces the hypoxic tumor cell damage via many unique mechanisms. A local application or inhalation of an N2O-O2 mixture before or during the radiotherapy to enhance the saturation of tissues with N2O is a key prerequisite. Since the extracellular concentration of Br(-) ions is very low (0.02-0.05 mM), an oral or local application of NaBr should be used to shift the extracellular concentration of Br(-) ions to the mM region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V 2 O 5 · n H 2 O Xerogel Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sa, Niya; Kinnibrugh, Tiffany L.; Wang, Hao

    Functional multivalent intercalation cathodes represent one of the largest hurdles in the development of Mg batteries. While there are many reports of Mg cathodes, many times the evidence of intercalation chemistry is only circumstantial. In this work, direct evidence of Mg intercalation into a bilayer structure of V2OnH2O xerogel is confirmed, and the nature of the Mg intercalated species is reported. The interlayer spacing of V2OnH2O contracts upon Mg intercalation and expands for Mg deintercalation due to the strong electrostatic interaction between the divalent cation and the cathode. A combination of NMR, pair distribution function (PDF) analysis, and X-ray absorptionmore » near edge spectroscopy (XANES) confirmed reversible Mg insertion into the V2OnH2O material, and structural evolution of Mg intercalation leads to the formation of multiple new phases. Structures of V2OnH2O with Mg intercalation were further supported by the first principle simulations. A solvent cointercalated Mg in V2OnH2O is observed for the first time, and the 25Mg magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was used to elucidate the structure obtained upon electrochemical cycling. Specifically, existence of a well-defined Mg–O environment is revealed for the Mg intercalated structures. Information reported here reveals the fundamental Mg ion intercalation mechanism in a bilayer structure of V2OnH2O material and provides insightful design metrics for future Mg cathodes.« less

  13. Continuous multi-plot measurements of CO2, CH4, N2O and H2O in a managed boreal forest - The importance of accounting for all greenhouse gases

    NASA Astrophysics Data System (ADS)

    Vestin, P.; Mölder, M.; Sundqvist, E.; Båth, A.; Lehner, I.; Weslien, P.; Klemedtsson, L.; Lindroth, A.

    2015-12-01

    In order to assess the effects of different management practices on the exchange of greenhouse gases (GHG), it is desirable to perform repeated and parallel measurements on both experimental and control plots. Here we demonstrate how a system system combining eddy covariance and gradient techniques can be used to perform this assessment in a managed forest ecosystem.The net effects of clear-cutting and stump harvesting on GHG fluxes were studied at the ICOS site Norunda, Sweden. Micrometeorological measurements (i.e., flux-gradient measurements in 3 m tall towers) allowed for quantification of CO2, CH4 and H2O fluxes (from May 2010) as well as N2O and H2O fluxes (from June 2011) at two stump harvested plots and two control plots. There was one wetter and one drier plot of each treatment. Air was continuously sampled at two heights in the towers and gas concentrations were analyzed for CH4, CO2, H2O (LGR DLT-100, Los Gatos Research) and N2O, H2O (QCL Mini Monitor, Aerodyne Research). Friction velocities and sensible heat fluxes were measured by sonic anemometers (Gill Windmaster, Gill Instruments Ltd). Automatic chamber measurements (CO2, CH4, H2O) were carried out in the adjacent forest stand and at the clear-cut during 2010.Average CO2 emissions for the first year ranged between 14.4-20.2 ton CO2 ha-1 yr-1. The clear-cut became waterlogged after harvest and a comparison of flux-gradient data and chamber data (from the adjacent forest stand) indicated a switch from a weak CH4 sink to a significant source at all plots. The CH4 emissions ranged between 0.8-4.5 ton CO2-eq. ha-1 yr-1. N2O emissions ranged between 0.4-2.6 ton CO2-eq. ha-1 yr-1. Enhanced N2O emission on the drier stump harvested plot was the only clear treatment effect on GHG fluxes that was observed. Mean CH4 and N2O emissions for the first year of measurements amounted up to 29% and 20% of the mean annual CO2 emissions, respectively. This highlights the importance of including all GHGs

  14. Site-specific 15N isotopic signatures of abiotically produced N2O

    NASA Astrophysics Data System (ADS)

    Heil, Jannis; Wolf, Benjamin; Brüggemann, Nicolas; Emmenegger, Lukas; Tuzson, Béla; Vereecken, Harry; Mohn, Joachim

    2014-08-01

    Efficient nitrous oxide (N2O) mitigation strategies require the identification of the main source and sink processes and their contribution to total soil N2O production. Several abiotic reactions of nitrification intermediates leading to N2O production are known, but their contribution to total N2O production in soils is uncertain. As the site preference (SP) of 15N in N2O is a promising tool to give more insight into N2O production processes, we investigated the SP of N2O produced by different abiotic reactions in a laboratory study. All reactions involved the nitrification intermediate hydroxylamine (NH2OH) in combination with nitrite (NO2-), Fe3+, Fe2+ and Cu2+, reactants commonly or potentially found in soils, at different concentrations and pH values. N2O production and its four main isotopic species (14N14N16O, 15N14N16O, 14N15N16O, and 14N14N18O) were quantified simultaneously and online at high temporal resolution using quantum cascade laser absorption spectroscopy. Thereby, our study presents the first continuous analysis of δ18O in N2O. The experiments revealed the possibility of purely abiotic reactions over a wide range of acidity (pH 3-8) by different mechanisms. All studied abiotic pathways produced N2O with a characteristic SP in the range of 34-35‰, unaffected by process conditions and remaining constant over the course of the experiments. These findings reflect the benefit of continuous N2O isotopic analysis by laser spectroscopy, contribute new information to the challenging source partitioning of N2O emissions from soils, and emphasize the potentially significant role of coupled biotic-abiotic reactions in soils.

  15. Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.

    PubMed

    Gagnon, Alain; Acosta, Enrique; Hallman, Stacey; Bourbeau, Robert; Dillon, Lisa Y; Ouellette, Nadine; Earn, David J D; Herring, D Ann; Inwood, Kris; Madrenas, Joaquin; Miller, Matthew S

    2018-01-16

    Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics. IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest

  16. Aqua­(1,10-phenanthroline-κ2 N,N′)bis­(trimethyl­acetato)-κ2 O,O′;κO-cobalt(II)

    PubMed Central

    Chen, Xiao-Dan; Chen, Hong-Xian; Li, Zhong-Shu; Zhang, Huai-Hong; Sun, Bai-Wang

    2009-01-01

    In the title compound, [Co(C5H9O2)2(C12H8N2)(H2O)], the CoII atom is coordinated in a distorted octahedral environment by three carboxyl O atoms of two trimethyl­acetate ligands, one aqua O atom and two N atoms from 1,10-phen­anthroline. The crystal structure is stabilized by O—H⋯O hydrogen bonds and π–π stacking inter­actions [inter­planar distance between inter­digitating 1,10-phenanthroline ligands = 3.378 (2) Å]. PMID:21583436

  17. Full genomic analysis of an influenza A (H1N2) virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1)pdm09 and A/Brisbane/10/2007-like H3N2 strains.

    PubMed

    Mukherjee, Tapasi Roy; Agrawal, Anurodh S; Chakrabarti, Sekhar; Chawla-Sarkar, Mamta

    2012-10-11

    During the pandemic [Influenza A(H1N1)pdm09] period in 2009-2010, an influenza A (Inf-A) virus with H1N2 subtype (designated as A/Eastern India/N-1289/2009) was detected from a 25 years old male from Mizoram (North-eastern India). To characterize full genome of the H1N2 influenza virus. For initial detection of Influenza viruses, amplification of matrix protein (M) gene of Inf-A and B viruses was carried out by real time RT-PCR. Influenza A positive viruses are then further subtyped with HA and NA gene specific primers. Sequencing and the phylogenetic analysis was performed for the H1N2 strain to understand its origin. The outcome of this full genome study revealed a unique reassortment event where the N-1289 virus acquired it's HA gene from a 2009 pandemic H1N1 virus with swine origin and the other genes from H3N2-like viruses of human origin. This study provides information on possibility of occurrence of reassortment events during influenza season when infectivity is high and two different subtypes of Inf-A viruses co-circulate in same geographical location.

  18. Background CH4 and N2O fluxes in low-input short rotation coppice

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Zenone, Terenzio; Ceulemans, Reinhart

    2016-04-01

    Extensively managed short rotation coppice systems are characterized by low fluxes of CH4 and N2O. However due to the large global warming potential of these trace gases (GWP100: CH4: 34, N2O: 298), such background fluxes can still significantly contribute to offsetting the CO2 uptake of short rotation coppice systems. Recent technological advances in fast-response CH4 and N2O analysers have improved our capability to capture these background fluxes, but their quantification still remains a challenge. As an example, we present here CH4 and N2O fluxes from a short-rotation bioenergy plantation in Belgium. Poplars have been planted in a double-row system on a loamy sand in 2010 and coppiced in the beginning of 2012 and 2014 (two-year rotation system). In 2013 (June - November) and 2014 (April - August), the plantation's CH4 and N2O fluxes were measured in parallel with an eddy covariance tower (EC) and an automated chamber system (AC). The EC had a detection limit of 13.68 and 0.76 μmol m-2 h-1 for CH4 and N2O, respectively. The median detection limit of the AC was 0.38 and 0.08 μmol m-2 h-1 for CH4 and N2O, respectively. The EC picked up a few high CH4 emission events with daily averages >100 μmol m-2 h-1, but a large proportion of the measured fluxes were within the EC's detection limit. The same was true for the EC-derived N2O fluxes where the daily average flux was often close to the detection limit. Sporadically, some negative (uptake) fluxes of N2O were observed. On the basis of the EC data, no clear link was found between CH4 and N2O fluxes and environmental variables. The problem with fluxes within the EC detection limit is that a significant amount of the values can show the opposite sign, thus "mirroring" the true flux. Subsequently, environmental controls of background trace gas fluxes might be disguised in the analysis. As a next step, it will be tested if potential environmental drivers of background CH4 and N2O fluxes at the plantation can be

  19. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Federico J.; INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba; Brice, Joseph T.

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing amore » 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.« less

  20. Broad N2H+ Emission toward the Protostellar Shock L1157-B1

    NASA Astrophysics Data System (ADS)

    Codella, C.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Benedettini, M.; Busquet, G.; Caselli, P.; Fontani, F.; Gómez-Ruiz, A.; Podio, L.; Vasta, M.

    2013-10-01

    We present the first detection of N2H+ toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ~0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originated from the dense (>=105 cm-3) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N2H+ column density of a few 1012 cm-2 corresponding to an abundance of (2-8) × 10-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 104 yr, i.e., for more than the shock kinematical age (sime2000 yr). Modeling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 104 cm-3, and then further compressed and accelerated by the shock.

  1. [Zn(phen)(O,N,O)(H2O)] and [Zn(phen)(O,N)(H2O)] with O,N,O is 2,6-dipicolinate and N,O is L-threoninate: synthesis, characterization, and biomedical properties.

    PubMed

    Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee

    2012-10-01

    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.

  2. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    NASA Astrophysics Data System (ADS)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    . Investigations were carried out over a study period of one year following grassland renewal and grassland conversion to maize cropping on two different soil sites (Plaggic Anthrosol and Histic Gleysol) near Oldenburg, Lower Saxony Germany. Our observations indicate heterotrophic bacterial denitrification and/or nitrifier denitrification as the main source of N2O production, with a significant contribution of N2O reduction to N2 rather than nitrification (i.e. hydroxylamine oxidation) and fungal denitrification throughout the entire study period. A tendency to a higher contribution of N2O reduction to N2 was observed for the often water-saturated Histic Gleysol, while lower N2O reduction was found for the Plaggic Anthrosol. For two samples, we attempt to validate our results from the isotopocule mapping approach with a parallel 15N labelling study at the field scale (Buchen et al., 2016), as conditions of soil moisture, nitrate availability and N2O flux were similar. References: Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., Well, R., 2016. Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biology and Biochemistry 101, 6-19.

  3. A Sequential Method to Prepare Polymorphs and Solvatomorphs of [Fe(1,3-bpp)2 ](ClO4 )2nH2 O (n=0, 1, 2) with Varying Spin-Crossover Behaviour.

    PubMed

    Bartual-Murgui, Carlos; Codina, Carlota; Roubeau, Olivier; Aromí, Guillem

    2016-08-26

    Two polymorphs of the spin crossover (SCO) compound [Fe(1,3-bpp)2 ](ClO4 )2 (1 and 2; 1,3-bpp=2-(pyrazol-1-yl)-6-(pyrazol-3-yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid-state procedure, by sequentially removing lattice H2 O molecules from the solvatomorph [Fe(1,3-bpp)2 ](ClO4 )22H2 O (22H2 O), using single-crystal-to-single-crystal (SCSC) transformations. Hydrate 22H2 O is obtained through the same reaction as 1, now with 2.5 % of water added. Compounds 2 and 22H2 O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3-bpp)2 ](ClO4 )2H2 O (2H2 O), also following SCSC processes. The four derivatives have been characterised by single-crystal X-ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X-ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑ =279/316 K and T1/2↓ =276/314 K (near 40 K of shift) and different cooperativity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Determination of the astrophysical 12N(p,γ)13O reaction rate from the 2H(12N,13O)n reaction and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Guo, B.; Su, J.; Li, Z. H.; Wang, Y. B.; Yan, S. Q.; Li, Y. J.; Shu, N. C.; Han, Y. L.; Bai, X. X.; Chen, Y. S.; Liu, W. P.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Hayakawa, S.; Kahl, D.; Kubono, S.; He, J. J.; Hu, J.; Xu, S. W.; Iwasa, N.; Kume, N.; Li, Z. H.

    2013-01-01

    The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The 12N(p,γ)13O reaction is an important branching point in the rap processes, which are believed to be alternative paths to the slow 3α process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the 2H(12N, 13O)n proton transfer reaction at Ec.m.=8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of 13Og.s. → 12N+p was extracted to be 3.92±1.47 fm-1 from the measured angular distribution and utilized to compute the direct component in the 12N(p,γ)13O reaction. The direct astrophysical S factor at zero energy was then found to be 0.39±0.15 keV b. By considering the direct capture into the ground state of 13O, the resonant capture via the first excited state of 13O and their interference, we determined the total astrophysical S factors and rates of the 12N(p,γ)13O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that 12N(p,γ)13O will only compete successfully with the β+ decay of 12N at higher (˜2 orders of magnitude) densities than initially predicted.

  5. Structural and electronic properties of U{sub n}O{sub m} (n=1-3,m=1-3n) clusters: A theoretical study using screened hybrid density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yu; Liu, Haitao; Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn

    The structural and electronic properties of small uranium oxide clusters U{sub n}O{sub m} (n=1-3, m=1-3n) are systematically studied within the screened hybrid density functional theory. It is found that the formation of U–O–U bondings and isolated U–O bonds are energetically more stable than U–U bondings. As a result, no uranium cores are observed. Through fragmentation studies, we find that the U{sub n}O{sub m} clusters with the m/n ratio between 2 and 2.5 are very stable, hinting that UO{sub 2+x} hyperoxides are energetically stable. Electronically, we find that the O-2p states always distribute in the deep energy range, and the U-5fmore » states always distribute at the two sides of the Fermi level. The U-6d states mainly hybridize with the U-5f states in U-rich clusters, while hybridizing with O-2p states in O-rich clusters. Our work is the first one on the screened hybrid density functional theory level studying the atomic and electronic properties of the actinide oxide clusters.« less

  6. Crystal structure of (2,4-di-tert-butyl-6-{[(6,6'-dimethyl-2'-oxido-1,1'-biphenyl-2-yl)imino]methyl}phenolato-κ(3) O,N,O')bis(propan-2-olato-κO)titanium(IV).

    PubMed

    Chen, Liang; Wang, Huiran; Deng, Xuebin

    2014-09-01

    In the mononuclear Ti(IV) title complex, [Ti(C29H33NO2)(C3H6O)2], the TiNO4 coordination polyhedron comprises an N-atom and two O-atom donors from the dianionic Schiff base ligand and two O-atom donors from monodentate isopropoxide anions. The stereochemistry is distorted trigonal-bipyramidal with the N-donor in an elongated axial site [Ti-N = 2.2540 (17) Å], the O-donors having normal Ti-O bond lengths [1.7937 (14) Å (axial)-1.8690 (14) Å]. In the crystal, C-H⋯π inter-actions link mol-ecules into centrosymmetric dimers.

  7. First Observation of Photoinduced Magnetization for the Cyano-Bridged 3d 4f Heterobimetallic Assembly Nd(DMF)4(H2O)3(μ-CN)Fe(CN)5ṡH2O (DMF=N,N-Dimethylformamide)

    NASA Astrophysics Data System (ADS)

    Li, Guangming; Akitsu, Takashiro; Sato, Osamu; Einaga, Yasuaki

    2004-12-01

    Photoinduced magnetization of the cyano-bridged 3d 4f hetero-bimetallic assembly Nd (DMF)4(H2O)3(μ-CN)Fe(CN)5ṡH2O (1) (DMF=N,N-dimethylformamide) is described in this paper. The χM T values are enhanced by about 45% after UV light illumination in the temperature range of 5 50 K. We propose that UV light illumination induces a structural distortion in 1. This small structural change is propagated by molecular interactions in the inorganic network. Furthermore, the cooperativity resulting from the molecular interaction functions to increase the activation energy of the relaxation processes, which makes observation of the photoexcited state possible. The flexible network structure through the hydrogen bonds in 1 plays an essential role for the photoinduced phenomenon. This finding may open up a new domain for developing molecule-based magnetic materials.

  8. Structural and spectral analyses of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide)

    NASA Astrophysics Data System (ADS)

    Yıldırım, Sema Öztürk; Büyükmumcu, Zeki; Pekdur, Özlem Savaş; Butcher, Ray J.; Doǧan, Şengül Dilem

    2018-02-01

    In this study we report structure determination of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide). 2,2'-Dithiobis(benzamide) derivatives have been reported to possess important biological properties such as antibacterial, antifungal activities and inhibition of blood platelet aggregation and redeterrmined at 100(2)K from the data published by Raftery, Lallbeeharry, Bhowon, Laulloo & Joulea [Acta Cryst. 2009, E65, o16]. 2,2'-Dithiobis(N-butyl-benzamide) has been reported to be useful as an antiseptic for cosmetics. The structural properties of the compound have been characterized by using 1H NMR and the structure were determined by single-crystal X-ray diffraction. Molecular structure crystallizes in triclinic form, space group with a = 9.6396(7) Å, b = 9.9115(7) Å, c = 12.0026(8) Å, α = 109.743(6)°, β = 103.653(6)°, γ = 104.633(6)° and V = 977.15(13) Å3. In the solid state of the molecular structure N-H…S, N-H…O and C-H…O, type interactions provide for stabilization. The geometries of the title compound have been optimized using density functional theory (DFT) method. The calculated values were found to be in agreement with the experimental data.

  9. Synthesis, structure, and catalytic performance in cyclooctene epoxidation of a molybdenum oxide/bipyridine hybrid material: {[MoO3(bipy)][MoO3(H2O)]}n.

    PubMed

    Abrantes, Marta; Amarante, Tatiana R; Antunes, Margarida M; Gago, Sandra; Paz, Filipe A Almeida; Margiolaki, Irene; Rodrigues, Alírio E; Pillinger, Martyn; Valente, Anabela A; Gonçalves, Isabel S

    2010-08-02

    The reaction of [MoO(2)Cl(2)(bipy)] (1) (bipy = 2,2'-bipyridine) with water in a Teflon-lined stainless steel autoclave (100 degrees C, 19 h), in an open reflux system with oil bath heating (12 h) or in a microwave synthesis system (120 degrees C, 4 h), gave the molybdenum oxide/bipyridine hybrid material {[MoO(3)(bipy)][MoO(3)(H(2)O)]}(n) (2) as a microcrystalline powder in yields of 72-92%. The crystal structure of 2 determined from synchrotron X-ray powder diffraction data is composed of two distinct neutral one-dimensional polymers: an organic-inorganic polymer, [MoO(3)(bipy)](n), and a purely inorganic chain, [MoO(3)(H(2)O)](n), which are interconnected by O-H...O hydrogen bonding interactions. Compound 2 is a moderately active, stable, and selective catalyst for the epoxidation of cis-cyclooctene at 55 degrees C with tert-butylhydroperoxide (tBuOOH, 5.5 M in decane or 70% aqueous) as the oxidant. Biphasic solid-liquid or triphasic solid-organic-aqueous mixtures are formed, and 1,2-epoxycyclooctane is the only reaction product. When n-hexane is employed as a cosolvent and tBuOOH(decane) is the oxidant, the catalytic reaction is heterogeneous in nature, and the solid catalyst can be recycled and reused without a loss of activity. For comparison, the catalytic performance of the precursor 1 was also investigated. The IR spectra of solids recovered after catalysis indicate that 1 transforms into the organic-inorganic polymer [MoO(3)(bipy)] when the oxidant is tBuOOH(decane) and compound 2 when the oxidant is 70% aqueous tBuOOH.

  10. Synthesis and characterization of two novel inorganic/organic hybrid materials based on polyoxomolybdate clusters: (C5H5N5)2(C5H6N5)4[(HAsO4)2Mo6O18]·11H2O and Na2(Himi)3[SeMo6O21(CH3COO)3]·6H2O

    NASA Astrophysics Data System (ADS)

    Ayed, Meriem; Mestiri, Imen; Ayed, Brahim; Haddad, Amor

    2017-01-01

    Two new organic-inorganic hybrid compound, (C5H5N5)2(C5H6N5)4[(HAsO4)2Mo6O18]·11H2O (I) and Na2(Himi)3[SeMo6O21(CH3COO)3]·6H2O (II) were synthesized and structurally characterized by scanning electron microscopy (SEM), elemental analyses, FTIR, UV spectroscopy, thermal stability analysis, XRD and single crystal X-ray diffraction. Crystal data: (I) triclinic system, space group P-1, a = 11,217 (9) Å, b = 11,637 (8) Å, c = 14,919 (8) Å, α = 70,90 (5)°, β = 70,83 (2)°, γ = 62,00(1)° and Z = 1; (II) triclinic system, space group P-1, a = 10.6740(1) Å, b = 10.6740(1) Å, c = 20.0570(1) Å, α = 76.285(1)°, β = 82.198(2)°, γ = 87.075(1)°, Z = 1. The crystal structure of (I) can be described by infinite polyanions [(HAsO4)2Mo6O18]4- organized with water molecules in layers parallel to the c-direction; adjacent layers are further joined up by hydrogen bonding interactions with organic groups which were associated in chains spreading along the b-direction. The structure of (II) consists of functionalized selenomolybdate clusters [SeMo6O21(CH3COO)3]5-, protonated imidazole cations, sodium ions and lattice water molecules, which are held together to generate a three-dimensional supramolecular network via hydrogen-bonding interaction. Furthermore, the electrochemical properties of these compounds have been studied.

  11. High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H2O as an oxidizer

    NASA Astrophysics Data System (ADS)

    Lin, Jia-Yong; Pei, Yan-Li; Zhuo, Yi; Chen, Zi-Min; Hu, Rui-Qin; Cai, Guang-Shuo; Wang, Gang

    2016-11-01

    In this study, the high performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs) with Al-doped ZnO (AZO) transparent conductive layers (TCLs) has been demonstrated. The AZO-TCLs were fabricated on the n+-InGaN contact layer by metal organic chemical vapor deposition (MOCVD) using H2O as an oxidizer at temperatures as low as 400 °C without any post-deposition annealing. It shows a high transparency (98%), low resistivity (510-4 Ω·cm), and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer. A forward voltage of 2.82 V @ 20 mA was obtained. Most importantly, the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL (LED-III), and by 28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer (LED-II), respectively. The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204091, 61404177, 51402366, and U1201254) and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015B010132006).

  12. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    NASA Astrophysics Data System (ADS)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n <5 . In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (˜2.8 eV) and signal saturation (˜4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n ≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action

  13. N2O production by nitrifier denitrification in the Benguela Upwelling System

    NASA Astrophysics Data System (ADS)

    Frame, C. H.; Hou, L.; Lehmann, M. F.

    2014-12-01

    The Benguela upwelling system off the coast of southwestern Africa is an important zone of marine N2O production whose upwelling rates vary seasonally. Here we present N2O stable isotopic and isotopomeric data collected during a period of high upwelling (September 2013) and low upwelling (January 2014). During both periods, 15N-nitrite and 15N-ammonium tracer inucbation experiments were used to investigate N2O production by ammonia oxidizing microorganisms in the top 150m of the water column. N2O production from 15N-ammonium was not measurable during these incubations. However, we detected N2O production from 15N-nitrite, suggesting that nitrifier denitrification is a source of shallow N2O in this region. Furthermore, decreasing the pH of the incubation water enhanced the amount of N2O produced, suggesting that upwelling of CO2-rich/low-pH deep water may enhance N2O production in this region. Finally, we present our incubation data in the larger context of the N2O and nitrite isotopic and concentration profiles, with an eye toward comparing incubation-based N2O production rates with profile-based estimates.

  14. Ab Initio Calculations of Anharmonic Vibrational Spectroscopy for Hydrogen Fluoride (HF)n (n=3,4) and Mixed Hydrogen Fluoride/Water (HF)n(H20)n (n=1,2,4) Clusters

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are computed for hydrogen fluoride clusters (HF)n with n=3,4 and mixed clusters of hydrogen fluoride with water (HF)n(H2O)n where n=1,2. For the (HF)4(H2O)4 complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Potential energy surfaces for these systems are obtained at the MP2/TZP level of electronic structure theory. Vibrational states are calculated from the potential surface points using the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The method accounts for the anharmonicities and couplings between all vibrational modes and provides fairly accurate anharmonic vibrational spectra that can be directly compared with experimental results without a need for empirical scaling. For (HF)n, good agreement is found with experimental data. This agreement shows that the MP2 potential surfaces for these systems are reasonably reliable. The accuracy is best for the stiff intramolecular modes, which indicates the validity of MP2 in describing coupling between intramolecular and intermolecular degrees of freedom. For (HF)n(H2O)n experimental results are unavailable. The computed intramolecular frequencies show a strong dependence on cluster size. Intensity features are predicted for future experiments.

  15. O2 Herzberg State Reaction with N2: A Possible Source of Stratospheric N2O

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.; Copeland, Richard A.

    1997-01-01

    The goal of this one-year investigation was to determine whether N2O is formed in atmospherically significant quantities by the reaction of vibrationally excited levels of the O2((A3 Sigma(sub u)(sup +)) state with nitrogen. O2(A3 Sigma(sub u)(sup +)) is made throughout the upper stratosphere in considerable amounts by solar photoabsorption, and only a very small reactive yield is necessary for this mechanism to be a major N2O source. By long-term 245-252 nm irradiation of O2/N2 mixtures on- and off-resonance with absorption lines in the O2(A3 Sigma(sub u)(sup +) - X3 Sigma(sub g)(sup -)) transition, followed by N2O analysis by frequency-modulated diode laser absorption spectroscopy, we determined an upper limit for the N2O yield of the candidate reaction. This limit, 3 x 10(exp -5), eliminates O2(A3 Sigma(sub u)(sup +)) + N2 as a significant channel for the generation of stratospheric N2O. In further measurements, we established that N2O is stable under our photolysis conditions, showing that the small amounts of ozone generated from the reaction of O2(A) and O2 do not indirectly lead to destruction of N2O.

  16. Magnetic properties of some transition-metal Prussian Blue Analogs with composition M3[M'(C,N)6]2·xH2O

    DOE PAGES

    Nakotte, Heinz; Shrestha, Manjita; Adak, Sourav; ...

    2016-06-11

    Here, magnetic data are reported for Prussian Blue Analogs (PBAs) of composition M3[M'(C,N)6]2·xH2O, where M = Mn, Co, Ni or Cu and M' = Cr, Fe or Co and x is the number of water molecules per unit cell. PBAs crystallize in cubic framework structures, which consist of alternating MIIIN6 and MIIC6 octahedra. Occupancies of the octrahedra are not perfect: they may be empty and the charges are balanced by the oxygen atoms originating from guest water molecules at the lattice site ( C or N site) or the interstitial site (between the octahedrals) of the unit cell. Large crystal-fieldmore » splittings due to the octrahedral environment results in a combination of low- or high-spin configurations of localized magnetic bivalent and trivalent 3d moments. The magnetic susceptibility of studied PBAs follows the Curie–Weiss behavior in the paramagnetic region up to room temperature. Moreover, the data provide evidence for a long-range magnetic ground state for most metal hexacyanochromates and all metal hexacyanoferrates, while hexacyanocobaltates remain paramagnetic down to the lowest temperature measured (2 K). For all compounds, the effective magnetic moments determined from experiments were found to be in reasonable agreement with predicted combinations of high- and low-spin moments.« less

  17. Highly efficient alkane oxidation catalyzed by [Mn(V)(N)(CN)4](2-). Evidence for [Mn(VII)(N)(O)(CN)4](2-) as an active intermediate.

    PubMed

    Ma, Li; Pan, Yi; Man, Wai-Lun; Kwong, Hoi-Ki; Lam, William W Y; Chen, Gui; Lau, Kai-Chung; Lau, Tai-Chu

    2014-05-28

    The oxidation of various alkanes catalyzed by [Mn(V)(N)(CN)4](2-) using various terminal oxidants at room temperature has been investigated. Excellent yields of alcohols and ketones (>95%) are obtained using H2O2 as oxidant and CF3CH2OH as solvent. Good yields (>80%) are also obtained using (NH4)2[Ce(NO3)6] in CF3CH2OH/H2O. Kinetic isotope effects (KIEs) are determined by using an equimolar mixture of cyclohexane (c-C6H12) and cyclohexane-d12 (c-C6D12) as substrate. The KIEs are 3.1 ± 0.3 and 3.6 ± 0.2 for oxidation by H2O2 and Ce(IV), respectively. On the other hand, the rate constants for the formation of products using c-C6H12 or c-C6D12 as single substrate are the same. These results are consistent with initial rate-limiting formation of an active intermediate between [Mn(N)(CN)4](2-) and H2O2 or Ce(IV), followed by H-atom abstraction from cyclohexane by the active intermediate. When PhCH2C(CH3)2OOH (MPPH) is used as oxidant for the oxidation of c-C6H12, the major products are c-C6H11OH, c-C6H10O, and PhCH2C(CH3)2OH (MPPOH), suggesting heterolytic cleavage of MPPH to generate a Mn═O intermediate. In the reaction of H2O2 with [Mn(N)(CN)4](2-) in CF3CH2OH, a peak at m/z 628.1 was observed in the electrospray ionization mass spectrometry, which is assigned to the solvated manganese nitrido oxo species, (PPh4)[Mn(N)(O)(CN)4](-)·CF3CH2OH. On the basis of the experimental results the proposed mechanism for catalytic alkane oxidation by [Mn(V)(N)(CN)4](2-)/ROOH involves initial rate-limiting O-atom transfer from ROOH to [Mn(N)(CN)4](2-) to generate a manganese(VII) nitrido oxo active species, [Mn(VII)(N)(O)(CN)4](2-), which then oxidizes alkanes (R'H) via a H-atom abstraction/O-rebound mechanism. The proposed mechanism is also supported by density functional theory calculations.

  18. The HO2 + (H2O)n + O3 reaction: an overview and recent developments*

    NASA Astrophysics Data System (ADS)

    Viegas, Luís P.; Varandas, António J. C.

    2016-03-01

    The present work is concerned with the reaction of the hydroperoxyl radical with ozone, which is key in the atmosphere. We first give a brief overview which emphasizes theoretical work developed at the authors' Group, considering not only the naked reaction (n = 0) but also the reaction with one water molecule added to the reactants (n = 1). Aiming at a broad and contextual understanding of the role of water, we have also very recently published the results of the investigation considering the addition of water dimers (n = 2) and trimers (n = 3) to the reactants. Such results are also succinctly addressed before we present our latest and unpublished research endeavors. These consist of two items: the first one addresses a new mechanistic pathway for hydrogen-abstraction in n = 2-4 cases, in which we observe a Grotthuss-like hydrogen shuttling mechanism that interconverts covalent and hydrogen bonds (water molecules are no longer spectators); the second addresses our exploratory calculations of the HO2 + O3 reaction inside a (H2O)20 water cage, where we strive to give a detailed insight of the molecular processes behind the uptake of gas-phase molecules by a water droplet. Supplementary material in the form of one zip file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60733-5Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  19. Suppression of N2O and NO from denitrification by biochar: the role of pH

    NASA Astrophysics Data System (ADS)

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-04-01

    Denitrification reduces NO3- to N2 and returns excess nitrogen to the atmosphere. NO and N2O are gaseous intermediates of denitrification which, once escaped to the atmosphere, have adverse effects on chemistry and radiative forcing in the atmosphere. We studied the effect of biochar on denitrification and its gaseous intermediates in two acidic soils and tried to distinguish between the alkalizing effect of biochars on soil pH, and other, unknown effects of biochar on denitrification. Anoxic soil slurries were incubated with untreated biochars or biochars from which part of the alkalinity had been removed by water- and acid leaching. Soils amended with NaOH and uncharred cacao shell were used as controls. Biochar addition stimulated overall denitrification depending on biochar and soil type. This stimulation was not strictly coupled to pH increase, suggesting that biochar fueled respiration processes by contributing microbially available C. High resolution gas kinetics of NO, N2O and N2 showed that biochar amended soils induced denitrification enzymes earlier and with higher activity, resulting in less NO and N2O accumulation relative to N2 production. The extent to which biochar suppressed NO and N2O was dose-dependent and clearly related to the effective pH increase during incubation. Acid leaching of BC reduced or eliminated its ability to suppress N2O and NO net production. Comparison of BC with NaOH-amended soils showed that the reduction of N2O and NO net production was mainly an effect of increase in soil pH. Even though other factors supporting N2O reductase activity could not be excluded, our results indicate that soil pH increase might be an important driver behind the often-reported suppression of N2O emissions after biochar addition.

  20. Aspects of Supercritical Turbulence: Direct Numerical Simulation of O2/H2 and C7H16/N2 Temporal Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okongo, N. A.; Harstad, K. G.; Hutt, John (Technical Monitor)

    2002-01-01

    Results from Direct Numerical Simulations of temporal, supercritical mixing layers for two species systems are analyzed to elucidate species-specific turbulence aspects. The two species systems, O2/H2 and C7HG16/N2, have different thermodynamic characteristics; thus, although the simulations are performed at similar reduced pressure (ratio of the pressure to the critical pressure), the former system is dose to mixture ideality and has a relatively high solubility with respect to the latter, which exhibits strong departures from mixture ideality Due to the specified, smaller initial density stratification, the C7H16/N2 layers display higher growth and increased global molecular mixing as well as larger turbulence levels. However, smaller density gradients at the transitional state for the O2/H2 system indicate that on a local basis, the layer exhibits an enhanced mixing, this being attributed to the increased solubility and to mixture ideality. These thermodynamic features are shown to affect the irreversible entropy production (i.e. the dissipation), which is larger for the O2/H2 layer and is primarily concentrated in high density-gradient magnitude regions that are distortions of the initial density stratification boundary. In contrast, the regions of largest dissipation in the C7H16/N2 layer are located in high density-gradient magnitude regions resulting from the mixing of the two fluids.

  1. Etude des mécanismes d'ionisation de H{2}O par interaction He^{*}(2 ^1S, 2 ^3S)/Ne^{*}(^3P{0}, ^3P{2})+H{2}O

    NASA Astrophysics Data System (ADS)

    Le Nadan, André; Sinou, Guillaume; Tuffin, Firmin

    1993-06-01

    Experimental observations of Penning ionisation of H{2}O by the helium metastables 21S and 23S and by the neon metastables ^3P{0} and ^3P{2} are reported. The kinetic energies of the ions created during the collision process (both parent and fragment) are analysed. Certain particularities of the experimental results are explained by involving the hypothesis of transfers of vibrational energy to kinetic energy. Furthermore, the forms of the energy distributions of the fragment ions are explained by th predissociation of the ^2B{2} state of H{2}O+. Nous avons étudié l'ionisation Penning de H{2}O par des métastables 21S et 23S de l'hélium, ainsi que ^3P{0} et ^3P{2} du néon. Nous avons analysé l'énergie cinétique des ions créés au cours de la collision (parents et fragments). Afin d'interpréter certaines particularités expérimentales, l'hypothèse de transferts d'énergie de vibration en énergie cinétique est proposées. Par ailleurs, les caractéristiques des distributions en énergie des ions fragments sont expliquées par la prédissociation de l'état ^2B{2} de H{2}O+.

  2. Highly luminescent S,N co-doped carbon quantum dots-sensitized chemiluminescence on luminol-H2 O2 system for the determination of ranitidine.

    PubMed

    Chen, Jianqiu; Shu, Juan; Chen, Jiao; Cao, Zhiran; Xiao, An; Yan, Zhengyu

    2017-05-01

    S,N co-doped carbon quantum dots (N,S-CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV-Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S-CQDs can enhance the chemiluminescence intensity of a luminol-H 2 O 2 system. The possible mechanism of the luminol-H 2 O 2 -(N,S-CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol-H 2 O 2 -N,S-CQDs system. So, a novel flow-injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5-50 μg ml -1 and a detection limit of 0.12 μg ml -1 . The method shows promising application prospects. Copyright © 2016 John Wiley & Sons, Ltd.

  3. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses

    PubMed Central

    Xiao, Chencheng; Ma, Wenjun; Sun, Na; Huang, Lihong; Li, Yaling; Zeng, Zhaoyong; Wen, Yijun; Zhang, Zaoyue; Li, Huanan; Li, Qian; Yu, Yuandi; Zheng, Yi; Liu, Shukai; Hu, Pingsheng; Zhang, Xu; Ning, Zhangyong; Qi, Wenbao; Liao, Ming

    2016-01-01

    Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts. PMID:26782141

  4. Electronic and chemical structure of the H 2O/GaN(0001) interface under ambient conditions

    DOE PAGES

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H 2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H 2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H 2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H 2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorptionmore » of H 2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H 2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less

  5. The study for the incipient solvation process of NaCl in water: the observation of the NaCl-(H2O)n (n = 1, 2, and 3) complexes using Fourier-transform microwave spectroscopy.

    PubMed

    Mizoguchi, Asao; Ohshima, Yasuhiro; Endo, Yasuki

    2011-08-14

    Pure rotational spectra of the sodium chloride-water complexes, NaCl-(H(2)O)(n) (n = 1, 2, and 3), in the vibronic ground state have been observed by a Fourier- transform microwave spectrometer coupled with a laser ablation source. The (37)Cl-isotopic species and a few deuterated species have also been observed. From the analyses of the spectra, the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants of the Na and Cl nuclei were determined precisely for all the species. The molecular structures of NaCl-(H(2)O)(n) were determined using the rotational constants and the molecular symmetry. The charge distributions around Na and Cl nuclei in NaCl are dramatically changed by the complex formation with H(2)O. Prominent dependences of the bond lengths r(Na-Cl) on the number of H(2)O were also observed. By a comparison with results of theoretical studies, it is shown that the structure of NaCl-(H(2)O)(3) is approaching to that of the contact ion-pair, which is considered to be an intermediate species in the incipient solvation process.

  6. Chemical stabilization and high pressure synthesis of Ba-free Hg-based superconductors, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y}(N=1{approximately}3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishio, K.; Shimoyama, J.; Hahakura, S.

    1994-12-31

    A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y} with n=1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M=Cr, Mo and Re. While the Hg1201(n=1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n=2) phase. On the other hand, single-phase Y-free Hg1212(n=2) and Hg1223(n=3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba-containing compounds, all the samples prepared in themore » present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.« less

  7. Quantifying N2O reduction to N2 based on N2O isotopocules - validation with independent methods (helium incubation and 15N gas flux method)

    NASA Astrophysics Data System (ADS)

    Lewicka-Szczebak, Dominika; Augustin, Jürgen; Giesemann, Anette; Well, Reinhard

    2017-02-01

    Stable isotopic analyses of soil-emitted N2O (δ15Nbulk, δ18O and δ15Nsp = 15N site preference within the linear N2O molecule) may help to quantify N2O reduction to N2, an important but rarely quantified process in the soil nitrogen cycle. The N2O residual fraction (remaining unreduced N2O, rN2O) can be theoretically calculated from the measured isotopic enrichment of the residual N2O. However, various N2O-producing pathways may also influence the N2O isotopic signatures, and hence complicate the application of this isotopic fractionation approach. Here this approach was tested based on laboratory soil incubations with two different soil types, applying two reference methods for quantification of rN2O: helium incubation with direct measurement of N2 flux and the 15N gas flux method. This allowed a comparison of the measured rN2O values with the ones calculated based on isotopic enrichment of residual N2O. The results indicate that the performance of the N2O isotopic fractionation approach is related to the accompanying N2O and N2 source processes and the most critical is the determination of the initial isotopic signature of N2O before reduction (δ0). We show that δ0 can be well determined experimentally if stable in time and then successfully applied for determination of rN2O based on δ15Nsp values. Much more problematic to deal with are temporal changes of δ0 values leading to failure of the approach based on δ15Nsp values only. For this case, we propose here a dual N2O isotopocule mapping approach, where calculations are based on the relation between δ18O and δ15Nsp values. This allows for the simultaneous estimation of the N2O-producing pathways' contribution and the rN2O value.

  8. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry.

    PubMed

    Tosh, Chakradhar; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Venkatesh, Govindarajulu; Shukla, Shweta; Mishra, Amit; Mishra, Pranav; Agarwal, Sonam; Singh, Bharati; Dubey, Prashant; Tripathi, Sushil; Kulkarni, Diwakar D

    2016-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stepwise formation of H3O(+)(H2O)n in an ion drift tube: Empirical effective temperature of association/dissociation reaction equilibrium in an electric field.

    PubMed

    Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M

    2016-06-14

    We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

  10. Genomic characterization of H1N2 swine influenza viruses in Italy.

    PubMed

    Moreno, Ana; Chiapponi, Chiara; Boniotti, Maria Beatrice; Sozzi, Enrica; Foni, Emanuela; Barbieri, Ilaria; Zanoni, Maria Grazia; Faccini, Silvia; Lelli, Davide; Cordioli, Paolo

    2012-05-04

    Three subtypes (H1N1, H1N2, and H3N2) are currently diffused worldwide in pigs. The H1N2 subtype was detected for the first time in Italian pigs in 1998. To investigate the genetic characteristics and the molecular evolution of this subtype in Italy, we conducted a phylogenetic analysis of whole genome sequences of 26 strains isolated from 1998 to 2010. Phylogenetic analysis of HA and NA genes showed differences between the older (1998-2003) and the more recent strains (2003-2010). The older isolates were closely related to the established European H1N2 lineage, whereas the more recent isolates possessed a different NA deriving from recent human H3N2 viruses. Two other reassortant H1N2 strains have been detected: A/sw/It/22530/02 has the HA gene that is closely related to H1N1 viruses; A/sw/It/58769/10 is an uncommon strain with an HA that is closely related to H1N1 and an NA similar to H3N2 SIVs. Amino acid analysis revealed interesting features: a deletion of two amino acids (146-147) in the HA gene of the recent isolates and two strains isolated in 1998; the presence of the uncommon aa change (N66S), in the PB1-F2 protein in strains isolated from 2009 to 2010, which is said to have contributed to the increased virulence. These results demonstrate the importance of pigs as mixing vessels for animal and human influenza and show the presence and establishment of reassortant strains involving human viruses in pigs in Italy. These findings also highlighted different genomic characteristics of the NA gene the recent Italian strains compared to circulating European viruses. Published by Elsevier B.V.

  11. [(Nitrato-κ2 O,O′)(nitrito-κ2 O,O′)(0.25/1.75)]bis­(1,10-phenanthroline-κ2 N,N′)cadmium(II)

    PubMed Central

    Najafi, Ezzatollah; Amini, Mostafa M.; Ng, Seik Weng

    2011-01-01

    The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate–nitrite title complex, [Cd(NO2)1.75(NO3)0.25(C12H8N2)2]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca­hedral CdN4O4 coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion. PMID:21522904

  12. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    PubMed

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n<5. In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (∼2.8 eV) and signal saturation (∼4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action

  13. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses.

    PubMed

    Chen, Sujuan; Zhu, Yinbiao; Yang, Da; Yang, Yang; Shi, Shaohua; Qin, Tao; Peng, Daxin; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128) were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  14. (Cu 0.5Tl 0.5)Ba 2Ca n-1 Cu n- yGe yO 2 n+4- δ ( n = 3, 4 and y = 0.5, 0.75, 1.0); superconductors with GeO 2 planes

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Irfan, M.

    2008-12-01

    We have successfully synthesized germanium doped (Cu 0.5Tl 0.5)Ba 2Ca n-1 Cu n- yGe yO 2 n+4- δ ( n = 3, 4 and y = 0, 0.5, 0.75, 1.0) superconductors and investigated the effect of Ge doping on the superconducting properties of these compounds. The solubility of Ge till y = 1 in the CuO 2 planes of (Cu 0.5Tl 0.5)Ba 2Ca 2Cu 3- yGe yO 10- δ, have been found to give superconductivity above 77 K. To our surprise an enhanced superconductivity is observed with the doping of semiconductor germanium in some samples. The enhanced superconductivity associated with mixed CuO 2/GeO 2 planes can be extremely useful for the understanding of mechanism of superconductivity; since we very well know the properties of germanium based semiconductors.

  15. (CaO)nIrO2 (n = 1, 2, 4) family: Chemical scissors effects of CaO on structural characteristics correlated to physical properties. Ab initio study

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Etourneau, Jean

    2017-11-01

    Based on crystal chemistry analysis within Ca-Ir-O ternary, the generic (CaO)nIrO2 formula leading to CaIrO3 for n = 1, Ca2IrO4 for n = 2 and Ca4IrO6 for n = 4 actual chemical compounds show significant structural changes regarding the spatial arrangement of IrO6 octahedra whereby increasing amounts of CaO act as 'chemical scissor' decreasing the dimensionality of stacking octahedra from 3D (IrO2) to 0D (Ca4IrO6). This is accompanied by changes in the electronic structure investigated within density functional theory. Such changes are particularly exhibited by linear increase of Ir density of states at the Fermi level revealing increasing localization of d states with crystal field effects. Eventually only for Ca4IrO6 a magnetic instability occurs in non magnetic configuration. Spin polarized calculations lead to development of small magnitude but finite magnetization on Ir with M 0.50 μB totally polarized along minority spin channel ↓.

  16. CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4 using multi-pass absorption spectroscopy.

    PubMed

    Yu, Yajun; Sanchez, Nancy P; Griffin, Robert J; Tittel, Frank K

    2016-05-16

    A sensor system based on a continuous wave, external-cavity quantum-cascade laser (CW EC-QCL) was demonstrated for simultaneous detection of atmospheric H2O, HDO, N2O and CH4 using a compact, dense pattern multi-pass gas cell with an effective path-length of 57.6 m. The EC-QCL with a mode-hop-free spectral range of 1225-1285 cm-1 operating at ~7.8 µm was scanned covering four neighboring absorption lines, for H2O at 1281.161 cm-1, HDO at 1281.455 cm-1, N2O at 1281.53 cm-1 and CH4 at 1281.61 cm-1. A first-harmonic-normalized wavelength modulation spectroscopy with second-harmonic detection (WMS-2f/1f) strategy was employed for data processing. An Allan-Werle deviation analysis indicated that minimum detection limits of 1.77 ppmv for H2O, 3.92 ppbv for HDO, 1.43 ppbv for N2O, and 2.2 ppbv for CH4 were achieved with integration times of 50-s, 50-s, 100-s and 129-s, respectively. Experimental measurements of ambient air are also reported.

  17. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    PubMed

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  18. Magnetic properties of TM3[Cr(CN)6]2.n H2O

    NASA Astrophysics Data System (ADS)

    Zentková, M.; Mihalik, M.; Ková, J.; Zentko, A.; Mitróová, Z.; Lukáová, M.; Kaveanský, V.; Kiss, L. F.

    2006-01-01

    Magnetization measurements performed on Prussian blue analogs TM2+3[CrIII(CN)6]2.n H2O (TM = Cr, Mn, Fe, Co, Ni, Cu) confirmed the dual character of the exchange interaction (antiferromagnetic AFM and ferromagnetic FM) in this system. AFM interaction dominates for the Cr2+ sample and with rising atomic number Z the FM interaction becomes more important reaching pure FM character for the Cu2+ sample.

  19. Airborne testing and demonstration of a new flight system based on an Aerodyne N2O-CO2-CO-H2O mini-spectrometer

    NASA Astrophysics Data System (ADS)

    Gvakharia, A.; Kort, E. A.; Smith, M. L.; Conley, S.

    2017-12-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and ozone depleting substance. With high atmospheric backgrounds and small relative signals, N2O emissions have been challenging to observe and understand on regional scales with traditional instrumentation. Fast-response airborne measurements with high precision and accuracy can potentially bridge this observational gap. Here we present flight assessments of a new flight system based on an Aerodyne mini-spectrometer as well as a Los Gatos N2O/CO analyzer during the Fertilizer Emissions Airborne Study (FEAST). With the Scientific Aviation Mooney aircraft, we conducted test flights for both analyzers where a known calibration gas was sampled throughout the flight (`null' tests). Clear altitude/cabin-pressure dependencies were observed for both analyzers if operated in an "off-the-shelf' manner. For the remainder of test flights and the FEAST campaign we used a new flight system based on an Aerodyne mini-spectrometer with the addition of a custom pressure control/calibration system. Instead of using traditional approaches with spectral-zeros and infrequent in-flight calibrations, we employ a high-flow system with stable flow control to enable high frequency (2 minutes), short duration (15 seconds) sampling of a known calibration gas. This approach, supported by the null test, enables correction for spectral drift caused by a variety of factors while maintaining a 90% duty cycle for 1Hz sampling from an aircraft. Preliminary in-flight precisions are estimated at 0.05 ppb, 0.1 ppm, 1 ppb, and 10 ppm for N2O, CO2, CO, and H2O respectively. We also present a further 40 hours of inter-comparison in flight with a Picarro 2301-f ring-down spectrometer demonstrating consistency between CO2 and H2O measurements and no altitude dependent error.

  20. N2O molecular tagging velocimetry

    NASA Astrophysics Data System (ADS)

    ElBaz, A. M.; Pitz, R. W.

    2012-03-01

    A new seeded velocity measurement technique, N2O molecular tagging velocimetry (MTV), is developed to measure velocity in wind tunnels by photochemically creating an NO tag line. Nitrous oxide "laughing gas" is seeded into the air flow. A 193 nm ArF excimer laser dissociates the N2O to O(1D) that subsequently reacts with N2O to form NO. O2 fluorescence induced by the ArF laser "writes" the original position of the NO line. After a time delay, the shifted NO line is "read" by a 226-nm laser sheet and the velocity is determined by time-of-flight. At standard atmospheric conditions with 4% N2O in air, ˜1000 ppm of NO is photochemically created in an air jet based on experiment and simulation. Chemical kinetic simulations predict 800-1200 ppm of NO for 190-750 K at 1 atm and 850-1000 ppm of NO for 0.25-1 atm at 190 K. Decreasing the gas pressure (or increasing the temperature) increases the NO ppm level. The presence of humid air has no significant effect on NO formation. The very short NO formation time (<10 ns) makes the N2O MTV method amenable to low- and high-speed air flow measurements. The N2O MTV technique is demonstrated in air jet to measure its velocity profile. The N2O MTV method should work in other gas flows as well (e.g., helium) since the NO tag line is created by chemical reaction of N2O with O(1D) from N2O photodissociation and thus does not depend on the bulk gas composition.

  1. Synthesis, structure and physicochemical characterization of the hybrid material [C6H16N2O]2 SnCl6·2Cl·2H2O

    NASA Astrophysics Data System (ADS)

    Belhaj Salah, S.; Pereira da Silva, P. S.; Lefebvre, F.; Ben Nasr, C.; Ammar, S.; Mrad, M. L.

    2017-04-01

    The current study reports the chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel compound [C6H16N2O]2SnCl6·2Cl·2H2O. This compound crystallizes in the triclinic system (space group P - 1, Z = 1) with the following unit cell dimensions: a = 7.9764(9), b = 8.2703(9), c = 12.1103(14)Å, α = 84.469(6), β = 75.679(6), and γ = 64.066(5)°. The structure was solved using 3093 independent reflections down to R = 0.020. The atomic arrangement shows alternation of organic and inorganic entities. The cohesion between these entities is ensured by Nsbnd H…Cl and Osbnd H…Cl hydrogen bonds that build a three-dimensional network. The 3D Hirshfeld surfaces and the associated 2D fingerprint plots were investigated for intermolecular interactions. The 13C and 15N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. X-ray powder, XPS and UV spectrum have been carried out. The DSC profile shows that the title material exhibits dehydration at 339 K.

  2. Synthesis and characterization of polymer eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O as well as the interaction of [Y III(pdta)(H 2O)] 22- with BSA

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Jun; Wang, Xin; Liu, Bing-Mi; He, Ling-Ling; Xu, Shu-Kun

    2010-12-01

    The eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O (en = ethylenediamine and H 4pdta = 1,3-propylenediamine- N, N, N', N'-tetraacetic acid) was synthesized, meanwhile its molecular and crystal structures were determined by single-crystal X-ray diffraction technology. The interaction between [Y III(pdta)(H 2O)] 22- and bovine serum albumin (BSA) was investigated by UV-vis and fluorescence spectra. The results indicate that [Y III(pdta)(H 2O)] 22- quenched effectively the intrinsic fluorescence of BSA via a static quenching process with the binding constant ( Ka) of the order of 10 4. Meanwhile, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. Results indicate that the hydrophobic environments around Trp and Tyr residues were all slightly changed. The thermodynamic parameters (Δ G = -25.20 kJ mol -1, Δ H = -26.57 kJ mol -1 and Δ S = -4.58 J mol -1 K -1) showed that the reaction was spontaneous and exothermic. What is more, both Δ H and Δ S were negative values indicated that hydrogen bond and Van der Waals forces were the predominant intermolecular forces between [Y III(pdta)(H 2O)] 22- and BSA.

  3. Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times

    NASA Technical Reports Server (NTRS)

    Slack, M. W.

    1977-01-01

    Shock tube experiments measured hydrogen-air induction times near the second explosion limit. By matching these experimental results with numerically predicted induction times, the rate coefficient for the reaction H + O2 + M = HO2 + M was evaluated as k-sub 4,N2 = 3.3 (plus or minus .6) x 10 to the 15 cm to the 6th/sq mole/s.

  4. Synthesis and characterization of multifunctional coordination polymer of the type [CuxNi1-x(dedb)·2H2O]n

    NASA Astrophysics Data System (ADS)

    Singh, Deepshikha; Kushwaha, Anita; Banerjee, A.; Prasad, R. L.

    2015-07-01

    New series of multifunctional homometallic and heterobimetallic coordination polymers of the type [CuxNi1-x(dedb)·2H2O]n {where dedb = dianion of 2,5-dichloro-3,6-bis(ethylamino)-1,4-benzoquinone (1); x = 1, (2); 0 (3); 0.5 (4); 0.25 (5); 0.125 (6); 0.0625 (7) and n = degree of polymerization} have been synthesized and characterized by Powder X-ray diffraction, IR, UV-visible and ESR spectroscopic techniques. Variable temperature susceptibility measurement indicates presence of strong ferromagnetic interaction. The effects of copper doping on thermal, magnetic and conducting properties of these polymers have been investigated in this communication. A rare co-existence of ferromagnetism as well as electrical conductivity has been observed in these polymers.

  5. Microwave spectroscopy of the seeded binary and ternary clusters CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raston, Paul L., E-mail: paul.raston@adelaide.edu.au; Jäger, Wolfgang

    We report the Fourier transform microwave spectra of the a-type J = 1-0 transitions of the binary and ternary CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2} clusters. In addition to the normal isotopologue of CO for all clusters, we observed the transitions of the minor isotopologues, {sup 13}C{sup 16}O, {sup 12}C{sup 18}O, and {sup 13}C{sup 18}O, for CO-(pH{sub 2}){sub 2} and CO-pH{sub 2}-He. All transitions lie within 335 MHz of the experimentally or theoretically predicted values. In comparison to previously reported infrared spectra [Moroni et al., J. Chem. Phys. 122, 094314 (2005)], we are able to tentativelymore » determine the vibrational shift for CO-pH{sub 2}-He, in addition to its b-type J = 1-0 transition frequency. The a-type frequency of CO-pH{sub 2}-He is similar to that of CO-He{sub 2} [Surin et al., Phys. Rev. Lett. 101, 233401 (2008)], suggesting that the pH{sub 2} molecule has a strong localizing effect on the He density. Perturbation theory analysis of CO-oD{sub 2} reveals that it is approximately T-shaped, with an anisotropy of the intermolecular potential amounting to ∼9 cm{sup −1}.« less

  6. catena-Poly[[bis­(4-carboxy­cyclo­hexane­carboxyl­ato-κ2 O 1,O 1′)cadmium(II)]-μ-1,4-bis­(imidazol-1-ylmeth­yl)benzene-κ2 N 3:N 3′

    PubMed Central

    Li, Bing-Bing; Xiao, Bo

    2009-01-01

    In the title coordination polymer, [Cd(C8H11O4)2(C14H14N4)]n, the Cd atom (site symmetry 2) is six-coordin­ated by two O,O′-bidentate 4-carboxy­cyclo­hexa­necarboxyl­ate (Hchdc) ligands and two N atoms from two different 1,4-bis­(imidazol-1-ylmeth­yl)benzene (1,4-bix) mol­ecules in a very distorted cis-CdN2O4 octa­hedral environment. The 1,4-bix mol­ecules act as bridging ligands that bind two CdII atoms, thus forming an infinite chain propagating in [100], which is decorated by the Hchdc anions. The structure is completed by O—H⋯O hydrogen bonds, which link the chains together. PMID:21582692

  7. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.

    2014-05-08

    We find that NO dosed on rutile TiO2(110)-1×1 at substrate temperatures as low as 50 K readily reacts to produce N2O which desorbs promptly from the surface leaving an oxygen adatom behind. The desorption rate of N2O reaches a maximum value after 12 sec at an NO flux of 1.2 ×1014 NO/cm2∙sec and then decreases rapidly as the initially clean, reduced TiO2(110) surface with ~5% oxygen vacancies (VO’s) becomes covered with oxygen adatoms and unreacted NO. The maximum desorption rate is also found to increase as the substrate temperature is raised up to about 100 K. Interestingly, themore » N2O desorption during the low-temperature (LT) NO dose is strongly suppressed when molecular oxygen is predosed, whereas it persists on the surface with VO’s passivated by surface hydroxyls. Our results show that the surface charge, not the VO sites, plays a dominant role in the LT N2O desorption induced by a facile NO reduction at such low temperatures.« less

  8. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  9. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  10. Phylodynamics of avian influenza clade 2.2.1 H5N1 viruses in Egypt.

    PubMed

    Arafa, Abdelsatar; El-Masry, Ihab; Kholosy, Shereen; Hassan, Mohammed K; Dauphin, Gwenaelle; Lubroth, Juan; Makonnen, Yilma J

    2016-03-22

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are widely distributed within poultry populations in Egypt and have caused multiple human infections. Linking the epidemiological and sequence data is important to understand the transmission, persistence and evolution of the virus. This work describes the phylogenetic dynamics of H5N1 based on molecular characterization of the hemagglutinin (HA) gene of isolates collected from February 2006 to May 2014. Full-length HA sequences of 368 H5N1 viruses were generated and were genetically analysed to study their genetic evolution. They were collected from different poultry species, production sectors, and geographic locations in Egypt. The Bayesian Markov Chain Monte Carlo (BMCMC) method was applied to estimate the evolutionary rates among different virus clusters; additionally, an analysis of selection pressures in the HA gene was performed using the Single Likelihood Ancestor Counting (SLAC) method. The phylogenetic analysis of the H5 gene from 2006-14 indicated the presence of one virus introduction of the classic clade (2.2.1) from which two main subgroups were originated, the variant subgroup which was further subdivided into 2 sub-divisions (2.2.1.1 and 2.2.1.1a) and the endemic subgroup (2.2.1.2). The clade 2.2.1.2 showed a high evolution rate over a period of 6 years (6.9 × 10(-3) sub/site/year) in comparison to the 2.2.1.1a variant cluster (7.2 × 10(-3) over a period of 4 years). Those two clusters are under positive selection as they possess 5 distinct positively selected sites in the HA gene. The mutations at 120, 154, and 162 HA antigenic sites and the other two mutations (129∆, I151T) that occurred from 2009-14 were found to be stable in the 2.2.1.2 clade. Additionally, 13 groups of H5N1 HPAI viruses were identified based on their amino acid sequences at the cleavage site and "EKRRKKR" became the dominant pattern beginning in 2013. Continuous evolution of H5N1 HPAI viruses in Egypt has

  11. Crystal structure of bromido-fac-tricarbon-yl[5-(3,4,5-tri-meth-oxy-phen-yl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N2,N3]rhenium(I) methanol monosolvate.

    PubMed

    Kharlova, Marharyta I; Piletska, Kseniia O; Domasevitch, Kostiantyn V; Shtemenko, Alexander V

    2017-04-01

    In the title compound, [ReBr(C 16 H 16 N 4 O 3 )(CO) 3 ]·CH 3 OH, the Re I atom adopts a distorted octa-hedral coordination sphere with a facial arrangement of the three carbonyl ligands. Two N atoms of the chelating 5-(3,4,5-tri-meth-oxy-phen-yl)-3-(pyridin-2-yl)-1 H -1,2,4-triazole ligand and two carbonyl ligands define the equatorial plane of the complex, with the third carbonyl ligand and the bromide ligand in axial positions. Conventional hydrogen bonds including the methanol solvent mol-ecules assemble the complex mol-ecules through mutual N-H⋯O-H⋯Br links [N⋯O = 2.703 (3) Å and O⋯Br = 3.255 (2) Å] into centrosymmetric dimers, whereas weaker C-H⋯O and C-H⋯Br hydrogen bonds [C⋯O = 3.215 (3)-3.390 (4) Å and C⋯Br = 3.927 (3) Å] connect the dimers into double layers parallel to the (111) plane.

  12. Cocrystals of 6-propyl-2-thiouracil: N-H···O versus N-H···S hydrogen bonds.

    PubMed

    Tutughamiarso, Maya; Egert, Ernst

    2011-11-01

    In order to investigate the relative stability of N-H···O and N-H···S hydrogen bonds, we cocrystallized the antithyroid drug 6-propyl-2-thiouracil with two complementary heterocycles. In the cocrystal pyrimidin-2-amine-6-propyl-2-thiouracil (1/2), C(4)H(5)N(3)·2C(7)H(10)N(2)OS, (I), the `base pair' is connected by one N-H···S and one N-H···N hydrogen bond. Homodimers of 6-propyl-2-thiouracil linked by two N-H···S hydrogen bonds are observed in the cocrystal N-(6-acetamidopyridin-2-yl)acetamide-6-propyl-2-thiouracil (1/2), C(9)H(11)N(3)O(22C(7)H(10)N(2)OS, (II). The crystal structure of 6-propyl-2-thiouracil itself, C(7)H(10)N(2)OS, (III), is stabilized by pairwise N-H···O and N-H···S hydrogen bonds. In all three structures, N-H···S hydrogen bonds occur only within R(2)(2)(8) patterns, whereas N-H···O hydrogen bonds tend to connect the homo- and heterodimers into extended networks. In agreement with related structures, the hydrogen-bonding capability of C=O and C=S groups seems to be comparable.

  13. The Molybdenum(V) and Tungsten(VI) Oxoazides [MoO(N3 )3 ], [MoO(N3 )3 ⋅2 CH3 CN], [(bipy)MoO(N3 )3 ], [MoO(N3 )5 ](2-) , [WO(N3 )4 ], and [WO(N3 )4 ⋅CH3 CN].

    PubMed

    Haiges, Ralf; Skotnitzki, Juri; Fang, Zongtang; Dixon, David A; Christe, Karl O

    2015-12-14

    A series of novel molybdenum(V) and tungsten(VI) oxoazides was prepared starting from [MOF4 ] (M=Mo, W) and Me3 SiN3 . While [WO(N3 )4 ] was formed through fluoride-azide exchange in the reaction of Me3 SiN3 with WOF4 in SO2 solution, the reaction with MoOF4 resulted in a reduction of Mo(VI) to Mo(V) and formation of [MoO(N3 )3 ]. Carried out in acetonitrile solution, these reactions resulted in the isolation of the corresponding adducts [MoO(N3 )3 ⋅2 CH3 CN] and [WO(N3 )4 ⋅CH3 CN]. Subsequent reactions of [MoO(N3 )3 ] with 2,2'-bipyridine and [PPh4 ][N3 ] resulted in the formation and isolation of [(bipy)MoO(N3 )3 ] and [PPh4 ]2 [MoO(N3 )5 ], respectively. Most molybdenum(V) and tungsten(VI) oxoazides were fully characterized by their vibrational spectra, impact, friction and thermal sensitivity data and, in the case of [WO(N3 )4 ⋅CH3 CN], [(bipy)MoO(N3 )3 ], and [PPh4 ]2 [MoO(N3 )5 ], by their X-ray crystal structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interaction between ionic liquid cation and water: Infrared predissociation study of [bmim] +·(H 2O) n clusters

    DOE PAGES

    Voss, Jonathan M.; Marsh, Brett M.; Zhou, Jia; ...

    2016-06-29

    The infrared predissociation spectra of [bmim] +·(H 2O) n, n = 1–8, in the 2800–3800 cm –1 region are presented and analyzed with the help of electronic structure calculations. The results show that the water molecules solvate [bmim]+ by predominately interacting with the imidazolium C2H moiety for the small n = 1 and 2 clusters. This is characterized by a redshifted and relatively intense C2H stretch. For n ≥ 4 clusters, hydrogen-bond interactions between the water molecules drive the formation of ring isomers which interact on top of the imidazolium ring without any direct interaction with the C2H. The watermore » arrangement in [bmim]+·(H 2O) n is similar to the low energy isomers of neutral water clusters up to the n = 6 cluster. This is not the case for the n = 8 cluster, which has the imidazolium ring disrupting the otherwise preferred cubic water structure. Here, the evolution of the solvation network around [bmim]+ illustrates the competing [bmim]+–water and water–water interactions.« less

  15. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae.

    PubMed

    Dalai, Swayamprava; Pakrashi, Sunandan; Bhuvaneshwari, M; Iswarya, V; Chandrasekaran, N; Mukherjee, Amitava

    2014-01-01

    The reactivity and toxicity of the soluble toxicants in the presence of the engineered nanomaterials is not well explored. In this study, the probable effects of TiO2 and Al2O3 nanoparticles (n-TiO2, n-Al2O3) on the toxicity of Cr(VI) were assessed with the dominant freshwater algae, Scenedesmus obliquus, in a low range of exposure concentrations (0.05, 0.5 and 1μg/mL). In the presence of 0.05μg/mL n-TiO2, the toxicity of Cr(VI) decreased considerably, which was presumably due to the Cr(VI) adsorption on the nanoparticle surface leading to its aggregation and precipitation. The elevated n-TiO2 concentrations (0.5 and 1μg/mL) did not significantly influence Cr(VI) bio-availability, and a dose dependent toxicity of Cr(VI) was observed. On the other hand, n-Al2O3 did not have any significant effect on the Cr(VI) toxicity. The microscopic observations presented additional information on the morphological changes of the algal cells in the presence of the binary toxicants. The generation of reactive oxygen species (ROS) suggested contribution of oxidative stress on toxicity and LDH release confirmed membrane permeability of algal cells upon stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Crystal structure of (pyridine-κN)bis(quinolin-2-olato-κ2 N,O)copper(II) monohydrate

    PubMed Central

    Hawks, Benjamin; Yan, Jingjing; Basa, Prem; Burdette, Shawn

    2015-01-01

    The title complex, [Cu(C9H6NO)2(C5H4N)]·H2O, adopts a slightly distorted square-pyramidal geometry in which the axial pyridine ligand exhibits a long Cu—N bond of 2.305 (3) Å. The pyridine ligand forms dihedral angles of 79.5 (5) and 88.0 (1)° with the planes of the two quinolin-2-olate ligands, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The water mol­ecule connects adjacent copper complexes through O—H⋯O hydrogen bonds to phenolate O atoms, forming a network inter­connecting all the complexes in the crystal lattice. PMID:25878845

  17. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  18. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    NASA Astrophysics Data System (ADS)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  19. Understanding N2O sources and sinks with laser based isotopic analysis

    NASA Astrophysics Data System (ADS)

    Mohn, Joachim; Harris, Eliza; Tuzson, Béla; Emmenegger, Lukas

    2015-04-01

    of surface fluxes of N2O isotopomers. The working hypothesis is that this approach will allow us to quantify regional N2O sources, identify emission hot spots, and constrain source processes, which will be of upmost importance for developing targeted mitigation options. References: [1] H. Wächter, J. Mohn, B. Tuzson, L. Emmenegger, M. W. Sigrist, Opt. Express (2008), 16, 9239-9244. [2] B. Wolf, L. Merbold, C. Decock, B. Tuzson, E. Harris, J. Six, L. Emmenegger, J. Mohn, Biogeosci. Discuss. (2015), accepted. [3] J. Mohn et al., Rapid Commun. Mass Spectrom. (2014) 28, 1995-2007. [4] P. Wunderlin, M. F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, J. Mohn, Environ. Sci. Technol. (2013), 47, 1339-1348. [5] J. Mohn, B. Tuzson, A. Manninen, N. Yoshida, S. Toyoda, W. A. Brand, L. Emmenegger, Atmos. Meas. Tech. (2012), 5, 1601-1609.

  20. Incorporation of thorium in the rhabdophane structure: Synthesis and characterization of Pr1-2xCaxThxPO4·nH2O solid solutions

    NASA Astrophysics Data System (ADS)

    Qin, Danwen; Mesbah, Adel; Gausse, Clémence; Szenknect, Stéphanie; Dacheux, Nicolas; Clavier, Nicolas

    2017-08-01

    Thorium incorporation in the rhabdophane structure as Pr1-2xCaxThxPO4·nH2O solid solutions was successfully achieved and resulted in the preparation of a low temperature precursor of the monazite-cheralite type Pr1-2xCaxThxPO4. The rhabdophane compounds are considered as potential neoformed phases in case of release of actinides from the phosphate-based ceramic wasteforms envisaged to host radionuclides in the back-end of the nuclear fuel cycle. A multiparametric study was thus undertaken to specify the wet chemistry conditions (starting stoichiometry, temperature, heating time) leading to single phase Pr1-2xCaxThxPO4·nH2O powdered samples. The excess of calcium appeared to be a prevailing factor with a suggested initial Ca:Th ratio being equal to 10. Similarly, the recommended heating time should exceed 4 days while the optimal temperature of synthesis is 110 °C. Under these conditions, the stability domain of Pr1-2xCaxThxPO4·nH2O ranged from x = 0.00 to x = 0.15. After heating at 1100 °C under air during 6 h, rhabdophane-type samples were fully converted into the highly durable Pr1-2xCaxThxPO4 cheralite ceramic wasteform.

  1. Hydrostatic pressure study on high temperature superconductors: HgBa(2)Casb(m-1)Cu(m)O(2m+2+delta) (m = 1 to 6) and (Cu,C)Ba(2)Ca(m-1)Cu(m)O(2m+3) (m = 3 and 4)

    NASA Astrophysics Data System (ADS)

    Cao, Yong

    1998-12-01

    Over the last decade, numerous extensive as well as intensive experimental and theoretical investigations have been carried out since the great discovery of high temperature superconductivity (HTSy) in cuprate superconductors Lasb{2-x}Basb{x}CuOsb4,\\ YBasb2Cusb2Osb{7-delta} and other compounds. Although there is still no widely accepted microscopic theory on the mechanism responsible for such high superconducting transition temperatures (Tsb{c}), systematic trends of the evolution of HTSy with various parameters have been studied and analyzed. One of them is the universal inverse parabolic correlation between the Tsb{c} and the number of carriers per CuOsb2 plane (n) in various cuprate superconductors. The high pressure technique provides a clean way to change the distance between atoms without causing the side effects typical of chemical doping, and thus has long been used to test and provide guidance for theoretical models, as well as give hints about the synthesis of compounds with higher Tsb{c}. Therefore, we have done a systematic study on the pressure effect on Tsb{c} of two homologous superconducting compound series: HgBasb2Casb{m-1}Cusb{m}Osb{2m+2+delta} (Hg-12(m-1)m) (m = 1 to 6) and (Cu,C)Basb2Casb{m-1}Cusb{m}Osb{2m+3+delta} ((Cu,C)-12(m-1)m) (m = 3 and 4). Several factors which influence the hydrostatic pressure effect on Tsb{c} have been systematically analyzed. They include the n, the type of charge reservoir layer, and the number of CuOsb2 layers per unit cell (m). We came to several conclusion: (1) The inverse parabolic Tsb{c}(n) correlation and its universal parameters are valid only under conditions more restrictive than originally expected, and the rigid band model may not hold for some cuprate superconductors under pressure. (2) The pressure coefficient (dTsb{c}/dP) may have a different dependence on n. The compounds with Cu-O chains in their charge reservoir usually show a large linear variation of dTsb{c}/dP with n, while no significant

  2. Step-by-step thermal transformations of a new porous coordination polymer [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} (Me{sub 2}mal{sup 2-}=dimethylmalonate): Thermal degradation to barium cuprate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauzolkova, Natalya, E-mail: zauzolkova@igic.ras.ru; Dobrokhotova, Zhanna; Lermontov, Anatoly

    The reactions of CuSO{sub 4}{center_dot}5H{sub 2}O, dimethylmalonic acid and Ba(OH){sub 2}{center_dot}H{sub 2}O (Cu: H{sub 2}Me{sub 2}mal: Ba=1: 2: 2) in aqueous and aqueous-ethanol solutions (H{sub 2}O: EtOH=1: 1) resulted in formation of 3D-porous coordination polymers [(H{sub 2}O){sub 3}({mu}-H{sub 2}O){sub 2}CuBa({mu}{sub 3}-Me{sub 2}mal)(Me{sub 2}mal)]{sub n} (1) and [({mu}-H{sub 2}O)CuBa({mu}{sub 3}-Me{sub 2}mal)({mu}{sub 4}-Me{sub 2}mal)]{sub n} (2), respectively. It has been shown that compound 2 was an intermediate in the thermal degradation of compound 1. Thorough studies of solid-state thermolysis of 1 and 2 allowed to detect formation of coordination polymer [CuBa({mu}{sub 4}-Me{sub 2}mal)({mu}{sub 5}-Me{sub 2}mal)]{sub n} (3), structure of which was determinedmore » by X-ray powder diffraction. It has been found that the channels in polymer 3 were accessible for guest molecules (MeOH). Theoretical estimation of methanol diffusion barrier was carried out. Complete solid-phase thermolysis of 1 and 2 leads to a mixture of BaCuO{sub 2}, BaCO{sub 3}, and CuO. Special conditions for obtaining of a crystalline phase of pure cubic BaCuO{sub 2} were determined. - Graphical abstract: Step-by-step transformation of new coordination polymer [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} to [(H{sub 2}O)CuBa(Me{sub 2}mal){sub 2}]{sub n} and [CuBa(Me{sub 2}mal){sub 2}]{sub n} were performed. Dehydration of initial compound leads to structural changes of 12-membered ring fragment. All compounds have porous structure. The final product of thermal decomposition is crystalline phase of individual cubic BaCuO{sub 2}. Highlights: Black-Right-Pointing-Pointer New 3D-polymers [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} and [(H{sub 2}O)CuBa(Me{sub 2}mal){sub 2}]{sub n} were synthesized. Black-Right-Pointing-Pointer Thermal analysis showed step-by-step transformations of [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n}. Black

  3. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G.

    PubMed

    Sudrajat, Hanggara; Babel, Sandhya

    2016-05-01

    N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.

  4. The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms.

    PubMed

    Horn, Marcus A; Schramm, Andreas; Drake, Harold L

    2003-03-01

    The in vivo production of nitrous oxide (N(2)O) by earthworms is due to their gut microbiota, and it is hypothesized that the microenvironment of the gut activates ingested N(2)O-producing soil bacteria. In situ measurement of N(2)O and O(2) with microsensors demonstrated that the earthworm gut is anoxic and the site of N(2)O production. The gut had a pH of 6.9 and an average water content of approximately 50%. The water content within the gut decreased from the anterior end to the posterior end. In contrast, the concentration of N(2)O increased from the anterior end to the mid-gut region and then decreased along the posterior part of the gut. Compared to the soil in which worms lived and fed, the gut of the earthworm was highly enriched in total carbon, organic carbon, and total nitrogen and had a C/N ratio of 7 (compared to a C/N ratio of 12 in soil). The aqueous phase of gut contents contained up to 80 mM glucose and numerous compounds that were indicative of anaerobic metabolism, including up to 9 mM formate, 8 mM acetate, 3 mM lactate, and 2 mM succinate. Compared to the soil contents, nitrite and ammonium were enriched in the gut up to 10- and 100-fold, respectively. The production of N(2)O by soil was induced when the gut environment was simulated in anoxic microcosms for 24 h (the approximate time for passage of soil through the earthworm). Anoxia, high osmolarity, nitrite, and nitrate were the dominant factors that stimulated the production of N(2)O. Supplemental organic carbon had a very minimal stimulatory effect on the production of N(2)O, and addition of buffer or ammonium had essentially no effect on the initial N(2)O production rates. However, a combination of supplements yielded rates greater than that obtained mathematically for single supplements, suggesting that the maximum rates observed were due to synergistic effects of supplements. Collectively, these results indicate that the special microenvironment of the earthworm gut is ideally suited

  5. ONIOM Study of Chemical Reactions in Microsolvation Clusters: (H2O)(n)CH3Cl+OH-(H2O)(m) (n+m = 1 and 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Re, Suyong; Morokuma, Keiji

    2001-07-07

    The reliability of the two-layered ONIOM (our own N-layered molecular orbital + molecular mechanics) method was examined for the investigation of the SN2 reaction pathway (reactants, reactant complexes, transition states, product complexes, and products) between CH3Cl and an OH- ion in microsolvation clusters with one or two water molecules. Only the solute part, CH3Cl and OH-, was treated at a high level of molecular orbital (MO) theory, and all solvent water molecules were treated at a low MO level. The ONIOM calculation at the MP2 (Moller-Plesset second order perturbation)/aug-cc-pVDZ (augmented correlation-consistent polarized valence double-zeta basis set) level of theory asmore » the high level coupled with the B3LYP (Becke 3 parameter-Lee-Yag-Parr)/6-31+G(d) as the low level was found to reasonably reproduce the "target"geometries at the MP2/aug-cc-pVDZ level of theory. The energetics can be further improved to an average absolute error of <1.0 kcal/mol per solvent water molecule relative to the target CCSD(T) (coupled cluster singles and doubles with triples by perturbation)/aug-cc-pVDZ level by using the ONIOM method in which the high level was CCSD(T)/aug-cc-pVDZ level with the low level of MP2/aug-cc-pVDZ. The present results indicate that the ONIOM method would be a powerful tool for obtaining reliable geometries and energetics for chemical reactions in larger microsolvated clusters with a fraction of cost of the full high level calculation, when an appropriate combination of high and low level methods is used. The importance of a careful test is emphasized.« less

  6. Reassortant Avian Influenza A(H5N1) Viruses with H9N2-PB1 Gene in Poultry, Bangladesh

    PubMed Central

    Yamage, Mat; Dauphin, Gwenaëlle; Claes, Filip; Ahmed, Garba; Giasuddin, Mohammed; Salviato, Annalisa; Ormelli, Silvia; Bonfante, Francesco; Schivo, Alessia; Cattoli, Giovanni

    2013-01-01

    Bangladesh has reported a high number of outbreaks of highly pathogenic avian influenza (HPAI) (H5N1) in poultry. We identified a natural reassortant HPAI (H5N1) virus containing a H9N2-PB1 gene in poultry in Bangladesh. Our findings highlight the risks for prolonged co-circulation of avian influenza viruses and the need to monitor their evolution. PMID:24047513

  7. Hydrogen sensors based on Sc2O3/AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Mehandru, R.; Kim, S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Baik, K. H.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.

    2005-05-01

    Pt contacted AlGaN/GaN high electron mobility transistors with Sc2O3 gate dielectrics show reversible changes in drain-source current upon exposure to H2-containing ambients, even at room temperature. The changes in current (as high as 3 mA for relatively low gate voltage and drain-source voltage at 25 °C for the HEMTs and a change in forward current of 40 μA at a bias of 2.5 V was obtained for the MOS-diodes in response to a change in ambient from pure N2 to 10% H2/90% N2. The current changes in the latter case are almost linearly proportional to the testing temperature and reach around 400 μA at 400 °C. These signals are approximately an order of magnitude larger than for Pt /GaN Schottky diodes and a factor of 5 larger than Sc2O3/AlGaN/GaN metal-oxide semiconductor (MOS) diodes exposed under the same conditions. This shows the advantage of using a transistor structure in which the gain produces larger current changes upon exposure to hydrogen-containing ambients. The increase in current is the result of a decrease in effective barrier height of the MOS gate of 30-50 mV at 25 °C for 10%H2/90%N2 ambients relative to pure N2 and is due to catalytic dissociation of the H2 on the Pt contact, followed by diffusion to the Sc2O3/AlGaN interface.

  8. The reaction of O(1 D) with H2O and the reaction of OH with C3H6

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1972-01-01

    The N2O was photolyzed at 2139 A to produce O(1 D) atoms in the presence of H2O and CO. The O(1 D) atoms react with H2O to produce HO radicals, as measured by CO2 production from the reaction of OH with CO. The relative rate constant for O(1 D) removal by H2O compared to that by N2O is 2.1. In the presence of C3H6, the OH can be removed by reaction with either CO or C3H6.

  9. Extending the cleavage rules for the hammerhead ribozyme: mutating adenosine15.1 to inosine15.1 changes the cleavage site specificity from N16.2U16.1H17 to N16.2C16.1H17.

    PubMed Central

    Ludwig, J; Blaschke, M; Sproat, B S

    1998-01-01

    In this paper, we show that an adenosine to inosine mutation at position 15.1 changes the substrate specificity of the hammerhead ribozyme from N16.2U16.1H17to N16.2C16.1H17(H represents A, C or U). This result extends the hammerhead cleavage triplet definition from N16.2U16.1H17to the more general N16.2Y16.1H17. Comparison of cleavage rates using I15.1ribozymes for NCH triplets and standard A15.1 ribozymes for NUH triplets under single turnover conditions shows similar or slightly enhanced levels of reactivity for the I15. 1-containing structures. The effect of I15.1 substitution was also tested in nuclease-resistant 2'- O -alkyl substituted derivatives (oligozymes), showing a similar level of activity for the NUH and NCH cleaving structures. The availability of NCH triplets that can be targeted without loss of efficiency increases the flexibility of ribozyme targeting strategies. This was demonstrated by an efficient cleavage of an HCV transcript at a previously inaccessible GCA site in codon 2. PMID:9580675

  10. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    PubMed

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  11. The behavior of N2 and O2 in pure, mixed or layered CO ices

    NASA Astrophysics Data System (ADS)

    Bisschop, Suzanne E.; Fraser, Helen J.; Fuchs, Guido; Öberg, Karin I.; Acharyya, Kinsuk; van Broekhuizen, Fleur; Schlemmer, Stephan; van Dishoeck, Ewine F.

    N2 and O2 are molecules that are predicted to be abundant in dense molecular clouds. Both molecules are difficult to detect as neither has a dipole moment. The chemical abundance of N2 is mostly inferred from its daughter species N2H+, but was recently detected in the ISM for the first time, with an abundance of 3.3 × 10-7 (Knauth et al 2004). Searches for the submillimeter lines of O2 have given upper limits for the abundance of ≤ 2.6 10-7 for star forming clouds and ≤ 3 10-6 for cold dark clouds (Goldsmith et al. 2000). Pontoppidan et al. (2003) deduced from the CO line profile that CO is present in both H2O poor and H2O rich ice layers, so it follows that N2 is likely to be present in a H2O poor ice layer. In many cold and protostellar cores N2H+ is found to anti-correlate with HCO+ and CO (Bergin et al. 2001; Jørgensen et al. 2004). Models by, for example Bergin & Langer (1997), assume this is due to the balance between freeze-out and evaporation, where ratios for the binding energy for N2 compared to CO of 0.50-0.70 are used. To model these processes, and reproduce the observed abundances of each species it is important to determine empirically the binding energies, sticking probabilities and desorption kinetics of model ice systems containing CO, N2 and O2. It seems that these quantities depend on the degree to which N2 and O2 mix with CO. Therefore, CO and N2 ices were studied extensively in a Ultra High Vacuum (UHV) experiment (P ~ 1 × 10-10 Torr) (Oberg et al. 2005; Bisschop et al submitted)). Ice samples were deposited at 14 K on a polycrystalline gold sample, mounted in the UHV chamber, covering morphologies from pure CO and N2, and 1:1 mixtures, to 1/1 layers of both CO over N2 and N2 over CO, and layers of 40 L of CO (1 L ≈ 1 monolayer) covered with 5 to 50 L of N2. The ices were studied using a combination of Reflection Absorption Infrared Spectroscopy (RAIRS) and Temperature Programmed Desorption (TPD), at a ramp-rate of 0.1 K min-1. The TPD

  12. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    NASA Astrophysics Data System (ADS)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  13. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes.

    PubMed

    Shaaban, Muhammad; Wu, Yupeng; Khalid, Muhammad Salman; Peng, Qi-An; Xu, Xiangyu; Wu, Lei; Younas, Aneela; Bashir, Saqib; Mo, Yongliang; Lin, Shan; Zafar-Ul-Hye, Muhammad; Abid, Muhammad; Hu, Ronggui

    2018-04-01

    Several studies have been carried out to examine nitrous oxide (N 2 O) emissions from agricultural soils in the past. However, the emissions of N 2 O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg -1 soil) under 60% water filled pore space (WFPS) and flooding. N 2 O emissions and several soil properties (pH, NH 4 + N, NO 3 - -N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N 2 O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N 2 O emissions than that of flooding, and dolomite largely reduced N 2 O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N 2 O emissions through promoting nosZ gene transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Structural and electrochemical properties of the doped spinels Li 1.05M 0.02Mn 1.98O 3.98N 0.02 (M = Ga 3+, Al 3+, or Co 3+; N = S 2- or F -) for use as cathode material in lithium batteries

    NASA Astrophysics Data System (ADS)

    Amaral, Fábio A.; Bocchi, Nerilso; Brocenschi, Ricardo F.; Biaggio, Sonia R.; Rocha-Filho, Romeu C.

    The doped and milled spinels Li 1.05M 0.02Mn 1.98O 3.98N 0.02 (M = Ga 3+, Al 3+ or Co 3+; N = S 2- or F -) are studied aiming at obtaining an improved charge/discharge cycling performance. These spinels are prepared by a solid-state reaction among the precursors ɛ-MnO 2, LiOH, and the respective oxide/salt of the doping ions at 750 °C for 72 h and milled for 30 min. The obtained spinels are characterized by XRD, SEM, and determinations of the average manganese valence n. In the charge and discharge tests, the doped spinels present outstanding initial values of the specific discharge capacity C (117-126 mA h g -1), decreasing in the following order: C(Li 1.05Al 0.02Mn 1.98S 3.02O 3.98) > C(Li 1.05Al 0.02Mn 1.98F 3.02O 3.98) > C(Li 1.05Ga 0.02Mn 1.98S 3.02O 3.98) > C(Li 1.05Ga 0.02Mn 1.98F 3.02O 3.98) > C(Li 1.05Co 0.02Mn 1.98S 3.02O 3.98) > C(Li 1.05Co 0.02Mn 1.98F 3.02O 3.98). The doped spinel Li 1.05Ga 0.02Mn 1.98S 3.02O 3.98 presents an excellent electrochemical performance, with a low capacity loss even after 300 charge and discharge cycles (from 120 to 115 mA h g -1 or 4%).

  15. Hybrid quantum chemical studies for the methanol formation reaction assisted by the proton transfer mechanism in supercritical water: CH3Cl+nH2O-->CH3OH+HCl+(n-1)H2O

    NASA Astrophysics Data System (ADS)

    Hori, T.; Takahashi, H.; Nitta, T.

    2003-10-01

    The proton transfer along the chain of hydrogen bonds is involved in many chemical reactions in aqueous solution and known to play a decisive role. We have performed the hybrid quantum chemical simulations for the methanol formation reaction catalyzed by the proton transfer mechanism [CH3Cl+nH2O→CH3OH+HCl+(n-1)H2O, n=3] in supercritical water (SCW) to investigate the role of water solvent on the reaction. In the simulation, the electronic state of the chemically active solutes (CH3Cl+3H2O) has been determined quantum mechanically, while the static water solvent has been represented by a classical model. The activation free energy for the water-catalytic reaction in SCW has been found to be 9.6 kcal/mol, which is much lower than that in the gas phase (29.2 kcal/mol). The fractional charge analysis has revealed that the notable charge separation in the solute complex takes place at the transition state (TS) and the resulting huge dipole gives rise to the considerable stabilization of the TS as compared to the reactant. It has been shown that the reaction assisted by the proton transfer mechanism is energetically much favored than the ionic SN2 reaction (CH3Cl+OH-→CH3OH+Cl-, 18.8 kcal/mol). The present calculations suggest that the proton migrations through the chain of hydrogen bonds can be regarded as a probable candidate responsible for the anomalous reactivities observed in SCW.

  16. Microsolvation of the pyrrole cation (Py+) with nonpolar and polar ligands: infrared spectra of Py+-Ln with L = Ar, N2, and H2O (n ≤ 3).

    PubMed

    Schütz, Markus; Matsumoto, Yoshiteru; Bouchet, Aude; Öztürk, Murat; Dopfer, Otto

    2017-02-01

    The solvation of aromatic (bio-)molecular building blocks has a strong impact on the intermolecular interactions and function of supramolecular assemblies, proteins, and DNA. Herein we characterize the initial microsolvation process of the heterocyclic aromatic pyrrole cation (Py + ) in its 2 A 2 ground electronic state with nonpolar, quadrupolar, and dipolar ligands (L = Ar, N 2 , and H 2 O) by infrared photodissociation (IRPD) spectroscopy of cold mass-selected Py + -L n (n ≤ 3) clusters in a molecular beam and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. Size- and isomer-specific shifts in the NH stretch frequency (Δν NH ) unravel the competition between various ligand binding sites, the strength of the respective intermolecular bonds, and the cluster growth. In Py + -Ar, linear H-bonding of Ar to the acidic NH group (NHAr) is competitive with π-stacking to the aromatic ring, and both Py + -Ar(H) and Py + -Ar(π) are observed. For L = N 2 and H 2 O, the linear NHL H-bond is much more stable than any other binding site and the only observed binding motif. For the Py + -Ar 2 and Py + -(N 2 ) 2 trimers, the H/π isomer with one H-bonded and one π-bonded ligand strongly competes with a 2H isomer with two bifurcated nonlinear NHL bonds. The latter are equivalent for Ar but nonequivalent for N 2 . Py + -H 2 O exhibits a strong and linear NHO H-bond with charge-dipole configuration and C 2v symmetry. IRPD spectra of cold Py + -H 2 O-L clusters with L = Ar and N 2 reveal that Ar prefers π-stacking to the Py + ring, while N 2 forms an OHN 2 H-bond to the H 2 O ligand. The Δν NH frequency shifts in Py + -L n are correlated with the strength of the NHL H-bond and the proton affinity (PA) of L, and a monotonic correlation between Δν NH of the Py + -L(H) dimers and PA is established. Comparison with neutral Py-L dimers reveals the strong impact of the positive charge on the acidity of the NH group, the strength of

  17. Heterologous Humoral Response against H5N1, H7N3, and H9N2 Avian Influenza Viruses after Seasonal Vaccination in a European Elderly Population

    PubMed Central

    Sanz, Ivan; Rojo, Silvia; Tamames, Sonia; Eiros, José María; Ortiz de Lejarazu, Raúl

    2017-01-01

    Avian influenza viruses are currently one of the main threats to human health in the world. Although there are some screening reports of antibodies against these viruses in humans from Western countries, most of these types of studies are conducted in poultry and market workers of Asian populations. The presence of antibodies against avian influenza viruses was evaluated in an elderly European population. An experimental study was conducted, including pre- and post-vaccine serum samples obtained from 174 elderly people vaccinated with seasonal influenza vaccines of 2006–2007, 2008–2009, 2009–2010, and 2010–2011 Northern Hemisphere vaccine campaigns. The presence of antibodies against A/H5N1, A/H7N3, and A/H9N2 avian influenza viruses were tested by using haemaglutination inhibition assays. Globally, heterotypic antibodies were found before vaccination in 2.9% of individuals against A/H5N1, 1.2% against A/H7N3, and 25.9% against A/H9N2. These pre-vaccination antibodies were present at titers ≥1/40 in 1.1% of individuals against A/H5N1, in 1.1% against H7N3, and in 0.6% against the A/H9N2 subtype. One 76 year-old male showed pre-vaccine antibodies (Abs) against those three avian influenza viruses, and another three individuals presented Abs against two different viruses. Seasonal influenza vaccination induced a significant number of heterotypic seroconversions against A/H5N1 (14.4%) and A/H9N2 (10.9%) viruses, but only one seroconversion was observed against the A/H7N3 subtype. After vaccination, four individuals showed Abs titers ≥1/40 against those three avian viruses, and 55 individuals against both A/H5N1 and A/H9N2. Seasonal vaccination is able to induce some weak heterotypic responses to viruses of avian origin in elderly individuals with no previous exposure to them. However, this response did not accomplish the European Medicament Agency criteria for influenza vaccine efficacy. The results of this study show that seasonal vaccines induce a broad

  18. Densities of Active species in N2/H2 RF and HF afterglows: application to surface nitriding of TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricard, André; Sarrette, Jean-Philippe; Wang, Yunfei; Kim, Yu-Kwon

    2017-10-01

    N2/0-5% H2 flowing afterglows from Radio Frequency (RF) and High Frequency (HF) sources have been analyzed by optical emission spectroscopy. In similar conditions (pressure 5-6 Torr, flow rate 0.5 slm and power 100 W), it is found in pure N2 a nearly constant N-atom density from the pink to the late afterglow, which is higher in HF than in RF: (1-2) and 0.4 × 1015 cm-3, respectively. With a N2/2% H2 gas mixture, the early afterglows is changed to a late afterglow with about the same N-atom density for both RF and HF cases: (8-9) × 1014 cm-3. Anatase TiO2 nanocrystals and Atomic Layer Deposition-grown films were exposed to the RF afterglows at room temperature. XPS analysis of the samples has shown that the highest N/Ti ratio of 0.24 can be achieved with the pure N2 late afterglow. In the HF pure N2 late afterglow, however, the N/Ti coverage was limited to 0.04 in spite of higher N-atom density. Such differences in the N content between the two RF and HF cases are attributed to the presence of a high O-atom impurity of 2 × 1013 cm-3 in HF as compared to that (8 × 1011 cm-3) in RF. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  19. Novel Reassortant Influenza A(H1N2) Virus Derived from A(H1N1)pdm09 Virus Isolated from Swine, Japan, 2012

    PubMed Central

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato

    2013-01-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time. PMID:24274745

  20. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  1. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O){/n -} and (NH3){/n -}

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Arnold, S. T.; Eaton, J. G.; Sarkas, H. W.; Bowen, K. H.; Ludewigt, C.; Haberland, H.

    1991-03-01

    The photodetachment spectra of (H2O){/n =2-69/-} and (NH3){/n =41-1100/-} have been recorded, and vertical detachment energies (VDEs) were obtained from the spectra. For both systems, the cluster anion VDEs increase smoothly with increasing sizes and most species plot linearly with n -1/3, extrapolating to a VDE ( n=∞) value which is very close to the photoelectric threshold energy for the corresponding condensed phase solvated electron system. The linear extrapolation of this data to the analogous condensed phase property suggests that these cluster anions are gas phase counterparts to solvated electrons, i.e. they are embryonic forms of hydrated and ammoniated electrons which mature with increasing cluster size toward condensed phase solvated electrons.

  2. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters

    NASA Astrophysics Data System (ADS)

    Linton, Kirsty A.; Wright, Timothy G.; Besley, Nicholas A.

    2018-03-01

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO+.(H2O) that is too high and incorrectly predict the lowest energy structure of NO+.(H2O)2, and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO+. Ab initio molecular dynamics (AIMD) simulations were performed to study the NO+.(H2O)5 H+.(H2O)4 + HONO reaction to investigate the formation of HONO from NO+.(H2O)5. Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO+.(H2O)5 complex following its formation. This article is part of the theme issue `Modern theoretical chemistry'.

  3. Solubility and diffusivity of N{sub 2}O and CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-1-propanol + water)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.H.; Lai, M.D.

    1995-03-01

    Solutions of amines are frequently used in gas-treating processes to remove acid gases, such as CO{sub 2} and H{sub 2}S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubility and diffusivity of N{sub 2}O in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water) were measured at 30, 35, and 40 C and at atmospheric pressure. Six (monoethanolamine + N-methyldiethanolamine + water) and five (monoethanolamine + 2-amino-2-methyl-l-propanol + water) systems were studied. The total amine mass percent in all cases was 30. The solubilities were measured by a solubilitymore » apparatus similar to that of Haimour and Sandall (1984). A wetted wall column absorber was used to obtain the diffusivity of N{sub 2}O in amines. The N{sub 2}O solubilities in amine solutions have been correlated on the basis of the excess Henry constant correlation of Wang et al. (1992). The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water).« less

  4. Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)iron(II) bis­(dicyanamidate) 4.5-hydrate

    PubMed Central

    Callejo, L.; De la Pinta, N.; Madariaga, G.; Fidalgo, M.L.; Cortés, R.

    2010-01-01

    In the title compound, [Fe(C24H16N6)2][N(CN)2]2·4.5H2O, the central iron(II) ion is hexa­coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine (tppz) ligands. Two dicyanamide anions [dca or N(CN)2 −] act as counter-ions, and 4.5 water mol­ecules act as solvation agents. The structure contains isolated cationic iron(II)–tppz complexes and the final neutrality is obtained with the two dicyanamide anions. One of the dicyanamide anions and a water mol­ecule are disordered with an occupancy ratio of 0.614 (8):0.386 (8). O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds involving dca, water and tppz mol­ecules are observed. PMID:21580205

  5. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    PubMed

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Swine influenza virus vaccine serologic cross-reactivity to contemporary U.S. swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v

    USDA-ARS?s Scientific Manuscript database

    Background: Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented and new genotypes and sub-clusters of H3N2 have since expanded in the U.S. swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of sw...

  7. Dichlorido-1κCl,3κCl-bis­{μ-2,2′-[pro­pane-1,3-diylbis(imino­methyl­ene)]di­phenol­ato}-1:2κ6 O,N,N′,O′:O,O′;2:3κ6 O,O′:O,N,N′,O′-tricopper(II)

    PubMed Central

    Ateş, Bürke Meltem; Ercan, Filiz; Svoboda, Ingrid; Fuess, Hartmut; Atakol, Orhan

    2008-01-01

    The title linear trinuclear copper(II) complex, [Cu3(C17H20N2O2)2Cl2], was obtained from N,N′-bis­(2-hydroxy­benz­yl)-1,3-propane­diamine and CuCl2. The overall charge of the three Cu2+ ions is balanced by four deprotonated phenol groups and two Cl− ligands. The complex is centrosymmetric with the central Cu2+ occupying a special position (). This Cu2+ ion is coordinated by the four phenolate O atoms in a square-planar fashion. The second Cu2+ occupies a general position in a square-pyramidal fashion. Two phenolate O atoms and two amine N form the basal plane, with Cl− ligands occupying the fifth coordination site. PMID:21201868

  8. Phylogeography of influenza A H5N1 clade 2.2.1.1 in Egypt

    PubMed Central

    2013-01-01

    Background Influenza A H5N1 has killed millions of birds and raises serious public health concern because of its potential to spread to humans and cause a global pandemic. While the early focus was in Asia, recent evidence suggests that Egypt is a new epicenter for the disease. This includes characterization of a variant clade 2.2.1.1, which has been found almost exclusively in Egypt. We analyzed 226 HA and 92 NA sequences with an emphasis on the H5N1 2.2.1.1 strains in Egypt using a Bayesian discrete phylogeography approach. This allowed modeling of virus dispersion between Egyptian governorates including the most likely origin. Results Phylogeography models of hemagglutinin (HA) and neuraminidase (NA) suggest Ash Sharqiyah as the origin of virus spread, however the support is weak based on Kullback–Leibler values of 0.09 for HA and 0.01 for NA. Association Index (AI) values and Parsimony Scores (PS) were significant (p-value < 0.05), indicating that dispersion of H5N1 in Egypt was geographically structured. In addition, the Ash Sharqiyah to Al Gharbiyah and Al Fayyum to Al Qalyubiyah routes had the strongest statistical support. Conclusion We found that the majority of routes with strong statistical support were in the heavily populated Delta region. In particular, the Al Qalyubiyah governorate appears to represent a popular location for virus transition as it represented a large portion of branches in both trees. However, there remains uncertainty about virus dispersion to and from this location and thus more research needs to be conducted in order to examine this. Phylogeography can highlight the drivers of H5N1 emergence and spread. This knowledge can be used to target public health efforts to reduce morbidity and mortality. For Egypt, future work should focus on using data about vaccination and live bird markets in phylogeography models to study their impact on H5N1 diffusion within the country. PMID:24325606

  9. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  10. Different molecular conformations co-exist in each of three 2-aryl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamides: hydrogen bonding in zero, one and two dimensions.

    PubMed

    Narayana, Badiadka; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher

    2016-09-01

    4-Antipyrine [4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti-inflammatory, and new examples are always of potential interest and value. 2-(4-Chlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z' = 2 in the space group P\\overline{1}, whereas its positional isomer 2-(2-chlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, (II), crystallizes with Z' = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2-chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N-H...O and C-H...O hydrogen bonds to form centrosymmetric four-molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-(3-methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N-H...O and C-H...O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen-bonded R2(2)(10) ring is the common structural motif.

  11. Electrical characterization of the flowing afterglow of N{sub 2} and N{sub 2}/O{sub 2} microwave plasmas at reduced pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonso Ferreira, J.; Stafford, L., E-mail: luc.stafford@umontreal.ca; Leonelli, R.

    2014-04-28

    A cylindrical Langmuir probe was used to analyze the spatial distribution of the number density of positive ions and electrons as well as the electron energy distribution function (EEDF) in the flowing afterglow of a 6 Torr N{sub 2} and N{sub 2}/O{sub 2} plasma sustained by a propagating electromagnetic surface wave in the microwave regime. In pure N{sub 2} discharges, ion densities were in the mid 10{sup 14} m{sup −3} in the pink afterglow and in the mid 10{sup 12} m{sup −3} early in the late afterglow. In both pink and late afterglows, the ion population was much higher than the electron population,more » indicating non-macroscopically neutral media. The EEDF was close to a Maxwellian with an electron temperature of 0.5 ± 0.1 eV, except in the pink afterglow where the temperature rose to 1.1 ± 0.2 eV. This latter behavior is ascribed to N{sub 2} vibration-vibration pumping in the pink afterglow that increases the concentration of high N{sub 2} vibrational states and thus rises the electron temperature by vibration-electron collisions. After addition of small amounts of O{sub 2} in the nominally pure N{sub 2} discharge, the charged particles densities and average electron energy first strongly increased and then decreased with increasing O{sub 2} concentration. Based on these data and the evolution of the N{sub 2}{sup +}(B) band emission intensities, it is concluded that a significant change in the positive ion composition of the flowing afterglow occurs, going from N{sub 2}{sup +} in nominally pure N{sub 2} discharges to NO{sup +} after addition of trace amounts of O{sub 2} in N{sub 2}.« less

  12. Hg-sensitized photolysis of diethylamine in the absence and presence of O/sub 2/ or N/sub 2/O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeStefano, G.; Heicklen, J.

    1986-09-11

    The Hg-sensitized photolysis of diethylamine (DEA) was studied in the absence and presence of O/sub 2/ or N/sub 2/O at room temperature. In the absence of foreign gases, the products were H/sub 2/, CH/sub 3/CH=NC/sub 2/H/sub 5/ and N,N'-diethylbutane-2,3-diamine (III), with respective quantum yields of 1.0, 1.0, and similarly ordered 0.02. Thus CH/sub 3/CHNHC/sub 2/H/sub 5/ radicals are produced exclusively and they are removed by self reaction: 2CH/sub 3/CHNHC/sub 2/H/sub 5/ ..-->.. DEA + CH/sub 3/CH=NC/sub 2/H/sub 5/ (4a) and 2CH/sub 3/CHNHC/sub 2/H/sub 5/ ..-->.. diamine III (4b), with k/sub 4a//k/sub 4b/ = 47.0 +/- 5.6. In the presence ofmore » O/sub 2/ the radicals are scavenged exclusively by abstraction of the H atom on the nitrogen to give the imine CH/sub 3/CH=NC/sub 2/H/sub 5/ as the exclusive product: (CH/sub 3/CHNHC/sub 2/H/sub 5/ + O/sub 2/ ..-->.. CH/sub 3/CH=NC/sub 2/H/sub 5/ + HO/sub 2/ (5). The Hg-sensitized photolysis of N/sub 2/O gives O(/sup 3/P) atoms, which in the presence of DEA react to give the imine and (C/sub 2/H/sub 5/)/sub 2/NOH (DEHA) as products in concerted parallel steps: O(/sup 3/P) + (C/sub 2/H/sub 5/)/sub 2/NH ..-->.. CH/sub 3/CH=NC/sub 2/H/sub 5/ + H/sub 2/O (9a) and O(/sup 3/P) + (C/sub 2/H/sub 5/)/sub 2/NH ..-->.. (C/sub 2/H/sub 5/)/sub 2/NOH (9b), with k/sub 9a//k/sub 9b/ similarly ordered 9.5 +/- 1.7.« less

  13. Swine influenza virus vaccine serologic cross-reactivity to contemporary US swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v.

    PubMed

    Kitikoon, Pravina; Gauger, Phillip C; Anderson, Tavis K; Culhane, Marie R; Swenson, Sabrina; Loving, Crystal L; Perez, Daniel R; Vincent, Amy L

    2013-12-01

    Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented, and new genotypes and subclusters of H3N2 have since expanded in the US swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of swine triple reassortant H3N2 caused outbreaks at agricultural fairs in 2011-2012. To assess commercial swine IAV vaccines' efficacy against H3N2 viruses, including those similar to H3N2v, antisera to three vaccines were tested by hemagglutinin inhibition (HI) assay against contemporary H3N2. Vaccine 1, with high HI cross-reactivity, was further investigated for efficacy against H3N2 virus infection in pigs with or without maternally derived antibodies (MDA). In addition, efficacy of a vaccine derived from whole inactivated virus (WIV) was compared with live attenuated influenza virus (LAIV) against H3N2. Hemagglutinin inhibition cross-reactivity demonstrated that contemporary swine H3N2 viruses have drifted from viruses in current swine IAV vaccines. The vaccine with the highest level of HI cross-reactivity significantly protected pigs without MDA. However, the presence of MDA at vaccination blocked vaccine efficacy. The performance of WIV and LAIV was comparable in the absence of MDA. Swine IAV in the United States is complex and dynamic. Vaccination to minimize virus shedding can help limit transmission of virus among pigs and people. However, vaccines must be updated. A critical review of the use of WIV in sows is required in the context of the current IAV ecology and vaccine application in pigs with MDA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    PubMed

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Transformation of [M + 2H](2+) Peptide Cations to [M - H](+), [M + H + O](+), and M(+•) Cations via Ion/Ion Reactions: Reagent Anions Derived from Persulfate.

    PubMed

    Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A

    2015-07-01

    The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.

  16. Comparative study of the hemagglutinin and neuraminidase genes of influenza A virus H3N2, H9N2, and H5N1 subtypes using bioinformatics techniques.

    PubMed

    Ahn, Insung; Son, Hyeon S

    2007-07-01

    To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.

  17. Photofragment Coincidence Imaging of Small I- (H2O)n Clusters Excited to the Charge-transfer-to-solvent State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumark, D. E. Szpunar, K. E. Kautzman, A. E. Faulhaber, and D. M.; Kautzman, K.E.; Faulhaber, A.E.

    2005-11-09

    The photodissociation dynamics of small I{sup -}(H{sub 2}O){sub n} (n = 2-5) clusters excited to their charge-transfer-to-solvent (CTTS) states have been studied using photofragment coincidence imaging. Upon excitation to the CTTS state, two photodissociation channels were observed. The major channel ({approx}90%) is a 2-body process forming neutral I + (H{sub 2}O){sub n} photofragments, and the minor channel is a 3-body process forming I + (H{sub 2}O){sub n-1} + H{sub 2}O fragments. Both process display translational energy (P(E{sub T})) distributions peaking at E{sub T} = 0 with little available energy partitioned into translation. Clusters excited to the detachment continuum rather thanmore » to the CTTS state display the same two channels with similar P(E{sub T}) distributions. The observation of similar P(E{sub T}) distributions from the two sets of experiments suggests that in the CTTS experiments, I atom loss occurs after autodetachment of the excited (I(H{sub 2}O){sub n}{sup -})* cluster, or, less probably, that the presence of the excess electron has little effect on the departing I atom.« less

  18. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  19. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  20. Full-Genome Sequence of a Reassortant H1N2 Influenza A Virus Isolated from Pigs in Brazil.

    PubMed

    Schmidt, Candice; Cibulski, Samuel Paulo; Muterle Varela, Ana Paula; Mengue Scheffer, Camila; Wendlant, Adrieli; Quoos Mayer, Fabiana; Lopes de Almeida, Laura; Franco, Ana Cláudia; Roehe, Paulo Michel

    2014-12-18

    In this study, the full-genome sequence of a reassortant H1N2 swine influenza virus is reported. The isolate has the hemagglutinin (HA) and neuraminidase (NA) genes from human lineage (H1-δ cluster and N2), and the internal genes (polymerase basic 1 [PB1], polymerase basic 2 [PB2], polymerase acidic [PA], nucleoprotein [NP], matrix [M], and nonstructural [NS]) are derived from human 2009 pandemic H1N1 (H1N1pdm09) virus. Copyright © 2014 Schmidt et al.

  1. Infrared spectroscopy of phenol-(H2O)(n>10): structural strains in hydrogen bond networks of neutral water clusters.

    PubMed

    Mizuse, Kenta; Hamashima, Toru; Fujii, Asuka

    2009-11-05

    To investigate hydrogen bond network structures of tens of water molecules, we report infrared spectra of moderately size (n)-selected phenol-(H2O)n (approximately 10 < or = n < or = approximately 50), which have essentially the same network structures as (H2O)(n+1). The phenyl group in phenol-(H2O)(n) allows us to apply photoionization-based size selection and infrared-ultraviolet double resonance spectroscopy. The spectra show a clear low-frequency shift of the free OH stretching band with increasing n. Detailed analyses with density functional theory calculations indicate that this shift is accounted for by the hydrogen bond network development from highly strained ones in the small (n < approximately 10) clusters to more relaxed ones in the larger clusters, in addition to the cooperativity of hydrogen bonds.

  2. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    DTIC Science & Technology

    2017-10-31

    of isolated molecules and that of bulk systems. DFT calculated absorption spectra represent quantitative estimates that can be correlated with...spectra, can be correlated with the presence of these hydrocarbons (see reference [1]). Accordingly, the molecular structure and IR absorption spectra of...associated with different types of ambient molecules, e.g., H2O, in order to apply background subtraction or spectral-signature- correlation algorithms

  3. 1-(2-Cyano­ethyl)-2-(2-pyrid­yl)-1H,3H-benzimidazol-3-ium perchlorate

    PubMed Central

    Li, Yan; Tang, Xiaoliang; Chen, Jiayu; Wu, Daxiang; Liu, Weisheng

    2010-01-01

    The title compound, C15H13N4 +·ClO4 −, comprises a nonplanar 1-(2-cyano­ethyl)-2-(2-pyrid­yl)-1H,3H-benzimidazol-3-ium cation [dihedral angle between the imidazole and pyridine rings = 22.5 (8)°] and a perchlorate anion. The cation is formed by protonation of the N atom of the benzimidazole ring. A charged N—H⋯O hydrogen bond connects the anion and cation, and inter­molecular C—H⋯O and C—H⋯N inter­actions contribute to the crystal packing. PMID:21579831

  4. Advanced oxidation chemistry of paracetamol. UV/H(2)O(2)-induced hydroxylation/degradation pathways and (15)N-aided inventory of nitrogenous breakdown products.

    PubMed

    Vogna, Davide; Marotta, Raffaele; Napolitano, Alessandra; D'Ischia, Marco

    2002-08-23

    The advanced oxidation chemistry of the antipyretic drug paracetamol (1) with the UV/H(2)O(2) system was investigated by an integrated methodology based on (15)N-labeling and GC-MS, HPLC, and 2D (1)H, (13)C, and (15)N NMR analysis. Main degradation pathways derived from three hydroxylation steps, leading to 1,4-hydroquinone/1,4-benzoquinone, 4-acetylaminocatechol and, to a much lesser extent, 4-acetylaminoresorcine. Oxidation of the primary aromatic intermediates, viz. 4-acetylaminocatechol, 1,4-hydroquinone, 1,4-benzoquinone, and 1,2,4-benzenetriol, resulted in a series of nitrogenous and non-nitrogenous degradation products. The former included N-acetylglyoxylamide, acetylaminomalonic acid, acetylaminohydroxymalonic acid, acetylaminomaleic acid, diastereoisomeric 2-acetylamino-3-hydroxybutanedioic acids, 2-acetylaminobutenedioic acid, 3-acetylamino-4-hydroxy-2-pentenedioic acid, and 2,4-dihydroxy-3-acetylamino-2-pentenedioic acid, as well as two muconic and hydroxymuconic acid derivatives. (15)N NMR spectra revealed the accumulation since the early stages of substantial amounts of acetamide and oxalic acid monoamide. These results provide the first insight into the advanced oxidation chemistry of a 4-aminophenol derivative by the UV/H(2)O(2) system, and highlight the investigative potential of integrated GC-MS/NMR methodologies based on (15)N-labeling to track degradation pathways of nitrogenous species.

  5. N(4)-Methyl-N(4)-(2-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine-ethanol-hydrazine (1/0.865/0.135): hydrogen-bonded ribbons containing four independent ring types.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    N(4)-Methyl-N(4)-(2-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidine-4,6-diamine crystallizes from ethanol as a mixed solvate, C(13)H(14)N(6).0.865C(2)H(6)O.0.135N(2)H(4), (I), where the hydrazine has been carried through from the initial preparation. Within the heterocyclic component, the 2-methylphenyl substituent is disordered over two sets of sites. There is an intramolecular C-H...pi(arene) hydrogen bond, which may control the molecular conformation of the heterocycle. The heterocyclic molecules are linked by two independent N-H...N hydrogen bonds in a chain containing two types of R(2)(2)(8) ring. The ethanol component is linked to this chain by a combination of O-H...N and N-H...O hydrogen bonds and the hydrazine component by two N-H...N hydrogen bonds, so generating two R(3)(3)(9) rings and thus forming a ribbon containing four distinct ring types.

  6. Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel small molecule Hypoxia Inducible Factor-1 (HIF-1) pathway inhibitors and anti-cancer agents

    PubMed Central

    Mun, Jiyoung; Jabbar, Adnan Abdul; Devi, Narra Sarojini; Yin, Shaoman; Wang, Yingzhe; Tan, Chalet; Culver, Deborah; Snyder, James P.; Van Meir, Erwin G.; Goodman, Mark M.

    2013-01-01

    The Hypoxia Inducible Factor (HIF) pathway is an attractive target for cancer as it controls tumor adaptation to growth under hypoxia and mediates chemo- and radiation resistance. We previously discovered 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, as a novel small molecule HIF-1 pathway inhibitor in a high-throughput cell-based assay, but its in vivo delivery is hampered by poor aqueous solubility (0.009 μM in water; logP7.4: 3.7). Here we describe the synthesis of twelve N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, which were designed to possess optimal lipophilicities and aqueous solubilities by in silico calculations. Experimental logP7.4 values of 8 of the 12 new analogs ranged from 1.2 ∼ 3.1. Aqueous solubilities of 3 analogs were measured, among which the most soluble N-[(8-methoxy-2,2-dimethyl-2H-chromen-6-yl)methyl]-N-(propan-2-yl)pyridine-2-sulfonamide had an aqueous solubility of 80 μM, e.g. a solubility improvement of ∼9,000-fold. The pharmacological optimization had minimal impact on drug efficacy as the compounds retained IC50 values at or below 5 μM in our HIF-dependent reporter assay. PMID:22746274

  7. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils

    NASA Astrophysics Data System (ADS)

    Schindlbacher, Andreas; Zechmeister-Boltenstern, Sophie; Butterbach-Bahl, Klaus

    2004-09-01

    Emissions of NO, NO2, and N2O to the atmosphere were measured with a fully automated laboratory system from undisturbed soil columns obtained from five different temperate and one boreal forest sites. The soils were chosen to cover a transect through Europe, sandy and loamy textures, and different atmospheric nitrogen deposition rates. In a two-factorial experimental design, soil cores were kept under varying conditions with respect to temperature (range 5-20°C) and soil moisture (range 0-300 kPa). The combination of soil temperature and soil moisture could explain a better part of variations in NO (up to 74%) and N2O (up to 86%) emissions for individual soils, but average emissions differed significantly between various forest soils. Generally, NO and N2O were emitted from all soils except from the boreal pine forest soil, where NO was consumed. NO emissions from the German spruce forest receiving highest yearly nitrogen inputs of >35 kg ha-1 yr-1 ranged from 1.3 to 608.9 μg NO-N m-2 h-1 and largely exceeded emissions from other soils. Average N2O emissions from this soil tended also to be highest (171.7 ± 42.2 μg N2O-N m-2 h-1), but did not differ significantly from other soils. NO2 deposition occurred in all soils and strongly correlated to NO emissions. NO and N2O emissions showed a positive exponential relationship to soil temperature. With activation energies between 57 and 133 kJ mol-1, N2O emissions from the various soils responded more uniformely to temperature than NO emissions with 41 and 199 kJ mol-1. The two Austrian beech forest soils showed exceptionally high activation energies for NO emissions, which might be attributed to chemodenitrification. N2O emissions increased with increasing water filled pore space (WFPS) or decreasing water tension, respectively. Maximal N2O emissions were measured between 80 and 95% WFPS or 0 kPa water tension. Optimal moisture for NO emission differed significantly between the soils, and ranged between 15% WFPS in

  8. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O) n=1-5 clusters.

    PubMed

    Linton, Kirsty A; Wright, Timothy G; Besley, Nicholas A

    2018-03-13

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO + (H 2 O) n =1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO + (H 2 O) that is too high and incorrectly predict the lowest energy structure of NO + (H 2 O) 2 , and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO + Ab initio molecular dynamics (AIMD) simulations were performed to study the NO + (H 2 O) 5 [Formula: see text] H + (H 2 O) 4 + HONO reaction to investigate the formation of HONO from NO + (H 2 O) 5 Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO + (H 2 O) 5 complex following its formation.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  9. Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012.

    PubMed

    Huang, S Y; Yang, J R; Lin, Y J; Yang, C H; Cheng, M C; Liu, M T; Wu, H S; Chang, F Y

    2015-10-01

    In Taiwan, avian influenza virus (AIV) subtypes H5N2, H6N1 and H7N3 have been identified in domestic poultry, and several strains of these subtypes have become endemic in poultry. To evaluate the potential of avian-to-human transmission due to occupational exposure, an exploratory analysis of AIV antibody status in poultry workers was conducted. We enrolled 670 poultry workers, including 335 live poultry vendors (LPVs), 335 poultry farmers (PFs), and 577 non-poultry workers (NPWs). Serum antibody titres against various subtypes of viruses were analysed and compared. The overall seropositivity rates in LPVs and PFs were 2·99% (10/335) and 1·79% (6/335), respectively, against H5N2; and 0·6% (2/335) and 1·19% (4/335), respectively, for H7N3 virus. Of NPWs, 0·35% (2/577) and 0·17% (1/577) were seropositive for H5N2 and H7N3, respectively. Geographical analysis revealed that poultry workers whose workplaces were near locations where H5N2 outbreaks in poultry have been reported face greater risks of being exposed to viruses that result in elevated H5N2 antibody titres. H6N1 antibodies were detected in only one PF, and no H7N9 antibodies were found in the study subjects. Subclinical infections caused by H5N2, H6N1 and H7N3 viruses were thus identified in poultry workers in Taiwan. Occupational exposure is associated with a high risk of AIV infection, and the seroprevalence of particular avian influenza strains in humans reflects the endemic strains in poultry in this region.

  10. Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018.

    PubMed

    Meijer, Adam; Swaan, Corien M; Voerknecht, Martin; Jusic, Edin; van den Brink, Sharon; Wijsman, Lisa A; Voordouw, Bettie Cg; Donker, Gé A; Sleven, Jacqueline; Dorigo-Zetsma, Wendelien W; Svraka, Sanela; van Boven, Michiel; Haverkate, Manon R; Timen, Aura; van Dissel, Jaap T; Koopmans, Marion Pg; Bestebroer, Theo M; Fouchier, Ron Am

    2018-04-01

    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general practitioner participating in the routine sentinel surveillance of ILI in the Netherlands. The patient recovered fully. Further epidemiological and virological investigation did not reveal additional cases.

  11. Geographic Distribution of N2, CH4, CO2, and H2O Ices on Triton from Near-IR Spectroscopic Monitoring

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Young, L. A.; Young, E. F.; Buie, M. W.; Spencer, J. R.

    2004-11-01

    We present new 0.8 to 2.4 μ m spectral observations of Neptune's satellite Triton, obtained at IRTF\\slash SpeX between 2001 and 2004 as part of an ongoing search for time-variable phenomena associated with Triton's seasonal volatile transport processes, and also perhaps with reported shorter-term "reddening" events. The ability to detect spectral changes on these time scales depends critically on accurate characterization of any cyclic variations resulting from Triton's 5.877 day rotation period. We will report on our observations of periodic variations of Triton's near-IR absorption bands of N2, CH4, and H2O ices, but not of CO2 ice, in this initial stage of our Triton monitoring program. The observed variations (or lack thereof) give an indication of how these four ice species are distributed in longitude. The most heterogeneously distributed ice is N2, which shows nearly twice as much absorption on Triton's Neptune-facing hemisphere as on the anti-Neptune hemisphere. Comparison with Voyager-era, visual wavelength imaging of Triton's surface suggest that the observed N2 ice is concentrated on low-latitude regions of Triton's polar cap, which are predominantly located on the Neptune-facing hemisphere. Non-volatile H2O ice seems to be slightly concentrated on Triton's leading hemisphere. Despite being highly diluted in N2 ice, the longitudinal distribution of Triton's CH4 ice differs from that of Triton's N2 ice, being slightly concentrated on Triton's trailing hemisphere. Triton's CO2 ice shows the least longitudinal variation, suggesting that it is either very uniformly distributed or that it is confined to high latitudes. This work was supported by NASA's Planetary Astronomy and Planetary Geology &\\ Geophysics programs, and by NSF's Planetary Astronomy program. \\hangindent=0.3truein Grundy, W.M., and L.A. Young (2004) Near infrared spectral monitoring of Triton with IRTF\\slash SpeX I: Establishing a baseline. Icarus (in press).

  12. VU6010608, a Novel mGlu7 NAM from a Series of N-(2-(1H-1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides.

    PubMed

    Reed, Carson W; McGowan, Kevin M; Spearing, Paul K; Stansley, Branden J; Roenfanz, Hanna F; Engers, Darren W; Rodriguez, Alice L; Engelberg, Eileen M; Luscombe, Vincent B; Loch, Matthew T; Remke, Daniel H; Rook, Jerri M; Blobaum, Anna L; Conn, P Jeffrey; Niswender, Colleen M; Lindsley, Craig W

    2017-12-14

    Herein, we report the structure-activity relationships within a series of mGlu 7 NAMs based on an N -(2-(1 H -1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamide core with excellent CNS penetration ( K p 1.9-5.8 and K p,uu 0.4-1.4). Analogues in this series displayed steep SAR. Of these, VU6010608 ( 11a ) emerged with robust efficacy in blocking high frequency stimulated long-term potentiation in electrophysiology studies.

  13. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    PubMed

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P < 0.01) than those of the control groups. Complete protection of guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  14. Insertion of bentonite with Organometallic [Fe3O(OOC6H5)6(H2O)3(NO3).nH2O] as Adsorbent of Congo Red

    NASA Astrophysics Data System (ADS)

    Said, Muhammad; Paluta Utami, Hasja; Hayati, Ferlina

    2018-01-01

    The adsorption of Congo red using bentonite inserted organometallic has been investigated. The insertion bentonite was characterized using FT-IR Spectrophotometer, XRD and XRF analysis. The FT-IR characterization showed the higher intensity of peak wavenumber at 470.6 cm-1 for Fe3O on the ratio 1:3. While the XRD characterization showed the shift of diffraction angle of 2θ was 5.2° and has a basal spacing of 16.8 Å. In the XRF characterization, the insertion process of organometallic occurred optimally with the percentage of metal oxide reached 71.75 %. The adsorption process of bentonite inserted organometallic compound [Fe3O(OOC6H5)6(H2O)3(NO3)·nH2O] showed the adsorption rate (k) is 0.050 min-1, the largest adsorption capacity (b) at 70°C is 4.48 mol/g, the largest adsorption energy at temperature 30°C which is 6.4 kJ/mol Organometallic compounds. The value of the enthalpy (ΔH) and entropy (ΔS) decreased with increasing concentrations of the Congo red. Effect of pH on the adsorption on at pH 3 shows the biggest of number Congo red absorbed is 19.52 mg/L for insertion of bentonite.

  15. A reassortant H9N2 influenza virus containing 2009 pandemic H1N1 internal-protein genes acquired enhanced pig-to-pig transmission after serial passages in swine.

    PubMed

    Mancera Gracia, José Carlos; Van den Hoecke, Silvie; Richt, Juergen A; Ma, Wenjun; Saelens, Xavier; Van Reeth, Kristien

    2017-05-02

    Avian H9N2 and 2009 pandemic H1N1 (pH1N1) influenza viruses can infect pigs and humans, raising the concern that H9N2:pH1N1 reassortant viruses could emerge. Such reassortants demonstrated increased replication and transmissibility in pig, but were still inefficient when compared to pH1N1. Here, we evaluated if a reassortant virus containing the hemagglutinin and neuraminidase of A/quail/Hong Kong/G1/1997 (H9N2) in the A/California/04/2009 (pH1N1) backbone could become better adapted to pigs by serial passaging. The tropism of the original H9N2:pH1N1 (P0) virus was restricted to the nasal mucosa, with no virus detected in the trachea or lungs. Nevertheless, after seven passages the H9N2:pH1N1 (P7) virus replicated in the entire respiratory tract. We also compared the transmissibility of H9N2:pH1N1 (P0), H9N2:pH1N1 (P7) and pH1N1. While only 2/6 direct-contact pigs showed nasal virus excretion of H9N2:pH1N1 (P0) ≥five days, 4/6 direct-contact animals shed the H9N2:pH1N1 (P7). Interestingly, those four animals shed virus with titers similar to those of the pH1N1, which readily transmitted to all six contact animals. The broader tissue tropism and the increased post-transmission replication after seven passages were associated with the HA-D225G substitution. Our data demonstrate that the pH1N1 internal-protein genes together with the serial passages favour H9N2 virus adaptation to pigs.

  16. Carbon dioxide(CO2) and nitrous oxide (N2O) fluxes in an agro-ecosystems under changing physical and biological conditions

    NASA Astrophysics Data System (ADS)

    Liang, L.; Eberwein, J.; Oikawa, P.; Jenerette, D.; Grantz, D. A.

    2013-12-01

    Liyin Liang1, Jennifer Eberwein1, Patty Oikawa1, Darrel Jenerette1, David Grantz1 1Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA Carbon dioxide (CO2) and nitrous oxide (N2O) are the major greenhouse gases and together produce a strong positive radiative forcing in the atmosphere. The fluxes of CO2 and N2O from soil to atmosphere vary with physical and biological factors, e.g., temperature, soil moisture, pH value, soil organic carbon contents, microorganism communities and so on. Understanding the interactions among these factors is critical to estimation of CO2 and N2O emissions. We investigate these fluxes in an extreme production environment with very high maximum temperatures, at the agricultural experiment station of University of California-Desert Research Center in the Imperial Valley of southern California. In this research, we measured the CO2 and N2O fluxes from soil incubation under controlled laboratory conditions, in surface chambers under field conditions and by eddy covariance. We explore the variation of CO2 and N2O fluxes and relationship between them in this extreme biofuel production environment. The discrete chamber measurements showed that the N2O flux in our field sites is 2.39×0.70 μg N m-2 hr-1, with a 95% confidence interval (CI) from 0.86 to 3.92 μg N m-2 hr-1. Compared to the previous reported value (0.45~26.26 μg N m-2 hr-1) of N2O flux in California, the N2O flux from biofuel crop land is in the lower level, although more observations should be took to confirm it. The N2O flux also shows very high variability within a field of biomass Sorghum, ranging from 0.40 to 8.19 μg N m-2 hr-1 across 11 sites owning to the high variability of physical and biological factors. Soil incubation measurements will be conducted to identify the sources of this variability. The eddy covariance measurements will allow calculation of the CO2 and N2O emissions at the ecosystem level as a step in quantifying

  17. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    PubMed

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  18. Synthesis and structure of the extended phosphazane ligand [(1,4-C6H4){N(μ-PN(t)Bu)2N(t)Bu}2](4).

    PubMed

    Sevilla, Raquel; Less, Robert J; García-Rodríguez, Raúl; Bond, Andrew D; Wright, Dominic S

    2016-02-07

    The reaction of the phenylene-bridged precursor (1,4-C6H4)[N(PCl2)2]2 with (t)BuNH2 in the presence of Et3N gives the new ligand precursor (1,4-C6H4)[N(μ-N(t)Bu)2(PNH(t)Bu)2]2, deprotonation of which with Bu2Mg gives the novel tetraanion [(1,4-C6H4){N(μ-N(t)Bu)2(PN(t)Bu)2}2](4-).

  19. A novel Zn-based heterocycle metal-organic framework for high C2H2/C2H4, CO2/CH4 and CO2/N2 separations

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Jiang, Ke; Yang, Yu; Cui, Yuanjing; Chen, Banglin; Qian, Guodong

    2017-11-01

    Efficient separation of the small gas molecules especially the hydrocarbons is essential to social economy. The microporous metal-organic frameworks (MOFs) are taking precedence in this respect by virtue of their irreplaceable advantages. Herein, the new organic linker 5-(5-carboxypyridin-3-yl)isophthalic acid simplified as H3L-N has been excavated to construct successfully the novel Zn-based heterocycle metal-organic framework ZnL·(DMF)1.5·(H2O)6.0 (ZJU-197, ZJU = Zhejiang University, DMF = N,N-dimethylformamide). ZJU-197 has been structurally characterized and explored in details for gas separation. It is commendable that the activated ZJU-197a has exhibited excellent C2H2/C2H4, CO2/CH4 and CO2/N2 separations simultaneously with IAST selectivity of 137.8, 53.0 and 514.1 respectively at ambient conditions.

  20. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study.

    PubMed

    Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar

    2010-01-18

    The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).

  1. N-tert-Butyl-N'-(5,7-dimethyl-1,8-naphthyridin-2-yl)urea.

    PubMed

    Lüning, U; Kühl, C; Bolte, M

    2001-08-01

    The title compound, C(15)H(20)N(4)O, has been synthesized as an AADD recognition unit for quadruple hydrogen bonds. All non-H atoms of the molecule apart from two methyl groups of the tert-butyl group lie in a common plane. An intramolecular hydrogen bond is formed connecting two N atoms. In the solid state, the title compound crystallizes as a centrosymmetric dimer connected by N-H...O=C interactions with an N...O distance of 2.824 (2) A.

  2. Outbreak of H3N2 influenza at a US military base in Djibouti during the H1N1 pandemic of 2009.

    PubMed

    Cosby, Michael T; Pimentel, Guillermo; Nevin, Remington L; Fouad Ahmed, Salwa; Klena, John D; Amir, Ehab; Younan, Mary; Browning, Robert; Sebeny, Peter J

    2013-01-01

    Influenza pandemics have significant operational impact on deployed military personnel working in areas throughout the world. The US Department of Defense global influenza-like illness (ILI) surveillance network serves an important role in establishing baseline trends and can be leveraged to respond to outbreaks of respiratory illness. We identified and characterized an operationally unique outbreak of H3N2 influenza at Camp Lemonnier, Djibouti occurring simultaneously with the H1N1 pandemic of 2009 [A(H1N1)pdm09]. Enhanced surveillance for ILI was conducted at Camp Lemonnier in response to local reports of a possible outbreak during the A(H1N1)pdm09 pandemic. Samples were collected from consenting patients presenting with ILI (utilizing a modified case definition) and who completed a case report form. Samples were cultured and analyzed using standard real-time reverse transcriptase PCR (rt-RT-PCR) methodology and sequenced genetic material was phylogenetically compared to other published strains. rt-RT-PCR and DNA sequencing revealed that 25 (78%) of the 32 clinical samples collected were seasonal H3N2 and only 2 (6%) were A(H1N1)pdm09 influenza. The highest incidence of H3N2 occurred during the month of May and 80% of these were active duty military personnel. Phylogenetic analysis revealed that sequenced H3N2 strains were genetically similar to 2009 strains from the United States of America, Australia, and South east Asia. This outbreak highlights challenges in the investigation of influenza among deployed military populations and corroborates the public health importance of maintaining surveillance systems for ILI that can be enhanced locally when needed.

  3. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    NASA Astrophysics Data System (ADS)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  4. Synergetic effect of MoS{sub 2} and g-C{sub 3}N{sub 4} as cocatalysts for enhanced photocatalytic H{sub 2} production activity of TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xixian; Huang, Hongyu, E-mail: huanghy@ms.giec.ac.cn; Kubota, Mitsuhiro

    Highlights: • A hydrogen evolution reaction of g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} photocatalyst was synthesized. • g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} presents highly efficient H{sub 2} evolution without noble metals. • The effect of g-C{sub 3}N{sub 4} and MoS{sub 2} co-catalyst content in the composites was studied. • The mechanism of g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} photocatalyst under UV–vis light was discussed. - Abstract: In this paper, we report a new g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} composite material as a high-performance photocatalyst for H{sub 2} evolution. Without a noble-metal cocatalyst, the g-C{sub 3}N{sub 4}/MoS{sub 2}/TiO{sub 2} composite reaches a highmore » H{sub 2} production rate of 125 μmol h{sup −1} when the content of the g-C{sub 3}N{sub 4}/MoS{sub 2} cocatalyst is 1.0 wt.% and the content of g-C{sub 3}N{sub 4} in this cocatalyst is 10 wt.%. This unusual photocatalytic activity is attributed to the positive synergetic effect between the MoS{sub 2} and g-C{sub 3}N{sub 4} components in this cocatalyst, which serve as an electron collector and a source of active adsorption sites, respectively.« less

  5. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt.

    PubMed

    Naguib, Mahmoud M; Arafa, Abdel-Satar A; El-Kady, Magdy F; Selim, Abdullah A; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Goller, Katja V; Hassan, Mohamed K; Beer, Martin; Abdelwhab, E M; Harder, Timm C

    2015-08-01

    In Egypt, since 2006, descendants of the highly pathogenic avian influenza virus (HP AIV) H5N1 of clade 2.2 continue to cause sharp losses in poultry production and seriously threaten public health. Potentially zoonotic H9N2 viruses established an endemic status in poultry in Egypt as well and co-circulate with HP AIV H5N1 rising concerns of reassortments between H9N2 and H5N1 viruses along with an increase of mixed infections of poultry. Nucleotide sequences of whole genomes of 15 different isolates (H5N1: 7; H9N2: 8), and of the hemagglutinin (HA) and neuraminidase (NA) encoding segments of nine further clinical samples (H5N1: 2; H9N2: 7) from 2013 and 2014 were generated and analysed. The HA of H5N1 viruses clustered with clade 2.2.1 while the H9 HA formed three distinguishable subgroups within cluster B viruses. BEAST analysis revealed that H9N2 viruses are likely present in Egypt since 2009. Several previously undescribed substituting mutations putatively associated with host tropism and virulence modulation were detected in different proteins of the analysed H9N2 and H5N1 viruses. Reassortment between HP AIV H5N1 and H9N2 is anticipated in Egypt, and timely detection of such events is of public health concern. As a rapid tool for detection of such reassortants discriminative SYBR-Green reverse transcription real-time PCR assays (SG-RT-qPCR), targeting the internal genes of the Egyptian H5N1 and H9N2 viruses were developed for the rapid screening of viral RNAs from both virus isolates and clinical samples. However, in accordance to Sanger sequencing, no reassortants were found by SG-RT-qPCR. Nevertheless, the complex epidemiology of avian influenza in poultry in Egypt will require sustained close observation. Further development and continuing adaptation of rapid and cost-effective screening assays such as the SG-RT-qPCR protocol developed here are at the basis of efforts for improvement the currently critical situation. Copyright © 2015 Elsevier B.V. All

  6. Integral Representation of the Pictorial Proof of Sum of [superscript n][subscript k=1]k[superscript 2] = 1/6n(n+1)(2n+1)

    ERIC Educational Resources Information Center

    Kobayashi, Yukio

    2011-01-01

    The pictorial proof of the sum of [superscript n][subscript k=1] k[superscript 2] = 1/6n(n+1)(2n+1) is represented in the form of an integral. The integral representations are also applicable to the sum of [superscript n][subscript k-1] k[superscript m] (m greater than or equal to 3). These representations reveal that the sum of [superscript…

  7. Spatial variability in groundwater N2 and N2O in the San Joaquin River

    NASA Astrophysics Data System (ADS)

    Hinshaw, S.; Dahlgren, R. A.

    2010-12-01

    The San Joaquin River is surrounded by nearly 2 million acres of irrigated agricultural land. Groundwater inputs from agricultural areas can have severe negative effects on water quality with high nitrate concentrations being a major concern. Riparian zones are important ecological habitats that mitigate nitrogen loading from groundwater discharging into rivers primarily by denitrification. Denitrification is a permanent removal of nitrate by anaerobic microbial communities via the reduction to NO, N2O and N2. However, previous studies have shown that these areas can be source of N2O emissions. Although removal of nitrate through denitrification is advantageous from a water quality perspective, N2O is a harmful greenhouse gas. This study aimed to investigate nitrogen dynamics and dissolved N gases in surface and groundwater of the riparian zones of the San Joaquin River. Excess N2 and N2O concentrations were measured in surface and groundwater at 4 locations along a 33 km reach of the river. Samples were collected within bank sediments and 5 transect points across the river at depth intervals between 2-3 cm and 150 cm. Dissolved N2 and Ar were measured by membrane inlet mass spectrometry and used to estimate excess dissolved N2 concentrations. Dissolved N2O concentrations were measured using the headspace equilibrium technique and analyzed with a gas chromatograph. Both N2 uptake and excess N2 were present, ranging from -3.40 to 8.65 N2 mg/L with a median concentration of 1.20 N2 mg/L. Significantly lower concentrations of N2O were present ranging from 0.0 to 0.12 N2O mg/L. Deeper groundwater sites had significantly higher N2 and N2O concentrations coinciding with decreased O2. The presence of excess N2 and low N2O concentrations documents the importance of denitrification in removing nitrate from groundwater. Further investigation will examine N2O emissions from riparian soils and benthic sediments using static chambers and focus on nitrogen pathways that

  8. Observation of nuclear spin species conversion inside the 1593 cm -1 structure of H 2O trapped in argon matrices: Nitrogen impurities and the H 2O:N 2 complex

    NASA Astrophysics Data System (ADS)

    Pardanaud, Cédric; Vasserot, Anne-Marie; Michaut, Xavier; Abouaf-Marguin, L.

    2008-02-01

    We have investigated, at high resolution (0.03 cm -1), the 1593 cm -1 structure observed in the IR absorption spectrum of water trapped in solid argon doped with nitrogen. It exhibits a doublet at 1592.59 ± 0.05 and 1593.08 ± 0.05 cm -1 and a line centered at 1592.93 ± 0.05 cm -1. The central component, which increases irreversibly upon annealing and when the concentration is increased, is due to the proton acceptor submolecule of the H 2O dimer, as mentioned in the literature. The doublet is assigned to the H 2O:N 2 complex. After a fast cooling of the sample from 20 to 4 K, the low frequency line of the doublet decreases with time and the high frequency one increases, the total integrated absorption increasing slightly. The ratio of the integrated intensities between the low frequency component and the high frequency one reaches a constant limit of 0.5 ± 0.1 at infinite time. This time behavior, perfectly exponential with a time constant τ of about 680 min, is reproducible. As the nitrogen molecule cannot rotate in an argon substitutional site, and as the H 2O submolecule seems to preserve somewhat its identity, this is interpreted as nuclear spin species conversion between ortho and para states of the H 2O submolecule within the complex. The order of magnitude of the energy difference between the ortho and para lowest levels, about 5 cm -1, is too weak to imply any, even very hindered, rotational motion of H 2O, but it could be the energy range of a tunneling effect. When the temperature is increased, the two components coalesce at 25 K into a single symmetrical line pointing at 1593.3 cm -1 and the conversion time shortens dramatically. An Arrhenius plot leads to a weak activation energy of the conversion process (about 30 cm -1). A possible geometry of the complex in solid argon, different from the gas phase one, is proposed.

  9. Microcosm N2O emissions wth calibration

    EPA Pesticide Factsheets

    The dataset consists of measurements of soil nitrous oxide emissions from soils under three different amendments: glucose, cellulose, and manure. Data includes the four isotopomers of nitrous oxide (14N15N16O, 15N14N16O, 14N14N18O, 14N14N16O), and the site preference.This dataset is associated with the following publication:Chen , H., D. Williams , P. Deshmukh , F. Birgand, B. Maxwell, and J. Walker. Probing the Biological Sources of Soil N2O Emissions by Quantum Cascade Laser-Based 15N Isotopocule Analysis. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL. Soil Science Society of America, Madison, WI, USA, 100(0): 175-181, (2016).

  10. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant.

    PubMed

    Bálint, Adám; Metreveli, Giorgi; Widén, Frederik; Zohari, Siamak; Berg, Mikael; Isaksson, Mats; Renström, Lena Hm; Wallgren, Per; Belák, Sándor; Segall, Thomas; Kiss, István

    2009-10-28

    The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA) of the human-like H1N2 SIV viruses and the neuraminidase (NA) of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain.The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  11. Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza

    PubMed Central

    Negovetich, Nicholas J.; Feeroz, Mohammed M.; Jones-Engel, Lisa; Walker, David; Alam, S. M. Rabiul; Hasan, Kamrul; Seiler, Patrick; Ferguson, Angie; Friedman, Kim; Barman, Subrata; Franks, John; Turner, Jasmine; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2011-01-01

    Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets. PMID:21541296

  12. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.

    PubMed

    Lee, Jaewoong; Bartelt-Hunt, Shannon L; Li, Yusong; Gilrein, Erica Jeanne

    2016-07-01

    This study investigated the aggregation of n-TiO2 in the presence of humic acid (HA) and/or 17β-estradiol (E2) under high ionic strength conditions simulating levels detected in landfill leachate. Aggregation of n-TiO2 was strongly influenced by ionic strength as well as ionic valence in that divalent cations (Ca(2+)) were more effective than monovalent (Na(+)) at the surface modification. HA or E2 enhanced aggregation of n-TiO2 in 20 mM CaCl2, however little aggregation was observed in 100 mM NaCl. Similarly, we observed only the increased aggregation of n-TiO2 in the presence of HA/E2. These results showed the critical role of particles' surface charges on the aggregation behaviors of n-TiO2 that HA plays more significantly than E2. However, the slightly increased zeta potential and aggregation of n-TiO2 in the combination of HA and E2 at both 20 mM CaCl2 and 100 mM NaCl means that E2 has influenced on the surface modification of n-TiO2 by adsorption. Based on the aggregation of n-TiO2 under high ionic strength with HA and/or E2, we simulated the mobility of aggregated n-TiO2 in porous media. As a result, we observed that the mobility distance of aggregated n-TiO2 was dramatically influenced by the surface modification with both HA and/or E2 between particles and media. Furthermore, larger mobility distance was observed with larger aggregation of n-TiO2 particles that can be explained by clean bed filtration (CFT) theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. First principles studies on the redox ability of (Ga(1-x)Zn(x))N(1-x)O(x) solid solutions and thermal reactions for H2 and O2 production on their surfaces.

    PubMed

    Du, Yaojun A; Chen, Yun-Wen; Kuo, Jer-Lai

    2013-12-07

    The (Ga1-xZnx)N1-xOx solid solution has been emerging as an effective photocatalyst for water splitting utilizing the visible solar spectrum, regarded as a host GaN bulk doped with ZnO impurities. H2 and O2 production occur simultaneously and stoichiometrically on the surface of (Ga1-xZnx)N1-xOx particles. In this work, we characterize the redox ability of (Ga1-xZnx)N1-xOx and find that a solid solution with a ZnO concentration of 0.125 < x < 0.250 is optimal for water splitting. This is consistent with the experimental finding that the maximum photocatalytic activity of (Ga1-xZnx)N1-xOx is achieved at x = 0.13. The thermal reactions of water splitting are modeled on both the GaN and an idealized (Ga1-xZnx)N1-xOx (101[combining macron]0) surface. The computed activation barriers allow us to gain some clues on the efficiency of water splitting on a specific photocatalyst surface. Our results suggest that the non-polar (101[combining macron]0) and polar (0001) surfaces may play different roles in water splitting, i.e., the (101[combining macron]0) surface is responsible for O2 production, while hydroxyl groups could dissociate on the (0001) surface.

  14. Effects of Carbon and Cover Crop Residues on N2O and N2 Emissions

    NASA Astrophysics Data System (ADS)

    Burger, M.; Cooperman, Y.; Horwath, W. R.

    2016-12-01

    In Mediterranean climate, nitrous oxide emissions occurring with the first rainfall after the dry summer season can contribute up to 50% of agricultural systems' total annual emissions, but the drivers of these emissions have not been clearly identified, and there are only few measurements of atmospheric nitrogen (N2) production (denitrification) during these events. In lab incubations, we investigated N2O and N2 production, gross ammonification and nitrification, and microbial N immobilization with wet-up in soil from a vineyard that was previously fallow or where cover crop residue had been incorporated the previous spring. Before the first rainfall, we measured 120 mg dissolved organic carbon (DOC-C) kg-1 soil in the 0-5 cm layer of this vineyard, and after the rain 10 mg DOC-C kg-1, while nitrate levels before the rain were <5 mg N kg-1 in fallow and <10 mg N kg-1 in previously cover cropped soil. The N2O/N2 production was 2, 7, 9, and 86% in fallow, legume-grass mixture, rye, and legume cover cropped soil. The N2O/N2 ratio tended to increase with lower DOC (post-rain) levels in the soil. The results suggest that accumulated carbon in dry surface soil is the main driving factor of N2O and N2 emissions through denitrification with the first rainfall after prolonged dry periods.

  15. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  16. Continuous Eddy Covariance Measurements of N2O Emissions and Controls from an Intensively Grazed Dairy Farm

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; Liang, L. L.; Wall, A.; Campbell, D.

    2017-12-01

    New Zealand's greenhouse gas (GHG) inventory is disproportionally dominated by methane and nitrous oxide which account for 54% of emissions. These GHGs are derived from pastoral agriculture that supports dairying and meat production. To date, most studies on quantifying or mitigating agricultural N2O emissions have used flux chamber measurements. Recent advances in detector technology now means that routine field-to-farm scale measurements of N2O emissions might be possible using the eddy covariance technique. In late 2016, we established an eddy covariance tower that measured N2O emissions from a dairy farm under year-round grazing. An Aerodyne quantum cascade laser (QCL) was used to measure N2O, CH4 and H2O concentration at 10 Hz and housed in a weatherproof and insulated enclosure (0.9 m ´ 1.2 m) and powered by mains power (240 VAC). The enclosure maintained a stable setpoint temperature (30±0.2°C) by using underground cooling pipes, fans and recirculating instrument heat. QCL (true 10 Hz digital) and CSAT3B sonic anemometer high frequency data are aligned using Network Time Protocol and EddyPro covariance maximisation during flux processing. Fluxes generally integrated over about 6-8 ha. Stable summertime baseline N2O fluxes (FN2O) were around 12-24 g N2O-N ha-1 d-1 (0.5-1.0 nmol N2O m-2 s-1). Grazing by cows during dry summer resulted in only modest increases in FN2O to 24-48 g N2O-N ha-1 d-1 (1.0-2.0 nmol N2O m-2 s-1). However, the first rain events after grazing resulted in large, short-lived (1-3 days) FN2O pulses reaching peaks of 144-192 g N2O-N ha-1 d-1 (6-8 nmol N2O m-2 s-1). During these elevated N2O emissions, FN2O displayed a significant diurnal signal, with peak fluxes mid-afternoon which was best explained by variation in shallow soil temperature in summer. In winter (both cooler and wetter) FN2O were not as easily explained on a daily basis but were generally greater than summer. Throughout the year, FN2O was strongly dependent on water filled

  17. VizieR Online Data Catalog: Orion Integral Filament ALMA+IRAM30m N2H+(1-0) data (Hacar+, 2018)

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Tafalla, M.; Forbrich, J.; Alves, J.; Meingast, S.; Grossschedl, J.; Teixeira, P. S.

    2018-01-01

    Combined ALMA+IRAM30m large-scale N2H+(1-0) emission in the Orion ISF. Two datasets are presented here in FITS format: 1.- Full data cube: spectral resolution = 0.1 kms-1 2.- Total integrated line intensity (moment 0) map Units are in Jy/beam See also: https://sites.google.com/site/orion4dproject/home (2 data files).

  18. Pathogenicity and Transmission in Pigs of the Novel A(H3N2)v Influenza Virus Isolated from Humans and Characterization of Swine H3N2 Viruses Isolated in 2010-2011

    PubMed Central

    Kitikoon, Pravina; Gauger, Phillip C.; Schlink, Sarah N.; Bayles, Darrell O.; Gramer, Marie R.; Darnell, Daniel; Webby, Richard J.; Lager, Kelly M.; Swenson, Sabrina L.; Klimov, Alexander

    2012-01-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans. PMID:22491461

  19. Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010-2011.

    PubMed

    Kitikoon, Pravina; Vincent, Amy L; Gauger, Phillip C; Schlink, Sarah N; Bayles, Darrell O; Gramer, Marie R; Darnell, Daniel; Webby, Richard J; Lager, Kelly M; Swenson, Sabrina L; Klimov, Alexander

    2012-06-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans.

  20. cis-Bis(2,2'-bipyridine-κ(2)N,N')bis-(pyridin-4-amine-κN(1))ruthenium(II) bis-(hexa-fluoridophosphate) acetonitrile monosolvate.

    PubMed

    Camilo, Mariana R; Martins, Felipe T; Malta, Valéria R S; Ellena, Javier; Carlos, Rose M

    2013-02-01

    In the title complex, [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](PF(6))(2)·CH(3)CN, the Ru(II) atom is bonded to two α-diimine ligands, viz. 2,2'-bipyridine, in a cis configuration and to two 4-amino-pyridine (4Apy) ligands in the expected distorted octa-hedral configuration. The compound is isostructural with [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](ClO(4))(2)·CH(3)CN [Duan et al. (1999 ▶). J. Coord. Chem.46, 301-312] and both structures are stabilized by classical hydrogen bonds between 4Apy ligands as donors and counter-ions and acetonitrile solvent mol-ecules as acceptors. Indeed, N-H⋯F inter-actions give rise to an inter-molecularly locked assembly of two centrosymmetric complex mol-ecules and two PF(6) (-) counter-ions, which can be considered as the building units of both crystal architectures. The building blocks are connected to one another through hydrogen bonds between 4Apy and the connecting pieces made up of two centrosymmetric motifs with PF(6) (-) ions and acetonitrile mol-ecules, giving rise to ribbons running parallel to [011]. 2(1)-Screw-axis-related complex mol-ecules and PF(6) (-) counter-ions alternate in helical chains formed along the a axis by means of these contacts.

  1. Magnesium cinnamate complex, [Mg(cinn)2(H2O)2]n; structural, spectroscopic, thermal, biological and pharmacokinetical characteristics

    NASA Astrophysics Data System (ADS)

    Puszyńska-Tuszkanow, Mariola; Zierkiewicz, Wiktor; Grabowski, Tomasz; Daszkiewicz, Marek; Maciejewska, Gabriela; Adach, Anna; Kucharska-Ziembicka, Katarzyna; Wietrzyk, Joanna; Filip-Psurska, Beata; Cieślak-Golonka, Maria

    2017-04-01

    The composition and structure of the magnesium complex with cinnamic acid, [Mg(cinn)2(H2O)2]n(1), were determined using single crystal X-ray diffraction data, IR, NMR spectroscopies, thermal and mass spectrometry analysis. Magnesium cinnamate complex, like the isostructural cobalt(II) species reported in the literature, appears to belong to the group of coordination polymers forming layered solids with pseudooctahedral coordination around the metal centre and Osbnd Csbnd O bridging units. The vibrational assignments of the experimental spectra of the complex (1) were performed on the basis of the DFT results obtained for the [Mg(cinn)4(H2O)2]2- ion, serving as a model. The complex was found to exhibit a very low cytotoxicity against neoplastic: A549 (lung), MCF-7 (breast), P388 (murine leukemia) and normal BALB3T3 (mouse fibroblasts) cell lines. In silico pharmacokinetical parameter calculations for (1) and seven known magnesium complexes with carboxylic acids: lactic, malic, glutamic, hydroaspartic and aspartic allowed for comparison of their potential bioavailability. Magnesium cinnamate complex appeared to exhibit a superior lipophilic property that suggests an optimal pharmacokinetics profile.

  2. Two genotypes of H1N2 swine influenza viruses appeared among pigs in China.

    PubMed

    Xu, Chuantian; Zhu, Qiyun; Yang, Huanliang; Zhang, Xiumei; Qiao, Chuanling; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2009-10-01

    H1N2 is one of the main subtypes of influenza, which circulates in swine all over the world. To investigate the prevalence and genetic of H1N2 in swine of China. Two H1N2 swine influenza viruses were isolated from Tianjin and Guangdong province of China in 2004 and 2006, respectively. The molecular evolution of eight gene segments was analyzed. A/Swine/Tianjin/1/2004 has low identity with A/Swine/Guangdong/2006; in the phylogenetic tree of PA gene, A/Swine/Guangdong/1/2006 and A/Swine/Guangxi/1/2006 along with the H1N2 swine isolates of North America formed a cluster; and A/Swine/Tianjin/2004 and A/Swine/Zhejiang/2004, along with the classical H1N1 swine isolates formed another cluster; except that NA gene of A/Swine/Tianjin/1/2004 fell into the cluster of the H3N2 human influenza virus, indicating the reassortment between H3N2 human and H1N1 swine influenza viruses. Two different genotypes of H1N2 appeared among pigs in China. A/swine/Guangdong/1/06 was probably from H1N2 swine influenza viruses of North America; while A/swine/Tianjin/1/04 maybe come from reassortments of classical H1N1 swine and H3N2 human viruses prevalent in North America.

  3. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)22-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Outbreak of H3N2 Influenza at a US Military Base in Djibouti during the H1N1 Pandemic of 2009

    PubMed Central

    Cosby, Michael T.; Pimentel, Guillermo; Nevin, Remington L.; Fouad Ahmed, Salwa; Klena, John D.; Amir, Ehab; Younan, Mary; Browning, Robert; Sebeny, Peter J.

    2013-01-01

    Background Influenza pandemics have significant operational impact on deployed military personnel working in areas throughout the world. The US Department of Defense global influenza-like illness (ILI) surveillance network serves an important role in establishing baseline trends and can be leveraged to respond to outbreaks of respiratory illness. Objective We identified and characterized an operationally unique outbreak of H3N2 influenza at Camp Lemonnier, Djibouti occurring simultaneously with the H1N1 pandemic of 2009 [A(H1N1)pdm09]. Methods Enhanced surveillance for ILI was conducted at Camp Lemonnier in response to local reports of a possible outbreak during the A(H1N1)pdm09 pandemic. Samples were collected from consenting patients presenting with ILI (utilizing a modified case definition) and who completed a case report form. Samples were cultured and analyzed using standard real-time reverse transcriptase PCR (rt-RT-PCR) methodology and sequenced genetic material was phylogenetically compared to other published strains. Results rt-RT-PCR and DNA sequencing revealed that 25 (78%) of the 32 clinical samples collected were seasonal H3N2 and only 2 (6%) were A(H1N1)pdm09 influenza. The highest incidence of H3N2 occurred during the month of May and 80% of these were active duty military personnel. Phylogenetic analysis revealed that sequenced H3N2 strains were genetically similar to 2009 strains from the United States of America, Australia, and South east Asia. Conclusions This outbreak highlights challenges in the investigation of influenza among deployed military populations and corroborates the public health importance of maintaining surveillance systems for ILI that can be enhanced locally when needed. PMID:24339995

  5. An Influenza HA and M2e Based Vaccine Delivered by a Novel Attenuated Salmonella Mutant Protects Mice against Homologous H1N1 Infection.

    PubMed

    Hajam, Irshad A; Lee, John H

    2017-01-01

    Attenuated Salmonella strains constitute a promising technology for the development of a more efficient multivalent protein based vaccines. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the H1N1 hemagglutinin (HA) and the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strain exhibited efficient HA and M2e protein expressions and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we showed that the mice vaccinated with a Salmonella strain expressing HA and M2e protein antigens, respectively, induced significant production of HA and M2e-specific serum IgG1 and IgG2a responses, and of anti-HA interferon-γ producing T cells. Furthermore, immunization with Salmonella-HA-M2e-based vaccine via different routes provided protection in 66.66% orally, 100% intramuscularly, and 100% intraperitoneally immunized mice against the homologous H1N1 virus while none of the animals survived treated with either the PBS or the Salmonella carrying empty expression vector. Ex vivo stimulated dendritic cells (DCs) with heat killed Salmonella expressing HA demonstrated that DCs play an important role in the elicitation of HA-specific humoral immune responses in mice. In summary, Salmonella -HA-M2e-based vaccine elicits efficient antigen-specific humoral and cellular immune responses, and provides significant immune protection against a highly pathogenic H1N1 influenza virus.

  6. Influence of Humic Acid on Stability and Attachment of nTiO2 Particles to Sand at Different pH

    NASA Astrophysics Data System (ADS)

    Cheng, T.

    2015-12-01

    Stability of nano-scale or micro-scale titanium dioxide particles (nTiO2) and their attachment to sediment grains have important implications to the fate and transport of nTiO2 in subsurface environments. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand, with special attention to low HA concentration ranges that are relevant to groundwater conditions. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand were experimentally measured under a range of low HA concentrations at pH 5 and 9. Results showed that HA can either promote or hinder nTiO2 stability, depending on pH and HA concentration. We also found that HA can either enhance or reduce nTiO2 attachment to Fe oxyhydroxide coating at pH 5, depending on HA concentration. Results further showed that at pH 5, Fe oxyhydroxide coating reduced nTiO2 attachment to sand in the absence of HA but increased nTiO2 attachment in the presence of low concentration of HA. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was invoked to analyze particle-to-particle and particle-to-sand interactions in order to elucidate the roles of pH, HA, quartz, and Fe coating in nTiO2 stability and attachment. Overall, this study showed that changes in zeta potential of nTiO2 and Fe coating due to pH changes and/or HA adsorption are the key factors that influence stability and attachment of nTiO2.

  7. Effects of rhynchophylline on GluN1 and GluN2B expressions in primary cultured hippocampal neurons.

    PubMed

    He, Yan; Zeng, Sheng-Ya; Zhou, Shi-Wen; Qian, Gui-Sheng; Peng, Kang; Mo, Zhi-Xian; Zhou, Ji-Yin

    2014-10-01

    N-methyl-d-aspartate (NMDA) receptor subunits GluN1 and GluN2B in hippocampal neurons play key roles in anxiety. Our previous studies show that rhynchophylline, an active component of the Uncaria species, down-regulates GluN2B expression in the hippocampal CA1 area of amphetamine-induced rat. The effects of rhynchophylline on expressions of GluN1 and GluN2B in primary hippocampal neurons in neonatal rats in vitro were investigated. Neonatal hippocampal neurons were cultured with neurobasal-A medium. After incubation for 6h or 48 h with rhynchophylline (non-competitive NMDAR antagonist) and MK-801 (non-competitive NMDAR antagonist with anxiolytic effect, as the control drug) from day 6, neuron toxicity, mRNA and protein expressions of GluN1 and GluN2B were analyzed. GluN1 is mainly distributed on neuronal axons and dendritic trunks, cytoplasm and cell membrane near axons and dendrites. GluN2B is mainly distributed on the membrane, dendrites, and axon membranes. GluN1 and GluN2B are codistributed on dendritic trunks and dendritic spines. After 48 h incubation, a lower concentration of rhynchophylline (lower than 400 μmol/L) and MK-801 (lower than 200 μmol/L) have no toxicity on neonatal hippocampal neurons. Rhynchophylline up-regulated GluN1 mRNA expression at 6h and mRNA and protein expressions at 48h, but down-regulated GluN2B mRNA and protein expressions at 48 h. However, GluN1 and GluN2B mRNA expressions were down-regulated at 6h, and mRNA and protein expressions were both up-regulated by MK-801 at 48h. These findings show that rhynchophylline reciprocally regulates GluN1 and GluN2B expressions in hippocampal neurons, indicating a potential anxiolytic property for rhynchophylline. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Stratospheric N2O5, CH4, and N2O profiles from IR solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Camy-Peyret, C.; Flaud, J.-M.; Perrin, A.; Rinsland, C. P.; Goldman, A.; Murcray, F. J.

    1993-01-01

    Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052/cm resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur l'Adour, France (44 N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246/cm band. Assuming a total intensity of 4.32 x 10 exp -17 cm/molecule/sq cm independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv, interpolated to 2 km height spacings, are 1.64 +/- 0.49 at 37.5 km, 1.92 +/- 0.56 at 35.5 km, 2.06 +/- 0.47 at 33.5 km, 1.95 +/- 0.42 at 31.5 km, 1.60 +/- 0.33 at 29.5 km, 1.26 +/- 0.28 at 27.5 km, and 0.85 +/- 0.20 at 25.5 km. Error bars indicate the estimated 1-sigma uncertainty including the error in the total band intensity. The retrieved profiles are compared with previous measurements and photochemical model results.

  9. Diaqua­(2,2′-bipyridine-κ2 N,N′)bis­(perchlorato-κO)copper(II)

    PubMed Central

    Damous, Maamar; Hamlaoui, Meriem; Bouacida, Sofiane; Merazig, Hocine; Daran, Jean-Claude

    2011-01-01

    The central CuN2O4 motif of the title compound, [Cu(ClO4)2(C10H8N2)(H2O)2], exhibits a Jahn–Teller-distorted octa­hedral geometry around the metal atom, showing a considerably long Cu—O bond distance of 2.5058 (12) Å towards the second perchlorate group, giving a (4 + 1+1)-type coordination mode. In the crystal, the components are linked via inter­molecular O—H⋯O hydrogen bonds, forming layers parallel to (001). Additional stabilization within these layers is provided by π–π [centroid–centroid distances of 3.7848 (9)–4.4231 (9) Å] stacking inter­actions. PMID:21754328

  10. Bis(2,3,5,6-tetra-2-pyridyl­pyrazine-κ3 N 2,N 1,N 6)nickel(II) dithio­cyanate dihydrate

    PubMed Central

    De la Pinta, Noelia; Fidalgo, M. Luz; Ezpeleta, José M.; Cortés, Roberto; Madariaga, Gotzon

    2011-01-01

    In the title compound, [Ni(C24H16N6)2](NCS)2·2H2O, the central NiII ion is octahedrally coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridyl­pyrazine ligands (tppz). Two thio­cyanate anions act as counter-ions and two water mol­ecules act as solvation agents. O—H⋯N hydrogen bonds are observed in the crystral structure. PMID:21522540

  11. Synthesis, characterization, experimental and theoretical structure of novel Dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) compounds, metal = Mn, Co and Ni

    NASA Astrophysics Data System (ADS)

    Conradie, J.; Conradie, M. M.; Tawfiq, K. M.; Al-Jeboori, M. J.; Coles, S. J.; Wilson, C.; Potgieter, J. H.

    2018-06-01

    The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S = 1; and (iv) for all [M(L1)2Cl2] and [M(L)2Cl2] complexes, with M = Mn, Co and Ni, the cis-cis-trans and the trans-trans-trans isomers, with the pyridyl groups trans to each other, have the lowest energy.

  12. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  13. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-08-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  14. Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.

    PubMed

    Wu, Yang; Cheng, Tao

    2016-01-15

    The fate and transport of nano-scale or micro-scale titanium dioxide particles (nTiO2) in subsurface environments are strongly influenced by the stability of nTiO2 and their attachment to sediment grains. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively-charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand at HA concentrations that are relevant to typical groundwater conditions, so that mechanisms that control nTiO2 immobilization and transport in natural systems can be elucidated. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand are experimentally measured under a range of HA concentrations at pH5 and 9. Results show that at pH5, negatively-charged HA strongly adsorbs to positively-charged nTiO2 and Fe oxyhydroxide, which, at low HA concentrations, partially neutralizes the positive charges on nTiO2 and Fe oxyhydroxide, and therefore decreases the repulsive electrostatic forces between the surfaces, resulting in nTiO2 aggregation and attachment. At high HA concentrations, adsorbed HA reverses the surface charges of nTiO2 and Fe oxyhydroxide, and makes nTiO2 and Fe oxyhydroxide strongly negatively charged, resulting in stable nTiO2 suspension and low nTiO2 attachment. At pH9, HA, nTiO2, and Fe oxyhydroxide are all negatively charged, and HA adsorption is low and does not have a strong impact on the stability and attachment of nTiO2. Overall, this study shows that changes in surface charges of nTiO2 and Fe oxyhydroxide coating caused by HA adsorption is a key factor that influences the stability and attachment of nTiO2. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    PubMed

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  16. Characterization of the N2O isotopic composition (15N, 18O and N2O isotopomers) emitted from incubated Amazon forest soils. Implications for the global N2O isotope budget

    NASA Astrophysics Data System (ADS)

    Pérez, T.; García, D.; Trumbore, S.; Tyler, S.; de Camargo, P.; Moreira, M.; Piccolo, M.; Park, S.; Boering, K.; Cerri, C.

    2003-04-01

    Tropical rain forest soils are the largest natural source of N2O to the atmosphere. Uncertainty in the signature of this source limits the utility of isotopes in constraining the global N2O budget. Differentiating the relative contribution of nitrification and denitrification to the emitted N2O using stable isotopes has been difficult due to the lack of enrichment factors values for each process measured in situ. We have devised a method for measuring enrichment factors using soil incubation experiments. We selected three Amazon rain forest soils: (1) Clay and (2) Sandy from Santarem, Pará State, and (3) Sandy from Nova Vida Farm, Rondonia State, Brazil. The enrichment factor values for nitrification and denitrification are: -97.8±4.2 and -9.9±3.8 per mil for clay Santarem soil, -86.8±4.3 and -45.2±4.5 per mil for sandy Santarem soil and-112.6±3.8 and -10.4±3.5 per mil for Nova Vida Farm soils, respectively. Our results show that enrichment factors for both processes differ with soil texture and location. The enrichment factors for nitrification are significantly smaller than the range reported in the literature (-66 to -42 per mil). Also, the enrichment factors for the Santarem soils (clay and sandy) differ significantly implying that soil texture (which will affect the soil air filled pore space at a given water content) is influencing the bacteria isotopic discrimination. However, the enrichment factors for the Santarem clay sand Nova Vida sandy soils do not differ by much. This suggests that the enrichment factors not only can be affected by texture but also by the microbial fauna present in these soils. We also determined the measurement of the N2O positional dependence. N2O is a linear molecule with two nitrogen atoms. The 15N isotope can be located in either the central nitrogen (alpha position) or in the terminal nitrogen (beta position). The isotopomer site preference (15N alpha - 15N beta) can be used to differentiate processes of production and

  17. Phenol abatement using persulfate activated by nZVI, H2O2 and NaOH and development of a kinetic model for alkaline activation.

    PubMed

    Lominchar, Miguel A; Rodríguez, Sergio; Lorenzo, David; Santos, Noelia; Romero, Arturo; Santos, Aurora

    2018-01-01

    Three persulfate (PS) activation methods (nanoparticles of zero-valent iron (nZVI), hydrogen peroxide and alkali) were compared using phenol as target pollutant. Firstly, four experiments were conducted at 25°C in a batch way using the same initial phenol and oxidant concentrations (10 mM and 420 mM, respectively), being the molar ratio activator/PS fixed to 0.005 with nZVI (mass ratio 0.0011 nZVI/PS), to 2 using hydrogen peroxide and to 2 and 4 with NaOH. Phenol and PS conversions and aromatic byproducts profiles during 168 h reaction time were measured and compared, as well as mineralization and ecotoxicity of the samples. It was found that both phenol and aromatic byproducts (catechol and hydroquinone) totally disappeared using PS activated by alkali before 24 h, while a significant amount of aromatic intermediates was obtained with nZVI and H 2 O 2 . Additional runs were carried out using shorter times (0-2h) to discriminate the oxidation route and the kinetic model of phenol abatement by using PS activated by alkali. Different initial concentrations of phenol (5-15 mM), PS (210 and 420 mM) and molar ratio NaOH/PS (2 and 4) were employed. The kinetic model obtained predicts accurately the evolution of phenol, persulfate, hydroquinone and catechol.

  18. Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

    PubMed Central

    Zhou, Hong; Cox, Nancy J.; Donis, Ruben O.

    2008-01-01

    The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. PMID:18497857

  19. Divergent genetic evolution of hemagglutinin in influenza A H1N1 and A H1N2 subtypes isolated in the south-France since the winter of 2001-2002.

    PubMed

    Al Faress, Shaker; Cartet, Gaëlle; Ferraris, Olivier; Norder, Helene; Valette, Martine; Lina, Bruno

    2005-07-01

    Influenza A viruses are divided into subtypes based on their hemagglutinin (H1 to H15) and neuraminidase (N1 to N9) glycoproteins. Of these, three A subtypes H1N1, H3N2 and H1N2 circulate in the human population. Influenza A viruses display a high antigenic variability called "antigenic drift" which allows the virus to escape antibody neutralization. Evaluate the mutations apparition that might predict a divergent antigenic evolution of hemagglutinin in influenza A H1N1 and A H1N2 viruses. During the three winters of 2001-2002 to 2003-2004, 58 A H1N1 and 23 A H1N2 subtypes have been isolated from patients with influenza-like illness in the south of France. The HA1 region was analyzed by RT-PCR and subsequently sequenced to compare the HA1 genetic evolution of influenza A H1N1 and A H1N2 subtypes. Our results showed that 28 amino acid substitutions have accumulated in the HA1 region since the circulation of A/New Caledonia/20/99-like viruses in France. Of these, fifteen were located in four antigenic sites (B, C, D and E). Six of them were observed only in the A H1N2 isolates, six only in the A H1N1 isolates and three in both subtypes. Furthermore, nine of twenty two A H1N2 isolates from the winter of 2002-2003 shared a T90A amino acid change which has not been observed in any A H1N1 isolate; resulting in the introduction of a new glycosylation site close to the antigenic site E. This might mask some antigenic E determinants and therefore, modify the A H1N2 antigenicity. The divergent genetic evolution of hemagglutinin may ultimately lead to a significant different antigenicity between A H1N1 and A H1N2 subtypes that would require the introduction of a new subtype in the vaccine batches.

  20. Stepwise microhydration of aromatic amide cations: water solvation networks revealed by the infrared spectra of acetanilide+-(H2O)n clusters (n ≤ 3).

    PubMed

    Klyne, Johanna; Schmies, Matthias; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto

    2018-01-31

    The structure and activity of peptides and proteins strongly rely on their charge state and the interaction with their hydration environment. Here, infrared photodissociation (IRPD) spectra of size-selected microhydrated clusters of cationic acetanilide (AA + , N-phenylacetamide), AA + -(H 2 O) n with n ≤ 3, are analysed by dispersion-corrected density functional theory calculations at the ωB97X-D/aug-cc-pVTZ level to determine the stepwise microhydration process of this aromatic peptide model. The IRPD spectra are recorded in the informative X-H stretch (ν OH , ν NH , ν CH , amide A, 2800-3800 cm -1 ) and fingerprint (amide I-II, 1000-1900 cm -1 ) ranges to probe the preferred hydration motifs and the cluster growth. In the most stable AA + -(H 2 O) n structures, the H 2 O ligands solvate the acidic NH proton of the amide by forming a hydrogen-bonded solvent network, which strongly benefits from cooperative effects arising from the excess positive charge. Comparison with neutral AA-H 2 O reveals the strong impact of ionization on the acidity of the NH proton and the topology of the interaction potential. Comparison with related hydrated formanilide clusters demonstrates the influence of methylation of the amide group (H → CH 3 ) on the shape of the intermolecular potential and the structure of the hydration shell.

  1. New cyclic sulfides, garlicnins I2, M, N, and O, from Allium sativum.

    PubMed

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    One atypical thiolane-type sulfide, garlicnin I 2 (1), two 3,4-dimethylthiolane-type sulfides, garlicnins M (2) and N (3), and one thiabicyclic-type sulfide, garlicnin O (4), were isolated from the acetone extracts of Chinese garlic bulbs, Allium sativum and their structures were characterized. Hypothetical pathways for the production of the respective sulfides were discussed.

  2. Effect of fertilizer application on NO and N2O fluxes from agricultural fields

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Yamulki, Sirwan; Goulding, K. W. T.; Webster, C. P.

    1995-12-01

    Losses of fertilizer as NO and N2O were studied at Broadbalk field, Rothamsted Experimental Station in England, on which subplots have been subject to differing constant levels of fertilizer application for many years. Fluxes of NO and N2O were measured using open- and closed-chamber techniques, respectively. Fluxes from unfertilized soil ranged from 0.3 to 4.8 ng N m-2 s-1 for NO and 0.23 to 3.0 ng N m-2 s-1 for N2O. The corresponding fluxes from the plot with the highest fertilizer application (92 kg N ha-1 yr-1 as NH4NO3) ranged from 0.5 to 64 ng N m-2 s-1 for NO and 0.4 to 240 ng N m-2 s-1 for N2O. Application of increasing amounts of fertilizer substantially enhanced emission rates of both NO and N2O. However, the amount of increase was controlled by competition between the crop and the microorganisms for the available soil nutrients, and loss of N2O to the atmosphere increased sharply at superoptimal levels of fertilizer application. The fertilizer-derived NO and N2O emissions represented approximately 90% of the total emission of these gases during the 25-day sampling period after fertilizer application. The results suggest that while increasing the amount of fertilizer increases both NO and N2O fluxes simultaneously, the NO/N2O emission ratio decreases. Results from laboratory experiments showed that the magnitude of the fertilizer loss as N2O was strongly affected by the form of the applied fertilizer.

  3. Dynamic analysis of expression of chemokine and cytokine gene responses to H5N1 and H9N2 avian influenza viruses in DF-1 cells.

    PubMed

    Luo, Chang; Liu, Jianxin; Qi, Wenbao; Ren, Xujiao; Lu, Rong; Liao, Ming; Ning, Zhangyong

    2018-05-01

    H5N1 and H9N2 are the most important causes of avian influenza in China. Chemokines and cytokines play important roles in inflammatory response that clearly differ between H5N1 and H9N2 infection. To investigate whether chemokines and cytokines are differentially regulated following H5N1 and H9N2 AIVs infection, dynamic expression of chemokines and cytokines, including IL8L1, IL8L2, CX3CL1, CCL5, CCL20, K203, SCYA4, XLC1, CCLi10, CCL19, IFN-α, IFN-β, IL-1β, IL-6 and TNF-α, were analyzed by real-time quantitative RT-PCR in DF-1 cells. It was found that IL8L1, IL8L2, CX3CL1, CCL5, CCL20, K203, SCYA4, IFN-α, IFN-β, IL-1β, IL-6 and TNF-α increased significantly after induction of H5N1 or H9N2 AIV infection, whereas no expression of XCL1, CCLi10 or CCL19 was detected. H9N2 AIV infection was associated with much stronger chemokine responses than infection with H5N1, whereas the cytokines showed opposite results. It was found that K203 is a constant chemotactic factor independent of subtype of AIVs and infectious dose, CCL20 and IL-1β are constant regardless of the infectious dose but depend on the subtype of AIV, chemotactic factors IL8L1, IL8L2 and CCL5 are dependent both on subtype of AIVs and infectious dose, and K203, CX3CL1, SCYA4, CCL20, IFN-α, IL-1β and TNF-α are specific to responses to H5N1 AIV infection whereas K203, CCL20, IFN-β, IL-1β and IL-6 are specific to H9N2 infection. These results provide basic data for explaining differences in inflammation and phenotypes of histopathological changes caused by H5N1 and H9N2 and add new information on the roles of chemokines and cytokines in virulence of AIVs. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  4. Tris(1,10-phenanthroline-κ2 N,N′)iron(II) bis­(1,1-dicyano-2-eth­oxy-2-oxoethanide)

    PubMed Central

    Cai, Zhan-Mao; Zhan, Shu-Zhong

    2012-01-01

    The title compound, [Fe(C12H8N2)3](C6H5N2O2)2, consists of one [Fe(phen)3]2+ cation (phen = 1,10-phenanthroline) and two 1,1-dicyano-2-eth­oxy-2-oxoethanide anions. Five atoms of the anion are disordered over two positions [site occupancy = 0.521 (13) for the major component]. In the complex cation, the FeII atom is coordinated by six N atoms from three phen ligands in a distorted octa­hedral geometry. Two intra­molecular C—H⋯N hydrogen bonds occur in the complex cation. The crystal structure is mainly stabilized by Coulombic inter­actions. Weak intermolecular C—H⋯N inter­actions are also observed. PMID:22807778

  5. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  6. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin

    2018-02-01

    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  7. Enhanced photocatalytic performance from NiS/TiO2 p-n heterojunction nanosheet arrays

    NASA Astrophysics Data System (ADS)

    Qian, Long-Long; Li, Yan; Li, Jian-feng; Wang, Cheng-Wei

    2018-05-01

    A novel p-n heterostructural film photocatalyst of oriented NiS/TiO2 nanosheet arrays were designed and successfully fabricated via a simple two-step hydrothermal process, and its photodegradation activities of methyl orange (MO) were detailedly investigated. Combining p-type NiS nanoparticles with n-type TiO2 nanosheets to construct distributed p-n heterojunctions, the absorption edge of NiS/TiO2 red-shifted to about 471 nm and its photoresponse in visible range significantly enhanced. Compared with pure TiO2 nanosheet arrays (NSAs), the assembled NiS/TiO2 p-n heterostructural arrays with 0.003 M NiS in hydrothermal precursor solution showed an optimal degradation rate of k = 0.7368 h-1 for MO, achieving 76.3% photocatalytic efficiency within 120 min, which is about 2.34 times higher than that of pure TiO2 nanosheet arrays (k = 0.3144 h-1). Such enhanced photocatalytic activities should be attributed to both the high efficiency of photogenerated charge separation by the built-in electric field at interfaces of NiS-TiO2 and the oriented thin nanosheet structures for smoothly charge transportation for redox reactions at surfaces of NiS/TiO2.

  8. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoOnH 2O

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley

    2010-06-01

    The synthesis and crystal structure of NiMoOnH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.

  9. N-(2,3-Dimethyl­phen­yl)-4-hydr­oxy-2-methyl-2H-1,2-benzothia­zine-3-carboxamide 1,1-dioxide

    PubMed Central

    Siddiqui, Waseeq Ahmad; Bukahari, Iftikhar Hussain; Zia-ur-Rehman, Muhammad; Khan, Islam Ullah; Tizzard, Graham John

    2009-01-01

    In the crystal structure of the title compound, C18H18N2O4S, the thia­zine ring adopts a distorted half-chair conformation. 1,2-Benzothia­zines of this kind have a wide range of biological activities and are mainly used as medicines in the treatment of inflammation and rheumatoid arthritis. The enolic H atom is involved in an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring. The mol­ecules arrange themselves into centrosymmetric dimers by means of inter­molecular N—H⋯O hydrogen bonds. A weak inter­molcular C—H⋯O inter­action is also present. PMID:21582293

  10. Stratospheric N2O5, CH4, and N2O Profiles from IR Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Peyeret, C. Camy; Flaud, J.-M.; Perrin, A.; Rinsland, C. P.; Goldman, A.; Murcray, F. J.

    1993-01-01

    Stratospheric volume mixing ratio profiles of N2O5, CH4, and N2O have been retrieved from a set of 0.052/ cm resolution (FWHM) solar occultation spectra recorded at sunrise during a balloon flight from Aire sur I'Adour, France (44 deg N latitude) on 12 October 1990. The N2O5 results have been derived from measurements of the integrated absorption by the 1246/ cm band. Assuming a total intensity of 4.32 x 10(exp 17)cm(exp -1) molecule sq cm(exp -2) independent of temperature, the retrieved N2O5 volume mixing ratios in ppbv (parts per billion by volume, 10(exp -9)), interpolated to 2 km height spacings, are 1.64 +/- 0.49 at 37.5 km, 1.92 +/- 0.56 at 35.5 km, 2.06 +/- 0.47 at 33.5 km, 1.95 +/- 0.42 at 31.5 km, 1.60 +/- 0.33 at 29.5 km, 1.26 +/- 0.28 at 27.5 km, and 0.85 +/- 0.20 at 25.5 km. Error bars indicate the estimated I-sigma uncertainty including the error in the total band intensity (+/- 20% has been assumed). The retrieved profiles are compared with previous measurements and photochemical model results.

  11. Tinnunculite, C5H4N4O3 · 2H2O: Occurrences on the Kola Peninsula and Redefinition and Validation as a Mineral Species

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Belakovskiy, D. I.; Lykova, I. S.; Zubkova, N. V.; Shcherbakova, E. P.; Britvin, S. N.; Chervonnyi, A. D.

    2017-12-01

    Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as "guano microdeposits." The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. D calc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (-), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2 V obs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 O, 28.4 C, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/ c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern ( d, Å- I[ hkl]) are 8.82-84[002], 5.97-15[011], 5.63-24[102̅, 102], 4.22-22[112], 3.24-27[114̅,114], 3.18-100[210], 3.12-44[211̅, 211], 2.576-14[024].

  12. Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Mehandru, R.; Kim, S.; Ren, F.; Fitch, R. C.; Gillespie, J. K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; Crespo, A.; Gila, B. P.; Abernathy, C. R.; Pearton, S. J.

    2004-06-01

    Pt contacted AlGaN/GaN high electron mobility transistors with Sc2O3 gate dielectrics show reversible changes in drain-source current upon exposure to H2-containing ambients, even at room temperature. The changes in current (as high as 3 mA for relatively low gate voltage and drain-source voltage) are approximately an order of magnitude larger than for Pt/GaN Schottky diodes and a factor of 5 larger than Sc2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) diodes exposed under the same conditions. This shows the advantage of using a transistor structure in which the gain produces larger current changes upon exposure to hydrogen-containing ambients. The increase in current is the result of a decrease in effective barrier height of the MOS gate of 30-50 mV at 25 °C for 10% H2/90% N2 ambients relative to pure N2 and is due to catalytic dissociation of the H2 on the Pt contact, followed by diffusion to the Sc2O3/AlGaN interface.

  13. Genesis of avian influenza H9N2 in Bangladesh.

    PubMed

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-12-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011-2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans.

  14. Genesis of avian influenza H9N2 in Bangladesh

    PubMed Central

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011–2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans. PMID:26038507

  15. Water-Lubricated Intercalation in V2 O5 ·nH2 O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries.

    PubMed

    Yan, Mengyu; He, Pan; Chen, Ying; Wang, Shanyu; Wei, Qiulong; Zhao, Kangning; Xu, Xu; An, Qinyou; Shuang, Yi; Shao, Yuyan; Mueller, Karl T; Mai, Liqiang; Liu, Jun; Yang, Jihui

    2018-01-01

    Low-cost, environment-friendly aqueous Zn batteries have great potential for large-scale energy storage, but the intercalation of zinc ions in the cathode materials is challenging and complex. Herein, the critical role of structural H 2 O on Zn 2+ intercalation into bilayer V 2 O 5 ·nH 2 O is demonstrated. The results suggest that the H 2 O-solvated Zn 2+ possesses largely reduced effective charge and thus reduced electrostatic interactions with the V 2 O 5 framework, effectively promoting its diffusion. Benefited from the "lubricating" effect, the aqueous Zn battery shows a specific energy of ≈144 Wh kg -1 at 0.3 A g -1 . Meanwhile, it can maintain an energy density of 90 Wh kg -1 at a high power density of 6.4 kW kg -1 (based on the cathode and 200% Zn anode), making it a promising candidate for high-performance, low-cost, safe, and environment-friendly energy-storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structure of complexes of nitrilo tris methylene phosphonic acid with copper, [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] and Na{sub 4}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O, as bactericides and inhibitors of scaling and corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@uni.udm.ru

    2015-03-15

    Nitrilotris methylene phosphonate triaqua copper and octasodium bis(nitrilotris methylene phosphonate cuprate(II)) nonadecahydrate have been synthesized and investigated. [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] is crystallized in the sp. gr. P2{sub 1}/c, Z = 4, a = 9.2506(2) Å, b = 15.9815(2) Å, c = 9.5474(2) Å, β = 113.697(2)°. The copper atom is coordinated by oxygen atoms in the configuration of elongated octahedron; the ligand (of bridge type) links neighboring copper atoms. Na{sub 8}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O is crystallized in the sp. gr. P2{sub 1}/c, Z = 2, a = 11.24550(10) Å, b = 17.38980(10) Å,more » c = 13.5852(2) Å, β = 127.8120(10)°. This complex is chelating; the copper atom closes three five-membered N-C-P-O-Cu cycles with a shared Cu-N bond. Copper is coordinated in a distorted trigonal-bipyramidal configuration.« less

  17. Potential short-term losses of N2O and N2 from high concentrations of biogas digestate in arable soils

    NASA Astrophysics Data System (ADS)

    Fiedler, Sebastian Rainer; Augustin, Jürgen; Wrage-Mönnig, Nicole; Jurasinski, Gerald; Gusovius, Bertram; Glatzel, Stephan

    2017-09-01

    Biogas digestate (BD) is increasingly used as organic fertilizer, but has a high potential for NH3 losses. Its proposed injection into soils as a countermeasure has been suggested to promote the generation of N2O, leading to a potential trade-off. Furthermore, the effect of high nutrient concentrations on N2 losses as they may appear after injection of BD into soil has not yet been evaluated. Hence, we performed an incubation experiment with soil cores in a helium-oxygen atmosphere to examine the influence of soil substrate (loamy sand, clayey silt), water-filled pore space (WFPS; 35, 55, 75 %) and application rate (0, 17.6 and 35.2 mL BD per soil core, 250 cm3) on the emission of N2O, N2 and CO2 after the usage of high loads of BD. To determine the potential capacity for gaseous losses, we applied anaerobic conditions by purging with helium for the last 24 h of incubation. Immediate N2O and N2 emissions as well as the N2 / (N2O+N2) product ratio depended on soil type and increased with WFPS, indicating a crucial role of soil gas diffusivity for the formation and emission of nitrogenous gases in agricultural soils. However, emissions did not increase with the application rate of BD. This is probably due to an inhibitory effect of the high NH4+ content of BD on nitrification. Our results suggest a larger potential for N2O formation immediately following BD injection in the fine-textured clayey silt compared to the coarse loamy sand. By contrast, the loamy sand showed a higher potential for N2 production under anaerobic conditions. Our results suggest that short-term N losses of N2O and N2 after injection may be higher than probable losses of NH3 following surface application of BD.

  18. [μ-10,21-Dimethyl-3,6,14,17-tetra-za-tricyclo-[17.3.1.1]tetra-cosa-1(23),2,6,8,10,12 (24),13,17,19,21-deca-ene-23,24-diolato-κN,N,O,O:κN,N,O,O]bis-(perchlorato-κO)dimanganese(II).

    PubMed

    Liu, Jing; Pan, Zhi-Quan; Zhou, Hong; Li, Yi-Zhi

    2008-11-08

    In the centrosymmetric and dinuclear title complex, [Mn(2)(C(22)H(22)N(4)O(2))(ClO(4))(2)], the two Mn atoms are bridged by two phenolate O atoms of the N(4)O(2) macrocycle with an Mn⋯Mn distance of 2.9228 (11) Å. The distorted square-pyramidal N(2)O(3) coordination geometry is completed by an O atom derived from a perchlorate anion.

  19. A novel highly efficient adsorbent {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n: Synthesis, crystal structure, magnetic and arsenic (V) absorption capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua

    2018-05-01

    A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.

  20. Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2 /NH3 Cycle.

    PubMed

    Bao, Di; Zhang, Qi; Meng, Fan-Lu; Zhong, Hai-Xia; Shi, Miao-Miao; Zhang, Yu; Yan, Jun-Min; Jiang, Qing; Zhang, Xin-Bo

    2017-01-01

    Using tetrahexahedral gold nanorods as a heterogeneous electrocatalyst, an electrocatalytic N 2 reduction reaction is shown to be possible at room temperature and atmospheric pressure, with a high Faradic efficiency up to 4.02% at -0.2 V vs reversible hydrogen electrode (1.648 µg h -1 cm -2 and 0.102 µg h -1 cm -2 for NH 3 and N 2 H 4 ·H 2 O, respectively). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    NASA Astrophysics Data System (ADS)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  2. Poly[mu2-(N-hydroxypyridine-2-carboxamidine)-mu2-nitrato-silver(I)].

    PubMed

    Cui, Ai-Li; Han, Peng; Yang, Hui-Juan; Wang, Ru-Ji; Kou, Hui-Zhong

    2007-12-01

    In the title complex, [Ag(NO3)(C6H7N3O)]n or [Ag(NO3)(pyaoxH2)] (pyaoxH2 is N-hydroxypyridine-2-carboxamidine), the Ag+ ion is bridged by the pyaoxH2 ligands and nitrate anions, giving rise to a two-dimensional molecular structure. Each pyaoxH2 ligand coordinates to two Ag+ ions using its pyridyl and carboxamidine N atoms, and the OH and the NH2 groups are uncoordinated. Each nitrate anion uses two O atoms to coordinate to two Ag+ ions. The Ag...Ag separation via the pyaoxH2 bridge is 2.869 (1) A, markedly shorter than that of 6.452 (1) A via the nitrate bridge. The two-dimensional structure is fishscale-like, and can be described as pyaoxH2-bridged Ag2 nodes that are further linked by nitrate anions. Hydrogen bonding between the amidine groups and the nitrate O atoms connects adjacent layers into a three-dimensional network.

  3. Isotopic Monitoring of N2O Emissions from Wastewater Treatment: Evidence for N2O Production Associated with Anammox Metabolism?

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Wunderlin, P.; Joss, A.; Emmenegger, L.; Kipf, M.; Wolf, B.; Mohn, J.

    2015-12-01

    Microbial production is the major source of N2O, the strongest greenhouse gas produced within the nitrogen cycle, and the most important stratospheric ozone destructant released in the 21st century. Wastewater treatment is an important and growing source of N2O, with best estimates predicting N2O emissions from this sector will have increased by >25% by 2020. Novel treatment employing partial nitritation-anammox, rather than traditional nitrification-denitrification, has the potential to achieve a neutral carbon footprint due to increased biogas production - if N2O production accounts for <0.5-1% of total nitrogen turnover. As a further motivation for this research, microbial pathways identified from wastewater treatment can be applied to our understanding of N cycling in the natural environment. This study presents the first online isotopic measurements of offgas N2O from a partial-nitritation anammox reactor 1. The measured N2O isotopic composition - in particular the N2O isotopic site preference (SP = δ15Nα - δ15Nβ) - was used to understand N2O production pathways in the reactor. When N2O emissions peaked due to high dissolved oxygen concentrations, low SP showed that N2O was produced primarily via nitrifier denitrification by ammonia oxidizing bacteria (AOBs). N2O production by AOBs via NH2OH oxidation, in contrast, did not appear to be important under any conditions. Over the majority of the one-month measurement period, the measured SP was much higher than expected following our current understanding of N2O production pathways 2. SP reached 41‰ during normal operating conditions and achieved a maximum of 45‰ when nitrite was added under anoxic conditions. These results could be explained by unexpectedly strong heterotrophic N2O reduction despite low dissolved organic matter concentrations, or by an incomplete understanding of isotopic fractionation during N2O production from NH2OH oxidation by AOBs - however the explanation most consistent with all

  4. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    PubMed

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  5. Infrared spectra of CO2-doped hydrogen clusters, (H2)N-CO2.

    PubMed

    McKellar, A R W

    2012-03-07

    Clusters of para-H(2) and/or ortho-H(2) containing a single carbon dioxide molecule are studied by high resolution infrared spectroscopy in the 2300 cm(-1) region of the CO(2) ν(3) fundamental band. The (H(2))(N)-CO(2) clusters are formed in a pulsed supersonic jet expansion from a cooled nozzle and probed using a rapid scan tunable diode laser. Simple symmetric rotor type spectra are observed with little or no resolved K-structure, and prominent Q-branch features for ortho-H(2) but not para-H(2). Observed rotational constants and vibrational shifts are reported for ortho-H(2) up to N = 7 and para-H(2) up to N = 15, with the N > 7 assignments only made possible with the help of theoretical simulations. The para-H(2) cluster with N = 12 shows clear evidence for superfluid effects, in good agreement with theory. The presence of larger clusters with N > 15 is evident in the spectra, but specific assignments are not possible. Mixed para- + ortho-H(2) cluster transitions are well predicted by linear interpolation between corresponding pure cluster line positions. © 2012 American Institute of Physics

  6. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.

    PubMed

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  7. N(2)O in small para-hydrogen clusters: Structures and energetics.

    PubMed

    Zhu, Hua; Xie, Daiqian

    2009-04-30

    We present the minimum-energy structures and energetics of clusters of the linear N(2)O molecule with small numbers of para-hydrogen molecules with pairwise additive potentials. Interaction energies of (p-H(2))-N(2)O and (p-H(2))-(p-H(2)) complexes were calculated by averaging the corresponding full-dimensional potentials over the H(2) angular coordinates. The averaged (p-H(2))-N(2)O potential has three minima corresponding to the T-shaped and the linear (p-H(2))-ONN and (p-H(2))-NNO structures. Optimization of the minimum-energy structures was performed using a Genetic Algorithm. It was found that p-H(2) molecules fill three solvation rings around the N(2)O axis, each of them containing up to five p-H(2) molecules, followed by accumulation of two p-H(2) molecules at the oxygen and nitrogen ends. The first solvation shell is completed at N = 17. The calculated chemical potential oscillates with cluster size up to the completed first solvation shell. These results are consistent with the available experimental measurements. (c) 2009 Wiley Periodicals, Inc.

  8. A Simple Restriction Fragment Length Polymorphism-Based Strategy That Can Distinguish the Internal Genes of Human H1N1, H3N2, and H5N1 Influenza A Viruses

    PubMed Central

    Cooper, Lynn A.; Subbarao, Kanta

    2000-01-01

    A simple molecular technique for rapid genotyping was developed to monitor the internal gene composition of currently circulating influenza A viruses. Sequence information from recent H1N1, H3N2, and H5N1 human virus isolates was used to identify conserved regions within each internal gene, and gene-specific PCR primers capable of amplifying all three virus subtypes were designed. Subtyping was based on subtype-specific restriction fragment length polymorphism (RFLP) patterns within the amplified regions. The strategy was tested in a blinded fashion using 10 control viruses of each subtype (total, 30) and was found to be very effective. Once standardized, the genotyping method was used to identify the origin of the internal genes of 51 influenza A viruses isolated from humans in Hong Kong during and immediately following the 1997–1998 H5N1 outbreak. No avian-human or H1-H3 reassortants were detected. Less than 2% (6 of 486) of the RFLP analyses were inconclusive; all were due to point mutations within a restriction site. The technique was also used to characterize the internal genes of two avian H9N2 viruses isolated from children in Hong Kong during 1999. PMID:10878047

  9. Anharmonic Vibrational Spectroscopy of the F-(H20)n, complexes, n=1,2

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Xantheas, Sotiris; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2003-01-01

    We report anharmonic vibrational spectra (fundamentals, first overtones) for the F-(H(sub 2)O) and F-(H(sub 2)O)2 clusters computed at the MP2 and CCSD(T) levels of theory with basis sets of triple zeta quality. Anharmonic corrections were estimated via the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The CC-VSCF anharmonic spectra obtained on the potential energy surfaces evaluated at the CCSD(T) level of theory are the first ones reported at a correlated level beyond MP2. We have found that the average basis set effect (TZP vs. aug-cc-pVTZ) is on the order of 30-40 cm(exp -1), whereas the effects of different levels of electron correlation [MP2 vs. CCSD(T)] are smaller, 20-30 cm(exp -1). However, the basis set effect is much larger in the case of the H-bonded O-H stretch of the F-(H(sub 2)O) cluster amounting to 100 cm(exp -1) for the fundamentals and 200 cm (exp -1) for the first overtones. Our calculations are in agreement with the limited available set of experimental data for the F-(H(sub 2)O) and F-(H(sub 2)O)2 systems and provide additional information that can guide further experimental studies.

  10. Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory

    DTIC Science & Technology

    2017-05-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9723 Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular...Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory L. Huang, S.G. Lambrakos, and L. Massa1 Naval Research Laboratory, Code...and time-dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in

  11. Activation cross section and isomeric cross-section ratio for the 151Eu(n,2n)150m,gEu process

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Li, Suyuan; Jiang, Li

    2018-07-01

    The cross sections of 151Eu(n,2n)150m,gEu reactions and their isomeric cross section ratios σm/σt have been measured experimentally. Cross sections are measured, relative to a reference 93Nb(n,2n)92mNb reaction cross section, by means of the activation technique at three neutron energies 13.5, 14.1, and 14.8 MeV. Monoenergetic neutron beams were formed via the 3H(d,n)4He reaction and both Eu2O3 samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The activities induced in the reaction products were measured using high-resolution gamma ray spectroscopy. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  12. N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH.

    PubMed

    Chen, Jun; Wang, Lei; Zheng, Ji; Chen, Jianmeng

    2015-07-01

    Chemical absorption-biological reduction (BioDeNOx), which uses Fe(II)(EDTA) as a complexing agent for promoting the mass transfer efficiency of NO from gas to water, is a promising technology for removing nitric oxide (NO) from flue gases. The carbon source and pH are important parameters for Fe(II)(EDTA)-NO (the production of absorption) reduction and N2O emissions from BioDeNOx systems. Batch tests were performed to evaluate the effects of four different carbon sources (i.e., methanol, ethanol, sodium acetate, and glucose) on Fe(II)(EDTA)-NO reduction and N2O emissions at an initial pH of 7.2 ± 0.2. The removal efficiency of Fe(II)(EDTA)-NO was 93.9%, with a theoretical rate of 0.77 mmol L(-1) h(-1) after 24 h of operation. The highest N2O production was 0.025 mmol L(-1) after 3 h when glucose was used as the carbon source. The capacities of the carbon sources to enhance the activity of the Fe(II)(EDTA)-NO reductase enzyme decreased in the following order based on the C/N ratio: glucose > ethanol > sodium acetate > methanol. Over the investigated pH range of 5.5-8.5, the Fe(II)(EDTA)-NO removal efficiency was highest at a pH of 7.5, with a theoretical rate of 0.88 mmol L(-1) h(-1). However, the N2O production was lowest at a pH of 8.5. The primary effect of pH on denitrification resulted from the inhibition of nosZ in acidic conditions.

  13. [Enhanced remediation of 4-chloronitrobenzene contaminated groundwater with nanoscale zero-valence iron (nZVI) catalyzed hydrogen peroxide (H2O2)].

    PubMed

    Fu, Rong-Bing

    2014-04-01

    Chemical oxidation-reduction technology is an important way to quickly remedy contaminated groundwater. Nanoscale zero-valent iron (nZVI) was produced by liquid-phase reduction using FeSO4 and NaBH4, and characterized by SEM and XRD. The remediation of 4-chloronitrobezene (4-CINB) contaminated groundwater at ambient temperature and pressure was conducted with the nZVI catalytic H2O2 process, and the affecting factors and degradation mechanisms were investigated. The results indicated that under initial pH 3.0 at the temperature of 30 degrees C, after 30 mins of reaction, 4-ClNB in groundwater was completely degraded when the concentrations of nZVI and H2O2 were 268.8 mg x L(-1) and 4.90 mmol x L(-1), respectively. 4-chloronitrosobenzene, 4-chlorophenylhydroxylamine, 4-chloroazoxybenzene, 4-chloroaniline, 4-chloroazobenzene, 4-benzoquinone, acetic acid, formic acid, oxalic acid and chlorine ion were identified as the major intermediates of 4-ClNB degradation after the process. A tentative pathway for the degradation of 4-ClNB was proposed.

  14. Bis(O-n-butyl dithio­carbonato-κ2 S,S′)bis­(pyridine-κN)manganese(II)

    PubMed Central

    Alam, Naveed; Ehsan, Muhammad Ali; Zeller, Matthias; Mazhar, Muhammad; Arifin, Zainudin

    2011-01-01

    The structure of the title manganese complex, [Mn(C5H9OS2)2(C5H5N)2] or [Mn(S2CO-n-Bu)2(C5H5N)2], consists of discrete monomeric entities with Mn2+ ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans-N2S4 donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octa­hedral geometry are caused by the bite angle of the bidentate κ2-S2CO-n-Bu ligands [69.48 (1)°]. The O(CH2)3(CH3) chains of the O-n-butyl dithio­carbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2). PMID:22090847

  15. Characteristics of supercritical turbulence from Direct Numerical Simulations of C(sub 7)H(sub 16)/N(sub 2) and O(sub 2)/H(sub 2)

    NASA Technical Reports Server (NTRS)

    Okong'o, N. A.; Bellan, J.

    2003-01-01

    Analysis of Direct Numerical Simulations (DNS) transitional states of temporal, supercritical mixing layers for C7H16/N2 and O2/H2 shows that the evolution of all layers is characterized by the formation of high-density-gradient magnitude (HDGM) regions.

  16. Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in migratory birds, 2014-2015.

    PubMed

    Bi, Yuhai; Chen, Jianjun; Zhang, Zhenjie; Li, Mingxin; Cai, Tianlong; Sharshov, Kirill; Susloparov, Ivan; Shestopalov, Alexander; Wong, Gary; He, Yubang; Xing, Zhi; Sun, Jianqing; Liu, Di; Liu, Yingxia; Liu, Lei; Liu, Wenjun; Lei, Fumin; Shi, Weifeng; Gao, George F

    2016-08-01

    A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015. Based on the genetic and phylogenetic analyses, the viruses possess a stable gene constellation with a Clade 2.3.2.1c HA, a H9N2-derived PB2 gene and the other six genes of Asian H5N1-origin. The Clade 2.3.2.1c H5N1 reassortants displayed a high genetic relationship to a human H5N1 strain (A/Alberta/01/2014). Further analysis showed that similar viruses have been circulating in wild birds in China, Russia, Dubai (Western Asia), Bulgaria and Romania (Europe), as well as domestic poultry in some regions of Africa. The affected areas include the Central Asian, East Asian-Australasian, West Asian-East African, and Black Sea/Mediterranean flyways. These results show that the novel Clade 2.3.2.1c reassortant viruses are circulating worldwide and may have gained a selective advantage in migratory birds, thus posing a serious threat to wild birds and potentially humans.

  17. N-Paranitrophénylhydrazono-α-(2-méthyl­benzimidazol-1-yl)glyoxylate d’éthyle

    PubMed Central

    Boudina, Aicha; Baouid, Abdesselam; Driss, Mohamed; Soumhi, El Hassane

    2011-01-01

    There are two independent mol­ecules in the asymmetric unit of the title compound {systematic name: ethyl 2-(2-methyl-1H-benzimidazol-1-yl)-2-[2-(4-nitro­phen­yl)hydrazinyl­idene]ethano­ate}, C18H17N5O4. Each mol­ecule and its inversion-related partner are linked by a pair of inter­molecular N—H⋯N hydrogen bonds, forming inversion dimers in the crystal structure. PMID:21836981

  18. pH Control Enables Simultaneous Enhancement of Nitrogen Retention and N2O Reduction in Shewanella loihica Strain PV-4.

    PubMed

    Kim, Hayeon; Park, Doyoung; Yoon, Sukhwan

    2017-01-01

    pH has been recognized as one of the key environmental parameters with significant impacts on the nitrogen cycle in the environment. In this study, the effects of pH on NO 3 - /NO 2 - fate and N 2 O emission were examined with Shewanella loihica strain PV-4, an organism with complete denitrification and respiratory ammonification pathways. Strain PV-4 was incubated at varying pH with lactate as the electron donor and NO 3 - /NO 2 - and N 2 O as the electron acceptors. When incubated with NO 3 - and N 2 O at pH 6.0, transient accumulation of N 2 O was observed and no significant NH 4 + production was observed. At pH 7.0 and 8.0, strain PV-4 served as a N 2 O sink, as N 2 O concentration decreased consistently without accumulation. Respiratory ammonification was upregulated in the experiments performed at these higher pH values. When NO 2 - was used in place of NO 3 - , neither growth nor NO 2 - reduction was observed at pH 6.0. NH 4 + was the exclusive product from NO 2 - reduction at both pH 7.0 and 8.0 and neither production nor consumption of N 2 O was observed, suggesting that NO 2 - regulation superseded pH effects on the nitrogen-oxide dissimilation reactions. When NO 3 - was the electron acceptor, nirK transcription was significantly upregulated upon cultivation at pH 6.0, while nrfA transcription was significantly upregulated at pH 8.0. The highest level of nosZ transcription was observed at pH 6.0 and the lowest at pH 8.0. With NO 2 - as the electron acceptor, transcription profiles of nirK, nrfA , and nosZ were statistically indistinguishable between pH 7.0 and 8.0. The transcriptions of nirK and nosZ were severely downregulated regardless of pH. These observations suggested that the kinetic imbalance between N 2 O production and consumption, but neither decrease in expression nor activity of NosZ, was the major cause of N 2 O accumulation at pH 6.0. The findings also suggest that simultaneous enhancement of nitrogen retention and N 2 O emission reduction

  19. In Vivo Selection of H1N2 Influenza Virus Reassortants in the Ferret Model

    PubMed Central

    Angel, Matthew; Kimble, J. Brian; Pena, Lindomar; Wan, Hongquan

    2013-01-01

    Although the ferret model has been extensively used to study pathogenesis and transmission of influenza viruses, little has been done to determine whether ferrets are a good surrogate animal model to study influenza virus reassortment. It has been previously shown that the pandemic 2009 H1N1 (H1N1pdm) virus was able to transmit efficiently in ferrets. In coinfection studies with either seasonal H1N1 or H3N2 strains (H1N1s or H3N2s, respectively), the H1N1pdm virus was able to outcompete these strains and become the dominant transmissible virus. However, lack of reassortment could have been the result of differences in the cell or tissue tropism of these viruses in the ferret. To address this issue, we performed coinfection studies with recombinant influenza viruses carrying the surface genes of a seasonal H3N2 strain in the background of an H1N1pdm strain and vice versa. After serial passages in ferrets, a dominant H1N2 virus population was obtained with a constellation of gene segments, most of which, except for the neuraminidase (NA) and PB1 segments, were from the H1N1pdm strain. Our studies suggest that ferrets recapitulate influenza virus reassortment events. The H1N2 virus generated through this process resembles similar viruses that are emerging in nature, particularly in pigs. PMID:23302886

  20. Crystal structures of Sr(ClO4)2·3H2O, Sr(ClO4)2·4H2O and Sr(ClO4)2·9H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The title compounds, strontium perchlorate trihydrate {di-μ-aqua-aquadi-μ-perchlorato-strontium, [Sr(ClO4)2(H2O)3]n}, strontium perchlorate tetra­hydrate {di-μ-aqua-bis­(tri­aqua­diperchloratostrontium), [Sr2(ClO4)4(H2O)8]} and strontium perchlorate nona­hydrate {hepta­aqua­diperchloratostrontium dihydrate, [Sr(ClO4)2(H2O)7]·2H2O}, were crystallized at low temperatures according to the solid–liquid phase diagram. The structures of the tri- and tetra­hydrate consist of Sr2+ cations coordinated by five water mol­ecules and four O atoms of four perchlorate tetra­hedra in a distorted tricapped trigonal–prismatic coordination mode. The asymmetric unit of the trihydrate contains two formula units. Two [SrO9] polyhedra in the trihydrate are connected by sharing water mol­ecules and thus forming chains parallel to [100]. In the tetra­hydrate, dimers of two [SrO9] polyhedra connected by two sharing water mol­ecules are formed. The structure of the nona­hydrate contains one Sr2+ cation coordinated by seven water mol­ecules and by two O atoms of two perchlorate tetra­hedra (point group symmetry ..m), forming a tricapped trigonal prism (point group symmetry m2m). The structure contains additional non-coordinating water mol­ecules, which are located on twofold rotation axes. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in each of the three structures. PMID:25552979

  1. Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses.

    PubMed

    Urbaniak, Kinga; Markowska-Daniel, Iwona; Kowalczyk, Andrzej; Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Frącek, Barbara; Pejsak, Zygmunt

    2017-07-08

    The influenza A virus is highly variable, which, to some degree, is caused by the reassortment of viral genetic material. This process plays a major role in the generation of novel influenza virus strains that can emerge in a new host population. Due to the susceptibility of pigs to infections with avian, swine and human influenza viruses, they are considered intermediate hosts for the adaptation of the avian influenza virus to humans. In order to test the reassortment process in pigs, they were co-infected with H3N2 A/swine/Gent/172/2008 (Gent/08) and H1N1 A/duck/Italy/1447/2005 (Italy/05) and co-housed with a group of naïve piglets. The Gent/08 strains dominated over Italy/05, but reassortment occurred. The reassortant strains of the H1N1 subtype (12.5%) with one gene (NP or M) of swine-origin were identified in the nasal discharge of the contact-exposed piglets. These results demonstrate that despite their low efficiency, genotypically and phenotypically different influenza A viruses can undergo genetic exchange during co-infection of pigs.

  2. High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses

    PubMed Central

    Sun, Yipeng; Qin, Kun; Wang, Jingjing; Pu, Juan; Tang, Qingdong; Hu, Yanxin; Bi, Yuhai; Zhao, Xueli; Yang, Hanchun; Shu, Yuelong; Liu, Jinhua

    2011-01-01

    H9N2 influenza viruses have been circulating worldwide in multiple avian species and repeatedly infecting mammals, including pigs and humans, posing a significant threat to public health. The coexistence of H9N2 and pandemic influenza H1N1/2009 viruses in pigs and humans provides an opportunity for these viruses to reassort. To evaluate the potential public risk of the reassortant viruses derived from these viruses, we used reverse genetics to generate 127 H9 reassortants derived from an avian H9N2 and a pandemic H1N1 virus, and evaluated their compatibility, replication ability, and virulence in mice. These hybrid viruses showed high genetic compatibility and more than half replicated to a high titer in vitro. In vivo studies of 73 of 127 reassortants revealed that all viruses were able to infect mice without prior adaptation and 8 reassortants exhibited higher pathogenicity than both parental viruses. All reassortants with higher virulence than parental viruses contained the PA gene from the 2009 pandemic virus, revealing the important role of the PA gene from the H1N1/2009 virus in generating a reassortant virus with high public health risk. Analyses of the polymerase activity of the 16 ribonucleoprotein combinations in vitro suggested that the PA of H1N1/2009 origin also enhanced polymerase activity. Our results indicate that some avian H9-pandemic reassortants could emerge with a potentially higher threat for humans and also highlight the importance of monitoring the H9-pandemic reassortant viruses that may arise, especially those that possess the PA gene of H1N1/2009 origin. PMID:21368167

  3. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte.

    PubMed

    Walker, Wesley; Giordani, Vincent; Uddin, Jasim; Bryantsev, Vyacheslav S; Chase, Gregory V; Addison, Dan

    2013-02-13

    A major challenge in the development of rechargeable Li-O(2) batteries is the identification of electrolyte materials that are stable in the operating environment of the O(2) electrode. Straight-chain alkyl amides are one of the few classes of polar, aprotic solvents that resist chemical degradation in the O(2) electrode, but these solvents do not form a stable solid-electrolyte interphase (SEI) on the Li anode. The lack of a persistent SEI leads to rapid and sustained solvent decomposition in the presence of Li metal. In this work, we demonstrate for the first time successful cycling of a Li anode in the presence of the solvent, N,N-dimethylacetamide (DMA), by employing a salt, lithium nitrate (LiNO(3)), that stabilizes the SEI. A Li-O(2) cell containing this electrolyte composition is shown to cycle for more than 2000 h (>80 cycles) at a current density of 0.1 mA/cm(2) with a consistent charging profile, good capacity retention, and O(2) detected as the primary gaseous product formed during charging. The discovery of an electrolyte system that is compatible with both electrodes in a Li-O(2) cell may eliminate the need for protecting the anode with a ceramic membrane.

  4. Isolation and genetic characterization of a novel 2.2.1.2a H5N1 virus from a vaccinated meat-turkeys flock in Egypt.

    PubMed

    Salaheldin, Ahmed H; Veits, Jutta; Abd El-Hamid, Hatem S; Harder, Timm C; Devrishov, Davud; Mettenleiter, Thomas C; Hafez, Hafez M; Abdelwhab, Elsayed M

    2017-03-09

    Vaccination of poultry to control highly pathogenic avian influenza virus (HPAIV) H5N1 is used in several countries. HPAIV H5N1 of clade 2.2.1 which is endemic in Egypt has diversified into two genetic clades. Clade 2.2.1.1 represents antigenic drift variants in vaccinated commercial poultry while clade 2.2.1.2 variants are detected in humans and backyard poultry. Little is known about H5N1 infection in vaccinated turkeys under field conditions. Here, we describe an HPAI H5N1 outbreak in a vaccinated meat-turkey flock in Egypt. Birds were vaccinated with inactivated H5N2 and H5N1 vaccines at 8 and 34 days of age, respectively. At 72 nd day of age (38 days post last vaccination), turkeys exhibited mild respiratory signs, cyanosis of snood and severe congestion of the internal organs. Survivors had a reduction in feed consumption and body gain. A mortality of ~29% cumulated within 10 days after the onset of clinical signs. Laboratory diagnosis using RT-qPCRs revealed presence of H5N1 but was negative for H7 and H9 subtypes. A substantial antigenic drift against different serum samples from clade 2.2.1.1 and clade 2.3.4.4 was observed. Based on full genome sequence analysis the virus belonged to clade 2.2.1.2 but clustered with recent H5N1 viruses from 2015 in poultry in Israel, Gaza and Egypt in a novel subclade designated here 2.2.1.2a which is distinct from 2014/2015 2.2.1.2 viruses. These viruses possess 2.2.1.2 clade-specific genetic signatures and also mutations in the HA similar to those in clade 2.2.1.1 that enabled evasion from humoral immune response. Taken together, this manuscript describes a recent HPAI H5N1 outbreak in vaccinated meat-turkeys in Egypt after infection with a virus representing novel distinct 2.2.1.2a subclade. Infection with HPAIV H5N1 in commercial turkeys resulted in significant morbidity and mortality despite of vaccination using H5 vaccines. The isolated virus showed antigenic drift and clustered in a novel cluster designated here

  5. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    PubMed

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  6. Highly Pathogenic Avian Influenza H5N1 Clade 2.3.2.1c Virus in Lebanon, 2016.

    PubMed

    El Romeh, Ali; Zecchin, Bianca; Fusaro, Alice; Ibrahim, Elias; El Bazzal, Bassel; El Hage, Jeanne; Milani, Adelaide; Zamperin, Gianpiero; Monne, Isabella

    2017-06-01

    We report the phylogenetic analysis of the first outbreak of H5N1 highly pathogenic avian influenza virus detected in Lebanon from poultry in April 2016. Our whole-genome sequencing analysis revealed that the Lebanese H5N1 virus belongs to genetic clade 2.3.2.1c and clusters with viruses from Europe and West Africa.

  7. N2O emission from plant surfaces - light stimulated and a global phenomenon.

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Teis; Bruhn, Dan; Ambus, Per

    2017-04-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed. Literature: Mikkelsen TN, Bruhn D & Ambus P. (2016). Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth. Progress in Botany, DOI 10.1007/124_2016_10. Bruhn D, Albert KR, Mikkelsen TN & Ambus P. (2014). UV-induced N2O emission from plants. Atmospheric Environment 99, 206-214.

  8. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China.

    PubMed

    Cui, Qian; Song, Changchun; Wang, Xianwei; Shi, Fuxi; Yu, Xueyang; Tan, Wenwen

    2018-03-01

    Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N 2 O fluxes and the N 2 O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N 2 O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N 2 O fluxes ranged from 6.62 to 9.34μgm -2 h -1 in the warming plot and ranged from 0.41 to 4.55μgm -2 h -1 in the control plots. Warming treatment increased N 2 O fluxes by 147% and transformed the boreal peatlands from a N 2 O sink to a source. The primary driving factors for N 2 O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N 2 O fluxes. The results indicated that warming promoted N 2 O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N 2 O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M=Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M=Co, Cu, Mn): a high HQ/CAT ratio catalyst for hydroxylation of phenols.

    PubMed

    Bi, Jianhong; Kong, Lingtao; Huang, Zixiang; Liu, Jinhuai

    2008-06-02

    Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.

  10. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    PubMed

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  11. Removal of NO in NO/N2, NO/N2/O2, NO/CH4/N2, and NO/CH4/O2/N2 systems by flowing microwave discharges.

    PubMed

    Hueso, José L; Gonzalez-Elipe, Agustín R; Cotrino, José; Caballero, Alfonso

    2007-02-15

    In this paper, continuing previous work, we report on experiments carried out to investigate the removal of NO from simulated flue gas in nonthermal plasmas. The plasma-induced decomposition of small concentrations of NO in N2 used as the carrier gas and O2 and CH4 as minority components has been studied in a surface wave discharge induced with a surfatron launcher. The reaction products and efficiency have been monitored by mass spectrometry as a function of the composition of the mixture. NO is effectively decomposed into N2 and O2 even in the presence of O2, provided always that enough CH4 is also present in the mixture. Other majority products of the plasma reactions under these conditions are NH3, CO, and H2. In the absence of O2, decomposition of NO also occurs, although in that case HCN accompanies the other reaction products as a majority component. The plasma for the different reaction mixtures has been characterized by optical emission spectroscopy. Intermediate excited species of NO*, C*, CN*, NH*, and CH* have been monitored depending on the gas mixture. The type of species detected and their evolution with the gas composition are in agreement with the reaction products detected in each case. The observations by mass spectrometry and optical emission spectroscopy are in agreement with the kinetic reaction models available in literature for simple plasma reactions in simple reaction mixtures.

  12. New family of lanthanide-based inorganic-organic hybrid frameworks: Ln2(OH)4[O3S(CH2)nSO3]·2H2O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4) and their derivatives.

    PubMed

    Liang, Jianbo; Ma, Renzhi; Ebina, Yasuo; Geng, Fengxia; Sasaki, Takayoshi

    2013-02-18

    We report the synthesis and structure characterization of a new family of lanthanide-based inorganic-organic hybrid frameworks, Ln(2)(OH)(4)[O(3)S(CH(2))(n)SO(3)]·2H(2)O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4), and their oxide derivatives. Highly crystallized samples were synthesized by homogeneous precipitation of Ln(3+) ions from a solution containing α,ω-organodisulfonate salts promoted by slow hydrolysis of hexamethylenetetramine. The crystal structure solved from powder X-ray diffraction data revealed that this material comprises two-dimensional cationic lanthanide hydroxide {[Ln(OH)(2)(H(2)O)](+)}(∞) layers, which are cross-linked by α,ω-organodisulfonate ligands into a three-dimensional pillared framework. This hybrid framework can be regarded as a derivative of UCl(3)-type Ln(OH)(3) involving penetration of organic chains into two {LnO(9)} polyhedra. Substitutional modification of the lanthanide coordination promotes a 2D arrangement of the {LnO(9)} polyhedra. A new hybrid oxide, Ln(2)O(2)[O(3)S(CH(2))(n)SO(3)], which is supposed to consist of alternating {[Ln(2)O(2)](2+)}(∞) layers and α,ω-organodisulfonate ligands, can be derived from the hydroxide form upon dehydration/dehydroxylation. These hybrid frameworks provide new opportunities to engineer the interlayer chemistry of layered structures and achieve advanced functionalities coupled with the advantages of lanthanide elements.

  13. Are dual isotope and isotopomer ratios of N2O useful indicators for N2O turnover during denitrification in nitrate-contaminated aquifers?

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Eschenbach, Wolfram; Flessa, Heinz; von der Heide, Carolin; Weymann, Daniel

    2012-08-01

    Denitrifying aquifers are sources of the greenhouse gas N2O. Isotopic signatures reflect processes of production and reduction of N2O, but it is not clear to which extent these can be used to quantify those processes. We investigated the spatial distribution of isotopologue values of N2O (δ18O, average δ15N, and 15N site preference, SP) in two denitrifying sandy aquifers to study N2O production and reduction and associated isotope effects in groundwater. For the first time, we combined this approach with direct estimation of N2O reduction from excess-N2 analysis. Groundwater samples were collected from 15 monitoring wells and four multilevel sampling wells and analysed for NO3-, dissolved N2O, dissolved O2, excess N2 from denitrification and isotopic signatures of NO3- and N2O. Both aquifers exhibited high NO3- concentrations with average concentrations of 22 and 15 mg N L-1, respectively. Evidence of intense denitrification with associated N2O formation was obtained from mean excess-N2 of 3.5 and 4.3 mg N L-1, respectively. Isotopic signatures of N2O were highly variable with ranges of 17.6-113.2‰ (δ18O), -55.4 to 89.4‰ (δ15Nbulk) and 1.8-97.9‰ (SP). δ15N and δ18O of NO3- ranged from -2.1‰ to 65.5‰ and from -5‰ to 33.5‰, respectively. The relationships between δ15N of NO3-, δ15Nbulk and SP were not in good agreement with the distribution predicted by a Rayleigh-model of isotope fractionation. The large ranges of δ18O and SP of N2O as well as the close correlation between these values could be explained by the fact that N2O reduction to N2 was strongly progressed but variable. We confirm and explain that a large range in SP and δ18O is typical for N2O from denitrifying aquifers, showing that this source signature can be distinguished from the isotopic fingerprint of N2O emitted from soils without water-logging. We conclude that isotopologue values of N2O in our sites were not suitable to quantify production or reduction of N2O or the

  14. Theoretical study on the spectroscopic properties of CO3(*-).nH2O clusters: extrapolation to bulk.

    PubMed

    Pathak, Arup K; Mukherjee, Tulsi; Maity, Dilip K

    2008-10-24

    Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO(3)(*-).nH(2)O (n=1-8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second-order Moller-Plesset perturbation (MP2) and coupled cluster theory using the 6-311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO(3)(*-).nH(2)O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time-dependent density functional theory using the Becke three-parameter nonlocal exchange and the Lee-Yang-Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO(3)(*-).8H(2)O cluster is in excellent agreement with the reported experimental spectrum for CO(3)(*-) (aq), obtained based on pulse radiolysis experiments.

  15. Comparison of the physical, chemical and electrical properties of ALD Al 2 O 3 on c- and m- plane GaN: Comparison of the physical, chemical and electrical properties of ALD Al 2 O 3 on c- and m- plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, D.; Hossain, T.; Nepal, N.

    2014-02-01

    Our study compares the physical, chemical and electrical properties of Al 2O 3 thin films deposited on gallium polar c- and nonpolar m -plane GaN substrates by atomic layer deposition (ALD). Correlations were sought between the film's structure, composition, and electrical properties. The thickness of the Al 2O 3 films was 19.2 nm as determined from a Si witness sample by spectroscopic ellipsometry. We measured the gate dielectric was slightly aluminum-rich (Al:O=1:1.3) from X-ray photoelectron spectroscopy (XPS) depth profile, and the oxide-semiconductor interface carbon concentration was lower on c -plane GaN. The oxide's surface morphology was similar on both substrates,more » but was smoothest on c -plane GaN as determined by atomic force microscopy (AFM). Circular capacitors (50-300 μm diameter) with Ni/Au (20/100 nm) metal contacts on top of the oxide were created by standard photolithography and e-beam evaporation methods to form metal-oxide-semiconductor capacitors (MOSCAPs). Moreover, the alumina deposited on c -plane GaN showed less hysteresis (0.15 V) than on m -plane GaN (0.24 V) in capacitance-voltage (CV) characteristics, consistent with its better quality of this dielectric as evidenced by negligible carbon contamination and smooth oxide surface. These results demonstrate the promising potential of ALD Al 2O 3 on c -plane GaN, but further optimization of ALD is required to realize the best properties of Al 2O 3 on m -plane GaN.« less

  16. A study of Pd/SO4/ZrO2/Al2O3 catalysts in n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Dzhikiya, O. V.; Smolikov, M. D.; Kazantsev, K. V.; Yablokova, S. S.; Kireeva, T. V.; Paukshtis, E. A.; Gulyaeva, T. I.; Belyi, A. S.

    2017-08-01

    The effect of palladium concentration in a range from 0.02 to 1.6 wt.% on characteristics of n-hexane isomerization was studied. The (O2-Hchem) titration and O2 chemisorption study revealed that palladium in Pd/SO4/ZrO2/Al2O3 systems adsorbs hydrogen in a ratio H/Pds = 1.13-1.65 at./at. Investigation of the charge state of the metal by IR spectroscopy of adsorbed CO showed the presence of both the metallic (Pd0) and charged palladium species. Pd/SO4/ZrO2/Al2O3 catalysts with charged palladium atoms exhibit high activity and selectivity in n-hexane isomerization.

  17. OH-LIF measurement of H2/O2/N2 flames in a micro flow reactor with a controlled temperature profile

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Nakamura, H.; Tezuka, T.; Hasegawa, S.; Maruta, K.

    2014-11-01

    This paper presents combustion and ignition characteristic of H2/O2/N2 flames in a micro flow reactor with a controlled temperature profile. OH-LIF measurement was conducted to capture flame images. Flame responses were investigated for variable inlet flow velocity, U, and equivalence ratio, phi. Three kinds of flame responses were experimentally observed for the inlet flow velocities: stable flat flames (normal flames) in the high inlet flow velocity regime; unstable flames called Flames with Repetitive Extinction and Ignition (FREI) in the intermediate flow velocity regime; and stable weak flames in the low flow velocity regime, at phi = 0.6, 1.0 and 1.2. On the other hand, weak flame was not observed at phi = 3.0 by OH-LIF measurement. Computational OH mole fractions showed lower level at the rich conditions than those at stoichiometric and lean conditions. To examine this response of OH signal to equivalence ratio, rate of production analysis was conducted and four kinds of major contributed reaction for OH production: R3(O + H2 <=> H + OH); R38(H + O2 <=> O + OH); R46(H + HO2 <=> 2OH); and R86(2OH <=> O + H2O), were found. Three reactions among them, R3, R38 and R46, did not showed significant difference in rate of OH production for different equivalence ratios. On the other hand, rate of OH production from R86 at phi = 3.0 was extremely lower than those at phi = 0.6 and 1.0. Therefore, R86 was considered to be a key reaction for the reduction of the OH production at phi = 3.0.

  18. Modeling global annual N2O and NO emissions from fertilized fields

    NASA Astrophysics Data System (ADS)

    Bouwman, A. F.; Boumans, L. J. M.; Batjes, N. H.

    2002-12-01

    Information from 846 N2O emission measurements in agricultural fields and 99 measurements for NO emissions was used to describe the influence of various factors regulating emissions from mineral soils in models for calculating global N2O and NO emissions. Only those factors having a significant influence on N2O and NO emissions were included in the models. For N2O these were (1) environmental factors (climate, soil organic C content, soil texture, drainage and soil pH); (2) management-related factors (N application rate per fertilizer type, type of crop, with major differences between grass, legumes and other annual crops); and (3) factors related to the measurements (length of measurement period and frequency of measurements). The most important controls on NO emission include the N application rate per fertilizer type, soil organic-C content and soil drainage. Calculated global annual N2O-N and NO-N emissions from fertilized agricultural fields amount to 2.8 and 1.6 Mtonne, respectively. The global mean fertilizer-induced emissions for N2O and NO amount to 0.9% and 0.7%, respectively, of the N applied. These overall results account for the spatial variability of the main N2O and NO emission controls on the landscape scale.

  19. Crystal structure of poly[di­aqua­(μ2-benzene-1,4-di­carboxyl­ato-κ2 O 1:O 4)(μ2-benzene-1,4-di­carboxyl­ato-κ4 O 1,O 1′:O 4,O 4′)bis­(μ2-3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole-κ2 N:N′)dinickel(II)

    PubMed Central

    Wu, Chao; Cao, Peng

    2015-01-01

    The asymmetric unit of the polymeric title compound, [Ni(C8H4O4)(C10H14N4)(H2O)]n, contains one Ni2+ cation, one coordinating water mol­ecule, one 3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole ligand and half each of two benzene-1,4-di­carboxyl­ate anions, the other halves being generated by inversion symmetry. The Ni2+ cation exhibits an octa­hedral N2O4 coordination sphere defined by the O atoms of the water mol­ecule and two different anions and the N atoms of two symmetry-related N-heterocycles. The N-heterocycles and both anions bridge adjacent Ni2+ cations into a three-dimensional network structure, with one of the anions in a bis-bidentate and the other in a bis-monodentate bridging mode. N—H⋯O and O—H⋯O hydrogen bonds between the N-heterocycles and water mol­ecules as donor groups and the carboxyl­ate O atoms as acceptor groups consolidate the crystal packing. PMID:26090165

  20. N-(3,4-Dimethyl­phen­yl)-4-hydr­oxy-2-methyl-2H-1,2-benzothia­zine-3-carboxamide 1,1-dioxide

    PubMed Central

    Siddiqui, Waseeq Ahmad; Ali, Muhammad; Zia-ur-Rehman, Muhammad; Sharif, Saima; Tizzard, Graham John

    2009-01-01

    1,2-Benzothia­zines similar to the title compound, C18H18N2O4S, are well known in the literature for their biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis. The thia­zine ring adopts a distorted half-chair conformation. The enolic H atom is involved in an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring. In the crystal, mol­ecules arrange themselves into centrosymmetric dimers by means of pairs of weak inter­molecular N—H⋯O hydrogen bonds. PMID:21582605

  1. Biochemical characterization of an α1,2-colitosyltransferase from Escherichia coli O55:H7

    PubMed Central

    Wu, Zhigang; Zhao, Guohui; Li, Tiehai; Qu, Jingyao; Guan, Wanyi; Wang, Jiajia; Ma, Cheng; Li, Xu; Zhao, Wei; Wang, Peng G; Li, Lei

    2016-01-01

    Colitose, also known as 3,6-dideoxy-l-galactose or 3-deoxy-l-fucose, is one of only five naturally occurring 3,6-dideoxyhexoses. Colitose was found in lipopolysaccharide of a number of infectious bacteria, including Escherichia coli O55 & O111 and Vibrio cholera O22 & O139. To date, no colitosyltransferase (ColT) has been characterized, probably due to the inaccessibility of the sugar donor, GDP-colitose. In this study, starting with chemically prepared colitose, 94.6 mg of GDP-colitose was prepared via a facile and efficient one-pot two-enzyme system involving an l-fucokinase/GDP-l-Fuc pyrophosphorylase and an inorganic pyrophosphatase (EcPpA). WbgN, a putative ColT from E. coli O55:H5 was then cloned, overexpressed, purified and biochemically characterized by using GDP-colitose as a sugar donor. Activity assay and structural identification of the synthetic product clearly demonstrated that wbgN encodes an α1,2-ColT. Biophysical study showed that WbgN does not require metal ion, and is highly active at pH 7.5–9.0. In addition, acceptor specificity study indicated that WbgN exclusively recognizes lacto-N-biose (Galβ1,3-GlcNAc). Most interestingly, it was found that WbgN exhibits similar activity toward GDP-l-Fuc (kcat/Km = 9.2 min−1 mM−1) as that toward GDP-colitose (kcat/Km = 12 min−1 mM−1). Finally, taking advantage of this, type 1 H-antigen was successfully synthesized in preparative scale. PMID:26703456

  2. Spectral studies on the interaction between lanthanum ion and the ligand: N,N'-ethylenebis-[2-(o-hydroxyphenolic)glycine].

    PubMed

    Yaqin, Zhao; Binsheng, Yang

    2005-11-01

    The interaction between N,N'-ethylenebis-[2-(o-hydroxyphenolic)glycine] (EHPG) and lanthanum was studied by the difference UV spectra and fluorescence spectra. At pH 7.4, 0.01 M N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (Hepes), with the addition of 1.0 x 10(-3)M lanthanum, two new peaks were observed at 238 nm and 294 nm by absorptivity spectroscopy compared with blank solution EHPG suggesting the interaction of lanthanum and EHPG. At the same time, the reaction could be measured by fluorescence spectra. The fluorescence intensity of EHPG at 310 nm was significantly decreased in the presence of lanthanum. The 1:1 stoichiometric ratio of EHPG to lanthanum was confirmed by both fluorescence and UV titration curves. In addition, the molar absorptivity of La-EHPG at 238 nm is (1.23+/-0.01)x10(4)cm(-1)M(-1). The conditional binding constant was calculated to be log K(La-EHPG)=12.09+/-0.37 on the basis of the result of UV titration curves.

  3. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  4. N(2)O emissions and source processes in snow-covered soils in the Swiss Alps.

    PubMed

    Mohn, Joachim; Steinlin, Christine; Merbold, Lutz; Emmenegger, Lukas; Hagedorn, Frank

    2013-01-01

    Nitrous oxide (N2O) emissions from snow-covered soils represent a significant fraction of the annual flux from alpine, subalpine or cold-temperate regions. In winter 2010-2011, we investigated the temporal variability of N2O emissions and source processes from a subalpine valley in the Swiss Alps. The study included regular measurements of N2O snow profiles at a fixed location and an intensive sampling campaign along a transversal cut through the valley with grassland at the bottom and coniferous forest at the slopes. During the intensive campaign, recently developed laser spectroscopy was employed for high-precision N2O isotopomer analysis. Maximum N2O fluxes (0.77±0.64 nmol m(-2h(-1)) were found for periods with elevated air temperature and, in contrast to our expectations, were higher from forest than from grassland in mid-February. At maximum snow height (63 cm) the main N2O source processes were heterotrophic denitrification and nitrifier denitrification. The reduction of N2O by heterotrophic denitrifiers was much more pronounced for the grassland compared with the forest soil, as indicated by the (15)N site preferences of 16.4±11.5 ‰ (grassland) and-1.6±2.1 ‰ (forest). This illustrates the potential of laser spectroscopic N2O isotopomer analysis for the identification of source processes even at low emission rates in nutrient poor ecosystems.

  5. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  6. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses

    PubMed Central

    Wu, Zu-Qun; Zhang, Yi; Zhao, Na; Yu, Zhao; Pan, Hao; Chan, Ta-Chien; Zhang, Zhi-Ruo; Liu, She-Lan

    2017-01-01

    This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections. PMID:28273867

  7. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses.

    PubMed

    Wu, Zu-Qun; Zhang, Yi; Zhao, Na; Yu, Zhao; Pan, Hao; Chan, Ta-Chien; Zhang, Zhi-Ruo; Liu, She-Lan

    2017-03-04

    This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections.

  8. Trichlorido(tetra­hydro­furan){(1,2,3,3a,7a-η)-1-[2-(1-trimethyl­silyl-1H-imidazol-2-yl-κN 3)-1-methyl­prop­yl]inden­yl}zirconium(IV)

    PubMed Central

    Guan, Shengzhou; Nie, Wanli; Borzov, Maxim V.

    2011-01-01

    The title compound, [ZrCl3(C19H25N2Si)(C4H8O)], was prepared from bis­(N,N-dimethyl­amido-κN)(2-{2-[(1,2,3,3a,7a-η)-inden­yl]-2-methyl­prop­yl}-1H-imidazolido-κN 1)zirconium(IV) [(C16H16N2)Zr(NMe2)] by reaction with excess Me3SiCl in tetra­hydro­furan (THF) at elevated temperature. The crystal studied contained a minor non-merohedral twin contaminant [6.3 (4)%] which was taken into account during the refinement. The coordination polyhedron of the ZrIV atom is a distorted octa­hedron [assuming that the five-membered ring of the indenyl group (Cp) occupies one coordination site], with the Cp group and a THF O atom at the apical positions and the three Cl and ligating N atoms at the equatorial positions. The Zr, Si and the methyl­ene C atoms deviate noticeably from the imidazole ring plane [by −0.197 (5), −0.207 (5) and 0.119 (6) Å, respectively]. The THF ligand adopts an envelope conformation. PMID:21754279

  9. The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2)

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Milz, M.; Buehler, S.; Orphal, J.; Stiller, G.

    2012-05-01

    The effect of collision-induced absorption by molecular oxygen (O2) and nitrogen (N2) on the outgoing longwave radiation (OLR) of the Earth's atmosphere has been quantified. We have found that on global average under clear-sky conditions the OLR is reduced due to O2 by 0.11 Wm-2 and due to N2 by 0.17 Wm-2. Together this amounts to 15% of the OLR-reduction caused by CH4 at present atmospheric concentrations. Over Antarctica the combined effect of O2 and N2 increases on average to about 38% of CH4 with single values reaching up to 80%. This is explained by less interference of H2O spectral bands on the absorption features of O2 and N2 for dry atmospheric conditions.

  10. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    PubMed

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Crystal structure and electrochemical properties of [Ni(bztmpen)(CH3CN)](BF4)2 {bztmpen is N-benzyl-N,N',N'-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine}.

    PubMed

    Chen, Lin; Ren, Gan; Guo, Yakun; Sang, Ge

    2017-06-01

    The mononuclear nickel title complex (acetonitrile-κ N ){ N -benzyl- N , N ', N '-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine}-nickel(II) bis-(tetra-fluor-ido-borate), [Ni(C 30 H 35 N 5 )(CH 3 CN)](BF 4 ) 2 , was prepared from the reaction of Ni(BF 4 ) 2 ·6H 2 O with N -benzyl- N , N ', N '-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine ( bztmpen ) in aceto-nitrile at room temperature. With an open site occupied by the aceto-nitrile mol-ecule, the nickel(II) atom is chelated by five N-atom sites from the ligand and one N atom from the ligand, showing an overall octa-hedral coordination environment. Compared with analogues where the 6-methyl substituent is absent, the bond length around the Ni 2+ cation are evidently longer. Upon reductive dissociation of the acetro-nitrile mol-ecule, the title complex has an open site for a catalytic reaction. The title complex has two redox couples at -1.50 and -1.80 V ( versus F c +/0 ) based on nickel. The F atoms of the two BF 4 - counter-anions are split into two groups and the occupancy ratios refined to 0.611 (18):0.389 (18) and 0.71 (2):0.29 (2).

  12. Electron collisions with the HCOOH···(H2O)n complexes (n = 1, 2) in liquid phase: the influence of microsolvation on the π* resonance of formic acid.

    PubMed

    Freitas, T C; Coutinho, K; Varella, M T do N; Lima, M A P; Canuto, S; Bettega, M H F

    2013-05-07

    We report momentum transfer cross sections for elastic collisions of low-energy electrons with the HCOOH···(H2O)n complexes, with n = 1, 2, in liquid phase. The scattering cross sections were computed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations, for energies ranging from 0.5 eV to 6 eV. We considered ten different structures of HCOOH···H2O and six structures of HCOOH···(H2O)2 which were generated using classical Monte Carlo simulations of formic acid in aqueous solution at normal conditions of temperature and pressure. The aim of this work is to investigate the influence of microsolvation on the π* shape resonance of formic acid. Previous theoretical and experimental studies reported a π* shape resonance for HCOOH at around 1.9 eV. This resonance can be either more stable or less stable in comparison to the isolated molecule depending on the complex structure and the water role played in the hydrogen bond interaction. This behavior is explained in terms of (i) the polarization of the formic acid molecule due to the water molecules and (ii) the net charge of the solute. The proton donor or acceptor character of the water molecules in the hydrogen bond is important for understanding the stabilization versus destabilization of the π* resonances in the complexes. Our results indicate that the surrounding water molecules may affect the lifetime of the π* resonance and hence the processes driven by this anion state, such as the dissociative electron attachment.

  13. Synthesis of the (N2)3- radical from Y2+ and its protonolysis reactivity to form (N2H2)2- via the Y[N(SiMe3)2]3/KC8 reduction system.

    PubMed

    Fang, Ming; Lee, David S; Ziller, Joseph W; Doedens, Robert J; Bates, Jefferson E; Furche, Filipp; Evans, William J

    2011-03-23

    Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.

  14. Novel H7N2 and H5N6 Avian Influenza A Viruses in Sentinel Chickens: A Sentinel Chicken Surveillance Study.

    PubMed

    Zhao, Teng; Qian, Yan-Hua; Chen, Shan-Hui; Wang, Guo-Lin; Wu, Meng-Na; Huang, Yong; Ma, Guang-Yuan; Fang, Li-Qun; Gray, Gregory C; Lu, Bing; Tong, Yi-Gang; Ma, Mai-Juan; Cao, Wu-Chun

    2016-01-01

    In 2014, a sentinel chicken surveillance for avian influenza viruses was conducted in aquatic bird habitat near Wuxi City, Jiangsu Province, China. Two H7N2, one H5N6, and two H9N2 viruses were isolated. Sequence analysis revealed that the H7N2 virus is a novel reassortant of H7N9 and H9N2 viruses and H5N6 virus is a reassortant of H5N1 clade 2.3.4 and H6N6 viruses. Substitutions V186 and L226 (H3 numbering) in the hemagglutinin (HA) gene protein was found in two H7N2 viruses but not in the H5N6 virus. Two A138 and A160 mutations were identified in the HA gene protein of all three viruses but a P128 mutation was only observed in the H5N6 virus. A deletion of 3 and 11 amino acids in the neuraminidase stalk region was found in two H7N2 and H5N6 viruses, respectively. Moreover, a mutation of N31 in M2 protein was observed in both two H7N2 viruses. High similarity of these isolated viruses to viruses previously identified among poultry and humans, suggests that peridomestic aquatic birds may play a role in sustaining novel virus transmission. Therefore, continued surveillance is needed to monitor these avian influenza viruses in wild bird and domestic poultry that may pose a threat to poultry and human health.

  15. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses

    PubMed Central

    2013-01-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs. PMID:24289094

  16. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses.

    PubMed

    Moreno, Ana; Gabanelli, Elena; Sozzi, Enrica; Lelli, Davide; Chiapponi, Chiara; Ciccozzi, Massimo; Zehender, Gianguglielmo; Cordioli, Paolo

    2013-12-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs.

  17. Nosocomial Co-Transmission of Avian Influenza A(H7N9) and A(H1N1)pdm09 Viruses between 2 Patients with Hematologic Disorders

    PubMed Central

    Chen, Huazhong; Liu, Shelan; Liu, Jun; Chai, Chengliang; Mao, Haiyan; Yu, Zhao; Tang, Yuming; Zhu, Geqin; Chen, Haixiao X.; Zhu, Chengchu; Shao, Hui; Tan, Shuguang; Wang, Qianli; Bi, Yuhai; Zou, Zhen; Liu, Guang; Jin, Tao; Jiang, Chengyu; Gao, George F.; Peiris, Malik

    2016-01-01

    A nosocomial cluster induced by co-infections with avian influenza A(H7N9) and A(H1N1)pdm09 (pH1N1) viruses occurred in 2 patients at a hospital in Zhejiang Province, China, in January 2014. The index case-patient was a 57-year-old man with chronic lymphocytic leukemia who had been occupationally exposed to poultry. He had co-infection with H7N9 and pH1N1 viruses. A 71-year-old man with polycythemia vera who was in the same ward as the index case-patient for 6 days acquired infection with H7N9 and pH1N1 viruses. The incubation period for the second case-patient was estimated to be <4 days. Both case-patients died of multiple organ failure. Virus genetic sequences from the 2 case-patients were identical. Of 103 close contacts, none had acute respiratory symptoms; all were negative for H7N9 virus. Serum samples from both case-patients demonstrated strong proinflammatory cytokine secretion but incompetent protective immune responses. These findings strongly suggest limited nosocomial co-transmission of H7N9 and pH1N1 viruses from 1 immunocompromised patient to another. PMID:26982379

  18. Crystal structures of 5-amino-N-phenyl-3H-1,2,4-di-thia-zol-3-iminium chloride and 5-amino-N-(4-chloro-phen-yl)-3H-1,2,4-di-thia-zol-3-iminium chloride monohydrate.

    PubMed

    Yeo, Chien Ing; Tan, Yee Seng; Tiekink, Edward R T

    2015-10-01

    The crystal and mol-ecular structures of the title salt, C8H8N3S2 (+)·Cl(-), (I), and salt hydrate, C8H7ClN3S2 (+)·Cl(-)·H2O, (II), are described. The heterocyclic ring in (I) is statistically planar and forms a dihedral angle of 9.05 (12)° with the pendant phenyl ring. The comparable angle in (II) is 15.60 (12)°, indicating a greater twist in this cation. An evaluation of the bond lengths in the H2N-C-N-C-N sequence of each cation indicates significant delocalization of π-electron density over these atoms. The common feature of the crystal packing in (I) and (II) is the formation of charge-assisted amino-N-H⋯Cl(-) hydrogen bonds, leading to helical chains in (I) and zigzag chains in (II). In (I), these are linked by chains mediated by charge-assisted iminium-N(+)-H⋯Cl(-) hydrogen bonds into a three-dimensional architecture. In (II), the chains are linked into a layer by charge-assisted water-O-H⋯Cl(-) and water-O-H⋯O(water) hydrogen bonds with charge-assisted iminium-N(+)-H⋯O(water) hydrogen bonds providing the connections between the layers to generate the three-dimensional packing. In (II), the chloride anion and water mol-ecules are resolved into two proximate sites with the major component being present with a site occupancy factor of 0.9327 (18).

  19. Oceanic N2O emissions in the 21st century

    NASA Astrophysics Data System (ADS)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2014-12-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known on how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. We implemented two different parameterizations of N2O production, which differ primarily at low oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12% in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 Tg N yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the Oxygen Minimum Zones (OMZs), i.e., in the Eastern Tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production associated primarily with denitrification. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assesment for a compensation between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next generation of Earth System Models.

  20. Study of the ion--molecule half reactions O/sup +//sub 2/(a /sup 4/Pi/sub u/, v)xxx(O/sub 2/)/sub m/. -->. O/sup +//sub 2m/+1+O, m=1, 2, or 3, using the molecular beam photoionization method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linn, S.H.; Ono, Y.; Ng, C.Y.

    1981-03-15

    The photoionization efficiency (PIE) curve for (O/sub 2/)/sup +//sub 2/ has been obtained in the region 650--1 080 A using the molecular beam photoionization method. The ionization energy (IE) for (O/sub 2/)/sub 2/ is determined to be 11.66 +- 0.03 eV. From the measured IE for (O/sub 2/)/sup +//sub 2/, the known IE for O/sub 2/, and the estimated dissociation energy (0.01 eV) of (O/sub 2/)/sub 2/, the binding energy for (O/sub 2/)/sup +//sub 2/ is deduced to be 0.42 +- 0.03 eV. Comparisons of the PIE spectra for O/sup +//sub 2/ and (O/sub 2/)/sup +//sub m/, where m=2, 3,more » and 4 indicate that the excited dimer complexes O(/sub 2/(n,v)x(O/sub 2/)/sub m/ (m=1, 2, and 3) formed in this wavelength region are almost completely dissociative, and the cluster ions are predominately formed by the direct photoionization processes (O/sub 2/)/sub m/=2, 3, or 4+h..nu -->..(O/sub 2/)/sup +//sub m/=2, 3, or 4+e. The PIE curves for O/sup +//sub 3/, O/sup +//sub 5/, and O/sup +//sub 7/ are measured in the region 650--780 A. The appearance energy 16.66 +- 0.03 eV (744 +- 1.5 A) for O/sup +//sub 3/ is found to be consistent with a zero activation energy for the ion-molecule reaction O/sup +//sub 2/(X/sup 2/Pi/sub g/)+O/sub 2/..-->..O/sup +//sub 3/+O. The appearance energy for O/sup +//sub 5/ is determined to be 16.41 +- 0.06 eV (755.5 +- 3 A). This value has allowed the determination of a binding energy of 0.26 eV for O/sup +//sub 3/xO/sub 2/. The nearly structureless PIE spectra observed for O/sup +//sub 3/, O/sup +//sub 5/, and O/sup +//sub 7/ also suggests that these ions originate mainly from (O/sub 2/)/sup +//sub 2/, (O/sub 2/)/sup +//sub 3/, and (O/sub 2/)/sup +//sub 4/ which are formed by direct ionization processes. Using the relative Franck--Condon factors for the O/sub 2/ a/sup 4/Pi/sub u/reverse arrowX/sup 3/..sigma../sup -//sub g/ transitions, the relative reaction probabilities for the ion--molecule half reactions O/sup +//sub 2/(a/sup 2/Pi/sub u/, v)x(O/sub 2