Science.gov

Sample records for na margem equatorial

  1. Equatorial Guinea.

    PubMed

    1984-06-01

    Attention in this discussion of Equatorial Guinea is directed to the following: the people, history, geography, government, political conditions, the economy, foreign relations, and relations between the US and Equatorial Guinea. The population was estimated at 304,000 in 1983 and the annual growth rate was estimated in the range of 1.7-2.5. The infant mortality rate is 142.9/1000 with a life expectancy of 44.4 years for males and 47.6 years for females. The majority of the Equatoguinean people are of Bantu origin. The largest tribe, the Fang, is indigenous to the mainland, although many now also live on Bioko Island. Portuguese explorers found the island of Bioko in 1471, and the Portuguese retained control until 1778, when the island, adjacent islets, and the commercial rights to the mainland between the Niger and Ogooue Rivers were ceded to Spain. Spain lacked the wealth and the interest to develop an extensive economic infrastructure in Equatorial Guinea during the 1st half of this century, but the Spanish did help Equatorial Guinea achieve 1 of the highest literacy rates in Africa. They also founded a good network of health care facilities. In March 1968, under pressure from Guinean nationalists, Spain announced that it would grant independence to Equatorial Guinea as rapidly as possible. A referendum was held on August 11, 1968, and 63% of the electorate voted in favor of the constitution, which provided for a government with a general assembly and presidentially appointed judges in the Supreme Court. After the coup in August 1979, power was placed in the hands of a Supreme Military Council. A new constitution came into effect after a popular vote in August 1982, abolishing the Supreme Military Council. Under the terms of the constitution, the president was given extensive powers. By the end of 1983, a 60-member Chamber of Representatives of the people had been formed. The government, which is credited with restoring greater personal freedom, is regarded

  2. Multiwavelength observations of NaSt1 (WR 122): equatorial mass loss and X-rays from an interacting Wolf-Rayet binary

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon; Smith, Nathan; Van Dyk, Schuyler D.; Morzinski, Katie M.; Close, Laird M.; Hinz, Philip M.; Males, Jared R.; Rodigas, Timothy J.

    2015-07-01

    NaSt1 (aka Wolf-Rayet 122) is a peculiar emission-line star embedded in an extended nebula of [N II] emission with a compact dusty core. The object was previously characterized as a Wolf-Rayet (WR) star cloaked in an opaque nebula of CNO-processed material, perhaps analogous to η Car and its Homunculus nebula, albeit with a hotter central source. To discern the morphology of the [N II] nebula we performed narrow-band imaging using the Hubble Space Telescope and Wide-field Camera 3. The images reveal that the nebula has a disc-like geometry tilted ≈12° from edge-on, composed of a bright central ellipsoid surrounded by a larger clumpy ring. Ground-based spectroscopy reveals radial velocity structure (±10 km s-1) near the outer portions of the nebula's major axis, which is likely to be the imprint of outflowing gas. Near-infrared adaptive-optics imaging with Magellan AO has resolved a compact ellipsoid of Ks-band emission aligned with the larger [N II] nebula, which we suspect is the result of scattered He I line emission (λ2.06 μm). Observations with the Chandra X-ray Observatory have revealed an X-ray point source at the core of the nebula that is heavily absorbed at energies <1 keV and has properties consistent with WR stars and colliding-wind binaries. We suggest that NaSt1 is a WR binary embedded in an equatorial outflow that formed as the result of non-conservative mass transfer. NaSt1 thus appears to be a rare and important example of a stripped-envelope WR forming through binary interaction, caught in the brief Roche lobe overflow phase.

  3. Equatorial potassium currents in lenses.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  4. Equatorial MST radars: Further consideration

    NASA Technical Reports Server (NTRS)

    Lagos, P.

    1983-01-01

    The results presented give additional support to the need of equatorial MST radars in order to obtain more information on the nature of equatorial waves in the MST region. Radar deduced winds such as obtained at Jicamarca for periods of months indicate that with these data the full range of equatorial waves, with time scales of seconds to years, can be studied.

  5. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  6. Metallic ions in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Goldberg, R. A.

    1972-01-01

    Four positive ion composition measurements of the equatorial E region made at Thumba, India, are presented. During the day, the major ions between 90 and 125 km are NO(+) and O2(+). A metallic ion layer centered at 92 km is observed, and found to contain Mg(+), Fe(+), Ca(+), K(+), Al(+), and Na(+) ions. The layer is explained in terms of a similarly shaped latitude distribution of neutral atoms which are photoionized and charge-exchanged with NO(+) and O2(+). Three body reactions form molecular metallic ions which are rapidly lost by dissociative ion-electron recombination. Nighttime observations show downward drifting of the metallic ion layer caused by equatorial dynamo effects. These ions react and form neutral metals which exchange charges with NO(+) and O2(+) to produce an observed depletion of those ions within the metallic ion region.

  7. Equatorial oceanography. [review of research

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Sarachik, E. S.

    1983-01-01

    United States progress in equatorial oceanography is reviewed, focusing on the low frequency response of upper equatorial oceans to forcing by the wind. Variations of thermocline depth, midocean currents, and boundary currents are discussed. The factors which determine sea surface temperature (SST) variability in equatorial oceans are reviewed, and the status of understanding of the most spectacular manifestation of SST variability, the El Nino-Southern Oscillation phenomenon, is discussed. The problem of observing surface winds, regarded as a fundamental factor limiting understanding of the equatorial oceans, is addressed. Finally, an attempt is made to identify those current trends which are expected to bear fruit in the near and distant future.

  8. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  9. Lightning over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These two images were taken 9 seconds apart as the STS-97 Space Shuttle flew over equatorial Africa east of Lake Volta on December 11, 2000. The top of the large thunderstorm, roughly 20 km across, is illuminated by a full moon and frequent bursts of lightning. Because the Space Shuttle travels at about 7 km/sec, the astronaut perspectives on this storm system becomes more oblique over the 9-second interval between photographs. The images were taken with a Nikon 35 mm camera equipped with a 400 mm lens and high-speed (800 ISO) color negative film. Images are STS097-351-9 and STS097-351-12, provided and archived by the Earth Science and Image Analysis Laboratory, Johnson Space Center. Additional images taken by astronauts can be viewed at NASA-JSC's Gateway to Astronaut Photography of Earth at http://eol.jsc.nasa.gov/

  10. Equatorially trapped plasma populations

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1981-01-01

    The SCATHA observations of the equatorially trapped plasmas are presented in order to emphasize the importance of making measurements at the equator. The UCSD plasma detector and the GSFC electric field experiment are described, as are the pertinent characteristics of the magnetometer and mass spectrometers. The electron distribution reveals a width of 20 deg to 60 deg, narrowing with increasing energy. The 20- to 100-eV ion fluxes typically exhibit temperatures in the 20to 50-eV range and densities of 1-10 per cu cm. The electron population typically ranges from 50 to 500 eV, with temperatures of 100-200 eV and densities also in the 1-10 per cu cm range. Field-aligned populations of lower energy are occasionally found in both ions and electrons at the same location.

  11. Callisto's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This mosaic covers part of the equatorial region of Jupiter's moon, Callisto. The mosaic combines six separate image frames obtained by the solid state imaging (CCD) system on NASA's Galileo spacecraft during its ninth orbit around Jupiter. North is to the top of the picture. The mosaic shows several new features and characteristics of the surface revealed by Galileo. These include deposits that may represent landslides in the southern and southwestern floors of many craters. Two such deposits are seen in a 12 kilometer (7.3 mile) crater in the west-central part of the image, and in a 23 kilometer (14 mile) crater just north of the center of the image. Also notable are several sinuous valleys emanating from the southern rims of 10 to 15 kilometer (6.2 to 9.3 mile) irregular craters in the west-central part of the image. The pervasive local smoothing of Callisto's surface is well represented in the plains between the craters in the southeastern part of the image. Possible oblique impacts are suggested by the elongated craters in the northeastern and southeastern parts of the image.

    The mosaic, centered at 7.4 degrees south latitude and 6.6 degrees west longitude, covers an area of approximately 315 by 215 kilometers (192 by 131 miles). The sun illuminates the scene from the west (left). The smallest features that can be seen are about 300 meters (993 feet) across. The images were obtained on June 25, 1997, when the spacecraft was at a range of 15,200 kilometers (8,207 miles) from Callisto.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  12. Equatorial zonal circulations: Historical perspectives

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan

    2007-04-01

    The changing perceptions on zonal circulations in the equatorial belt are traced for (a) stratospheric wind regimes, and (b) vertical-zonal circulation cells in the troposphere. (a) Observations from the Krakatoa eruption 1883 and Berson's 1908 expedition to East Africa, along with later soundings over Batavia (Jakarta) led to the notion of "Krakatoa easterlies" around 30 km (10 mb) and "Berson westerlies" around 20 km (50 mb). Prompted by contrary observations since the late 1950s, this dogma was replaced by the notion of easterlies alternating with westerlies in the equatorial stratosphere at a rhythm of about 26 months. (b) Stimulated by Bjerknes' postulate of a "Walker circulation" along the Pacific Equator, a multitude of such cells have been hypothesized at other longitudes, in part from zonal contrasts of temperature and cloudiness. Essential for the diagnosis of equatorial zonal circulation cells is the continuity following the flow between the centers of ascending and subsiding motion. Evaluation of the recent NCEP-NCAR and ECMWF Reanalysis upper-air datasets reveals equatorial zonal circulation cells over the Pacific all year round, over the Atlantic only in boreal winter, and over the Indian Ocean only in autumn, all being seasons and oceanic longitudes with strong zonal flow in the lower troposphere.

  13. Interplay Between the Equatorial Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Sridharan, R.

    2006-11-01

    r_sridharanspl@yahoo.com With the sun as the main driving force, the Equatorial Ionosphere- thermosphere system supports a variety of Geophysical phenomena, essentially controlled by the neutral dynamical and electro dynamical processes that are peculiar to this region. All the neutral atmospheric parameters and the ionospheric parameters show a large variability like the diurnal, seasonal semi annual, annual, solar activity and those that are geomagnetic activity dependent. In addition, there is interplay between the ionized and the neutral atmospheric constituents. They manifest themselves as the Equatorial Electrojet (EEJ), Equatorial Ionization Anomaly (EIA), Equatorial Spread F (ESF), Equatorial Temperature and Wind Anomaly (ETWA). Recent studies have revealed that these phenomena, though apparently might show up as independent ones, are in reality interlinked. The interplay between these equatorial processes forms the theme for the present talk.

  14. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  15. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  16. Central Equatorial Pacific Experiment (CEPEX)

    SciTech Connect

    Not Available

    1993-01-01

    The Earth's climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27[degree]C, but never 31[degree]C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  17. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    SciTech Connect

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-09-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  18. Vertical cloud structure of Jupiter's equatorial plumes

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Hord, C.

    1985-01-01

    Multiple-scattering radiative transfer calculations were used to deduce the vertical cloud structure (VCS) of Jupiter's equatorial region. The VCS model of the equatorial plumes is obtained through an analysis of Voyager images of the 6190-A methane band and the 6000-A continuum, and ground-based 8900-A methane band images. The VCS of the equatorial plumes is found to be consistent with the hypothesis that the plumes are caused by upwelling at the ammonia condensation level produced by buoyancy due to latent heat release from the condensation of water clouds nearly three scale heights below the plumes.

  19. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1977-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed, and the large field depression at the flight time must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  20. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1976-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed and the large field depression, at the flight time, must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  1. Substorm currents in the equatorial magnetotail

    SciTech Connect

    Iijima, T.; Watanabe, M.; Potemra, T.A.; Zanetti, L.J.; Kan, J.R.; Akasofu, S.I.

    1993-10-01

    The authors have determined characteristics of magnetospheric equatorial currents during substorms from the vector magnetic field data acquired with the GOES 5 and GOES 6 satellites, separated about 1.9 hours in MLT in geosynchronous orbit. These data have been used to determine the local time (azimuthal) and radial variation of the equatorial current. The divergence of the equatorial current was computed from these variations, and systems of field-aligned currents were deduced. During the growth phase to the maximum phase of the taillike reconfiguration of the near-Earth magnetic field, a positive divergence (away from the equatorial plane) of the westward equatorial current occurs in the late evening to premidnight MLT sector, and a negative divergence (away from the equatorial plane) occurs in the late evening to premidnight MLT sector, and a negative divergence (away from the equatorial plane) occurs in the premidnight to early morning MLT sector. This flow direction pattern is the same as that of the region 2 field-aligned current system. The authors have also determined the presence of a radial current that flows toward the earth in the late evening to premidnight sector and flows away from the Earth in the midnight to morning sector. The intensity of the radial currents increases before the expansion phase. Consequently, the patterns of field-aligned currents associated with various substorm phases are the superposition of currents driven by multiple sources with different temporal variations. They have identified at least three different but related sources of field-aligned currents during the growth and expansion phases. These sources are related to the divergence of the westward flowing equatorial current and to distributions of pressure and magnetic field gradients that evolve in the magnetotail. When combined, these complicated systems support the basic region 1 to region 2 field-aligned current flow pattern. 22 refs., 12 figs., 1 tab.

  2. Vertical shear in the Jovian equatorial zone.

    NASA Technical Reports Server (NTRS)

    Layton, R. G.

    1971-01-01

    Jupiter photographs taken in two different wavelength regions (blue and red) are studied for clues to differing Jovian atmosphere motions. The relative motions of features visible on these photographs may be interpreted as a vertical shear at visible cloud level. The value obtained implies that the north equatorial zone must be about 0.35 deg K warmer than the adjacent equatorial zone. Deeper in the atmosphere the reverse must hold.

  3. EQUATORIAL ZONAL JETS AND JUPITER's GRAVITY

    SciTech Connect

    Kong, D.; Liao, X.; Zhang, K.; Schubert, G.

    2014-08-20

    The depth of penetration of Jupiter's zonal winds into the planet's interior is unknown. A possible way to determine the depth is to measure the effects of the winds on the planet's high-order zonal gravitational coefficients, a task to be undertaken by the Juno spacecraft. It is shown here that the equatorial winds alone largely determine these coefficients which are nearly independent of the depth of the non-equatorial winds.

  4. Swarm Equatorial Electric Field Inversion Chain

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Vigneron, Pierre; Sirol, Olivier; Hulot, Gauthier

    2014-05-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays a crucial role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF for both climatological and near real-time studies. The Swarm satellite mission offers a unique opportunity to estimate the equatorial electric field from measurements of the geomagnetic field. Due to the near-polar orbits of each satellite, the on-board magnetometers record a full profile in latitude of the ionospheric current signatures at satellite altitude. These latitudinal magnetic profiles are then modeled using a first principles approach with empirical climatological inputs specifying the state of the ionosphere, in order to recover the EEF. We will present preliminary estimates of the EEF using the first Swarm geomagnetic field measurements, and compare them with independently measured electric fields from the JULIA ground-based radar in Peru.

  5. Jupiter's Great Red Spot and South Equatorial Belt

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This Voyager 2 picture shows the Great Red Spot and the south equatorial belt extending into the equatorial region. At right is an interchange of material between the south equatorial belt and the equatorial zone. The clouds in the equatorial zone are more diffuse and do not display the structures seen in other locations. Considerable structure is evident within the Great Red Spot. The Voyagers are managed for NASA's Office of Space Science by Jet Propulsion Laboratory.

  6. Latitudinal comparisons of equatorial Pacific zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M. R.; Dam, H. G.; Le Borgne, R.; Zhang, X.

    Zooplankton biomass and rates of ingestion, egestion and production in the equatorial Pacific Ocean along 140°W and 180° exhibit maximum values in the High-Nutrient Low-Chlorophyll (HNLC) zone associated with equatorial upwelling (5°S-5°N) as compared to the more oligotrophic regions to the north and south. Zooplankton biomass and rates are not usually highest on the equator, but increase "downstream" of the upwelling center as the zooplankton populations exhibit a delayed response to enhanced phytoplankton production. The vertical distribution of zooplankton biomass in the equatorial HNLC area tends to be concentrated in surface waters and is more uniform with depth in oligotrophic regions to the north and south of the equatorial upwelling zone. In general, the amount of mesozooplankton (>200 μm) carbon biomass is approximately 25% of estimated phytoplankton biomass and 30% of bacterial biomass in the HNLC area of the equatorial Pacific Ocean. Zooplankton grazing on phytoplankton is low in the equatorial Pacific Ocean, generally <5% of the total chlorophyll-a standing stock grazed per day. Based on estimates of metabolic demand, it is apparent that zooplankton in the equatorial Pacific Ocean are omnivores, consuming primarily microzooplankton and detritus. Estimated zooplankton growth rates in the warm waters of the HNLC equatorial Pacific Ocean are high, ranging from 0.58 d -1 for 64-200 μm zooplankton to 0.08 d -1 for 1000-2000 μm zooplankton. Thus, the numerical and functional response of equatorial zooplankton to increases in phytoplankton production are more rapid than normally occurs in sub-tropical and temperate waters. Potential zooplankton fecal pellet production, estimated from metabolic demand, is approximately 1.6 times the estimated gravitational carbon flux at 150 m in the zone of equatorial upwelling (5°S-5°N) and 1.1 times the export flux in the more oligotrophic regions to the north and south. The active flux of carbon by diel migrant

  7. 3D Modeling of Equatorial Plasma Bubbles

    NASA Astrophysics Data System (ADS)

    Huba, Joseph; Joyce, Glenn; Krall, Jonathan

    2011-10-01

    Post-sunset ionospheric irregularities in the equatorial F region were first observed by Booker and Wells (1938) using ionosondes. This phenomenon has become known as equatorial spread F (ESF). During ESF the equatorial ionosphere becomes unstable because of a Rayleigh-Taylor-like instability: large scale (10s km) electron density ``bubbles'' can develop and rise to high altitudes (1000 km or greater at times). Understanding and modeling ESF is important because of its impact on space weather: it causes radio wave scintillation that degrades communication and navigation systems. In fact, it is the focus of of the Air Force Communications/Navigation Outage Forecast Satellite (C/NOFS) mission. We will describe 3D simulation results from the NRL ionosphere models SAMI3 and SAMI3/ESF of this phenomenon. In particular, we will examine the causes of the day-to-day ariability of ESF which is an unresolved problem at this time. Post-sunset ionospheric irregularities in the equatorial F region were first observed by Booker and Wells (1938) using ionosondes. This phenomenon has become known as equatorial spread F (ESF). During ESF the equatorial ionosphere becomes unstable because of a Rayleigh-Taylor-like instability: large scale (10s km) electron density ``bubbles'' can develop and rise to high altitudes (1000 km or greater at times). Understanding and modeling ESF is important because of its impact on space weather: it causes radio wave scintillation that degrades communication and navigation systems. In fact, it is the focus of of the Air Force Communications/Navigation Outage Forecast Satellite (C/NOFS) mission. We will describe 3D simulation results from the NRL ionosphere models SAMI3 and SAMI3/ESF of this phenomenon. In particular, we will examine the causes of the day-to-day ariability of ESF which is an unresolved problem at this time. Research supported by ONR.

  8. Equatorial waves in the stratosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  9. Equatorially coordinated lanthanide single ion magnets.

    PubMed

    Zhang, Peng; Zhang, Li; Wang, Chao; Xue, Shufang; Lin, Shuang-Yan; Tang, Jinkui

    2014-03-26

    The magnetic relaxation dynamics of low-coordinate Dy(III) and Er(III) complexes, namely three-coordinate ones with an equatorially coordinated triangle geometry and five-coordinate ones with a trigonal bipyramidal geometry, have been exploited for the first time. The three-coordinate Er-based complex is the first equatorially coordinated mononuclear Er-based single-molecule magnet (SMM) corroborating that simple models can effectively direct the design of target SMMs incorporating 4f-elements. PMID:24625001

  10. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Astrophysics Data System (ADS)

    Simon-Miller, A. A.; Rogers, J. H.; Gierasch, P. J.; Choi, D.; Allison, M. D.; Adamoli, G.; Mettig, H.-J.

    2012-03-01

    Jupiter's south equatorial winds and clouds are consistent with a high frequency, gravity-inertia, wave. A second, westward-moving, Rossby wave was also identified. Asymmetry with the north equatorial clouds are likely due to the Great Red Spot.

  11. Equatorial scintillations: advances since ISEA-6

    NASA Astrophysics Data System (ADS)

    Basu, Sunanda; Basu, Santimay

    1985-10-01

    Since the last equatorial aeronomy meeting in 1980, our understanding of the morphology of equatorial scintillations has advanced greatly due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the GHz range has been demonstrated. The fact that night-time F-region dynamics is an important factor in controlling the magnitude of scintillations has been recognized by interpreting scintillation observations in the light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type has been identified. Unlike equatorial bubbles, these irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (~ several hours) of uninterrupted scintillations. These irregularities maximize during solstices, so that in the VHF range, scintillation morphology at an equatorial station is determined by considering occurrence characteristics of both bubble type and BSS type irregularities. The temporal structure of scintillations in relation to the in situ measurements of irregularity spatial structure within equatorial bubbles has been critically examined. A two-component irregularity spectrum with a shallow slope ( p1

  12. Equatorial deep jets in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Brandt, P.; Greatbatch, R. J.; Didwischus, S.-H.; Claus, M.; Hormann, V.; Funk, A.; Dengler, M.

    2012-04-01

    Vertically alternating deep zonal jets of short vertical wavelength were discovered in the equatorial oceans more than 35 years ago. These jets that are observed to be coherent across the equatorial basins are characterized by vertically alternating eastward and westward currents lying within 1° of the equator, with amplitudes of 0.1-0.2 ms-1 and vertical wavelengths between 300 and 700 m. In the Atlantic, equatorial deep jets oscillate with a period of about 4.5 years, while their energy propagates upward. The 4.5 year signal can be seen in sea surface temperature as well as atmospheric data (e.g. surface wind and rainfall) indicating the significance of the deep jets for climate. Here we analyse velocity data from more than 7 years of moored observations at the equator, 23°W as well as shipboard hydrographic and current observations along the 23°W repeat section. Our focus is on intermediate depth levels (300-700 m), where the deep jets are superimposed on a mean flow composed of the westward flowing Equatorial Intermediate Current centred on the equator and the eastward Southern and Northern Intermediate Countercurrents located at 2°S and 2°N, respectively. The large zonal oxygen gradient from the well ventilated western boundary toward low-oxygen values near the eastern boundary makes the meridional oxygen distribution in the central equatorial Atlantic sensitive to zonal flow variations in time and latitude. We compare the observed meridional structures of the mean and anomalous oxygen and zonal velocity distributions as well as their temporal evolution with results of an advection-diffusion model driven by a prescribed velocity field, restoring to high oxygen values at the western boundary, and otherwise constant oxygen consumption. The prescribed velocity field is composed of a high order baroclinic vertical normal mode aimed at representing the 4.5-year cycle and a mean velocity field resembling the observed mean zonal current structure. Similarities

  13. The Longitudinal Variation of Equatorial Electrodynamics Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Zesta, E.; Moldwin, M.; Valladares, C. E.; Damtie, B.; Mebrahtu, A.; Biouele, C. M.; Yumoto, K.; Pfaff, R. F.; Heelis, R. A.

    2010-12-01

    The uneven distribution of ground-based instruments due to the large ocean coverage in the equatorial regions hinders our ability to obtain a global understanding of the dynamics and structure of the equatorial ionosphere. In Africa, which has been mostly devoid of ground-based instruments, the ionospheric density structure has been traditionally estimated by model interpolation over vast geographic areas. Recent ground- and space-based observations have shown that geomagnetic storms can have dramatic longitudinal differences in equatorial ionospheric electrodynamics, such as enhanced generation of F-region plasma irregularities, and super fountain effect at low latitudes. For example, satellite observations have shown very unique equatorial ionospheric density structures in the African region. The African region is the longitude sector where the occurrence of large scale bubble activity (zonal width, depletion level, and spacing) peaks. No other region in the globe shows similar characteristics. One of the possible driving mechanisms that govern the equatorial electrodynamics is the vertical ExB drift, which strongly affects the structure and dynamics of the ionosphere in the low/mid-latitude region. According to the observations performed at different longitudes, using recently deployed limited ground-based instruments, the vertical ExB drift has significant longitudinal differences. This paper presents initial results of vertical ExB drifts observed at three different longitudes: East African, West African, and West American sectors. The drift is estimated using a pairs of ground-based magnetometers technique. In the African sector stations from the AMBER, INTERMAGNET, and MAGDAS, and in the American sector SAMBA and LISN magnetometer arrays have been used for this study. Finally, the comparison between the magnetometer estimated ExB drift and the vertical drift observations (VEFI and IVM) on board C/NOFS satellites have also been performed, showing promising

  14. Wave Forcing of Saturn's Equatorial Oscillation

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.

    2011-01-01

    Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.

  15. AMISR-14: Observations of equatorial spread F

    NASA Astrophysics Data System (ADS)

    Rodrigues, F. S.; Nicolls, M. J.; Milla, M. A.; Smith, J. M.; Varney, R. H.; Strømme, A.; Martinis, C.; Arratia, J. F.

    2015-07-01

    A new, 14-panel Advanced Modular Incoherent Scatter Radar (AMISR-14) system was recently deployed at the Jicamarca Radio Observatory. We present results of the first coherent backscatter radar observations of equatorial spread F(ESF) irregularities made with the system. Colocation with the 50 MHz Jicamarca Unattended Long-term studies of the Ionosphere and Atmosphere (JULIA) radar allowed unique simultaneous observations of meter and submeter irregularities. Observations from both systems produced similar Range-Time-Intensity maps during bottom-type and bottomside ESF events. We were also able to use the electronic beam steering capability of AMISR-14 to "image" scattering structures in the magnetic equatorial plane and track their appearance, evolution, and decay with a much larger field of view than previously possible at Jicamarca. The results suggest zonal variations in the instability conditions leading to irregularities and demonstrate the dynamic behavior of F region scattering structures as they evolve and drift across the radar beams.

  16. Atmosphere dynamics in the equatorial meteor zone

    NASA Technical Reports Server (NTRS)

    Kascheev, B. L.

    1987-01-01

    The study of the atmospheric circulation of the Earth from its surface to the altitudes of 100 to 110 km is essential for establishing atmospheric motion regularities with a view toward perfecting weather forecasting. The main results of the Soviet equatorial meteor expedition (SEME) are presented. A continuous cycle of measurements was carried out. Considerable interdiurnal variation of the zonal component was observed. Importantly, in the meridional component, the prevalence of a two day component was established in the equatorial meteor zone for the first time. The pronounced westward motion of the atmosphere over the equator is noted. The SEME data analysis has shown that the meteor zone is characterized by flashes of intensity of the internal gravity waves and turbulence at highest instability moments of atmosphere due to tidal motion.

  17. Swarm equatorial electric field chain: First results

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.; Chulliat, A.; Vigneron, P.; Sirol, O.; Hulot, G.

    2015-02-01

    The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an official Level-2 Swarm product. Here we present first results of EEF estimates from nearly a year of Swarm data. We find excellent agreement with independent measurements from the ground-based coherent scatter radar at Jicamarca, Peru, as well as horizontal field measurements from the West African Magnetometer Network magnetic observatory chain. We also calculate longitudinal gradients of EEF measurements made by the A and C lower satellite pair and find gradients up to about 0.05 mV/m/deg with significant longitudinal variability.

  18. Evidence for Ancient Equatorial Ice Sheets on Mars?

    NASA Astrophysics Data System (ADS)

    Kite, E. S.

    2004-12-01

    During August 2004, a survey of available high-resolution MOLA gridded topography and THEMIS VIS imagery in the Equatorial Transition Zone of Mars was carried out. Other data sets, paticurlarly THEMIS IR and MOC NA, were exploited to study areas of interest. Although ~100 metres-per-pixel THEMIS daytime IR coverage is almost complete at the equator, ~18 metres-per-pixel THEMIS VIS coverage was patchy at the time of the survey, and repeat observations are lacking. Therefore, the THEMIS VIS survey could only capture a subset of the geomorphology of the Equatorial Transition Zone. Nevertheless, a suite of features were catalogued: some may be of relevance to the problem of the genesis and postdepositional history of the Medusae Fossae Formation. At the THEMIS scale, the features include eskers, subparallel hummocky ridge packages, ridge-bounded hummocky terrain, metre-scale layering, small-scale chaos terrain / outflow channel landsystems, dissected terrain, rim and central mound crater-interior deposits, polygonally fractured and channelized mesa tops, "wirebrush," "eggbox/bullseye," outcrops of a pasty lithology, and apparent cwms and aretes. At MOLA scale (as noted by other workers) they include rampart craters and trough-and-lobe landscapes. One possible framework for an initial synthesis of these early results will be adumbrated, exploiting recent progress in numerical modelling of the Martian water cycle at high obliquity, and the chaotic diffusion of Mars' obliquity over geological time. Finally, the relationship of these initial results to those of other workers will be described, and some future research directions will be sketched out.

  19. Sunrise enhancement of equatorial vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Zhang, Ruilong; Le, Huijun

    2016-04-01

    Sunrise enhancement in vertical plasma drift over equatorial regions is not discernible in the statistical picture compared with the significant enhancement during dusk hours. In this report, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag. Moreover, we will report the effects of the sunrise enhancement of vertical plasma drift on the equatorial ionosphere as indicated from the observations and model simulations. We thanks National Central University of Taiwan providing the ROCSAT-1 data. The Ap and F107 indices are obtained from the National Geophysical Data Center (http://spidr.ngdc.noaa.gov/spidr/). This research is supported by National Natural Science Foundation of China (41231065), the Chinese Academy of Sciences project (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604) and National Natural Science Foundation of China (41321003).

  20. Equatorial scintillations: advances since ISEA-6

    SciTech Connect

    Not Available

    1985-01-01

    Our understanding of the morphology of equatorial scintillations has advanced due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the controlling the magnitude of scintillations has been recognized by interpreting scintillation observations inthe light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type was identified. These irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (approx. several hours) of uninterrrupted scintillations.

  1. Precipitation chemistry in the Mayombe forest of equatorial Africa

    NASA Astrophysics Data System (ADS)

    Lacaux, J. P.; Delmas, R.; Kouadio, G.; Cros, B.; Andreae, M. O.

    1992-04-01

    Results of long-term (November 1986 to September 1987) precipitation measurements in the coastal forest of equatorial Congo conducted within the framework of the DECAFE program are reported. The chemical characteristics of the precipitation formed over this region are identified, and changes due to emissions of gases and particles emitted by the surrounding ecosystems are determined. A comparison is made between the precipitation characteristics of equatorial Africa and those of the equatorial regions of South America.

  2. MACSAT - A Near Equatorial Earth Observation Mission

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  3. Ionospheric Storms in Equatorial Region: Digisonde Observations

    NASA Astrophysics Data System (ADS)

    Paznukhov, V.; Altadill, D.; Blanch, E.

    2011-12-01

    We present a study of the ionospheric storms observed in the low-latitude and equatorial ionosphere at several digisonde stations: Jicamarca (Geomagnetic Coordinates: 2.0 S, 355.3 E), Kwajalein Island (3.8 N, 238.2 E), Ascension Island (2.5 S, 56.8 E), Fortaleza (4.8 N, 33.7 W), and Ramey (28.6 N, 5.2 E). The strongest geomagnetic storms from years 1995-2009 have been analyzed. The main ionospheric characteristics, hmF2 and foF2 were used in the study, making it possible to investigate the changes in the ionosphere peak density and height during the storms. All digisonde data were manually processed to assure the accuracy of the measurements. Solar wind data, geomagnetic field variations, and auroral activity indices have been used to characterize the geomagnetic environment during the events. It was found in our analysis that the major drivers for the ionospheric storms, electric field and neutral wind have approximately equal importance at the low-latitude and equatorial latitudes. This is noticeably different from the behavior of the ionsphere in the middle latitudes, where the neutral wind is usually a dominant factor. It was found that the auroral index, AE is the best precursor of the ionospheric effects observed during the storms in this region. We analyze the difference between time delays of the storm effects observed at the stations located in different local time sectors. The overall statistics of the time delays of the storms as a function of the local time at the stations is also presented. Several very interesting cases of sudden very strong ionospheric uplifting and their possible relation to the equatorial super fountain effect are investigated in greater details.

  4. Lunar influence on equatorial atmospheric angular momentum

    NASA Astrophysics Data System (ADS)

    Bizouard, Christian; Zotov, Leonid; Sidorenkov, Nikolay

    2014-11-01

    This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the nonrotating frame and the quasi-diurnal lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component, called Celestial Atmospheric Angular Momentum (CEAM), is mostly constituted of prograde circular motions, especially of a harmonic at 13.66 days, a sidelobe at 13.63 days, and of a weekly broadband variation. A simple equilibrium tide model explains the 13.66 day pressure term as a result of the O1 lunar tide. The powerful episodic fluctuations between 5 and 8 days possibly reflect an atmospheric normal mode excited by the tidal waves Q1 (6.86 days) and σ1 (7.095 days). The lunar tidal influence on the spectral band from 2 to 30 days is confirmed by two specific features, not occurring for seasonal band dominated by the solar thermal effect. First, Northern and Southern Hemispheres contribute equally and synchronously to the CEAM wind term. Second, the pressure and wind terms are proportional, which follows from angular momentum budget considerations where the topographic and friction torques on the solid Earth are much smaller than the one resulting from the equatorial bulge. Such a configuration is expected for the case of tidally induced circulation, where the surface pressure variation is tesseral and cannot contribute to the topographic torque, and tidal winds blow only at high altitudes. The likely effects of the lunar-driven atmospheric circulation on Earth's nutation are estimated and discussed in light of the present-day capabilities of space geodetic techniques.

  5. The equatorial electrojet satellite and surface comparison

    NASA Technical Reports Server (NTRS)

    Cain, J. C. (Editor); Sweeney, R. E. (Editor)

    1972-01-01

    The OGO 4 and 6 (POGO) magnetic field results for the equatorial electrojet indicate that while the present models are approximately correct, the possibility of a westward component must be incorporated. The scatter diagrams of POGO amplitudes and surface data show a correlation. The ratios between the amplitudes estimated from surface data and those at 400 km altitude are as follows: India 5 to 8, East Africa (Addis Ababa) 4, Central Africa 3, West Africa (Nigeria) 3, South America (Huancayo) 5, and Philippines 5. The variation in the ratio is due to the conductivity structure of the earth in various zones.

  6. An equatorial coronal hole at solar minimum

    NASA Technical Reports Server (NTRS)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  7. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  8. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  9. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  10. Fading of Jupiter's South Equatorial Belt

    NASA Technical Reports Server (NTRS)

    Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma

    2011-01-01

    One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.

  11. Central Equatorial Pacific Experiment (CEPEX). Design document

    SciTech Connect

    Not Available

    1993-04-01

    The Earth`s climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27{degree}C, but never 31{degree}C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  12. Ion composition and drift observations in the nighttime equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.; Murthy, B. V. K.

    1974-01-01

    The first in situ measurements of ion composition in the nighttime equatorial E and F region ionospheres (90-300 km) are presented and discussed. These profiles were obtained by two rocket-borne ion mass spectrometers launched from Thumba, India on March 9-10, 1970 at solar zenith angles of 112 deg and 165 deg. Ionosonde data established that the composition was measured at times bounding a period of F region downward drift. During this period the ions O(+) and N(+) were enhanced by one to three orders of magnitude between 220 and 300 km. Below the drift region (200 km), O(+) ceased to be the major ionic constituent, but the concentrations of O(+) and N(+) remained larger than predicted from known radiation sources and loss processes. Here also, both the O2(+) and NO(+) profiles retained nearly the same shape and magnitude throughout the night in agreement with theories assuming scattered UV radiation to be the maintaining source. Light metallic ions including Mg(+), Na(+) and possibly Si(+) were observed to altitude approaching 300 km, while the heavier ions Ca(+) and K(+) were seen in reduced quantity to 200 km. All metal ion profiles exhibited changes which can be ascribed to vertical drifting.

  13. Transequatorial propagation through equatorial plasma bubbles - Discrete events

    NASA Astrophysics Data System (ADS)

    Heron, M. L.

    1980-08-01

    The discrete nature of VHF transequatorial propagation path openings is pointed out. These events are shown to be consistent with the concept of guided propagation inside equatorial plasma bubbles. The important prediction of this work is that observations on discrete transequatorial VHF links may be used to track the production and development of equatorial plasma bubbles.

  14. Phytochelatin concentrations in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Ahner, Beth A.; Lee, Jennifer G.; Price, Neil M.; Morel, François M. M.

    1998-11-01

    Phytochelatin, an intracellular metal-binding polypeptide synthesized in eucaryotic algae in response to metals such as Cd and Cu, was measured in particulate samples collected from the equatorial Pacific. The concentrations in these samples (normalized to total particulate chl a) were unexpectedly high compared to laboratory culture data and were on average slightly more than in coastal areas where the metal concentrations are typically much greater. In part, the high field concentrations can be explained by the low cellular concentrations of chlorophyll a resulting from very low ambient Fe, but laboratory experiments provide a possible explanation for the rest of the difference. At low concentrations of inorganic Cd (Cd'=3 pM), increasing amounts of phytochelatin were induced by decreasing Zn concentrations in the culture medium of two diatoms: Thalassiosira weissflogii, a coastal species, and T. parthenaia, an isolate from the equatorial Pacific. In all previous studies, phytochelatin production has been directly correlated with increasing metal concentrations. Decreasing Co also resulted in higher phytochelatin concentrations in T. weissflogii and Emiliania huxleyi. Replicating the field concentrations of Zn, Co, and Cd in the laboratory results in cellular concentrations (amol -1 cell) that are very similar to those estimated for the field. Contrary to the expectation that high metal concentrations in the equatorial upwelling would cause elevated phytochelatin concentrations, there was no increase in phytochelatin concentrations from 20° S to 10° N—near surface samples were roughly the same at all stations. Also, most of the depth profiles had a distinct subsurface maximum. Neither of these features is readily explained by the available Zn and Cd data. Incubations with additions of Cd and Cu performed on water sampled at four separate stations induced significantly higher concentrations of phytochelatins than those in controls in a majority of the samples

  15. The equatorial electrojet during geomagnetic storms and substorms

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yosuke; Kosch, Michael J.

    2015-03-01

    The climatology of the equatorial electrojet during periods of enhanced geomagnetic activity is examined using long-term records of ground-based magnetometers in the Indian and Peruvian regions. Equatorial electrojet perturbations due to geomagnetic storms and substorms are evaluated using the disturbance storm time (Dst) index and auroral electrojet (AE) index, respectively. The response of the equatorial electrojet to rapid changes in the AE index indicates effects of both prompt penetration electric field and disturbance dynamo electric field, consistent with previous studies based on F region equatorial vertical plasma drift measurements at Jicamarca. The average response of the equatorial electrojet to geomagnetic storms (Dst<-50 nT) reveals persistent disturbances during the recovery phase, which can last for approximately 24 h after the Dst index reaches its minimum value. This "after-storm" effect is found to depend on the magnitude of the storm, solar EUV activity, season, and longitude.

  16. The Eastern Equatorial Pacific Chlorophyll Dynamics: Update of the `Equatorial Box' Project

    NASA Astrophysics Data System (ADS)

    Westberry, T.; Wang, X.; Murtugudde, R.; Behrenfeld, M.; Roesler, C.

    2006-12-01

    The `Equatorial Box' Project utilizes the mooring observations along the 125 and 140 TAO lines to provide carbon component data, including chlorophyll, primary production, POC and DOC. These parameters together with other oceanographic properties can be used to validate ocean circulation-ecosystem models. In turn, a validated model can offer considerable promise for not only filling the gaps in the spatial and temporal coverage from the available observations, but also enhancing our understanding of the mechanisms underlying the variability. Here, we present both measured and simulated vertical-meridional chlorophyll distributions and primary production along 125W and 140W. While there is a permanent layer of deep chlorophyll maximum at 30-60 m, there is no deep maximum in phytoplankton carbon biomass or primary production. Our analyses focus on impact of nutrient stress and light conditions on chlorophyll dynamics in the eastern equatorial Pacific. We also compare modeled primary productivity with ocean color derived rates.

  17. Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector

    NASA Astrophysics Data System (ADS)

    Oryema, B.; Jurua, E.; D'ujanga, F. M.; Ssebiyonga, N.

    2015-11-01

    This paper presents the annual, seasonal and diurnal variations in ionospheric TEC along the African equatorial region. The study also investigated the effects of a geomagnetic storm on ionospheric TEC values. Dual-frequency GPS derived TEC data obtained from four stations within the African equatorial region for the high solar activity year 2012 were used in this study. Annual variations showed TEC having two peaks in the equinoctial months, while minima values were observed in the summer and winter solstices. The diurnal pattern showed a pre-dawn minimum, a steady increase from about sunrise to an afternoon maximum and then a gradual fall after sunset to attain a minimum just before sunrise. Nighttime enhancements of TEC were observed mostly in the equinoctial months. There was comparably higher percentage TEC variability during nighttime than daytime and highest during equinoxes, moderate in winter and least during summer solstice. TEC was observed to exhibit a good correlation with geomagnetic storm indices.

  18. Equatorial thermospheric composition and its variations

    NASA Technical Reports Server (NTRS)

    Newton, G. P.; Pelz, D. T.; Kasprzak, W. T.

    1972-01-01

    The neutral atmospheric composition experiment on the San Marco - 3 satellite has measured the composition of the equatorial atmosphere from 29 April to 29 November 1971. Preliminary results on the diurnal variation of atmospheric composition from 19 May to 30 June at 225 km. altitude are presented. The diurnal variation of helium is seen to reach its maximum near 0800 hours and its minimum in the late afternoon in contrast to the behavior of molecular nitrogen and argon. The atomic oxygen densities show smaller variations than the other gases. The mass densities calculated from the composition data agree well with those determined from the in situ drag force measurements and from orbital decay measurements.

  19. Equatorial thermospheric composition and its variations.

    NASA Technical Reports Server (NTRS)

    Newton, G. P.; Pelz, D. T.; Kasprzak, W. T.

    1973-01-01

    The neutral atmospheric composition experiment on the San Marco 3 satellite has measured the composition of the equatorial atmosphere from Apr. 29 to Nov. 29, 1971. Preliminary results on the diurnal variation of atmospheric composition from May 19 to June 30 at 225 km altitude are presented. The diurnal variation of helium is seen to reach its maximum near 0800 hours and its minimum in the late afternoon, in contrast to the behavior of molecular nitrogen and argon. The atomic oxygen densities show smaller variations than those of the other gases. The mass densities calculated from the composition data agree well with those determined from the in situ drag force measurements and from orbital decay measurements.

  20. Equatorial phenomena in neutral thermospheric composition.

    NASA Technical Reports Server (NTRS)

    Reber, C. A.; Hedin, A. E.; Chandra, S.

    1973-01-01

    Several interesting phenomena relating to the equatorial ionosphere have been observed in the data from the OGO-6 mass spectrometer. The diurnal variations during equinox at an altitude of 450 km show the N2 and O densities peaking near 1500 hr while He peaks near 1000 hr. The latitudinal variation in N2 during the day is very similar to the F-region electron density exhibiting the well known features of the ionospheric anomaly. During periods of intense geomagnetic disturbance (e.g. the large storm of 8 March 1970), the low latitude thermospheric temperature increases on the order of 50-150 K, while at mid latitudes, increases of more than 1000 K are observed.

  1. Interior models of Mercury with equatorial ellipticity

    NASA Astrophysics Data System (ADS)

    Dumberry, M.

    2012-09-01

    The combination of planetary rotation observations and gravity field measurements by the MESSENGER spacecraft can be used to constrain the internal structure of Mercury. A recently published model suggests a mean mantle density of ρm = 3650 ± 225 kg m-3, substantially larger than that expected of a silicate mantle (3300 kg m-3) and possibly hinting at the presence of an FeS-rich layer at the base of the mantle. Here, we show that a large ρm is only required if the core-mantle boundary (CMB) of the planet is assumed axially-symmetric. An equatorial ellipticity of CMB of the order of 2 · 10-5 allows to satisfy gravity and rotation constraints with a mean mantle density typical of silicate material. Possible origin of such topography include past mantle convection, aspherical planetary shrinking, remnant tidal deformation, or a combination thereof.

  2. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  3. The morphological catalogue of galaxies equatorial survey

    NASA Technical Reports Server (NTRS)

    Huchra, John; Latham, David W.; Da Costa, L. N.; Pellegrini, P. S.; Willmer, C. N. A.

    1993-01-01

    We present 865 redshifts of galaxies located in the equatorial strip delta between -17.5 deg and -2.5 deg in the right ascension range between 20 h and 5 h. Redshifts have been obtained for the complete sample of all 833 galaxies in the Morphological Catalog of Galaxies with magnitudes brighter than m = 14.5 (corresponding approximately to m(Zwicky) = 15.0). This sample also includes three galaxies from other sources with more reliable magnitudes, satisfying this limit, and 29 fainter galaxies, usually companions of the galaxies in the magnitude limited sample. Our maps of a very large volume of nearby space demonstrate a variety of coherent large scale structures which include large voids, 20-50/h Mpc in diameter and large walls at least 70/h Mpc across.

  4. Pathways into the Pacific Equatorial Undercurrent

    NASA Astrophysics Data System (ADS)

    Goodman, P. J.; Hazeleger, W.; de Vries, P.; Cane, M.

    2003-04-01

    A time-dependent trajectory algorithm is used to determine the sources of the Pacific Equatorial Undercurrent (EUC) in the OCCAM simulation. The primary sources and pathways are identified and the transformation of properties in temperature/salinity space are explored. An estimate for the quantity of recirculation, a notoriously difficult property to estimate from observational data, is given. Two-thirds of the water in the Pacific EUC originates south of the equator. Three-fifths of the EUC is ventilated outside of the tropics (poleward of 13°S or 10°N) : two-thirds of these extratropical trajectories travel through the western boundary currents between their subduction and incorporation into the EUC and one quarter of the extratropical trajectories enter and leave the tropical band at least once before entering the EUC.

  5. Dynamical variability in Saturn Equatorial Atmosphere

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.; Hueso, R.; Rojas, J. F.; French, R. G.; Grupo Ciencias Planetarias Team

    2003-05-01

    Historical ground-based and recent HST observations show that Saturn's Equatorial Atmosphere is the region where the most intense large-scale dynamical variability took place at cloud level in the planet. Large-scale convective storms (nicknamed the ``Great White Spots") occurred in 1876, 1933 and 1990. The best studied case (the 1990 storm), produced a dramatic change in the cloud aspect in the years following the outburst of September 1990. Subsequently, a new large storm formed in 1994 and from 1996 to 2002 our HST observations showed periods of unusual cloud activity in the southern part of the Equator. This contrast with the aspect observed during the Voyager 1 and 2 encounters in 1980 and 1981 when the Equator was calm, except for some mid-scale plume-like features seen in 1981. Cloud-tracking of the features have revealed a dramatic slow down in the equatorial winds from maximum velocities of ˜ 475 m/s in 1980-1981 to ˜ 275 m/s during 1996-2002, as we have recently reported in Nature, Vol. 423, 623 (2003). We discuss the possibility that seasonal and ring-shadowing effects are involved in generating this activity and variability. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. SPH acknowledges a PhD fellowship from the Spanish MECD and RH a post-doc fellowship from Gobierno Vasco. RGF was supported in part by NASA's Planetary Geology and Geophysics Program NAG5-10197 and STSCI Grant GO-08660.01A.

  6. Observations of Interannual Equatorial Fresh Water Jets in the Western Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Clarke, A. J.

    2014-12-01

    Using upper ocean monthly salinity and temperature data from the moored TAO/TRITON array in the western equatorial Pacific since the late 1990s, we found, consistent with previous work, that the region experiences large interannual fluctuations in salinity. On the equator at 147 degrees E, 156 degrees E and 165 degrees E the interannual sea surface salinity (SSS) has peak to peak amplitudes that often exceed 1 psu. The salinity variability, which matches well the comparatively short record of overlapping SSS estimated by the Aquarius satellite, changes little over the top 50 m of the water column. Beneath this mixed layer depth the amplitude of the salinity variability steadily decreases over the remaining part of the order 100 m thick isothermal layer. Corresponding hydrostatic estimates of dynamic height over the isothermal layer lead to interannual sea level variability of only a few cm amplitude. However, the sea level due to the fresher water is associated geostrophically with a strong fresh water zonal equatorial interannual jet that at 156 degrees E has an amplitude of about 27 cm/s. Along-track altimeter data give a geostrophic equatorial zonal interannual flow that agrees well with this, suggesting that the near-surface interannual flow in the region is due to the shallow fresh jet. A zonal momentum balance indicates that this jet is mostly due to zonal wind stress forcing. The fresh water jet is maximally correlated with the Nino3.4 El Nino index when the jet leads by 3 months.

  7. Changes in equatorial Pacific seasonality due to orbital forcing

    NASA Astrophysics Data System (ADS)

    Erb, M. P.; Broccoli, A. J.; Wittenberg, A. T.; Vecchi, G. A.

    2012-12-01

    Results from a set of coupled atmosphere-ocean GCM simulations show that the seasonal cycle of equatorial Pacific sea surface temperatures can be strongly affected by precession, while changes in obliquity produce only small differences. Two sets of idealized simulations were conducted with the Geophysical Fluid Dynamics Laboratory CM2.1 model. In one set of simulations, the effects of obliquity were isolated by altering its value while leaving all other boundary conditions unchanged. In the other set, the effects of precession were isolated by running four simulations with the longitude of the perihelion separated by 90 degrees. While obliquity forcing produces almost no change in equatorial Pacific seasonality, precession alters the strength of the seasonal cycle through both thermodynamic and dynamic mechanisms. In the western equatorial Pacific, insolation anomalies caused by precession alter the strength of the monsoonal circulation over the Maritime Continent, inducing anomalous downwelling in the Pacific warm pool. The resulting temperature anomalies travel eastward along the thermocline, surfacing in the eastern equatorial Pacific several months later. This anomalous redistribution of heat, aided by the direct thermodynamic effect of insolation anomalies, results in large changes to the strength and timing of the seasonal cycle in the eastern equatorial Pacific. Because equatorial Pacific sea surface temperatures have local climate impacts as well as non-local impacts though teleconnections, these results may be important to understanding paleoclimate variations both inside and outside of the equatorial Pacific.

  8. Lidar Observation of Tropopause Ozone Profiles in the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. A DIAL (differential absorption lidar) system for vertical ozone profiles have been installed in the equatorial tropopause region over Kototabang, Indonesia (100.3E, 0.2S). We have observed large ozone enhancement in the upper troposphere, altitude of 13 - 17 km, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause at equatorial region.

  9. Low transition-region characteristics of equatorial coronal holes

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Bocchialini, K.; Vial, J.-C.

    1997-01-01

    The results of observations concerning the low transition region of equatorial coronal holes, performed by the Solar and Heliospheric Observatory (SOHO), are discussed. A study performed by other authors led to the conclusion that the chromospheric network corresponding to an equatorial hole is brighter in some lines than the one corresponding to the quiet sun. A statistical study on equatorial holes using the Lyman beta lines from the solar ultraviolet measurements of emitted radiation (SUMER), onboard SOHO, is presented. The mean profiles of cell, network and bright points in and out of the coronal holes are discussed, together with the possible implications of the observations.

  10. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper

  11. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly

  12. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on

  13. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional

  14. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  15. An improved model of equatorial scintillation

    NASA Astrophysics Data System (ADS)

    Secan, J. A.; Bussey, R. M.; Fremouw, E. J.; Basu, Sa.

    1995-05-01

    One of the main limitations of the modeling work that went into the equatorial section of the Wideband ionospheric scintillation model (WBMOD) was that the data set used in the modeling was limited to two stations near the dip equator (Ancon, Peru, and Kwajalein Island, in the North Pacific Ocean) at two fixed local times (nominally 1000 and 2200). Over the past year this section of the WBMOD model has been replaced by a model developed using data from three additional stations (Ascension Island, in the South Atlantic Ocean, Huancayo, Peru, and Manila, Phillipines; data collected under the auspices of the USAF Phillips Laboratory Geophysics Directorate) which provide a greater diversity in both latitude and longitude, as well as cover the entire day. The new model includes variations with latitude, local time, longitude, season, solar epoch, and geomagnetic activity levels. The way in which the irregularity strength parameter CkL is modeled has also been changed. The new model provides the variation of the full probability distribution function (PDF) of log (CkL) rather than simply the average of log (CkL). This permits the user to specify a threshold on scintillation level, and the model will calculate the percent of the time that scintillation will exceed that level in the user-specified scenario. It will also permit calculation of scintillation levels at a user-specified percentile. A final improvement to the WBMOD model is the implementation of a new theory for calculating S4 on a two-way channel.

  16. Resent Status of ITER Equatorial Launcher Development

    SciTech Connect

    Takahashi, K.; Kajiwara, K.; Kasugai, A.; Oda, Y.; Kobayashi, N.; Sakamoto, K.

    2009-11-26

    The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. The high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.

  17. The Condor equatorial electrojet campaign - Radar results

    NASA Astrophysics Data System (ADS)

    Kudeki, Erhan; Fejer, Bela G.; Farley, Donald T.; Hanuise, Christian

    1987-12-01

    The results of two Condor equatorial electrojet experiments (i.e., a daytime and a nighttime experiments on March 12, 1983), in which Condor rocked turbulence measurements were obtained simultaneously with VHF radar interferometer and HF radar backscatter observations, are discussed. The daytime Condor experiment showed that the electrojet could be made turbulent by either the gradient drift or the two-stream instability, or both. Pure two-stream turbulence was observed on the topside layer in the daytime electrojet suggesting that mode coupling processes should be included in nonlinear saturation theories of two-stream waves. In the nighttime experiment, radar data showed a bifurcated layer with the two parts having comparable echo strength but oppositely directed zonal drift velocities. The lower layer showed narrow backscatter spectra, while the upper layer was characterized by kilometer scale waves and vertically propagating type one waves. The characteristics of the topside large-scale waves were consistent with the predictions of nonlocal gradient drift instability theories.

  18. Three-dimensional modeling equatorial spread F

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Krall, J.; Joyce, G.

    2008-12-01

    Equatorial spread F (ESF) is a low-latitude ionospheric phenomenon that leads to the development of large scale electron density depletions that adversely affect communications and navigation systems. The development of models to understand and predict the onset and evolution of ESF is therefore critically important to a number of space-based systems. To this end, NRL has developed a three-dimensional model of ESF. The global NRL ionosphere model SAMI3 has been modified to simulate a narrow wedge of the post-sunset ionosphere to capture the onset and evolution of ESF. Preliminary results indicate that (1) bubbles can rise to ~ 1600 km, (2) extremely steep ion density gradients can develop in both longitude and latitude, (3) upward plasma velocities approach 1 km/s, and (4) the growth time of the instability is ~eq 15 min. We will also report the effects of meridional and zonal winds on bubble development, as well as ion composition (both atomic and molecular). The simulations will focus on current, low solar activity conditions, and results will be compared to C/NOFS data where available. Research supported by ONR

  19. Vertical motions in the equatorial middle atmosphere

    NASA Technical Reports Server (NTRS)

    Weisman, M. L.

    1979-01-01

    A single station vertical velocity equation which considers ageostrophic and diabatic effects derived from the first law of thermodynamics and a generalized thermal wind relation is presented. An analysis and verification procedure which accounts for measurement and calculation errors as well as time and space continuity arguments and theoretical predictions are described. Vertical velocities are calculated at every kilometer between 25 and 60 km and for approximately every three hours for the above diurnal period at Kourou (French Guiana), Fort Sherman (Panama Canal Zone), Ascension Island, Antigua (British West Indies) and Natal (Brazil). The results, plotted as time series cross sections, suggest vertical motions ranging in magnitude from 1 or 2 cm/sec at 30 km to as much as 15 cm/sec at 60 km. Many of the general features of the results agree well with atmospheric tidal predictions but many particular features suggest that both smaller time scale gravity waves (periods less than 6 hours) and synoptic type waves (periods greater than 1 day) may be interacting significantly with the tidal fields. The results suggest that vertical motions can be calculated for the equatorial middle atmosphere and must be considered a significant part of the motion for time scales from 8 to 24 hours.

  20. Onset conditions for equatorial spread F

    SciTech Connect

    Mendillo, M.; Baumgardner, J.; Xiaoqing Pi; Sultan, P.J. ); Tsunoda, R. )

    1992-09-01

    The problem of day-to-day variability in the occurrence of equatorial spread F (ESF) is addressed using multidiagnostic observations and semiempirical modeling. The observational results are derived from a two-night case study of ESF onset conditions observed at Kwajalein Atoll (Marshall Islands) using the ALTAIR incoherent scatter radar and all-sky optical imaging techniques. The major difference between nights when ESF instabilities did not occur (August 14, 1988) and did occur (August 15, 1988) in the Kwajalein sector was that the northern meridional gradient of 6300-[angstrom] airglow was reduced on the night of limited ESF activity. Modeling results suggest that this unusual airglow pattern is due to equatorward neutral winds. Previous researchers have shown that transequatorial thermospheric winds can exert a control over ESF seasonal and longitudinal occurrence patterns by inhibiting Rayleigh-Taylor instability growth rates. They present evidence to suggest that this picture can be extended to far shorter time scales, namely, that 'surges' in transequatoral winds acting over characteristic times of a few hours to a day can result in a stabilizing influence upon irregularity growth rates. The seemingly capricious nature of ESF onset may thus be controlled, in part, by the inherent variability of low-latitude thermospheric winds.

  1. Onset conditions for equatorial spread F

    NASA Technical Reports Server (NTRS)

    Mendillo, Michael; Baumgardner, Jeffrey; Pi, Xiaoqing; Sultan, Peter J.; Tsunoda, Roland

    1992-01-01

    The problem of day-to-day variability in the occurrence of equatorial spread F (ESF) is addressed using multidiagnostic observations and semiempirical modeling. The observational results are derived from a two-night case study of ESF onset conditions observed at Kwajalein Atoll (Marshall Islands) using the ALTAIR incoherent scatter radar and all-sky optical imaging techniques. The major difference between nights when ESF instabilities did not occur (August 14, 1988) and did occur (August 15, 1988) in the Kwajalein sector was that the northern meridional gradient of 6300-A airglow was reduced on the night of limited ESF activity. Modeling results suggest that this unusual airglow pattern is due to equatorward neutral winds. Previous researchers have shown that transequatorial thermospheric winds can exert a control over ESF seasonal and longitudinal occurrence patterns by inhibiting Rayleigh-Taylor instability growth rates. Evidence is presented to suggest that this picture can be extended to far shorter time scales, namely, that 'surges' in transequatorial winds acting over characteristic times of a few hours to a day can result in a stabilizing influence upon irregularity growth rates. The seemingly capricious nature of ESF onset may thus be controlled, in part, by the inherent variability of low-latitude thermospheric winds.

  2. Intercomparison of simulated South Equatorial Current Bifurcation

    NASA Astrophysics Data System (ADS)

    Signorelli, N. T.; Treguier, A. M.; Wainer, I.; Deshayes, J.

    2013-05-01

    The gradual weakening of the Atlantic Meridional Overturning Circulation (AMOC) during the twenty-first century, as predicted by climate models contributing to the 4th IPCC report, motivated numerous studies of the AMOC using observations and model simulations in the North Atlantic, but only few studies have focused on the South Atlantic. This study investigates and intercompares the AMOC in the South Atlantic in SODA ocean reanalysis and various model simulations. Close to Brazilian shelf, the North Brazilian Undercurrent (NBUC) is one of the main conduits for AMOC upper branch. Another one is the Intermediate Western Boundary Current (IWBC). Both of these western boundary currents are affected by the South Equatorial Current bifurcation. Since the bifurcation is under distinct regimes in the surface and intermediate depths with dissimilar temporal variability, at least at seasonal timescales, NBUC and IWBC systems are expected to contribute differently to AMOC variability. We test this hypothesis using the outputs of 3 ocean-only models of varying resolution (1, 1/2 and 1/12 deg) forced by atmospheric reanalyses, and the ocean reanalysis SODA. Preliminary investigations concern the time variability of the bifurcation position, on seasonal to interannual timescales, and its relationship with atmospheric forcings (e.g. wind stress curl) and global climate indices (such as AMOC, ENSO, NAO, AMO…).

  3. POGO observations of the equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Cain, J. C.; Sweeney, R. E.

    1972-01-01

    During intervals in 1967 to 1970, the OGO-4 and 6 spacecraft made over 2000 traversals over the equatorial electrojet in the altitude range 400-800 km when local times were between 9 and 15 hours. These spacecraft carried total field magnetometers making measurements to an accuracy of 2 gamma with a sample rate greater than once a second. Delta F values, the deviations from these observations, were formed from an internal reference model. The results were plotted for a 30 deg band about the equator, and the characteristics of the electrojet effect in the data were investigated. This effect was characterized by a sharp negative V-signature of some 16-19 deg in width and a variable amplitude. The position of this minimum was found to lie within 0.5 deg of the dip equator. A slight northward shift was noted at the longitude of Huancayo. The jet amplitudes were normalized to 400 km amplitudes and observed to be highly variable in time. Amplitudes over the longitude range 50 to 90 deg W averaged 60% higher than elsewhere, as expected, due to the weaker main field. However, though the scatter of amplitudes is high, the expected minima in east Asia was not evident. It was speculated that this could be due to a less conducting upper mantle in this area.

  4. Resent Status of ITER Equatorial Launcher Development

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Kajiwara, K.; Kasugai, A.; Oda, Y.; Kobayashi, N.; Sakamoto, K.

    2009-11-01

    The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. The high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.

  5. Catastrophic ape decline in western equatorial Africa.

    PubMed

    Walsh, Peter D; Abernethy, Kate A; Bermejo, Magdalena; Beyers, Rene; De Wachter, Pauwel; Akou, Marc Ella; Huijbregts, Bas; Mambounga, Daniel Idiata; Toham, Andre Kamdem; Kilbourn, Annelisa M; Lahm, Sally A; Latour, Stefanie; Maisels, Fiona; Mbina, Christian; Mihindou, Yves; Obiang, Sosthène Ndong; Effa, Ernestine Ntsame; Starkey, Malcolm P; Telfer, Paul; Thibault, Marc; Tutin, Caroline E G; White, Lee J T; Wilkie, David S

    2003-04-10

    Because rapidly expanding human populations have devastated gorilla (Gorilla gorilla) and common chimpanzee (Pan troglodytes) habitats in East and West Africa, the relatively intact forests of western equatorial Africa have been viewed as the last stronghold of African apes. Gabon and the Republic of Congo alone are thought to hold roughly 80% of the world's gorillas and most of the common chimpanzees. Here we present survey results conservatively indicating that ape populations in Gabon declined by more than half between 1983 and 2000. The primary cause of the decline in ape numbers during this period was commercial hunting, facilitated by the rapid expansion of mechanized logging. Furthermore, Ebola haemorrhagic fever is currently spreading through ape populations in Gabon and Congo and now rivals hunting as a threat to apes. Gorillas and common chimpanzees should be elevated immediately to 'critically endangered' status. Without aggressive investments in law enforcement, protected area management and Ebola prevention, the next decade will see our closest relatives pushed to the brink of extinction. PMID:12679788

  6. Exact and Explicit Internal Equatorial Water Waves with Underlying Currents

    NASA Astrophysics Data System (ADS)

    Kluczek, Mateusz

    2016-07-01

    In this paper we present an exact and explicit solution to the geophysical governing equations in the Equatorial region, which represents internal oceanic waves in the presence of a constant underlying current.

  7. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    NASA Astrophysics Data System (ADS)

    Quirchmayr, Ronald

    2016-08-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  8. Photoelectron escape fluxes over the equatorial and midlatitude regions

    NASA Technical Reports Server (NTRS)

    Narasingarao, B. C.; Singh, R. N.; Maier, E. J.

    1972-01-01

    Satellite measurements of photoelectron escape flux around noontime made by Explorer 31 in 600-800 km altitude range are reported for the equatorial and midlatitude regions. The pitch angle distributions and the spectral distributions are derived from the data. Analyzed data show that the flux for equatorial regions is lower by a factor 2 to 3 in comparison to that of midlatitude regions. Theoretical calculations are also made to compare with observed escape fluxes.

  9. Influence of Assimilation of Subsurface Temperature Measurements on Simulations of Equatorial Undercurrent and South Equatorial Current Along the Pacific Equator

    NASA Technical Reports Server (NTRS)

    Halpern, David; Leetmaan, Ants; Reynolds, Richard W.; Ji, Ming

    1997-01-01

    Equatorial Pacific current and temperature fields were simulated with and without assimilation of subsurface temperature measurements for April 1992 - March 1995, and compared with moored bouy and research vessel current measurements.

  10. Equatorial Kelvin waves: A UARS MLS view

    NASA Technical Reports Server (NTRS)

    Canziani, Pablo O.; Holton, James R.; Fishbein, Evan; Froidevaux, Lucien; Waters, Joe W.

    1994-01-01

    Data from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS) are used to compare two periods of Kelvin wave activity during different stages of the equatorial quasi-biennial oscillation. The analysis is carried out using an asynoptic mapping technique. A wide bandpass filter is used to isolate the frequency bands where Kelvin waves have been identified in previous studies. Time-height and time-latitude plots of the bandpassed data are used to identify Kelvin wave activity in the temperature and ozone fields. Frequency spectra of temperature and ozone amplitudes are constructed to further analyze the latitudinal and meridional distribution of Kelvin wave activity in zonal wavenumbers 1 and 2. The characteristics identified in these plots agree well with theoretical predictions and previous observations of middle atmosphere Kelvin waves. The time-height and time-latitude plots support the existence of Kelvin waves in discrete frequency bands; the slow, fast, and ultrafast Kelvin modes are all identified in the data. The characteristics of these modes do not vary much despite different mean flow conditions in the two periods examined. For the Kelvin wave-induced perturbations in ozone, the change from a transport-dominated regime below 10 hPa to a photochemically controlled regime above 10 hPa is clearly apparent in the height dependence of the phase difference between temperature and ozone. The ratios of the ozone perturbation amplitude to the temperature perturbation amplitude for the various observed Kelvin wave modes are in agreement with model estimates and LIMS (Limb Infrared Monitor of the Stratosphere) observations in the lower half of the region sampled but appear to be too large in the upper stratosphere and lower mesosphere.

  11. Isostatic compensation of equatorial highlands on Venus

    NASA Technical Reports Server (NTRS)

    Kucinskas, Algis B.; Turcotte, Donald L.

    1994-01-01

    Spherical harmonic models for Venus' global topography and gravity incorporating Magellan data are used to test isostatic compensation models in five 30 deg x 30 deg regions representative of the main classes of equatorial highlands. The power spectral density for the harmonic models obeys a power-law scaling with spectral slope Beta approximately 2 (Brown noise) for the topography and Beta approximately 3 (Kaula's law) for the geoid, similar to what is observed for Earth. The Venus topography spectrum has lower amplitudes than Earth's which reflects the dominant lowland topography on Venus. Observed degree geoid to topography ratios (GTRs) on Venus are significantly smaller than degree GTRs for uncompensated topography, indicative of substantial compensation. Assuming a global Airy compensation, most of the topography is compensated at depths greater than 100 km, suggesting a thick lithosphere on Venus. For each region considered we obtain a regional degree of compensation C from a linear regression of Bouguer anomaly versus Bouguer gravity data. Geoid anomaly (N) versus topography variation (h) data for each sample were compared, in the least-squares sense, to theoretical correlations for Pratt, Airy, and thermal thinning isostasy models yielding regional GTR, zero-elevation crustal thickness (H), and zero elevation thermal lithosphere thickness (y(sub L(sub 0)), respectively. We find the regional compensation to be substantial (C approximately 52-80%), and the h, N data correlations in the chosen areas can be explained by isostasy models applicable on the Earth and involving variations in crustal thickness (Airy) and/or lithospheric (thermal thinning) thickness. However, a thick crust and lithosphere (y(sub L(sub 0)) approximately 300 km) must be assumed for Venus.

  12. A Drying Trend in Central Equatorial Africa

    NASA Astrophysics Data System (ADS)

    Diem, J.; Hartter, J.; Ryan, S. J.; Palace, M. W.

    2013-12-01

    There has been considerable uncertainty about changes in rainfall over central equatorial Africa over the past three decades due to a lack of reliable rainfall data in the region. This region contains the northern portion of the Albertine Rift, which is one of the world's hotspots for biodiversity, and within this region there is an exploding human population dependent on rainfed agriculture. Both the human population and conservation/preservation areas are becoming increasingly sensitive to changes in rainfall. There now exists an accurate, high-resolution, satellite based precipitation dataset, African Rainfall Climatology version 2 (ARC2), for the region that provides daily rainfall estimates from 1983 to the present. Here we show significant declines in monthly and annual rainfall in west-central Uganda, which exists in the far northeastern portion of the Rift, from 1983-2012. The decrease in annual rainfall was 110 mm per decade. Therefore, the current annual rainfall of approximately 1,200 mm is less than 80% of the annual rainfall three decades ago. The drying trend most likely extended westward into the Congo Basin. There were significant increasing (decreasing) trends in light-rainfall (heavy-rainfall) days over the period. Using results from previous studies, Indian Ocean warming and increasing carbonaceous aerosols from biomass burning in tropical Africa, are explored as potential causes of the drying trend. The aim of the study is not to find the fingerprint of local and regional anthropogenic forcings on the drying trend, but our results suggest that those forcings could be a leading cause of the drying trend.

  13. Neotectonics in the northern equatorial Brazilian margin

    NASA Astrophysics Data System (ADS)

    Rossetti, Dilce F.; Souza, Lena S. B.; Prado, Renato; Elis, Vagner R.

    2012-08-01

    An increasing volume of publications has addressed the role of tectonics in inland areas of northern Brazil during the Neogene and Quaternary, despite its location in a passive margin. Hence, northern South America plate in this time interval might have not been as passive as usually regarded. This proposal needs further support, particularly including field data. In this work, we applied an integrated approach to reveal tectonic structures in Miocene and late Quaternary strata in a coastal area of the Amazonas lowland. The investigation, undertaken in Marajó Island, mouth of the Amazonas River, consisted of shallow sub-surface geophysical data including vertical electric sounding and ground penetrating radar. These methods were combined with morphostructural analysis and sedimentological/stratigraphic data from shallow cores and a few outcrops. The results revealed two stratigraphic units, a lower one with Miocene age, and an upper one of Late Pleistocene-Holocene age. An abundance of faults and folds were recorded in the Miocene deposits and, to a minor extent, in overlying Late Pleistocene-Holocene strata. In addition to characterize these structures, we discuss their origin, considering three potential mechanisms: Andean tectonics, gravity tectonics related to sediment loading in the Amazon Fan, and rifting at the continental margin. Amongst these hypotheses, the most likely is that the faults and folds recorded in Marajó Island reflect tectonics associated with the history of continental rifting that gave rise to the South Atlantic Ocean. This study supports sediment deposition influenced by transpression and transtension associated with strike-slip divergence along the northern Equatorial Brazilian margin in the Miocene and Late Pleistocene-Holocene. This work records tectonic evidence only for the uppermost few ten of meters of this sedimentary succession. However, available geological data indicate a thickness of up to 6 km, which is remarkably thick for

  14. Long-Term Changes in the Equatorial Pacific Trade Winds.

    NASA Astrophysics Data System (ADS)

    Clarke, Allan J.; Lebedev, Anna

    1996-05-01

    Past work has shown that surface zonal equatorial wind stress, zonally integrated from one side of the Pacific to the other, is the key variable for estimating long-term El Niño behavior in the eastern Pacific. The long-term behavior of this key variable is difficult to determine directly because of the paucity of the equatorial wind observations and because of false trends in the wind data introduced by gradual changes in the methods of wind measurement. However, surface pressure data generally does not suffer from these false trends and theory suggests that this key wind variable is linearly related to the difference (p) of surface atmospheric pressure between the eastern and western equatorial Pacific. Detrended COADS pressure in the eastern and western equatorial Pacific and post 1960 detrended equatorial wind stress zonally averaged across the Pacific were used to verify this relationship. Pressure difference and zonally averaged equatorial zonal windstress () were highly correlated (r = 0.90) and the regression also showed that advection of zonal momentum contributes substantially to the momentum balance in the equatorial atmospheric boundary layer. Further, hindcasts of eastern equatorial Pacific sea surface temperature and sea level indicated that from p was more accurate than from winds even since 1960 when wind data were more plentiful. This suggests that the simple pressure difference p is an effective way to monitor both in the past and in the future.Using the p time series as a proxy for zonally integrated wind stress suggests that the equatorial trades strengthened during the early and mid-1930s, weakened from the late 1930s to late 1950s, strengthened during the 1960s, and weakened rapidly since. This pattern is qualitatively consistent with the long record of sea surface temperature measurements at Puerto Chicama (Peru). The more recent rapid weakening is consistent with trends in several physical variables reported previously by others. The long

  15. Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons

    NASA Astrophysics Data System (ADS)

    Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya

    2015-08-01

    Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.

  16. Study of magnetic transient variations signature at equatorial region

    NASA Astrophysics Data System (ADS)

    Santos, J.; Trivedi, N.; Dutra, S.

    Transient variations in the H magnetic field component of magnetograms at high latitude are a common feature. They are associated with interaction process between solar wind and Earth's magnetic field. Abrupt changes in the solar wind interacting with Earth's magnetic field generate Alfvén and fast mode waves. The Alfvén wave doesn't propagate in the direction perpendicular to the geomagnetic field, so equatorial signatures are probably caused by fast mode waves. On the other hand, complex signatures observed at high latitudes represent a composition of Alfvén and fast mode waves. A second suggested propagation mechanism to low latitudes is the Earth-ionosphere wave-guide. In this work, geomagnetic data from the Brazilian magnetic stations at Belém/Tatuoca (BLM), Eusébio (EUS), Ji-Paraná (JIP), São luis (SLZ) and São Martinho da Serra (SMS) were used to look for equatorial signatures of magnetic transient events. We identified their morphological characteristics and time occurrence distribution. Satellite data (ACE and GOES) were used to see magnetosphere signatures and solar wind and interplanetary magnetic field conditions that increase the probability of occurrence for the equatorial events. Trivedi et al. (2002a) present evidence for corresponding signatures of TCV at Belém, São Luis, and Terezina and other stations under or nearby the equatorial electrojet. The conclusions of Trivedi et al. (2002a) are that equatorial signatures differ greatly from event to event; when the high-latitude transient events exhibited clear, strong, isolated signatures corresponding to TCVs, they generally detected isolated bipolar compressional signatures at geosynchronous orbit and transient impulses in equatorial ground magnetograms; when high-latitude events were quasiperiodic, weaker, spatially limited, or did not exhibit clear TCV signatures the equatorial signatures are difficult to identify; the equatorial signatures cannot be simply result from remote

  17. Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America

    NASA Astrophysics Data System (ADS)

    Münnich, M.; Neelin, J. D.

    2005-11-01

    In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.

  18. Equatorial superrotation in a thermally driven zonally symmetric circulation

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.

    1981-01-01

    Near the equator where the Coriolis force vanishes, the momentum balance for the axially symmetric circulation is established between horizontal and vertical diffusion, which, a priori, does not impose constraints on the direction or magnitude of the zonal winds. Solar radiation absorbed at low latitudes is a major force in driving large scale motions with air rising near the equator and falling at higher latitudes. In the upper leg of the meridional cell, angular momentum is redistributed so that the atmosphere tends to subrotate (or corotate) at low latitudes and superrotate at high latitudes. In the lower leg, however, the process is reversed and produces a tendency for the equatorial region to superrotate. The outcome depends on the energy budget which is closely coupled to the momentum budget through the thermal wind equation; a pressure (temperature) maximum is required to sustain equatorial superrotation. Such a condition arises in regions which are convectively unstable and the temperature lapse rate is superadiabatic. It should arise in the tropospheres of Jupiter and Saturn; planetary energy from the interior is carried to higher altitudes where radiation to space becomes important. Upward equatorial motions in the direct and indirect circulations (Ferrel-Thomson type) imposed by insolation can then trap dynamic energy for equatorial heating which can sustain the superrotation of the equatorial region.

  19. Equatorial Winds on Saturn and the Stratospheric Oscillation

    NASA Technical Reports Server (NTRS)

    Li, Liming; Jian, Xun; Ingersoll, Andrew P.; DelGenio, Anthony D.; Porco, Carolyn C.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Nixon, Conor A.; Achterberg, Richard K.; Orton, Glenn S.; Fletcher, Leigh N.; Baines, Kevin H.

    2011-01-01

    The zonal jets on the giant planets are generally thought to be stable with time. Recently, there are still some debates about the general thought. Here, we report a significant temporal variation of the equatorial jet at high-altitude on Saturn. Long-term (2004-2009) observations by Cassini reveal that wind speed at the 60-mbar level increased from 270 m/s in 2004 to 290 m/s in 2008, while the wind speed has been mostly constant over time at the 500-mbar level in the southern equatorial region. The Cassini observations further reveal that the equatorial jet intensified approximately 60 m/s in the stratosphere (1-5 mbar) from 2005 to 2008. The fact that the wind acceleration is weaker at the 60-mbar level (approximately 20 m/s) than at the 1-mbar level (approximately 60 m/s) demonstrates that the equatorial oscillation is damped when it propagates downwards to the tropopause around 60 mbar. The direct measurement of the varying equatorial jet around the tropopause also serves as a key boundary condition when deriving the thermal wind fields in the stratosphere.

  20. In situ observations of bifurcation of equatorial ionospheric plasma depletions

    SciTech Connect

    Aggson, T.L.; Pfaff, R.F.; Maynard, N.C.

    1996-03-01

    Vector electric field measurements from the San Marco D satellite are utilized to investigate the bifurcation of ionospheric plasma depletions (sometimes called {open_quotes}bubbles{close_quotes}) associated with nightside equatorial spread F. These depletions are identified by enhanced upward ExB convection in depleted plasma density channels in the nighttime equatorial ionosphere. The in situ determination of the bifurcation process is based on dc electric field measurements of the bipolar variation in the zonal flow, westward and eastward, as the eastbound satellite crosses isolated signatures of updrafting plasma depletion regions. The authors also present data in which more complicated regions of zonal velocity variations appear as the possible result of multiple bifurcations of updrafting equatorial plasma bubbles. 10 refs., 7 fig.

  1. The Equatorial Ridges of Pan and Atlas: Terminal Accretionary Ornaments?

    NASA Astrophysics Data System (ADS)

    Charnoz, Sébastien; Brahic, André; Thomas, Peter C.; Porco, Carolyn C.

    2007-12-01

    In the outer regions of Saturn’s main rings, strong tidal forces balance gravitational accretion processes. Thus, unusual phenomena may be expected there. The Cassini spacecraft has recently revealed the strange “flying saucer” shape of two small satellites, Pan and Atlas, located in this region, showing prominent equatorial ridges. The accretion of ring particles onto the equatorial surfaces of already-formed bodies embedded in the rings may explain the formation of the ridges. This ridge formation process is in good agreement with detailed Cassini images showing differences between rough polar and smooth equatorial terrains. We propose that Pan and Atlas ridges are kilometers-thick “ring-particle piles” formed after the satellites themselves and after the flattening of the rings but before the complete depletion of ring material from their surroundings.

  2. The equatorial ridges of Pan and Atlas: terminal accretionary ornaments?

    PubMed

    Charnoz, Sébastien; Brahic, André; Thomas, Peter C; Porco, Carolyn C

    2007-12-01

    In the outer regions of Saturn's main rings, strong tidal forces balance gravitational accretion processes. Thus, unusual phenomena may be expected there. The Cassini spacecraft has recently revealed the strange "flying saucer" shape of two small satellites, Pan and Atlas, located in this region, showing prominent equatorial ridges. The accretion of ring particles onto the equatorial surfaces of already-formed bodies embedded in the rings may explain the formation of the ridges. This ridge formation process is in good agreement with detailed Cassini images showing differences between rough polar and smooth equatorial terrains. We propose that Pan and Atlas ridges are kilometers-thick "ring-particle piles" formed after the satellites themselves and after the flattening of the rings but before the complete depletion of ring material from their surroundings. PMID:18063797

  3. The effect of islands on low frequency equatorial motions

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Du Penhoat, Y.

    1982-01-01

    A complete analytic solution is presented for the influence of equatorial islands on steady low-frequency waves. If the island is small (the meridional extent is much less than the equatorial radius of deformation, R), the waves pass it almost undisturbed, with the mass flux incident on the upstream side flowing around it nearly equally to the north and to the south and continuing on downstream in the lee of the island. For large islands (comparable in extent with R or larger), the principal response is organized as it would be if the island barrier were meridionally infinite. An incident Kelvin wave is largely reflected as long Rossby waves; symmetric long Rossby waves are reflected as equatorial Kelvin waves, while antisymmetric ones stop at the island barrier. In all cases, a boundary current composed of short Rossby waves forms at the eastern side of the island and accomplishes the required meridional redistribution of the zonal mass flux.

  4. Low-altitude equatorial ions: A new look with SAMPEX

    NASA Astrophysics Data System (ADS)

    Greenspan, M. E.; Mason, G. M.; Mazur, J. E.

    1999-09-01

    We have used the Low-Energy Ion Composition Analyzer (LICA) instrument on the low altitude, polar orbiting SAMPEX spacecraft to survey energetic ions near the magnetic equator from late 1992 through 1998; that is, through the declining phase of Solar Cycle 22, solar minimum, and into the rise of Solar Cycle 23. This survey gives us a unique opportunity to examine both the long-term variation in the low-altitude equatorial ion population and short-term enhancements that occur during magnetic storms. During the survey period, 40 storms with minimum Dst<=100nT occurred: the majority were accompanied by increases in the equatorial ion flux. Although LICA detects ions with energies far above the bulk of the ring current ion population, the times of the maximum equatorial fluxes clustered around the time of minimum Dst, i.e., the time of maximum ring current energy content. The storm associated flux maxima were unevenly distributed in geographic longitude, with the maximum flux enhancements occurring at longitudes just west of the South Atlantic Anomaly. Except for an increase in 1994, the quiet time monthly average equatorial flux declined steadily from 1992 until early 1998; then it began to rise again. The monthly average equatorial ion fluxes had a very significant correlation with the Ap index during this period (R=0.54), indicating that geomagnetic activity dominated the long-term variation. During the survey, we also discovered enhancements in the equatorial ion flux that occurred shortly after the onsets of three recent, large solar energetic particle events. These enhancements began well before the commencements of the associated geomagnetic storms. The major ion species present were H, He, C, and O, therefore ruling out an ionospheric source. These ions could not have penetrated directly from interplanetary space to the magnetic equator, and we do not understand the mechanism that produces the SEP-associated enhancements.

  5. A recent, equatorial, periglacial environment on Mars

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Gallagher, C.; Murray, J. B.; Muller, J.-P.

    2009-04-01

    During the Viking era, Mars' recent climatic history was held to be cold and dry with little evidence for long-lived liquid water near the surface; signs of a past wetter, warmer climate were confined to ancient Noachian or Hesperian-aged terrains. Recent missions have revealed contemporary near-surface water-ice to be abundant at high latitudes, and a population of mid-latitude fluvial-like gullies that appear to have formed by transient melting of ice or snow. Thus today's view of Mars' recent surface evolution is one of global permafrost existing within a framework of climate change, the timescales of which are governed by obliquity cycles with periods of tens to hundreds of thousands of years. However, in recent mapping work of the equatorial Elysium Planitia region using the latest very high resolution images of Mars (HiRISE; 25cm/pixel) we have found evidence for longer-lived, geologically recent liquid water at the martian surface. This suggests that there was a recent period when the climate was warmer than current obliquity cycle-based models predict. The Elysium Planitia region of Mars is both geologically young (late Amazonian period; <100 Ma) and hosts a variety of landforms that are morphologically similar to those of periglacial and permafrost environments on Earth. The region was exposed to massive flooding from deep underground sources during the late Amazonian, as demonstrated by the distinctive fluvial morphologies seen in the outflow channel Athabasca Vallis. These floods would have provided both the source of ice and particulate material required for a periglacial or permafrost landscape and there was probably a long-lived, but slowly freezing, lake or sea in the downstream Elysium basin. However, the provenance of the materials and landforms of this region is disputed: many authors still regard the Athabasca Vallis and Elysium basin as being flood lava provinces, with effusive volcanic materials reoccupying earlier flood landscapes (a classic

  6. Observations of ELF electromagnetic waves associated with equatorial spread F

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Holtet, J. A.; Tsurutani, B. T.

    1979-01-01

    Extreme low frequency electromagnetic waves have been observed below the F peak in the equatorial ionosphere by instruments onboard OGO-6. Electrostatic wave observations indicate that the steep gradient was unstable to the process which causes equatorial spread F above the region where the electromagnetic waves were observed. The data are very similar to observations near the polar cusp and give further evidence that ELF waves are excluded from regions of rapid and irregular density increases. Low level electromagnetic waves with similar properties were occasionally observed on the nightside by the OVI-17 electric field sensor and may be plasmaspheric hiss which has propagated to low altitude.

  7. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  8. Upwelling: a unit of disturbance in equatorial spread F

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.

    2015-12-01

    Plasma structure in the nighttime equatorial F layer, often referred to as equatorial spread F (ESF), is not uniformly distributed, either in time or in space. Observations indicate that ESF in the bottomside F layer takes the form of patches; plasma structure within the F layer takes the form of localized plasma depletions, called equatorial plasma bubbles (EPBs), which tend to occur in clusters. Another observed feature is an upwelling, which has been described as a localized, upward modulation of isodensity contours in the bottomside F layer. Interestingly, zonal widths of ESF patches, EPB clusters, and upwellings are similar. Moreover, all display an east-west asymmetry. The objective of this paper is to show, for the first time, that an ESF patch is the bottomside counterpart of an EPB cluster, and that both are products of the electrodynamical process that takes place within an upwelling. The process can be described as having three phases: (1) amplification of upwelling amplitude during the post-sunset rise of the F layer, (2) launching of the first EPB of the evening, from crest of the upwelling, and (3) structuring of plasma within the upwelling. Hence, an upwelling, whose presence is responsible for the formation of ESF patches and EPB clusters, can be envisioned as a unit of disturbance that occurs in the nighttime equatorial ionosphere.

  9. History of the Italian San Marco equatorial mobile range

    NASA Technical Reports Server (NTRS)

    Nesbitt, H. N.

    1971-01-01

    Events leading to the development of the San Marco Equatorial Range are presented. Included are background information leading to the cooperative space program between the United States and Italy, conceptual planning, training activities, equipment design and fabrication, and range utilization. The technical support provided the San Marco Program by Scout Project Office, and other NASA installations is described.

  10. Signatures of strong geomagnetic storms in the equatorial latitude

    NASA Astrophysics Data System (ADS)

    Olawepo, A. O.; Adeniyi, J. O.

    2014-04-01

    Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height - electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to -12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.

  11. Timing and significance of maximum and minimum equatorial insolation

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; Gildor, Hezi

    2008-01-01

    Variations in summer insolation at high northern latitudes on a timescale of 100 ka are very small. Thus a common belief is that the pronounced ~100 ka glacial cycles are not directly linked to the very weak 100 ka insolation periodicity. Here we show, analytically and numerically, that the annual maximum (and minimum) of daily equatorial insolation has pronounced eccentricity periodicities, with timescales of ~400 ka and ~100 ka, as well as a pronounced half-precession periodicity with timescale of ~11 ka. The timing of the maximum (and minimum) annual equatorial insolation may change around the equinoxes (solstices), alternating between the vernal and autumnal equinoxes (summer and winter solstices) where the time of the maximum (minimum) equatorial insolation may occur up to more than 1 month from the equinoxes (solstices). We also show that when considering the mean insolation of periods larger than 1 d, the ~11 ka periodicity becomes less dominant, and it vanishes when the averaging period is half a year; for the later case the maximum (minimum) may occur for any day in the annual cycle. The maximum equatorial insolation may alter the timing and amplitude of the maximum surface temperature of the summer hemisphere and in this way may drastically affect the Hadley circulation. Changes in Hadley circulation affect the heat and moisture transport from low to high latitudes, affecting the buildup of the high-latitude Northern Hemisphere ice sheets.

  12. Exact Nonlinear Internal Equatorial Waves in the f-plane

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Chu

    2016-07-01

    We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.

  13. Observations of ULF wave related equatorial electrojet and density fluctuations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Zesta, E.; Biouele, C. M.; Moldwin, M. B.; Boudouridis, A.; Damtie, B.; Mebrahtu, A.; Anad, F.; Pfaff, R. F.; Hartinger, M.

    2013-10-01

    We report on Pc5 wave related electric field and vertical drift velocity oscillations at the equator as observed by ground magnetometers for an extended period on 9 August 2008. We show that the magnetometer-estimated equatorial E×B drift oscillates with the same frequency as ULF Pc5 waves, creating significant ionospheric density fluctuations. We also show ionospheric density fluctuations during the period when we observed ULF wave activity. At the same time, we detect the ULF activity on the ground using ground-based magnetometer data from the African Meridian B-field Education and Research (AMBER) and the South American Meridional B-field Array (SAMBA). From space, we use magnetic field observations from the GOES 12 and the Communication/Navigation Outage and Forecast System (C/NOFS) satellites. Upstream solar wind conditions are provided by the ACE spacecraft. We find that the wave power observed on the ground also occurs in the upstream solar wind and in the magnetosphere. All these observations demonstrate that Pc5 waves with a likely driver in the solar wind can penetrate to the equatorial ionosphere and modulate the equatorial electrodynamics. While no direct drift measurements from equatorial radars exist for the 9 August 2008 event, we used JULIA 150 km radar drift velocities observed on 2 May 2010 and found similar fluctuations with the period of 5-8 min, as a means of an independent confirmation of our magnetometer derived drift dynamics.

  14. Evolution of Ion Clouds in the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Petrochuk, Yevgeny; Blaunstein, Nathan; Mishin, Evgeny; Pedersen, Todd; Caton, Ron; Viggiano, Al; Schuman, Nick

    2015-11-01

    We report on the results of 2- and 3-dimentional numerical investigations of the evolution of samarium ion clouds injected in the equatorial ionosphere, alike the recent MOSC experiments. The ambient conditions are described by a standard model of the quiet-time equatorial ionosphere from 90 to 350 km. The altitudinal distribution of the transport processes and ambient electric and magnetic fields is taken into account. The fast process of stratification of ion clouds and breaking into small plasmoids occur only during the late stage of the cloud evolution. The role of the background plasma and its depletion zones formed due to the short-circuiting currents is not as evident as in mid latitudes. It is also revealed that the altitudinal dependence of the diffusion and drift plays a minor role in the cloud evolution at the equator. Likewise, the cloud remains stable with respect to the Raleigh-Taylor and gradient-drift instabilities. These two features are defined by the equatorial near-horizontal magnetic field which leads to a strongly-elongated ellipsoid-like plasma cloud. The critical dip angle separating the stable (equatorial) and unstable (mid-latitude) cloud regimes will be defined in future simulation studies, as well as the dependence on the ambient electric field and neutral wind. 2Space Vehicles Directorate, Air Force Research Laboratory

  15. IRON LIMITATION OF PHYTOPLANKTON PHOTOSYNTHESIS IN THE EQUATORIAL PACIFIC OCEAN

    EPA Science Inventory

    The surface waters of the equatorial Pacific have unusually high nitrate and phosphate concentrations, but relatively low phytoplankton biomass. his high nitrate, low chlorophyll' (HNLC) phenomenon has been ascribed to 'top-down' grazing pressure by herbivores which prevent the p...

  16. An analytic solution for the J2 perturbed equatorial orbit

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1983-01-01

    An analytic solution for the J2 perturbed equatorial orbit is obtained in terms of elliptic functions and integrals. The necessary equations for computing the position and elocity vectors, and the time are given in terms of known functions. The perturbed periapsis and apoapsis distances are determined from the roots of a characteristic cubic.

  17. Spatial and diurnal features of the Jovian equatorial anomaly

    NASA Astrophysics Data System (ADS)

    Tan, A.

    1986-01-01

    This paper outlines a time-dependent model of the Jovian ionosphere with electrodynamic drift to study the spatial and temporal features of the Jovian equatorial anomaly. Two sinusoidal drift velocity models are considered, model 1, akin to that in the terrestrial ionosphere and model 2, having opposite phase. The drift velocity amplitude is taken to be 100 m/s. In either model, an equatorial anomaly which persists throughout the day unlike its terrestrial counterpart, and disappears after midnight is obtained. The crest of ionization is centered around 7-8 degrees latitude in either model as compared with about 15 degrees for the terrestrial anomaly. The Rm index attains a maximum value of 2.6 in the afternoon in model 2. The peak electron density at the equator minimizes before midnight in model 1, but after sunrise in model 2. There is no 'noon biteout' like that found in the terrestrial equatorial ionosphere. The height of the peak electron density roughly follows the drift velocity pattern. Comparison with experimental data indicates that drift velocity amplitudes far exceeding 100 m/s would be required to produce the observed Jovian equatorial anomaly.

  18. The equatorial electrojet current modelling from SWARM satellite data

    NASA Astrophysics Data System (ADS)

    Benaissa, Mahfoud

    2016-07-01

    Equatorial ElectroJet (EEJ) is an intense eastward electric current circulating in the ionospheric magnetic equator band between 100 and 130 km of altitude in E region. These currents vary by day, by season, by solar activity, and also with the main magnetic field of internal origin. The irregularity of the ionosphere has a major impact on the performance of communication systems and navigation (GPS), industry.... Then it becomes necessary study the characteristics of EEJ. In this paper, we present a study of the equatorial electrojet (EEJ) phenomenon along one year (2014) period. In addition, the satellite data used in this study are obtained with SWARM satellite scalar magnetometer data respecting magnetically quiet days with KP < 2. In this paper, we process to separate and extract the electrojet intensity signal from other recorded signal-sources interfering with the main signal and reduce considerably the signal to noise ratio during the SWARM measurements. This pre-processing step allows removing all external contributions in regard to EEJ intensity value. Key words: Ionosphere (Equatorial ionosphere; Electric fields and currents; Equatorial electrojet (EEJ)); SWARM.

  19. Limits to solar cycle predictability: Cross-equatorial flux plumes

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Dasi-Espuig, M.; Jiang, J.; Işık, E.; Schmitt, D.; Schüssler, M.

    2013-09-01

    Context. Within the Babcock-Leighton framework for the solar dynamo, the strength of a cycle is expected to depend on the strength of the dipole moment or net hemispheric flux during the preceding minimum, which depends on how much flux was present in each hemisphere at the start of the previous cycle and how much net magnetic flux was transported across the equator during the cycle. Some of this transport is associated with the random walk of magnetic flux tubes subject to granular and supergranular buffeting, some of it is due to the advection caused by systematic cross-equatorial flows such as those associated with the inflows into active regions, and some crosses the equator during the emergence process. Aims: We aim to determine how much of the cross-equatorial transport is due to small-scale disorganized motions (treated as diffusion) compared with other processes such as emergence flux across the equator. Methods: We measure the cross-equatorial flux transport using Kitt Peak synoptic magnetograms, estimating both the total and diffusive fluxes. Results: Occasionally a large sunspot group, with a large tilt angle emerges crossing the equator, with flux from the two polarities in opposite hemispheres. The largest of these events carry a substantial amount of flux across the equator (compared to the magnetic flux near the poles). We call such events cross-equatorial flux plumes. There are very few such large events during a cycle, which introduces an uncertainty into the determination of the amount of magnetic flux transported across the equator in any particular cycle. As the amount of flux which crosses the equator determines the amount of net flux in each hemisphere, it follows that the cross-equatorial plumes introduce an uncertainty in the prediction of the net flux in each hemisphere. This leads to an uncertainty in predictions of the strength of the following cycle.

  20. Post-midnight occurrence of equatorial plasma bubbles

    NASA Astrophysics Data System (ADS)

    Ajith, K. K.; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Tulasiram, S.

    2016-07-01

    The equatorial plasma bubbles (EPBs)/equatorial spread F (ESF) irregularities are an important topic of space weather interest because of their impact on transionospheric radio communications, satellite-based navigation and augmentation systems. This local plasma depleted structures develop at the bottom side F layer through Rayleigh-Taylor instability and rapidly grow to topside ionosphere via polarization electric fields within them. The steep vertical gradients due to quick loss of bottom side ionization and rapid uplift of equatorial F layer via prereversal enhancement (PRE) of zonal electric field makes the post-sunset hours as the most preferred local time for the formation of EPBs. However, there is a different class of irregularities that occurs during the post-midnight hours of June solstice reported by the previous studies. The occurrence of these post-midnight EPBs maximize during the low solar activity periods. The growth characteristics and the responsible mechanism for the formation of these post-midnight EPBs are not yet understood. Using the rapid beam steering ability of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. The responsible mechanism for the genesis of summer time post-midnight EPBs were discussed in light of growth rate of Rayleigh-Taylor instability using SAMI2 model.

  1. Lagrangian mixed layer modeling of the western equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Shinoda, Toshiaki; Lukas, Roger

    1995-01-01

    Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.

  2. Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valladares, C. E.; Pfaff, R. F.

    2012-07-01

    Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian ˜37°E and 290°E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation, such as

  3. Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics

    NASA Technical Reports Server (NTRS)

    Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.

    2012-01-01

    Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation

  4. The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM

    NASA Astrophysics Data System (ADS)

    Sasaki, Wataru; Doi, Takeshi; Richards, Kelvin J.; Masumoto, Yukio

    2015-01-01

    The link between El Niño/Southern Oscillation (ENSO) and the equatorial Atlantic precipitation during boreal spring (March-April-May) is explored using a coupled general circulation model (CGCM). Interannual variability of the equatorial Atlantic sea surface temperature (SST) in the CGCM is excluded by nudging the modeled SST toward the climatological monthly mean of observed SST in the equatorial Atlantic, but full air-sea coupling is allowed elsewhere. It is found that the equatorial Atlantic precipitation is reduced (increased) during El Niño (La Niña) in the case where the interannual variability of the equatorial Atlantic SST is disabled. The precipitation anomalies in the equatorial Atlantic during ENSO are not strongly associated with the meridional migration of the Atlantic inter-tropical convergence zone. We find the reduced precipitation in the equatorial Atlantic during El Niño is associated with an enhanced Atlantic Walker circulation characterized by strengthened low-level easterlies and anomalous dry, downward winds over the equatorial Atlantic, while the Pacific Walker circulation is weakened. The upper-level anomalous westerlies over the equatorial Atlantic are consistent with a Matsuno-Gill-type response to heating in the eastern equatorial Pacific. Our results of the CGCM experiments suggest that changes to the Walker circulation induced by ENSO contribute significantly to changes in precipitation over the equatorial Atlantic.

  5. Occurrence of equatorial spread F during intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Ray, S.; Roy, B.; Das, A.

    2015-07-01

    Equatorial spread F (ESF) has been observed in response to the prompt penetration of magnetospheric electric field to equatorial latitudes during intense (minimum Dst ≤ -100 nT; Bz ≤ -10 nT for at least 3 h) magnetic storms using global ion density plots of Defense Meteorological Satellite Program (DMSP) over nearly one solar cycle (1996-2005). Geostationary amplitude scintillation observations from Calcutta at VHF and L band for 1996-2005 and GPS amplitude scintillation measurements during 2004-2005 from the Indian Satellite Based Augmentation System Geostationary and GPS Navigation Outlay (GPS Aided GEO Augmented Navigation) network of stations all over India have been used to corroborate the DMSP observations. Subsequent to the time of southward interplanetary magnetic field Bz crossing -10 nT for an intense storm, it has been observed that within 4 h, ESF is generated at a longitude where the local time is dusk.

  6. Influence of the E region dynamo on equatorial spread F

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sanatani, S.; Patterson, T. N. L.

    1983-01-01

    The integrated E region Pedersen conductivity can be an important parameter in determining whether the bottomside of the equatorial F layer will be stable against the Rayleigh-Taylor gravitational instability. The F layer is observed to become unstable when it rises to great heights after sunset. One effect of this height rise is to decrease the stabilizing influence of ion-neutral collisions at F region heights. It is shown here that the same eastward electric field that raises the F layer also decreases the Pedersen conductivity of the E region, which further destabilizes convective overturning. Because the conductivity of magnetic tubes that penetrate the main F layer is large compared to the E layer contribution, these effects are important only for the bottomside of the equatorial F layer.

  7. A strong decrease in Saturn's equatorial jet at cloud level.

    PubMed

    Sánchez-Lavega, A; Pérez-Hoyos, S; Rojas, J F; Hueso, R; French, R G

    2003-06-01

    The atmospheres of the giant planets Jupiter and Saturn have a puzzling system of zonal (east-west) winds alternating in latitude, with the broad and intense equatorial jets on Saturn having been observed previously to reach a velocity of about 470 m x s(-1) at cloud level. Globally, the location and intensity of Jupiter's jets are stable in time to within about ten per cent, but little is known about the stability of Saturn's jet system. The long-term behaviour of these winds is an important discriminator between models for giant-planet circulations. Here we report that Saturn's winds show a large drop in the velocity of the equatorial jet of about 200 m x s(-1) from 1996 to 2002. By contrast, the other measured jets (primarily in the southern hemisphere) appear stable when compared to the Voyager wind profile of 1980-81. PMID:12789333

  8. Small-Scale Magnetic Reconnection at Equatorial Coronal Hole Boundaries

    NASA Astrophysics Data System (ADS)

    Lamb, Derek; DeForest, C. E.

    2011-05-01

    Coronal holes have long been known to be the source of the fast solar wind at both high and low latitudes. The equatorial extensions of polar coronal holes have long been assumed to have substantial magnetic reconnection at their boundaries, because they rotate more rigidly than the underlying photosphere. However, evidence for this reconnection has been sparse until very recently. We present some evidence that reconnection due to the evolution of small-scale magnetic fields may be sufficient to drive coronal hole boundary evolution. We hypothesize that a bias in the direction of that reconnection is sufficient to give equatorial coronal holes their rigid rotation. We discuss the prospects for investigating this using FLUX, a reconnection-controlled coronal MHD simulation framework. This work was funded by the NASA SHP-GI program.

  9. Stratospheric flights with large polyethylene baloons from equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Redkar, R. T.

    Starting with average 50% success for stratospheric balloon flights during 1959-1969 and attaining 100% success during 1972-1973, the success record dropped to 50% during 1974-1979. Through a critical analysis of 59 flights made from Hyderabad and 21 flights made from other equatorial bases, revised design criteria were proposed for balloons to be flown from equatorial latitudes, which were accepted by M/s Winzen International, Inc. (WII), U.S.A. and have again raised the success record to 93% for 15 flights made since April 1980. A revised analysis for 71 flights made from 1965 to 1984 has been presented. Stratospheric circulation over Hyderabad indicating predominance of easterlies with mesospheric westerlies descending occasionally into stratosphere has been discussed.

  10. The dawn enhancement of the equatorial ionospheric vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Chen, Yiding; Le, Huijun

    2015-12-01

    Previous studies have reported that a dawn enhancement does not present in the statistical picture of the equatorial ionospheric vertical plasma drift, while it clearly shows in case measurements. In this statistical study, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag.

  11. Industrial concessions, fires and air pollution in Equatorial Asia

    NASA Astrophysics Data System (ADS)

    Spracklen, D. V.; Reddington, C. L.; Gaveau, D. L. A.

    2015-09-01

    Forest and peatland fires in Indonesia emit large quantities of smoke leading to poor air quality across Equatorial Asia. Marlier et al (2015 Environ. Res. Lett. 10 085005) explore the contribution of fires occurring on oil palm, timber (wood pulp and paper) and natural forest logging concessions to smoke emissions and exposure of human populations to the resulting air pollution. They find that one third of the population exposure to smoke across Equatorial Asia is caused by fires in oil palm and timber concessions in Sumatra and Kalimantan. Logging concessions have substantially lower fire emissions, and contribute less to air quality degradation. This represents a compelling justification to prevent reclassification of logging concessions into oil palm or timber concessions after logging. This can be achieved by including logged forests in the Indonesian moratorium on new plantations in forested areas.

  12. Equatorial Enhancement of the Nighttime OH Mesospheric Infrared Airglow

    NASA Technical Reports Server (NTRS)

    Baker, D. J.; Mlynczak, M. G.; Russell, J. M.

    2007-01-01

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (delta v = 2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H + O3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings.

  13. Equatorial enhancement of the nighttime OH mesospheric infrared airglow

    NASA Astrophysics Data System (ADS)

    Baker, D. J.; Thurgood, B. K.; Harrison, W. K.; Mlynczak, M. G.; Russell, J. M.

    2007-05-01

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (Δv=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings.

  14. Ongoing Analysis of Jupiter's Equatorial Hotspots and Plumes from Cassini

    NASA Technical Reports Server (NTRS)

    Choi, D. S.; Showmwn, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated results from our ongoing analysis of Cassini observations of Jupiter's equatorial meteorology. For two months preceding the spacecraft's closest approach of the planet, the ISS instrument onboard Cassini regularly imaged the atmosphere of Jupiter. We created time-lapse movies from this period that show the complex activity and interactions of the equatorial atmosphere. During this period, hot spots exhibited significant variations in size and shape over timescales of days and weeks. Some of these changes appear to be a result of interactions with passing vortex systems in adjacent latitudes. Strong anticyclonic gyres to the southeast of the dark areas converge with flow from the west and appear to circulate into a hot spot at its southwestern corner.

  15. An oceanic teleconnection between the equatorial and southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Schouten, M. W.; de Ruijter, W. P. M.; van Leeuwen, P. J.; Dijkstra, H. A.

    2002-08-01

    Sequences of Kelvin and Rossby waves are found to rapidly carry sea surface height anomalies across the Indian Ocean, and have an impact on Indian to Atlantic interocean exchange. Satellite altimeter data reveal an oceanic teleconnection between equatorial winds and variability of the interocean exchange. Four times per year, we observe an equatorial Kelvin wave to hit Indonesia, forced by monsoon variability. The signal then propagates southward along the Indonesian coast and triggers Rossby waves that propagate westward across the subtropical Indian Ocean. On reaching the Madagascar and Mozambique Channel regions, large rings form at the same four per year frequency. These drift towards the Agulhas retroflection where they control the shedding of Agulhas rings. Disturbances of this pin-ball-like propagating signal can be traced from Indian Ocean Dipole/El Niño events in 1994 and 1997/1998, to decreases of Indian-Atlantic ocean exchange by Agulhas rings over two years later.

  16. Statistical characterizations of equatorial scintillation in the Asian region

    SciTech Connect

    Fang, D.J.; Liu, C.H.

    1984-01-01

    Attention is given to the statistical aspect of equatorial scintillations in the Asian region, using the power spectra of prominent scientillation events collected over a 16-month period during the solar maximum years of sunspot cycle 21. A series of comparisons between values is undertaken in order to assess such ionospheric parameters as the height and thickness of the irregularity layers, rms fluctuations of total electron content, and the axial ratio of the irregularities. The results obtained suggest that equatorial ionospheric irregularities in the F region, with sub-km sizes in the evening hours after local sunset, are the main cause of the GHz scintillations observed. The spectra of the irregularities appear to be of the power law type, with spectral indices whose values are generally greater than 4.

  17. Bispectral analysis of equatorial spread F density irregularities

    NASA Technical Reports Server (NTRS)

    Labelle, J.; Lund, E. J.

    1992-01-01

    Bispectral analysis has been applied to density irregularities at frequencies 5-30 Hz observed with a sounding rocket launched from Peru in March 1983. Unlike the power spectrum, the bispectrum contains statistical information about the phase relations between the Fourier components which make up the waveform. In the case of spread F data from 475 km the 5-30 Hz portion of the spectrum displays overall enhanced bicoherence relative to that of the background instrumental noise and to that expected due to statistical considerations, implying that the observed f exp -2.5 power law spectrum has a significant non-Gaussian component. This is consistent with previous qualitative analyses. The bicoherence has also been calculated for simulated equatorial spread F density irregularities in approximately the same wavelength regime, and the resulting bispectrum has some features in common with that of the rocket data. The implications of this analysis for equatorial spread F are discussed, and some future investigations are suggested.

  18. Day-To Variability of the Quiet-Time Equatorial Electrojet and Post-Sunset Occurrence of Equatorial Ionospheric Scintillations

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Archana; Okpala, Kingsley

    Strength of the equatorial electrojet (EEJ) derived from measurements of the horizontal component H of the geomagnetic field at an equatorial station, Tirunelveli, and a low-latitude station Alibag, outside the influence of the EEJ, on International quiet (IQ) days of the years 2001-2005, have been subjected to Principal Component Analysis to determine the principal components (PCs) that describe the variability of the quiet-time EEJ. It is found that the first three PCs together account for 94% of the variability of the EEJ observed during the IQ days of this period. PC1 itself represents about 64% of the EEJ variations, while PC2 and PC3 respectively account for 23% and 7% of the quiet-time variability of the EEJ during these years when the daily adjusted 10.7 cm solar flux, Sa, decreased from values exceeding 200 to around 100. The temporal structure of PC1 is such that it contributes only to the variability of the normal electrojet and cannot explain events such as the counter-electrojet (CEJ). A model is constructed for quiet-day PC1 scores as a function of day number and solar activity to describe a major part of the variability of the normal quiet-time EEJ. However, the CEJ and other 'abnormal' variations such as an afternoon enhancement of the EEJ, are only associated with PC2 and PC3. The quiet-day PC2 and PC3 scores obtained in this study, therefore, indicate the influence of forcing of the equatorial ionosphere from below. The day-to-day variability of the quiet-time pre-reversal enhancement of the post-sunset equatorial F region zonal electric field, which plays a crucial role in the occurrence of scintillation-producing equatorial ionospheric irregularities, is also influenced by forcing from below. In this context, occurrence of scintillations on a 251 MHz signal, transmitted from a geostationary satellite, and recorded at Tirunelveli, is studied in relation to the PC scores, which describe the variability of the EEJ, in order to identify a possible

  19. Vertical fine structure observations in the eastern equatorial Pacific

    SciTech Connect

    Hayes, S.P.

    1981-11-20

    Measurements of vertical displacement and horizontal velocity finestructure near the equator at 110/sup 0/W in the eastern Pacific Ocean are reported. Profiles were scaled to a constant Bruent-Vaeisaelae frequency ocean (N/sub 0/ = 1 cph) in accordance with a WKBJ approximation. A total of 57 CTD casts between 3/sup 0/N and 3/sup 0/S taken during five cruises in 1979 were analyzed. Results show an equatorial enhancement of vertical displacement is similar variance for vertical wavelengths longer than 50 sdbar (stretched decibars). This enhancement is similar to that which has been reported at 125/sup 0/W and 179/sup 0/E. Difference between locations can be accounted for by the observed temporal variability at 110/sup 0/W. Coherence between vertical displacement profiles separated in time by dealys of 2 hours to 120 hour indicate that the high wave number structures were largely associated with time scales of 4 days and less. Meridionally, vertical structures longer than 300 sdbar were coherent within 50 km of the equator. We interpret this vertical displacement fine structure enhancement as high wave number equatorially trapped inertial-gravity waves. The velocity fine structure measurements in July 1979 also indicate equatorially enhanced horizontal kinetic energy for vertical wave lengths longer than 100 sdbar. The velocity structures persisted over the 56 hour of measurement and appeared to have longer time scales than the vertical displacements. Meridional energy measurement and appeared to have longer time scales than the vertical displacements. Meridional energy exceeded zonal energy; however, the two components were coherent. We interpret these velocity structures as inertial-gravity waves which were produced off the equator and are propagating through the equatorial region.

  20. Time Sequence of Jupiter's Equatorial Region (Time Sets 2 & 4)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Time sequence of Jupiter's equatorial region at 756 nanometers (nm). The mosaics cover an area of 34,000 kilometers by 22,000 kilometers and were taken ten hours (approximately one Jovian rotation) apart. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. The near-infrared continuum filter shows the features of Jupiter's main visible cloud deck.

    Jupiter's atmospheric circulation is dominated by alternating jets of east/west (zonal) winds. The bands have different widths and wind speeds but have remained constant as long as telescopes and spacecraft have measured them. The top half of these mosaics lies within Jupiter's North Equatorial Belt, a westward (left) current. The bottom half shows part of the Equatorial Zone, a fast moving eastward current. The clouds near the hotspot are the fastest moving features in these mosaics, moving at about 100 meters per second, or 224 miles per hour.

    North is at the top. The mosaics cover latitudes 1 to 19 degrees and are centered at longitude 336 degrees West. The grid lines, fixed in longitude, mark 350 degrees west (on the left edge) with decreasing longitude lines marking every 5 degrees moving east (to the right). The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  1. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    NASA Technical Reports Server (NTRS)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  2. Automatically identification of Equatorial Spread-F occurrence on ionograms

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Pillat, V. G.; Guimarães, L. N. F.

    2015-12-01

    F-region large-scale irregularities, also called plasma bubbles, are one of the most interesting equatorial ionospheric phenomena. These irregularities are generated in the equatorial region and afterwards extend to lower latitudes. They are one of the important topics of investigation in equatorial ionosphere electrodynamics and, therefore, are subject to intense theoretical and experimental research. The ionosonde is the most used scientific equipment to study the ionosphere and the F-region. With advancement of digital ionosonde, it is now possible to carry out an ionospheric sounding with a cadence of 5 minutes or even with 1-minute cadence. To analyse a large amount of ionograms, more sophisticated tools are needed. Thus, development of algorithms to identify and analyse different aspects of ionograms has become very important to space science researchers. Multiple echoes recorded on ionograms are the signature of these irregularities in the ionograms, usually called Spread-F. Spread-F is classified into three types: range, frequency, and mixed. Thus, automatic identification of Spread-F is important in ionospheric studies, because studies usually involve the analysis and interpretation of large numbers of ionograms. The main objective of this paper is to present a new computational tool, based on fuzzy relation, designed to automatically identify the occurrence of Spread-F in ionograms. The test was conducted in ionograms recorded in the Brazilian sector (São José dos Campos (23.2° S, 45.9° W, dip latitude 17.6° S - low latitude) and Palmas (10.2° S, 48.2° W, dip latitude 5.5° S - near the magnetic equatorial)). The automatic identification of Spread-F occurrence was compared with those obtained manually and good agreement was found.

  3. Automatically identification of Equatorial Spread-F occurrence on ionograms

    NASA Astrophysics Data System (ADS)

    Pillat, Valdir Gil; Fagundes, Paulo Roberto; Guimarães, Lamartine Nogueira Frutuoso

    2015-12-01

    F-region large-scale irregularities, also called plasma bubbles, are one of the most interesting equatorial ionospheric phenomena. These irregularities are generated in the equatorial region and afterwards extend to lower latitudes. They are one of the important topics of investigation in equatorial ionosphere electrodynamics and, therefore, are subject to intense theoretical and experimental research. The ionosonde is the most used scientific equipment to study the ionosphere and the F-region. With advancement of digital ionosonde, it is now possible to carry out an ionospheric sounding with a cadence of 5 min or even with 1-minute cadence. To analyse a large amount of ionograms, more sophisticated tools are needed. Thus, development of algorithms to identify and analyse different aspects of ionograms has become very important to space science researchers. Multiple echoes recorded on ionograms are the signature of these irregularities in the ionograms, usually called Spread-F. Spread-F is classified into three types: range, frequency, and mixed. Thus, automatic identification of Spread-F is important in ionospheric studies, because studies usually involve the analysis and interpretation of large numbers of ionograms. The main objective of this paper is to present a new computational tool, based on fuzzy relation, designed to automatically identify the occurrence of Spread-F in ionograms. The test was conducted in ionograms recorded in the Brazilian sector (São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S-low latitude) and Palmas (10.2°S, 48.2°W, dip latitude 5.5°S-near the magnetic equatorial)). The automatic identification of Spread-F occurrence was compared with those obtained manually and good agreement was found.

  4. Saturn's equatorial jet structure from Cassini/ISS

    NASA Astrophysics Data System (ADS)

    García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo

    2010-05-01

    Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  5. Equatorial Forcing of Annual SSH Signals off Western South America

    NASA Astrophysics Data System (ADS)

    Strub, P. T.; Matano, R. P.; James, C.; Palma, E. D.

    2007-05-01

    Results from previous modeling studies have shown that equatorial signals (ENSO) affect the interannual variability of the coastal ocean off western North America (the California Current). The specific case of the 1997- 98 El Niño is well documented with respect to the movement of the high sea surface height (SSH) signal from the equator to the California Current, using altimeter data. On the other hand, the annual cycle of SSH and circulation off western North America is thought to be controlled by the regional winds and heat fluxes at mid- latitudes. Off western South America (in the Humboldt Current), the connection between mid-latitude and equatorial coastal ocean is more direct than in the Northern Hemisphere. Both inter-annual and intra-seasonal signals at mid-latitudes (20°-30°S) have been traced to the equator. More recently, a semi- annual component of the seasonal cycle of the thermocline depth off northern Chile has been identified and hypothesized to originate at lower latitudes. In this study we use altimeter SSH and numerical models of the oceanic circulation off western South America to investigate the influence of equatorial dynamics on the annual cycle at mid-latitudes. A basin-scale numerical model of the circulation and SSH, forced by NCEP surface winds, is used to force regional models of ocean circulation off Peru and Chile, with boundary conditions that either include or exclude the basin-scale model's equatorial signals. Differences between the circulation off Peru and Chile under the two types of boundary conditions quantify the degree to which the seasonal cycles are controlled by distant forcing. In particular, a deep signal with a peak in austral winter appears to be driven by remote sensing, as is a shallow signal with a peak in austral summer. Altimeter and in situ data are used to verify the results.

  6. Mechanisms of climate anomalies in the equatorial Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan; Polzin, Dierk

    2005-04-01

    Building on earlier work on the interannual variability of the boreal autumn equatorial westerlies (UEQ) over the Indian Ocean and concomitant rainfall anomalies at the coast of East Africa and in Indonesia, the inherent circulation mechanisms are here explored further from long-term surface and upper air data. Fast UEQ and deficient East African rainfall come with positive sea level pressure (P) and negative sea surface temperature (T) departures in a domain (W) at the northwestern extremity and opposite departures in a domain (E) at the southeastern extremity of the equatorial Indian Ocean. However, there is no seesaw between W and E in either P or T and no indication of local forcing of T on P. The large-scale pressure field, in particular the zonal pressure gradient along the equator and the South Indian Ocean pressure and southern tradewinds, control the evolution of UEQ. Fast UEQ steepens the zonal temperature gradient, thus tightening the inverse relationships between the zonal gradients of pressure and temperature. The rainfall anomalies associated with the interannual variability of UEQ, surface manifestation of a zonal circulation cell along the Indian Ocean equator, are favored by the kinematic and thermodynamic conditions in W and E. Thus, with fast UEQ the domain W features departure lower tropospheric divergence and subsidence and, favored by the cold T and subsidence, reduced precipitable water, all conducive to deficient precipitation. By contrast, E has departure lower tropospheric convergence and ascending motion and, favored by the warm T and ascending motion, enhanced precipitable water, in conjunction conducive to abundant rainfall. The interannual variability of the boreal autumn equatorial westerlies, dominated as it is by the large-scale pressure field, is crucial in the climate dynamics of the equatorial Indian Ocean region. This leads to the question: What controls the pressure pattern over the Indian Ocean basin?

  7. Equatorial Superrotation on Earth Induced by Optically Thick Dust Clouds

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Oman, L. D.; Waugh, D. W.; Lloyd, S. A.

    2008-12-01

    How does the Earth's atmosphere respond to exceptional aerosol events, and what is the mechanism leading to consequent past and possible future climate shifts? One possible mechanism leading to aerosol-induced climate shifts is the striking atmospheric dynamics phenomenon of equatorial superrotation, such as that found on Venus and Saturn's moon Titan, with its enhanced meridional transport. Recently, a significant breakthrough has been made in our theoretical understanding of atmospheric superrotation on Venus and Titan. Extending this result regarding superrotation in planetary atmospheres to the concept of superrotation in Earth's atmosphere serves not only to shed insight into long-standing and seemingly disparate questions of Earth's climate (such as the mechanism of mass extinction and geo-engineering mitigation of global warming) but also to develop a common theoretical framework to address the impacts of profound changes of atmospheric aerosols and their consequences. The three-dimensional Goddard Institute for Space Studies (GISS) modelE GCM and Johns Hopkins University Applied Physics Laboratory (JHU/APL) two-dimensional radiative-dynamical model are used to investigate the induction of equatorial superrotation in Earth's stratosphere, as well as its effect on meridional transport of dust and aerosols in association with the supervolcano eruptions. Preliminary results show that an equatorial superrotational wind in the upper troposphere was initiated and lasted for more than two years following the Mt Toba eruption near the equator about 71,000 years ago. The circulation structure at mid-latitude was also altered, indicating a global impact of an equatorial injection of an aerosol layer.

  8. Productivity control of fine particle transport to equatorial Pacific sediment

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Turekian, K. K.; Wei, K.-Y.

    2000-09-01

    Accumulation rates of 3He (from cosmic dust), 230Th (produced in the water column), barite (produced in the water column during decay of organic matter), and Fe and Ti (arriving with wind-borne dust) all are positively correlated in an equatorial Pacific core (TT013-PC72; 01.1°N, 139.4°W; water depth 4298 m). These accumulation rates are also positively correlated with the accumulation rates of noncarbonate material. They are not significantly correlated to the mass accumulation rate of carbonate, which makes up the bulk of the sediment. The fluctuations in accumulation rates of these various components from different sources thus must result from variations in some process within the oceans and not from variations in their original sources. Sediment focusing by oceanic bottom currents has been proposed as this process [Marcantonio et al., 1996]. We argue that the variations in the accumulation rates of all these components are dominantly linked to changes in productivity and particle scavenging (3He, 230Th, Fe, Ti) by fresh phytoplankton detritus (which delivers Ba upon its decay) in the equatorial Pacific upwelling region. We speculate that as equatorial Pacific productivity is a major component of global oceanic productivity, its variations over time might be reflected in variations in atmospheric levels of methanesulfonic acid (an atmospheric reaction product of dimethyl sulfide, which is produced by oceanic phytoplankton) and recorded in Antarctic ice cores.

  9. UVCS/SOHO Observations of Equatorial and Polar Coronal Holes

    NASA Astrophysics Data System (ADS)

    Kohl, J. L.; Miralles, M. P.; Cranmer, S. R.; Suleiman, R. M.

    2000-05-01

    A large equatorial coronal hole was observed above the west limb with the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO from November 1999 to March 2000. Observations in H I Lyα and O VI 103.2, 103.7 nm provided spectroscopic diagnostics of proton and O5+ velocity distributions and outflow velocities. These properties will be compared to those of the large polar coronal holes observed near solar minimum. The equatorial coronal hole corresponded to a high-speed solar wind stream at 1 AU, but there were significant differences between the interplanetary properties of this stream and the steady high-speed wind seen over the poles at solar minimum. The several obvious differences between the two structures in the extended corona may be associated with the different densities and magnetic field configurations and flux tube expansion factors. Preliminary results from a detailed empirical model of the equatorial coronal hole will be presented. This work is supported by NASA under Grant NAG5-7822 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency and by PRODEX (Swiss contribution).

  10. Vertical structure models of the 1990 equatorial disturbance on Saturn

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.; Barnet, Christopher Dwight; Beebe, R. F.

    1993-01-01

    In September 1990, an atmospheric disturbance in the form of an abnormally high albedo area developed in the equatorial region of Saturn. Events of this nature are exceedingly rare for this planet as they have been detected in the equatorial region on only two other occasions in over a century. In ongoing monitoring of the atmospheres of the outer planets, CCD imaging observations of Saturn by New Mexico State University's Tortugas Mountain Station were made before, during, and after the disturbance's formation through both broad-band filters and narrow-band visible/near-IR filters centered in methane absorption bands. Also, multispectral Hubble Space Telescope observations were made within weeks of the event and later in 1991. These observations were calibrated and scans of reflectivity at constant latitude are being modeled with a vertically inhomogeneous, multiple scattering model previously used to model Jupiter's South Equatorial Belt brightening event in 1989. In addition, the reflectivity of the disturbance as a function of the scattering angles is being obtained so as to model this feature's vertical structure in particular. A preliminary report of the modeling results will be presented.

  11. Vertical structure models of the 1990 equatorial disturbance on Saturn

    NASA Astrophysics Data System (ADS)

    Kuehn, D. M.; Barnet, Christopher Dwight; Beebe, R. F.

    1993-03-01

    In September 1990, an atmospheric disturbance in the form of an abnormally high albedo area developed in the equatorial region of Saturn. Events of this nature are exceedingly rare for this planet as they have been detected in the equatorial region on only two other occasions in over a century. In ongoing monitoring of the atmospheres of the outer planets, CCD imaging observations of Saturn by New Mexico State University's Tortugas Mountain Station were made before, during, and after the disturbance's formation through both broad-band filters and narrow-band visible/near-IR filters centered in methane absorption bands. Also, multispectral Hubble Space Telescope observations were made within weeks of the event and later in 1991. These observations were calibrated and scans of reflectivity at constant latitude are being modeled with a vertically inhomogeneous, multiple scattering model previously used to model Jupiter's South Equatorial Belt brightening event in 1989. In addition, the reflectivity of the disturbance as a function of the scattering angles is being obtained so as to model this feature's vertical structure in particular. A preliminary report of the modeling results will be presented.

  12. Basin-Wavelength Equatorial Deep Jet Signals Across Three Oceans

    NASA Astrophysics Data System (ADS)

    Youngs, M. K.; Johnson, G. C.

    2015-12-01

    Equatorial Deep Jets (EDJs) are equatorially trapped, stacked, zonal currents that reverse direction every few hundred meters in depth throughout much of the water column. This study evaluates their structure observationally in all three oceans using new high vertical resolution Argo float conductivity-temperature-depth (CTD) instrument profiles from 2010--2014 augmented with historical shipboard CTD from 1972--2014 and lower vertical resolution Argo float profiles from 2007--2014. Vertical strain of density is calculated from the profiles and analyzed in a stretched vertical coordinate system determined from the mean vertical density structure. The power spectra of vertical strain in each basin are analyzed using a wavelet decomposition. In the Indian and Pacific oceans, there are two distinct peaks in the power spectra, one Kelvin-wave-like and the other entirely consistent with the dispersion relation of a linear first-meridional-mode equatorial Rossby wave. In the Atlantic Ocean, the first-meridional-mode Rossby wave signature is very strong, and dominates. In all three ocean basins Rossby-wave-like signatures are coherent across the basin width, and appear to have wavelengths the scale of the basin width, with periods of about 5 years in the Indian and Atlantic oceans and about 12 years in the Pacific Ocean. Their observed meridional scales are about 1.5 times the linear theoretical values. Their phase propagation is downward with time, implying upward energy propagation if linear wave dynamics hold.

  13. Tropical Cyclone - Equatorial Ionosphere Coupling: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Bhagavathiammal, G. J.

    2016-07-01

    This paper describes the equatorial ionosphere response to tropical cyclone events which was observed over the Indian Ocean. This statistical study tries to reveal the possible Tropical Cyclone (TC) - Ionosphere coupling. Tropical cyclone track and data can be obtained from the India Meteorological Department, New Delhi. Digisonde/Ionosonde data for the equatorial latitudes can be obtained from Global Ionospheric Radio Observatory. It is believed that TC induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere and these propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). The convective regions are identified with the help of Outgoing Long wave radiation (OLR) data from NOAA Climate Data Center/ Precipitation data from TRMM Statellite. The variability of ionospheric parameter like Total Electron Content (TEC), foF2, h'F2 and Drift velocity are examined during TC periods. This study will report the possibility of TC-Ionosphere Coupling in equatorial atmosphere.

  14. Geomagnetic activity effects on the equatorial neutral thermosphere

    SciTech Connect

    Burrage, M.D.; Abreu, V.J.; Orsini, N. ); Fesen, C.G. ); Roble, R.G. )

    1992-04-01

    The effects of geomagnetic activity on the equatorial neutral thermosphere are investigated with mass spectrometer measurements from the Atmosphere Explorer E (AE-E) satellite and simulations generated by the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (TIGCM). A study of the local time dependence of the equatorial geomagnetic storm response concentrates on a disturbed period from March 20 (day 79) to March 31 (day 90), 1979. This interval was the subject of an intense data-gathering and analysis campaign for the Coordinated Data Analysis Workshop 6, and global TIGCM predictions are available for the specific conditions of the storm as a function of universal time. The AE-E measurements demonstrate that significant geomagnetic storm-induced perturbations of upper thermospheric N{sub 2} and O densities extend into the equatorial zone but are mainly restricted to the midnight/early morning sector. The qualitative features of the observations are reproduced by the TIGCM, although in general, the model simulations overestimate the storm temperature and density enhancements, primarily in the nighttime thermosphere. This suggests that either the nighttime cooling rates in the TIGCM are too small or that the specified auroral forcing of the model are too persistent.

  15. Global geologic mapping of Mars: The western equatorial region

    USGS Publications Warehouse

    Scott, D.H.

    1985-01-01

    Global geologic mapping of Mars was originally accomplished following acquisition of orbital spacecraft images from the Mariner 9 mission. The mapping program represented a joint enterprise by the U.S. Geological Survey and other planetary scientists from universities in the United States and Europe. Many of the Mariner photographs had low resolution or poor albedo contrast caused by atmospheric haze and high-sun angles. Some of the early geologic maps reflect these deficiencies in their poor discrimination and subdivision of rock units. New geologic maps made from higher resolution and better quality Viking images also represent a cooperative effort, by geologists from the U.S. Geological Survey, Arizona State University, and the University of London. This second series of global maps consists of three parts: 1) western equatorial region, 2) eastern equatorial region, and 3) north and south polar regions. These maps, at 1:15 million scale, show more than 60 individual rock-stratigraphic units assigned to three Martian time-stratigraphic systems. The first completed map of the series covers the western equatorial region of Mars. Accompanying the map is a description of the sequence and distribution of major tectonic, volcanic, and fluvial episodes as recorded in the stratigraphic record. ?? 1985.

  16. Intraseasonal variability of upwelling in the equatorial Eastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Han, Weiqing; Li, Yuanlong; Wang, Dongxiao; Shinoda, Toshiaki

    2015-11-01

    By analyzing satellite observations and conducting a series of ocean general circulation model experiments, this study examines the physical processes that determine intraseasonal variability (ISV) of the equatorial eastern Indian Ocean (EIO) upwelling for the 2001-2011 period. The ISV of EIO upwelling—as indicated by sea level, thermocline depth, and sea surface temperature (SST)—is predominantly forced by atmospheric intraseasonal oscillations (ISOs), and shows larger amplitudes during winter-spring season (November-April) when atmospheric ISOs are stronger than summer-fall (May-October). The chlorophyll (Chl-a) concentration, another indicator of upwelling, however reveals its largest intraseasonal variability during May-October, when the mean thermocline is shallow and seasonal upwelling occurs. For both winter-spring and summer-fall seasons, the ISV of EIO sea level and thermocline depth is dominated by remote forcing from the equatorial Indian Ocean wind stress, which drives Kelvin waves that propagate along the equator and subsequently along the Sumatra-Java coasts. Local wind forcing within the EIO plays a secondary role. The ISV of SST, however, is dominated by upwelling induced by remote equatorial wind only during summer-fall, with less contribution from surface heat fluxes for this season. During winter-spring, the ISV of SST results primarily from shortwave radiation and turbulent heat flux induced by wind speed associated with the ISOs, and local forcing dominates the SST variability. In this season, the mean thermocline is deep in the warm pool and thus thermocline variability decouples from the ISV of SST. Only in summer-fall when the mean thermocline is shallow, upwelling has important impact on SST.

  17. Jupiter's Equatorial Region in Violet Light (Time set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of an equatorial 'hotspot' on Jupiter at 410 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 11,000 kilometers. Light at 410 nm is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. This image shows the features of Jupiter's main visible cloud deck and the hazy cloud layer above it. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.

    North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. Jupiter's Equatorial Region in Violet Light (Time set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of an equatorial 'hotspot' on Jupiter at 410 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 11,000 kilometers. Light at 410 nm is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. This image shows the features of Jupiter's main visible cloud deck and the hazy cloud layer above it. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.

    North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Jupiter's Equatorial Region in Violet Light (Time set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of an equatorial 'hotspot' on Jupiter at 410 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 11,000 kilometers. Light at 410 nm is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. This image shows the features of Jupiter's main visible cloud deck and the hazy cloud layer above it. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.

    North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Discovery Of A Rossby Wave In Jupiter's South Equatorial Region

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, D. S.; Rogers, J. H.; Gierasch, P. J.

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 deg S planetographic latitude shows variations in velocity with longitude and time. The chevrons move with velocities near the maximum wind jet velocity of approx.140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 deg N latitude. Their repetitive nature is consistent with an inertia-gravity wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a approx.7-day period. This oscillating motion has a wavelength of approx.20 deg and a speed of approx.100 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it, though they are not perfectly in phase. The transient anticyclonic South Equatorial Disturbance (SED) may be a similar wave feature, but moves at slower velocity. All data show chevron latitude variability, but it is unclear if this Rossby wave is present during other epochs, without time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S may be due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  1. Longitudinal variation of the equatorial ionosphere: Modeling and experimental results

    NASA Astrophysics Data System (ADS)

    Souza, J. R.; Asevedo, W. D.; dos Santos, P. C. P.; Petry, A.; Bailey, G. J.; Batista, I. S.; Abdu, M. A.

    2013-02-01

    We describe a new version of the Parameterized Regional Ionospheric Model (PARIM) which has been modified to include the longitudinal dependences. This model has been reconstructed using multidimensional Fourier series. To validate PARIM results, the South America maps of critical frequencies for the E (foE) and F (foF2) regions were compared with the values calculated by Sheffield Plasmasphere-Ionosphere Model (SUPIM) and IRI representations. PARIM presents very good results, the general characteristics of both regions, mainly the presence of the equatorial ionization anomaly, were well reproduced for equinoctial conditions of solar minimum and maximum. The values of foF2 and hmF2 recorded over Jicamarca (12°S; 77°W; dip lat. 1°N; mag. declination 0.3°) and sites of the conjugate point equatorial experiment (COPEX) campaign Boa Vista (2.8°N; 60.7°W; dip lat. 11.4°; mag. declination -13.1°), Cachimbo (9.5°S; 54.8°W; dip lat. -1.8°; mag. declination -15.5°), and Campo Grande (20.4°S; 54.6°W; dip lat. -11.1°; mag. declination -14.0°) have been used in this work. foF2 calculated by PARIM show good agreement with the observations, except during morning over Boa Vista and midnight-morning over Campo Grande. Some discrepancies were also found for the F-region peak height (hmF2) near the geomagnetic equator during times of F3 layer occurrences. IRI has underestimated both foF2 and hmF2 over equatorial and low latitude sectors during evening-nighttimes, except for Jicamarca where foF2 values were overestimated.

  2. Jupiter's Equatorial Region in a Methane band (Time set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  3. Jupiter's Equatorial Region in a Methane band (Time set 4)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's equatorial region at 727 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. Light at 727 nm is moderately absorbed by atmospheric methane. This image shows the features of Jupiter's main visible cloud deck and upper-tropospheric haze, with higher features enhanced in brightness over lower features. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  4. Jupiter's Equatorial Region in a Methane band (Time set 3)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of an equatorial 'hotspot' on Jupiter at 889 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 11,000 kilometers. Light at 889 nm is strongly absorbed by atmospheric methane. This image shows the features of a hazy cloud layer tens of kilometers above Jupiter's main visible cloud deck. This haze varies in height but appears to be present over the entire region. Small patches of very bright clouds may be similar to terrestrial thunderstorms. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.

    North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Characterizing Cratering at the Iapetus Equatorial Ridge using Stereo Topography

    NASA Astrophysics Data System (ADS)

    Persaud, D. M.

    2015-12-01

    Since the arrival of the Cassini probe to the Saturnian system in 2004, the flattened shape and extreme equatorial ridge of the moon Iapetus have posed a number of questions regarding its geophysical evolution. Current models suggest either tidal despinning or a collapsed ring system formed the ridge, with 26Al decay serving as an additional heating mechanism and warm ice or liquid water beneath a thick lithosphere potentially allowing for large-scale topography and deformation to occur (Sandwell and Schubert 2010). Structure at the ridge itself provides further questions in understanding the deformation of Iapetus at its equator. Persaud and Phillips (2014) use stereo topography to present a trend of crater relaxation and crater diameter that suggests a secondary heating event has relaxed younger, smaller craters focused at this region. The extreme slopes along the ridge, however, complicate understanding the order of events that have occurred on Iapetus, including ridge formation, crater relaxation, secondary thermal events, and mass wasting. We use topographic profiles of Iapetus impact craters extracted from digital elevation models (DEMs) constructed with stereo images from the Cassini ISS Instrument to characterize crater complexity and transition diameters versus crater floor geometry, proximity to the equatorial ridge, and relaxation percentage. We then use these results to begin to develop a geometric model of events at the ridge on Iapetus to understand its deformation history. We will present results and discussion of using stereo topography for these analyses. References: Sandwell, D., and G. Schubert. A contraction model for the flattening and equatorial ridge of Iapetus, Icarus 210, 817-822, 2010. Persaud, D.M., and C.B. Phillips. Methods of Estimating Initial Crater Depths on Icy Satellites using Stereo Topography, AGU Fall Meeting 2014, abstract 17043. This work was supported by the 2015 NASA Ames Academy for Space Exploration.

  6. Discovery Of A Rossby Wave In Jupiter's South Equatorial Region

    NASA Astrophysics Data System (ADS)

    Simon-Miller, Amy A.; Choi, D. S.; Rogers, J. H.; Gierasch, P. J.

    2012-10-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 deg S planetographic latitude shows variations in velocity with longitude and time. The chevrons move with velocities near the maximum wind jet velocity of 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 deg N latitude. Their repetitive nature is consistent with an inertia-gravity wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 7-day period. This oscillating motion has a wavelength of 20 deg and a speed of 100 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it, though they are not perfectly in phase. The transient anticyclonic South Equatorial Disturbance (SED) may be a similar wave feature, but moves at slower velocity. All data show chevron latitude variability, but it is unclear if this Rossby wave is present during other epochs, without time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S may be due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  7. Longitudinal variation and waves in Jupiter's south equatorial wind jet

    NASA Astrophysics Data System (ADS)

    Simon-Miller, Amy A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-04-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5°S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and increasing with distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of ˜140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7°N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 ± 0.7-day period. This oscillating motion has a wavelength of ˜20° and a speed of 101 ± 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7°N and 7.5°S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  8. New Measurements Of Jupiter's Equatorial Region In Visible Wavelengths

    NASA Astrophysics Data System (ADS)

    Rojas, Jose; Arregi, J.; García-Melendo, E.; Barrado-Izagirre, N.; Hueso, R.; Gómez-Forrellad, J. M.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Sánchez-Lavega, A.

    2010-10-01

    We have studied the equatorial region of Jupiter, between 15ºS and 15ºN, on Cassini ISS images obtained during the Jupiter flyby at the end of 2000 and on HST images acquired in May and July 2008. We have found significant longitudinal variations in the intensity of the 6ºN eastward jet, up to 60 m s-1 in Cassini and HST observations. In the HST case we found that these longitudinal variations are associated to different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images shows that there is only a small height difference, no larger than 0.5 - 1 scale heights at most, between the slow ( 100 m s-1) and fast ( 150 m s-1) moving features. This suggests that speed variability at 6ºN is not dominated by vertical wind shears and we propose that Rossby wave activity is the responsible for the zonal variability. After removing this variability we found that Jupiter's equatorial jet is actually symmetric relative to the equator with two peaks of 140 - 150 m s-1 located at latitudes 6ºN and 6ºS and at a similar pressure level. We also studied a large, long-lived feature called the White Spot (WS) located at 6ºS that turns to form and desapear. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow. Acknowledgements: This work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  9. Spatio-Temporal Pattern of Saturn's Equatorial Oscillation

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schnider, P. J.; Marouf, E. A.; McGhee, C. A.; Kliore, A. J.; Rappaport, N. J.

    2010-01-01

    Recent ground-based and Cassini CIRS thermal-infrared data have characterized the spatial and temporal characteristics of an equatorial oscillation in the middle atmosphere of Saturn above the 100-mbar level. The CIRS data [I] indicated a pattern of warm and cold anomalies near the equator, stacked vertically in alternating fashion. The ground-based observations s2, although not having the altitude range or vertical resolution of the CIRS observations, covered several years and indicated an oscillation cycle of approx.15 years, roughly half of Saturn's year. In Earth's middle atmosphere, both the quasi-biennial (approx.26 months) and semi-annual equatorial oscillations have been extensively observed and studied (see e.g., [3]), These exhibit a pattern of alternating warmer and cooler zonal-mean temperatures with altitude, relative to those at subtropical latitudes. Consistent with the thermal wind equation, this is also associated with an alternating pattern of westerly and easterly zonal winds. Moreover, the pattern of winds and temperatures descends with time. Momentum deposition by damped vertically propagating waves is thought to play a key role m forcing both types of oscillation, and it can plausibly account for the descent. Here we report the direct observation of this descent in Saturn's equatorial atmosphere from Cassini radio occultation soundings in 2005 and 2009. The retrieved temperatures are consistent with a descent of 0.7 x the pressure scale height. The descent rate is related to the magnitude of the wave forcing, radiative damping, and induced meridional circulations. We discuss possible implications.

  10. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, David; Rogers, John H.; Gierasch, Peter J.; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and accelerations over distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of approx 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75 to 100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 +/- 0.7-day period. This oscillating motion has a wavelength of approx 20 and a speed of 101 +/- 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of mUltiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  11. Ionospheric scintillations associated with equatorial E-region

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.

    1978-01-01

    Amplitude scintillations at 40, 140, and 360 MHz recorded at an equatorial station Ootacamund (dip 4 deg N) during the ATS-6 phase II and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for the scintillation activity. Various sporadic E events, but not the Es-q, are associated with intense daytime scintillations. There are no scintillations at times of normal E-layer or cusp type of Es. Scintillations are also present at times of night Es.

  12. Ionosphere scintillations associated with features of equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Chandra, H.; Vats, H. O.; Sethia, G.; Deshpande, M. R.; Rastogi, R. G.; Sastri, J. H.; Murthy, B. S.

    1979-01-01

    Amplitude scintillations of radio beacons aboard the ATS-6 satellite on 40 MHz, 140 MHz and 360 MHz recorded during the ATS-6 phase II at an equatorial station Ootacamund (dip 4 deg N) and the ionograms at a nearby station Kodaikanal (dip 3.5 deg N) are examined for scintillation activity. Only sporadic E events, other than Es-q, Es-c or normal E are found to be associated with intense daytime scintillations. Scintillations are also observed during night Es conditions. The amplitude spread is associated with strong scintillations on all frequencies while frequency spread causes weaker scintillations and that mainly at 40 MHz.

  13. Wind Patterns in Jupiter's Equatorial Region (Time set 1)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wind patterns of Jupiter's equatorial region. This mosaic covers an area of 34,000 kilometers by 22,000 kilometers and was taken using the 756 nanometer (nm) near-infrared continuum filter. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. The near-infrared continuum filter shows the features of Jupiter's main visible cloud deck.

    Jupiter's atmospheric circulation is dominated by alternating jets of east/west (zonal) winds. The bands have different widths and wind speeds but have remained constant as long as telescopes and spacecraft have measured them. The top half of these mosaics lies within Jupiter's North Equatorial Belt, a westward (left) current. The bottom half shows part of the Equatorial Zone, a fast moving eastward current. The clouds near the hotspot are the fastest moving features in these mosaics, moving at about 100 meters per second, or 224 miles per hour.

    Superimposed on the zonal wind currents is the Jovian 'weather'. The arrows show the winds measured by an observer moving eastward (right) at the speed of the hotspot. (The observer's perspective is that the hotspot is 'still' while the rest of the planet moves around it.) Clouds south of the hotspot appear to be moving towards it, as seen in the flow aligned with cloud streaks to the southwest and in the clockwise flow to the southeast. Interestingly, there is little cloud motion away from the hotspot in any direction. This is consistent with the idea that dry air is converging over this region and sinking, maintaining the cloud-free nature of the hotspot.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA

  14. Provisional hourly values of equatorial Dst for 1971

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1972-01-01

    Tables and plots of provisional hourly values of the equatorial Dst index for 1971 are given, a table of daily mean Dst values for 1971 is also provided. The base line values for the four observatories, Hermanus, Kakioka, Honolulu, and San Juan, were obtained from extrapolations using the coefficients for the secular variations determined for the previous years. Examining the Dst values for quiet days, the base lines so determined appear to be slightly low, so that the Dst index for quiet periods tends to be high.

  15. Equatorial waves simulated by the NCAR community climate model

    NASA Technical Reports Server (NTRS)

    Cheng, Xinhua; Chen, Tsing-Chang

    1988-01-01

    The equatorial planetary waves simulated by the NCAR CCM1 general circulation model were investigated in terms of space-time spectral analysis (Kao, 1968; Hayashi, 1971, 1973) and energetic analysis (Hayashi, 1980). These analyses are particularly applied to grid-point data on latitude circles. In order to test some physical factors which may affect the generation of tropical transient planetary waves, three different model simulations with the CCM1 (the control, the no-mountain, and the no-cloud experiments) were analyzed.

  16. Wave Properties of Equatorial Magnetosonic Waves as Observed by Cluster

    NASA Astrophysics Data System (ADS)

    Balikhin, M. A.; Walker, S. N.; Shprits, Y.

    2014-12-01

    A survey of the Cluster STAFF data set shows a number of periods in which Equatorial Magnetosonic Waves display a discrete spectrum. In some of these instances, the frequency of emissions varies in the same fashion as the background magnetic field, indicating that the wars are observed within their source region. This paper analyses the propagation characteristics of these emissions and investigates the appropriateness of the quasi-linear assumption of a gaussian spectrum used in the numerical modelling of their role in the electron dynamics within the radiation belts based in the Chirikov resonance overlap criterion.

  17. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Atul, J. K.; Sarkar, S.; Singh, S. K.

    2016-04-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed.

  18. Distribution of astronomical sources in the second Equatorial Infrared Catalogue

    NASA Technical Reports Server (NTRS)

    Nagy, T. A.; Sweeney, L. H.; Lesh, J. R.; Mead, J. M.; Maran, S. P.; Heinsheimer, T. F.; Yates, F. F.

    1979-01-01

    Measurements of infrared (2.7-micron) source positions and flux densities have been derived based on an additional 60.6 hours of satellite observations beyond those considered in the preparation of the Equatorial Infrared Catalogue No. 1 (EIC-1). These data have been processed together with the EIC-1 data to produce EIC-2. The new catalog differs from EIC-1 as follows: there are 1278 sources; there is a larger percentage of unidentified sources; there are increased numbers of sources identified with Two-Micron Sky Survey sources, AFGL sources, AGK3 stars and SAO stars.

  19. Peri-equatorial paleolatitudes for Jurassic radiolarian cherts of Greece

    USGS Publications Warehouse

    Aiello, I.W.; Hagstrum, J.T.; Principi, G.

    2008-01-01

    Radiolarian-rich sediments dominated pelagic deposition over large portions of the Tethys Ocean during middle to late Jurassic time as shown by extensive bedded chert sequences found in both continental margin and ophiolite units of the Mediterranean region. Which paleoceanographic mechanisms and paleotectonic setting favored radiolarian deposition during the Jurassic, and the nature of a Tethys-wide change from biosiliceous to biocalcareous (mainly nannofossil) deposition at the beginning of Cretaceous time, have remained open questions. Previous paleomagnetic analyses of Jurassic red radiolarian cherts in the Italian Apennines indicate that radiolarian deposition occurred at low peri-equatorial latitudes, similar to modern day deposition of radiolarian-rich sediments within equatorial zones of high biologic productivity. To test this result for other sectors of the Mediterranean region, we undertook paleomagnetic study of Mesozoic (mostly middle to upper Jurassic) red radiolarian cherts within the Aegean region on the Peloponnesus and in continental Greece. Sampled units are from the Sub-Pelagonian Zone on the Argolis Peninsula, the Pindos-Olonos Zone on the Koroni Peninsula, near Karpenissi in central Greece, and the Ionian Zone in the Varathi area of northwestern Greece. Thermal demagnetization of samples from all sections removed low-temperature viscous and moderate-temperature overprint magnetizations that fail the available fold tests. At Argolis and Koroni, however, the cherts carry a third high-temperature magnetization that generally exhibits a polarity stratigraphy and passes the available fold tests. We interpret the high-temperature component to be the primary magnetization acquired during chert deposition and early diagenesis. At Kandhia and Koliaky (Argolis), the primary declinations and previous results indicate clockwise vertical-axis rotations of ??? 40?? relative to "stable" Europe. Due to ambiguities in hemispheric origin (N or S) and thus

  20. A statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere 1. Equatorial occurrence distributions

    SciTech Connect

    Anderson, B.J.; Erlandson, R.E.; Zanetti, L.J. )

    1992-03-01

    A study of AMPTE CCE magnetic field data covering the frequency range 0.1-4.0 Hz using all data obtained during the first complete local time precession of the satellite orbit major axis (7,500 hours of observations) has been made to evaluate the occurrence of transverse, narrowband Pc 1-2 emissions, identified as electromagnetic ion cyclotron (EMIC) waves, in the equatorial magnetosphere from L = 3.5 to L = 9 at all local times. A set of example events illustrates the pattern of Pc 1-2 occurrence: events occur primarily for L > 7, and a radial separation of several R{sub E} between low (<6) and high L(>6) pulsations is observed. Statistically, the highest concentration of events occurred near apogee in the afternoon. The L>6 and L,6 event populations appear to be radially separated in the morning but merge together in the afternoon. The authors construct a normalized occurrence distribution throughout the equatorial plane from L = 3.5 to L = 9 of Pc 1-2 with peak to peak amplitudes greater than 0.8 nT. The occurrence distribution exhibits a number of properties: for L > 7, Pc 1-2 occur at any given place in the early afternoon (1200-1500 MLT) with 10-20% probability and in the morning (0300-0900 MLT) with {approx} 3% probability; the L = 6-7 local time distribution reproduces results obtained previously from data at geostationary orbit; L < 5 events occur with a probability of {le}1% and a relatively uniform local time distribution. The predominance of L > 7 events implies that plasma sheet ion develop sufficient temperature anisotropy to generate EMIC waves on a routine basis in their drift from the nightside to the dayside and that plasma sheet ions on open drift paths rather than ring current ions on closed drift paths present the greatest source of equatorially generated EMIC waves.

  1. Artesunate/Amodiaquine Malaria Treatment for Equatorial Guinea (Central Africa)

    PubMed Central

    Charle, Pilar; Berzosa, Pedro; de Lucio, Aida; Raso, José; Nseng Nchama, Gloria; Benito, Agustín

    2013-01-01

    The objectives of this study were: 1) to evaluate the safety and efficacy of combination artesunate (AS)/amodiaquine (AQ) therapy, and 2) to determine the difference between recrudescence and resistance. An in vivo efficacy study was conducted in Equatorial Guinea. A total of 122 children 6–59 months of age from two regional hospitals were randomized and subjected to a 28-day clinical and parasitological follow-up. A blood sample on Whatman paper was taken on Days 0, 7, 14, 21, and 28 or on any day in cases of treatment failure, with the parasite DNA then being extracted for molecular analysis purposes. A total of 4 children were excluded, and 9 cases were lost to follow-up. There were 17 cases of late parasitological failure, 3 cases of late clinical failure, and 89 cases of adequate clinical and parasitological response. The parasitological failure rate was 18.3% (20 of 109) and the success rate 81.70% (95% confidence interval [72.5–87.9%]). After molecular correction, real treatment efficacy stood at 97.3%. Our study showed the good efficacy of combination AS/AQ therapy. This finding enabled this treatment to be recommended to Equatorial Guinea's National Malaria Control Program to change the official treatment policy as of March 2008. PMID:23530078

  2. The APM bright galaxy Surveys: the Equatorial Galaxy Catalog

    NASA Astrophysics Data System (ADS)

    Raychaudhury, S.; Lynden-Bell, D.; Scharf, C.; Hudson, M. J.

    1994-05-01

    The catalogs of bright galaxies (B_J<16.5) compiled from APM scans of UKST IIIa-J Sky Survey plates have now covered most of the southern sky (|b|>20(deg) ). This presentation reviews the current status of these catalogs, and the ongoing scientific research supported by them. In particular, the first results from the catalog of galaxies (B_J<17, D>0(') .5) compiled from the IIIa--J plates of the UKST Equatorial Survey are presented. This covers a part of the sky (-17(deg) < delta < -2(deg) , |b|>20(deg) ) that was not surveyed for the UGC and ESO catalogs, and hence is the first equivalent galaxy catalog in the Equatorial Sky. All galaxy candidates from a preliminary star-galaxy separation exercise were visually inspected, and the identified galaxies were assigned a morphological type. This catalog of over 50,000 galaxies from 200 plates lists accurate positions and shape parameters for all galaxies, together with their diameters and B_J magnitudes, measured by edge-matching and CCD calibration.

  3. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1993-01-01

    During the grant period starting August 1, 1992, our major effort has been on examining the presence of equatorially trapped hot plasma on plasmaspheric refilling. We performed one-dimensional PIC simulations of cold plasmas expanding into a hot plasma, consisting of hot anisotropic ions and warm isotropic electrons, trapped in a region of minimum magnetic field. Simulations showed that the electric potential barrier built up by the anisotropy of the hot ion population facilitates in the formation of electrostatic shocks when the cold ion beams begin to come into contact with the hot plasma. The shock formation occurs even when the cold ion beams are highly supersonic with respect to the ion-acoustic speed. This finding is interesting because equatorial shock formation during the early stage of plasmaspheric refilling has been debated over about two decades. In the past ion-ion instability has been invoked as the main mechanism for the coupling between the cold ion beams approaching the equator from the conjugate ionspheres. This coupling occurs when the beams are sufficiently slow; the beam velocity being less than three times the ion-acoustic speed. In the presence of hot plasma, the beams slow down by the potential barrier. The slowing down and the reflection process lead to the formation of the electrostatic shock even for highly supersonic ion beams. The mixing of hot and cold plasma was also studied.

  4. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Astrophysics Data System (ADS)

    Timlin, John; Ross, Nicholas; Richards, Gordon T.; Lacy, Mark; Bauer, Franz E.; Brandt, W. Niel; Fan, Xiaohui; Haggard, Daryl; Makler, Martin; Myers, Adam D.; Schneider, Donald P.; Strauss, Michael A.; Urry, C. Megan; Zakamska, Nadia L.; SpIES Team

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of the Equatorial SDSS Stripe 82 field using Warm Spitzer. SpIES was designed to probe enough volume to perform measurements of the z>3 quasar clustering and luminosity function in order to test various "AGN feedback'' models. Additionally, the wide range of multi-wavelength, multi-epoch ancillary data makes SpIES a prime location to identify both high-redshift (z>6) quasars as well as obscured quasars missed by optical surveys. SpIES maps ~115deg2 of Stripe 82 to depths of 6.3 uJy (21.9 AB Magnitudes) and 5.75 uJy (22.0 AB Magnitudes) at [3.6] and [4.5] microns respectively; depths significantly greater than WISE. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. Amongst our preliminary science results, we show high significance detections of spectroscopically confirmed, z~5 quasars in the SpIES data. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  5. Recurring slope lineae in equatorial regions of Mars

    USGS Publications Warehouse

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  6. Daytime plasma drifts in the equatorial lower ionosphere

    NASA Astrophysics Data System (ADS)

    Hui, Debrup; Fejer, Bela G.

    2015-11-01

    We have used extensive radar measurements from the Jicamarca Observatory during low solar flux periods to study the quiet time variability and altitudinal dependence of equatorial daytime vertical and zonal plasma drifts. The daytime vertical drifts are upward and have largest values during September-October. The day-to-day variability of these drifts does not change with height between 150 and 600 km, but the bimonthly variability is much larger in the F region than below about 200 km. These drifts vary linearly with height generally increasing in the morning and decreasing in the afternoon. The zonal drifts are westward during the day and have largest values during July-October. The 150 km region zonal drifts have much larger day-to-day, but much smaller bimonthly variability than the F region drifts. The daytime zonal drifts strongly increase with height up to about 300 km from March through October, and more weakly at higher altitudes. The December solstice zonal drifts have generally weaker altitudinal dependence, except perhaps below 200 km. Current theoretical and general circulation models do not reproduce the observed altitudinal variation of the daytime equatorial zonal drifts.

  7. Nonmigrating tidal modulation of the equatorial thermosphere and ionosphere anomaly

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Thayer, Jeffrey P.; Wang, Wenbin; Yue, Jia; Dou, Xiankang

    2014-04-01

    The modulation of nonmigrating tides on both the ionospheric equatorial ionization anomaly (EIA) and the equatorial thermosphere anomaly (ETA) is investigated on the basis of simulations from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). Our simulations demonstrate the distinct features of the EIA and ETA seen in observations after the inclusion of field-aligned ion drag in the model. Both the EIA and the ETA in the constant local time frame display an obvious zonal wave-4 structure associated with the modulation of nonmigrating tides. However, the modeled EIA and ETA show a primary zonal wave-1 structure when only the migrating tides are specified at the model lower boundary. Our simulations reveal that the zonal wave-4 structure of the ETA under both low and high solar activity conditions is mainly caused by the direct response of the upper thermosphere to the diurnal eastward wave number 3 and semidiurnal eastward wave number 2 nonmigrating tides from the lower atmosphere. There is a minor contribution from the ion-neutral coupling. The zonal wave-4 structure of the EIA is also caused by these nonmigrating tides but through the modulation of the neutral wind dynamo.

  8. Equatorial ionospheric irregularities using GPS TEC derived index

    NASA Astrophysics Data System (ADS)

    Oladipo, O. A.; Schüler, Torben

    2013-01-01

    We have used the rate of change of TEC (ROT) derived fluctuation index to study irregularities in the ionosphere at Franceville in Gabon (Lat.= -1.63°, Long.=13.55°, Geomag. Lat.= -0.71°), an equatorial station in the African sector. Based on a preliminary study at two equatorial stations at different longitude an average ROTI index which gives the fluctuation level over half an hour at a particular station was put forward. This index eliminates the noise spikes or extreme value usually present in ROTI index estimate. The new index ROTI was used to study ionospheric irregularity occurrence at Franceville. As far as we know, this is the first time irregularity occurrence study is being done at this station using GNSS data. The results obtained showed that ionospheric irregularity season at Franceville is from March to November and that there is a kind of minimum around June. Very low irregularities activity is also observed around January. Pre-midnight fluctuation is observed to be more pronounced at Franceville during the period studied.

  9. Equatorial noise emissions with quasiperiodic modulation of wave intensity

    NASA Astrophysics Data System (ADS)

    Němec, F.; Santolík, O.; Hrbáčková, Z.; Pickett, J. S.; Cornilleau-Wehrlin, N.

    2015-04-01

    Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal Analysis of Field Fluctuations and Wide-Band Data Plasma Wave investigation instruments on board the Cluster spacecraft, and we show that this is not always the case. A clear quasiperiodic (QP) time modulation of the wave intensity is present in more than 5% of events. We perform a systematic analysis of these EN events with QP modulation of the wave intensity. Such events occur usually in the noon-to-dawn magnetic local time sector. Their occurrence seems to be related to the increased geomagnetic activity, and it is associated with the time intervals of enhanced solar wind flow speeds. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN wave intensity and magnitudes on the order of a few tenths of nanotesla were identified in about 46% of events. We suggest that these compressional magnetic field pulsations might be responsible for the observed QP modulation of EN wave intensity, in analogy to formerly reported VLF whistler mode QP events.

  10. Quasi-periodic modulation of equatorial noise intensity

    NASA Astrophysics Data System (ADS)

    Nemec, Frantisek; Santolik, Ondrej; Hrbackova, Zuzana; Pickett, Jolene S.; Cornilleau-Wehrlin, Nicole

    2015-04-01

    Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed routinely in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field. Although their harmonic structure, which is characteristic of the proton cyclotron frequency in the source region has been known for a couple of decades, they were generally believed to be continuous in time. The analysis of more than 2000 EN events observed by the STAFF-SA and WBD instruments on board the Cluster spacecraft reveals that this is not always the case, with about 5% of events exhibiting a clear quasi-periodic (QP) modulation of the wave intensity. We perform a systematic analysis of these events, and we discuss possible mechanisms of the QP intensity modulation. It is shown that the events occur usually in the noon-to-dawn magnetic local time sector, and their occurrence seems to be related to the periods of increased geomagnetic activity. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN were identified in about half of the events. These ULF pulsations might modulate the EN wave intensity, similarly as they modulate the intensity of formerly reported VLF whistler-mode QP events.

  11. LF equatorial emissions recorded by DEMETER/ICE experiment

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed; Parrot, Michel; Schwingenschuh, Konrad; Eichelberger, Hans; Lammer, Helmut; Sawas, Sami; Denisenko, Valery; Besser, Bruno

    2016-07-01

    We report on electric field observations recorded on the Earth's night-side by DEMETER/ICE experiment. DEMETER is a low-altitude satellite with polar and circular orbits. Observations were recorded at invariant latitudes less than 65° and an altitude of about 650 km. The sun-synchronous night-side orbits correspond to up-going half-orbits with a local time equal to 22:30. We consider in our analysis the low frequency emissions observed at frequencies less than 500 kHz. We show the occurrence of multiple spaced frequency bands between 30 kHz and 500 kHz, and occasionally harmonic components appear in the upper frequency of the instrument (i.e. between 3 MHz - 3.5 MHz,). Those bands are recorded close to the equatorial plane, when the satellite latitudes are between -05° and +05°, and particular enhancements occur at two geographical longitudes, i.e. 130°E and 160°W. We assume that those low frequency radio waves may be associated to density irregularities in the equatorial region. Probably these irregularities are localized along ray paths between the emission source regions and the satellite. We discuss the source locations of such frequency bands, and we show that the observed spectral features may be linked to the plasmasphere dynamic.

  12. What controls equatorial Atlantic winds in boreal spring?

    NASA Astrophysics Data System (ADS)

    Richter, Ingo; Behera, Swadhin K.; Doi, Takeshi; Taguchi, Bunmei; Masumoto, Yukio; Xie, Shang-Ping

    2014-12-01

    The factors controlling equatorial Atlantic winds in boreal spring are examined using both observations and general circulation model (GCM) simulations from the coupled model intercomparison phase 5. The results show that the prevailing surface easterlies flow against the attendant pressure gradient and must therefore be maintained by other terms in the momentum budget. An important contribution comes from meridional advection of zonal momentum but the dominant contribution is the vertical transport of zonal momentum from the free troposphere to the surface. This implies that surface winds are strongly influenced by conditions in the free troposphere, chiefly pressure gradients and, to a lesser extent, meridional advection. Both factors are linked to the patterns of deep convection. Applying these findings to GCM errors indicates, that, consistent with the results of previous studies, the persistent westerly surface wind bias found in most GCMs is due mostly to precipitation errors, in particular excessive precipitation south of the equator over the ocean and deficient precipitation over equatorial South America. Free tropospheric influences also dominate the interannual variability of surface winds in boreal spring. GCM experiments with prescribed climatological sea-surface temperatures (SSTs) indicate that the free tropospheric influences are mostly associated with internal atmospheric variability. Since the surface wind anomalies in boreal spring are crucial to the development of warm SST events (Atlantic Niños), the results imply that interannual variability in the region may rely far less on coupled air-sea feedbacks than is the case in the tropical Pacific.

  13. Solitary Waves in the Western Equatorial Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Pinkel, R.; Merrifield, M.; McPhaden, M.; Picaut, J.; Rutledge, S.; Siegel, D.; Washburn, L.

    1997-01-01

    During the spring tides of early January and February 1993, groups of solitary internal waves were observed propagating through the Intensive Flux Array of the TOGA COARE experiment. The waves appear to originate near the islands of Nugarba (3 deg S 30 deg S - 154 deg 30'E). They travel north-eastward at 2.5-3 m/s, closely coupled with the semi-diurnal baroclinic tide. Peak amplitudes exceed 60 m. Velocities are in excess of .8 m/s. Sea-surface vertical displacements of order.3 m can be inferred directly from the lateral acceleration of surface waters. The Equatorial Undercurrent is displaced by soliton passage but apparently is unaffected otherwise. The intrinsic shear of the solitary crests is small compared to ambient equatorial shears. The crests, while not themselves unstable, are effective at triggering instabilities on the background flow. The motions potentially contribute 10-15 Watts/sq m to the flux of heat into the mixed layer.

  14. Phase space variations of near equatorially mirroring ring current ions

    NASA Technical Reports Server (NTRS)

    Williams, D. J.

    1981-01-01

    Observations of near equatorially mirroring ring current ions before and after a magnetic storm are presented in the form of phase space densities with respect to the first adiabatic invariant. Particle densities were obtained from the medium energy particles instrument covering the energy range 24-2081 keV on ISEE 1 at L values between 3 and 8 earth radii and ratios of the magnetic field at the satellite position to the magnetic field at the magnetic equator less than 1.2. Analysis of the phase space densities through the magnetosphere reveals a well-defined high magnetic moment peak in the prestorm near-equatorial ring current ion phase space density distribution, with the magnetic storm resulting from an enhancement of phase space densities at magnetic moment values below the peak and phase space densities remaining constant above the peak. Results are found to be in good agreement with those obtained by Explorer 45 six years previously, indicating that the observed phase space density variations are characteristic of energetic ion behavior during magnetic storms.

  15. Dynamics of equatorial irregularity patch formation, motion, and decay

    SciTech Connect

    Aarons, J.; Mullen, J.P.; Whitney, H.E.; MacKenzie, E.M.

    1980-01-01

    Using scintillation observations from a series of equatorial propagation paths as well as backscatter and airglow data, the development, motion, and decay of equatorial irregularity patches have been studied. Assembling the results of earlier studies in the field with our observations, we find the following: the patch has limited east-west dimensions with a minimum of 100 km. Several patches may be melded together to reach an extent of 1500 km. Its magnetic north-south dimensions are often greater than 2000 km; the most intense irregularities (as evidenced by the Jicamarca radar at the dip equator) are from 225 to 450 km in altitude, although irregularities are found as high as 1000 km. The patch initially has a westward expansion following the solar terminator, then, maintaining its integrity, moves eastward. Evidence over a limited series of experiments suggests that premidnight patches are formed within 1 1/2 hours after ionospheric sunset in the absence of special magnetic conditions. From Ascension Island (approx.16 /sup 0/S dip latitude) the individual patches can be clearly distinguished. The decay of patches in the midnight time period was studied, pointing to a rapid decrease in scintillation intensity in this time period.

  16. Equatorial convergence of India and early Cenozoic climate trends

    PubMed Central

    Kent, Dennis V.; Muttoni, Giovanni

    2008-01-01

    India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO2 concentration (pCO2) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO2 delivery to the atmosphere capable to maintain high pCO2 levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at ≈50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO2 by efficient silicate weathering further perturbed the delicate equilibrium between CO2 input to and removal from the atmosphere toward progressively lower pCO2 levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary. PMID:18809910

  17. The night when the auroral and equatorial ionospheres converged

    NASA Astrophysics Data System (ADS)

    Martinis, C.; Baumgardner, J.; Mendillo, M.; Wroten, J.; Coster, A.; Paxton, L.

    2015-09-01

    An all-sky imaging system at the McDonald Observatory (30.67°N, 104.02°W, 40° magnetic latitude) showed dramatic ionospheric effects during a moderate geomagnetic storm on 1 June 2013. The auroral zone expanded, leading to the observation of a stable auroral red (SAR) arc. Airglow depletions associated with equatorial spread F (ESF) were also seen for the first time at such high magnetic latitude. Total electron content measurements from a Global Positioning System (GPS) receiver exhibited ionospheric irregularities typically associated with ESF. We explore why this moderate geomagnetic disturbance leads to such dramatic ionospheric perturbations at midlatitudes. A corotating interaction region-like driver and a highly contracted plasmasphere caused the SAR arc to occur at L shell ~ 2.3. For ESF at L ~ 2.1, timing of the storm intensification, alignment of the sunset terminator with the central magnetic meridian, and sudden variations in the westward auroral electrojet all combined to trigger equatorial irregularities that reached altitudes of ~ 7000 km. The SAR arc and ESF signatures at the ionospheric foot points of inner magnetosphere L shells (L ~ 2) represent a dramatic convergence of pole to equator/equator to pole coupling at midlatitudes.

  18. Equatorial electron energy and number densities in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Luthey, J. L.

    1972-01-01

    A synchrotron model with a Maxwellian energy distribution of the form e to the (-E/E sub 0) power is used in a comparison with spatially resolved radio interferometric measurements of the Jovian emission. The observations of the decimeter radiation as a function of equatorial distance at 10.4 and 21 cm wavelength were reduced to source emission/cc of source electrons in each of 16 concentric rings. The peak energies for isotropically distributed electrons exceeded the maximum energy for flat orbiting electrons, and the peaks were generally located from 2.25 to 3 Jupiter radii. Beyond 3 radii, the order of magnitude on number density became a sensitive function of pitch angle distribution. The total equatorial intensities at 75 cm wavelength were computed for (E sub 0)(r) and n(r) at different values of B sub 0. The radiative half life for electrons of initial energy E sub 0 in a dipole field was calculated and found to be nearly constant at one year or less for altitudes at and below the position in peak energy.

  19. Equatorial Noise Emissions and Their Quasi-Periodic Modulation

    NASA Astrophysics Data System (ADS)

    Nemec, F.; Santolik, O.; Hrbackova, Z.; Pickett, J. S.; Cornilleau-Wehrlin, N.; Parrot, M.; Hayosh, M.

    2015-12-01

    Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency routinely observed in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic structure related to the ion cyclotron frequency in the source region. We analyze more than 2000 EN events observed by the wave instruments on board the Cluster spacecraft, and we find that about 5% of EN events are not continuous in time, but exhibit a quasi-periodic (QP) modulation of the wave intensity. Typical modulation periods are on the order of minutes. The events predominantly occur in the noon-to-dawn local time sector, and their occurrence is related to the periods of increased geomagnetic activity and higher solar wind speeds. We suggest that the QP modulation of EN events may be due to compressional ULF pulsations, which periodically modulate the wave growth in the source region. These compressional ULF pulsations were identified in about half of the events. Finally, we demonstrate that EN emissions with QP modulation of the wave intensity can propagate down to altitudes as low as 700 km.

  20. THE EFFECTS OF EL NINO AND LA NINA ON SEABIRD ASSEMBLAGES IN THE EQUATORIAL PACIFIC MONITORING

    EPA Science Inventory

    Spring and autumn cruises in Equatorial and Subtropical Surface waters were conducted 1984-1989 in the eastern equatorial Pacific. our genera predominated, both the relative contribution of each to species assemblages differed markedly depending on season and water mass. uring au...

  1. Simulational studies of the Farley-Buneman in the equatorial electrojet

    SciTech Connect

    Otani, N.; Seyler, C.; Kelley, M.

    1995-07-01

    The Farley-Buneman instability in the equatorial electrojet current system in the E-region of the ionosphere has been identified as the cause of the observed Type I electron density irregularities. The goal of this work was to study the instability in the equatorial region.

  2. A study on ionospheric scintillation near the EIA crest in relation to equatorial electrodynamics

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Chakraborty, S. K.; Veenadhari, B.; Banola, S.

    2014-02-01

    Equatorial electrojet (EEJ) data, which are considered as a proxy index of equatorial electric field, are analyzed in conjunction with equatorial ionosonde, total electron content (TEC) and scintillation data near the equatorial ionization anomaly (EIA) crest for the equinoctial months of high solar activity years (2011-2012) to identify any precursor index of postsunset evolution of equatorial electron density irregularities and subsequent occurrence of scintillation near the northern EIA crest. Only geomagnetically quiet and normal electrojet days are considered. The diurnal profiles of EEJ on the scintillation days exhibit a secondary enhancement in the afternoon to presunset hours following diurnal peaks. A series of electrodynamical processes conducive for generation of irregularities emerge following secondary enhancement of EEJ. Latitudinal profile of TEC exhibits resurgence in EIA structure around the postsunset period. Diurnal TEC profile near the EIA crest resembles postsunset secondary enhancement on the days with afternoon enhancement in EEJ. Occurrence of equatorial spread F and postsunset scintillation near the EIA crest seems to follow the secondary enhancement events in EEJ. Both the magnitude and duration of enhanced EEJ are found to be important for postsunset intensification of EIA structure and subsequent occurrence of equatorial irregularities. A critical value combining the two may be considered an important precursor for postsunset occurrence of scintillation near the EIA crest. The results are validated using archived data for the years 1989-1990 and explained in terms of modulation effects of enhanced equatorial fountain.

  3. Near-equatorial magnetic field of the photosphere

    NASA Astrophysics Data System (ADS)

    Vernova, Elena; Tyasto, Marta; Baranov, Dmitrii

    2016-04-01

    The heliolatitude distribution of magnetic field groups of different strength was studied on the basis of the synoptic maps of NSO Kitt Peak (1976-2003). The analysis of the synoptic maps averaged over 3 solar cycles allowed to distinguish four typical groups of magnetic fields: B = 0 - 5 G; B = 5 - 15 G; B = 15 - 50 G and B > 50 G. It is shown that there exists a definite relation between the strength of the magnetic field and its latitudinal localization. The time-dependence is studied for different groups of magnetic fields. The fields of different polarity are considered separately for the North and the South solar hemispheres. A special attention is given to the weakest magnetic fields (B = 0 - 5 G) which are localized near the equator (latitudes ± 5°) and in the interval 40° - 60° in each of the hemispheres. For the near-equatorial region the weakest fields in the North and the South hemispheres change synchronously and are approximately in anti-phase with the Wolf numbers. On the contrary the stronger fields (B = 5 - 10 G and higher) change in the phase with the solar cycle. Thus the magnetic field strength of the 5 G value represents the threshold below which the time-course of the magnetic field is in anti-phase with the solar cycle, while above 5 G it changes in the phase with the solar cycle. It should be noted that in the near-equatorial region the fields of the same sign in the North and the South hemispheres change almost synchronously, while the relation between the fields of the opposite signs in one hemisphere is much less pronounced. This relation differs sharply from the case of strong magnetic fields in the sunspot zone where a strong correlation is observed for the magnetic fields of opposite sign within the same hemisphere. The obtained results allow to conclude that the weak magnetic fields of the near-equatorial region of the Sun are not just the "wings" of the magnetic field distribution of the sunspot zone, but represent a separate

  4. Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2007-01-01

    Tropical Atlantic rainfall patterns and variation during boreal summer [June-July-August (JJA)] are quantified by means of a 28-year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring [March-April-May (MAM)] is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Intertropical Convergence Zone (ITCZ) strength and the basin-mean rainfall are found during both seasons. Interannual variations in the ITCZ's latitudinal location during JJA however are generally negligible, in contrasting to intense year-to-year fluctuations during MAM. Sea surface temperature (SST) oscillations along the equatorial region (usually called the Atlantic Nino events) and in the tropical north Atlantic (TNA) are shown to be the two major local factors modulating the tropical Atlantic climate during both seasons. During MAM, both SST modes tend to contribute to the formation of an evident interhemispheric SST gradient, thus inducing anomalous shifting of the ITCZ and then forcing a dipolar structure of rainfall anomalies across the equator primarily in the western basin. During JJA the impacts however are primarily on the ITCZ strength likely due to negligible changes in the ITCZ latitudinal location. The Atlantic Nino reaches its peak in JJA, while much weaker SST anomalies appear north of the equator in JJA than in MAM, showing decaying of the interhemispheric SST mode. SST anomalies in the tropical central-eastern Pacific (the El Nino events) have a strong impact on tropical Atlantic including both the tropical north Atlantic and the equatorial-southern Atlantic. However, anomalous warming in the tropical north Atlantic following positive SST anomalies in the tropical Pacific disappears during JJA because of seasonal changes in the large-scale circulation cutting off the ENSO influence passing through the

  5. Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic.

    PubMed

    Foster, Rachel A; Subramaniam, Ajit; Zehr, Jonathan P

    2009-04-01

    The gene abundance and gene expression of six diazotroph populations from the Eastern Equatorial Atlantic in June 2007 were examined using nifH gene quantitative polymerase chain reaction (q PCR) methods. Of all the diazotrophs, Trichodesmium spp. was the most abundant with the highest number of gene copies in the Gulf of Guinea. Trichodesmium also had the highest nitrogenase gene transcript abundance overall with the maximum in samples collected at the equator and in waters influenced by the Congo River plume (> 10(5) cDNA nifH copies l(-1)). Both cyanobacterial unicellular groups (A and B) were detected, where group A was the second most abundant in surface samples, in particular at the stations along the equator. Transcript abundance for group A, however, was at the detection limit and suggests that it was not actively fixing N(2). Trichodesmium and group B nifH gene abundances co-varied (P < 0.0001). Richelia associated with Hemiaulus hauckii diatoms were detected in 9 of 10 surface samples and the highest abundances (> 10(4)nifH copies l(-1)) were found north-west of the Congo River plume. In contrast, the Calothrix symbionts (het-3) of Chaetoceros had low abundances at the surface, but were present at 3.7 x 10(4)nifH copies l(-1) at 40 m depth in the equatorial upwelling. This is the first report of the Calothrix symbiont in the Atlantic Ocean. This is also the first report of nifH gene copy and transcript abundance in an Equatorial upwelling zone. Although the number of gene copies for Richelia associated with Rhizosolenia were the lowest, the transcript abundance were high (9.4 x 10(1)-1.8 x 10(4) cDNA nifH copies l(-1)) and similar to that of Trichodesmium. The distribution of the diazotroph groups, especially the three strains of symbiotic cyanobacteria, was different, and appeared largely controlled by riverine inputs and upwelling. PMID:19175790

  6. Midlatitude Rossby wave forcing of equatorial Kelvin waves

    NASA Astrophysics Data System (ADS)

    Biello, J. A.; Kiladis, G. N.; Back, A.

    2015-12-01

    Observations strongly suggest that convectively coupled Kelvin waves can be generated by extratropical wave activity. This mechanism is particularly efficient over Australia, where wave activity appears immediately after the extratropical Rossby waves propagate into the region during the Austral winter. This interaction occurs where the zonal wind is strongly sheared both in the meridional and vertical directions. In order to understand this phenomenon the authors study the linear primitive equations in the presence of barotropic and baroclinic shear and the dispersion characteristics of the sheared Matsuno modes are calculated. Depending on the shear strength, the waves are stable or unstable and can be categorized into three groups. First there are the classical Matsuno modes modified by shear. Second there are extratropical "free" Rossby waves. Third, there are Rossby waves meridionally confined to the shear layer - these latter modes can be unstable, or stable and part of the continuous spectrum. In examples where the zonal winds are barotropically and baroclinically stable, we show that a continuous spectrum of Rossby waves exists. If the zonal winds are strong enough, the Rossby waves in the continuous spectrum have an equatorial signature exactly like the Matsuno Kelvin wave - despite the fact that, in these examples, the Matsuno Kelvin wave also exists on its own and that all modes are stable. For stronger shears, these continuous spectrum modes become unstable. Although the appear similar to Sakai's Rossby/Kelvin instability, their existence arises from a completely different phenomenon. The Sakai instability requires the frequency of a stable equatorial Rossby mode to coincide with the stable Kelvin wave frequency in order for the two modes to create a stable/unstable pair. Our results show that unstable Rossby waves need only have their frequencies Doppler shifted to that of the Kelvin wave frequency by the underlying shear in order that they acquire a

  7. Equatorward shift of annual Rossby waves in the Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Sun, Che

    2016-01-01

    Annual Rossby wave is a key component of the ENSO phenomenon in the equatorial Pacific Ocean. Due to the paucity and seasonal bias in historical hydrographic data, previous studies on equatorial Rossby waves only gave qualitative description. The accumulation of Argo measurements in recent years has greatly alleviated the data problem. In this study, seasonal variation of the equatorial Pacific Ocean is examined with annual harmonic analysis of Argo gridded data. Results show that strong seasonal signal is present in the western equatorial Pacific and explains more than 50% of the thermal variance below 500 m. Lag-correlation tracing further shows that this sub-thermocline seasonal signal originates from the eastern equatorial Pacific via downward and southwestward propagation of annual Rossby waves. Possible mechanisms for the equatorward shift of Rossby wave path are also discussed.

  8. Image measurements of short-period gravity waves at equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pendleton, W. R.; Clark, S.; Takahashi, H.; Gobbi, D.; Goldberg, R. A.

    1997-11-01

    A high-performance, all-sky imaging system has been used to obtain novel data on the morphology and dynamics of short-period (<1 hour) gravity waves at equatorial latitudes. Gravity waves imaged in the upper mesosphere and lower thermosphere were recorded in three nightglow emissions, the near-infrared OH emission, and the visible wavelength OI (557.7 nm) and Na (589.2 nm) emissions spanning the altitude range ˜80-100 km. The measurements were made from Alcantara, Brazil (2.3°S, 44.5°W), during the period August-October 1994 as part of the NASA/Instituto Nacional de Pesquisas Espaciais "Guara campaign". Over 50 wave events were imaged from which a statistical study of the characteristics of equatorial gravity waves has been performed. The data were found to divide naturally into two groups. The first group corresponded to extensive, freely propagating (or ducted) gravity waves with observed periods ranging from 3.7 to 36.6 min, while the second group consisted of waves of a much smaller scale and transient nature. The later group exhibited a bimodal distribution for the observed periods at 5.18±0.26 min and 4.32±0.15 min, close to the local Brunt-Vaisala period and the acoustic cutoff period, respectively. In comparison, the larger-scale waves exhibited a clear tendency for their horizontal wavelengths to increase almost linearly with observed period. This trend was particularly well defined around the equinox and can be represented by a power-law relationship of the form λh=(3.1±0.5)τob1.06±0.10, where λh is measured in kilometers and τob in minutes. This result is in very good agreement with previous radar and passive optical measurements but differs significantly from the relationship λh ∝ τ1.5ob inferred from recent lidar studies. The larger-scale waves were also found to exhibit strong anisotropy in their propagation headings with the dominant direction of motion toward the-NE-ENE suggesting a preponderance for wave generation over the South

  9. Unstable density distribution associated with equatorial plasma bubble

    NASA Astrophysics Data System (ADS)

    Kherani, E. A.; Bharuthram, R.; Singh, S.; Lakhina, G. S.; de Meneses, F. Carlos

    2016-04-01

    In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion grows to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.

  10. Implications of the small aspect angles of equatorial spread F

    SciTech Connect

    Hysell, D.L.; Farley, D.T.

    1996-03-01

    Small-scale equatorial spread F irregularities are almost perfectly aligned with the geomagnetic field. The authors develop here an analytic plasma kinetic theory of small-scale, quasi-field-aligned irregularities that include ion viscosity and finite Larmor radius effects. They conclude, for one thing, that the measured aspect angles are too small to be consistent with a dissipative drift wave source of 3-m irregularities. Nonlinearly driven flute modes appear to be the only available mechanism. The authors compare the relative influence of parallel and perpendicular dissipation and conclude that the aspect width depends only weakly on any single geophysical parameters, such as collision frequency, gradient length, temperature, etc. This finding is consistent with their observation that the measured aspect angles vary little with altitude and only weakly with instability level. 29 refs., 5 figs.

  11. Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela G.; Kervalishvili, Guram N.

    2016-07-01

    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).

  12. Ultraviolet Observations of the Equatorial Ionosphere at the Terminator

    NASA Astrophysics Data System (ADS)

    Miller, E. S.; Comberiate, J.; Paxton, L. J.

    2013-05-01

    The Special Sensor Ultraviolet Spectrographic Imager (SSUSI) instrument on DMSP (Defense Meteorological Program) F16, F17, and F18, was not intended for operation in the challenging illumination and geophysical environment of the sunrise/sunset terminators. However, the F16 and F17 spacecraft are operating near the terminators presently. In this work, we explore the data collected at the terminator with these instruments and how it may be interpreted. For example, it has been shown with TIMED/GUVI observations that the morphology of the equatorial anomaly arcs can be used to predict suppression of spread F at a given site. We extend this analysis to the SSUSI instruments in addition to exploring calibration techniques that may be useful for isolating day and night behavior from the same scene.

  13. Observations of discrete harmonics emerging from equatorial noise.

    PubMed

    Balikhin, Michael A; Shprits, Yuri Y; Walker, Simon N; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H; Weiss, Benjamin

    2015-01-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as 'equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes 'ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations. PMID:26169360

  14. Observations of discrete harmonics emerging from equatorial noise

    NASA Astrophysics Data System (ADS)

    Balikhin, Michael A.; Shprits, Yuri Y.; Walker, Simon N.; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H.; Weiss, Benjamin

    2015-07-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as `equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes `ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations.

  15. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  16. Geomagnetic Field Variations from some Equatorial Electrojet Stations

    NASA Astrophysics Data System (ADS)

    Adimula, I. A.; Rabiu, A. B.; Yumoto, Y.; Magdas Group

    2011-12-01

    Quiet day variations of the equatorial electrojet along the dip equator from 10 MAGDAS stations show that there could be substantial day to day variability in the electrojet (EEJ) strength. Variations of greater than 80 nT are found in pairs of stations on the same day. The analyses show that the correlation between pairs of stations decreases as a function of increasing distance between them. The results confirm the presence of counter electrojet occurring mainly in the morning and evening hours with strengths of up to 30 nT in certain instances. The data show a longitudinal variability in the EEJ, with results showing strongest EEJ current in the South American sector and weakest in the Malaysian sector.

  17. The earth's equatorial principal axes and moments of inertia

    NASA Technical Reports Server (NTRS)

    Liu, H. S.; Chao, B. F.

    1991-01-01

    The earth's equatorial principal moments of inertia are given as A and B, where A is less than B, and the corresponding principal axes are given as a and b. Explicit formulas are derived for determining the orientation of a and b axes and the difference B - A using C(22) and S(22), the two gravitational harmonic coefficients of degree 2 and order 2. For the earth, the a axis lies along the (14.93 deg W, 165.07 deg E) diameter, and the b axis lies perpendicular to it along the (75.07 deg E, 104.93 deg W) diameter. The difference B - A is 7.260 x 10 to the -6th MR2. These quantities for other planets are contrasted, and geophysical implications are discussed.

  18. Pelagic microplastics around an archipelago of the Equatorial Atlantic.

    PubMed

    Ivar do Sul, Juliana A; Costa, Monica F; Barletta, Mário; Cysneiros, Francisco José A

    2013-10-15

    Plastic marine debris is presently widely recognised as an important environmental pollutant. Such debris is reported in every habitat of the oceans, from urban tourist beaches to remote islands and from the ocean surface to submarine canyons, and is found buried and deposited on sandy and cobble beaches. Plastic marine debris varies from micrometres to several metres in length and is potentially ingested by animals of every level of the marine food web. Here, we show that synthetic polymers are present in subsurface plankton samples around Saint Peter and Saint Paul Archipelago in the Equatorial Atlantic Ocean. To explain the distribution of microplastics around the Archipelago, we proposed a generalised linear model (GLM) that suggests the existence of an outward gradient of mean plastic-particle densities. Plastic items can be autochthonous or transported over large oceanic distances. One probable source is the small but persistent fishing fleet using the area. PMID:23953893

  19. Development of the Equatorial Infrared Catalogue from satellite data

    NASA Technical Reports Server (NTRS)

    Heinsheimer, T. F.; Sweeney, L. H.; Yates, F. F.; Maran, S. P.; Lesh, J. R.; Nagy, T. A.

    1978-01-01

    More than 40,000 infrared measurements of stellar sources have been obtained since November, 1976 during the ongoing process of compiling an Equatorial Infrared Catalogue. Because of the problem of eliminating spurious sources, which has affected earlier space surveys, an extensive effort is being made to verify the sources by means of (1) repetitive observations by satellite sensors, (2) cross correlation with a large data base developed from ground-based and space surveys at other wavelengths, and (3) investigation of a significant subset of the sources with a ground-based infrared telescope. As sources are verified, they are transferred from a working list to a screened preliminary version of the catalogue. The catalogue comprises the only survey of a significant area of the sky that has been accomplished (or is presently planned) with positional accuracies of a few arc seconds at a wavelength of not less than 2 microns.

  20. Modulation of subtropical stratospheric gravity waves by equatorial rainfall

    NASA Astrophysics Data System (ADS)

    Cohen, Naftali Y.; Boos, William R.

    2016-01-01

    Internal gravity waves influence a variety of phenomena in Earth's stratosphere and upper troposphere, including aviation weather turbulence and circulations that set high-altitude distributions of ozone and greenhouse gases. Here coupling between the dominant mode of subseasonal variability of the equatorial atmosphere—the Madden-Julian oscillation (MJO)—and subtropical stratospheric gravity waves created by flow over topography is documented for the first time. We use three different meteorological data sets to show that during boreal winter, the MJO modifies the vertical distribution of internal gravity wave drag induced by the Tibetan Plateau and the deposition of momentum into the stratosphere. This interaction, however, has no significant impact on the vertically integrated wave drag. Our findings raise new questions about how future changes in tropical rainfall might affect stratospheric variability and highlight the importance of local processes over Tibet for the circulations that set distributions of climatically important high-altitude trace gases.

  1. Solar Wind Associated with Near Equatorial Coronal Hole

    NASA Astrophysics Data System (ADS)

    Hegde, M.; Hiremath, K. M.; Doddamani, Vijayakumar H.; Gurumath, Shashanka R.

    2015-09-01

    Present study probes temporal changes in the area and radiative flux of near equatorial coronal hole associated with solar wind parameters such as wind speed, density, magnetic field and temperature. Using high temporal resolution data from SDO/AIA for the two wavelengths 193 Å and 211 Å, area and radiative flux of coronal holes are extracted and are examined for the association with high speed solar wind parameters. We find a strong association between different parameters of coronal hole and solar wind. For both the wavelength bands, we also compute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and energy due to solar wind, it is conjectured that solar wind might have originated around the same height where 193 Å line is formed in the corona.

  2. Re-Os systematics of St. Paul's Rocks, equatorial Atlantic.

    NASA Astrophysics Data System (ADS)

    Blusztajn, J.; Hart, S. R.

    2006-12-01

    St. Paul's Rocks, small islets in the middle of the equatorial Atlantic (0°56'N, 29°22'W) just north of the St. Paul's Fracture zone, represent oceanic peridotites that are unique compared to abyssal peridotites. The main difference is the occurrence of modally metasomatized peridotites containing hornblende and pargasite. These mantle peridotites from St. Paul's Rocks show large Os isotopic heterogeneity, with present day 187Os/188Os ratios ranging from 0.1179 to 0.1273. In contrast, two hornblendite samples have very radiogenic Os isotopic compositions of 0.221 and 0.284. The Os concentrations vary from 0.003 ppb (hornblendite) to 5.8 ppb (spinel peridotite). Pargasite peridotites contain on average about 1.6 ppb Os. Even modally metasomatized samples with hornblende and pargasite have subchondritic Os isotopic ratios, indicating that enrichment processes did not disturb the Os isotopic system. The only indication of pervasive enrichment is a very high Re content in two of the amphibole peridotites (0.7 and 2.2 ppb). The unradiogenic Os isotopic ratios in the peridotites record ancient melting events with model ages of about 1.5 Ga. Three alkali basalts dredged on the flank of St. Paul's Rocks (1966 Atlantis II-20 cruise) have relatively high Os contents (62 to 167 ppt) and are quite radiogenic, with 187Os/188Os ranging from 0.167 to 0.239. Data from this study indicates that mixing of the different lithologies observed on St. Paul's Rocks cannot produce 187Os/188Os as high as that observed in the dredged basalts. On the other hand, the similar 187Os/188Os in the hornblendites and alkali basalts show that interaction between basalts and mantle peridotites took place. The very low Os isotopic ratios in St. Paul's Rocks, in conjunction with other Os studies from the equatorial Atlantic, indicate dispersed heterogeneities of old subcontinental lithospheric material in the oceanic mantle.

  3. Tectonic evolution of Brazilian equatorial continental margin basins

    SciTech Connect

    Azevedo, R.P. )

    1993-02-01

    The structural style and stratigraphic relationships of sedimentary basins along the Brazilian Equatorial Atlantic Continental Margin were used to construct an empirical tectonic model for the development of ancient transform margins. The model is constrained by detailed structural and subsidence analyses of several basins along the margin. The structural framework of the basins was defined at shallow and deep levels by the integration of many geophysical and geological data sets. The Barreirinhas and Para-Maranhao Basins were divided in three tectonic domains: the Tutoia, Caete, and Tromai subbasins. The Caete area is characterized by northwest-southeast striking and northeast-dipping normal faults. A pure shear mechanism of basin formation is suggested for its development. The structure of the Tutoia and Tromai subbasins are more complex and indicative of a major strike-slip component with dextral sense of displacement, during early stages of basin evolution. These two later subbasins were developed on a lithosphere characterized by an abrupt transition (<50 km wide) from an unstretched continent to an oceanic lithosphere. The subsidence history of these basins do not comply with the classical models developed for passive margins or continental rifting. The thermo-mechanical model proposed for the Brazilian equatorial margin includes heterogeneous stretching combined with shearing at the plate margin. The tectonic history comprises: (1) Triassic-Jurassic limited extension associated with the Central Atlantic evolution; (2) Neocomian intraplate deformation consisting of strike-slip reactivation of preexisting shear zones; (3) Aptian-Cenomanian two-phase period of dextral shearing; and (4) Late Cretaceous-Cenozoic sea-floor spreading.

  4. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Astrophysics Data System (ADS)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon T.; Lacy, Mark; Ryan, Erin L.; Stone, Robert B.; Bauer, Franz E.; Brandt, W. N.; Fan, Xiaohui; Glikman, Eilat; Haggard, Daryl; Jiang, Linhua; LaMassa, Stephanie M.; Lin, Yen-Ting; Makler, Martin; McGehee, Peregrine; Myers, Adam D.; Schneider, Donald P.; Urry, C. Megan; Wollack, Edward J.; Zakamska, Nadia L.

    2016-07-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of ∼115 deg2 in the Equatorial SDSS Stripe 82 field using Spitzer during its “warm” mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z ≥slant 3 to test various models for “feedback” from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z ≥slant 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5σ depths of 6.13 μJy (21.93 AB magnitude) and 5.75 μJy (22.0 AB magnitude) at 3.6 and 4.5 μm, respectively—depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (∼98%) in Stripe 82 than are recovered by WISE (∼55%). This depth is especially powerful at high-redshift (z ≥slant 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 μm only detection catalog containing ∼6.1 million sources, a 4.5 μm only detection catalog containing ∼6.5 million sources, and a dual-band detection catalog containing ∼5.4 million sources.

  5. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Technical Reports Server (NTRS)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon, T.; Lacy, Mark; Ryan, Erin L.; Stone, Robert B.; Bauer, Franz, E.; Brandt, W. N.; Fan, Xiaohui; Glikman, Eilat; Lamassa, Stephanie M.; Urry, C. Megan; Wollack, Edward J.

    2016-01-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of approx.115 sq deg in the Equatorial SDSS Stripe 82 field using Spitzer during its "warm" mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > or = 3 to test various models for "feedback" from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > or = 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5 sigma depths of 6.13 µJy (21.93 AB magnitude) and 5.75 µJy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively-depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (approx.98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > or = 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 microns only detection catalog containing approx. 6.1 million sources, a 4.5 microns only detection catalog containing approx. 6.5 million sources, and a dual-band detection catalog containing approx. 5.4 million sources.

  6. SpIES: The Spitzer IRAC Equatorial Survey

    NASA Astrophysics Data System (ADS)

    Timlin, John D.; Ross, Nicholas P.; Richards, Gordon T.; Lacy, Mark; Ryan, Erin L.; Stone, Robert B.; Bauer, Franz E.; Brandt, W. N.; Fan, Xiaohui; Glikman, Eilat; Haggard, Daryl; Jiang, Linhua; LaMassa, Stephanie M.; Lin, Yen-Ting; Makler, Martin; McGehee, Peregrine; Myers, Adam D.; Schneider, Donald P.; Urry, C. Megan; Wollack, Edward J.; Zakamska, Nadia L.

    2016-07-01

    We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of ˜115 deg2 in the Equatorial SDSS Stripe 82 field using Spitzer during its “warm” mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z ≥slant 3 to test various models for “feedback” from active galactic nuclei (AGNs). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z ≥slant 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5σ depths of 6.13 μJy (21.93 AB magnitude) and 5.75 μJy (22.0 AB magnitude) at 3.6 and 4.5 μm, respectively—depths significantly fainter than the Wide-field Infrared Survey Explorer (WISE). We show that the SpIES survey recovers a much larger fraction of spectroscopically confirmed quasars (˜98%) in Stripe 82 than are recovered by WISE (˜55%). This depth is especially powerful at high-redshift (z ≥slant 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 μm only detection catalog containing ˜6.1 million sources, a 4.5 μm only detection catalog containing ˜6.5 million sources, and a dual-band detection catalog containing ˜5.4 million sources.

  7. On the hierarchy of processes contributing to equatorial spread F

    SciTech Connect

    Hysell, D.L,.

    1992-01-01

    Unstable plasma stratification in the twilight equatorial F region ionosphere is subject to plasma instabilities known collectively as equatorial spread F. Small-scale irregularities in electron density give rise to coherent VHF and UHF radio scatter during spread F while in situ spacecraft detect intermediate- and large-scale plasma structures. The authors present data from observations made over three years at the Jicamarca Radio Observatory and from the summer 1990 CRRES/EQUIS campaign which involved the Cornell 50 MHz radar interferometer (CUPRI) and the Altair UHF radar at Kwajalein, MI. Radar findings are correlated with spread F data from sounding rockets launched during the EQUIS project and from the Atmospheric Explorer E satellite. A review of fundamental fluid theory for the ionospheric interchange instability emphasizes dissipative and non-local effects that restrict linear instability to intermediate-scale wavelengths. A nonlinear fluid theory incorporating three wave interactions extends the range of instability to transitional and small scales, and renormalization group analysis offers a way to evaluate enhanced transport due to these nonlinearly excited modes. At large scales, circumstantial evidence suggests that internal gravity waves seed plasma upwellings and initiate topside spread F. Density and electric field spectra measured by the spread F sounding rockets exhibit inertial-convective and inertial-diffusive subranges. A model of quasi one-dimensional plasma turbulence reproduces the spectral indices and breaking scales observed by the rockets. Density power spectra from 30 AE-E orbits also possess convective and diffusive subranges, but their characteristic scale sizes are about 10 times larger than the rocket's. One-dimensional rocket and satellite power spectra combine to form a two-dimensional spectral model of F region irregularities which predicts VHF radar scattering cross-sections.

  8. Numerical simulation of equatorial plasma bubbles over Cachimbo: COPEX campaign

    NASA Astrophysics Data System (ADS)

    Carrasco, A. J.; Batista, I. S.; Abdu, M. A.

    2014-08-01

    The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = -2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F layer. The code uses the flux corrected transport method with Boris-Book’s flux limiter for the spatial integration and a predictor-corrector method for the direct time integration of the continuity equation for O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh-Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures.

  9. Simulations of the equatorial thermosphere anomaly: Geomagnetic activity modulation

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Wang, Wenbin; Thayer, Jeffrey P.; Luan, Xiaoli; Dou, Xiankang; Burns, Alan G.; Solomon, Stanley C.

    2014-08-01

    The modulation of geomagnetic activity on the equatorial thermosphere anomaly (ETA) in thermospheric temperature under the high solar activity condition is investigated using the Thermosphere Ionosphere Electrodynamics General Circulation Model simulations. The model simulations during the geomagnetically disturbed interval, when the north-south component of the interplanetary magnetic field (Bz) oscillates between southward and northward directions, are analyzed and also compared with those under the quiet time condition. Our results show that ionospheric electron densities increase greatly in the equatorial ionization anomaly (EIA) crest region and decrease around the magnetic equator during the storm time, resulting from the enhanced eastward electric fields. The impact of both the direct heat deposition at high latitudes and the modulation of the storm time enhanced EIA crests on the ETA are subsequently studied. The increased plasma densities over the EIA crest region enhance the field-aligned ion drag that accelerates the poleward meridional winds and consequently their associated adiabatic cooling effect. This process alone produces a deeper temperature trough over the magnetic equator as a result of the enhanced divergence of meridional winds. Moreover, the enhanced plasma-neutral collisional heating at higher latitudes associated with the ionospheric positive storm effect causes a weak increase of the ETA crests. On the other hand, strong changes of the neutral temperature are mainly confined to higher latitudes. Nevertheless, the changes of the ETA purely due to the increased plasma density are overwhelmed by those associated with the storm time heat deposition, which is the major cause of an overall elevated temperature in both the ETA crests and trough during the geomagnetically active period. Associated with the enhanced neutral temperature at high latitudes due to the heat deposition, the ETA crest-trough differences become larger under the minor

  10. Two-day Convective Disturbances in the Equatorial Indian Ocean

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kuo, H. C.; Johnson, R. H.; Ciesielski, P. E.

    2015-12-01

    Quasi two-day convective disturbances were observed in the Madden-Julian Oscillation (MJO) convectively active period in the equatorial Indian Ocean during the Dynamics of the MJO (DYNAMO) field campaign in 2011. The initial focus of the study is on seven significant precipitating events at Gan in October having two-days periodicity identified using TRMM 3B42(V7) rainfall data. In this study, gridded observations, TRMM rainfall and Meteosat-7 IR brightness temperature datasets were analyzed, the time-longitude diagrams and the composite analyses show that the two-day periodicity is related to westward propagating convection with propagation speed ~12m/s and zonal spatial scale ~2000km. In order to examine the vertical structure of the two-day convective disturbances, high-vertical resolution upper-air sounding data and the combined KAZR/S-Pol radar data (only available at Gan Island, 0.69°S, 73.15°E) from DYNAMO were also used to construct composite fields over a 48-hour period centered at the maximum rain rate of these precipitating events. The composited moisture, stability, temperature anomaly and cloud radiative effect reveal a distinct pattern of convective evolution - shallow convection to deep convection to stratiform precipitation - similar to that observed on longer time scales all the way up to that of the MJO. These results indicate several characteristics of two-day disturbances over the equatorial Indian Ocean, which can also be found in the western Pacific during the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE).

  11. Temperature Gradient Reconstructions from the Eastern Equatorial Pacific Cold Tongue

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Ravelo, C.; Hovan, S. A.

    2009-12-01

    Sea surface temperature (SST) reconstructions from the Western and Eastern Equatorial Pacific (WEP and EEP) indicate the Equatorial Pacific was in a permanent El Niño-like state during the early Pliocene. Specifically, SST in the WEP was nearly the same as today, while SST in the EEP cold tongue region was 2-3 °C warmer than today. Climatic transitions recorded in the EEP are of particular interest due to the region’s sensitivity to changes in upwelling and thermocline depth, and due to its role in the global ocean heat balance. However, not much is known about the evolution of the EEP cold tongue. This study aims to reconstruct the east-west and north-south gradients within the EEP using new SST and sub-surface temperature records from ODP Sites 848, 849, and 853 and published paleoceanographic records from the EEP to examine the temporal and spatial evolution of the EEP cold tongue from the Pliocene to Recent. Mg/Ca analyses on Globigerinoides sacculifer and Globorotalia tumida and alkenone analyses have been made to reconstruct east-west and north-south SST and thermocline depth, respectively. Currently, G. tumida Mg/Ca records have been generated for Sites 848 (most southern) and 853 (most northern) and G. sacculifer Mg/Ca and alkenone records have been generated for Site 848. This study compares new data to published data to achieve exceptional spatial coverage of the EEP cold tongue. Comparison of SST data to reconstructions of thermocline temperatures, paleoproductivity, and wind field strength will provide insight into the underlying causes of changes in the intensity and spatial extent of the cold tongue. Understanding these causes will aid in explaining the transition from the permanent El Niño-like state to modern conditions as climate cooled through the Pliocene.

  12. Global Specification of the Post-Sunset Equatorial Ionization Anomaly

    NASA Astrophysics Data System (ADS)

    Coker, C.; Dandenault, P. B.; Dymond, K.; Budzien, S. A.; Nicholas, A. C.; Chua, D. H.; McDonald, S. E.; Metzler, C. A.; Walker, P. W.; Scherliess, L.; Schunk, R. W.; Gardner, L. C.; Zhu, L.

    2012-12-01

    The Special Sensor Ultraviolet Limb Imager (SSULI) on the Defense Meteorological Satellite Program (DMSP) is used to specify the post-sunset Equatorial Ionization Anomaly. Ultraviolet emission profiles of 135.6 nm and 91.1 nm emissions from O++ e recombination are measured in successive altitude scans along the orbit of the satellite. The overlapping sample geometry provides for a high resolution reconstruction of the ionosphere in altitude and latitude for each pass of the satellite. Emission profiles are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and is run operationally at the Air Force Weather Agency (AFWA). The resulting specification of the equatorial ionosphere reveals significant variability in the postsunset anomaly, which is reflective of the driving space weather processes, namely, electric fields and neutral winds. Significant longitudinal and day-to-day variability in the magnitude (or even existence) of the post-sunset anomaly reveal the influence of atmospheric tides and waves as well as geomagnetic disturbances on the pre-reversal enhancement of the electric field. Significant asymmetry between anomaly crests reveals the influence of atmospheric tides and waves on meridional neutral winds. A neutral wind parallel to the magnetic field line pushes plasma up (or down) the field lines, which raises (or lowers) the altitude of the crests and modifies the horizontal location and magnitude of the crests. The variability in the post-sunset anomaly is one of the largest sources of error in ionospheric specification models. The SSULI instrument provides critical data towards the reduction of this specification error and the determination of key driver parameters used in ionospheric forecasting. Acknowledgements: This research was supported by the USAF Space and Missile Systems Center (SMC), the Naval Research Laboratory (NRL) Base Program, and the Office of Naval

  13. On the Timing of Glacial Terminations in the Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Khider, D.; Ahn, S.; Lisiecki, L. E.; Lawrence, C.; Kienast, M.

    2015-12-01

    Understanding the mechanisms through which the climate system responds to orbital insolation changes requires establishing the timing of events imprinted on the geological record. In this study, we investigate the relative timing of the glacial terminations across the equatorial Pacific in order to identify a possible mechanism through which the tropics may have influenced a global climate response. The relative termination timing between the eastern and western equatorial Pacific was assessed from 15 published SST records based on Globigerinoides ruber Mg/Ca or alkenone thermometry. The novelty of our study lies in the accounting of the various sources of uncertainty inherent to paleoclimate reconstruction and timing analysis. Specifically, we use a Monte-Carlo process allowing sampling of possible realizations of the time series that are functions of the uncertainty of the benthic δ18O alignment to a global benthic curve, of the SST uncertainty, and of the uncertainty in the change point, which we use as a definition for the termination timing. We find that the uncertainty on the relative timing estimates is on the order of several thousand years, and stems from age model uncertainty (60%) and the uncertainty in the change point detection (40%). Random sources of uncertainty are the main contributor, and, therefore, averaging over a large datasets and/or higher resolution records should yield more precise and accurate estimates of the relative lead-lag. However, at this time, the number of records is not sufficient to identify any significant differences in the timing of the last three glacial terminations in SST records from the Eastern and Western Tropical Pacific.

  14. Charging El Niño with off-equatorial westerly wind events

    NASA Astrophysics Data System (ADS)

    McGregor, Shayne; Timmermann, Axel; Jin, Fei-Fei; Kessler, William S.

    2016-08-01

    The buildup of the warm water in the equatorial Pacific prior to an El Niño event is considered a necessary precondition for event development, while the event initiation is thought to be triggered by bursts of westerly wind. However, in contrast to the view that warm water slowly builds up years before an El Niño event, the volume of warm water in the equatorial Pacific doubled in the first few months of 2014 reaching values that were consistent with the warm water buildup prior to the extreme 1997/1998 El Niño. It is notable that this dramatic warm water buildup coincided with a series of westerly wind bursts in the western tropical Pacific. This study uses linear wave theory to determine the effect of equatorial and off-equatorial westerly wind events on the Warm Water Volume (WWV) of the Pacific. It is found that westerly wind events have a significant impact on equatorial WWV with all events initially acting to increase WWV, which highlights why WWEs are so effective at exciting ENSO. In fact, our results suggest that the single westerly wind burst, which peaked in the first few days of March in 2014, was largely responsible for the coincident dramatic observed increase in WWV. How long the equatorial region remains charged, however, depends on the latitude of the westerly wind event. For instance, a single equatorially symmetric westerly wind event ultimately acts to discharge WWV via the reflection of upwelling Rossby waves, which makes it difficult to more gradually build WWV given multiple WWEs. In contrast, when the wind events occur off the equator, the subsequent discharge is significantly damped and in some cases the equatorial region can hold the heat charge for the duration of the simulations (~6 months). As such, off-equatorial WWEs can not only charge equatorial region WWV in the short term, but are also a mechanism to more gradually build equatorial region WWV in the longer term. Given that these off-equatorial WWEs have a relatively small

  15. Day-to-day variability of Equatorial Ionization Anomaly over the Indian and Brazilian sectors - the role of Equatorial Electrojet

    NASA Astrophysics Data System (ADS)

    Kavutarapu, Venkatesh; Gende, Mauricio; Fagundes, Paulo Roberto; De Jesus, Rodolfo; Denardini, Clezio Marcos; De Abreu, Alessandro

    2016-07-01

    The equatorial electrojet (EEJ) is a narrow band of current flowing eastward at the ionospheric E-region altitudes along the dayside dip equator. Mutually perpendicular electric and magnetic fields over the equator results in the formation of Equatorial Ionization Anomaly (EIA) which in turn generates large electron density variabilities. Simultaneous study on the characteristics of EEJ and EIA is necessary to understand the role of EEJ on the EIA variabilities. Present study reports simultaneous variations of EEJ and GPS-TEC over Indian and Brazilian sectors to understand the role of EEJ on the day-to-day characteristics of the EIA. Magnetometer measurements during the low solar activity year 2004 are used to derive the EEJ values over the two different sectors. The characteristics of EIA are studied using two different chains of GPS receivers along the common meridian of 770E (India) and 450W (Brazil). The diurnal, seasonal and day-to-day variations of EEJ and TEC are described simultaneously. Variations of EIA during different seasons are presented along with the variations of the EEJ in the two hemispheres. The role of EEJ variations on the characteristic features of the EIA such as the strength and temporal extent of the EIA crest etc., have also been reported. Further, the time delay between the occurrences of the day maximum EEJ and the well-developed EIA are studied and corresponding results are presented in this paper. Further, the results from a study on the noon time bite-outs at the anomaly crest locations with their absence over the equator in the Indian and Brazilian sector are also discussed in this paper.

  16. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    NASA Astrophysics Data System (ADS)

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-05-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.

  17. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    SciTech Connect

    Heimpel, Moritz; Aurnou, Jonathan M. E-mail: aurnou@ucla.edu

    2012-02-10

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%-roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed {approx}1% SKR changes.

  18. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.

    PubMed

    Winckler, Gisela; Anderson, Robert F; Jaccard, Samuel L; Marcantonio, Franco

    2016-05-31

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity. PMID:27185933

  19. Phytoplankton taxa in relation to primary production in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Chavez, Francisco P.; Buck, Kurt R.; Barber, Richard T.

    1990-11-01

    Equatorial regions, especially the equatorial Pacific, are important to the global carbon and nitrogen cycle, yet little is known about the processes regulating phytoplankton dynamics in these areas. Here we report on the abundance of planktonic groups, in the picoplankton to netplankton range, estimated using epifluorescence microscopy, in samples collected in the equatorial Pacific from 110 to 140°W, and discuss their relation to primary production, chlorophyll, chemical and physical properties. Microscopic examination supports previous reports ( CHAVEZ, 1989, Global Biogeochemical Cycles, 3, 27-35), based on size separations of biomass and production, that the equatorial Pacific is dominated by small phytoplankton, most of them smaller then 5 μm. The phytoplankton in this region is dominated by relatively few taxa: Synechococcus spp., red fluorescing picoplankton, a small naked dinoflaellate (4 × 7 μm), small prymnesiophytes (on the order of 3-5 μm), and small single-celled pennate diatoms (2 × 15 μm). The spatial variability in phytoplankton biomass, composition and production could be clearly related to distinct physical features of the equatorial circulation, such as equatorial upwelling, Long or Legeckis waves and the Equatorial Front. During November 1988, a period of abnormally cool sea surface temperatures, changes in the abundance of pennate diatoms accounted for the largest proportion of the variability in chlorophyll and primary production even though this group was a relatively minor contributor to the total biomass of the phytoplankton community. Since primary production and particulate organic flux are well correlated in the equatorial Pacific ( BETZERet al., 1984, Deep-Sea Research, 31, 1-11), variations in the abundance of pennate diatoms also must have important consequences to variations in particulate organic flux. Before a predictive model for particulate organic flux in the equatorial Pacific can be established further understanding of

  20. Sea surface and subsurface circulation dynamics off equatorial Peru during the last ~17 kyr

    NASA Astrophysics Data System (ADS)

    Nürnberg, Dirk; Böschen, Tebke; Doering, Kristin; Mollier-Vogel, Elfi; Raddatz, Jacek; Schneider, Ralph

    2015-07-01

    The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10-8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1-4 ka B.P. and ~1.5-0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.

  1. Sea-air partitioning of mercury in the equatorial Pacific Ocean

    SciTech Connect

    Kim, J.P.; Fitzgerald, W.F.

    1986-03-07

    The partitioning of gaseous mercury between the atmosphere and surface waters was determined in the equatorial Pacific Ocean. The highest concentrations of dissolved gaseous mercury occurred in cooler, nutrient-rich waters that characterize equatorial upwelling and increased biological productivity at the sea surface. The surface waters were supersaturated with respect to elemental mercury; a significant flux of elemental mercury to the atmosphere is predicted for the equatorial Pacific. When normalized to primary production on a global basis, the ocean effluxes of mercury may rival anthropogenic emissions of mercury to the atmosphere. 23 references, 2 figures.

  2. Combined satellite systems for continuous global coverage in equatorial and polar circular orbits

    NASA Astrophysics Data System (ADS)

    Ulybyshev, S. Yu.

    2015-07-01

    A method is presented to design nonuniform satellite systems for global coverage using a combination of the equatorial and polar satellite groupings. Equations are derived for determining the basic design parameters of the entire satellite system and the conditions of its closure at the joint of the polar and equatorial segments. We analyze the constitutive features of such systems and their advantages and disadvantages in comparison with the most famous types of the polar phased and kinematically correct satellite systems. We consider versions of the nonuniform satellite systems with different flight altitude and the number of spacecraft in the equatorial and polar planes, as well as we present numerical examples.

  3. Longitudinal variation of sudden commencement of geomagnetic storm at equatorial stations

    SciTech Connect

    Rastogi, R.G.

    1993-09-01

    The author reports the observation of a correlation between the strength of storm sudden commencements in the equatorial electrojet region with the equatorial electrojet current itself, as a function of daytime, latitude, and longitude. The author argues that electric fields generated at the magnetopause by interaction with solar wind plasma transmits to the polar region along field lines, and there converts to magnetic waves which rapidly propogate to equatorial regions in the conducting plasma between the ionosphere and the earth. The strength of the arrival fields is dependent upon the ionospheric conductivity at the particular location in question.

  4. GPS Observations of Plasma Bubbles and Scintillations over Equatorial Africa

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Valladares, C. E.; Semala, G. K.; Bridgwood, C. T.; Adeniyi, J.; Amaeshi, L. L.; Damtie, B.; D'Ujanga Mutonyi, F.; Ndeda, J. D.; Baki, P.; Obrou, O. K.; Okere, B.; Tsidu, G. M.

    2010-12-01

    Sponsored in part by the International Heliophysical Year (IHY) program, Boston College, Air Force Research Laboratory (AFRL), and several universities in Africa have collaborated to deploy a network of GPS receivers throughout equatorial Africa, a region which has been largely devoid of ground-based ionospheric monitoring instruments. High date-rate GPS receivers capable of measuring Total Electron Content (TEC) and GPS scintillations were installed at Abidjan, Ivory Coast (5.3°N, 4.0°W, dip 3.5°S); Addis Ababa (9.0°N, 38.8°E, dip 0.1°N ); Bahir Dar, Ethiopia (26.1°N, 50.6°E, dip 20.1°N); Cape Verde (16.6°S, 22.9°W, dip 4.9°N); Ilorin, Nigeria (8.4°S, 4.7°E, dip 1.9°S); Kampala, Uganda (0.3°S, 32.6°E, dip 9.2°S); Lagos, Nigeria (6.5°N, 3.4°E, dip 3.1°S); Nairobi, Kenya (1.3°S, 36.8°W, dip 10.7°S); Nsukka, Nigeria (6.8°S, 7.4°W, dip 3.0°S); and Zanzibar, Tanzania (6.2°S, 39.2°E, dip 15.9°S). In this paper we report on the longitudinal, local time and seasonal occurrence of plasma bubbles and L band scintillations over equatorial Africa in 2009 and 2010, as a first step toward establishing the climatology of ionospheric irregularities over Africa. The scintillation intensity is obtained by measuring the standard deviation of normalized GPS signal power. The plasma bubbles are detected using an automated technique, whereby the GPS TEC is detrended to remove the diurnal variation and excursions exceeding a particular threshold are extracted for further analysis. A harmonic analysis (FFT) of these extracted events is performed to exclude wavelike features indicative of gravity waves or traveling ionospheric disturbances, and the remaining events are identified as plasma bubbles. Our findings suggest that the occurrence of plasma bubbles and L band scintillations over Africa are well correlated, but that some discrepancies in their morphologies are evident. While plasma bubbles and scintillations are generally observed during equinoctial

  5. Priority areas for large mammal conservation in Equatorial Guinea.

    PubMed

    Murai, Mizuki; Ruffler, Heidi; Berlemont, Antoine; Campbell, Genevieve; Esono, Fidel; Agbor, Anthony; Mbomio, Domingo; Ebana, Agustín; Nze, Antonio; Kühl, Hjalmar S

    2013-01-01

    Hunting is one of the main driving forces behind large mammal density distribution in many regions of the world. In tropical Africa, urban demand for bushmeat has been shown to dominate over subsistence hunting and its impact often overrides spatial-ecological species characteristics. To effectively protect remaining mammal populations the main factors that influence their distribution need to be integrated into conservation area prioritisation and management plans. This information has been lacking for Río Muni, Equatorial Guinea, as prior studies have been outdated or have not systematically covered the continental region of the country. In this study we evaluated: 1) the relative importance of local vs. commercial hunting; 2) wildlife density of protected vs. non-protected areas; and 3) the importance of ecological factors vs. human influence in driving mammal density distribution in Río Muni. We adopted a systematic countrywide line transect approach with particular focus on apes and elephants, but also including other mammal species. For analysis of field data we used generalised linear models with a set of predictor variables representing ecological conditions, anthropogenic pressure and protected areas. We estimate that there are currently 884 (437-1,789) elephants and 11,097 (8,719-13,592) chimpanzees and gorillas remaining in Río Muni. The results indicate strong hunting pressures on both local and commercial levels, with roads demonstrating a negative impact on elephants and overall mammal body mass. Protected areas played no role in determining any of the mammal species distributions and significant human hunting signs were found inside these protected areas, illustrating the lack of environmental law enforcement throughout the country. Río Muni is currently under-represented in conservation efforts in Western Equatorial Africa, and we recommend a focus on cross-boundary conservation, in particular in the Monte Alén-Monts de Cristal and Río Campo

  6. Characteristics of Extreme Summer Convection over equatorial America and Africa

    NASA Astrophysics Data System (ADS)

    Zuluaga, M. D.; Houze, R.

    2013-12-01

    Fourteen years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) version 7 data for June-August show the temporal and spatial characteristics of extreme convection over equatorial regions of the American and African continents. We identify three types of extreme systems: storms with deep convective cores (contiguous convective 40 dBZ echoes extending ≥10 km in height), storms with wide convective cores (contiguous convective 40 dBZ echoes with areas >1,000 km2) and storms with broad stratiform regions (stratiform echo >50,000 km2). European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis is used to describe the environmental conditions around these forms of extreme convection. Storms with deep convective cores occur mainly over land: in the equatorial Americas, maximum occurrence is in western Mexico, Northern Colombia and Venezuela; in Africa, the region of maximum occurrence is a broad zone enclosing the central and west Sudanian Savanna, south of the Sahel region. Storms with wide convective radar echoes occur in these same general locations. In the American sector, storms with broad stratiform precipitation regions (typifying robust mesoscale convective systems) occur mainly over the eastern tropical Pacific Ocean and the Colombia-Panama bight. In the African sector, storms with broad stratiform precipitation areas occur primarily over the eastern tropical Atlantic Ocean near the coast of West Africa. ECMWF reanalyses show how the regions of extreme deep convection associated with both continents are located mainly in regions affected by diurnal heating and influenced by atmospheric jets in regions with strong humidity gradients. Composite analysis of the synoptic conditions leading to the three forms of extreme convection provides insights into the forcing mechanisms in which these systems occur. These analyses show how the monsoonal flow directed towards the Andes slopes is mainly what concentrates the occurrence of extreme

  7. Priority Areas for Large Mammal Conservation in Equatorial Guinea

    PubMed Central

    Murai, Mizuki; Ruffler, Heidi; Berlemont, Antoine; Campbell, Genevieve; Esono, Fidel; Agbor, Anthony; Mbomio, Domingo; Ebana, Agustín; Nze, Antonio; Kühl, Hjalmar S.

    2013-01-01

    Hunting is one of the main driving forces behind large mammal density distribution in many regions of the world. In tropical Africa, urban demand for bushmeat has been shown to dominate over subsistence hunting and its impact often overrides spatial-ecological species characteristics. To effectively protect remaining mammal populations the main factors that influence their distribution need to be integrated into conservation area prioritisation and management plans. This information has been lacking for Río Muni, Equatorial Guinea, as prior studies have been outdated or have not systematically covered the continental region of the country. In this study we evaluated: 1) the relative importance of local vs. commercial hunting; 2) wildlife density of protected vs. non-protected areas; and 3) the importance of ecological factors vs. human influence in driving mammal density distribution in Río Muni. We adopted a systematic countrywide line transect approach with particular focus on apes and elephants, but also including other mammal species. For analysis of field data we used generalised linear models with a set of predictor variables representing ecological conditions, anthropogenic pressure and protected areas. We estimate that there are currently 884 (437–1,789) elephants and 11,097 (8,719–13,592) chimpanzees and gorillas remaining in Río Muni. The results indicate strong hunting pressures on both local and commercial levels, with roads demonstrating a negative impact on elephants and overall mammal body mass. Protected areas played no role in determining any of the mammal species distributions and significant human hunting signs were found inside these protected areas, illustrating the lack of environmental law enforcement throughout the country. Río Muni is currently under-represented in conservation efforts in Western Equatorial Africa, and we recommend a focus on cross-boundary conservation, in particular in the Monte Alén-Monts de Cristal and R

  8. Investigation of plasma motion in the equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi S.

    2016-07-01

    The structure of evening and nighttime F-region vertical drift component of is vital for understanding the physics of the development of the occurrence of equatorial irregularities. In addition, postsunset ionospheric height has also been attributed as one of the most important factors for the occurrence of equatorial irregularities. We report vertical plasma drift velocities derived from the base (h'F) and the peak height (hmF2) of F-layer using 1-year of data obtained at Ibadan (Geog Long 3.9oE) during International Geophysical Year (1957-58) period for geomagnetic quiet-time and high solar activity conditions. We compared our results with International Reference Ionosphere 2012 model (IRI-2012). The results of this investigation include: (a) overall local- time characteristics of vertical drift between 1800 LT and 0600 LT are in good agreement for equinoxes, December, and June; (b) annual vertical drift derived from time variation of h'F and hmF2 and the corresponding annual variation of h'F and hmF2 variation indicate low correlation (R = 0.30), while IRI-2012 model vertical drift and IRI-2012 model of hmF2 show fairly good correlation ( R = 0.67); (c) regression analysis between time variation of h'F and Scherliess / Fejer model demonstrate correlation coefficient of approximately 0.74 (equinox), 0.85 (December), 0.57 (June) and 0.74 (all-year), while that of time variation of hmF2 and IRI-2012 vertical velocities show 0.95 (equinox), 0.74 (December), 0.43 (June), and 0.74 (all-year); (d) plasma motion derived from the time rate of change of h'F and those of hmF2 are correlated at 0.94, 0.88, 0.63, and 0.90 for equinoxes, December, June, and all-year, respectively; (e) the evening prereversal vertical drifts enhancement rage between ~20 - 45 m/s, ~18 - 46 m/s, ~20 - 50 m/s for time variation of h'F, hmF2, and Scherliess / Fejer model, respectively; (f) the corresponding peak altitudes vary between 430 - 540 km (h'F), 560 - 740 km ( hmF2), and 570 - 620 km (IRI

  9. Iapetus' Geophysics: Rotation Rate, Shape, and Equatorial Ridge

    NASA Technical Reports Server (NTRS)

    Castillo-Rogez, J. C.; Matson, D. L.; Sotin, C.; Johnson, T. V.; Lunine, J. I.; Thomas, P. C.

    2007-01-01

    Iapetus has preserved evidence that constrains the modeling of its geophysical history from the time of its accretion until now. The evidence is (a) its present 79.33-day rotation or spin rate, (b) its shape that corresponds to the equilibrium figure for a hydrostatic body rotating with a period of approximately 16 h, and (c) its high, equatorial ridge, which is unique in the Solar System. This paper reports the results of an investigation into the coupling between Iapetus' thermal and orbital evolution for a wide range of conditions including the spatial distributions with time of composition, porosity, short-lived radioactive isotopes (SLRI), and temperature. The thermal model uses conductive heat transfer with temperature-dependent conductivity. Only models with a thick lithosphere and an interior viscosity in the range of about the water ice melting point can explain the observed shape. Short-lived radioactive isotopes provide the heat needed to decrease porosity in Iapetus? early history. This increases thermal conductivity and allows the development of the strong lithosphere that is required to preserve the 16-h rotational shape and the high vertical relief of the topography. Long-lived radioactive isotopes and SLRI raise internal temperatures high enough that significant tidal dissipation can start, and despin Iapetus to synchronous rotation. This occurred several hundred million years after Iapetus formed. The models also constrain the time when Iapetus formed because the successful models are critically dependent upon having just the right amount of heat added by SLRI decay in this early period. The amount of heat available from short-lived radioactivity is not a free parameter but is fixed by the time when Iapetus accreted, by the canonical concentration of Al-26, and, to a lesser extent, by the concentration of Fe-60. The needed amount of heat is available only if Iapetus accreted between 2.5 and 5.0Myr after the formation of the calcium aluminum

  10. Interannual variability of the equatorial Pacific in the 1960's

    NASA Astrophysics Data System (ADS)

    Busalacchi, Antonio J.; O'Brien, James J.

    1981-11-01

    A linear numerical model forced by winds estimated from ships for each month from January 1961, to December 1970, is used to study the interannual variability of the equatorial Pacific. Model pycnocline variability at the Galapagos Islands is very similar to the observed variability of sea level. The maximum significant cross correlation of the two records is near zero lag. The 1963, 1965, and 1969 El Niño events are characterized by a persistently deep pycnocline. The model pycnocline variability at Talara, Peru, leads the observed SST variability by 2 months. The lag structure of pycnocline variability cross correlations indicates that the variability at the equator is related to the excitation of internal Kelvin and Rossby waves. The onset of the 1965 and 1969 El Niño events was triggered by a large amplitude downwelling Kelvin wave excited by relaxation of the easterlies west of the dateline. None of the El Niño events of the 1960's were related to anomalous relaxations of the wind field over the central Pacific. In addition, the seasonal intensification of the southeast trades over the central Pacific was not as strong as during non-El Niño years. The subsequent cessation of the remotely forced seasonal upwelling caused the pycnoline to be depressed throughout the El Niño year. During the southern summer, reestablishment of the semiannual variability of the southeast trades over the central equatorial Pacific excited a seasonal downwelling Kelvin wave. This second major downwelling impulse resulted in the double peak downwelling signature observed in sea level records. The minor El Niño of 1963 was soley due to the cessation of the semi-annual wind stress variability east of 180°. The absence of remotely forced upwelling Kelvin waves kept the pycnocline deeper than normal following the seasonal downwelling at the outset of the year. There was not a relaxation of the wind field west of the dateline prior to the 1963 El Niño.

  11. Anthropogenic CO2 changes in the Equatorial Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Fajar, N. M.; Guallart, E. F.; Steinfeldt, R.; Ríos, A. F.; Pelegrí, J. L.; Pelejero, C.; Calvo, E.; Pérez, F. F.

    2015-05-01

    Methods based on CO2 and chlorofluorocarbon (CFC) data are used to describe and evaluate the anthropogenic CO2 (Cant) concentrations, Cant specific inventories, and Cant storage rates in the Equatorial Atlantic Ocean. The Cant variability in the water masses is evaluated from the comparison of two hydrographic sections along 7.5°N carried out in 1993 and 2010. During both cruises, high Cant concentrations are detected in the upper layers, with values decreasing progressively towards the deep layers. Overall, the Cant concentrations increase from 1993 to 2010, with a large increment in the upper North Atlantic Deep Water layer of about 0.18 ± 0.03 μmol kg-1 y-1. In 2010, the Cant inventory along the whole section amounts to 58.9 ± 2.2 and 45.1 ± 2.0 mol m-2 using CO2 and CFC based methods, respectively, with most Cant accumulating in the western basin. Considering the time elapsed between the two cruises, Cant storage rates of 1.01 ± 0.18 and 0.75 ± 0.17 mol m-2 y-1 (CO2 and CFC based methods, respectively) are obtained. Below ∼1000 m, these rates follow the pace expected from a progressive increase of Cant at steady state; above ∼1000 m, Cant increases faster, mainly due to the retreat of the Antarctic Intermediate Waters.

  12. Ubiquitous equatorial accretion disc winds in black hole soft states

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Fender, R. P.; Begelman, M. C.; Dunn, R. J. H.; Neilsen, J.; Coriat, M.

    2012-05-01

    High-resolution spectra of Galactic black holes (GBHs) reveal the presence of highly ionized absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are a ubiquitous component of the jet-free soft states of all GBHs. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV/Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionization and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds and their presence ubiquitously during the soft X-ray states suggest they are fundamental components of the accretion phenomenon.

  13. Spatiotemporal Variability and Propagation of Equatorial Noise Observed by Cluster

    NASA Technical Reports Server (NTRS)

    Santolik, O.; Pickett, J. S.; Gurnett, D. A.; Maksimovic, M.; Cornilleau-Wehrlin, N.

    2002-01-01

    We report a multipoint case study of the electromagnetic equatorial noise observed by the Cluster project. High-resolution data were measured in three close points in space located in the morning sector of the outer plasmasphere. We demonstrate a narrow latitudinal extent of the emissions with a typical width of 2 degrees, centered near the minimum-B equator. Power spectra recorded by the different satellites show a complex structure of emission lines whose relative intensities and positions vary at timescales of 1-2 min and/or at spatial scales of tens of wavelengths. These lines do not match harmonics of the local proton cyclotron frequency, as it would be expected if the waves are generated by energetic ions and observed near the source region. We bring observational evidence that the waves propagate with a significant radial component and thus can propagate from a distant generation region located at different radial distances where ion cyclotron frequencies match the observed fine structure.

  14. Resistance of Plasmodium falciparum to antimalarial drugs in Equatorial Guinea.

    PubMed

    Roche, J; Benito, A; Ayecaba, S; Amela, C; Molina, R; Alvar, J

    1993-10-01

    One hundred and sixty-six children from Equatorial Guinea, all under 10 years of age and with acute uncomplicated falciparum malaria, were randomly allocated to four groups and treated with one of the following regimens: chloroquine or amodiaquine (25 mg base/kg body weight over 3 days), quinine (8 mg/kg every 8 h for 3 or 5 days), and sulphadoxine-pyrimethamine (25-1.25 mg/kg, in one dose). The parasite clearance rates up to day 14 were 28% with chloroquine, 74% with amodiaquine, and 95% with quinine or sulphadoxine-pyrimethamine. The times required to clear asexual blood forms of Plasmodium falciparum in sensitive cases were 64, 70, 73 and 65 h, respectively. Although quinine and sulphadoxine-pyrimethamine are equally effective, quinine is recommended for treatment of multidrug-resistant malaria in paediatric patients, essentially because of the risk of serious reactions to sulpha drugs. Health providers are, however, encouraged to keep supplies of sulphadoxine-pyrimethamine as an option and to refer patients quickly, if required. PMID:8311568

  15. Ion composition of the topside equatorial ionosphere during solar minimum

    NASA Technical Reports Server (NTRS)

    Gonzalez, S. A.; Fejer, B. G.; Heels, R. A.; Hanson, W. B.

    1992-01-01

    Observations from both the Bennett ion mass spectrometer and the retarding potential analyzer on board the Atmosphere Explorer E satellite were used to study the longitudinally averaged O(+), H(+), and He(+) concentrations from 150 to 1100 km in the equatorial ionosphere during the 1975-1976 solar minimum. The results suggest that the ion mass spectrometer measurements need to be increased by a factor of 2.15 to agree with the densities from the retarding potential analyzer and with ground-based measurements. The peak H(+) concentrations are about 2.5 x 10 exp 4/cu cm during the day and 10 exp 4/cu cm at night and vary little with season. The O(+)/H(+) transition altitude lies between 750 and 825 km during the day and between 550 and 600 km at night. He(+) is a minor species at all altitudes; its concentration is highly variable with a maximum value of about 10 exp 3/cu cm during equinox daytime.

  16. Seasat A Satellite Scatterometer measurements of equatorial surface winds

    SciTech Connect

    Halpern, D. )

    1989-04-15

    Seasat A Satellite Scatterometer measurements of surface wind components were made under normal weather conditions with unsurpassed space and time resolutions during August and September 1978. Longitudinal distributions of the monthly mean zonal component were markedly different in each ocean: in the Pacific the zonal profile resembled a semicircle; a linear change occurred in the Atlantic, and quasi-uniform values prevailed in the Indian Ocean. Only in the Atlantic and Pacific was the prevailing direction of the zonal component westward. In the Pacific the monthly mean standard deviations increased towards the west. This indicated that the larger day-to-day wind variability observed at the western islands compared to moored buoy measurements in the eastern region was a natural phenomenon and not caused by islands. The average monthly mean slope of the wave number spectra throughout the 550- to 2,200-km wavelength band was {minus}1.7, which was approximately equal to the {minus}5/3 power law associated with turbulent motions. That the spectra levels of the zonal wind, but not the meridional component, were substantially different in each equatorial ocean represents an enigma. Largest spectral values occurred in the Atlantic where variances were nearly 10 times greater than in the Pacific, which contained the smallest values.

  17. The localized origin of equatorial F region irregularity patches

    NASA Technical Reports Server (NTRS)

    Aarons, J.; Buchau, J.; Mcclure, J. P.; Basu, S.

    1978-01-01

    An intensive study of nighttime irregularities of electron density in the equatorial ionosphere was performed in October 1976 by making 50-MHz radar backscatter measurements at Jicamarca, Peru, and scintillation measurements of 249-MHz transmissions from Les 9 at two ground stations (Ancon and Huancayo, both in Peru) as well as by aircraft flying in the vicinity of the stations. The 137-MHz scintillations from the orbiting Wideband satellite were also recorded at Huancayo. The results of such measurements made on October 16-17, 1976, are discussed in this report. We find that on this particular night a large-scale irregularity patch evolved first in the west, as was detected by the radar at Jicamarca, and drifted eastward to cause successive onsets of scintillation activity on propagation paths from Ancon and Huancayo. The observations indicate the east-west dimension of the large-scale structure to be 400 km drifting eastward at a speed of approximately 100 m/s, having a lifetime of several hours, and containing a hierarchy of irregularity scale sizes in the range of kilometers to meters causing both scintillations at 249 MHz and radar backscatter at 50 MHz.

  18. Coordinated radar observations of atmospheric diurnal tides in equatorial regions

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshitaka; Ohnishi, Kazunori; Isoda, Fusako; Nakamura, Takuji; Vincent, Robert A.; Reid, Iain M.; Harijono, Sri Woro B.; Sribimawati, Tien; Nuryanto, Agus; Wiryosumarto, Harsono

    1999-07-01

    The long-term behavior of atmospheric tides in the mesosphere and lower thermosphere has been observed with the meteor wind radar (MWR) in Jakarta, Indonesia (6°S, 107°E) from November 1992 to August 1997. The amplitudes and phases of the diurnal tides show systematic seasonal variations, particularly distinct in the meridional component. In addition, substantial interannual variability is evident, characterized by a biennial periodicity of tidal parameters, and considerably small tidal amplitudes exclusively seen in 1996. The MWR results are compared with the Global Scale Wave Model (GSWM) as well as MF radar data collected in two equatorial sites in Pontianak (0.03°N, 109°E) and Christmas Island (2°N, 158°W) for November 1995-July 1997 and January 1996-October 1997, respectively. Comparison studies of these radar data have revealed the detailed latitudinal structure of the diurnal tide near the equator. The GSWM has successfully described the general characteristics of the radar results, although some discrepancies are recognized. In 1996 when radar data are available at all the three sites, the monthly mean values of tidal amplitudes at 90 km agreed very well between Jakarta and Pontianak, while significant discrepancy was found for Christmas Island, suggesting the existence of geographical effects such as non-migrating tides.

  19. Annual and longitudinal variations of the Pacific North Equatorial Countercurrent

    NASA Technical Reports Server (NTRS)

    Lolk, Nina K.

    1992-01-01

    The climatological annual cycle of the Pacific North Equatorial Countercurrent (NECC) simulated by an ocean general circulation model (OGCM) was studied. The longitudinal variation of transports, degree of geostrophy, and the relationship between Ekman pumping and vertical displacement of the thermocline were emphasized. The longitudinal variation was explored using six sections along 150 deg E, 180 deg, 160 deg W, 140 deg W, 125 deg W, and 110 deg W. A primitive equation OGCM of the Pacific Ocean was run for three years and the fields used were from the third year. The fields consisted of zonal, meridional, and vertical current components and temperature and salinity averaged every three days. The model was forced with the Hellerman and Rosenstein climatological wind stress. The mean annual eastward transport (19.9 Sv) was largest at 160 deg W. The maximum-current boundaries along 160 deg W were 9.2 deg N (1.0 deg), 5.1 deg N (1.1 deg), and 187 m (90.6 m). The annual-cycle amplitude of the NECC was greatest between 160 deg W and 140 deg W. Although the NECC is geostrophic to the first order, deviations from geostrophy were found in the boreal spring and summer near the southern boundary and near the surface. Meridional local acceleration played a role between 3 deg N-5 deg N.

  20. Configuration of Jupiter's magnetic tail and equatorial current sheet

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Burlaga, L. F.

    1981-01-01

    Recent research reports by Behannon et al. (1981) and Connerney et al. (1981) are summarized. It is noted that the analysis made of the detailed neutral sheet crossings by the minimum variance method shows a consistent result with regard to the orientation of the neutral sheet in the magnetic tail as a two-dimensional surface rocking back and forth about the Jupiter sun-line as the rotation of the planet leads to a precession of the tilted dipole magnetic axis. The occurrence of neutral sheet crossings is found not to be consistent with any of the axially symmetric theoretical models proposed earlier on the basis of the 1974 Pioneer 10 observations. It is noted that a simple nonaxially symmetric model has been developed on the basis of the Voyager results which indicates the strong control upon orientation by the interaction of the solar wind with the Jovian magnetosphere. The model is described as simple because it improves the fit of theory to observation but uses fewer parameters. A quantitative model of the magnetodisc equatorial current sheet has been developed for the inner magnetosphere region which matches well the in-situ magnetic field observations.

  1. Analysis of Korean astronomical records with Chinese equatorial coordinates

    NASA Astrophysics Data System (ADS)

    Lee, K. W.

    2012-08-01

    The historical documents of ancient Korea contain abundant records on various astronomical phenomena. The historical documents of the Joseon dynasty contain observational values based on Chinese equatorial coordinate system (i.e., angular distances from the reference star of a lunar mansion and the North Pole). However, quantitative analysis of the observational values has not been carried out. In this study, we investigate the observational accuracy during the Joseon dynasty by comparing the astronomical records of Joseonwangjo Sillok (Annals of the Joseon Dynasty) and Seungjeongwon Ilgi (Daily Records of the Royal Secretariat) with modern astronomical calculations. Consequently, we find that the observational accuracy during the early Joseon dynasty was approximately 1.2° 0.3° in the right ascension and declination, respectively. On the other hand, we find that the observational accuracy during the later Joseon dynasty was considerably poor. Observations of Halley's comet in 1759 were off by approximately 7° in declination. We believe that further investigation is required to verify the reason for this poor accuracy. Thus, we list the complete records used for this study in the appendix. We believe that these records also can contribute to modern studies on phenomena such as supernovae or Halley's comet. In conclusion, we believe that this study is useful for understanding ancient Korean astronomical records, even though we have considered a small number of astronomical events.

  2. SO2-rich equatorial basins and epeirogeny of Io

    NASA Technical Reports Server (NTRS)

    Mcewen, Alfred S.

    1991-01-01

    Comparison of Io's large scale topography with an SO2 abundance map shows that SO2 is concentrated in equatorial topographic basins. In these basins, about 30 pct. of the surface is covered by SO2 at all elevations above the mean triaxial figure, and SO2 coverage increases with decreasing elevation to as much as 56 pct. at elevations below -1.5 km. The correlation is not good from long 240 to 360 degs where bright areas are covered by red, Pele type plume fallout, and in the polar regions where the topography is poorly known. The histogram of SO2 abundance binned by elevation appears bimodal, with a secondary concentration of SO2 at high elevations, but it is not certain that this is significant. Additional observations suggest that the basins have relatively little higher frequency topographic relief. The distribution of active plumes and hotspots show no obvious correlation with the topography. However, the Pele type plume all erupted from regions higher than the mean figure, and five of the eight Prometheus type plumes are more energetic and are associated with high temperature hotspots, whereas Prometheus type plumes are long lived and require large volatile reservoirs.

  3. Equatorial and Low-Latitudes Ionospheric Reaction to Solar Flares

    NASA Astrophysics Data System (ADS)

    Nicoli Candido, C. M.; Becker-Guedes, F.; Paula, E. R.; Takahashi, H.

    2015-12-01

    Solar X-ray and extreme ultraviolet (EUV) photons are responsible for ionizing the terrestrial atmosphere and create the ionosphere. During solar flares, a fast increase in the electron density at different altitude regions takes place due to the abrupt enhance of the X-ray and EUV fluxes reaching Earth. With these changes in the ionosphere, radio communication and navigation can be drastically affected. The magnitudes of these Space Weather events can be related to the X-ray peak brightness and duration, which drive the intensity of the ionosphere response when the associated electromagnetic wave hit the sunlit side of the Earth's atmosphere. Other aspects defining these changes in a particular region are the local time, the solar zenith angle, and the position of the flare in the solar disc for each event. In order to improve the understand of radio signal degradation and loss in the Brazilian sector due to solar abrupt electromagnetic emissions, total electron content (TEC) data obtained by a GPS network formed by tents of dual-frequency receivers spread all over Brazilian territory were analyzed. It was observed different ionospheric local changes during several X-ray events identified by GOES satellite regarding the 0.1-0.8 nm range, and some case studies were ponder for a more detailed analysis of these effects. Considering the results, we have made an estimation of the ionospheric disturbances range for a particular event with great chance to affect space based communications in the equatorial and low-latitude regions.

  4. Small-Scale Irregularities in Equatorial Spread-F

    NASA Astrophysics Data System (ADS)

    Dimant, Yakov; Oppenheim, Meers

    2014-10-01

    Equatorial Spread-F is a spectacular plasma phenomenon that reshapes the nighttime ionosphere and disrupts GPS navigation and radio communication. Current computer models simulate the evolution of large-scale spread-F phenomena (1000km-to-kilometer), but they do not explain what causes the meter-scale irregularities observed by radars and space-borne instruments. Our recent particle-in-cell (PIC) simulations of weakly collisional plasma have demonstrated that large-scale plasma density gradients and related electric fields may drive local plasma instabilities, although only for a limited set of parameters. Motivated by these PIC simulations, we have revisited the linear theory of this instability, employing a novel and sophisticated eigenmode analysis. This method identified eigenmode wave structures in regions having strong plasma density gradients. These wave structures are not linearly unstable, but are not damped either. This means that small-scale fluctuations provided by an external source (e.g., by a nonlinear spectral cascade from longer-wavelength spread-F turbulence) can be resonantly amplified and may explain radar observations without invoking linear instability. Work supported by NASA LWS Grant 10-LWSTRT10-0078.

  5. A Cenozoic record of the equatorial Pacific carbonate compensation depth.

    PubMed

    Pälike, Heiko; Lyle, Mitchell W; Nishi, Hiroshi; Raffi, Isabella; Ridgwell, Andy; Gamage, Kusali; Klaus, Adam; Acton, Gary; Anderson, Louise; Backman, Jan; Baldauf, Jack; Beltran, Catherine; Bohaty, Steven M; Bown, Paul; Busch, William; Channell, Jim E T; Chun, Cecily O J; Delaney, Margaret; Dewangan, Pawan; Dunkley Jones, Tom; Edgar, Kirsty M; Evans, Helen; Fitch, Peter; Foster, Gavin L; Gussone, Nikolaus; Hasegawa, Hitoshi; Hathorne, Ed C; Hayashi, Hiroki; Herrle, Jens O; Holbourn, Ann; Hovan, Steve; Hyeong, Kiseong; Iijima, Koichi; Ito, Takashi; Kamikuri, Shin-ichi; Kimoto, Katsunori; Kuroda, Junichiro; Leon-Rodriguez, Lizette; Malinverno, Alberto; Moore, Ted C; Murphy, Brandon H; Murphy, Daniel P; Nakamura, Hideto; Ogane, Kaoru; Ohneiser, Christian; Richter, Carl; Robinson, Rebecca; Rohling, Eelco J; Romero, Oscar; Sawada, Ken; Scher, Howie; Schneider, Leah; Sluijs, Appy; Takata, Hiroyuki; Tian, Jun; Tsujimoto, Akira; Wade, Bridget S; Westerhold, Thomas; Wilkens, Roy; Williams, Trevor; Wilson, Paul A; Yamamoto, Yuhji; Yamamoto, Shinya; Yamazaki, Toshitsugu; Zeebe, Richard E

    2012-08-30

    Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth. PMID:22932385

  6. Equatorial Kelvin wave variability during 1992 and 1993

    NASA Technical Reports Server (NTRS)

    Canziani, Pablo O.; Holton, James R.; Fishbein, Evan; Froidevaux, Lucien

    1995-01-01

    Temperature and ozone data from the Microwave Limb Sounder (MLS) instrument on Upper Atmosphere Research Satellite (UARS) are used to analyze the variability of Kelvin wave activity during the first two years of the UARS mission. The analysis is carried out using the asynoptic mapping technique. Time frequency plots for zonal wavenumbers 1 and 2, at two heights representing the middle stratosphere and the stratopause, respectively, are used to analyze the temporal variability of the waves, and its possible relationship to the equatorial quasi-biennial oscillation (QBO) and semiannual oscillation (SAO). Kelvin wave activity reaches a maximum during the solstice seasons and almost disappears during the equinoxes, in agreement with previous studies. Eastward propagating variance is estimated for wave periods from 4 to 20 days, at all UARS pressure surfaces currently available for MLS. The semiannual modulation of variance is observed to extend down to the lower limits of the height ranges of the temperature and ozone retrievals. Furthermore, a superposed QBO modulation is detected up to the stratopause. Comparison between the variance in eastward propagating waves and the mean zonal wind shows a possible participation of kelvin waves in the forcing of the QBO. At the stratopause the role of Kelvin waves in forcing the SAO appears to be limited, in agreement with previous results. Between the 21-hPa and 4.6-hPa surfaces there appears to be a transition zone where there is no clear relationship between Kelvin wave activity and mean zonal flow acceleration.

  7. Geology, hydrocarbon potential of Rio Muni area, Equatorial Guinea

    SciTech Connect

    Ross, D.; Hempstead, N. )

    1993-08-30

    The Republic of Equatorial Guinea, located in the oil producing province of West Africa, consists of three islands and an enclave in continental Africa with a total surface area of about 28,000 sq km. The islands are in the Gulf of Guinea. The largest, Bioko, lies off Nigeria and Cameroon. The continental enclave, Rio Muni, is bounded to the north by Cameroon and to the east and south by Gabon. The coastal basin of Rio Muni, which is the subject of this article, contributes the major portion of areas offered in the current exploration licensing round. Some 5,275 km of seismic data have been recorded the past 10 years covering most of the offshore and onshore areas of Rio Muni. The quality of seismic data is generally good. Data from all size wells drilled in the area and an aeromagnetic survey of the whole onshore and offshore are also available. The paper describes the West African setting, exploration history, basin development, presalt play, postsalt Aptian play, Albian play, clastic play, Senonian/Paleogene play, and the current licensing round.

  8. Measuring the equatorial plasma bubble drift velocities over Morroco

    NASA Astrophysics Data System (ADS)

    Lagheryeb, Amine; Benkhaldoun, Zouhair; Makela, Jonathan J.; Harding, Brian; Kaab, Mohamed; Lazrek, Mohamed; Fisher, Daniel J.; Duly, Timothy M.; Bounhir, Aziza; Daassou, Ahmed

    2015-08-01

    In this work, we present a method to measure the drift velocities of equatorial plasma bubbles (EPBs) in the low latitude ionosphere. To calculate the EPB drift velocity, we use 630.0-nm airglow images collected by the Portable Ionospheric Camera and Small Scale Observatory (PICASSO) system deployed at the Oukkaimden observatory in Morocco. To extract the drift velocity, the individual images were processed by first spatially registering the images using the star field. After this, the stars were removed from the images using a point suppression methodology, the images were projected into geographic coordinates assuming an airglow emission altitude of 250 km. Once the images were projected into geographic coordinates, the intensities of the airglow along a line of constant geomagnetic latitude (31°) are used to detect the presence of an EPB, which shows up as a depletion in airglow intensity. To calculate the EPB drift velocity, we divide the spatial lag between depletions found in two images (found by the application of correlation analysis) by the time difference between these two images. With multiple images, we will have several velocity values and consequently we can draw the EPB drift velocity curve. Future analysis will compare the estimates of the plasma drift velocity with the thermospheric neutral wind velocity estimated by a collocated Fabry-Perot interferometer (FPI) at the observatory.

  9. Balanced Data Assimilation For Improving Zonal Equatorial Currents

    NASA Astrophysics Data System (ADS)

    Burgers, G.; Balmaseda, M. A.; Vossepoel, F. C.; van Oldenborgh, G. J.; van Leeuwen, P. J.

    Assimilation schemes that are used for seasonal prediction can have a problem in estimating zonal velocities near the equator. This is the case for OI schemes that use density information for updating only the model density field. In some situations, this leads to a detoriation of the zonal velocity field around the equator. The problem is studied first for the assimilation of height observations in a simple linear 1.5 layer shallow-water model of the equatorial Pacific. It is found that equa- torial zonal velocities can be degraded if velocity is not updated in the assimilation procedure, even if the assimilation increments for height are spread over time. Adding updates to the zonal velocity which are related by geostrophic balance to the height updates is shown to be a simple remedy for the shallow-water model. A straightforward generalisation of the balanced data assimilation method has been implemented in the ocean circulation model of the ECMWF seasonal forecasting sys- tem. First tests are encouraging: upper-ocean surface currents are improved, and cou- pled hindcasts are improved if balanced assimilation is used for the ocean analyses.

  10. Impact of ENSO on Western Pacific Cross-equatorial Flows

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Kim, H.

    2015-12-01

    The Western Pacific cross-equatorial flows (CEFs) show evident interannual variability in boreal summer. Results from Principle Component Analysis indicate that El Niño/Southern Oscillation modulates the interannual variability of Western Pacific CEFs. Both Matsuno-Gill mechanism and Lindzen-Nigam mechanism are introduced and applied in order to better explain the development of CEFs. Using the Mixed Layer Model by Stevens (2002) and methods stated by Back and Bretherton (2009), the low-level CEFs are decomposed into two pressure gradient contributions: free-atmosphere and boundary layer; and further found mainly contributed by the latter one. The intensity of boundary layer pressure gradient is highly coincide with the distribution of sea surface temperature (SST) gradient on Western Pacific, which is intensified by El Niño in boreal summer. These results show that the Lindzen-Nigam mechanism plays a major role on CEFs' interannual change. An atmosphere general circulation model is included to support the influence of SST forcing on low-level CEFs. North American Multi-Model Ensemble is further adopted to understand the seasonal predictability of CEFs.

  11. Steepened structures in equatorial spread F: 1. New observations

    SciTech Connect

    Hysell, D.L.; Kelley, M.C.; Swartz, W.E.

    1994-05-01

    Sounding rocket data from the 1990 CRRES/EQUIS equatorial spread F campaign on Kwajalein Atoll are presented. Two Terrier Malamute sounding rockets were launched into active spread F conditions on July 30 and August 2, respectively, and achieved apogee slightly below 500 km, just above the F peak. Plasma frequency probes aboard both rockets showed that the unstable nighttime F region is characterized by propagating steepened structures. Power density spectra for the structures typically exhibit two regions that obey k{sup {minus}n} scaling, where n is approximately equal to 2 at wavelengths greater than 80-100 m and approximately equal to 5 at shorter wavelengths. These spectral indices are quite variable, and the long-wavelength spectral index in particular seems to decrease with increasing amplitude of density fluctuations. The rocket payloads also measured vector electric fields in the plane perpendicular to B over wavelengths ranging from over 60 km to less than 6 m. Both vector components of the perpendicular electric field are proportional to {delta}n/n at wavelengths longer than 300 m but assume a Boltzmann relationship (with {vert_bar}{delta}E{vert_bar}{sup 2} {approximately} k{sup 2}{vert_bar}{delta}n/n{vert_bar}{sup 2}) at smaller scales. The perturbed zonal electric field, {delta}E{sub x}, dominates the vertical field, {delta}E{sub z}, at long wavelengths, but the situation is reversed at smaller scales. 25 refs., 7 figs.

  12. Characterization of the UV Emissions from Io's Equatorial Spots.

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Moos, H. W.; Strobel, D. F.; Wolven, B. C.; Oliversen, R. J.

    1999-09-01

    Recent observations of Io with HST/STIS (Roesler et al., Science 283, 353, 1999) revealed bright equatorial regions of UV emission. Models of the sub-Alfvenic interaction between Jupiter's magnetosphere and Io's neutral atmosphere suggest that the location and general shape of these UV emitting regions are a natural consequence of this interaction (Saur et al., AGU meeting, Fall 1998, Linker et al., AGU meeting, Fall 1998). We present a detailed characterization of the location, shape, and brightness of these emission regions imaged with STIS in both 1997 and 1998. This information is valuable for studying the detailed nature of the electrodynamic interaction between Io's atmosphere and the local plasma flow. Of note, the locations of the emission regions are strongly correlated with the jovian magnetic field orientation at Io. Also, the brightness of the emissions in this data set appears to be correlated with Io's distance from the plasma torus centrifugal equator. No direct correlation is seen, however, between the location of the UV emission and the location of active volcanos and hot spots on Io's surface, in contrast with the results obtained from Galileo SSI images of visible emissions from Io in eclipse (Geissler et al., DPS meeting, 1998).

  13. Steepened structures in equatorial spread F. 1: New observations

    NASA Technical Reports Server (NTRS)

    Hysell, D. L.; Kelley, M. C.; Swartz, W. E.; Pfaff, R. F.; Swenson, C. M.

    1994-01-01

    Sounding rocket data from the 1990 Combined Release and Radiation Effects Satellite (CRRES)/EQUIS equatorial spread F campaign on Kwajalein Atoll are presented. Two Terrier Malamute sounding rockets were launched into active spread F conditions on July 30 and August 2, respectively, and achieved apogee slightly below 500 km, just above the F peak. Plasma frequency probes aboard both rockets showed that the unstable nighttime F region is characterized by propagating steepened structures. Power density spectra for the structures typically exhibit two regions that obey k(exp -n) scaling, where n is approximately equal to 2 at wavelengths greater than 80-100 m and approximately equal to 5 at shorter wavelengths. These spectral indices are quiet variable, and the long-wavelength spectral index in particular seems to decrease with increasing amplitude of density fluctuations. The rocket payloads also measured vector electric fields in the plane perpendicular to B over wavelengths ranging from over 60 km to less than 6 m. Both vector components of the perpendicular electric field are proportional to delta n/n at wavelengths longer than 300 m but assume a Boltzmann relationship (with square of the absolute value of delta E approximately equal to (k(exp2))(square of the absolute value of (delta n/n)) at smaller scales. The perturbed zonal electric field, delta E(sub x), dominates the vertical field, delta E(sub z), at long wavelenghts, but the situation is reversed at smaller scales.

  14. Observations of discrete harmonics emerging from equatorial noise

    PubMed Central

    Balikhin, Michael A.; Shprits, Yuri Y.; Walker, Simon N.; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H.; Weiss, Benjamin

    2015-01-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as ‘equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes ‘ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations. PMID:26169360

  15. Equatorial ionospheric zonal drift by monitoring local GPS reference networks

    NASA Astrophysics Data System (ADS)

    Ji, Shengyue; Chen, Wu; Ding, Xiaoli; Zhao, Chunmei

    2011-08-01

    The propagation of electromagnetic waves through the turbulent ionosphere produces scintillations through diffraction, and understanding the physical nature of scintillations is important for engineers and technologists as well as for scientists. In recent years, the establishment of the Global Positioning System (GPS) provided a new technique that can be used to study ionospheric scintillations. The usual way of doing that is the deployment of GPS receivers closely spaced in east-west magnetic direction and then estimating the zonal drift velocities based on the signal power observations. One of the weaknesses of this method is that high-rate sampling such as 20 Hz is required for close-spaced stations and generally no such data are available for studying ionospheric scintillation in the past years. In this research work, a scintillation monitoring method based on slant TEC (STEC) observations of local GPS Continuously Operating Reference Station (CORS) network is proposed. First, the past research works on the equatorial ionospheric drift velocities are summarized. Then, by comparing the scintillation pattern of the signal power and STEC observations of California local GPS reference network, we find that the STEC is a good choice for estimating the ionospheric zonal drift velocity. Then it is illustrated how to calculate the ionospheric scintillation velocity based on STEC. Finally, the proposed method is applied to Hong Kong GPS reference network and several cases of the calculated ionospheric zonal velocities are given.

  16. Spectral Study of the Equatorial Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Rothman, R.; Nicolls, M. J.

    2007-05-01

    We report on the spectral analysis of four years of daytime electric and magnetic field data obtained near the magnetic equator. The former were obtained using the JULIA radar system at the Jicamarca Radio Observatory using the so-called 150 km echo, which can be used reliably to determine the zonal electric field component during daytime. The magnetic field data were obtained using magnetometers located at Jicamarca and Piura in Peru. Due to the nighttime data gap, we can study variations with periods longer than two days and shorter than eight hours. Our goal for the longer periods is to study the variability of atmospheric drivers of the equatorial electrojet. This is straightforward for the electric field, but requires subtracting the ring current and other external effects from the magnetic field data. This is done by using the Gonzales/Anderson technique and employing the two magnetic field measurements. The electrojet strength decreased almost linearly over the four-year period as the solar cycle wound down. Spectral analysis reveals a clear semi-annual peak with maxima at the equinoxes and a secondary peak with a period of fourteen days. The latter seems to indicate that the lunar gravitational tide adds constructively to the semi-diurnal solar thermal tide. At higher frequencies the data must be parsed according to magnetic activity and solar wind conditions due to the importance of penetrating electric fields from the solar wind, and will be presented in this format.

  17. A mantle plume model for the Equatorial Highlands of Venus

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Hager, Bradford H.

    1991-01-01

    The possibility that the Equatorial Highlands are the surface expressions of hot upwelling mantle plumes is considered via a series of mantle plume models developed using a cylindrical axisymmetric finite element code and depth-dependent Newtonian rheology. The results are scaled by assuming whole mantle convection and that Venus and the earth have similar mantle heat flows. The best model fits are for Beta and Atla. The common feature of the allowed viscosity models is that they lack a pronounced low-viscosity zone in the upper mantle. The shape of Venus's long-wavelength admittance spectrum and the slope of its geoid spectrum are also consistent with the lack of a low-viscosity zone. It is argued that the lack of an asthenosphere on Venus is due to the mantle of Venus being drier than the earth's mantle. Mantle plumes may also have contributed to the formation of some smaller highland swells, such as the Bell and Eistla regions and the Hathor/Innini/Ushas region.

  18. Climate regulation of fire emissions and deforestation in equatorial Asia

    PubMed Central

    van der Werf, G. R.; Dempewolf, J.; Trigg, S. N.; Randerson, J. T.; Kasibhatla, P. S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D. C.; Collatz, G. J.; Dolman, A. J.; DeFries, R. S.

    2008-01-01

    Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000–2006. We found that average fire emissions from this region [128 ± 51 (1σ) Tg carbon (C) year−1, T = 1012] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000–2006 mean of 74 ± 33 Tg C yr−1). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year−2 (approximately doubling during 2000–2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate–carbon cycle feedbacks during the 21st century. PMID:19075224

  19. Source extension of chorus waves in the equatorial plane

    NASA Astrophysics Data System (ADS)

    Hayosh, M.; Santolik, O.; Parrot, M.

    2009-04-01

    We use measurements of the Cluster spacecraft and a ray tracing simulation to estimate the location and size of the global source of whistler-mode chorus emissions. In this study we use the data provided simultaneously by the STAFF-SA instruments on the four Cluster spacecraft on 19 August, 2003. To determine the direction of propagation of chorus we calculate Poynting vector whereas a ray-tracing method is used to estimate the chorus source extension. For the first time this analysis has been made along whole particular Cluster orbit in both hemispheres. Our study shows that minimum size of the global chorus source region in the equatorial plane is between 1-3 Earth's radii. The resulting location of the chorus source region is at radial distances between 3 and 8 Earth radii. This result is in agreement with previous analysis of Cluster data by Parrot et al., 2003, 2004 and with the study of Santolik et al., 2005 who analyzed data from the Double Star TC-1 spacecraft.

  20. Measurements of nitrogen productivity in the equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Wilkerson, Frances P.; Dugdale, Richard C.

    1992-01-01

    During the R/V Wecoma WEC88 cruise that sampled a meridional transect along 150 deg W from 15 deg N to 15 deg S, uptake of nitrate and ammonium by phytoplankton was measured using the stable isotope N-15 with simulated in-situ bottle incubations and shipboard mass spectrometry. A set of 25 daily productivity stations showed the influence of equatorial upwelling on nitrate distribution and N-15 uptake in a band from 6 deg N to 7.5 deg S compared with the oligotrophic waters to the north and south, with the highest values of nitrate uptake occurring at the equator. During a 5-day time series at the equator, there was an increase in nitrate accompanied by increased nitrate uptake. Interestingly, nitrate uptake rates (equivalent to new production rates) at the equator were lower than those predicted by previous investigators. Holdover experiments and uptake versus irradiance curves showed that the phytoplankton was in an early stage of metabolic adaptation and that can be a contributing factor.

  1. Equatorial Pacific productivity changes near the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Moore, T. C.; Wade, Bridget S.; Westerhold, Thomas; Erhardt, Andrea M.; Coxall, Helen K.; Baldauf, Jack; Wagner, Meghan

    2014-09-01

    There is general agreement that productivity in high latitudes increased in the late Eocene and remained high in the early Oligocene. Evidence for both increased and decreased productivity across the Eocene-Oligocene transition (EOT) in the tropics has been presented, usually based on only one paleoproductivity proxy and often in sites with incomplete recovery of the EOT itself. A complete record of the Eocene-Oligocene transition was obtained at three drill sites in the eastern equatorial Pacific Ocean (ODP Site 1218 and IODP Sites U1333 and U1334). Four paleoproductivity proxies that have been examined at these sites, together with carbon and oxygen isotope measurements on early Oligocene planktonic foraminifera, give evidence of ecologic and oceanographic change across this climatically important boundary. Export productivity dropped sharply in the basal Oligocene (~33.7 Ma) and only recovered several hundred thousand years later; however, overall paleoproductivity in the early Oligocene never reached the average levels found in the late Eocene and in more modern times. Changes in the isotopic gradients between deep- and shallow-living planktonic foraminifera suggest a gradual shoaling of the thermocline through the early Oligocene that, on average, affected accumulation rates of barite, benthic foraminifera, and opal, as well as diatom abundance near 33.5 Ma. An interval with abundant large diatoms beginning at 33.3 Ma suggests an intermediate thermocline depth, which was followed by further shoaling, a dominance of smaller diatoms, and an increase in average primary productivity as estimated from accumulation rates of benthic foraminifera.

  2. Two scenarios on the driving mechanism of the Jovian equatorial jet with secondary hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y. H.; Read, P. L.

    2006-01-01

    We test the feasibility of two scenarios that may drive the broad, prograde, equatorial jets in the Jovian atmosphere within the shallow "weather layer". The first idea attempts to explain the flat-headed jet as a consequence of a hydrodynamic instability along an equatorially trapped primarily jet. The strong primary jet is induced by a 300 m s -1 Kelvin wave. The second idea is a bridging of a pair of off-equatorial jets due to horizontal eddy diffusion (the so-called Gierasch mechanism). The primary jets can be induced by a Hadley circulation, and might then be interconnected by subsequent hydrodynamic instabilities between them. We test the two scenarios using a general circulation model, but have so far been unable to obtain an equatorial jet that resembles observations. It appears, therefore, that the previously proposed model of combining Kelvin and Hadley forcing, is more plausible under the shallow hypothesis.

  3. Probing the possible trigger mechanisms of an equatorial plasma bubble event based on multistation optical data

    NASA Astrophysics Data System (ADS)

    Taori, A.; Parihar, N.; Ghodpage, R.; Dashora, N.; Sripathi, S.; Kherani, E. A.; Patil, P. T.

    2015-10-01

    We analyze an equatorial plasma bubble (EPB) event observed in optical 630 nm image data simultaneously from Gadanki (13.5°N, 79.2°E), Kolhapur (16.8°N, 74.2°E), India. The total electron content data from Gadanki together with the ionosonde data from an equatorial Indian station, Tirunelveli (8.7°N, 77.8°E) confirmed the association of observed EPB event with equatorial spread F (ESF). The optical 630 nm images from a farther low-latitude Indian station Ranchi (23.3°N, 85.3°E) show clear signatures of tilted east-west wave structures propagating toward equator. Further, the upward wave energy noted in mesospheric airglow data was found to be negligible. These data suggest that possibly the off-equatorial tilted east-west structures triggered the observed EPB/ESF event.

  4. Equatorial superrotation in a slowly rotating GCM - Implications for Titan and Venus

    NASA Astrophysics Data System (ADS)

    del Genio, A. D.; Zhou, W.; Eichler, T. P.

    1993-01-01

    The GISS GCM is used here to examine the hypothesis that equatorial superrotation on slowly rotating planets is sensitive to the nature of the vertical radiative heating profile and can exist in the absence of diurnally varying forcing. The general circulation, diabatic heating, and thermal structure produced in the experiments are described and the heat and angular momentum budgets and energy cycles are analyzed to understand the factors conducive to equatorial superrotation. The implications of the results for future planetary missions are addressed.

  5. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  6. Rocket observations of electron-density irregularities in the equatorial ionosphere below 200 km

    NASA Technical Reports Server (NTRS)

    Klaus, D. E.; Smith, L. G.

    1978-01-01

    Nike Apache rockets carring instrumentation to measure electron density and its fine structure in the equatorial ionosphere were launched from Chilca, Peru in May and June 1975. The fine structure experiment and the data reduction system are described. Results obtained from this system are presented and compared with those obtained by VHF radar and from other rocket studies. A description of the equatorial ionosphere and its features is also presented.

  7. HF Doppler radar observations of equatorial plasma drifts and spread-F

    NASA Astrophysics Data System (ADS)

    Jayachandran, B.; Namboothiri, S. P.; Balan, N.; Rao, P. B.; Sastri, J. H.

    Vertical plasma drift measurements have been made by an HF Doppler radar at the equatorial station of Trivandrum. For magnetically quiet conditions, Doppler observations are presented dealing with (1) the postsunset vertical plasma drifts and their seasonal dependence, (2) the prereversal enhancement in the vertical plasma drift and the occurrence of equatorial spread-F, and (3) the vector plasma drift measurements for a sample equinoctial day.

  8. On the relationship between the Meridional Mode and the equatorial SST anomalies

    NASA Astrophysics Data System (ADS)

    Martín-Rey, Marta; Lazar, Alban

    2016-04-01

    The tropical Atlantic climate is dominated by two modes of variability at inter-annual time scales, the Equatorial Mode (EM) and the Meridional Mode (MM). They are characterized by specific Sea Surface Temperature anomalies (SSTA) distributions, respectively with a maximum over the central-eastern equator during boreal summer, and with an inter-hemispheric gradient during boreal spring. Although their structures, air-sea interactions and impacts have been widely studied, the processes associated to their development, and their connections, still remain a challenge. In the present work, we present a classification of MM events, regarding to their connections with the successive equatorial summer SSTA, associated with an EM or neutral conditions. The MM-I events display SSTA in North Tropical Atlantic (NTA) followed by a same sign summer equatorial SSTA. The MM-II events are related to NTA SSTA and successive equatorial summer SSTA of opposite sign. For both types, the spring north-eastern trades anomalies could generate SSTA impacting on the equatorial SSTA. Nevertheless, it is evidenced that the anomalous wind pattern shown along the equatorial band and South Tropical Atlantic is crucial to give rise, or not, to an EM. In order to further analyse the air-sea interactions and oceanic processes at work in the two different MM types, sensitivity experiments with different wind forcings are performed with the NEMO OGCM.

  9. Living planktic foraminifera: tracers of circulation and productivity regimes in the central equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Mix, Alan C.; Wilson, June

    Planktic foraminifera (shelled protozoans from ˜0.01 to 1 mm in size) respond to equatorial circulation and ecosystem dynamics. In the JGOFS survey I cruise of the equatorial Pacific (9°N-12°S, 140°W, in February-March 1992), responses to upwelling, advection, and biological activity occurred in spite of little upper-ocean temperature contrast. Rather than being abundant within the entire productive equatorial zone, foraminifera concentrated off the equator at convergent fronts. For example, non-spinose, mostly herbivorous species ( G. conglomerata, G. tumida, P. obliquiloculata, and N. dutertrei) dominated near 3°N, in the convergence between the South Equatorial Current and the North Equatorial Countercurrent. Juvenile forms outnumbered adults within the convergence, indicating that these foraminifera succeeded and reproduced here (rather than passively accumulating by advection) perhaps by maintaining buoyancy to stay within the convergent, food-rich zone. The South Equatorial Current was favored by spinose, endosymbiont-bearing G. aequilateralis and non-spinose, herbivorous G. glutinata, G. menardii, and P. obliquiloculata, perhaps an advected assemblage. Species hosting dinoflagellate endosymbionts ( G. sacculifer, G. ruber, and G. conglobatus) prevailed in food-poor oligotrophic regions, perhaps because they obtain nutrition from their symbionts. Distributions of living foraminifera suggest that paleoceanographic transfer functions to estimate primary productivity in the geological record have merit, but controls of foraminiferal species distributions also include food stocks, light intensity, and advection.

  10. Equatorial Segment Protein (ESP) Is a Human Alloantigen Involved in Sperm-Egg Binding and Fusion

    PubMed Central

    Wolkowicz, M. J.; Digilio, L.; Klotz, K.; Shetty, J.; Flickinger, C. J.; Herr, J. C.

    2010-01-01

    The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)–positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility. PMID:17978344

  11. Ocean Color and the Equatorial Annual Cycle in the Pacific

    NASA Astrophysics Data System (ADS)

    Hammann, A. C.; Gnanadesikan, A.

    2012-12-01

    The presence of chlorophyll, colored dissolved organic matter (CDOM) and other scatterers in ocean surface waters affect the flux divergence of solar radiation and thus the vertical distribution of radiant heating of the ocean. While this may directly alter the local mixed-layer depth and temperature (Martin 1985; Strutton & Chavez 2004), non-local changes are propagated through advection (Manizza et al. 2005; Murtugudde et al. 2002; Nakamoto et al. 2001; Sweeny et al. 2005). In and coupled feedbacks (Lengaigne et al. 2007; Marzeion & Timmermann 2005). Anderson et al. (2007), Anderson et al. (2009) and Gnanadesikan & Anderson (2009) have performed a series of experiments with a fully coupled climate model which parameterizes the e-folding depth of solar irradiance in terms of surface chlorophyll-a concentration. The results have so far been discussed with respect to the climatic mean state and ENSO variability in the tropical Pacific. We extend the discussion here to the Pacific equatorial annual cycle. The focus of the coupled experiments has been the sensitivity of the coupled system to regional differences in chlorophyll concentration. While runs have been completed with realistic SeaWiFS-derived monthly composite chlorophyll ('green') and with a globally chlorophyll-free ocean ('blue'), the concentrations in two additional runs have been selectively set to zero in specific regions: the oligotrophic subtropical gyres ('gyre') in one case and the mesotrophic gyre margins ('margin') in the other. The annual cycle of ocean temperatures exhibits distinctly reduced amplitudes in the 'blue' and 'margin' experiments, and a slight reduction in 'gyre' (while ENSO variability almost vanishes in 'blue' and 'gyre', but amplifies in 'margin' - thus the frequently quoted inverse correlation between ENSO and annual amplitudes holds only for the 'green' / 'margin' comparison). It is well-known that on annual time scales, the anomalous divergence of surface currents and vertical

  12. Empirical outflow velocities in an equatorial coronal streamer

    NASA Astrophysics Data System (ADS)

    Strachan, L.; Suleiman, R.; Panasyuk, A.; Biesecker, D.; Kohl, J.

    We use combined Ultraviolet Coronagraph Spectrometer (UVCS) and Large Angle Spectroscopic Coronagraph (LASCO) data to determine the O5+ outflow velocities as a function of height along the axis of an equatorial streamer at solar minimum and as a function of latitude (at 2.3 solar radii from sun center). The results show that outflow increases rather abruptly in the region between 3.6 and 4.1 solar radii near the streamer cusp, and gradually increases to 90 km/s at about 5 solar radii in the streamer stalk beyond the cusp. The latitudinal variation at 2.3 solar radii shows that there is no outflow (within the measurement uncertainties) in the center of the streamer called the core, and that a steep increase in outflow occurs just beyond the streamer legs, where the O VI 1032 intensity relative to H I 1216 (Ly) is higher than in the core. Velocity variations in both height and latitude show that the transitions from no measurable outflow to positive outflow are relatively sharp and thus can be used to infer the location of the transition from closed to open field lines in streamer magnetic field topologies. Such information, including the densities and kinetic temperatures derived from the observations, provides hard constraints for realistic theoretical models of streamers and the source regions of the slow solar wind. This work is supported by NASA Grant NAG5-11420 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency, and by the ESA PRODEX program (Swiss contribution).

  13. Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.

  14. Evening and nighttime features of equatorial ionospheric F2 layer

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi S.

    2016-07-01

    We have used ionosonde observations recorded at Ibadan (7.4 degree North, 3.9 degree East) during the International Geophysical year (1957-58) to investigate evening and nighttime characteristic features of equatorial ionosphere during high solar flux and quiet magnetic conditions. We have also used International Reference Ionosphere model (IRI-2012) data. Our results show that the base of the ionosphere descends at a rate of -27.5 km/hr between 2000 LT and 0400 LT, whereas the observed bottomside peak of the ionosphere move down at a rate of -29.3 km/hr between 1900 and 0500 LT, while IRI2012 bottomside peak show -29.8 km/hr between 2000 LT and 0500 LT. The downward flow rate of plasma concentration between 1900 LT and 0500 LT and between 1800 LT and 0400 LT is approximately 0.040 electron per cubic metre per hour and 0.081 electron per cubic metre per hour, respectively for observed and for modeled NmF2. Month-by-month averaged altitudes (h'F, hmF2, and modeled hmF2) indicate significant local time variation. In addition, the month-by month variation indicates nighttime double crest of averaged peak height (hmF2) in the ionosonde measurements and in the IRI-2012 empirical model with a trough in June-August for data and In July for model. The monthly mean downward vertical drift velocities derived from local time variation of h'F and hmF2 together with global drift model essential demonstrate much fluctuations. We found a "domed shape" in modeled drift velocity, indicating equatorward plasma between April and September.

  15. Coral Settlement on a Highly Disturbed Equatorial Reef System

    PubMed Central

    Bauman, Andrew G.; Guest, James R.; Dunshea, Glenn; Low, Jeffery; Todd, Peter A.; Steinberg, Peter D.

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of

  16. A middle Miocene relative paleointensity record from the Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Ohneiser, Christian; Acton, Gary; Channell, James E. T.; Wilson, Gary S.; Yamamoto, Yuhji; Yamazaki, Toshi

    2013-07-01

    We present a high-resolution magnetostratigraphy and relative paleointensity (RPI) record derived from the upper 85 m of IODP Site U1336, an Equatorial Pacific early to middle Miocene succession recovered during Expedition 320/321. The magnetostratigraphy is well resolved with reversals typically located to within a few centimeters resulting in a well-constrained age model. The lowest normal polarity interval, from 85 to 74.87 m, is interpreted as the later part of Chron C6n (18.614-19.599 Ma). Thirty-three other magnetozones occur from 74.87 to 0.85 m, which are interpreted to represent the continuous sequence of chrons onset of Chron C5Er (18.748 Ma) to the end of Chron C5An.1n (12.014 Ma). We identify three putative previously-unrecognized subchrons within Chron C5Cn.1n, Chron 5Bn.1r, and C5ABn. Sedimentation rates vary from about 7 to 15 m/Myr with a mean of about 10 m/Myr. We observe rapid, apparent changes in the sedimentation rate at geomagnetic reversals between ˜16 and 19 Ma that indicate a calibration error in geomagnetic polarity timescale (ATNTS2004). The remanence is carried mainly by non-interacting particles of fine-grained magnetite, which have FORC distributions characteristic of biogenic magnetite. Given the relative homogeneity of the remanence carriers throughout the 85-m-thick succession and the fidelity with which the remanence is recorded, we have constructed a relative paleointensity (RPI) record that provides new insights into middle Miocene geomagnetic field behavior. The RPI record indicates a gradual decline in field strength between 18.5 Ma and 14.5 Ma, and indicates no discernible link between RPI and either chron duration or polarity state.

  17. Magnetospheric conditions near the equatorial footpoints of proton isotropy boundaries

    NASA Astrophysics Data System (ADS)

    Sergeev, V. A.; Chernyaev, I. A.; Angelopoulos, V.; Ganushkina, N. Y.

    2015-12-01

    Data from a cluster of three THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft during February-March 2009 frequently provide an opportunity to construct local data-adaptive magnetospheric models, which are suitable for the accurate mapping along the magnetic field lines at distances of 6-9 Re in the nightside magnetosphere. This allows us to map the isotropy boundaries (IBs) of 30 and 80 keV protons observed by low-altitude NOAA POES (Polar Orbiting Environmental Satellites) to the equatorial magnetosphere (to find the projected isotropy boundary, PIB) and study the magnetospheric conditions, particularly to evaluate the ratio KIB (Rc/rc; the magnetic field curvature radius to the particle gyroradius) in the neutral sheet at that point. Special care is taken to control the factors which influence the accuracy of the adaptive models and mapping. Data indicate that better accuracy of an adaptive model is achieved when the PIB distance from the closest spacecraft is as small as 1-2 Re. For this group of most accurate predictions, the spread of KIB values is still large (from 4 to 32), with the median value KIB ~13 being larger than the critical value Kcr ~ 8 expected at the inner boundary of nonadiabatic angular scattering in the current sheet. It appears that two different mechanisms may contribute to form the isotropy boundary. The group with K ~ [4,12] is most likely formed by current sheet scattering, whereas the group having KIB ~ [12,32] could be formed by the resonant scattering of low-energy protons by the electromagnetic ion-cyclotron (EMIC) waves. The energy dependence of the upper K limit and close proximity of the latter event to the plasmapause locations support this conclusion. We also discuss other reasons why the K ~ 8 criterion for isotropization may fail to work, as well as a possible relationship between the two scattering mechanisms.

  18. Changes in the Equatorial Undercurrent from 1861 to present

    NASA Astrophysics Data System (ADS)

    Drenkard, E.; Karnauskas, K. B.

    2012-12-01

    The Pacific Equatorial Undercurrent (EUC) is a vital component of the tropical Pacific circulation. It transports massive amounts of cold, nutrient- and carbon-rich water eastward, where upwelling feeds the cold tongue, reinforces the zonal SST gradient, and plays an important role in global biogeochemical cycling at seasonal and longer time scales. To first-order, the momentum budget of the EUC is a balance between an eastward oceanic zonal pressure gradient force that is established by the trade winds and downward mixing of westward momentum from the surface current. The EUC is located between 100 and 300m depth and is constrained to within ~2 degrees latitude of the equator by the Coriolis force. A recent study has proposed that Pacific islands and atolls near the equator that experience topographic upwelling of cooler EUC waters, may be spared the brunt of global warming because global climate models project future strengthening of the EUC. This strengthening is in response to increasing atmospheric CO2-forcing by way of a weakening of the trade winds and surface current. Given the ongoing increase in atmospheric CO2 and global temperatures, a natural question is whether or not these changes have already been occurring. Our analyses of an ocean reanalysis product (SODA) indicate that EUC intensification is already underway. Various metrics including core velocity and volume transport calculated from the extended SODA reanalysis (1871-2008) indicate that the EUC has strengthened significantly over the past 130 years. Trends in zonal wind stress and the surface current appear to be consistent with the mechanism governing the annual cycle and future projections when considering the spatiotemporal evolution of these changes. The role of data assimilation and boundary forcing of reanalyses products, and implications of this observed change in characterizing the response of the overall tropical Pacific coupled climate system to global warming will be discussed.

  19. Diagenetic processes in cretaceous sandstones from occidental Brazilian Equatorial Margin

    NASA Astrophysics Data System (ADS)

    Schrank, A. B. S.; De Ros, L. F.

    2015-11-01

    Despite a great interest in Brazilian Equatorial Margin exploration, very little was published on the diagenesis of sandstones from that area. A wide recognition petrographic study was performed to identify the major diagenetic processes that impacted the porosity of Lower Cretaceous sandstones of the Pará-Maranhão, São Luís, Bragança-Viseu and Barreirinhas basins. Arkoses from the Pará-Maranhão Basin show neoformed or infiltrated clay coatings, mica replacement and expansion by kaolinite and vermiculite, and precipitation of grain-replacive and pore-filling quartz, kaolinite, albite, chlorite, calcite, dolomite, siderite, pyrite and titanium oxides. Compaction, quartz and calcite cementation were the main porosity-reducing processes. Barreirinhas Basin lithic arkoses and subarkoses display clay coatings, compaction of metamorphic fragments into pseudomatrix, and precipitation of grain-replacive and pore-filling kaolinite, quartz, albite, chlorite, calcite, dolomite, TiO2 and pyrite. The main porosity-reducing processes were calcite cementation in the subarkoses, and compaction and quartz cementation in lithic arkoses. Quartzarenites from this basin were early- and pervasively cemented by dolomite. Arkoses and lithic arkoses of the São Luís and Bragança-Viseu basins show clay coatings, pseudomatrix from mud intraclasts compaction, and precipitation of pore-filling and grain-replacive kaolinite, vermiculite, smectite, quartz, albite, chlorite, illite, calcite, dolomite, hematite, TiO2 and pyrite. Compaction of mud intraclasts and dissolution of feldspars and heavy minerals were the main porosity-modification processes. These preliminary results may contribute to the understanding of the spatial and temporal distribution of the diagenetic processes and their impacts on the porosity of the sandstones from these basins.

  20. Multiscale equatorial electrojet turbulence for GNSS disruption physics

    NASA Astrophysics Data System (ADS)

    Horton, W., Jr.; Hassan, E.; Litt, S. K.; Smolyakov, A. I.; Rainwater, D.

    2015-12-01

    The spatial and spectral characteristics of the turbulent plasma density and electric fields are modeled in ionospheric E region using a new set of nonlinear plasma fluid equations. The fluid model combines both Farley-Buneman (Type-I) and Gradient-Drift (Type-II) plasma instabilities in the equatorial electrojet region. The unified model of the plasma instabilities includes the ion viscosity in the ion momentum equation and electron inertia in the electron momentum equation. Electron heating from the electrojet currents is included. Nonlinear simulations in 2D and 3D in massively parallel codes for the coupled equations are run on TACC and NERSC computers. Rising plumes and falling spikes of high-density plasma are ubiquitous as in earlier 2D simulations. 3D movies of structures like TIDs are shown. The simulation results show some agreement with a number of features of rocket and radar observations as reported in Hassan et al. JGR 2015. At sunset, the strong electric fields driven both by neutral thermosphere winds and the dynamo electric field the turbulence are severe. The source field aligned currents [FACs] is the solar wind dynamo electric field. During periods of magnetospheric storms and substorms these plasma currents surge to large values producing ionospheric storms. The turbulent fluctuations in the ionosphere are intrinsic part of the dynamics of ionosphere-magnetosphere coupling. The plasma fluctuations are a source of multipath GNSS rays and loss-of-lock. Monitoring of ionosphere irregularities is used as a diagnostic tool for the state of the ionosphere for GNSS disruption and space weather issues. The theoretical/simulation model of ionospheric irregularities is based on advanced nonlinear plasma physics.

  1. Airborne studies of equatorial F layer ionospheric irregularities

    SciTech Connect

    Weber, E.J.; Buchau, J.; Moore, J.G.

    1980-09-01

    Radio wave and optical experiments were conducted onboard a U.S. Air Force research aircraft in March 1977 and March 1978 at low magnetic latitudes to investigate the effects of F region electron density amplitude. Scintillation measurements were used to monitor the development and motion of F region 6300-A O I airglow depletions, spread F, and scintillation producing irregularities that are all associated with low-density bubbles in the postsunset equatorial ionosphere. The 6300-A airglow depletions are the bottomside signature of low plasma density within the bubbles. Examples of multiple airglow depletions and their relation to variations in the F layer virtual height (h'F) and to the occurrence of amplitude scintillations on 250-MHz satellite signals are described. Estimates of the average bottomside electron density, from simultaneous ionosonde measurements and 6300-A airglow intensities, show electron density decreases of approx.66% within the bubbles. These decreases are approximately the same for bubbles observed at the magnetic equator and near Ascension Island (18 /sup 0/S magnetic latitude). The measurements at Ascension Island show that airglow depletions extend away from the magnetic equator into the southern 6300-A intertropical arc. Variations in the maximum poleward extent of airglow depletions and of associated ionospheric irregularities that give rise to amplitude scintillations were observed. These latitudinal variations are interpreted, using field line mapping considerations, as variations in the maximum altitude of plasma bubbles over the magnetic equator. A north-south flight confirms that the overall pattern of airglow depletions and associated ionospheric irregularities extends continuously across the magnetic equator to +-15/sup 0/ magnetic latitude.

  2. Transatlantic equatorial distribution of nitrous oxide and methane

    NASA Astrophysics Data System (ADS)

    Oudot, Claude; Jean-Baptiste, Philippe; Fourré, Elise; Mormiche, Claire; Guevel, Michael; Ternon, Jean-François; Le Corre, Pierre

    2002-07-01

    During January-March 1993, the vertical distributions of dissolved nitrous oxide (N 2O) and methane (CH 4), and their atmospheric mixing ratios were measured in the equatorial Atlantic on the WOCE lines A6 (7°30'N) and A7 (4°30'S). Measured mean N 2O and CH 4 atmospheric mixing ratios were 0.316 and 1.786 ppm respectively, with an analytical precision of 1%. Surface waters were everywhere supersaturated with both gases (mean excess ΔN 2O=8% and ΔCH 4=32%), with significantly higher values close to the continents. The N 2O vertical distributions on both sections display a broad maximum centred near 400 m depth, at the level of the oxygen minimum. The CH 4 vertical distributions also show a sharp subsurface maximum at the base of the mixed layer, associated with a chlorophyll a maximum. Computed N 2O and CH 4 sea-air fluxes are in the range 1.1-1.8 μmol m -2 d -1 and 1.2-2.0 μmol m -2 d -1 respectively. For N 2O, we calculate that the upward transport through the thermocline matches the horizontal transport in the mixed layer and the emission to the atmosphere. Hence, the N 2O budget is balanced within the experimental uncertainties. This is not the case for CH 4, whose vertical transport from the maximum concentration layer accounts for <10% of the sea-air flux. It follows that the CH 4 budget requires a sustained production within the mixed layer itself to maintain CH 4 supersaturation and balance its escape to the atmosphere.

  3. Equatorial to Mid-Latitude Connections in Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Strub, T.

    2002-12-01

    Over twenty years ago, Enfield and Allen (1980, J. Phys. Oceaogr., 10, 557-578) used tide-gauge sea level height data to show the connection between the equator and the mid-latitude coastal ocean in the eastern Pacific. Careful selection of tide gauges and quality control of the data allowed both seasonal and interannual time scales to be examined over a period of 24 years. Today, 10 years of TOPEX/POSEIDON altimeter data allow us to re-examine the seasonal and non-seasonal connections between the equator and higher latitudes in the eastern boundary currents (EBC's) along the coasts of the Pacific and Atlantic Oceans. We present the seasonal progressions in both basins and hemispheres, showing the low-to-high latitude development of the seasonal cycle and also the offshore propagation of annual Rossby waves. This brings out several general tendencies: 1) The signals are stronger in the Northern Hemisphere basins, due to the fact that the ITCZ is located north of the equator in both basins; 2) The signals are stronger in the NE Pacific than in any of the other basins; and 3) There is an annual signal of high sea surface height that propagates down both Southern Hemisphere EBC's in austral spring (September-November) as the SW trade winds weaken along the equator and the equatorial cold tongue collapses. This last feature is somewhat like an annual "El Ni¤o" effect and acts to suppress the onset of wind driven upwelling in the Peru-Chile and Benguela Current Systems.

  4. Manganese nodule resources in the northeastern equatorial Pacific

    USGS Publications Warehouse

    McKelvey, V.E.; Wright, Nancy A.; Rowland, Robert W.

    1979-01-01

    Recent publication of maps at scale 1:1,000,000 of the northeastern equatorial Pacific region showing publicly available information on the nickel plus copper content of manganese nodules has made it possible to outline the prime area between the Clarion and Clipperton fracture zones which has been the focus of several recent scientific and commercial studies. The area, defined as that in which the nodules contain more than 1.8 percent nickel plus copper, is about 2o5 million km2. The available evidence suggests that about half of it contains nodules in concentration (reported in wet weight units) greater than 5 kg/m2 and averaging 11.9 kg/m2. If we assume that 20 percent of the nodules in this area of 1.25 million km2 are recoverable, its potential recoverable resources are about 2.1 billion dry metric tons of nodules averaging about 25 percent Mn, 1.3 percent Ni, 1.0 percent Cu, 0.22 percent Co, and 0.05 percent Mo—enough to support about 27 mining operations each producing an average of 75 million metric tons of nodules over their lifetimes. Estimates based on other plausible assumptions would be higher or lower, but of the same order of magnitude. Thus it seems probable that the magnitude of the potentially recoverable nodule resources of the Clarion-Clipperton prime area—the most promising now known—is at most in the range of several tens of the average-size operations postulated.

  5. Endemic human paragonimiasis in Equatorial Guinea. Detection of the existence of endemic human paragonimiasis in Equatorial Guinea as a result of an integrated sanitary programme.

    PubMed

    Simarro, P P; Alamo, A; Sima, F O; Roche, J; Mir, M; Ndong, P

    1991-07-01

    Between February and April 1990 the first five cases of human paragonimiasis, tentatively due to Paragonimus africanus, have been detected in Equatorial Guinea, thanks to the normal activities of the National Schistosomiasis Project and its coordination with the National Tuberculosis Project. PMID:1816673

  6. Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ

    NASA Astrophysics Data System (ADS)

    Richter, Ingo; Xie, Shang-Ping; Morioka, Yushi; Doi, Takeshi; Taguchi, Bunmei; Behera, Swadhin

    2016-07-01

    The equatorial Atlantic is marked by significant interannual variability in sea-surface temperature (SST) that is phase-locked to late boreal spring and early summer. The role of the atmosphere in this phase locking is examined using observations, reanalysis data, and model output. The results show that equatorial zonal surface wind anomalies, which are a main driver of warm and cold events, typically start decreasing in June, despite SST and sea-level pressure gradient anomalies being at their peak during this month. This behavior is explained by the seasonal northward migration of the intertropical convergence zone (ITCZ) in early summer. The north-equatorial position of the Atlantic ITCZ contributes to the decay of wind anomalies in three ways: (1) horizontal advection associated with the cross-equatorial winds transports air masses of comparatively low zonal momentum anomalies from the southeast toward the equator. (2) The absence of deep convection leads to changes in vertical momentum transport that reduce the equatorial wind anomalies at the surface, while anomalies aloft remain relatively strong. (3) The cross-equatorial flow is associated with increased total wind speed, which increases surface drag and deposit of momentum into the ocean. Previous studies have shown that convection enhances the surface wind response to SST anomalies. The present study indicates that convection also amplifies the surface zonal wind response to sea-level pressure gradients in the western equatorial Atlantic, where SST anomalies are small. This introduces a new element into coupled air-sea interaction of the tropical Atlantic.

  7. Simulation of the nitrate seasonal cycle in the equatorial Atlantic Ocean during 1983 and 1984

    NASA Astrophysics Data System (ADS)

    Loukos, Harilaos; MéMery, Laurent

    1999-07-01

    We use a three-dimensional, off-line geochemical model to simulate the nitrate cycle in the equatorial Atlantic during the years 1983-1984 corresponding to the Français Océan et Climat dans l'Atlantique Equatorial (FOCAL) and Seasonal Response of the Equatorial Atlantic programs. After comparing our simulations with FOCAL data, we investigate interactions between equatorial circulation and biological activity on both seasonal and interannual timescales. Our results suggest that the upwelling of nitrate in the surface layer is strongly dependent on the behavior of both the nitracline and Equatorial Undercurrent (EUC). In the western basin, the equatorial upwelling partly feeds the EUC and has a low signature on surface nitrate. On the contrary, in the eastern basin, where the upwelling core and the nitracline are closer to the surface, vertical advection is the driving mechanism causing seasonal variations of nitrate concentration. Above the EUC, nitrate is transferred to the very surface by vertical diffusion, whereas the contribution by vertical advection is negligible. While slightly cold oceanic conditions prevailed in 1983, a warm anomaly produced by a decrease in trade winds and upwelling was observed in 1984. In our simulations, the significant changes in circulation do not notably alter the seasonal cycle of new production. Consequently, variations of annual primary production between 1983 and 1984 are small (9% decrease in the 2°S-2°N band) compared to the amplitude of the seasonal cycle (twofold variations). Contrary to the Pacific Ocean, where the interannual signal dominates, our results suggests that seasonal variability is the most significant large-scale signal on primary production in the equatorial Atlantic.

  8. Pacific decadal variability in the view of linear equatorial wave theory

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J. B.; Cane, M. A.

    2006-12-01

    It has recently been proposed, within the framework of the linear shallow water equations, that tropical Pacific decadal variability can be accounted for by basin modes with eigenperiods of 10 to 20 years, amplifying a mid- latitude wind forcing with an essentially white spectrum (Cessi and Louazel 2001; Liu 2003). We question this idea here, using a different formalism of linear equatorial wave theory. We compute the Green's function for the wind forced response of a linear equatorial shallow water ocean, and use the results of Cane and Moore (1981) to obtain a compact, closed form expression for the motion of the equatorial thermocline, which applies to all frequencies lower than seasonal. At very low frequencies (decadal timescales), we recover the planetary geostrophic solution used by Cessi and Louazel (2001), as well as the equatorial wave solution of Liu (2003), and give a formal explanation for this convergence. Using this more general solution to explore more realistic wind forcings, we come to a different interpretation of the results. We find that the equatorial thermocline is inherently more sensitive to local than to remote wind forcing, and that planetary Rossby modes only weakly alter the spectral characteristics of the response. Tropical winds are able to generate a strong equatorial response with periods of 10 to 20 years, while midlatitude winds can only do so for periods longer than about 50 years. Since the decadal pattern of observed winds shows similar amplitude for tropical and midlatitude winds, we conclude that the latter are unlikely to be responsible for the observed decadal tropical Pacific SST variability. References : Cane, M. A., and Moore, D. W., 1981: A note on low-frequency equatorial basin modes. J. Phys. Oceanogr., 11(11), 1578 1584. Cessi, P., and Louazel, S., 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31, 3020 3029. Liu, Z., 2003: Tropical ocean decadal variability and resonance of planetary

  9. Using ionospheric scintillation observations for studying the morphology of equatorial ionospheric bubbles

    NASA Astrophysics Data System (ADS)

    Dandekar, B. S.; Groves, K. M.

    2004-06-01

    For a study of the equatorial ionosphere, ionospheric scintillation data at VHF and L-band frequencies have been routinely collected by ground-based receivers at Ancon, Peru, Antofagasta, Chile, and Ascension Island, UK, since May 1994. The receivers routinely monitor VHF transmissions from two geosynchronous satellites located at 100°W longitude and 23°W longitude, and L-band signals from satellites located at 75°W longitude and 15°W longitude. This combination provides a network of seven usable, reasonably separated links for monitoring ionospheric equatorial bubble activity in the South American longitude sector. A data set of seven years covering the period from 1995 to 2001 was studied to determine the temporal, diurnal, and seasonal behavior of equatorial bubbles. The results of our statistical study are presented here. In general the equatorial ionospheric bubble activity shows a strong systematic and primary dependence in temporal, diurnal, and seasonal variation, and a secondary weak dependence on geomagnetic and solar flux activity. At present, the dependence on solar and magnetic activity is not usable for near-time and short-term prediction of the equatorial bubble activity. Equatorial bubbles usually start 1 hour after sunset, the activity peaks before local midnight, and vanishes by early morning. The activity peaks in the months of November and January-February and is practically absent (weak) from May to August. On a daily basis on the average one sees 1 to 3 bubbles. The duration of bubbles is about 70 min, and the time spacing between the bubbles is 1 to 2 hours. The bubble activity in general follows the phase of solar cycle activity. The observed systematic behavior of the equatorial bubbles allows for a now cast and short-term forecast of the bubble activity in the South American sector.

  10. Simulated and Real Equatorial Ionospheres as seen by M.I.D.A.S.

    NASA Astrophysics Data System (ADS)

    Materassi, M.; Mitchell, C. N.

    2003-04-01

    The Equatorial Anomaly, with its two crests at tropical (geomagnetic) latitudes, is one of the main features of the quiet ionosphere, and reproducing it correctly is an important challenge for any data analysis system for ionospheric imaging. Here we have studied the possibility of producing good maps and sections of that structure using the M.I.D.A.S. (Multi Instrument Data Assimilation System), a tool based on a linear inversion technique that obtains 3D time evolving ionospheric maps from the merging of many different kinds of data. We have worked both on simulated and real GPS data. Part of the simulations have tested the capacity of M.I.D.A.S. to reproduce ionisation densities mathematically assigned, characterised by features to which the real Equatorial Anomaly is expected to be similar. In other simulations we have studied M.I.D.A.S. imaging of an artificial Equatorial ionosphere produced by the IRI-95 empirical model. All these simulations have given us a fine tuning for the free parameters to be chosen in M.I.D.A.S. reconstruction, in order to reproduce at best such Equatorial Anomaly-like ionospheres. When all the parameters have been fine tuned, real GPS data concerning ray paths crossing the Equatorial ionosphere have been inverted, and the deduced ionospheric images have been studied. The first purpose of this final study was to understand to which extent M.I.D.A.S. is able to distinguish the Equatorial features, and reproduce their time evolution and space characteristics. The other purpose was to make a comparison between the imaged real Equatorial Anomaly and the one expected to be there by the IRI-95 model.

  11. Multiple embryos, multiple nepionts and multiple equatorial layers in Cycloclypeus carpenteri.

    NASA Astrophysics Data System (ADS)

    Briguglio, Antonino; Kinoshita, Shunichi; Wolfgring, Erik; Hohenegger, Johann

    2016-04-01

    In this study, 17 specimens of Cycloclypeus carpenteri have been analyzed by means of microCT scanning. We used CT scanning technique as it enables the visualization and the quantifications of internal structures of hollow specimens without their destruction. It has been observed that many specimens possessing the natural morphology of this taxon, actually contain multiple embryos (up to 16 in one single specimen) and, in some few cases, multiple nepionts each with its own heterosteginid chambers (up to three separated nepionts). The diameter of each proloculus has been measured, and as a result, they are very variable even within the same specimen, therefore questioning the long known theory that schizonts have smaller proloculi than gamonts and also questioning the fact that proloculi in the same species should all have comparable size. Furthermore, we have observed the presence of additional equatorial planes on several specimens. Such additional planes are always connected to what seems to be the main equatorial plane. Such connections are T-shaped and are located at the junction between two equatorial layers; these junctions are made by a chamberlet, which possesses an unusually higher number of apertures. The connections between equatorial planes are always perfectly synchronized with the relative growth step and the same chamber can be therefore followed along the multiple equatorial planes. Apparently there is a perfect geometric relationship between the creation of additional equatorial planes and the position of the nepionts. Whenever the nepionts are positioned on different planes, additional planes are created and the angle of the nepionts is related to the banding angle of the equatorial planes. The presence of additional planes do not hamper the life of the cell, on the contrary, it seems that the cell is still able to build nicely shaped chamberlets and, after volumetric calculations, it seems all specimens managed to keep their logistic growth

  12. The Response of Tropical Climate to the Equatorial Emergence of Spiciness Anomalies(.

    NASA Astrophysics Data System (ADS)

    Schneider, Niklas

    2004-03-01

    The ocean atmosphere response to the surfacing of temperature anomalies from the oceanic thermocline is a key process in climate variability with decadal time scales. Using a coupled general circulation model, it is shown how density-compensating temperature and salinity (spiciness) anomalies emerging in the upwelling region of the equatorial Pacific modulate tropical climate.Upon reaching the surface in the central equatorial Pacific, warm and salty spiciness anomalies increase sea surface temperature and salinity, and vent their heat anomaly to the atmosphere, primarily by the latent heat flux. The associated surface buoyancy flux increases vertical mixing, and thereby dampens surface temperature anomalies. The moisture added to the atmosphere increases precipitation in the western Pacific and intertropical convergence zone, and strengthens the trade winds east, and weakens them west of the date line. Central equatorial Pacific surface temperatures are slightly warmed by the resulting deepened thermocline, and additional warm spiciness anomalies due to a northward displacement of the climatological spiciness front on the equator, recycling salt anomalies in the shallow equatorial circulation and subduction from the Southern Hemisphere. From the Northern Hemisphere source regions of equatorial thermocline waters, cool and fresh anomalies result from the increased air sea freshwater fluxes and wind-driven changes of the flow paths in the thermocline. The amplitudes of the model's El Niño La Niña are diminished by warm spiciness anomalies due to a reduction of the temperature gradient in density coordinates that controls the thermocline feedback.The coupled response is qualitatively consistent with a coupled climate mode that results from a positive feedback between the equatorial emergence of spiciness anomalies and the equatorial pycnocline and Southern Hemisphere responses, and a delayed, negative feedback due to Northern Hemisphere subduction. However

  13. Metal quotas of plankton in the equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Twining, Benjamin S.; Baines, Stephen B.; Bozard, James B.; Vogt, Stefan; Walker, Elyse A.; Nelson, David M.

    2011-03-01

    The micronutrient metals Mn, Fe, Co, Ni and Zn are required for phytoplankton growth, and their availability influences ocean productivity and biogeochemistry. Here we report the first direct measurements of these metals in phytoplankton and protozoa from the equatorial Pacific Ocean. Cells representing 4 functional groups (diatoms, autotrophic flagellates, heterotrophic flagellates and autotrophic picoplankton) were collected from the surface mixed layer using trace-metal clean techniques during transects across the equator at 110°W and along the equator between 110°W and 140°W. Metal quotas were determined for individual cells with synchrotron x-ray fluorescence microscopy, and cellular stoichiometries were calculated relative to measured P and S, as well as to C calculated from biovolume. Bulk particulate (>3 μm) metal concentrations were also determined at 3 stations using inductively coupled plasma mass spectrometry for comparison to single-cell stoichiometries. Phosphorus-normalized Mn, Fe, Ni and Zn ratios were significantly higher in diatoms than other cell types, while Co stoichiometries were highest in autotrophic flagellates. The magnitude of these effects ranged from approximately 2-fold for Mn in diatoms and autotrophic flagellates to nearly an order of magnitude for Fe in diatoms and picoplankton. Variations in S-normalized metal stoichiometries were also significant but of lower magnitude (1.4 to 6-fold). Cobalt and Mn quotas were 1.6 and 3-fold higher in autotrophic than heterotrophic flagellates. Autotrophic picoplankton were relatively enriched in Ni but depleted in Zn, matching expectations based on known uses of these metals in prokaryotes and eukaryotes. Significant spatial variability in metal stoichiometries was also observed. At two stations deviations in Fe stoichiometries reflected features in the dissolved Fe distribution. At these same stations, high Ni stoichiometries in autotrophic flagellates were correlated with elevated ammonium

  14. Halocarbon emissions and sources in the equatorial Atlantic Cold Tongue

    NASA Astrophysics Data System (ADS)

    Hepach, H.; Quack, B.; Raimund, S.; Fischer, T.; Atlas, E. L.; Bracher, A.

    2015-11-01

    Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 and up to 9.2 pmol L-1 for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water, CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol L-1 in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol L-1. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and one of the main driving factors of their emissions into the atmosphere in the ACT-region. The calculated production rates of the compounds in the mixed layer are 34 ± 65 pmol m-3 h-1 for CHBr3, 10

  15. Compound-specific nitrogen isotopes of equatorial Pacific sedimentary record

    NASA Astrophysics Data System (ADS)

    Sauthoff, W.; Ravelo, A. C.; Mccarthy, M. D.

    2014-12-01

    Compound specific nitrogen isotopic analysis of amino acids (δ15N-AA) is a technique that is widely used in regional ecology and food web studies, with newly expanding applications in organic geochemistry. However, its applicability to marine sediment has been minimally examined. This study is one of the first δ15N-AA applications into the paleorecord of marine sediment. We explore how δ15N-AA measurements provide insights into past changes in water column N cycling and N utilization, and into post-depositional processes that impact sedimentary N. This is possible because δ15N-AA investigates the molecular-level basis of the bulk sedimentary δ15N signal, revealing possible diagenetic alteration of sedimentary organic matter. Our goal was is to investigate the extent of alteration (vs. preservation) of individual sedimentary amino acid δ15N values from surface nitrate δ15N across a wide range of depositional environments. The δ15N of bulk sediment differs from that of the surface nitrate δ15N signal because of water column processes or more often because of alteration of the signal during initial sedimentation. To investigate this alteration we compare δ15N-AA to bulk δ15N measurements in a suite of equatorial Pacific core tops (378-4360 m below sea level) across contrasting oceanographic and sedimentary depositional conditions (e.g. high vs. low productivity, hypoxic vs. oxic bottom waters). To examine down core diagenetic alteration of the sediment record, we present δ15N-AA and bulk δ15N of selected deeper depths to observe 1) if diagenetic shift is coherently resolved by both types of measurements and 2) if select individual δ15N-AA values remain representative of the surface organic δ15N signal. We hypothesize that compound specific analysis (δ15N-AA) will provide a molecular level assessment of mechanism for diagenetic changes in bulk organic δ15N values while also preserving detailed information about planktonic ecosystem structure.

  16. Forcing of intraseasonal Kelvin waves in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Kessler, William S.; McPhaden, Michael J.; Weickmann, Klaus M.

    1995-06-01

    Ten-year time series of sea surface temperature (SST), 20°C depth, and zonal winds measured by moored buoys across the equatorial Pacific are used to define the intraseasonal (30- to 90-day period) Kelvin waves. The Kelvin waves are observed to be forced west of the date line and propagate at a speed of 2.4 m s-1, with high zonal coherence over at least 10,000 km. They form a major component of thermocline depth variability in the east-central Pacific. The intraseasonal-band variance has a low-frequency modulation both at the annual and interannual frequencies; higher amplitudes are observed in boreal fall/winter and during the onset phase of El Niño warm events. The oceanic intraseasonal variability and its low-frequency modulation are coherent with atmospheric intraseasonal variations [the Madden-Julian Oscillation (MJO)], which are known to propagate eastward into the Pacific from the Indian Ocean as part of a planetary-scale signal. The life cycle of an individual or series of MJOs is determined by a combination of factors including tropical SSTs over the warm pool regions of the Indian and Pacific Oceans and interaction with the planetary-scale atmospheric circulation. Thus the intraseasonal Kelvin waves should be taken as an aspect of a global phenomenon, not simply internal to the Pacific. The oceanic intraseasonal variability peaks at periods near 60-75 days, while the corresponding atmospheric variations have somewhat higher frequencies (35- to 60-day periods). We show that this period offset is potentially related to the zonal fetch of the wind compared to the frequency-dependent zonal wavelength of the Kelvin wave response. A simple model is formulated that suggests an ocean-atmosphere coupling by which zonal advection of SST feeds back to the atmosphere; the model duplicates the steplike advance of warm water and westerly winds across the Pacific at the onset of the El Niño of 1991-1992. The key dynamics of the model is that the atmosphere responds

  17. Guest investigator program study: Physics of equatorial plasma bubbles

    NASA Technical Reports Server (NTRS)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  18. Halocarbon emissions and sources in the equatorial Atlantic Cold Tongue

    NASA Astrophysics Data System (ADS)

    Hepach, H.; Quack, B.; Raimund, S.; Fischer, T.; Atlas, E. L.; Bracher, A.

    2015-04-01

    Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 pmol L-1 and up to 9.2 pmol L-1 for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water,CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol L-1 in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a~biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol L-1, and the observed anticorrelation with global radiation was likely due to its strong photolysis. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and has an influence on emissions into the atmosphere. The calculated production rates of the

  19. A Campaign to Study Equatorial Ionospheric Phenomena over Guam

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Balthazor, R.; Dearborn, M.; Enloe, L.; Lawrence, T.; McHarg, M.; Petrash, D.; Reinisch, B. W.; Stuart, T.

    2007-05-01

    With the development of a series of ground-based and space-based experiments, the United States Air Force Academy (USAFA) is in the process of planning a campaign to investigate the relationship between equatorial ionospheric plasma dynamics and a variety of space weather effects, including: 1) ionospheric plasma turbulence in the F region, and 2) scintillation of radio signals at low latitudes. A Digisonde Portable Sounder DPS-4 will operate from the island of Guam (with a magnetic latitude of 5.6° N) and will provide measurements of ionospheric total electron content (TEC), vertical drifts of the bulk ionospheric plasma, and electron density profiles. Additionally, a dual-frequency GPS TEC/scintillation monitor will be located along the Guam magnetic meridian at a magnetic latitude of approximately 15° N. In campaign mode, we will combine these ground-based observations with those collected from space during USAFA's FalconSAT-3 and FalconSAT-5 low-earth orbit satellite missions, the first of which is scheduled to be active over a period of several months beginning in the 2007 calendar year. The satellite experiments are designed to characterize in situ irregularities in plasma density, and include measurements of bulk ion density and temperature, minority-to- majority ion mixing ratios, small scale (10 cm to 1 m) plasma turbulence, and ion distribution spectra in energy with sufficient resolution for observations of non-thermalized distributions that may be associated with velocity- space instabilities. Specific targets of investigation include: a) a comparison of plasma turbulence observed on- orbit with spread F on ionograms as measured with the Digisonde, b) a correlation between the vertical lifting of the ionospheric layer over Guam and the onset of radio scintillation activity along the Guam meridian at 15° N magnetic latitude, and c) a correlation between on-orbit turbulence and ionospheric scintillation at 15° N magnetic latitude. These relationships

  20. No iron fertilization in the equatorial Pacific Ocean during the last ice age.

    PubMed

    Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C

    2016-01-28

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  1. No iron fertilization in the equatorial Pacific Ocean during the last ice age

    NASA Astrophysics Data System (ADS)

    Costa, K. M.; McManus, J. F.; Anderson, R. F.; Ren, H.; Sigman, D. M.; Winckler, G.; Fleisher, M. Q.; Marcantonio, F.; Ravelo, A. C.

    2016-01-01

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP)—but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0–10,000 years ago) and the LGP (17,000–27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the

  2. Convection in deformed bodies: The effect of equatorial ellipticity on convective behavior

    NASA Astrophysics Data System (ADS)

    Evonuk, M.

    2015-11-01

    Tidal interactions between bodies such as hot jupiter planets and their host stars are likely to result in non-spherical geometries. These elliptical instabilities may have interesting effects on interior fluid convective patterns, which in turn could influence the nature of the magnetic dynamo within these planets. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine to first order the effect of equatorial eccentricity on convection for varying density contrasts with differing convective vigor and rotation rates. This survey is conducted in two dimensions in order to simulate a broad range of eccentricities and to maximize the parameter space explored. The location of the three regimes documented in previous work (Evonuk and Samuel, 2012), dipolar flow, transitional flow, and differential flow, are found to be offset by the introduction of equatorial eccentricity to the system. The introduction of equatorial eccentricity changes the fluid behavior such that bodies with high amounts of deformation are likely to have weaker differential flows shifting their behavior towards transitional and dipolar flow structures. A scaling law based on the convective Rossby number, density contrast, and the eccentricity of the equatorial plane can therefore provide a way to estimate which regime a given body lies in.

  3. Solar Cycle Effects on Equatorial Electrojet Strength and Low Latitude Ionospheric Variability (P10)

    NASA Astrophysics Data System (ADS)

    Veenadhari, B.; Alex, S.

    2006-11-01

    veena_iig@yahoo.co.in The most obvious indicators of the activity of a solar cycle are sunspots, flares, plages, and soon. These are intimately linked to the solar magnetic fields, heliospheric processes which exhibit complex but systematic variations. The changes in geomagnetic activity, as observed in the ground magnetic records follow systematic correspondence with the solar activity conditions. Thus the transient variations in the magnetic field get modified by differing solar conditions. Also the solar cycle influences the Earth causing changes in geomagnetic activity, the magnetosphere and the ionosphere. Daily variations in the ground magnetic field are produced by different current systems in the earth’s space environment flowing in the ionosphere and magnetosphere which has a strong dependence on latitude and longitude of the location. The north-south (Horizontal) configuration of the earth’s magnetic field over the equator is responsible for the narrow band of current system over the equatorial latitudes and is called the Equatorial electrojet (EEJ) and is a primary driver for Equatorial Ionization anomaly (EIA). Equatorial electric fields and plasma drifts play the fundamental roles on the morphology of the low latitude ionosphere and strongly vary during geomagnetically quiet and disturbed periods. Quantitative study is done to illustrate the development process of EEJ and its influence on ionospheric parameters. An attempt is also made to examine and discuss the response of the equatorial electrojet parameters to the fast varying conditions of solar wind and interplanetary parameters.

  4. A Theory for Emergence of Equatorial Deep Jets from Turbulence based on Statistical Mean State Dynamics

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J.; Farrell, B.

    2013-12-01

    Equatorial deep jets (EDJs) are persistent, zonally-coherent jets found within one degree of the equator in all ocean basins (Luyten and Swallow, 1976). The jets are characterized by a vertically oscillating ('stacked') structure between ~500-2000m depth, with jet amplitudes on the order of 10 cm/s superimposed upon a large-scale background shear flow. EDJs are a striking feature of the equatorial climate system and play an important role in equatorial ocean transport. However, the physical mechanism responsible for the presence of EDJs remains uncertain. Previous theoretical models for EDJs have suggested mechanisms involving the reflection and constructive interference of equatorially trapped waves (Wunsch 1977, McCreary 1984) and the instability of mixed Rossby-gravity waves with EDJs as the fastest-growing eigenfunction (Hua et al. 2008, Eden et al. 2008). In this work we explore the jet formation mechanism and the parameter dependence of EDJ structure in the idealized theoretical model of the stochastically-driven equatorial beta plane. The model is formulated in three ways: 1) Fully nonlinear equations of motion 2) Quasilinear (or mean-field) dynamics 3) Statistical state dynamics employing a second order closure method (stochastic structural stability theory). Results from the three models are compared, and the implications for both the jet formation and equilibration mechanisms, as well as the role of eddy-eddy nonlinearity in the EDJ system, are discussed.

  5. Response of the equatorial ionosphere to the geomagnetic DP 2 current system

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R.

    2016-07-01

    The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and magnetosphere generates a convection electric field that can penetrate to the ionosphere and cause the DP 2 current system. The quasiperiodic DP 2 current system, which fluctuates coherently with fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.

  6. Time-space Variability of Weekly to Monthly Period Equatorial Waves in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Durland, T.; Farrar, J. T.

    2015-12-01

    Data from satellite altimetry are used to characterize wavelike variability in the tropical Pacific Ocean at periods of days to two months. This period band is of interest because the space-time scales of oceanic equatorial waves at these frequencies have historically made adequate observation of the variability difficult. These waves have zonal scales that are very large (exceeding 3000 km) and meridional scales that are relatively short (~100 km), making in situ measurements difficult, and the short temporal scales pose challenges for observation with satellite altimeters because the wave periods are short compared to orbit repeat periods. As a result, there has been relatively little progress since the early 1980s in characterizing and understanding these equatorial inertia-gravity and mixed Rossby-gravity waves. In this analysis, we seek to exploit the long zonal length scales of these high-frequency equatorial waves in an analysis of satellite scatterometer and altimeter data to shed new light on the properties and dynamics of these waves. At periods of 2-14 days, there is clear evidence for the presence of several basin-scale equatorial wave modes, including mixed Rossby-gravity waves and inertia-gravity waves associated with baroclinic modes one and two. Here, we focus on equatorial Kelvin waves and mixed Rossby-gravity waves forced in the western Pacific, and examine their variability in time and space and their relation to wind.

  7. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements

    NASA Astrophysics Data System (ADS)

    Ryu, K.; Lee, E.; Chae, J. S.; Parrot, M.; Pulinets, S.

    2014-10-01

    We report the processes and results of statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite over a period of 6 years (2005-2010), in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the equatorial ionization anomaly (EIA) intensity indices, which represent relative equatorial electron density increase, were performed for each region. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 5.0 in the low-latitude region can accompany observable precursory and concurrent EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling is consistent with our observation, and the possibility of earthquake prediction using the EIA intensity variation is discussed.

  8. Designing nonuniform satellite systems for continuous global coverage using equatorial and polar circular orbits

    NASA Astrophysics Data System (ADS)

    Ulybyshev, S. Yu.

    2016-07-01

    We present a method for designing nonuniform satellite systems for continuous global coverage using a combination of equatorial and near-polar satellite segments in circular orbits. Equations are derived to determine the basic design parameters of the satellite system itself and the conditions of its closure at the joint of near-polar and equatorial segments. We analyze specific features of near-polar and equatorial satellite systems and their advantages and disadvantages compared with existing classes of near-polar phased and kinematically correct satellite systems. We estimate the minimum required number of spacecrafts in satellite systems for a given fold of coverage and present calculated dependences for classes of near-polar phased and equatorial satellite systems with different types of closure. For the class of kinematically correct satellite systems, we analyze the characteristics of systems with a minimum spacecraft flight height and reveal that the number of satellites in the orbital plane depends on the flight height for different folds of coverage. We bring examples of the best near-polar equatorial satellite systems of global coverage for different folds and a class of satellite systems with a fixed number of spacecrafts and orbital planes in them.

  9. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  10. Validation of the TEC2F2 model over the African equatorial region

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas

    2016-06-01

    In this paper a statistical method, TEC2F2, of estimating critical F2 layer frequency (foF2) from Global Positioning System (GPS) Vertical Total Electron content (VTEC) is extended from Africa's mid-latitudes to the equatorial region, and the results validated. The equatorial region is one of the most dynamic yet under-represented over Africa in ionospheric studies. The TEC2F2 method was first considered for the South African region (mid-latitudes). This region is covered by a network of ionosondes that provided a validation platform for the TEC2F2 method before being applied to other parts of Africa. The results show that over the African equatorial region, the TEC2F2 method is a potential candidate in more accurately estimating the foF2 parameter than the most recent version of the International Reference Ionosphere (IRI-2012) model.

  11. Geology of the Venus equatorial region from Pioneer Venus radar imaging

    NASA Technical Reports Server (NTRS)

    Senske, D. A.; Head, James W.

    1989-01-01

    The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae.

  12. Propagation of equatorial noise to low altitudes: Decoupling from the magnetosonic mode

    NASA Astrophysics Data System (ADS)

    Santolík, O.; Parrot, M.; Němec, F.

    2016-07-01

    Equatorial noise (often phenomenologically described as magnetosonic waves in the literature) is a natural electromagnetic emission, which is generated by instability of ion distributions and which can interact with electrons in the Van Allen radiation belts. We use multicomponent electromagnetic measurements of the DEMETER spacecraft to investigate if equatorial noise propagates inward down to the Earth. Analysis of a selected event recorded under disturbed geomagnetic conditions shows that equatorial noise can be observed at an altitude of 700 km, while propagating radially downward as a superposition of spectral lines from different distant sources observed at frequencies both below and above the local proton cyclotron frequency. Changes in the local ion composition encountered by the waves during their inward propagation disconnect the identified wave mode from the low-frequency magnetosonic mode. The local ion composition also induces a cutoff which prevents the waves from propagating down to the ground.

  13. Theoretical study of the ionospheric plasma cave in the equatorial ionization anomaly region

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Tsung; Lin, C. H.; Chen, C. H.; Liu, J. Y.; Huba, J. D.; Chang, L. C.; Liu, H.-L.; Lin, J. T.; Rajesh, P. K.

    2014-12-01

    This paper investigates the physical mechanism of an unusual equatorial electron density structure, plasma cave, located underneath the equatorial ionization anomaly by using theoretical simulations. The simulation results provide important new understanding of the dynamics of the equatorial ionosphere. It has been suggested previously that unusual E>⇀×B>⇀ drifts might be responsible for the observed plasma cave structure, but model simulations in this paper suggest that the more likely cause is latitudinal meridional neutral wind variations. The neutral winds are featured by two divergent wind regions at off-equator latitudes and a convergent wind region around the magnetic equator, resulting in plasma divergences and convergence, respectively, to form the plasma caves structure. The tidal-decomposition analysis further suggests that the cave related meridional neutral winds and the intensity of plasma cave are highly associated with the migrating terdiurnal tidal component of the neutral winds.

  14. Long-term trend of Pacific South Equatorial Current bifurcation over 1950-2010

    NASA Astrophysics Data System (ADS)

    Zhai, Fangguo; Hu, Dunxin; Wang, Qingye; Wang, Fujun

    2014-05-01

    This study investigates the long-term change of the Pacific South Equatorial Current (SEC) bifurcation latitude (SBL) over 1950-2010 with Simple Ocean Data Assimilation version 2.2.4. Results indicate that the SBL averaged within upper 200 m has migrated southward at 0.020°S yr-1, comparable in magnitude with -0.024°N yr-1 for the North Equatorial Current bifurcation latitude (NBL). The SEC transport into the Coral Sea has increased. Due to the southward SBL migration, most of the increased SEC water was transported equatorward, contributing to the Equatorial Undercurrent intensification. Experiments with a nonlinear 1.5 layer reduced gravity model indicate that the southward migration of SBL is mainly caused by positive Ekman flux divergence trend in the eastern tropical South Pacific, while that of NBL is caused by negative Ekman flux divergence trend in the western tropical North Pacific.

  15. Larger CO2 source at the equatorial Pacific during the last deglaciation

    PubMed Central

    Kubota, Kaoru; Yokoyama, Yusuke; Ishikawa, Tsuyoshi; Obrochta, Stephen; Suzuki, Atsushi

    2014-01-01

    While biogeochemical and physical processes in the Southern Ocean are thought to be central to atmospheric CO2 rise during the last deglaciation, the role of the equatorial Pacific, where the largest CO2 source exists at present, remains largely unconstrained. Here we present seawater pH and pCO2 variations from fossil Porites corals in the mid equatorial Pacific offshore Tahiti based on a newly calibrated boron isotope paleo-pH proxy. Our new data, together with recalibrated existing data, indicate that a significant pCO2 increase (pH decrease), accompanied by anomalously large marine 14C reservoir ages, occurred following not only the Younger Dryas, but also Heinrich Stadial 1. These findings indicate an expanded zone of equatorial upwelling and resultant CO2 emission, which may be derived from higher subsurface dissolved inorganic carbon concentration. PMID:24918354

  16. Nonlinear Landau resonant scattering of near equatorially mirroring radiation belt electrons by oblique EMIC waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Su, Zhenpeng; Zhang, Yan; Shi, Shengwei; Wang, Geng

    2016-04-01

    In response to solar wind disturbances, radiation belt (a few hundreds of keV to several MeV) electron fluxes can be depleted significantly over the entire equatorial pitch angle range. The frequently mentioned cyclotron resonant scattering is applicable only for electrons mirroring off the equator. Here we propose a new physical mechanism, nonlinear Landau resonance with oblique electromagnetic ion cyclotron (EMIC) waves, to effectively scatter the near equatorially mirroring electrons. Our test particle simulations show that the nonlinear Landau trapping can occur over a wide energy range and yield the net decrease in equatorial pitch angle Δαeq≈10° within several seconds. Our parametric studies further reveal that this nonlinear Landau-trapping process is favored by a low plasma density, an intense wave field, a high wave frequency close to ion gyrofrequencies, and a large wave normal angle.

  17. Nightime VHF and GHz scintillations in the East-Asian sector of the equatorial anomaly

    SciTech Connect

    Wernik, A.W.; Franke, S.; Liu, C.H.; Fang, D.J.

    1983-02-01

    Measurements made during solar maximum years in the East Asian sector of the equatorial anomaly show different seasonal patterns of night-time scintillation occurrence at 137 MHz at Lunping and 4 GHz at Hong Kong. These seasonal variations are very similar to that observed at the equatorial station in Guam, indicating strong coupling between equatorial and anomaly irregularities. Model computations indicate that the GHz scintillation observed at Hong Kong is much stronger than one would expect based on VHF scintillation measured at Lunping. It is suggested that this might be an indication of strong latitudinal dependence of scintillation in the anomaly region. We also discuss the possible difference in local ionospheric conditions that were responsible for generating GHz scintillation causing irregularities in the anomaly region and at the equator.

  18. Investigation of height gradient in vertical plasma drift at equatorial ionosphere using multifrequency HF Doppler radar

    NASA Astrophysics Data System (ADS)

    Prabhakaran Nayar, S. R.; Sreehari, C. V.

    2004-12-01

    A multifrequency HF Doppler radar installed at the magnetic equatorial station Trivandrum provides an opportunity to study the height gradient in vertical plasma drift at the bottomside of equatorial F region during evening time. The multifrequency radar gives near-simultaneous observation of vertical plasma drift at three close by F region heights above the sounding station. The height gradient of the vertical drift shows a negative value during the prereversal enhancement (PRE) period and turns to positive value after the prereversal enhancement. The average height gradient in vertical plasma drift remains negative around PRE and its magnitude decreases with altitude, below F peak. This could be a clear-cut manifestation of the curl-free nature of the low-latitude electric field, and it could also indicate a partial signature of the postsunset velocity vortex at the equatorial F region. The magnitude of the mean height gradient around PRE exhibits a seasonal variation.

  19. On the mutual relationship of the equatorial electrojet, TEC and scintillation in the Peruvian sector

    NASA Astrophysics Data System (ADS)

    Khadka, Sovit M.; Valladares, Cesar; Pradipta, Rezy; Pacheco, Edgardo; Condor, Percy

    2016-06-01

    This paper presents the interrelationship between the equatorial electrojet (EEJ) strength, Global Positioning System (GPS)-derived total electron content (TEC), and postsunset scintillation from ground observations with the aim of finding reliable precursors of the occurrence of ionospheric irregularities. Mutual relationship studies provide a possible route to predict the occurrence of TEC fluctuation and scintillation in the ionosphere during the late afternoon and night respectively based on daytime measurement of the equatorial ionosphere. Data from ground based observations in the low latitudes of the west American longitude sector were examined during the 2008 solar minimum. We find a strong relationship exists between the noontime equatorial electrojet and GPS-derived TEC distributions during the afternoon mediated by vertical E × B drift via the fountain effect, but there is little or no relationship with postsunset ionospheric scintillation.

  20. First observational evidence for the connection between the meteoric activity and occurrence of equatorial counter electrojet

    NASA Astrophysics Data System (ADS)

    Vineeth, C.; Mridula, N.; Muralikrishna, P.; Kumar, K. K.; Pant, T. K.

    2016-09-01

    This paper presents the first direct observational evidence for the possible role of meteoric activity in the generation of the equatorial Counter Electrojets (CEJ), an enigmatic daytime electrodynamical process over the geomagnetic equatorial upper atmosphere. The investigation carried out using the data from Proton Precession Magnetometer and Meteor Wind Radar over a geomagnetic dip equatorial station, Trivandrum (8.5°N, 77°E, 0.5°N dip lat.) in India, revealed that the occurrence of the afternoon CEJ events during a month is directly proportional to the average monthly meteor counts over this location. The observation is found to be very consistent during the considered period of study, i.e the years 2006 and 2007. The study vindicates that the meteor showers play a major role in setting up the background condition conducive for the generation of CEJ by reducing the strength of the upward polarization field.

  1. The Neogene equatorial Pacific: A view from 2009 IODP drilling on Expedition 320/321. (Invited)

    NASA Astrophysics Data System (ADS)

    Lyle, M. W.; Shackford, J.; Holbourn, A. E.; Tian, J.; Raffi, I.; Pälike, H.; Nishi, H.

    2013-12-01

    The equatorial Pacific responds strongly to global climate and is a source of ENSO, the largest global decadal climate oscillation. Equatorial Pacific circulation and upwelling result from global atmospheric circulation patterns so it is unsurprising that oceanographic changes in the equatorial Pacific reverberate globally. IODP expedition 320/321 (Pacific Equatorial Age Transect) drilled 8 sites to reconstruct a 50-million-year record of ocean change for the equatorial Pacific. The resulting record, when spliced together, will resolve orbital variations through most of the Cenozoic. All sedimentary sequences have now been scanned by XRF, so that biogeochemical changes through the Cenozoic can be studied. Here we report data from IODP Sites U1335, U1336, U1337, and U1338, the Neogene part of the PEAT megasplice. Sediments of the Neogene equatorial Pacific are primarily biogenic carbonates, with about 15% biogenic silica tests and 5% assorted other components, including clays. Typically, highest sediment deposition occurs when plate tectonic movement carries a drill site underneath the equatorial zone, indicating that equatorial upwelling and high productivity have been consistent features of the Neogene equatorial Pacific. Sedimentation rates become significantly slower and dissolution of both biogenic carbonates and silica are more pronounced when sites are beyond 3° in latitude away from the equator, as biogenic sediment production drops but dissolution does not. The differences between equatorial and off-equator sites allow assessment of productivity vs dissolution as drivers of the sediment record. Carbonate dissolution can also be assessed by a ratio of XRF-estimated carbonate to dissolution resistant biogenic residue, like barite. There is a common stratigraphy of carbonate variation in the Neogene equatorial Pacific, as proposed by earlier work from DSDP Leg 85 and ODP Leg 138. The new Exp 320/321 drilling extends the high-resolution record from ~0-5 Ma

  2. New Evidence for Equatorially Trapped Thermal Plasma During Early Post-Storm Recovery

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Green, J. L.

    2005-01-01

    Almost 20 years ago Olsen et al. [1987] reported Dynamics Explorer 1 Retarding Ion Mass Spectrometer observations of equatorially trapped, cold ions in the vicinity of the plasmapause. In that study the trapped population corresponded to a local minimum in density at the magnetic equator. During that time period observations were uncovered of a local maximum in plasma density at the equator. Until IMAGE there has been no good opportunity to experimentally revisit this topic, however until now no direct evidence of a relevant equatorial process has been recognized near the plasmapause during early recovery conditions. It appears that evidence has now been found in both the Extreme Ultraviolet Imager and Radio Plasma Imager observations. The observations, conditions, and properties of what appears to be an equatorially trapped and enhanced density near the magnetic equator will be presented and discussed.

  3. An endurign rapidly moving storm as a guide to Saturn's equatorial jet complex structure

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, Agustin; Wong, Mike H.; Simon, Amy; Hueso, Ricardo; Perez-Hoyos, Santiago; Antuñano, Arrate; Rojas, Jose Felix; del Rio-Gaztelurrutia, Teresa; Barrado-Izagirre, Naiara; Garate-Lopez, Itziar; Garcia-Melendo, Enrique; Francisco Sanz-Requena, Jose; Gomez-Forrellad, Josep Maria; de Pater, Imke

    2015-11-01

    Saturn has an intense and broad eastward equatorial jet at cloud level whose variability and meridional and vertical structure are complex and actively debated. Due to its 27º rotation axis tilt and orbital eccentricity, Saturn is under a strong seasonal insolation cycle, enhanced at equator by the ring shadowing periods. These factors make it a good natural laboratory to test models of equatorial jet generation in giant planets. We report on a bright equatorial storm at 6 degrees North latitude observed in 2015 that moved rapidly but steadily at a high speed of 450 ms-1, not reported since Voyagers times (Sanchez-Lavega et al., Icarus 147, 405-420, 2000). Imaging with the Hubble Space Telescope (HST) WFC3 showed detailed storm morphology at red wavelengths (689, 750 and 937 nm) confirming its high speed. Other equatorial clouds moved with lower velocities matching the Cassini ISS profile (García-Melendo et al., Icarus, 215, 62-74, 2011), while the storm matches the Voyager 1 and 2 profile. We interpret this result as the simultaneous detection of the wind profile at two separated altitude levels within the cloud layer. In addition, the HST methane band and ultraviolet images, allowed retrieving winds at a third altitude level of motion, in the haze layer above the cloud deck. Combining the current wind data with previous dates allowed us to construct a vertical - meridional section of the structure of Saturn’s equatorial jet at cloud level. We discuss the implications of these results on the long-term stability of Saturn’s equatorial jet.

  4. Occurrence of Equatorial F Region Irregularities: Evidence for Tropospheric Seeding

    NASA Technical Reports Server (NTRS)

    McClure, J. P.; Singh, S.; Bamgboye, D. K.; Johnson, F. S.; Kil, Hyosub

    1998-01-01

    We present a new gap-free version of the seasonal and longitudinal 0 (s/l) variations of P(sub EFI), the equatorial F region irregularity (EFI) occurrence probability, based on data from the AE-E spacecraft. The agreement of this and three earlier partial P(sub EFI) patterns verifies all four. We reinterpret another earlier gap-ridden pattern, that of D(bar)(sub RSF), a topside ionogram index of average darkening by range spread F. We compare it with P(sub EFI) and, using ionosonde radio science considerations, we conclude that D(bar)(sub RSF) = P(sub EFI) times a factor depending on the average number of topside plasma bubbles visible to the ionosonde. The s/l variations of D(baar)(sub RSF) thus imply s/l variations in the average spacing of bubbles, whose seeds have an occurrence probability pattern P(sub seed). For discussion we assume P(sub EFI) = P(sub inst)P(sub seed) is the pattern of F region instability. The P(sub EFI) pattern, which is by definition independent of seed and/or bubble spacing, is far too complex to be explained by the dominant paradigm, that of changes in P(sub inst) by simple changes in the F region altitude and/or north-south asymmetry. We examine evidence behind this dominance, and find it unconvincing. Both the asymmetry and sunset-node/altitude hypotheses of 1984 and 1985, respectively, seem to be partly based on misunderstood data, and their features appear displaced in time and space from those of our repeatable P(sub EFI) pattern. In contrast, if P(sub seed) variations influence the P(sub EFI) pattern and depend on thermospheric gravity waves from tropospheric convection near the dip equator, then the seasonal maxima (minima) Of P(sub EFI) could be explained, since they all occur above relatively warm (cold) surface features, where convection is maximal (minimal). Also, the hypothesis of the dominance of the P(sub seed) term could explain an unusual December/January P(sub EFI) maximum in the deep, wide, normal Pacific minimum in the

  5. Concept development for the ITER equatorial port visible/infrared wide angle viewing system

    SciTech Connect

    Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S.; and others

    2012-10-15

    The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.

  6. Comparison of Galileo Probe and Earth-Based Translation Rates of Jupiter's Equatorial Clouds

    PubMed

    Beebe; Simon; Huber

    1996-05-10

    The Doppler wind speeds derived from Galileo probe data are comparable with the maximum translation speeds observed in the equatorial zone by Voyager 1 and the Hubble Space Telescope. Slower published values of east-west winds are based on measurements of larger features and should be interpreted as translation rates of large weather systems interacting with the wind. The nature of the hot-spot region that the Galileo probe entered is compatible with a high-speed jet at 6 degrees north. The hot spot is associated with an equatorial weather system that spans 5 degrees of latitude and translates at 103 meters per second. PMID:8662572

  7. Kelvin waves near the equatorial stratopause as seen in SBUV ozone data

    NASA Technical Reports Server (NTRS)

    Hirota, Isamu; Shiotani, Masato; Sakurai, Takahiro; Gille, John C.

    1991-01-01

    Data on ozone mixing ratios derived for the time period 1979-1986 from measurements of the solar backscatter UV instrument on board Nimbus-7 were used to investigate space-time variations of atmospheric ozone in the equatorial middle atmospohere during this period. Evidence is presented for the appearance of equatorially trapped 'ozone Kelvin waves' above the 10-mb level, having a zonal wavenumber-one component and an eastward migration period of about 7 days. It is shown that Kelvin wave amplitudes are closely related to the semiannual oscillation of the zonal mean wind around the stratopause level.

  8. Saturn's Equatorial Oscillation: Evidence of Descending Thermal Structure from Cassini Radio Occultations

    NASA Technical Reports Server (NTRS)

    Schinder, P. J.; Flasar, F. M.; Marouf, E. A.; French, R. G.; McGhee, C. A.; Kliore, A. J.; Rappaport, N. J.; Barbinis, E.; Fleischman, D.; Anabtawi, A.

    2011-01-01

    A series of near-equatorial radio occultations of Cassini by Saturn occurred in 2005 and again in 2009-2010. Comparison of the temperature-pressure profiles obtained from the two sets of occultations shows evidence of a descending pattern in the stratosphere that is similar to those associated with equatorial oscillations in Earth's middle atmosphere. This is the first time that this descent has been observed in another planetary atmosphere. If absorption of upwardly propagating waves drives the descent, the implied absorbed flux is 0.05 square meters per square second at least as large if not greater than on Earth.

  9. The equatorial current sheet and other interesting features of the pulsar magnetosphere

    NASA Astrophysics Data System (ADS)

    Contopoulos, Ioannis

    2016-06-01

    > We want to understand what drives magnetospheric dissipation in the equatorial current sheet. Numerical simulations have limitations and, unless we have a clear a priori understanding of the physical processes involved, their results can be misleading. We argue that the canonical pulsar magnetosphere is strongly dissipative and that a large fraction (up to 30-40 % in an aligned rotator) of the spindown luminosity is redirected towards the equator where it is dissipated into particle acceleration and emission of radiation. We show that this is due to the failure of the equatorial electric current to cross the Y-point at the tip of the corotating zone.

  10. El Nino-southern oscillation displacements of the western equatorial Pacific warm pool

    SciTech Connect

    McPhaden, M.J. ); Picaut, J. )

    1990-12-07

    The western equatorial Pacific warm pool (sea-surface temperatures >29C) was observed to migrate eastward across the date line during the 1986-1987 El Nino-Southern Oscillation event. Direct velocity measurements made in the upper ocean from 1986 to 1988 indicate that this migration was associated with a prolonged reversal in the South Equatorial Current forced by a large-scale relaxation of the trade winds. The data suggest that wind-forced zonal advection plays an important role in the thermodynamics of the western Pacific warm pool on interannual time scales.

  11. Equatorial gravitational lensing by accelerating and rotating black hole with NUT parameter

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper is devoted to study equatorial gravitational lensing in accelerating and rotating black hole with a NUT parameter in the strong field limit. For this purpose, we first calculate null geodesic equation using the Hamilton-Jacobi separation method. We then numerically obtain deflection angle and deflection coefficients which depend on acceleration and spin parameter of the black hole. We also investigate observables in the strong field limit by taking the example of a black hole in the center of galaxy. It is concluded that acceleration parameter has a significant effect on the strong field lensing in the equatorial plane.

  12. DISCOVERY OF A MULTIPOLAR STRUCTURE WITH AN EQUATORIAL DISK IN NGC 6072

    SciTech Connect

    Kwok, Sun; Chong, Sze-Ning; Hsia, Chih-Hao; Zhang Yong; Koning, Nico

    2010-01-01

    From near-infrared and molecular hydrogen imaging observations, we have discovered that the planetary nebula NGC 6072 has a multipolar structure with a prominent equatorial ring. We have modeled the object by a double bipolar system, each with an equatorial ring and a pair of bipolar lobes. The bipolar axes of the two systems are estimated to be separated by 47 deg. The existence of such a double bipolar system suggests that the object has undergone separate fast outflow episodes separated by several thousand years.

  13. Elevated Glyoxal Concentrations over the Eastern Equatorial Pacific: A Direct Biogenic Source?

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Wang, Y.; Lerot, C.

    2014-12-01

    Elevated atmospheric glyoxal (CHOCHO) was observed over the eastern equatorial Pacific by satellite and ship measurements. We investigated the source contributions through inverse modeling using GOME-2 observations (2007-2012) and the GEOS-Chem model. The observed high glyoxal to HCHO column ratio over the region indicates the potential presence of a direct source of glyoxal rather than secondary production. A bimodal seasonal cycle of glyoxal concentrations was found, providing further evidence for a biogenic origin of glyoxal emission. The estimate of the primary glyoxal emission over the eastern equatorial Pacific is 20-40Tg/yr, which is comparable to the previous estimate of the global continential glyoxal emission.

  14. Concept development for the ITER equatorial port visible/infrared wide angle viewing systema)

    NASA Astrophysics Data System (ADS)

    Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Huxford, R.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S.; Walker, C.; Walsh, M.

    2012-10-01

    The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R&D topics are outlined.

  15. Multiple Magnetic Storm Study of the High-Altitude Redistribution of Equatorial Plasma

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Crowley, G.; Curtis, N.; Anderson, D.

    2008-12-01

    During geomagnetic storms, particularly when prompt penetration electric fields (PPE) occur, the equatorial plasma can be lifted to very high altitudes and then diffuse along magnetic field lines to higher than normal latitudes. During these cases very high plasma density (total electron content (TEC) greater than 200 TECU) can be found at these higher latitudes. Shortly after the PPE lifts the equatorial plasma to higher altitudes, at least in the US sector, phenomena known as storm-enhanced density (SED) can occur. SEDs occur in the post-noon time frame and consist of a very high density bulge that seems to occur in the southern USA and Caribbean region, followed by a narrow plume of high density plasma that flows into the high-latitude throat near local noon, and across the polar cap. An outstanding research question is: Exactly how is the high density SED plasma, particularly in the bulge related to the PPE and lifting of the equatorial plasma? Ionospheric imaging of electron density and TEC seem to show a gap in density between the poleward extent of the equatorial plasma and the equatorial extent of the SED plasma. Further, there are magnetic storm events where SEDs do not form (November 2004 as a good example). This paper will investigate the relationship between the equatorial high altitude plasma distribution during magnetic storms, and the initiation and evolution of the SED feature. We will examine eight separate storms from 2003-2006 using the ionospheric data assimilation algorithm IDA4D. In particular we will focus on time periods when LEO satellite GPS TEC data is available from CHAMP, SACC, GRACE and the COSMIC constellation (2006 and beyond). These data sets directly measure the TEC above the satellites, and therefore are good tracers of the high altitude plasma distribution. IDA4D ingests these data sets and uses them to get an improved image of the plasma density for the topside ionosphere and plasmasphere. The resulting 4D images of high

  16. Thermal structure of the mantle beneath the equatorial Mid-Atlantic Ridge: Inferences from the spatial variation of dredged basalt glass compositions

    NASA Astrophysics Data System (ADS)

    Schilling, J.-G.; Ruppel, C.; Davis, A. N.; McCully, B.; Tighe, S. A.; Kingsley, R. H.; Lin, J.

    1995-06-01

    We report on the major element composition of basaltic glasses from the Mid-Atlantic Ridge transecting the equatorial mega-fracture zones from 7°S to 5°N (65 stations, 10-20 km sampling intervals, 3.5-5 km water depth range). Many of the basaltic glasses are Na2O, SiO2, and MgO rich, similar to other basalt glasses erupted along the deepest regions of the mid-ocean ridge system, suggesting melt generation by relatively low degrees of partial melting at rather shallow depth in the upper mantle. Along the ridge axis, the compositional variations show regular and systematic long-wavelength trends with a major discontinuity at the complex St. Paul transform fault, just south of St. Peter and Paul islets. A corresponding long-wavelength trend in upper mantle potential temperature, mean pressure, and degree of melting and crustal thickness variation is inferred using parameterized petrologic decompression melting models. A 600-km-long, nearly linear negative gradient in these parameters is apparent from the Charcot fracture zone (FZ) to the St. Paul FZ. Over the length of this gradient, the upper mantle potential temperature drops by about 70°C, the mean degree of partial melting changes from 7% to 10%, and the inferred crustal thickness varies between 3 and 6 km. The gradient along the ridge axis is unaffected by the mega-transform fault offsets, implying that a broad (approximately 2000 km wide across-axis and 600 km long along-axis) cold zone is present in the upper mantle just south of the equator. At the discontinuity across the complex St. Paul transform fault, the gradients in inferred potential temperature, mean degree of partial melting, and crustal thickness abruptly change sign, respectively increasing by 80°C, rising from 7% to 10%, and changing from 3 to 6 km. The discontinuity is clearly related to the Sierra Leone plume affecting the Mid-Atlantic Ridge around 1.7°N, as also evident from Pb, Nd, and Sr isotopic variations previously reported on the

  17. Westward equatorial electrojet during daytime hours. [relation to geomagnetic horizontal field depression

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.

    1974-01-01

    The phenomenon of the depression of the geomagnetic horizontal field during the daytime hours of magnetically quiet days at equatorial stations is described. These events are generally seen around 0700 and 1600 LT, being more frequent during the evening than the morning hours. The evening events are more frequent during periods of low solar activity and in the longitude region of weak equatorial electrojet currents. The latitudinal extent of the phenomenon is limited to the normal equatorial electrojet region, and on some occasions the phenomenon is not seen at both stations, separated by only a few hours in longitude. During such an event, the latitudinal profile of the geomagnetic vertical field across the equator is reversed, the ionospheric drift near the equator is reversed toward the east, the q type of sporadic E layer is completely absent, and the height of the peak ionization in the F2 region is decreased. It is suggested that these effects are caused by a narrow band of current flowing westward in the E region of the ionosphere and within the latitude region of the normal equatorial electrojet, due to the reversal of the east-west electrostatic field at low latitudes.

  18. Spatio-Temporal Evolutions of Non-Orthogonal Equatorial Wave Modes Derived from Observations

    NASA Astrophysics Data System (ADS)

    Barton, C.; Cai, M.

    2015-12-01

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCF), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. In this study, we propose a methodology that seeks to identify individual wave modes in instantaneous fields of observations by determining their projections on PCF modes according to the equatorial wave theory. The new method has the benefit of yielding a closed system with a unique solution for all waves' spatial structures, including IG waves, for a given instantaneous observed field. We have applied our method to the ERA-Interim reanalysis dataset in the tropical stratosphere where the wave-mean flow interaction mechanism for the quasi-biennial oscillation (QBO) is well-understood. We have confirmed the continuous evolution of the selection mechanism for equatorial waves in the stratosphere from observations as predicted by the theory for the QBO. This also validates the proposed method for decomposition of observed tropical wave fields into non-orthogonal equatorial wave modes.

  19. A new model of equatorial ionospheric scintillations in the Indian zone

    NASA Technical Reports Server (NTRS)

    Trivedi, A. I.; Vats, H. O.; Deshpande, M. R.; Rastogi, R. G.

    1980-01-01

    The seasonal mean daily variations of 40, 140 and 360 MHz scintillations observed at Ootacamund, India during 1975-76 showed large differences with those computed from the model given by Fremouw et al (1977). A new model has been suggested taking into account the observations at equatorial regions; however, it could not be tested for different solar activity periods.

  20. Importance of Large-Scale Wave Structure to Equatorial Spread F

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.

    2008-12-01

    There is mounting evidence that large-scale wave structure (LSWS) is a more direct precursor of equatorial spread F (ESF) than the post-sunset rise (PSSR) of the equatorial F layer. Unambiguous experimental evidence, though limited, come from measurements by ALTAIR, a fully steerable incoherent-scatter radar, in situ measurements by low-altitude satellites in low-inclination orbits (AE-E, San Marco D), and total electron content measurements using satellites in low-inclination orbits. Less direct evidence is contained in seemingly extraneous traces in equatorial ionograms, which appear to be associated with LSWS and ESF. Clearly, a demonstration that these traces are indeed a direct consequence of LSWS is pivotal because such a demonstration would allow use of the extensive database of equatorial ionograms that exists to argue conclusively that LSWS is a central player in ESF generation. A demonstration of this kind will be presented, together with a description of experiments proposed for the Pacific sector, which involve the C/NOFS satellite, and how they will increase substantially our understanding of LSWS and ESF.

  1. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean.

    PubMed

    Sardessai, S; Shetye, Suhas; Maya, M V; Mangala, K R; Prasanna Kumar, S

    2010-01-01

    Nutrient characteristics of four water masses in the light of their thermohaline properties are examined in the eastern Equatorial Indian Ocean during winter, spring and summer monsoon. The presence of low salinity water mass with "Surface enrichments" of inorganic nutrients was observed relative to 20 m in the mixed layer. Lowest oxygen levels of 19 microM at 3 degrees N in the euphotic zone indicate mixing of low oxygen high salinity Arabian Sea waters with the equatorial Indian Ocean. The seasonal variability of nutrients was regulated by seasonally varying physical processes like thermocline elevation, meridional and zonal transport, the equatorial undercurrent and biological processes of uptake and remineralization. Circulation of Arabian Sea high salinity waters with nitrate deficit could also be seen from low N/P ratio with a minimum of 8.9 in spring and a maximum of 13.6 in winter. This large deviation from Redfield N/P ratio indicates the presence of denitrified high salinity waters with a seasonal nitrate deficit ranging from -4.85 to 1.52 in the Eastern Equatorial Indian Ocean. PMID:20547419

  2. Tropical atmospheric response to decadal changes in the Atlantic Equatorial Mode

    NASA Astrophysics Data System (ADS)

    Losada, T.; Rodríguez-Fonseca, B.

    2016-08-01

    It has been shown that the atmospheric response to the Atlantic Equatorial Mode is non-stationary. After the 1970s, Sea Surface Temperature (SST) anomalies in the tropical Atlantic are able to alter the atmosphere in the tropical Pacific via modifications of the Walker circulation. Such changes could be related to the differences in the background state of the global SSTs before and after the 1970s, but also to changes in the interannual Equatorial Mode itself. In this work we first describe the differences in the interannual Equatorial Mode before and after the 1970s. Then we use two AGCMs to perform different sensitivity experiments changing the spatial structure of the Equatorial Mode, and we explore the differences in the atmospheric response over the tropical Pacific region to each of the SST patterns considered. It is shown that the changes in the Walker Atlantic-Pacific cell produced by the EM are stronger after the 1970s, and are reinforced by the change in the impact of the EM over the Indian Ocean and the Maritime Continent. It is also shown that, although the Atlantic-Pacific connection is established by the aforementioned changes in the Walker circulation between the two basins, the modulation of the Indian sector is crucial for a realistic simulation of such connection by climate models.

  3. Mean Flow Velocities and Mass Transport for Equatorially-Trapped Water Waves with an Underlying Current

    NASA Astrophysics Data System (ADS)

    Henry, David; Sastre-Gomez, Silvia

    2016-04-01

    In this paper we present an analysis of the mean flow velocities, and related mass transport, which are induced by certain equatorially-trapped water waves. In particular, we examine a recently-derived exact and explicit solution to the geophysical governing equations in the {β} -plane approximation at the equator which incorporates a constant underlying current.

  4. Mars Global Digital Dune Database: Distribution in North Polar Region and Comparison to Equatorial Region

    NASA Astrophysics Data System (ADS)

    Hayward, R. K.; Fenton, L. K.; Tanaka, K. L.; Mullins, K. F.; Titus, T. N.; Bourke, M. C.; Hare, T. M.; Christensen, P. R.

    2008-03-01

    The north polar portion of the Mars Global Digital Dune Database (MGD3) extends coverage of medium to large-size dark dunes to include the region from 65°N to 90°N, building on the previously released equatorial portion that spans 65°S to 65°N.

  5. Eastern equatorial Pacific Ocean T-S variations with El Nino

    NASA Technical Reports Server (NTRS)

    Wang, O.; Fukumori, I.; Lee, T.; Johnson, G. C.

    2004-01-01

    Temperature-Salinity (T-S) relationship variability in the pycnocline of the eastern equatorial Pacific Ocean (NINO3 region, 5 degrees S ??degrees N, 150 degrees W ?? degrees W) over the last two decades is investigated using observational data and model simulation.

  6. Comparison of the ionospheric plasma turbulence over seismic and equatorial regions.

    NASA Astrophysics Data System (ADS)

    Kosciesza, M.; Blecki, J.; Parrot, M.; Wronowski, R.

    2012-04-01

    Many strong earthquakes which are objects of interest in investigations of the changes registered in the electric field in the ELF frequency range (1 Hz - 1250 Hz) in the ionospheric plasma, occurs in the equatorial region. In order to determine, if the observed disturbances are connected with the coupling between the ground and the ionosphere in the seismic active region, it is necessary to analyse and compare plasma instability phenomena occurring in the equatorial F-region ionosphere and are known as equatorial spread F (ESF) to changes before earthquakes because their character is very similar. The aim of this paper is the analysis of changes in the electromagnetic ELF field, registered by the French micro-satellite DEMETER over epicentres of three selected strong earthquakes with magnitude bigger than 6, which took place in: Sichuan, Chile and Haiti. A comparison between those cases and changes observed by the same satellite over the equatorial region in the similar time of year is presented. The analysis of the data, was conducted with the Fourier, wavelet and bispectral methods. The last one gives answer to question, whether the changes localized with the spectral analysis are nonlinear. Further processing consists the determination of the power spectrum and its slope, which allows to determine the type of turbulence which was inducted by the three wave interaction. The last stage of the presented research, was finding the characteristic remarks of changes, by calculation of the probability density function (PDF) and calculation of its characteristic values such as kurtosis and skewness.

  7. Accurate Orientation of the Polar Axis of an Equatorial Telescope Mounting

    ERIC Educational Resources Information Center

    Robinson, J. R.; Coates, D. W.

    1976-01-01

    Provides a method for determining the orientation of the polar axis of an equatorially mounted optical telescope. The background theory illustrates some important properties of the celestial sphere and gives an insight into the usual "rule of thumb" methods of axis orientation; it also provides a basis for instructors and students to devise their…

  8. Estimating new production in the equatorial Pacific Ocean at 150 deg W

    NASA Technical Reports Server (NTRS)

    Dugdale, Richard C.; Wilkerson, Frances P.; Barber, Richard T.; Chavez, Francisco P.

    1992-01-01

    A major goal of the WEC88 cruise of the R/V Wecoma to the equatorial Pacific (made in February-March 1988) was to establish rates of new production along a meridional section at 150 deg W and to compare these measured rates with the relatively high values for the equatorial Pacific that had been reported previously using indirect methods and models. Production values were obtained from the traditional approach using N-15 labeled nitrate uptake, and by using C-14 fixation values multiplied by f (proportion of new production) from various sources: from N-15 data, from a C-14 fixation-versus-f relationship, or from a nitrate-versus-f relationship. The ratios of directly measured nitrate and carbon uptake and the ratios of nitrate to nitrate plus ammonium uptake, i.e., values of f, agree well; values of f calculated from carbon uptake or from nitrate concentration are overestimates for the equatorial upwelling region. Carbon-to-nitrogen uptake ratios measured with C-14 and N-15, respectively, approximate the Redfield molar ratio, 6.6 C:N. The overall mean value of f (0.17) helps confirm the view that the low primary production in the enriched eastern equatorial Pacific is due to failure of the nitrate-uptake system.

  9. A study of evolution/suppression parameters of equatorial postsunset plasma instability

    NASA Astrophysics Data System (ADS)

    Oyekola, O. S.

    2009-01-01

    Evening equatorial pre-reversal vertical ion E×Bequatorial F-layer, which are the essential parameters requisite for the generation or inhibition of postsunset bottomside equatorial irregularities were deduced from ionosonde observations made in the Africa region (Ouagadougou: ~3° N dip latitude) between January 1987 and December 1990 for solar activity minimum, medium, and maxima (F10.7=85, 141, 214, and 190, respectively) for quiet geomagnetic conditions. We investigate variations of evening equatorial pre-reversal drift and the corresponding altitude at four levels of solar activity. Our observations show strong variations with solar variability. Correlation analysis between these parameters indicates that the correlation coefficient value between hmF2P versus VZP decreases considerably with increasing solar flux value. There seems to be no significant link between these parameters under high solar activity, especially for solar intensity F10.7>200 units. We conclude that meridional neutral wind in the F-region contributes substantially to the variations of the pre-reversal vertical plasma drifts enhancement and the peak hmF2, particularly the electrodynamics during twilight high solar flux conditions.

  10. Enhanced mixing in the equatorial thermocline induced by inertia-gravity waves

    NASA Astrophysics Data System (ADS)

    Natarov, Andrei; Richards, Kelvin

    2016-04-01

    Observations show turbulence activity is enhanced in and above the equatorial thermocline. This enhancement is brought about in part by the generation, propagation and dissipation of wind-driven inertia-gravity waves (IGWs). Numerical experiments show that in a zonally symmetric model of a tropical ocean forced by a transient wind stress both IGW activity and the energy dissipation have a pronounced maximum in the thermocline close to the equator regardless of the latitudinal distribution of the energy input into the ocean's mixed layer by the wind. We show that this equatorial enhancement is caused by a combination of three factors: a stronger superinertial component of the wind forcing close to the equator, wave action convergence at turning latitudes for various equatorially trapped waves, and nonlinear wave-wave interactions between equatorially trapped waves. Amplification of IGWs also occurs due to refraction at the top of the thermocline. We show that the latter mechanism can operate at any latitude, but is limited in its capacity to amplify the Froude number associated with propagating IGW packets and requires short (shorter than the local inertial period) energetic wind bursts to produce enhanced mixing.

  11. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model.

    PubMed

    Heimpel, Moritz; Aurnou, Jonathan; Wicht, Johannes

    2005-11-10

    The bands of Jupiter represent a global system of powerful winds. Broad eastward equatorial jets are flanked by smaller-scale, higher-latitude jets flowing in alternating directions. Jupiter's large thermal emission suggests that the winds are powered from within, but the zonal flow depth is limited by increasing density and electrical conductivity in the molecular hydrogen-helium atmosphere towards the centre of the planet. Two types of planetary flow models have been explored: shallow-layer models reproduce multiple high-latitude jets, but not the equatorial flow system, and deep convection models only reproduce an eastward equatorial jet with two flanking neighbours. Here we present a numerical model of three-dimensional rotating convection in a relatively thin spherical shell that generates both types of jets. The simulated flow is turbulent and quasi-two-dimensional and, as observed for the jovian jets, simulated jet widths follow Rhines' scaling theory. Our findings imply that Jupiter's latitudinal transition in jet width corresponds to a separation between the bottom-bounded flow structures in higher latitudes and the deep equatorial flows. PMID:16281029

  12. The equatorial shape and gravity field of Mercury from MESSENGER flybys 1 and 2

    NASA Astrophysics Data System (ADS)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Neumann, Gregory A.; Lemoine, Frank G.; Peale, Stanton J.; Margot, Jean-Luc; Torrence, Mark H.; Talpe, Matthieu J.; Head, James W.; Hauck, Steven A.; Johnson, Catherine L.; Perry, Mark E.; Barnouin, Olivier S.; McNutt, Ralph L.; Oberst, Jürgen

    2010-09-01

    On 14 January and 6 October 2008 the MESSENGER spacecraft passed within 200 km of the surface of Mercury. These flybys by MESSENGER provided the first observations of Mercury from a spacecraft since the Mariner 10 flybys in 1974 and 1975. Data from the Mercury Laser Altimeter (MLA) provided new information on the equatorial shape of Mercury, and Doppler tracking of the spacecraft through the flybys provided new data on the planet's gravity field. The MLA passes were on opposite hemispheres of the planet and span collectively ˜40% of the equatorial circumference. The mean elevation of topography observed during flyby 1, in the longitude range 0-90°E, is greater than that seen during flyby 2 in the longitude range 180-270°E, indicating an offset between centers of mass and figure having a magnitude and phase in general agreement with topography determined by Earth-based radar. Both MLA profiles are characterized by slopes of ˜0.015° downward to the east, which is consistent with a long-wavelength equatorial shape defined by a best-fitting ellipse. The Doppler tracking data show sensitivity to the gravitational structure of Mercury. The equatorial ellipticity of the gravitational field , C2,2, is well determined and correlates with the equatorial shape. The S2,2 coefficient is ˜0, as would be expected if Mercury's coordinate system, defined by its rotational state, is aligned along its principal axes of inertia. The recovered value of the polar flattening of the gravitational potential, J2, is considerably lower in magnitude than the value obtained from Mariner 10 tracking, a result that is problematic for internal structure models. This parameter is not as well constrained as the equatorial ellipticity because the flyby trajectories were nearly in the planet's equatorial plane. The residuals from the Doppler tracking data suggest the possibility of mascons on Mercury, but flyby observations are of insufficient resolution for confident recovery. For a range of

  13. Large-Scale Dynamical Fields Associated with Convectively Coupled Equatorial Waves.

    NASA Astrophysics Data System (ADS)

    Wheeler, Matthew; Kiladis, George N.; Webster, Peter J.

    2000-03-01

    Convectively coupled equatorial waves, as previously detected in studies of wavenumber-frequency spectra of tropical clouds, are studied in more detail. Composite dynamical structures of the waves are obtained using linear regression between selectively filtered satellite-observed outgoing longwave radiation (OLR) data, and various fields from a global reanalysis dataset. The selective filtering of the OLR was designed to isolate the convective variations contributing to spectral peaks that lie along the equatorial wave dispersion curves for equivalent depths in the range of 12-50 m. The waves studied are the Kelvin, n = 1 equatorial Rossby (ER), mixed Rossby-gravity, n = 0 eastward inertio-gravity, n = 1 westward inertio-gravity (WIG), and n = 2 WIG waves.The horizontal structures of the dynamical fields associated with the waves are all generally consistent with those calculated from inviscid equatorial -plane shallow water theory. In the vertical, there are statistically significant structures spanning the depth of the troposphere, and for all but the ER wave there are associated vertically propagating signals extending into the equatorial stratosphere as well. In zonal cross sections, the vertical structure of the temperature anomaly field appears, for all but the ER wave, as a `boomerang'-like shape, with the `elbow' of the boomerang occurring consistently at the 250-hPa level. The tilts of the boomerang imply upward phase propagation throughout most of the troposphere, and downward phase propagation above. The deep convection of the waves occurs in regions of anomalously cold temperatures in the lower troposphere, warm temperatures in the upper troposphere, and cold temperatures at the level of the tropopause. Such a vertical structure appears to indicate that waves of relatively short vertical wavelengths (Lz 10 km) are indeed important for the coupling of large-scale dynamics and convection. The deeper structure of the convectively coupled ER wave, on the

  14. The Dependence of the Low-Level Equatorial Easterly Jet on Hadley and Walker Circulations.

    NASA Astrophysics Data System (ADS)

    Battisti, David S.; Ovens, David D.

    1995-11-01

    How the time-mean Hadley and Walker circulations affect the formation of a low-level equatorial easterly jet is investigated. Experiments are conducted for equinoctial conditions using a general circulation model, the Community Climate Model (CCM1), that includes a Kuo convective scheme and a lower boundary that is specified to be water at a fixed sea surface temperature (SST). Several zonally symmetric SST forcings are used to determine how various Hadley circulations affect the tropical zonal wind field. A zonal wavenumber one equatorial SST anomaly superimposed on a zonally symmetric SST distribution forces a wind field that includes both Hadley and Walker circulations.The Hadley circulation experiments produce equatorial easterlies and low-level jets on the poleward sides of the intertropical convergence zone (ITCZ) 10° to 15° from the equator. In an experiment with a single, dominant off-equatorial ITCZ in the Northern Hemisphere, the Southern Hemisphere jet moves to within 7.5° of the equator; yet none of the Hadley circulation cases produce a low-level easterly jet on the equator because they lack a mechanism to vertically confine the flow.The experiment that includes a zonally overturning cell on the equator produces a low-level equatorial easterly jet in the cold tongue region that is similar to the observed jet over the central to eastern Pacific. That case shows that east of the equatorial warm pool the Walker circulation and its induced Kelvin wave response provide the necessary upper-level westerly flow and subsidence to vertically confine the low-level easterlies into a jet. Spring and fall climatological runs of the CCMI with land surfaces, seasonally varying SSTs and insolation, and a moist convective adjustment scheme support the hypothesis that the Walker circulation provides the vertical confinement necessary to form a low-level equatorial easterly jet in the region east of the equatorial convective center, regardless of the Hadley circulation

  15. Directions of equatorial noise propagation determined using Cluster and DEMETER spacecraft

    NASA Astrophysics Data System (ADS)

    Nemec, Frantisek; Hrbackova, Zuzana; Santolik, Ondrej; Pickett, Jolene S.; Parrot, Michel; Cornilleau-Wehrlin, Nicole

    2013-04-01

    Equatorial noise emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency routinely observed within a few degrees of the geomagnetic equator at radial distances from about 2 to 6 Re. High resolution data reveal that the emissions are formed by a system of spectral lines, being generated by instabilities of proton distribution functions at harmonics of the proton cyclotron frequency in the source region. The waves propagate in the fast magnetosonic mode nearly perpendicularly to the ambient magnetic field, i.e. the corresponding magnetic field fluctuations are almost linearly polarized along the ambient magnetic field and the corresponding electric field fluctuations are elliptically polarized in the equatorial plane, with the major polarization axis having the same direction as wave and Poynting vectors. We conduct a systematic analysis of azimuthal propagation of equatorial noise. Combined WBD and STAFF-SA measurements performed on the Cluster spacecraft are used to determine not only the azimuthal angle of the wave vector direction, but also to estimate the corresponding beaming angle. It is found that the beaming angle is generally rather large, i.e. the detected waves come from a significant range of directions, and a traditionally used approximation of a single plane wave fails. The obtained results are complemented by a raytracing analysis in order to get a comprehensive picture of equatorial noise propagation in the inner magnetosphere. Finally, high resolution multi-component measurements performed by the low-altitude DEMETER spacecraft are used to demonstrate that equatorial noise emissions can reach altitudes as low as 660 km, and that the observed propagation properties are in agreement with the overall propagation picture.

  16. Objective analysis of simulated equatorial Atlantic Ocean data on seasonal time scales

    NASA Astrophysics Data System (ADS)

    McPhaden, M. J.; Reverdin, G.; Merle, J.; du Penhoat, Y.; Kartavtseff, A.

    1984-05-01

    In this study we objectively analyze simulated equatorial Atlantic Ocean data on seasonal time scales using a technique based on optimal interpolation. The purpose is twofold: (1) to estimate the accuracy of the FOCAL/SEQUAL (Programme Francais Ocean-Climat en Atlantique Equatorial/Seasonal Equatorial Atlantic Response Program) array for mapping large-scale seasonal variations in the depth of the 20° isotherm, and (2) to examine the potential of 20 FOCAL drifting buoys drogued with thermistor chains for enhancing that mapping accuracy. This latter point leads to the development of a heuristic model for drifter motion in order to identify the most favorable time and location for buoy deployments. Results are discussed for a number of assumptions about oceanic variability required by both the optimal interpolation procedure and the drifting buoy model. From these we conclude that with data provided by the FOCAL/SEQUAL array, excluding FOCAL drifters, one can expect to map large-scale seasonal variations in the depth of the 20°C isotherm to within 5 m over about 65% of the equatorial Atlantic. This region of expected 5 m accuracy expands to nearly 90% of the equatorial Atlantic if FOCAL drifters are deployed between 2 and 4°S at 5°W in four quarterly installments of five each. Drifters deployed further to the east or to the west will be less useful in defining large-scale, low-frequency thermal variations since they do not disperse as widely as do those deployed at 5°W.

  17. Special Sensor Ultraviolet Limb Imager (SSULI) Observations of the Equatorial Nightside Ionosphere at Solar Minimum

    NASA Astrophysics Data System (ADS)

    Chua, D. H.; Coker, C.; Dymond, K.; McDonald, S. E.; Nicholas, A. C.; Budzien, S. A.; Dandenault, P. B.; Serengulian, P.; Walker, P. W.; Bust, G. S.

    2011-12-01

    We investigate the variability of the equatorial, nightside ionosphere during solar minimum conditions using observations by the Special Sensor Ultraviolet Limb Imager (SSULI) on the Defense Meteorological Satellite Program (DMSP) F18 satellite. SSULI limb profiles of the OI 135.6 nm radiative recombination emission are inverted using a 2-D tomographic code to infer nightside electron density profiles in the equatorial, post-sunset ionosphere near 2000 local time (LT) every 100 minutes. Through its first two years of operation in 2010 and 2011, SSULI/F18 has provided a new perspective on the daily variability of the equatorial ionosphere and the seasonal climatology of this region as we transition out of solar minimum into the rise of the next solar cycle. We find that variations in the low-latitude, nightside electron density have no clear correlation with changes in solar flux, suggesting that the ionosphere is driven more by transport than by daytime production (photoionization). During this period, the most prominent departures to the daily and seasonal variations in the low-latitude ionosphere are associated with quasi-periodic geomagnetic disturbances driven mainly by solar co-rotating interaction regions (CIRs). For most of these ionospheric disturbances we observe significant increases in electron density at all altitudes but find little evidence of uplift in the F-layer, suggesting that penetration electric fields are not playing a strong role in shaping the equatorial, post-sunset ionosphere at these times. The SSULI electron density reconstructions are compared to output from the IDA4D assimilative model of the ionosphere to provide further insight into the short term and seasonal variability of the equatorial, nightside ionosphere during these solar minimum conditions.

  18. An Overlooked November-December Cooling in the Equatorial Atlantic: PIRATA Observations

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Xie, S.

    2004-05-01

    Seasonal cycle of sea surface temperature (SST) in the equatorial Atlantic is characterized by a rapid cooling from April to July. With the onset of summer monsoon over West Africa, enhanced cross-equatorial southeasterly winds cool the equatorial ocean through Ekman upwelling and thermocline shoaling in the east. Previous studies suggest that the ocean dynamics plays more important role in this Atlantic seasonal cooling than in its Pacific counterpart. Surface winds over the ocean, on the other hand, are strongly influenced by the surrounding continents. Our GCM experiments show that the summer easterly acceleration is largely forced by the continental rainfall distribution in the Gulf of Guinea while the air-sea interaction is essential in the central/western basin, much like in the Pacific (Okumura and Xie, 2004). Whereas the annual harmonic is dominant in equatorial Atlantic SST, the easterly wind and thermocline depth show significant semiannual signals in the east. The easterlies accelerate in October-November, resulting in a shoaling of the thermocline. Using high-resolution satellite data, we show that the central Atlantic SST decreases from late November to early December in response to the accelerated easterlies and the shoaling thermocline. This secondary cooling has not been captured well in some widely used climatologies because of their low monthly resolution. The six-year PIRATA observations support the existence of a secondary seasonal cooling in November-December, suggesting a stronger thermocline feedback on SST than previously thought. Further studies will be needed to elucidate the mechanism for the easterly reacceleration and its influence on the ocean. Reference Okumura, Y. and S.-P. Xie, 2004: Interaction of the Atlantic equatorial cold tongue and African monsoon. J. Climate, revised.

  19. Principal components of quiet time temporal variability of equatorial and low-latitude geomagnetic fields

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Archana; Okpala, Kingsley C.

    2015-10-01

    Diurnal variations of the horizontal component of the geomagnetic field ΔH on International Quiet days of 1999-2012, measured hourly at two stations in the same longitude zone in the Northern Hemisphere, near and away from the dip equator, have been subjected to principal component analysis. This technique is also applied to the difference ΔHEEJ of ΔH at these two stations, which is attributed to the equatorial electrojet (EEJ). The first three principal components, PC1-PC3, account for 91-96% of the variances in the data. Maximum contribution to the quiet day variations in ΔH around its peak in the morning hours at both the stations, and in the EEJ, comes from the day-to-day variation of the amplitude of PC1. Patterns of day-to-day variations of PC1 amplitudes for the equatorial station and the EEJ are essentially semiannual modulated by solar EUV flux, superimposed on a longer timescale solar EUV flux-dependent trend. Contributions from PC2 and to a lesser extent from PC3 are seen to be responsible for the absence of semiannual variations in ΔH in the afternoon hours at the equatorial station. Distribution of amplitudes of PC2 and PC3 for ΔHEEJ for weak electrojet days shows seasonal features in accordance with greater occurrence of afternoon (morning) counter electrojet during June (December) solstice. During the extended solar minimum, PC3 amplitudes for ΔH at the equatorial station and for the EEJ display annual variation. Possible sources for these seasonal features in the variations of equatorial ΔH are discussed.

  20. ENSO and non-ENSO induced charging and discharging of the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Anderson, Bruce T.; Perez, Renellys C.

    2015-11-01

    It is well established that variations in extratropical North Pacific wind stress fields can influence the state of the tropical Pacific 12-15 months prior to the maturation of boreal winter El Niño/Southern Oscillation (ENSO) events. While most research has focused on accompanying variations in the North Pacific trade winds and underlying sea surface temperatures that subsequently shift equatorward via anomalous air-sea interactions—e.g. meridional mode dynamics—observational and numerical model analyses indicate empirical and dynamical links exist between these same trade-wind variations and concurrent changes in subsurface temperatures across the equatorial Pacific, which can also serve as a key initiator of ENSO events. This paper shows that within an observationally-constrained ocean reanalysis dataset this initiation mechanism—termed the trade-wind charging (TWC) mechanism—is induced by the second leading mode of boreal winter zonal wind stress variability over the tropical Pacific and operates separately from ENSO-induced recharge/discharge of the equatorial Pacific heat content. The paper then examines the characteristics and evolution of the ENSO and TWC modes. Results indicate that the oceanic evolution for both modes is consistent with wind stress induced vertically-integrated, meridional mass transport into and out of the equatorial Pacific—i.e. a charging and discharging of the equatorial Pacific—despite having distinctly different wind stress anomaly patterns. The process-based similarity between these two modes of tropical Pacific wind stress variability suggests that both can produce a charging/discharging of the equatorial Pacific, however one (the ENSO mode) represents part of the ENSO cycle itself and the other (the TWC mode) represents a separate forcing mechanism of that cycle.

  1. Detection of the Equatorial Ionospheric Irregularities Using the POD GPS Measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Astafyeva, E.; Cherniak, I.

    2015-12-01

    By making use of GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit (LEO) satellites we present results of the equatorial irregularities/plasma bubbles detection. For a given research we use data from a multi-satellite constellation consisting of the three Swarm satellites and the TerraSAR-X satellite. The major advantage of such LEO constellation is rather similar orbit altitude of ~500 km. The GPS-based indices, characterizing the occurrence and the strength of the ionospheric irregularities, were derived from the LEO GPS observations of a zenith-looking onboard GPS antenna. To study GPS fluctuation activity at the topside equatorial ionosphere we used TEC-based indices ROT (rate of TEC change) and ROTI (rate of TEC Index), proposed by Pi et al. (1997). We demonstrate a successful implementation of this technique for several case studies of the equatorial plasma bubbles occurrence in the post-midnight and morning LT hours during the year 2014. The ionospheric irregularities detected with GPS technique in Swarm/TerrasSAR-X data are consistent with the in situ plasma density variations registered by the three Swarm satellites (PLP measurements), as well as by three DMSP satellites at ~840 km orbital height, which indicate a large altitudinal extent of the observed phenomenon. Also we analyzed the global/seasonal distribution of the ionospheric irregularities at the topside equatorial region caused the phase fluctuations in GPS measurements onboard LEO satellite. We demonstrate that ROT/ROTI technique can be applied to LEO GPS data for geomagnetically quiet and disturbed conditions, as well as detection of the storm-induced equatorial irregularities in the morning local time.

  2. Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific

    NASA Technical Reports Server (NTRS)

    Schreck, Carl J., III; Molinari, John; Mohr, Karen I.

    2009-01-01

    The direct influences of equatorial waves on the genesis of tropical cyclones are evaluated. Tropical cyclogenesis is attributed to an equatorial wave when the filtered rainfall anomaly exceeds a threshold value at the genesis location. For an attribution threshold of 3 mm/day, 51% of warm season western North Pacific tropical cyclones are attributed to tropical depression (TD)-type disturbances, 29% to equatorial Rossby waves, 26% to mixed Rossby-Gravity waves, 23% to Kelvin waves, 13% to the Madden-Julian oscillation (MJO), and 19% are not attributed to any equatorial wave. The fraction of tropical cyclones attributed to TD-type disturbances is consistent with previous findings. Past studies have also demonstrated that the MJO significantly modulates tropical cyclogenesis, but fewer storms are attributed to the MJO than any other wave type. This disparity arises from the difference between attribution and modulation. The MJO produces broad regions of favorable conditions for cyclogenesis, but the MJO alone might not determine when and where a storm will develop within these regions. Tropical cyclones contribute less than 17% of the power in any portion of the equatorial wave spectrum because tropical cyclones are relatively uncommon equatorward of 15deg latitude. In regions where they are active, however, tropical cyclones can contribute more than 20% of the warm season rainfall and up to 50% of the total variance. Tropical cyclone-related anomalies can significantly contaminate wave-filtered precipitation at the location of genesis. To mitigate this effect, the tropical cyclone-related rainfall anomalies were removed before filtering in this study.

  3. Annual, orbital, and enigmatic variations in tropical oceanography recorded by the Equatorial Atlantic amplifier

    NASA Technical Reports Server (NTRS)

    Mcintyre, Andrew

    1992-01-01

    Equatorial Atlantic surface waters respond directly to changes in zonal and meridional lower tropospheric winds forced by annual insolation. This mechanism has its maximum effect along the equatorial wave guide centered on 10 deg W. The result is to amplify even subtle tropical climate changes such that they are recorded by marked amplitude changes in the proxy signals. Model realizations, NCAR AGCM and OGCM for 0 Ka and 126 Ka (January and July), and paleoceanographic proxy data show that these winds are also forced by insolation changes at the orbital periods of precession and obliquity. Perhelion in boreal summer produces a strengthened monsoon, e.g., increase meridional and decrease zonal wind stress. This reduces oceanic Ekman divergence and thermocline/nutricline shallowing. The result, in the equatorial Atlantic, is reduced primary productivity and higher euphotic zone temperatures; vice versa for perihelion in boreal winter. Perihelion is controlled by precession. Thus, the dominant period in spectra from a stacked SST record (0-252 Ka BP) at the site of the equatorial Atlantic amplifier is 23 Ky (53 percent of the total variance). This precessional period is coherent (k = 0.920) and in phase with boreal summer insolation. Oscillations of shorter period are present in records from cores sited beneath the amplifier region. These occur between 12.5 and 74.5 Ka BP, when eccentricity modulation of precession is at a minimum. Within this time interval there are 21 cycles with mean periods of 3.0 plus or minus 0.5 Ky. Similar periods have been documented from high latitude regions, e.g., Greenland ice cores from Camp Century. The Camp Century signal in this same time interval contains 21 cycles. A subjective correlation was made between the Camp Century and the equatorial records; the signals were statistically similar, r = 0.722 and k = 0.960.

  4. Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes

    NASA Astrophysics Data System (ADS)

    Lengaigne, M.; Hausmann, U.; Madec, G.; Menkes, C.; Vialard, J.; Molines, J. M.

    2012-03-01

    Variations of the volume of warm water above the thermocline in the equatorial Pacific are a good predictor of ENSO (El Niño/Southern Oscillation) and are thought to be critical for its preconditioning and development. In this study, the Warm Water Volume (WWV) interannual variability is analysed using forced general circulation model experiments and an original method for diagnosing processes responsible for WWV variations. The meridional recharge/discharge to higher latitudes drives 60% of the ENSO-related equatorial WWV variations, while diabatic processes in the eastern equatorial Pacific account for the remaining 40%. Interior meridional transport is partially compensated by western boundary transports, especially in the southern hemisphere. Diabatic equatorial WWV formation (depletions) during La Niña (El Niño) are explained by enhanced (reduced) diathermal transport through enhanced (reduced) vertical mixing and penetrating solar forcing at the 20°C isotherm depth. The respective contribution of diabatic and adiabatic processes during build-ups/depletions strongly varies from event-to-event. The WWV build-up during neutral ENSO phases (e.g. 1980-1982) is almost entirely controlled by meridional recharge, providing a text-book example for the recharge/discharge oscillator's theory. On the other hand, diabatic processes are particularly active during the strongest La Niña events (1984, 1988, 1999), contributing to more than 70% of the WWV build-up, with heating by penetrative solar fluxes explaining as much as 30% of the total build-up due to a very shallow thermocline in the eastern Pacific. This study does not invalidate the recharge/discharge oscillator theory but rather emphasizes the importance of equatorial diabatic processes and western boundary transports in controlling WWV changes.

  5. Radiative and Dynamical Feedbacks Over the Equatorial Cold-Tongue: Results from Seven Atmospheric GCMs

    SciTech Connect

    Sun, D; Zhang, T; Covey, C; Klein, S; Collins, W; Kiehl, J; Meehl, J; Held, I; Suarez, M

    2005-01-04

    The equatorial Pacific is a region with strong negative feedbacks. Yet coupled GCMs have exhibited a propensity to develop a significant SST bias in that region, suggesting an unrealistic sensitivity in the coupled models to small energy flux errors that inevitably occur in the individual model components. Could this 'hypersensitivity' exhibited in a coupled model be due to an underestimate of the strength of the negative feedbacks in this region? With this suspicion, the feedbacks in the equatorial Pacific in seven atmospheric GCMs (AGCMs) have been quantified using the interannual variations in that region and compared with the corresponding calculations from the observations. The seven AGCMs are: the NCAR CAM1, the NCAR CAM2,the NCAR CAM3, the NASA/NSIPP Atmospheric Model, the Hadley Center Model, the GFDL AM2p10, and the GFDL AM2p12. All the corresponding coupled runs of these seven AGCMs have an excessive cold-tongue in the equatorial Pacific. The net atmospheric feedback over the equatorial Pacific in the two GFDL models is found to be comparable to the observed value. All other models are found to have a weaker negative net feedback from the atmosphere--a weaker regulating effect on the underlying SST than the real atmosphere. A weaker negative feedback from the cloud albedo and a weaker negative feedback from the atmospheric transport are the two leading contributors to the weaker regulating effect from the model atmosphere. All models overestimate somewhat the positive feedback from water vapor. These results confirm the suspicion that an underestimate of negative feedbacks from the atmosphere over the equatorial Pacific region is a prevalent problem. The results also suggest, however, that a weaker regulatory effect from the atmosphere is unlikely solely responsible for the 'hypersensitivity' in all models. The need to validate the feedbacks from the ocean transport is therefore highlighted.

  6. Mooring observations of equatorial currents in the upper 1000 m of the western Pacific Ocean during 2014

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Wang, Jianing; Guan, Cong; Ma, Qiang; Zhang, Dongxiao

    2016-06-01

    Time-depth variations of the equatorial currents over the upper 1000 m depth in the western Pacific Ocean were directly measured by acoustic Doppler current profiler moorings at 2°N, 140°E and 4.7°N, 140°E during January-August 2014. Intraseasonal variations of the equatorial currents, with periods of 37-73 days, were observed encompassing the North Equatorial Countercurrent (NECC), northern branch of the South Equatorial Current (SEC), Equatorial Undercurrent (EUC), Equatorial Intermediate Current (EIC), North Intermediate Countercurrent (NICC), and North Equatorial Subsurface Current (NESC). Compared with previous studies based mainly on shipboard synoptic surveys, the 8-month time series of velocity profiles provided direct evidence for the existence of NESC, captured reversals of the EIC in May and the NESC in June from westward to eastward direction, and revealed larger vertical extensions of the SEC and NESC and greater depths of the EIC and NICC than previously thought. According to a global analysis product of ocean surface current, during January-April 2014, the NECC was located around its southernmost position and with its the weakest intensity over the past 20 years. Some of the anomalous characteristics of these flows may be related to the fickle El Niño of 2014.

  7. Free and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Castanheira, José M.

    2015-04-01

    It is well known that precipitation in the equatorial belt does not occur randomly, but is often organized into synoptic to planetary-scale disturbances with time scales smaller than a season. Several studies have shown that a large fraction of the convection variability in such disturbances is associated with dynamical Equatorial Waves, such as the Kelvin, Equatorial Rossby, Mixed Rossby-Gravity, Eastward and Westward Inertio-Gravity waves (e.g. Kiladis et al., Rev. Geophys., 2009). The horizontal structures and dispersion characteristics of such Convectively Coupled Equatorial Waves (CCEWs) correspond to the solutions of the shallow water (SW) equations on an equatorial β-plane obtained by Matsuno (J. Meteor. Soc. Japan, 1966). CCEWs have broad impacts within the tropics, but their simulation in general circulation models is still problematic. Using space-time spectral analyses of a proxy field for tropical convection (e.g. outgoing long wave radiation (OLR)), it has been shown the existence of spectral peaks aligned along the dispersion curves of equatorially trapped wave modes of SW theory, which have been interpreted as the effect of equatorial wave processes (e.g. Takayabu, J. Meteor. Soc. Japan, 1994; Wheeler and Kiladis, JAS, 1999). However, different equatorial modes may not be well separated in the wavenumber-frequency domain due to a vertical variation of the horizontal basic flow, that may introduce Doppler shiftings and changes in the vertical heating profiles which may distort the theoretical dispersion curves (Yang et al., JAS, 2003). In this communication, we present a new methodology for the diagnosis of CCEWs, which is based on a pre-filtering of the geopotential and horizontal wind, via three-dimensional (3-D) normal mode functions of the adiabatic linearized equations of a resting atmosphere, followed by a space-time power and cross spectral analysis applied to the 3-D normal mode filtered fields and the OLR (or other fields that may be proxies

  8. Comparative analysis of equatorial and auroral-zone phase scintillation data. Technical report, 13 March 1985-30 September 1986

    SciTech Connect

    Rino, C.L.; Dabbs, T.M.

    1986-10-01

    A comparison is made between equatorial and auroral-zone phase scintillation. The spectral characteristics of weak-scatter phase-scintillation data collected at two equatorial ground stations are contrasted with similar data collected at two auroral-zone ground stations. An automated, multisegmented fitting procedure was used to determine these characteristics. Three types of spectra were found. Despite temporal and spatial differences, the two equatorial data sets have similar spectral characteristics. The auroral-zone sets are also similar. In contrast, the spectral characteristics of the two latitude regions are quite different from each other.

  9. Evolution of the Equatorial Pacific during the Pliocene: an East-West record

    NASA Astrophysics Data System (ADS)

    Rousselle, Gabrielle; Beltran, Catherine; Sicre, Marie-Alexandrine; De Rafélis, Marc

    2013-04-01

    The Equatorial Pacific (EP) was affected by two major events during the Pliocene: the closure of the Central American Seaway (CAS) and the intensification of the Northern Hemisphere glaciation (NHG). The EP evolves from an open area to an East-West system, characterized by a strong asymmetry of the thermocline depth, productivity and sea surface temperatures (SSTs). Changes in the equatorial Pacific during the Pliocene are here illustrated by using samples from the IODP Site 1338 in the Eastern Equatorial pacific (EEP), and from the ODP Site 806 in the Western Equatorial pacific (WEP). In order to compare the evolution of the East-West transect, we present on both sites oxygen stable isotopes record of bulk carbonate (δ18Obulk), calcareous nannofossils dominated fractions (δ18ONoelaerhabdaceae) which are assumed to live in the photic zone, and of the planktonic foraminifera Globoratalia menardii (δ18OG. menardii), thermocline dweller. Results are combined with alkenone-derived SST for the site 1338 (Rousselle et al., EPSL, 2012) and 806 (Pagani et al., Nature Geosciences, 2010). A decoupling in δ18Obulk and δ18OG. menardii evolution records can be observed from 4.5 Ma between both sites. This segregation in the thermocline layer between the East and the West is more clearly identifiable from ˜ 3.8 Ma in δ18OG. menardii and show a cooling in the East and a warming of the thermocline waters in the West. This suggest the setting of the Western Pacific Warm Pool (WPWP), and thereby the Equatorial asymmetric pattern. This is in agreement with an establishment of the Eastern Equatorial Cold Tongue (EECT) between 4.4 and 3.6 Ma accompanying a cooling of the SSTs. The divergence between the δ18Obulk and δ18OG. menardii records become stronger from 2.7 Ma, and may suggest the beginnings of a La Niña time period. However, as the δ18O records in the EEP (bulk, G. menardii, Noelaerhabdaceae) show heavy values and a progressive cooling of 3°C, the WEP experienced

  10. The tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    NASA Technical Reports Server (NTRS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus.

  11. The response of a linear baroclinic equatorial ocean to periodic forcing

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Sarachik, E. S.

    1981-01-01

    An investigation is conducted regarding the periodic response of the linear inviscid shallow water equations in a meridionally unbounded basin to zonal forcings at a single low frequency omega. A general solution in the long wave approximation and on an equatorial beta-plane is obtained by summing the Kelvin mode and the finite sum of Rossby modes whose turning points lie equatorward of the turning latitude at frequency omega. The results of the investigation suggest that even if the low frequency forcing has a simple structure, considerable spatial inhomogeneity in the deep ocean response would have to be expected. On the basis of linear inviscid theory, some conclusions are drawn about the causes of the differences between equatorial thermocline response in the Atlantic and Pacific.

  12. The role of Equatorial Undercurrent in sustaining the Eastern Indian Ocean upwelling

    NASA Astrophysics Data System (ADS)

    Chen, Gengxin; Han, Weiqing; Shu, Yeqiang; Li, Yuanlong; Wang, Dongxiao; Xie, Qiang

    2016-06-01

    By combining volume transport and salinity analysis from 1958 to 2014, this paper investigates how the transient Equatorial Undercurrent (EUC) sustains the summer-fall equatorial eastern Indian Ocean (EIO) upwelling. On seasonal time scales, the EIO upwelling is mainly supplied by the salty water from the western basin through a buffering process: The winter-spring EUC carries the salty water from the western basin eastward, induces downwelling in the EIO, and pushes portion of the salty water below the central thermocline, which subsequently upwells to the central thermocline during summer-fall and sustains the EIO upwelling. On interannual time scales, enhanced upwelling occurs during positive Indian Ocean Dipole (+IOD) years. The strong summer-fall EUC associated with the +IOD supplies water for the intensified upwelling. This research provides new knowledge for basin-scale mass and property exchanges associated with the EIO upwelling, contributing to our understanding of three-dimensional ocean circulation and climate variability.

  13. Monitoring, mapping and prediction of ionospheric scintillation over the Brazilian equatorial and low latitude regions

    NASA Astrophysics Data System (ADS)

    Becker-Guedes, Fabio; de Paula, E. R.; de Rezende, L. F. C.; Stephany, S.; Kantor, I. J.; Muella, M. T. A. H.; Siqueira, P. M.; Correa, K. S.; Dutra, A. P.; Guedes, C.; Takahashi, H.; Silva, J. D. S.

    It is well known, today, that equatorial ionospheric scintillations affect performance of GPS receivers. Scintillation occurs when a radio wave crosses the ionosphere and suffers distortion in phase and amplitude. It also contributes to loss of lock of GPS receivers, resulting decrease of the number of available satellites and consequently yielding poor satellite geometry. Therefore, the required accuracy and positioning precision for aerial navigation are affected. Among other activities, EMBRACE, the space weather program of INPE, is monitoring and mapping the ionospheric scintillation over the South American equatorial and low latitude region in real time. This mapping is available in the internet by means of computer programs that retrieve data from a network of GPS receivers distributed in Brazil. These data are also being used to survey and predict the occurrence of ionospheric scintillation through data mining techniques.

  14. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  15. Three-Dimensional Numerical Simulations of Equatorial Spread F: Results and Observations in the Pacific Sector

    NASA Technical Reports Server (NTRS)

    Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.

    2012-01-01

    A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.

  16. The persistence of equatorial spread F - an analysis on seasonal, solar activity and geomagnetic activity aspects

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Devasia, C. V.; Ravindran, Sudha; Sridharan, R.

    2009-02-01

    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowing the post sunset F region vertical drift velocity (Vz) and the magnetic activity index Kp. Any sort of advance information on the possible persistence of the ionospheric irregularities responsible for ESF is important for understanding the scintillation morphology, and the results which form the first step in this direction are presented and discussed.

  17. Electrodynamics of the equatorial F-region ionosphere during pre-sunrise period

    NASA Astrophysics Data System (ADS)

    Prabhakaran Nayar, S. R.; Mathew, T. J.; Sreehari, C. V.; Sumod, S. G.; Devasia, C. V.; Ravindran, S.; Sreeja, V.; Pant, T. Kumar; Sridharan, R.

    2009-01-01

    The electrodynamics of the pre-sunrise equatorial F-region is investigated using HF Doppler radar and digital ionosonde. The observations are limited to those days for which the radar probing frequency is below the foF2 value. The ionosphere observation using HF Doppler radar exhibit interesting features during pre-sunrise period similar to the post sunset pre-reversal enhancement. The most striking feature observed during pre-sunrise period is the sudden downward excursion in the vertical drift around local sunrise followed by an upward turning. Pre-sunrise observations of vertical plasma drift and the sunrise downward excursion followed by an upward turning after the ground sunrise related to the zonal electric field at the equatorial F-region are the most significant results not reported earlier.

  18. Detecting cross-equatorial wind change as a fingerprint of climate response to anthropogenic aerosol forcing

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Xie, Shang-Ping; Tokinaga, Hiroki; Liu, Qinyu; Kosaka, Yu

    2016-04-01

    Anthropogenic aerosols are a major driver of the twetieth century climate change. In climate models, the aerosol forcing, larger in the Northern than Southern Hemispheres, induces an interhemispheric Hadley circulation. In support of the model result, we detected a robust change in the zonal mean cross-equatorial wind over the past 60 years from ship observations and reanalyses, accompanied by physically consistent changes in atmospheric pressure and marine cloud cover. Single-forcing experiments indicate that the observed change in cross-equatorial wind is a fingerprint of aerosol forcing. This zonal mean mode follows the evolution of global aerosol forcing that is distinct from regional changes in the Atlantic sector. Atmospheric simulations successfully reproduce this interhemispheric mode, indicating the importance of sea surface temperature mediation in response to anthropogenic aerosol forcing. As societies awaken to reduce aerosol emissions, a phase reversal of this interhemispheric mode is expected in the 21st century.

  19. Equatorial composition in the 137- to 225-km region from the San Marco 3 mass spectrometer

    NASA Technical Reports Server (NTRS)

    Newton, G. P.; Kasprzak, W. T.; Pelz, D. T.

    1974-01-01

    The neutral atmospheric composition experiment (Nace) carried by the San Marco 3 (SM 3) satellite measured the equatorial atmospheric composition during the reentry period of Nov. 21-28, 1971. The mass density and molecular nitrogen density measured by the Nace are in agreement with values measured by rocket experiments and inferred from satellite experiments. The average total oxygen content measured by Nace is 30% below the value suggested by von Zahn at 150-km altitude. When it is assumed that his value for the molecular oxygen density at 150 km represents averaged rocket results applicable to the equatorial thermosphere, the Nace total oxygen content results in an atomic oxygen concentration comparable to the mean value of Cira (1965). The Nace helium measurements interpreted in terms of an altitude profile have an altitude distribution similar to that of molecular nitrogen below 165 km.

  20. Deep-reaching thermocline mixing in the equatorial pacific cold tongue

    NASA Astrophysics Data System (ADS)

    Liu, Chuanyu; Köhl, Armin; Liu, Zhiyu; Wang, Fan; Stammer, Detlef

    2016-05-01

    Vertical mixing is an important factor in determining the temperature, sharpness and depth of the equatorial Pacific thermocline, which are critical to the development of El Ninõ and Southern Oscillation (ENSO). Yet, properties, dynamical causes and large-scale impacts of vertical mixing in the thermocline are much less understood than that nearer the surface. Here, based on Argo float and the Tropical Ocean and Atmosphere (TAO) mooring measurements, we identify a large number of thermocline mixing events occurring down to the lower half of the thermocline and the lower flank of the Equatorial Undercurrent (EUC), in particular in summer to winter. The deep-reaching mixing events occur more often and much deeper during periods with tropical instability waves (TIWs) than those without and under La Niña than under El Niño conditions. We demonstrate that the mixing events are caused by lower Richardson numbers resulting from shear of both TIWs and the EUC.

  1. Three-dimensional numerical simulation of equatorial spread F including bottomside shear flow effects

    NASA Astrophysics Data System (ADS)

    Aveiro, H. C.; Hysell, D. L.

    2010-12-01

    A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation advances the plasma number density and electrostatic potential forward in time by enforcing the constraints of quasineutrality and momentum conservation for atomic and molecular species. The magnetic field lines are not modeled as equipotentials. Simulations are performed incorporating realistic background circulation including bottomside shear flow and strong vertical current. Generalized Rayleigh Taylor instability is found to combine with collisional shear instability to produce growing waveforms with characteristics that match observations more closely than either instability acting alone. The growth rate of the emergent instability, its mixing depth, and its overall morphology are compared with radar data from Jicamarca and Kwajalein.

  2. The appearance of sustained equatorial surface westerlies during the 1982 pacific warm event.

    PubMed

    Harrison, D E

    1984-06-01

    In June 1982 a band of anomalous southerly surface wind, extending from the equator as far south as the Tasman Sea, formed east of Australia (150 degrees E to 160 degrees E). This flow crossed the equator just before the appearance of sustained westerly winds on the equator somewhat west of the date line. Because these westerly winds induced the initial strong equatorial warming of the ocean east of the date line during the 1982 El Niño-Southern Oscillation (ENSO) event, the southerly jet appears to be an important atmospheric component leading to the onset of the vigorous phase of this event. Some historical evidence suggests that anomalous southerly winds in the same region occurred prior to the appearance of sustained equatorial westerly winds in the major ENSO events of 1957, 1965, and 1972. PMID:17735247

  3. Equatorial ionosphere semiannual oscillation investigated from Schumann resonance measurements on board the C/NOFS satellite

    NASA Astrophysics Data System (ADS)

    Simões, Fernando; Pfaff, Robert; Freudenreich, Henry; Klenzing, Jeffrey; Rowland, Douglas; Bromund, Kenneth; Kepko, Larry; Le, Guan; Liebrecht, Maria Carmen; Martin, Steven; Uribe, Paulo

    2013-11-01

    of Schumann resonance signatures in the equatorial ionosphere offers remote sensing capabilities for the investigation of tropospheric and space weather effects in the ionosphere. Schumann resonances are electromagnetic oscillations in the earth-ionosphere cavity produced by lightning activity. Analysis of AC electric field measurements gathered by the Communications/Navigation Outage Forecasting System satellite reveals a semiannual pattern in Schumann resonance data recorded during nighttime in the equatorial ionosphere. This pattern observed in the Schumann resonance amplitude is expected to help validate—or at least constrain—potential mechanisms proposed to explain the semiannual oscillation observed in different geophysical records, such as those reported in a variety of tropospheric, ionospheric/thermospheric, and magnetospheric observations.

  4. Sensitivity of population smoke exposure to fire locations in Equatorial Asia

    NASA Astrophysics Data System (ADS)

    Kim, Patrick S.; Jacob, Daniel J.; Mickley, Loretta J.; Koplitz, Shannon N.; Marlier, Miriam E.; DeFries, Ruth S.; Myers, Samuel S.; Chew, Boon Ning; Mao, Yuhao H.

    2015-02-01

    High smoke concentrations in Equatorial Asia, primarily from land conversion to oil palm plantations, affect a densely populated region and represent a serious but poorly quantified air quality concern. Continued expansion of the oil palm industry is expected but the resulting population exposure to smoke is highly dependent on where this expansion takes place. We use the adjoint of the GEOS-Chem chemical transport model to map the sensitivity of smoke concentrations in major Equatorial Asian cities, and for the population-weighted region, to the locations of the fires. We find that fires in southern Sumatra are particularly detrimental, and that a land management policy protecting peatswamp forests in Southeast Sumatra would be of great air quality benefit. Our adjoint sensitivities can be used to immediately infer population exposure to smoke for any future fire emission scenario.

  5. Investigation of the Chirikov resonance overlap criteria for equatorial magnetosonic waves

    NASA Astrophysics Data System (ADS)

    Walker, S. N.; Balikhin, M. A.; Canu, P.; Cornilleau-Wehrlin, N.; Moiseenko, I.

    2015-10-01

    Observations of equatorial magnetosonic waves made during the Cluster Inner Magnetospheric Campaign clearly show discrete spectra consisting of emissions around harmonics of the proton gyrofrequency. Equatorial magnetosonic waves are important because of their ability to efficiently scatter electrons in energy and pitch angle. This wave-particle interaction is numerically modeled through the use of diffusion coefficients, calculated based on a continuous spectrum such as that observed by spectrum analyzers. Using the Chirikov overlap resonance criterion, the calculation of the diffusion coefficient will be assessed to determine whether they should be calculated based on the discrete spectral features as opposed to a continuous spectrum. For the period studied, it is determined that the discrete nature of the waves does fulfill the Chirikov overlap criterion and so the use of quasi-linear theory with the assumption of a continuous frequency spectrum is valid for the calculation of diffusion coefficients.

  6. Hydrated states of MgSO4 at equatorial latiudes on Mars

    USGS Publications Warehouse

    Feldman, W.C.; Mellon, M.T.; Maurice, S.; Prettyman, T.H.; Carey, J.W.; Vaniman, D.T.; Bish, D.L.; Fialips, C.I.; Chipera, S.J.; Kargel, J.S.; Elphic, R.C.; Funsten, H.O.; Lawrence, D.J.; Tokar, R.L.

    2004-01-01

    The stability of water ice, epsomite, and hexahydrite to loss of H 2O molecules to the atmosphere at equatorial latitudes of Mars was studied to determine their potential contributions to the measured abundance of water-equivalent hydrogen (WEH). Calculation of the relative humidity based on estimates of yearly averages of water-vapor pressures and temperatures at the Martian surface was used for this purpose. Water ice was found to be sufficiently unstable everywhere within 45?? of the equator that if the observed WEH is due to water ice, it requires a low-permeability cover layer near the surface to isolate the water ice below from the atmosphere above. In contrast, epsomite or hexahydrite may be stable in many near-equatorial locations where significant amounts of WEH are observed. Copyright 2004 by the American Geophysical Union.

  7. On the multiple scattering of VHF/UHF waves in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Vats, H. O.

    1981-01-01

    Using amplitude data of radio beacons at 40, 140, and 360 MHz from ATS 6 (phase II), an attempt has been made to study scattering of these waves in the equatorial ionosphere. A comparison of observed scintillation index S sub 4 with the theoretical results of the multiple scattering approach and variation of autocorrelation time with frequency indicates that this theory explains the results to a large extent. A comparison of power spectra of amplitude records with the ionograms of a nearby equatorial station has led to the following conclusions: the change from a weak scattering regime to a strong scattering regime is gradual and occurs because of the gradual decrease in the scale size of the irregularities (i.e., broadening of the spectra) and the gradual increase in the thickness of the irregular region.

  8. Chemical and hydrographic measurements from the equatorial pacific during boreal autumn, 1992. Data report

    SciTech Connect

    Lamb, M.F.; Lantry, T.; Hendee, J.; McTaggart, K.E.; Murphy, P.P.

    1995-09-01

    In the boreal autumn of 1992, NOAA`s Climate and Global Change Program sponsored a major cooperative effort with the U.S. JGOFS Program in the central and eastern equatorial Pacific to investigate the unique role of equatorial processes on CO2 cycling during, and following, the 1991-92 ENSO event. Data were collected meridionally along four transects, generally between 10 N and 10 S. The first leg (Leg 3) included the 140 W and 125 W transects; the second leg (Leg 4) sampled along 110 W, and the thrid leg (Leg 5) included stations along 95 W and three short transects extending westward from the Peru coast. Chemical parameters sampled included fCO2, DIC, TAlk, pH, TOC, and nutrients. Ancillary measurements of salinity, temperature, and dissolved oxygen (DO) were also taken. Descriptions of sampling methods and data summaries are given in this report.

  9. Equatorial semiannual oscillation in zonally averaged temperature observed by the Nimbus 7 SAMS and LIMS

    NASA Technical Reports Server (NTRS)

    Delisi, Donald P.; Dunkerton, Timothy J.

    1988-01-01

    Zonally averaged equatorial temperatures obtained aboard Nimbus 7 by the stratospheric and mesospheric sounder (SAMS) are compared to comparable data obtained from the limb IR monitor of the stratosphere. The SAMS data are shown to confirm the seasonal asymmetry in semiannual wind regimes previously noted in rocketsonde observations near the equator. Two explanations for the asymmetry are considered: (1) an improved Kelvin and gravity wave transmissivity in stronger equatorial easterlies (resulting from planetary Rossby wave momentum transport), implying stronger westerly mean flow acceleration in the first cycle than in the second; and (2) evidence of strong polar-tropical coupling in the northern winter indicating that mean meridional circulations are present on a global scale.

  10. Diurnal tide in the equatorial middle atmosphere as seen in LIMS temperatures

    NASA Technical Reports Server (NTRS)

    Hitchman, M. H.; Leovy, C. B.

    1985-01-01

    The distribution of day-night temperature differences in the middle atmosphere determined by the Nimbus 7 LIMS experiment is described. Day-night differences maximize at and are approximately symmetric about the equator. Successive centers of opposite sign increase in amplitude with altitude, the pattern having a vertical wavelength of approximately 25 km. Profiles of rocket meridional wind at Kwajalein (8.7 deg N) and Ascension Island (8.0 deg S) taken near local noon and averaged over the LIMS data period, exhibit maxima which support the tidal interpretation of the equatorial temperature pattern. These characteristics are in general agreement with previous observational and theoretical results for the solar driven diurnal tide. Substantial time variations in amplitude and in location of the temperature maxima are observed. The diurnal tide near the equatorial stratopause appears to be influenced by the phase of the semiannual oscillation.

  11. Formation and chemical composition of atmospheric aerosols in an equatorial forest area

    NASA Astrophysics Data System (ADS)

    Clairac, B.; Delmas, R.; Cros, B.; Cachier, H.; Buat-Menard, P.

    1988-05-01

    The physical properties and the chemical composition of atmospheric aerosols have been studied in an equatorial region in the southern Congo (Africa). Field experiments were conducted between 1978 and 1983 in the equatorial forest of the Mayombe during periods where the influence of biomass burning was minimum. The results indicate that the forest is a net source of both fine particles resulting primarily from gas-to-particle conversion and coarse particles produced by mechanical processes. Carbonaceous matter is the major component of these biogenic particles but the forest is also a significant source of sulfate, nitrate, ammonium and potassium. Half of this carbon is attached to submicron particles and likely derives from organic gaseous precursors naturally emitted by the local biosphere.

  12. Mid-Piacenzian sea surface temperature record from ODP Site 1115 in the western equatorial Pacific

    USGS Publications Warehouse

    Stoll, Danielle

    2010-01-01

    Planktic foraminifer assemblages and alkenone unsaturation ratios have been analyzed for the mid-Piacen-zian (3.3 to 2.9 Ma) section of Ocean Drilling Program (ODP) Site 1115B, located in the western equatorial Pacific off the coast of New Guinea. Cold and warm season sea surface temperature (SST) estimates were determined using a modern analog technique. ODP Site 1115 is located just south of the transition between the planktic foraminifer tropical and subtropical faunal provinces and approximates the southern boundary of the western equatorial Pacific (WEP) warm pool. Comparison of the faunal and alkenone SST estimates (presented here) with an existing nannofossil climate proxy shows similar trends. Results of this analysis show increased seasonal variability during the middle of the sampled section (3.22 to 3.10 Ma), suggesting a possible northward migration of both the subtropical faunal province and the southern boundary of the WEP warm pool.

  13. The variability of the surface wind field in the equatorial Pacific Ocean: Criteria for satellite measurements

    NASA Technical Reports Server (NTRS)

    Halpern, D.

    1984-01-01

    The natural variability of the equatorial Pacific surface wind field is described from long period surface wind measurements made at three sites along the equator (95 deg W, 109 deg 30 W, 152 deg 30 W). The data were obtained from surface buoys moored in the deep ocean far from islands or land, and provide criteria to adequately sample the tropical Pacific winds from satellites.

  14. A Characterization of Vertical Ozonesonde Measurements at the Equatorial Locations of SHADOZ

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Thompson, A. M.; Kirchhoff, V. W. J. H.; Hoegger, B.; Oltmans, S.; Gerlach, John C. (Technical Monitor)

    2001-01-01

    Beginning in 1997 ozonesonde observations have been obtained from Equatorial locations participating in SHADOZ (Southern Hemisphere Additional Ozone) Project. Vertical ozone profiles are available from the western Pacific eastward to Kenya. Presently 10 stations provide vertical ECC ozonesonde measurements at least weekly. Statistical analysis shows the variation that occurs in the level of maximum ozone, the difference between integrated total ozone overburden from ECC and EP-TOMS observations, and with Dobson Spectrophotometers, when data are available.

  15. Investigation of Jupiter's Equatorial Hotspots and Plumes using Cassini ISS Observations

    NASA Astrophysics Data System (ADS)

    Choi, David S.; Showman, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-10-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the ISS onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 microns; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasi-stable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby waves controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed. This research was supported by a NASA JDAP grant and the NASA Postdoctoral Program.

  16. Equatorial Atlantic Ocean temperature and current variations during 1983 and 1984

    NASA Astrophysics Data System (ADS)

    Weisberg, Robert H.; Colin, Christian

    1986-07-01

    The equatorial regions of the Earth's oceans are climatically sensitive ones because of the zonal sea-surface temperature contrasts observed there1. Equatorial sea-surface temperature normally varies on an annual cycle with the prevailing trade winds but deviations from this cycle may have significant global implications as occurred for example during the 1982-83 Pacific Ocean El Niño/Southern Oscillation event2. Understanding the annual and interannual variability of the tropical oceans has therefore been the goal of several measurement programmes. In the Atlantic Ocean, the Seasonal Response of the Equatorial Atlantic (SEQUAL) Experiment and the Programme Francais Ocean et Climat dans l'Atlantique Equatorial (FOCAL) have provided a basin-wide and synoptic data set over two annual cycles. We present here results from surface moored current meters which were one of several fixed and shipborne measurement systems employed by SEQUAL and FOCAL. We will describe the evolution of the upper ocean thermal and zonal velocity component variations in relation to forcing by the trade winds, show differences observed along the Equator at 28° W and 4° W, and compare the oceans responses at these locations during 1983 and 1984. The synoptic data realizations of these years differed from climatology and these differences are related to the rapidly varying nature and intensity of the wind stress in a given year. Changes in wind stress from year to year result in interannual variability as a modulated annual cycle and 1984, a year of weak winds relative to 1983, offers a case in point. The zonal sea-surface temperature gradient vanished along the Equator in 1984 during the season when it normally would have been a maximum.

  17. Glossina palpalis palpalis populations from Equatorial Guinea belong to distinct allopatric clades

    PubMed Central

    2014-01-01

    Background Luba is one of the four historical foci of Human African Trypanosomiasis (HAT) on Bioko Island, in Equatorial Guinea. Although no human cases have been detected since 1995, T. b. gambiense was recently observed in the vector Glossina palpalis palpalis. The existence of cryptic species within this vector taxon has been previously suggested, although no data are available regarding the evolutionary history of tsetse flies populations in Bioko. Methods A phylogenetic analysis of 60 G. p. palpalis from Luba was performed sequencing three mitochondrial (COI, ND2 and 16S) and one nuclear (rDNA-ITS1) DNA markers. Phylogeny reconstruction was performed by Distance Based, Maximum Likelihood and Bayesian Inference methods. Results The COI and ND2 mitochondrial genes were concatenated and revealed 10 closely related haplotypes with a dominant one found in 61.1% of the flies. The sequence homology of the other 9 haplotypes compared to the former ranged from 99.6 to 99.9%. Phylogenetic analysis clearly clustered all island samples with flies coming from the Western African Clade (WAC), and separated from the flies belonging to the Central Africa Clade (CAC), including samples from Mbini and Kogo, two foci of mainland Equatorial Guinea. Consistent with mitochondrial data, analysis of the microsatellite motif present in the ITS1 sequence exhibited two closely related genotypes, clearly divergent from the genotypes previously identified in Mbini and Kogo. Conclusions We report herein that tsetse flies populations circulating in Equatorial Guinea are composed of two allopatric subspecies, one insular and the other continental. The presence of these two G. p. palpalis cryptic taxa in Equatorial Guinea should be taken into account to accurately manage vector control strategy, in a country where trypanosomiasis transmission is controlled but not definitively eliminated yet. PMID:24438585

  18. Seasonal variation of the surface North Equatorial Countercurrent (NECC) in the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Li, Yuanlong; Wang, Fan

    2016-03-01

    The North Equatorial Countercurrent (NECC) is an important zonal flow in the upper circulation of the tropical Pacific Ocean, which plays a vital role in the heat budget of the western Pacific warm pool. Using satellite-derived data of ocean surface currents and sea surface heights (SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacific Ocean was investigated. It was found that the intensity (INT) and axis position (Y CM) of the surface NECC exhibit strikingly different seasonal fluctuations in the upstream (128°-136°E) and downstream (145°-160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and YCM are greatly influenced by variations of the Mindanao Eddy, Mindanao Dome (MD), and equatorial Rossby waves to its south. Both INT and Y CM also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacific and local wind forcing in the western Pacific Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacific Ocean. Those in the MD region are especially important in modulating the YCM of the downstream NECC. In addition to the SSH-related geostrophic flow, zonal Ekman flow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions reflect the high complexity of regional ocean dynamics.

  19. Efficient Schemes of Joint Remote State Preparation for Two-Qubit Equatorial States

    NASA Astrophysics Data System (ADS)

    Wei, Zhao-Hui; Zha, Xin-Wei; Yu, Yan

    2016-08-01

    Recently, Binayak S. Choudhury (Quantum Inf. Process 13, 239 2014), proposed a protocol of joint remote state preparation of an equatorial two-qubit pure quantum state using GHZ states. According to their scheme the probability of success is 0.25. In this letter, an improved scheme is proposed, which can enhance the probability of success to 100 %. Moreover, we propose a scheme to prepare the two-qubit pure quantum state whose coefficient is more general.

  20. Surprising detection of an equatorial dust lane on the AGB star IRC+10216

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Min, M.; Waters, L. B. F. M.; Canovas, H.; Pols, O. R.; Rodenhuis, M.; de Juan Ovelar, M.; Keller, C. U.; Decin, L.

    2014-12-01

    Aims: Understanding the formation of planetary nebulae remains elusive because in the preceding asymptotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. Methods: To further understand the morphology of the circumstellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. Results: When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. Conclusions: We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system. Final reduced images (FITS) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A3Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  1. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    SciTech Connect

    Zhao, L.; Landi, E.

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  2. Polar and Equatorial Coronal Hole Winds at Solar Minima: From the Heliosphere to the Inner Corona

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Landi, E.

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  3. Investigation of Jupiter's Equatorial Hotspots and Plumes Using Cassini ISS Observations

    NASA Technical Reports Server (NTRS)

    Choi, David S.; Showman, A. P.; Vasavada, A. R.; Simon-Miller, A. A.

    2012-01-01

    We present updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the ISS onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial 5-micron hot spots and their interactions with adjacent latitudes. Hot spots are quasi-stable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but a diffuse western edge serving as a nebulous boundary with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-iike 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. This raises the possibility that the plumes and fast-moving clouds are at higher altitudes, because their speed does not match previously published zonal wind profiles. Most profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby waves controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed. Instead, our expanded data set demonstrating the rapid flow of these scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. This research was supported by a NASA JDAP grant and the NASA Postdoctoral Program.

  4. Observations and modeling of the coupled latitude-altitude patterns of equatorial plasma depletions

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Zesta, Eftyhia; Shodhan, Sheela; Sultan, Peter J.; Doe, Richard; Sahai, Yogeshwar; Baumgardner, Jeffrey

    2005-09-01

    The equatorial ionosphere is host to the most dramatic and enigmatic plasma instability mechanism in the geospace environment. Equatorial spread F (ESF) was discovered in early ionosonde measurements and interpreted theoretically using Rayleigh-Taylor theory. Subsequent diagnostic and modeling advances have improved substantially our understanding of ESF onset and evolution and its associated effects on the ionosphere throughout the low-latitude domain. The degree to which ESF mechanisms penetrate into the lower midlatitudes is a topic of current study, a reverse of the familiar concept of high-to-low latitude coupling for space weather phenomena. Optical diagnostic systems, first ground based and now space based, reveal the presence of ESF structures via images of airglow depletions that are aligned in the approximately north-south direction spanning the geomagnetic equator. Ground-based all-sky camera systems used to capture the two-dimensional horizontal patterns of airglow depletions are the main source of observations showing that ESF processes intrude to midlatitudes in the L ˜ 1.5 domain. In this paper we review the process of mapping airglow depletions along geomagnetic field lines to the equatorial plane, hence defining the maximum apex heights achieved. A case study comparison of simultaneous radar backscatter data from Kwajalein with optical data from Wake Island, sites that share common magnetic meridians in the Pacific section, confirms the utility of the approach and its applicability to sites at other longitudes. Modeling studies based on buoyancy arguments using flux tube-integrated mean density values versus L shell apex heights show that instability-induced plasma depletions starting at F layer bottomside heights easily reach altitudes above 2000 km in the equatorial plane, implying that ESF intrusions to lower midlatitudes should be a relatively frequent occurrence.

  5. Height variation of electron temperature associated with equatorial plasma bubbles - some recent rocket observations

    NASA Astrophysics Data System (ADS)

    Muralikrishna, P.; Batista, I. S.; Domingos, S.; Aquino, M. G.

    2013-05-01

    In-situ measurements made from Brazil recently using rocket-borne swept-bias Langmuir Probes show that the electron temperatures in the valley region between the equatorial E and F regions get modified before the onset of plasma bubbles. During one of the post sunset launches made on 18-th December 1995 from the equatorial rocket launching station CLA in Alcântara, Brazil the Langmuir probe measured abnormally large electron temperatures below the F-region just before the onset of plasma bubbles but temperatures became normal soon after the onset of bubbles. Later on 2-nd December 2011 a Brazilian VS-30 single stage rocket was launched from the equatorial rocket launching station CLBI in Natal, Brazil carrying a Langmuir probe operating alternately in swept and constant bias modes to measure both electron temperature and electron density respectively. The ground equipments operated before and during the rocket launch clearly showed the presence of plasma bubbles above the F-region. At the time of launch the bubble activity was at its peak. The electron density and temperature height profiles could be estimated from the LP data up to the rocket apogee altitude of 139km. During the rocket upleg and downleg the valley region showed the presence electron temperatures as high as 2000 degree K while the temperatures expected from the existing models are around 500 degree K. A two stage VS-30/Orion rocket was launched on 8-th December soon after sunset carrying a Langmuir Probe operating alternately in swept and constant bias modes to measure the electron density and electron temperature, mainly in the valley between the E and F regions. At the time of launch ground equipments operated at equatorial stations showed ionospheric conditions favorable for the generation of plasma bubbles. These profiles are compared with model electron density and temperature profiles as well as with electron density and temperature profiles observed under conditions of no plasma bubbles.

  6. Evolution of nutricline dynamics in the equatorial Pacific during the late Pliocene

    NASA Astrophysics Data System (ADS)

    Bolton, C. T.; Gibbs, S.; Wilson, P.

    2009-12-01

    The tropics have played a central role in modulating Earth’s climate throughout the Plio-Pleistocene, with tropical productivity fluctuations a key mechanism in the operation of the global carbon cycle and linkage of high and low latitude climates. Published records of tropical sea surface temperatures (SSTs) during the Plio-Pleistocene appear to vary primarily in tune with high latitude climate both on orbital and secular timescales. Yet contemporaneous changes in equatorial primary productivity are less well constrained, particularly at sites where climate is not dominated by upwelling or monsoon systems. Furthermore, the role of thermocline dynamics (tilt and mean depth changes) in forcing SST and productivity on orbital timescales remains uncertain. Here we report new, high-resolution calcareous nannofossil records from two Ocean Drilling Program (ODP) sites in the western and eastern equatorial Pacific (WEP, EEP) during marine isotope stages (MIS) 95 to 101; about 2400 to 2600 thousand years ago (ka). Our records of paleoproductivity and nutricline depth reveal synchronous, large-amplitude glacial-interglacial (G-IG) productivity variations at both ends of the equatorial Pacific indicating (i) remote (high latitude) forcing of primary productivity and (ii) no primary role for east-west tilting of the equatorial Pacific thermocline, with important implications regarding the operation of El Niño-like dynamics in the Pliocene Pacific. Instead, the paleoproductivity variations and phase relationships that we document suggest the interaction of two mechanisms operating on obliquity timescales: a ‘bottom-up’ forcing transmitted via the upwelling of high latitude source waters in conjunction with the ‘top-down’ forcing of atmospheric greenhouse gases.

  7. African Equatorial GPS Scintillations during the Minimum and Ascending Phases of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Akala, Andrew; Groves, K. M.; Amaeshi, Larry; Idolor, Raphael; Okoro, Ekemini; Carrano, Charles; Bridgwood, Christopher; Baki, Paul; Dujanga, Florence; Doherty, Patricia

    Abstract This study characterizes African equatorial scintillations at L-band frequency during the minimum and ascending phases of solar cycle 24. Three years’ (2009-2011) of amplitude scintillation data from three African equatorial GPS stations namely; Lagos (3.48oN, 3.27oE, mag. lat: 3.04oS), Nigeria; Nairobi (1.30oS, 36.80oE, mag. lat: 8.03oS), Kenya; and Kampala (0.30oN, 32.50oE, mag. lat: 9.26oS), Uganda were used for the investigation. We grouped the data on daily, monthly, seasonal, and yearly scales at three levels of scintillation (weak (0.3≤S4<0.4), moderate (0.4≤S4<0.7), and intense (S4≥0.7)), and adopted three data cut-off criteria. Scintillations exhibit daily trend of occurrence during the hours of 1900 LT-0200 LT, with higher levels being localized within the hours of 2000-2300 LT. Generally, highest scintillation occurrences were recorded during the equinoxes, and the trend increased with solar activity. Specifically, scintillations were almost absent during June Solstices of the period under investigation, and it appears as if January is a non-scintillation month over equatorial Africa. On a scintillation active day, the number of satellites available to the receiver’s view reduces as the duration of observation reduces. These results may support the development of future models that could provide real-time predictability of African equatorial scintillations, with a view to supporting the implementation of GNSS-based navigation in Africa.

  8. Iron-rich basal sediments from the eastern equatorial pacific: Leg 16, deep sea drilling project

    USGS Publications Warehouse

    Cronan, D.S.; Van Andel, T. H.; Ross, Heath G.; Dinkelman, M.G.; Bennett, R.H.; Bukry, D.; Charleston, S.; Kaneps, A.; Rodolfo, K.S.; Yeats, R.S.

    1972-01-01

    Iron-rich sediments chemically similar to those forming at present on the crest of the East Pacific Rise have been found just above basement at widely separated drill sites in the eastern equatorial Pacific, including three sites of Leg 16 of the Deep Sea Drilling Project. These sediments were probably formed when the basement was at the crest of this rise and have moved to their present location as a result of sea-floor spreading.

  9. Hydroclimatogical Changes and Impacts on Seasonal Regimes of African Equatorial Rivers

    NASA Astrophysics Data System (ADS)

    Mahe, G. M.

    2015-12-01

    In recent decades, changes in the pattern of hydroclimatogical cycle have been observed with impacts on seasonal regimes of African equatorial rivers. This communication reports on studies carried out for a set of river basins in equatorial Africa, tributaries of the Atlantic Gulf of Guinea: the Ogooue River in Gabon, the Kouilou River in Congo, and the basins of South Cameroon. These rivers are compared to the Congo River. A new monthly gridded rainfall dataset, and streamflow from selected rivers where used in the analysis. The observed changes include changes in seasonal pattern of rainfall and changes in monthly streamflow regimes. The study shows a decrease of rainfall in the southern hemisphere during February to May since the end of the 80s, while the decrease is much more limited in the Northern hemisphere. For the equatorial rivers, the March-June flood decreased steadily between the 70s and 80s, in correlation with a slight decrease of the rainfall between March and June, while the October-December flood showed no change. This trend was confirmed during the 2000s for the Ogooue River from updated times series, including a shift of the maximum in April instead of May. Locally, the dry season (July-September) disappeared on the coastal basin of the Kienke River at Kribi in Cameroon. It seems that these two months of July and August have become part of a 'single' large rainy season instead of separating the former two rainy seasons. A slight decrease in seasonal rainfall together with a small change in the intra-seasonal rainfall distribution, most probably led to one of the biggest change in hydrological regimes in Equatorial Africa, which could be a clue to understanding climate change in the region. This rainfall change is different for the Congo River which large basins integrates various climatic forcings.

  10. Interaction of field-aligned cold plasma flows with an equatorially-trapped hot plasma - Electrostatic shock formation

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1993-01-01

    Effects of equatorially trapped hot plasma on the highly supersonic cold-plasma flow occurring during early stage plasmaspheric refilling are studied by means of numerical simulations. It is shown that the equatorially trapped hot ions set up a potential barrier for the cold ion beams and facilitate formation of electrostatic shocks by reflecting them from the equatorial region. Simulations with and without the hot plasma show different flow properties; the formation of electrostatic shocks occur only in the former case. The simulation with the hot plasma also reveals that the magnetic trapping in conjunction with the evolution of the electrostatic potential barrier produces ion velocity distribution functions consisting of a cold core and a hot ring in the perpendicular velocity. Such a distribution function provides a source of free energy for equatorial waves. The corresponding electron population is warm and field-aligned.

  11. Molecular findings from influenza A(H1N1)pdm09 detected in patients from a Brazilian equatorial region during the pandemic period

    PubMed Central

    Oliveira, Maria José Couto; Motta, Fernando do Couto; Siqueira, Marilda M; Resende, Paola Cristina; Born, Priscilla da Silva; Souza, Thiago Moreno L; Mesquita, Milene; Oliveira, Maria de Lourdes Aguiar; Carney, Sharon; de Mello, Wyller Alencar; Magalhães, Vera

    2014-01-01

    After the World Health Organization officially declared the end of the first pandemic of the XXI century in August 2010, the influenza A(H1N1)pdm09 virus has been disseminated in the human population. In spite of its sustained circulation, very little on phylogenetic data or oseltamivir (OST) resistance is available for the virus in equatorial regions of South America. In order to shed more light on this topic, we analysed the haemagglutinin (HA) and neuraminidase (NA) genes of influenza A(H1N1)pdm09 positive samples collected during the pandemic period in the Pernambuco (PE), a northeastern Brazilian state. Complete HA sequences were compared and amino acid changes were related to clinical outcome. In addition, the H275Y substitution in NA, associated with OST resistance, was investigated by pyrosequencing. Samples from PE were grouped in phylogenetic clades 6 and 7, being clustered together with sequences from South and Southeast Brazil. The D222N/G HA gene mutation, associated with severity, was found in one deceased patient that was pregnant. Additionally, the HA mutation K308E, which appeared in Brazil in 2010 and was only detected worldwide the following year, was identified in samples from hospitalised cases. The resistance marker H275Y was not identified in samples tested. However, broader studies are needed to establish the real frequency of resistance in this Brazilian region. PMID:25410995

  12. Variability of foE in the equatorial ionosphere with solar activity

    NASA Astrophysics Data System (ADS)

    Abe, O. E.; Rabiu, A. B.; Adeniyi, J. O.

    2013-01-01

    This research examined the variability of foE in the equatorial ionosphere with solar activity within the equatorial ionospheric anomaly region. Ionosonde data recorded at Ouagadougou (lat. 12.4°N, long. 1.5°W and magnetic dip 1.43°N) were engaged to study the transient variations of the critical frequency of the E-layer (foE) and its dependence on solar activity. The study revealed that foE increases with the increase in solar intensity of the sun. The variability of the foE decreases with increases in the solar activity. The maximum value of the foE is at local noon when the ionosphere is stable; the variability at this local time is minimal. The minimum value of the foE is at sunrise and sunset, at this period on local time the equatorial ionosphere recorded its maxima variability. Irrespective of the degree of solar activity, foE is observed to be maximum in June solstice, followed by the equinoxes and minimum in December solstice. Equinoctial asymmetry occurred in the variation of the relative standard deviation of foE with maximum in September/March equinox for low/high solar activity.

  13. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    NASA Astrophysics Data System (ADS)

    Long, David; Perez-Suarez, David; Valori, Gherardo

    2016-05-01

    First observed by SOHO/EIT, "EIT waves" are strongly associated with the initial evolution of coronal mass ejections (CMEs) and after almost 20 years of investigation a consensus is being reached which interprets them as freely-propagating waves produced by the rapid expansion of a CME in the low corona. An "EIT wave" was observed on 6 July 2012 to erupt from active region AR11514 into a particularly structured corona that included multiple adjacent active regions as well as an adjacent trans-equatorial loop system anchored at the boundary of a nearby coronal hole. The eruption was well observed by SDO/AIA and CoMP, allowing the effects of the "EIT wave" on the trans-equatorial loop system to be studied in detail. In particular, it was possible to characterise the oscillation of the loop system using Doppler velocity measurements from CoMP. These Doppler measurements were used to estimate the magnetic field strength of the trans-equatorial loop system via coronal seismology. It was then possible to compare these inferred magnetic field values with extrapolated magnetic field values derived using a Potential Field Source Surface extrapolation as well as the direct measurements of magnetic field provided by CoMP. These results show that the magnetic field strength of loop systems in the solar corona may be estimated using loop seismology.

  14. Method for characterization of the equatorial anomaly using image subspace analysis of Global Ultraviolet Imager data

    NASA Astrophysics Data System (ADS)

    Henderson, S. B.; Swenson, C. M.; Gunther, J. H.; Christensen, A. B.; Paxton, L. J.

    2005-08-01

    We present a method for measuring equatorial anomaly (EA) morphology using nighttime 135.6 nm radiance observed by the Global Ultraviolet Imager (GUVI) on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) spacecraft. The method uses the singular value decomposition to estimate an along-track intensity profile as TIMED passes over the EA. The method is unique in that it removes intensity depletions due to equatorial plasma bubbles (EPBs) from the estimated intensity profile. Thus the profiles reflect plasma distribution in response to equatorial E × B drifts and neutral winds. A set of metrics including crest maximum intensity and its latitude are extracted from the intensity profiles. EPBs are also detected. Preliminary results from this method using GUVI equinox data from 2002 are compared with results from a ground-based ionosonde EA morphology study by Whalen (2001) in the western American sector. EPB occurrence rates are also compared with results from Huang et al. (2001), who used DMSP in situ density measurements to detect EPBs. General agreement was found in both studies with some localized differences. These results indicate that this method provides a valuable means of simultaneously studying EA morphology and EPB occurrence rates. Since the TIMED spacecraft precesses through all local times in 60 days, this method can be used to extend ground-based measurements to study the global relationship between E × B drifts and plasma distribution in the EA and how these relate to the occurrence of large-scale EPBs.

  15. HF Radar for Long-Range Monitoring of Ionospheric Irregularities in the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Pedersen, T. R.; Parris, R. T.; Dao, E. V.

    2014-12-01

    Ionospheric instabilities associated with plasma bubbles in the equatorial region are one of the major space weather impacts, creating scintillation that affects satellite communications and navigation as well as spread-F and propagation effects on lower frequency systems. Coherent scatter radars can be used to detect the presence of irregularities at a scale size corresponding to half the wavelength of the radar when the raypaths are perpendicular to the magnetic field. A number of vertical incidence radars operating in the VHF range near the magnetic equator use this effect to map out vertical irregularity structure in bubbles, while at high latitudes in both the northern and more recently southern hemisphere, HF radars in the SuperDARN network have successfully used refraction along near-horizontal paths to reach perpendicularity with the near-vertical magnetic field and map out ionospheric convection and irregularity structure over fields of view thousands of km across. In the equatorial region, perpendicularity can be obtained anywhere within a near-vertical plane even without refraction, although refraction can be used to achieve long ranges after one or more reflections from the earth's surface and bottomside ionosphere. This potentially provides a means of detecting and monitoring equatorial plasma bubbles over the oceans from long ranges using a small number of ground-based sites. We discuss the possible echoes that could be detected by such a system, the likely propagation modes and characteristics, and means of obtaining and utilizing elevation angle information to correctly locate distant plasma bubbles.

  16. Stratospheric ozone variations in the equatorial region as seen in Stratiospheric Aerosol and Gas Experiment data

    NASA Technical Reports Server (NTRS)

    Shiotani, Masato; Hasebe, Fumio

    1994-01-01

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.

  17. On the circulation of the upper waters in the western equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Toole, J. M.; Zou, E.; Millard, R. C.

    1988-09-01

    Historical hydrographic data and CTD/O 2 observations obtained on two recent cruises are used to investigate the circulation of the upper waters of the western equatorial Pacific Ocean. The study area lies between 20°N and the land boundary of the Papua New Guinea-Solomon Island coasts, 170°E and the Philippine coast. Seasonal mean and annual averaged sections are constructed from the historical data set to address the strength of the major equatorial currents and the water mass budget of the far western region of the study area. We find indication of significant contribution of southern hemisphere waters to the North Equatorial Countercurrent with an inferred Pacific to Indian Ocean throughflow of Mindanao Current waters of order 1 Sv. The recent observations, acquired under the auspices of a cooperative program between the United States and People's Republic of China, were collected in January-February and November-December 1986. The thermohaline structure of the various currents and net transports estimated for the 1986 data sets are examined and compared with the historical mean data. Large differences are seen between the two modern sections obtained along 165°E. These reflect high frequency variability (as demonstrated by comparison with a third section obtained 2 weeks prior to the January-February cruise) and interannual variability (the second of the cruises occurred during the onset of the 1986-1987 El Niño event).

  18. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: A multi-proxy perspective

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2009-01-01

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4??C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG. ?? 2008 The Royal Society.

  19. Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.

  20. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    SciTech Connect

    Farina, D.; Figini, L.; Henderson, M.; Saibene, G.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power deposition was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.

  1. Connections between Equatorial Pacific and Peruvian current system in a high-resolution numerical model

    NASA Astrophysics Data System (ADS)

    Montes, I.; Colas, F.; Capet, X.; Penven, P.; Pasapera, J.; Tam, J.; Schneider, W.

    2007-05-01

    Historically patterns of the ocean currents in the eastern south tropical Pacific have been deduced from eulerian current measurements or geostrophic flow estimates that lack spatial/temporal resolution to provide a reliable description of true Lagrangian pathways. As a result, limited information exists regarding the connections between equatorial currents and the Peruvian current system. Making use of the Lagrangian submodel developed for ROMS model outputs, we investigate these connections under climatological conditions. Our results show that the model reproduces the two main branches of the eastward zonal flow that are of interest to us. The first branch is the Equatorial Undercurrent (EUC) located between 1°N and 1°S. The second one is the South Extension of EUC (SEEUC) located between 3 - 4°S. Farther south, another current, called the Southern Subsurface Countercurrent (SSSCC), is also identified and located between 7 and 8°S above 250 m depth. Most importantly, the Lagrangian trajectories suggest that the subsurface poleward currents off Peru (Peru-Chile Undercurrent) are fed not only by the SEEUC but also by the SSSCC, and to a weaker extent by the EUC. With the help of another type of Lagrangian experiments, origins of the upwelled water off the Peruvian shelf are shown to be of direct equatorial sources and of off-shore subsurface recirculation.

  2. The study of a spatial relationship between the Equatorial coronal hole and the Active region

    NASA Astrophysics Data System (ADS)

    Karna, Mahendra; Karna, Nishu

    2016-05-01

    The 11-year solar cycle is characterized by the periodic change in the solar activity like sunspot numbers, coronal holes, active regions, eruptions such as flares and coronal mass ejections. We study the relationship between equatorial coronal holes (ECH) and the active regions (AR) as coronal hole positions and sizes change with the solar cycle. We made a detailed study for two solar maximum: Solar Cycle 23 (1999, 2000, 2001 and 2002) and Solar Cycle 24 (2011, 2012 and 2013). We used publically available Heliophysics Feature Catalogue and NOAA Solar Geophysical data for. Moreover, we used daily Solar Region Summary (SRS) data from SWPC/NOAA website. We examined the position of ECH and AR and noted that during a maximum of 23, the majority of ECH were not near active regions. However, in cycle 24 coronal holes and equatorial holes were more close to each other. Moreover, we noticed the asymmetry in AR migrations towards the lower latitude in both Northern and Southern hemisphere in cycle 23. While, no such notable asymmetrical behavior was observed in a maximum of cycle 24. Our goal is to extend the study with cycle 21 and 22 and examine the correlation between equatorial holes, the active regions, and the flares. This combined study will shed light in determining the distribution of flares.

  3. Composition and origin of ferromanganese crusts from equatorial western Pacific seamounts

    NASA Astrophysics Data System (ADS)

    Wang, Guozhi; Jansa, Luba; Chu, Fengyou; Zou, Can; Sun, Guosheng

    2015-04-01

    In the equatorial western Pacific, iron-manganese oxyhydroxide crusts (Fe-Mn crusts) and nodules form on basaltic seamounts and on the top of drowned carbonate platform guyots that have been swept free of pelagic sediments. To date, the Fe-Mn crusts have been considered to be almost exclusively of abiotic origin. However, it has recently been suggested that these crusts may be a result of biomineralization. Although the Fe-Mn crust textures in the equatorial western Pacific are similar to those constructed by bacteria and algae, and biomarkers also document the existence of bacteria and algae dispersed within the Fe-Mn crusts, the precipitation, accumulation and distribution of elements, such as Fe, Mn, Ni and Co in Fe-Mn crusts are not controlled by microbial activity. Bacteria and algae are only physically incorporated into the crusts when dead plankton settle on the ocean floor and are trapped on the crust surface. Geochemical evidence suggests a hydrogenous origin of Fe-Mn crusts in the equatorial western Pacific, thus verifying a process for Fe-Mn crusts that involves the precipitation of colloidal phases from seawater followed by extensive scavenging of dissolved trace metals into the mineral phase during crust formation.

  4. The impact of mean state errors on equatorial Atlantic interannual variability in a climate model

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Keenlyside, Noel; Latif, Mojib; Park, Wonsun; Wahl, Sebastian

    2015-02-01

    Observations show that the Equatorial Atlantic Zonal Mode (ZM) obeys similar physics to the El Niño Southern Oscillation (ENSO): positive Bjerknes and delayed negative feedbacks. This implies the ZM may be predictable on seasonal timescales, but models demonstrate little prediction skill in this region. In this study using different configurations of the Kiel Climate Model (KCM) exhibiting different levels of systematic error, we show that a reasonable simulation of the ZM depends on realistic representation of the mean state, i.e., surface easterlies along the equator, upward sloping thermocline to the east, with an equatorial SST cold tongue in the east. We further attribute the differences in interannual variability among the simulations to the individual components of the positive Bjerknes and delayed negative feedbacks. Differences in the seasonality of the variability are similarly related to the impact of seasonal biases on the Bjerknes feedback. Our results suggest that model physics must be enhanced to enable skillful seasonal predictions in the Tropical Atlantic Sector, although some improvement with regard to the simulation of Equatorial Atlantic interannual variability may be achieved by momentum flux correction. This pertains especially to the seasonal phase locking of interannual SST variability.

  5. Equatorial drift paths of plasma particles in the mead-fairfield magnetospheric model

    NASA Astrophysics Data System (ADS)

    Ondoh, T.; Aikyo, K.

    1986-03-01

    Some characteristics of the Mead-Fairfield (MF) geomagnetic field in the equatorial plane under the superquiet (SQ) and superdisturbed (SD) conditions are presented. Drift paths of plasma particles with zero energy and various energies in the equatorial plane of the MF-SQ and MF-SD geomagnetic fields are computed for uniform dawn-dusk electric fields of 0.1 mV/m and 0.4 mV/m. The results are discussed in relation to the magnetospheric structures. The equatorial drift paths of zero energy particles in the 0.1 mV/m field and MF-SQ and MF-SD fields are found to be asymmetric with respect to the noon-midnight meridian. A trapped particle region or a closed drift path which does not circle the earth is found between 13 and 18 earth radii beyond the stagnation point of zero energy particles for a 0.1 mV/m electric field and the SD geomagnetic field.

  6. Using citizen science reports to define the equatorial extent of auroral visibility

    NASA Astrophysics Data System (ADS)

    Case, N. A.; MacDonald, E. A.; Viereck, R.

    2016-03-01

    An aurora may often be viewed hundreds of kilometers equatorward of the auroral oval owing to its altitude. As such, the NOAA Space Weather Prediction Center (SWPC) Aurora Forecast product provides a "view line" to demonstrate the equatorial extent of auroral visibility, assuming that it is sufficiently bright and high in altitude. The view line in the SWPC product is based upon the latitude of the brightest aurora, for each hemisphere, as specified by the real-time oval variation, assessment, tracking, intensity, and online nowcasting (OVATION) Prime (2010) aurora precipitation model. In this study, we utilize nearly 500 citizen science auroral reports to compare with the view line provided by an updated SWPC aurora forecast product using auroral precipitation data from OVATION Prime (2013). The citizen science observations were recorded during March and April 2015 using the Aurorasaurus platform and cover one large geomagnetic storm and several smaller events. We find that this updated SWPC view line is conservative in its estimate and that the aurora is often viewable further equatorward than is indicated by the forecast. By using the citizen reports to modify the scaling parameters used to link the OVATION Prime (2013) model to the view line, we produce a new view line estimate that more accurately represents the equatorial extent of visible aurora. An OVATION Prime (2013) energy flux-based equatorial boundary view line is also developed and is found to provide the best overall agreement with the citizen science reports, with an accuracy of 91%.

  7. Gravity-driven structures and rift basin evolution: Rio Muni Basin, offshore equatorial West Africa

    SciTech Connect

    Turner, J.P.

    1995-08-01

    Offshore Equatorial Guinea, west Africa, gravity-driven nappes, more than 1 km thick and 15 km from head to toe, provide key evidence in reconstructing the late synrift: evolution of this part of the South Atlantic margin basin system. Furthermore, Aptian-Cenomanian carbonate and clastic rocks in the nappes` allochthonous hanging walls are attracting interest as a new exploration play in west Africa. The nappes exhibit a range of geometries that suggest they share many of the same deformation processes as thin-skin thrust and linked extensional fault systems. Not only are these structures significant in their own right, representing a rare example of gravity tectonics in the virtual absence of major halokinesis, but their presence may record an other-wise undetectable process active during the transition from a rift basin to a passive continental margin. A review of Equatorial Guinea in its pre-Atlantic configuration, alongside neighboring basins in Brazil (the Sergipe-Alagoas basin) and Gabon, suggests that gravity gliding was sustained by a relatively steep, westward paleoslope promoted by east-ward offset of the locus of thermal uplift from the rift basin (i.e., a simple shear model of basin formation). In contrast to gravity-driven structures in most postrift settings, the Equatorial Guinea nappes developed at the close of the Aptian-Albian synrift episode in response to a growing bathymetric deep caused by rapid subsidence outpacing restricted sedimentation.

  8. Fault evolution in the Potiguar rift termination, Equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2014-10-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify fault architecture and to analyse the evolution of the eastern Equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The Potiguar rift is a Neocomian structure located in the intersection of the Equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide and ~40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en-echelon system of NW- to EW-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by post-rift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the Equatorial margin in the Cretaceous and occurs not only at the rift termination, but also as isolated structures away from the main rift.

  9. Analysis of daytime ionospheric equatorial vertical drifts during the extreme solar minimum of 2008/2009

    NASA Astrophysics Data System (ADS)

    Smith, J. M.; Rodrigues, F. S.; Stoneback, R.; Milla, M. A.

    2014-12-01

    The unique solar minimum period of 2008/2009 has led to interesting observations of the equatorial ionosphere and low-latitude ionosphere made by the C/NOFS satellite. It has been found, for instance, downward equatorial vertical drifts during afternoon hours and upward drifts around local midnight, which were associated with enhanced semi-diurnal tides (Stoneback et al., 2011). To better understand the behavior of equatorial drifts, we used ground-based measurements of daytime 150-km echo drifts made by the Jicamarca Unattended Long-term studies of the Ionosphere and Atmosphere (JULIA) radar. Our analysis did not show signatures of the enhanced semi-diurnal pattern in the 150-km drifts, as seen by C/NOFS during the 2008/2009 solar minimum. We attribute the differences in the C/NOFS drifts and 150-km echo drifts to the height variability of the drifts, the abnormal F-region contraction due to the extreme solar minimum conditions, and the coupling with low-latitude semi-diurnal tides. We investigated further the height variation of the vertical drifts by comparing the Scherliess and Fejer [1999] F-region drift model with the 150-km echo drifts. We found that the model overestimates the 150-km vertical drifts in the morning, and underestimates the 150-km drifts in the afternoon. The same height variation is observed in all seasons and solar flux conditions (2001 through 2011).

  10. Stratospheric ozone variations in the equatorial region as seen in Stratospheric and Gas Experiment data

    SciTech Connect

    Masato Shiotani; Fumio Hasebe

    1994-07-20

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time. 28 refs., 13 figs.

  11. Stratospheric ozone variations in the equatorial region as seen in Stratiospheric Aerosol and Gas Experiment data

    SciTech Connect

    Shiotani, M.; Hasebe, F. |

    1994-07-01

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.

  12. Pulsating Aurora: the Equatorial Source Population & Local Morphological Interplay with Diffuse Aurora

    NASA Astrophysics Data System (ADS)

    Jaynes, A. N.; Lessard, M.; Rodriguez, J. V.; Rychert, K. M.; Donovan, E.; Michell, R. G.; Samara, M.

    2012-12-01

    Pulsating aurora (PA) is a common ionospheric phenomenon and as such offers a unique opportunity to study the source of the precipitating particle populations. While the suggestion that the source of these electrons originates near the equator was made decades ago, this conjecture has not been confirmed until now. The dominant source of loss-cone scattering for energetic equatorial electrons, which can then precipitate as PA, has been explored, but not yet clearly identified. In this study, we compare the frequencies of equatorial electron flux pulsations out in space and pulsating aurora luminosity fluctuations in the corresponding magnetic footprint within the ionosphere. We use simultaneous satellite- and ground-based data from GOES 13 and THEMIS instrumentation to show that there is a direct correlation between diffuse luminosity fluctuations near the ground and particle pulsations in equatorial space. To study the local morphology of such instances, observations of a dynamic pulsating aurora event were taken with a pair of colocated allsky imagers at Poker Flat, one filtered at 4278 (blue) and one at 5577 (green). Here we show preliminary results of differences in the energy channels and the structure that emerges and disappears as pulsating starts and stops.;

  13. A Science Mission for QSAT Project: Study of FACs in the Polar and Equatorial Regions

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akiko; Ueno, Tamiki; Yumoto, Kiyohumi

    2009-04-01

    Kyushu University, Kyushu Institute of Technology and Fukuoka Institute of Technology are now designing, developing and building a micro-satellite called “QSAT”. The primary objective of QSAT is understanding the mechanism of spacecraft charging, which can be achieved with the onboard magnetometer, high-frequency probe (HP) and Langmuir probe (LP). The magnetometer measures the magnetic field variations caused by field-aligned currents (FACs) in the polar and equatorial regions. Polar FACs are well understood, while equatorial FACs are not. The science goals are as follows: (1) to better understand FACs in the polar region, (2) to compare the FACs observed in orbit with ground-based MAGDAS observations, (3) to investigate spatial distribution of FACs in the equatorial region. FACs play a crucial role in the coupling between solar wind, magnetosphere and ionosphere in terms of energy transfer. Also if we understand the relationship between the space and ground-based FACs data, then we can conduct long-term study on the solar wind-magnetosphere-ionosphere coupling in the future by mainly using data from ground-based magnetometer arrays.

  14. Relationship of solar wind parameters to dayside equatorial Pc4 pulsations

    NASA Astrophysics Data System (ADS)

    Cardinal, M. C.; Yumoto, K.; Ikeda, A.; Abe, S.; Uozumi, T.; Rabiu, A.

    2011-12-01

    The results from early and recent observations have shown that Pc4 pulsations are influenced by solar wind parameters. Their sources are either upstream waves generated by ion-cyclotron instability or surface waves by Kelvin-Helmholtz instability (KHI). Most studies on Pc4 pulsations have analyzed data from satellites and high-latitude ground stations. Thus, in this paper, we present the results of a statistical study of Pc4 pulsations observed at equatorial MAGDAS/CPMN stations. Our analysis shows that the occurrence and amplitude of equatorial Pc4 pulsations have local time dependence. The maximum occurrence and maximum amplitude occur during daytime. The comparison between Pc4 amplitude and the IMF cone angle shows very little correlation, which suggests that the possibility of upstream waves as the main source may not be considered. We find a strong correlation between the Pc4 amplitude and the solar wind speed and variation of dynamic pressure as well. Since we didn't observe any strong Pc4 activity at dawn and dusk, the KHI mechanism cannot explain this type of equatorial Pc4 pulsation. A possible mechanism is the velocity shear instability in the magnetosphere boundary layers, which generates localized HM waves (Yumoto, 1984).

  15. Healthcare in Equatorial Guinea, West Africa: obstacles and barriers to care

    PubMed Central

    Reuter, Kim Eleanor; Geysimonyan, Aurora; Molina, Gabriela; Reuter, Peter Robert

    2014-01-01

    Introduction The provision of healthcare services in developing countries has received increasing attention, but inequalities persist. One nation with potential inequalities in healthcare services is Equatorial Guinea (Central-West Africa). Mitigating these inequalities is difficult, as the Equatoguinean healthcare system remains relatively understudied. Methods In this study, we interviewed members of the healthcare community in order to: 1) learn which diseases are most common and the most common cause of death from the perspective of healthcare workers; and 2) gain an understanding of the healthcare community in Equatorial Guinea by describing how: a) healthcare workers gain their professional knowledge; b) summarizing ongoing healthcare programs aimed at the general public; c) discussing conflicts within the healthcare community and between the public and healthcare providers; d) and addressing opportunities to improve healthcare delivery. Results We found that some causes of death, such as serious injuries, may not be currently treatable in country, potentially due to a lack of resources and trauma care facilities. In addition, training and informational programs for both healthcare workers and the general public may not be effectively transmitting information to the intended recipients. This presents hurdles to the healthcare community, both in terms of having professional competence in healthcare delivery and in having a community that is receptive to medical care. Conclusion Our data also highlight government-facility communication as an opportunity for improvement. Our research is an important first step in understanding the context of healthcare delivery in Equatorial Guinea, a country that is relatively data poor. PMID:25932082

  16. Association between earthquake and equatorial waves in Outgoing Longwave Radiation over South East Asia

    NASA Astrophysics Data System (ADS)

    Yadav, Manohar Lal

    In the present study, efforts has been made to correlate the equatorial planetary waves in Outgoing Longwave Radiation (OLR) and to seismic activities in South East Asian region. The OLR data has been obtained from NOAA Climate Prediction Centre web site. The earthquake information has been obtained from USGS earthquake information centre. This paper present observations for the two earthquakes, i.e., 26 January 2001, Bhuj, India and 26 December 2004, Sumatra, Indonesia. The normal days OLR has been compared to the OLR recorded during the seismic events. It has been observed that there is significant enhancement in OLR, few days before the earthquake event. The Morlet 6.6 wavelet analysis shows the presence of planetary waves in equatorial OLR for period about 6 days, during and about 80 days before the earthquake. The OLR data were analysed in such a way that the other possible effects are minimized. The anomalous increase and presence of planetary waves before 80 days of seismic event shows great potential in providing early warning of a disastrous earthquake. It should be noted that planetary waves is generated only in the equatorial region irrespective of strong/severe earthquake location.

  17. The Lagrangian-mean motions forced by steady, dissipating equatorial waves. I

    NASA Technical Reports Server (NTRS)

    Takahashi, M.; Uryu, M.

    1981-01-01

    Waves are treated with a normal mode structure in order to determine the steady mean motion of the atmosphere that can be induced by dissipating equatorial waves. A model is developed which comprises a continuously stratified atmosphere at rest on the equatorial beta-plane. It is assumed that waves are excited by the corrugated bottom and are in a steady state, that dissipation is due to Newtonian cooling and Rayleigh friction, steadiness in wave magnitude is up to the second order, the waves have a long wave length, wave induced mean flows do not affect the waves, mean flows are steady, and dissipation mechanisms for the mean flows are the same as for the waves. Disturbance equations are formulated, along with Eulerian- and Lagrangian-mean flows, and the nonexistence of cross equatorial mean flows is demonstrated. Kelvin waves are shown to possess a Lagrangian-mean meridional circulation which is the same as the Eulerian-mean circulation. In the Boussinesq limit, however, neither the Eulerian- nor the Lagrangian-mean meridional circulations are caused by Kelvin waves. Further examination is made of Rossby-gravity waves and n = 1 westward propagating inertio-gravity waves.

  18. Equatorial electrojet in the Indian region during the geomagnetic storm of 13-14 November 1998

    NASA Astrophysics Data System (ADS)

    Chandra, H.; Rastogi, R. G.; Choudhary, R. K.; Sharma, Som

    2016-04-01

    The geomagnetic storm of November 1998 is a unique event where IMF-Bz remained southward with values exceeding -15 nT for more than a day. The SYM/H index decreased from about 07 hr on 13 November 1998 reaching a minimum of about -120 nT around midnight of 13-14 November 1998. Features of the equatorial electrojet in the Indian region are studied during the geomagnetic storm event of 13-14 November 1998, based on the geomagnetic data from the chain of observatories in India. Sudden northward turning of IMF-Bz for a very short duration around 08 hr on 13 November 1998 resulted in a small and very short duration counter electrojet. A strong (-50 nT) and a long duration counter electrojet, right from 08 to 13 hr on 14 November 1998 was observed resulting in the absence of equatorial Es at Thumba. Absence of the equatorial ionization anomaly was also observed as seen from the ionograms over Thumba and ionspheric data from Ahmedabad. The delayed effect on 14 November 1998 is due to the disturbance dynamo effect.

  19. A study of the equatorial signatures of long period transient events (600 - 7200 s)

    NASA Astrophysics Data System (ADS)

    Santos, J.; Dutra, S.; Trivedi, N.; Vieira, L.; Echer, E.; Schuch, N.

    Transient variations in the H magnetic field component of magnetograms at high latitude are a common feature. They are associated with energy transference from solar wind to the magnetosphere. Abrupt changes in the solar wind generate Alfvén and fast mode waves through the magnetosphere. The Alfvén wave doesn't propagate in the direction perpendicular to the geomagnetic field, so equatorial signatures are probably caused by fast mode waves. On the other hand, complicated signatures observed at high latitudes represent a composition of Alfvén and fast mode waves. A second suggested propagation mechanism to low latitudes is the Earth-ionosphere wave-guide. In this work, geomagnetic data from the Brazilian magnetic stations at Belém (BLM), Eusébio (EUS), Ji-Paraná (JIP), São luis (SLZ) and São Martinho da Serra (SMS), all located near the geomagnetic equator, are used to look for equatorial signatures of transient events with periods of 600 - 7200s. This period range includes two special types of transient variations named Traveling convection vortices (TCV) and DP2 fluctuations. We try to identify their morphological characteristics and compare with the high latitude phenomena's characteristics. Satellite data (WIND, ACE and GOES) are used to see magnetosphere signatures and solar wind and interplanetary magnetic field (IMF) conditions during the events. The main objective is try to find the contribution of each propagation mechanism of these transient events arriving at the equatorial latitudes.

  20. Equatorial plasma bubbles studied using African slant total electron content observations

    NASA Astrophysics Data System (ADS)

    Portillo, A.; Herraiz, M.; Radicella, S. M.; Ciraolo, L.

    2008-04-01

    Equatorial plasma bubbles (EPBs) are field-aligned depletions of F-region ionospheric plasma density that grow from irregularities caused by the generalized Rayleigh-Taylor instability mechanism in the postsunset equatorial sector. Although they have been studied for some decades, they continue to be an important subject of both experimental and theoretical investigations because of their effects on trans-ionospheric radio communications. In this work, calibrated data of slant total electron content (sTEC) taken every 10 min from EGNOS System Test Bed Brazzaville (Congo), Douala (Cameroon), Lome (Togo) and N'Djamena (Chad), and International GNSS Service Ascension Island, Malindi (Kenya), and Libreville (Gabon), stations are used to detect plasma bubbles in the African equatorial region during the first 6 months of 2004. To identify these irregularities, the trend of every curve of sTEC against time is subtracted from the original data. The size of the EPBs is estimated by measuring its amplitude in the de-trended time variation of sTEC.

  1. Equatorial scintillation model. Technical report, 1 February 1983-30 April 1985

    SciTech Connect

    Fremouw, E.J.; Robins, R.E.

    1985-09-30

    Radiowave scintillation in the presence of natural and/or high-altitude nuclear disturbances has the potential to disrupt numerous transionospheric radio and radar systems. This report develops a model characterizing the plasma-density irregularities that produce scintillation in the naturally disturbed equatorial F layer. The model is incorporated into Program WBMOD along with subroutines for computing both link geometry and scintillation indices, the latter by means of phase screen diffraction theory. The model is based on similarly extensive analysis of wideband data from two equatorial stations. It describes irregularities at an effective height of 350 km that are isotropic across the geomagnetic field and elongated by a factor of 50 along the field and whose one-dimensional spatial power spectrum obeys a single-regime power law with a (negative) spectral index of 1.5. The height-integrated spectral strength of the irregularities is modeled as a function of solar epoch (sunspot number), the angle between the sunset terminator and the geomagnetic field line through the equatorial F layer point in question (a measure of seasonal and longitudinal variation), time after E-layer sunset on that field line, and the F-layer magnetic apex latitude of the point. The report also highlights a factor missing from complete characterization of the joint seasonal/longitudinal variation of scintillation, thought to depend upon thermospheric neutral winds.

  2. Survival probability of precipitations and rain attenuation in tropical and equatorial regions

    NASA Astrophysics Data System (ADS)

    Mohebbi Nia, Masoud; Din, Jafri; Panagopoulos, Athanasios D.; Lam, Hong Yin

    2015-08-01

    This contribution presents a stochastic model useful for the generation of a long-term tropospheric rain attenuation time series for Earth space or a terrestrial radio link in tropical and equatorial heavy rain regions based on the well-known Cox-Ingersoll-Ross model previously employed in research in the fields of finance and economics. This model assumes typical gamma distribution for rain attenuation in heavy rain climatic regions and utilises the temporal dynamic of precipitation collected in equatorial Johor, Malaysia. Different formations of survival probability are also discussed. Furthermore, the correlation between these probabilities and the Markov process is determined, and information on the variance and autocorrelation function of rain events with respect to the particular characteristics of precipitation in this area is presented. The proposed technique proved to preserve the peculiarities of precipitation for an equatorial region and reproduce fairly good statistics of the rain attenuation correlation function that could help to improve the prediction of dynamic characteristics of rain fade events.

  3. Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region

    SciTech Connect

    Kang Cheng; Yinnnien Huang; Senwen Chen )

    1992-01-01

    The ionospheric responses to the solar eclipse of September 23, 1987, in the equatorial anomaly crest region have been investigated by using ionospheric vertical sounding, VLF propagation delay time, and differential Doppler shift data observed at Chungli, which is located near the northern equatorial anomaly crest region. It has been found that temporal variations of the F{sub 1} layer and D region are mainly controlled by local solar radiation. Quantitative analysis of the variations of the F{sub 1} layer critical frequency, F{sub o} F{sub 1}, shows that electrons are removed from the F{sub 1} layer through ionic recombination. However, the temporal variations of f{sub o}F{sub 2} and electron density above 200 km show that the variations o the F{sub 2} layer around the equatorial anomaly region are controlled not by local solar radiation but by solar radiation at the equator. The fountain effect plays an important role even during the solar eclipse. The VLF propagation time delay is controlled by the variations of average path obscuration. Atmospheric gravity waves produced by the moving bow wave front of the solar eclipse are found with a period around 17-23 min and wavelength about 293 km.

  4. Erythema UV-B exposure near the Antarctic Peninsula and comparison with an equatorial site.

    PubMed

    Kirchhoff, V W; Echer, E

    2001-07-01

    Observations of UV-B radiation in the area of the Antarctic Peninsula are described, with the objective to obtain an evaluation of the UV-B enhancements observed during ozone hole episodes, and compare these with equatorial values. The enhancements observed during Southern Hemisphere spring are described in terms of a specific case of enhancement, at the Antarctic peninsula, which has shown a maximum UV-B index of 8.7, in October 1998. The average enhancement between the autumn-unperturbed and spring-perturbed periods results in an UV-B index of 5.4, but with large fluctuations in which much larger indices are produced. These values are compared to indices normally observed in the equatorial region. For measurements obtained with the same kind of instrument at Natal (5.8 degrees S, 35.2 degrees W), the UV-B index varies between 7 and 14, which means that enhanced UV-B indices in the Antarctic Peninsula may become of the same order of magnitude of the lower limit equatorial values. PMID:11470565

  5. Kilometric irregularities in the E and R regions of the daytime equatorial ionosphere observed by a high resolution HF radar

    SciTech Connect

    Blanc, E.; Mercandalli, B.; Houngninou, E.

    1996-03-15

    The authors describe results from a vertically oriented HF radar operated in the Ivory Coast, which studied irregularities in the E and F regions of the equatorial ionosphere. The authors report on irregularity observations at heights consistent with the equatorial electrojet, and at heights above the electrojet, and into the F1 layer. They observe irregularities into the F region in this work. The radar operated in the frequency range from 1 to 8 MHz.

  6. Revision of the Afrotropical genus Fernandea Melichar, 1912 (Hemiptera: Fulgoromorpha: Dictyopharidae), with description of a new species from Equatorial Guinea.

    PubMed

    Song, Zhi-Shun; Malenovský, Igor; Liang, Ai-Ping

    2016-01-01

    The Afrotropical planthopper genus Fernandea Melichar, 1912 (Hemiptera: Fulgoromorpha: Dictyopharidae: Dictyopharinae: Orthopagini) is revised to include two species: F. conradti Melichar, 1912 (the type species), with material studied from Cameroon, Equatorial Guinea (Bioko island) and Togo, and F. latifemorata sp. nov., described as new from mainland Equatorial Guinea. A lectotype is designated and a redescription is provided for F. conradti together with habitus photographs and detailed illustrations of the male and female terminalia which are published for the first time. PMID:27470788

  7. Equatorial symmetry of Boussinesq convective solutions in a rotating spherical shell allowing rotation of the inner and outer spheres

    SciTech Connect

    Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio

    2014-08-15

    We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outer spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.

  8. Low-Level Cloud Variability over the Equatorial Cold Tongue in Observations and Models

    NASA Technical Reports Server (NTRS)

    Mansbach, David K.; Norris, Joel R.

    2007-01-01

    A fourth paper now in press is, Low-level cloud variability over the equatorial cold tongue in observations and models, by D. K. Mansbach and J. R. Norris (2007, J. Climate). This study examined cloud and meteorological observations from satellite, surface, and reanalysis datasets and fount that monthly anomalies in low-level cloud amount and near-surface temperature advection are strongly negatively correlated on the southern side of the equatorial Pacific cold tongue. This inverse correlation occurs independently of relationships between cloud amount and sea surface temperature (SST) or lower tropospheric static stability (LTS) and the combination of advection plus SST or LTS explains significantly more interannual cloud variability in a multilinear regression than does SST or LTS alone. Warm anomalous advection occurs when the equatorial cold tongue is well defined and the southeastern Pacific trade winds bring relatively warm air over colder water. Ship meteorological reports and soundings show that the atmospheric surface layer becomes stratified under these conditions, thus inhibiting the upward mixing of moisture needed to sustain cloudiness against subsidence and entrainment drying. Cold anomalous advection primarily occurs when the equatorial cold tongue is weak or absent and the air-sea temperature difference is substantially negative. These conditions favor a more convective atmospheric boundary layer, greater cloud amount, and less frequent occurrence of clear sky. Examination of output from global climate models developed by the Geophysical Fluid Dynamics Laboratory (GFDL) and the National Center for Atmospheric Research (NCAR) indicates that both models generally fail to simulate the cloud-advection relationships observed on the northern and southern sides of the equatorial cold tongue. Although the GFDL atmosphere model does reproduce the expected signs of cloud-advection correlations when forced with prescribed historical SST variations, it does not

  9. Redox Conditions and Related Color Change in Eastern Equatorial Pacific Sediments: IODP Site U1334

    NASA Astrophysics Data System (ADS)

    Kordesch, W. E.; Gussone, N. C.; Hathorne, E. C.; Kimoto, K.; Delaney, M. L.

    2011-12-01

    This study was prompted by a 65 m thick brown-green color change in deep-sea sediments of IODP Site U1334 (0-38 Ma, 4799 m water depth) that corresponds to its equatorial crossing (caused by the Northward movement of the pacific plate). Green sediment is a visual indicator of reducing conditions in sediment due to enhanced organic matter deposition and burial. Here we use geochemical redox indicators to characterize the effect of equatorial upwelling on bottom water. The modern redox signal is captured in porewater profiles (nitrate, manganese, iron, sulfate) while trace metal Enrichment Factors (EF) in bulk sediment (manganese, uranium, molybdenum, rhenium) normalized to the detrital component (titanium) record redox state at burial. To measure export productivity we also measure biogenic barium. Porewater profiles reveal suboxic diagenesis; profiles follow the expected sequence of nitrate, manganese oxide, and iron oxide reduction with increasing depth. Constant sulfate (~28 μM) implies anoxia has not occurred. Bulk sediment Mn EF are enriched (EF > 1) throughout the record (Mn EF = 15-200) while U and Mo enrichment corresponds to green color and equatorial proximity (U EF = 4-19; Mo EF = 0-7). Constant Mn enrichment implies continuous oxygenation. Uranium and Mo enrichment near the equator represents suboxic conditions also seen in the porewater. Low Re concentrations (below detection) provide additional evidence against anoxia. A comparison of Mn EF from total digestions to samples treated with an additional reductive cleaning step distinguishes between Mn-oxides and Mn-carbonates, indicating oxygenated and reducing conditions respectively. Mn-carbonate occurrence agrees with U and Mo EF; conditions were more reducing near the equator. Bio-Ba shows significant variability over this interval (22-99 mmol g-1). Our geochemical results indicate that bottom waters became suboxic at the equator as a result of equatorial upwelling-influenced increases in organic

  10. North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Hongyang; Chen, Han-ching; Thompson, Keith; Bentsen, Mats; Böning, Claus W.; Bozec, Alexandra; Cassou, Christophe; Chassignet, Eric; Chow, Chun Hoe; Danabasoglu, Gokhan; Danilov, Sergey; Farneti, Riccardo; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Ilicak, Mehmet; Jung, Thomas; Masina, Simona; Navarra, Antonio; Patara, Lavinia; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sui, Chung-Hsiung; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yeager, Steve G.

    2016-08-01

    We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger

  11. Integrated bio-magnetostratigraphy of ODP Site 709 (equatorial Indian Ocean).

    NASA Astrophysics Data System (ADS)

    Villa, Giuliana; Fioroni, Chiara; Florindo, Fabio

    2015-04-01

    Over the last decade, calcareous nannofossil biostratigraphy of the lower Eocene-Oligocene sediments has shown great potential, through identification of several new nannofossil species and bioevents (e.g. Fornaciari et al., 2010; Bown and Dunkley Jones, 2012; Toffanin et al., 2013). These studies formed the basis for higher biostratigraphic resolution leading to definition of a new nannofossil biozonation (Agnini et al., 2014). In this study, we investigate the middle Eocene-lower Oligocene sediments from ODP Hole 709C (ODP Leg 115) by means of calcareous nannofossils and magnetostratigraphy. Ocean Drilling Program (ODP) Site 709 was located in the equatorial Indian Ocean and biostratigraphy has been investigated in the nineties (Okada, 1990; Fornaciari et al., 1990) while paleomagnetic data from the Initial Report provided only a poorly constrained magnetostratigraphic interpretation, thus the cored succession was dated only by means of biostratigraphy. Our goal is to test the reliability in the Indian Ocean of the biohorizons recently identified at Site 711 (Fioroni et al., in press), by means of high resolution sampling, new taxonomic updates, quantitative analyses on calcareous nannofossils allowed to increase the number of useful bioevents and to compare their reliability and synchroneity. The new magnetostratigraphic analyses and integrated stratigraphy allow also to achieve an accurate biochronology of the time interval spanning Chrons C20 (middle Eocene) and C12 (early Oligocene). In addition, this equatorial site represents an opportunity to study the carbonate accumulation history and the large fluctuations of the carbonate compensation depth (CCD) during the Eocene (e.g. Pälike et al., 2012). The investigated interval encompasses the Middle Eocene Climatic Optimum (MECO), and the long cooling trend that leads to the Oligocene glacial state. By means of our new bio-magnetostratigraphic data and paleoecological results we provide further insights on

  12. Variations in sea surface temperature reconstructed by algal biomarker thermometry in the Neogene equatorial Pacific sediments

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Nakamura, H.; Yamamoto, S.; Kobayashi, M.

    2012-12-01

    The eastern equatorial Pacific Ocean today sustains significant amounts of global marine productivity, and the region is one of the largest marine sources of CO2 to the atmosphere. However, geological time-scale variations of marine environment and ecological / biogeochemical systems in the equatorial Pacific have been still unclear. In this study, we reconstruct the variations of sea surface temperature (SST) by long chain alkenone and the newest long-chain diol thermometers from the equatorial Pacific sediments, and discuss fluctuations in paleoceanographic and paleoclimatic systems in this region during the Neogene. Integrated Ocean Drilling Program (IODP) Expeditions 320/321 (Pacific Equatorial Age Transect; PEAT) recovered a Cenozoic sediment record from the equatorial Pacific by coring above the palaeoposition of the Equator at successive crustal ages on the Pacific plate. We used a core U1337 in the present study. We identify C37 - C38 alkenones as well as saturated C28 and C30 1,13-diols, C28 and C30 1,14-diols, and C30 1,15-diol from almost all the Neogene sediments (23 - 0.23 Ma) in a core U1337. This indicates that diatom, haptophyte and eustigmatophyte algal productions were consistently significant in the equatorial Pacific throughout the Neogene. The UK'37 values were converted to temperatures by using the calibrations reported by Prahl et al. (1988) and Kienast et al. (2012). The alkenone-based SSTs in a core U1337 were nearly constant over the past 25 Ma, ranging from 26 to 28 C, although there were two much lower spikes of 15 - 20 C in 13.2 - 12.5 Ma and 6 Ma. The Long chain Diol Index (LDI; Rampen et al., 2012) values were converted to SSTs by using the calibrations reported by Rampen et al. (2012) and Sawada et al. (unpublished data). The LDI values were estimated to be 7 - 30 C and 12 - 27 C by the Rampen et al. and Sawada et al. calibrations, respectively. The decreasing spikes of SSTs in U1337 core are observed in the horizons of 12.5Ma, 11Ma

  13. Changes in the East-West contrast of the upper equatorial Pacific Ocean over the last 10 Ma

    NASA Astrophysics Data System (ADS)

    Rousselle, Gabrielle; Beltran, Catherine; Sicre, Marie-Alexandrine; de Rafélis, Marc; Schouten, Stefan

    2016-04-01

    This study presents new data of the past 10 Ma climate in the Equatorial Pacific. Combining UK'37 and TEX86-derived temperatures as well as carbon and oxygen isotope of calcifying planktonic species living in surface and subsurface waters at the IODP site U1338 (Eastern Equatorial Pacific) and 806 (Western Equatorial Pacific) we investigate the temporal evolution of the zonal gradient across the equatorial Pacific. This multi-proxy approach is used to reconstruct changes in the asymmetric pattern between the Eastern and Western Equatorial Pacific surface and thermocline depth waters. Based on the cross-analysis of our data and those available in the literature we propose a schematic view of long-term La Niña- and El Niño-like alternations from the upper Miocene in the equatorial Pacific Ocean. We suggest a general shoaling of the thermocline along the equator from about 11 Ma ago demonstrate that this shoaling is linked to the equatorial upwelling and the establishment of the Eastern Pacific Cold tongue particularly discernible during three time intervals referring to La Niña-like periods (11.5 - 9 Ma, 6.8 - 6 Ma and 4.8 - 1.4 Ma). Our study also reveals intervals of weakened oceanic circulation during El Niño-like periods (9 - 6.8 Ma and 6 - 4.8 Ma). The role of global ice sheet, the Indonesian seaway restriction and the Central American seaway closure as driving factors of the observed changes are discussed.

  14. Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales

    NASA Astrophysics Data System (ADS)

    Nyadjro, Ebenezer S.; McPhaden, Michael J.

    2014-11-01

    This study examines equatorial zonal current variations in the upper layers of eastern Indian Ocean in relation to variations in the Indian Ocean Dipole (IOD). The analysis utilizes data from the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) and the European Centre for Medium-Range Weather Forecasts-Ocean Reanalysis System 4 (ECMWF-ORAS4). Surface currents are characterized by semiannual eastward flowing Wyrtki jets along the equator in boreal spring and fall, forced by westerly monsoon transition winds. The fall jet intensifies during negative IOD (NIOD) events when westerlies are anomalously strong but significantly weakens during positive IOD (PIOD) events when westerlies are anomalously weak. As zonal wind stress weakens during PIOD events, sea surface height becomes unusually low in the eastern basin and high in the west, setting up an anomalous pressure force that drives increased eastward transport in the thermocline. Opposite tendencies are evident during NIOD events in response to intensified equatorial westerlies. Current transport adjustments to anomalous zonal wind forcing during IOD events extend into the following year, consistent with the cycling of equatorial wave energy around the basin. A surface layer mass budget calculation for the eastern sea surface temperature (SST) pole of the IOD indicates upwelling of ˜2.9±0.7 Sv during normal periods, increasing by 40-50% during PIOD events and reducing effectively to zero during NIOD events. IOD-related variations in Wyrtki jet and thermocline transports are major influences on these upwelling rates and associated water mass transformations, which vary consistently with SST changes.

  15. Jupiter's Equatorial Region in the Near-Infrared and Violet (Time set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of an equatorial 'hotspot' on Jupiter at 756 nanometers (top) and 410 nanometers (bottom). The mosaics cover an area of 34,000 kilometers by 11,000 kilometers. The dark region near the center of each mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance.

    The 756 nanometer (nm) near-infrared continuum filter shows the features of Jupiter's main visible cloud deck. Light at 410 nm is affected by the sizes and compositions of cloud particles, as well as the trace chemicals that give Jupiter's clouds their colors. Near-infrared continuum images are used to study cloud patterns and motions. Violet images contain additional information about cloud color and cloud particles.

    North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  16. Effects of pressure on equatorial x-ray fiber diffraction from skeletal muscle fibers.

    PubMed Central

    Knight, P J; Fortune, N S; Geeves, M A

    1993-01-01

    When skeletal muscle fibers are subjected to a hydrostatic pressure of 10 MPa (100 atmospheres), reversible changes in tension occur. Passive tension from relaxed muscle is unaffected, rigor tension rises, and active tension falls. The effects of pressure on muscle structure are unknown: therefore a pressure-resistant cell for x-ray diffraction has been built, and this paper reports the first study of the low-angle equatorial patterns of pressurized relaxed, rigor, and active muscle fibers, with direct comparisons from the same chemically skinned rabbit psoas muscle fibers at 0.1 and 10 MPa. Relaxed and rigor fibers show little change in the intensity of the equatorial reflections when pressurized to 10 MPa, but there is a small, reversible expansion of the lattice of 0.7 and 0.4%, respectively. This shows that the order and stability of the myofilament lattice is undisturbed by this pressure. The rise in rigor tension under pressure is thus probably due to axial shortening of one or more components of the sarcomere. Initial results from active fibers at 0.1 MPa show that when phosphate is added the lattice spacing and equatorial intensities change toward their relaxed values. This indicates cross-bridge detachment, as expected from the reduction in tension that phosphate induces. 10 MPa in the presence of phosphate at 11 degrees C causes tension to fall by a further 12%, but not change is detected in the relative intensity of the reflections, only a small increase in lattice spacing. Thus pressure appears to increase the proportion of attached cross-bridges in a low-force state. PMID:8218906

  17. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  18. KINETIC THEORY OF EQUILIBRIUM AXISYMMETRIC COLLISIONLESS PLASMAS IN OFF-EQUATORIAL TORI AROUND COMPACT OBJECTS

    SciTech Connect

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  19. Jupiter's Equatorial Region in the Near-Infrared (Time set 4)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's equatorial region at 756 nanometers (nm). The mosaic covers an area of 34,000 kilometers by 22,000 kilometers. The near-infrared continuum filter shows the features of Jupiter's main visible cloud deck. The dark region near the center of the mosaic is an equatorial 'hotspot' similar to the Galileo Probe entry site. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright oval in the upper right of the mosaic as well as the other smaller bright features are examples of upwelling of moist air and condensation.

    North is at the top. The mosaic covers latitudes 1 to 19 degrees and is centered at longitude 336 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Observations of the generation of eastward equatorial electric fields near dawn

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Rodrigues, F. S.; Pfaff, R. F.; Klenzing, J.

    2014-09-01

    We report and discuss interesting observations of the variability of electric fields and ionospheric densities near sunrise in the equatorial ionosphere made by instruments onboard the Communications/Navigation Outage Forecasting System (C/NOFS) satellite over six consecutive orbits. Electric field measurements were made by the Vector Electric Field Instrument (VEFI), and ionospheric plasma densities were measured by Planar Langmuir Probe (PLP). The data were obtained on 17 June 2008, a period of solar minimum conditions. Deep depletions in the equatorial plasma density were observed just before sunrise on three orbits, for which one of these depletions was accompanied by a very large eastward electric field associated with the density depletion, as previously described by de La Beaujardière et al. (2009), Su et al. (2009) and Burke et al. (2009). The origin of this large eastward field (positive upward/meridional drift), which occurred when that component of the field is usually small and westward, is thought to be due to a large-scale Rayleigh-Taylor process. On three subsequent orbits, however, a distinctly different, second type of relationship between the electric field and plasma density near dawn was observed. Enhancements of the eastward electric field were also detected, one of them peaking around 3 mV m-1, but they were found to the east (later local time) of pre-dawn density perturbations. These observations represent sunrise enhancements of vertical drifts accompanied by eastward drifts such as those observed by the San Marco satellite (Aggson et al., 1995). Like the San Marco measurements, the enhancements occurred during winter solstice and low solar flux conditions in the Pacific longitude sector. While the evening equatorial ionosphere is believed to present the most dramatic examples of variability, our observations exemplify that the dawn sector can be highly variable as well.

  1. Beam attenuation by microorganisms and detrital particles in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Chung, Sung Pyo; Gardner, Wilford D.; Landry, Michael R.; Richardson, Mary Jo; Walsh, Ian D.

    1998-06-01

    The transmissometer has been actively used to monitor the variability of particulate matter in the surface ocean. Attenuation due to water (cw) is constant at a given wavelength, so variability in the signal is due primarily to particles (beam cp). Most of the beam cp signal appears to originate from particles <20 μ, which, in the euphotic zone, are most likely to be microorganisms. However, how much of the beam cp (λ = 660 nm) is attributable to any given organism category or the detrital component is poorly known. To answer this question, at least numerical abundances and optical (scattering) cross sections of each category are needed. During the two transect cruises (TT007 and TT011) of the Joint Global Ocean Flux Study (JGOFS) Equatorial Pacific (EqPac) program (12°N-12°S, 140°W), particulate matter attenuation (beam cp) and abundances of four microorganism categories (heterotrophic bacteria, Prochlorococcus, Synechococcus, and small autotrophic eukaryotes) with their forward angle light scattering (FALS) information (flow cytometer) were simultaneously measured from the same water samples. The bulk scattering coefficients of each population and total scattering coefficients (bp) of these four picoplankton populations (bp (PICO)) were calculated and compared with beam cp. In the equatorial Pacific, heterotrophic bacteria and Prochlorococcus were the most significant contributors to the beam c (16 and 7% of beam cp, respectively) via scattering, and autotrophic eukaryotes and Synechococcus were less important contributors (2 and 1%, respectively) in the equatorial Pacific. If absorption was also included, ˜30% of the beam cp could be accounted for by these four populations in the euphotic zone, supporting the argument that a transmissometer at 660 nm is an effective tool in measuring the net biological processes in the open ocean. A rough estimate for the beam cp signal from nonliving detrital particles was also made in surface waters of the region.

  2. On the day-to-day variation of the equatorial electrojet during quiet periods

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Richmond, A. D.; Maute, A.; Liu, H.-L.; Pedatella, N.; Sassi, F.

    2014-08-01

    It has been known for a long time that the equatorial electrojet varies from day to day even when solar and geomagnetic activities are very low. The quiet time day-to-day variation is considered to be due to irregular variability of the neutral wind, but little is known about how variable winds drive the electrojet variability. We employ a numerical model introduced by Liu et al. (2013), which takes into account weather changes in the lower atmosphere and thus can reproduce ionospheric variability due to forcing from below. The simulation is run for May and June 2009. Constant solar and magnetospheric energy inputs are used so that day-to-day changes will arise only from lower atmospheric forcing. The simulated electrojet current shows day-to-day variability of ±25%, which produces day-to-day variations in ground level geomagnetic perturbations near the magnetic equator. The current system associated with the day-to-day variation of the equatorial electrojet is traced based on a covariance analysis. The current pattern reveals return flow at both sides of the electrojet, in agreement with those inferred from ground-based magnetometer data in previous studies. The day-to-day variation in the electrojet current is compared with those in the neutral wind at various altitudes, latitudes, and longitudes. It is found that the electrojet variability is dominated by the zonal wind at 100-120 km altitudes near the magnetic equator. These results suggest that the response of the zonal polarization electric field to variable zonal winds is the main source of the day-to-day variation of the equatorial electrojet during quiet periods.

  3. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  4. Self-reported adherence to antiretroviral therapy in HIV+ population from Bata, Equatorial Guinea.

    PubMed

    Salmanton-García, Jon; Herrador, Zaida; Ruiz-Seco, Pilar; Nzang-Esono, Jesús; Bendomo, Veronica; Bashmakovic, Emma; Nseng-Nchama, Gloria; Benito, Agustín; Aparicio, Pilar

    2016-05-01

    The human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS) represent a serious public health problem in Equatorial Guinea, with a prevalence of 6.2% among adults. the high-activity antiretroviral treatment (HAART) coverage data is 10 points below the overall estimate for Sub-Saharan Africa, and only 61% patients continue with HAART 12 months after it started. This study aims to assess HAART adherence and related factors in Litoral Province of Equatorial Guinea. In this cross-sectional study, socio-demographic and clinical data were collected at Regional Hospital of Bata, during June-July 2014. Adherence to treatment was assessed by using the Spanish version of CEAT-VIH. Bivariate and linear regression analyses were employed to assess HAART adherence-related factors. We interviewed 50 men (35.5%) and 91 women (64.5%), with a mean age of 47.7 ± 8.9 and 36.2 ± 11.2, respectively (p < .001). Overall, 55% patients had low or insufficient adherence. CEAT-VIH score varied by ethnic group (p = .005). There was a positive correlation between CEAT-VIH score and current CD4 T-cells count (p = .013). The Cronbach's α value was 0.52. To our knowledge, this is the first study to assess HAART adherence in Equatorial Guinea. Internal reliability for CEAT-VIH was low, nonetheless the positive correlation between the CEAT-VIH score and the immunological status of patients add value to our findings. Our results serve as baseline for future research and will also assist stakeholders in planning and undertaking contextual and evidence-based policy initiatives. PMID:26698540

  5. Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes

    SciTech Connect

    Batista, I.S.; De Paula, E.R.; Abdu, M.A.; Trivedi, N.B. ); Greenspan, M.E. )

    1991-08-01

    The great geomagnetic storm of March 13, 1989 caused severely anomalous behavior in the equatorial and low latitude ionosphere in the Brazilian longitude sector. The ionograms over Fortaleza indicated F region upward plasma drifts exceeding 200 m s{sup {minus}1} at 1,830 LT as compared to normal values of 40 m s{sup {minus}1} for this epoch. Large negative phases were observed in foF2 over Fortaleza and Cachoeira Paulista and in total electron content measured over Sao Jose dos Campos. The equatorial ionization anomaly was totally absent either because of its anomalous expansion to higher latitudes or because of inhibition of its development on the two nights following the storm. Many anomalous variations in F region peak density and height, occurring simultaneously with sharp variations on H component of magnetic field over Fortaleza and with auroral substorms, give strong evidence of penetration of magnetospheric electric fields to equatorial and low latitudes. Auroral type sporadic E and night E layers are observed after 1,830 LT over Cachoeira Paulista, the latter showing peak electron density of about 6 {times} 10{sup 4} el cm{sup {minus}3}, therefore comparable to the E layer peak density in the morning hours at that station. The Fortaleza ionograms show the presence of the F1 layer at night, a phenomenon that has never been observed over our two stations before. The role played by electric fields penetrating from high to low latitudes, particle precipitation, and composition changes in explaining the observations is discussed.

  6. foF2 correlation studies with solar and geomagnetic indices for two equatorial stations

    NASA Astrophysics Data System (ADS)

    Joshua, E. O.; Nzekwe, N. M.

    2012-05-01

    The analysis of the contributions of solar and geomagnetic indices on the critical frequency of the ionospheric F2 layer (foF2)-, for different seasons and two Nigerian equatorial stations- Ibadan (Lat. 7.4°N, Long. 3.9°N) and Ilorin (Lat. 8.5°N, Long. 4.55°E)- are presented. The data set was randomly sampled across three solar cycles of periods of low, moderate and high solar activities. Solar indices used in this work are Coviten solar flux (F10.7 cm), daily solar radio flux (dF10.7), International Sunspot Number (ISSN), Smoothen Sunspot Number (SmSSN), and Sun Spot Number (SSN). The geomagnetic indices used are planetary indices Am, Aa, Ap, C9, Cp, and Kp. foF2 showed a non-linear trend with an average coefficient (R) of 0.70 across the various seasons. Regression lines for polynomials of degree n=1 to n=6 was fitted, for each data set. Am, Ap, Aa, SSN, ISSN, F10.7 cm, and dF10.7 with R values of 0.71,0.74,0.61,0.59,0.72,0.80, and 0.86, for the various geomagnetic and solar indices, had the highest contributions. We therefore advocate for SSN, ISSN, F10.7 cm, dF10.7 and Am, Ap or Aa in modeling foF2 for the African equatorial ionosphere. The results of this work are in line with the results of other works carried out at different equatorial stations.

  7. Saturn's Equatorial Oscillation: Evidence of Descending Thermal Structure from Cassini Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schnider, P. J.; Marouf, E. A.; French, R. G.; McGhee, C. A.; Kliore, A. J.; Rappaport, N. J.

    2010-01-01

    Ground-based and Cassini CIRS thermal-infrared data have characterized the spatial and temporal characteristics of an equatorial oscillation in Saturn's middle atmosphere above the 100-mbar level. The CIRS data indicate a vertical pattern of alternating warm and cold anomalies at the equator. From the thermal wind equation this implies a concomitant reversal of zonal winds with attitude, relative to the cloud-top winds, with peak-to-peak amplitude approximately 200 meters per second. The ground-based observations do not having the altitude range or vertical resolution of the CIRS observations, but they cover several years and indicate an oscillation cycle of 1 years, roughly half of Saturn's year. Equatorial oscillations in Earth's middle atmosphere have primarily exhibited either quasi-biennial or semi-annual "periodicities," and both types have been extensively observed and modeled. They exhibit a vertical pattern of alternating warmer and cooler zonal-mean temperatures and zonal winds analogous to that described above for Saturn. Moreover, the pattern of winds and temperatures descends with time. Momentum deposition by damped vertically propagating easterly and westerly waves is thought to play a key role in forcing both types of oscillation, and it can plausibly account for the descent. Here we report the direct observation of this descent in Saturn's equatorial atmosphere from Cassini radio occultation soundings in 2005 and 2009. The retrieved temperatures are consistent with a descent of 0.6 x the pressure scale height over this time period. The descent rate is related to the magnitude of the wave forcing, radiative damping, and induced meridional circulations. A simple calculation implies that vertical wave fluxes of zonal momentum approximately 0.05 square meters per square second could account for the observed vertical descent on Saturn, which is comparable to the magnitude of the wave fluxes associated with the terrestrial quasi-biennial oscillation.

  8. Characteristics of High-latitude and Equatorial Ionospheric Scintillation of GNSS Signals

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Jiao, Y.

    2014-12-01

    In this paper, several years of multi-constellation global navigation satellite scintillation data collected at Alaska, Peru, and Ascension Island are analyzed to characterize scintillation features observed at high latitude and equatorial locations during the current solar maximum. Recognizing that strong scintillation data are often lost due to the lack of robustness in conventional GPS receivers used for ionosphere scintillation monitoring (ISM), an autonomous event driven scintillation data collection system using software-defined raw RF sampling devices have been developed deployed at a number of strategically selected high latitude and equatorial locations since 2009. This unique scintillation data recording system is triggered by indicators computed from a continuously operating ISM receiver and the raw RF data is post processed using advanced receiver signal processing algorithms designed to minimize carrier phase cycle slips and loss of lock of signals during strong scintillations. Based on scintillation events extracted from the raw data, several statistical distributions are established to characterize the intensity, duration and occurrence frequency of scintillation. Results confirm that scintillation at low latitudes is generally more intense and longer lasting, while high-latitude scintillation is milder and usually dominated by phase fluctuations. Results also reveal the impacts of solar activity, geomagnetic activity and seasons on scintillation in different areas. Combining measurements from a co-located geo-magnetometer and corresponding global geomagnetic activities, qualitative and quantitative correlations between scintillation and both local and global geomagnetic activities have been obtained. Results show that in Alaska, the occurrence frequency and intensity of scintillation, especially phase fluctuations, have strong correlations with geomagnetic field intensity disturbances, while in equatorial stations, the correlation is not obvious.

  9. Mechanism for Surface Warming in the Equatorial Pacific during 1994-95

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.; Borovikov, Anna; Schopf, Paul S.

    1999-01-01

    Mechanisms controlling the variation in sea surface temperature warm event in the equatorial Pacific were investigated through ocean model simulations. In addition, the mechanisms of the climatological SST cycle were investigated. The dominant mechanisms governing the seasonal cycle of SST vary significantly across the basin. In the western Pacific the annual cycle of SST is primarily in response to external heat flux. In the central basin the magnitude of zonal advection is comparable to that of the external heat flux. In the eastern basin the role of zonal advection is reduced and the vertical mixing is more important. In the easternmost equatorial Pacific the vertical entrainment contribution is as large as that of vertical diffusion. The model estimate of the vertical mixing contribution to the mixed layer heat budget compared well with estimates obtained by analysis of observations using the same diagnostic vertical mixing scheme. During 1994- 1995 the largest positive SST anomaly was observed in the mid-basin and was related to reduced latent heat flux due to weak surface winds. In the western basin the initial warming was related to enhanced external heating and reduced cooling effects of both vertical mixing and horizontal advection associated with weaker than usual wind stress. In the eastern Pacific where winds were not significantly anomalous throughout 1994-1995, only a moderate warm surface anomaly was detected. This is in contrast to strong El Nino events where the SST anomaly is largest in the eastern basin and, as shown by previous studies, the anomaly is due to zonal advection rather than anomalous surface heat flux. The end of the warm event was marked by cooling in July 1995 everywhere across the equatorial Pacific.

  10. Relationship between SST in the equatorial Eastern Pacific and TC frequency that affects Korea

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Cha, Yu-Mi; Kang, Sung-Dae; Kim, Hae-Dong

    2015-07-01

    This study analyzed that there was a strong negative correlation between sea surface temperature (SST) in the equatorial Eastern Pacific and tropical cyclone (TC) frequency that affects Korea in summer season in 1951 to 2012. Then, 12 years that had the highest region-averaged SST values in the equatorial Eastern Pacific (warm SST years) and 12 years that had the lowest SST values (cold SST years) were selected, followed by analyzing average difference between two groups to identify any causes of possible correlation between SST in the equatorial Eastern Pacific and TC frequency. In the warm SST years, not only TC frequency that affected Korea but also TC genesis frequency was low, as well as TC intensity. A difference of 500 and 850 hPa streamlines between two groups showed that anomalous northwesterlies were strengthened in Korea due to anomalous cyclonic circulations developed in the mid-latitude region in East Asia, so that such anomalous steering flows played a role in preventing TCs from moving to Korea. Furthermore, anomalous anticyclonic circulations were strengthened in the east of Taiwan, which was related to weakening of the monsoon trough, thereby causing lowering TC genesis frequency in the warm SST years. In addition, as anomalous cyclonic circulations were strengthened in the southeast quadrant of the tropical and subtropical western North Pacific, it created high TC genesis frequency in the sea in the warm SST years. Low TC frequency, low TC genesis frequency, and low TC intensity that affected Korea in the warm SST years were clearly seen by the analysis of differences between two groups with respect to 500 and 850 hPa air temperature, 600 hPa relative humidity, precipitable water, 200-850 hPa vertical wind shear, and sea surface temperature.

  11. Relationship between SST in the equatorial Eastern Pacific and TC frequency that affects Korea

    NASA Astrophysics Data System (ADS)

    Choi, K. S.; Kim, B. J.

    2014-12-01

    This study analyzed that there was a strong negative correlation between sea surface temperature (SST) in the equatorial eastern Pacific and tropical cyclone (TC) frequency that affects Korea in summer season in 1951 to 2012. Then, 12 years that had the highest region-averaged SST values in the equatorial eastern Pacific (warm SST years) and 12 years that had the lowest SST values (cold SST years) were selected followed by analyzing average difference between two groups to identify any causes of possible correlation between SST in the equatorial eastern Pacific and TC frequency.In the warm SST years, not only TC frequency that affected Korea but also TC genesis frequency was low as well as TC intensity. A difference of 500 hPa and 850 hPa streamlines between two groups showed that anomalous northwesterlies were strengthened in Korea due to anomalous cyclonic circulations developed in the mid-latitude region in East Asia so that such anomalous steering flows played a role in preventing TCs from moving to Korea. Furthermore, anomalous anticyclonic circulations were strengthened in the east of Taiwan, which was related to weakening of the monsoon trough thereby causing lowering TC genesis frequency in the warm SST years. In addition, as anomalous cyclonic circulations were strengthened in the southeast quadrant of the tropical and subtropical western North Pacific, it created high TC genesis frequency in the sea in the warm SST years. Low TC frequency, low TC genesis frequency, and low TC intensity that affected Korea in the warm SST years were clearly seen by the analysis of differences between two groups with respect to 500 hPa and 850 hPa air temperature, 600 hPa relative humidity, precipitable water, 200-850 hPa vertical wind shear and sea surface temperature.

  12. Characterization of equatorial plasma depletions detected from derived GPS data in South America

    NASA Astrophysics Data System (ADS)

    Magdaleno, S.; Herraiz, M.; de La Morena, B. A.

    2012-01-01

    The equatorial plasma bubbles (EPBs) have been studied using slant total electron content (sTEC) derived from GPS data. The sTEC has been calculated from data measured at 15 International GNSS Service (IGS) stations located from 90°W to 30°W, covering the ionospheric equatorial anomaly at the American sector, for the years 2000, 2001, 2004, 2005 and 2008. The Ionospheric Bubbles Seeker (IBS) application has been used to detect and characterize the sTEC depletions associated to the EPBs. This technique bases its analysis on the time-variation of the sTEC and the population variance of this time-variation. The default configuration has been used and an EPB has been considered when a sTEC depletion was greater than 5 TEC units (TECu). The hourly occurrence shows the well-known maximum number of depletions after the post-sunset. The monthly occurrence of the EPBs is also analyzed and compared with previous studies. The International Reference Ionosphere model (IRI) has been used to calculate the equatorial vertical drift (EVD) and the peak densities of the E- and F-layers (NmE and NmF2, respectively). The EVD variation has been compared with the seasonal variation of the EPB. A discussion between the yearly mean occurrence EPBs rate and the solar activity is included. The variation of the yearly mean depth and duration of the sTEC depletions with the solar activity conditions and its relation with the ionospheric ch