Sample records for na mg fe

  1. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.

    PubMed

    Kim, Dong-Min; Kim, Youngjin; Arumugam, Durairaj; Woo, Sang Won; Jo, Yong Nam; Park, Min-Sik; Kim, Young-Jun; Choi, Nam-Soon; Lee, Kyu Tae

    2016-04-06

    Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe2(CN)6 and Prussian blue Na(0.69)Fe2(CN)6 are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg(2+) ions cannot be intercalated in Fe2(CN)6, Na(0.69)Fe2(CN)6 shows reversible intercalation and deintercalation of Mg(2+) ions, although they have the same crystal structure except for the presence of Na(+) ions. This phenomenon is attributed to the fact that Mg(2+) ions are more stable in Na(+)-containing Na(0.69)Fe2(CN)6 than in Na(+)-free Fe2(CN)6, indicating Na(+) ions in Na(0.69)Fe2(CN)6 plays a crucial role in stabilizing Mg(2+) ions. Na(0.69)Fe2(CN)6 delivers reversible capacity of approximately 70 mA h g(-1) at 3.0 V vs Mg/Mg(2+) and shows stable cycle performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg(2+) and Na(+) ions as charge carriers.

  2. Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun

    2015-05-01

    NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.

  3. Properties of complexes formed by Na(+), Mg(2+), and Fe(2+) binding with benzene molecules.

    PubMed

    Kolakkandy, Sujitha; Pratihar, Subha; Aquino, Adelia J A; Wang, Hai; Hase, William L

    2014-10-09

    A theoretical investigation was performed to study cation-π interactions in complexes of benzene (Bz) with cations, that is, M(z+)(Bz)n for M(z+) = Na(+), Mg(2+), Fe(2+) and n = 1-3, using MP2 theory with the 6-31+G* and 6-311++G** basis sets and the DFT/(B3LYP and B3LYP-D)/6-311++G** methods. Binding energies and structures of the complexes are reported. The splitting between the quintet and single states of the Fe(2+) complexes was found to depend on the number of benzene molecules in the complex and the complex's structure. All of the M(z+)(Bz) complexes prefer a half-sandwich geometry. A geometry with the cation sandwiched between the two benzene rings was found for the M(z+)(Bz)2 complexes, with the benzene rings either in an eclipsed or staggered conformation. An approximate cyclic structure, with the cation at its center, was found for three benzene molecules interacting with the cation. The cation-benzene binding energy is substantial and equal to 22, 108, and 151 kcal/mol for the Na(+)(Bz), Mg(2+)(Bz), and Fe(2+)(Bz) complexes, respectively. The strength of the interaction of the cation with an individual benzene molecule decreases as the number of benzene molecules bound to the cation increases; for example, it is 108 kcal/mol for Mg(2+)(Bz), but only 71 kcal/mol for Mg(2+)(Bz)3. There is a range of values for the M(z+)(Bz)n intermolecular vibrational frequencies; for example, they are ∼230-360 and ∼10-330 cm(-1) for the Mg(2+)(Bz) and Mg(2+)(Bz)3 complexes, respectively. Binding of the cation to benzene both red and blue shifts the benzene vibrational frequencies. This shifting is larger for the Mg(2+) and Fe(2+) complexes, as compared to those for Na(+), as a result of the former's stronger cation-benzene binding. The present study is an initial step to understand the possible importance of cation-π interactions for polycyclic aromatic hydrocarbon aggregation processes during soot formation.

  4. Crystal structure of the mineral (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4: a triclinic representative of the amphibole family

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-05-01

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Å, b = 18.0457(3) Å; c = 9.8684(2) Å, α = 90.016(2)°, β = 105.543(4)°, γ = 89.985(2)°. The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with | F| > 3σ( F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K)2(Ca,Na)4(Mg,Fe)5(Mg,Fe,Ti)5[Si12Al4O44](F,O)4 has some symmetry and structural features that distinguish it from other minerals of this family.

  5. High waterborne Mg does not attenuate the toxic effects of Fe, Mn, and Ba on Na+ regulation of Amazonian armored catfish tamoatá (Hoplosternum litoralle).

    PubMed

    Duarte, Rafael M; Benaduce, Ana Paula; Garcia, Luciano; Gomes, Levy C; Gomes, Adriana Chippari; Val, Adalberto L; Baldisserotto, Bernardo

    2018-04-24

    Formation water (FoW) is a by-product from oil and gas production and usually has high concentrations of soluble salts and metals. Calcium (Ca) and magnesium (Mg) have been shown to reduce the toxicity of metals to aquatic animals, and previous study showed that high waterborne Ca exerts mild effect against disturbances on Na + regulation in Amazonian armored catfish tamoatá (Hoplosternum littorale) acutely exposed to high Fe, Mn, and Ba levels. Here, we hypothesized that high Mg levels might also reduce the toxic effects of these metals on Na + regulation of tamoatá. The exposure to 5% FoW promoted an increase in Na + uptake and a rapid accumulation of Na + in all tissues analyzed (kidneyMg lowered Na + efflux rates and markedly inhibited Na + uptake, and also reduced both NKA activity and newly Na + accumulation in gills of fish. High Fe levels increased Na + net losses and inhibited Na + uptake in tamoatá. The diffusive Na + losses and the newly accumulated Na + in gills were reduced in fish exposed to high Mn and Ba. High waterborne Ba also inhibited NKA in gills, while both high Mn and Ba inhibited v-type H + -ATPase in kidney of tamoatá. High Mg did not lessen the toxic effect of Fe on Na + net fluxes, and reduced even more Na + uptake and the newly Na + accumulation in gills and plasma, and did not prevent the inhibition of both NKA and v-type H + -ATPases in kidney. Furthermore, Mg did not attenuate the effect of Mn on inhibition Na + uptake, keeping the activity of v-type H + -ATPase in kidney significantly lowered. High Mg levels mildly attenuated the effects of Ba in Na + balance by increasing the new accumulation of Na + in liver, and restore the activity of both NKA and v-type H + -ATPase in gills of tamoatá. Overall, high waterborne Mg does not have a strong contribution to, or have only minor effects, in protecting

  6. Effect of NaFeEDTA-fortified soy sauce on zinc absorption in children.

    PubMed

    Li, Min; Wu, Jinghuan; Ren, Tongxiang; Wang, Rui; Li, Weidong; Piao, Jianhua; Wang, Jun; Yang, Xiaoguang

    2015-03-01

    NaFeEDTA has been applied in many foods as an iron fortificant and is used to prevent iron deficiency in Fe-depleted populations. In China, soy sauce is fortified with NaFeEDTA to control iron deficiency. However, it is unclear whether Fe-fortified soy sauce affects zinc absorption. To investigate whether NaFeEDTA-fortified soy sauce affects zinc absorption in children, sixty children were enrolled in this study and randomly assigned to three groups (10 male children and 10 female children in each group). All children received daily 3 mg of (67)Zn and 1.2 mg of dysprosium orally, while the children in the three groups were supplemented with NaFeEDTA-fortified soy sauce (6 mg Fe, NaFeEDTA group), FeSO₄-fortified soy sauce (6 mg Fe, FeSO₄ group), and no iron-fortified soy sauce (control group), respectively. Fecal samples were collected during the experimental period and analyzed for the Zn content, (67)Zn isotope ratio and dysprosium content. The Fe intake from NaFeEDTA-fortified and FeSO₄-fortified groups was significantly higher than that in the control group (P < 0.0001). The daily total Zn intake was not significantly different among the three groups. There were no significant differences in fractional Zn absorption (FZA) (P = 0.3895), dysprosium recovery (P = 0.7498) and Zn absorption (P = 0.5940) among the three groups. Therefore, NaFeEDTA-fortified soy sauce does not affect Zn bioavailability in children.

  7. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{submore » 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.« less

  8. Crystal structure and europium luminescence of NaMgH3-xFx

    NASA Astrophysics Data System (ADS)

    Pflug, Christian; Franz, Alexandra; Kohlmann, Holger

    2018-02-01

    The solid solution series NaMgH3-xFx (x = 0, 0.5, 1, 1.5, 2, 2.5, 3) was synthesized by solid-state reactions under hydrogen gas pressure from binary ionic hydrides, fluorides and magnesium. Rietveld refinement based on X-ray powder diffraction data revealed the GdFeO3-structure type for all compounds and a trend of lattice parameters according to Vegard's law. The anion distribution in NaMgD2F and NaMgD1.5F1.5 was found to be statistical by Rietveld refinement based on neutron powder diffraction data. Photoluminescence measurements on europium(II) substituted NaMgH3-xFx revealed a strong red shift of the emission wavelength (λem = 665 nm for NaMgH2F:Eu) in comparison to violet emitting NaMgF3:Eu.

  9. Effect of Mg interlayer on perpendicular magnetic anisotropy of CoFeB films in MgO/Mg/CoFeB/Ta structure

    NASA Astrophysics Data System (ADS)

    Ma, Q. L.; Iihama, S.; Kubota, T.; Zhang, X. M.; Mizukami, S.; Ando, Y.; Miyazaki, T.

    2012-09-01

    The effects of Mg metallic interlayer on the magnetic properties of thin CoFeB films in MgO/Mg (tMg)/CoFeB (1.2 nm)/Ta structures were studied in this letter. Our experimental result shows that the CoFeB film exhibits perpendicular magnetic anisotropy (PMA) when the CoFeB and MgO layers are separated by a metallic Mg layer with a maximum thickness of 0.8 nm. The origin of PMA was discussed by considering the preferential transmission of the Δ1 symmetry preserved by the Mg interlayer in crystallized MgO/Mg/CoFeB/Ta. In addition, the thin Mg interlayer also contributes to enhancing the thermal stability and reducing the effective damping constant and coercivity of the CoFeB film.

  10. Interstitial Fe in MgO

    NASA Astrophysics Data System (ADS)

    Mølholt, T. E.; Mantovan, R.; Gunnlaugsson, H. P.; Svane, A.; Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Johnston, K.; Langouche, G.; Ólafsson, S.; Sielemann, R.; Weyer, G.

    2014-01-01

    Isolated 57Fe atoms were studied in MgO single-crystals by emission Mössbauer spectroscopy following implantation of 57Mn decaying to 57Fe. Four Mössbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  11. Behaviour of Fe4O5-Mg2Fe2O5 solid solutions and their relation to coexisting Mg-Fe silicates and oxide phases

    NASA Astrophysics Data System (ADS)

    Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.

    2018-03-01

    Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.

  12. Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Shi, Hui; Dong, Yuegang; Ding, Lei; Han, Gang; Zhang, Yao; Liu, Ye; Yu, Guanghua

    2017-10-01

    The anisotropic magnetoresistance (AMR) and magnetic properties of NiFe films can be remarkably enhanced via CoFeB layer. In the case of an ultrathin NiFe film having a Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta structure, the CoFeB/MgO layers suppressed the formation of magnetic dead layers and the interdiffusions and interface reactions between the NiFe and Ta layers. The AMR reached a maximum value of 3.56% at 450 °C. More importantly, a single NiFe (1 1 1) peak can be formed resulting in higher AMR values for films having CoFeB layer. This enhanced AMR also originated from the significant specular reflection of electrons owing to the crystalline MgO layer, together with the sharp interfaces with the NiFe layer. These factors together resulted in higher AMR and improved magnetic properties.

  13. Comprehensive structural and chemical (CO2, Fe/Fe Mg, H2O) investigations of Mg-Fe cordierite with micro Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Haefeker, U.; Kaindl, R.; Tropper, P.

    2012-04-01

    The Mg-Fe silicate cordierite with the idealized formula (Fe, Mg)2Al4Si5O18 occurs as a hexagonal and an orthorhombic polymorph with disordered/ordered Al-Si distribution on the tetrahedral sites. Most of the natural cordierites are fully ordered. Six-membered rings of (Si,Al)O4 are piled in the direction of the crystallographic c-axis and form channels, laterally and vertically linked by additional (Al, Si) tetrahedrons. Mg and Fe in varying fractions occupy the octahedrally coordinated M-sites. CO2 and H2O (and other volatiles) can be incorporated into the structural channels, thus cordierite can be used for paleofluid reconstruction. The vibration energies of incorporated volatiles, their interaction with the lattice and variations of certain lattice-vibration energies caused by the Mg-Fe exchange can be determined with Raman spectroscopy, allowing chemical quantifications and structural investigations. A method for the semi-quantitative determination of CO2-contents of natural cordierites by Kaindl et al. (2006) was optimized and enhanced by Haefeker et al. (2007). CO2 contents can be measured in single crystals and thin sections with an error of ± 0.05 - 0.09 wt.-%. Based on the Mg-Fe exchange with garnet, cordierite can be used as a geothermobarometer. Recent investigations of synthetic Mg-Fe cordierites with XFe = 0 - 1 have shown a linear downshift of six selected lattice peaks between 100 and 1250 cm-1 with the Mg-Fe contents. Correlation diagrams allow an estimation of the Mg-Fe contents in synthetic and natural samples. The experimental data are in good agreement with the results of quantum-mechanical calculations of the Raman spectra of Mg- and Fe cordierite (Kaindl et al., 2011) allowing the assignment of the peaks to specific vibrations of tetrahedral and octahedral sites. Natural Mg-Fe cordierites are mainly orthorhombic with a fully ordered Al/Si distribution on the tetrahedral sites. However, the disordered hexagonal polymorph is observed in many

  14. Tetragonal Almandine, (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12, a New High-Pressure Mineral from the Shergotty Impact on Mars: an Integrated FESEM-EPMA-Synchrotron Diffraction Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.

    2016-12-01

    The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.

  15. Na7 [Fe2S6 ] , Na2 [FeS2 ] and Na2 [FeSe2 ] : New 'reduced' sodium chalcogenido ferrates

    NASA Astrophysics Data System (ADS)

    Stüble, Pirmin; Peschke, Simon; Johrendt, Dirk; Röhr, Caroline

    2018-02-01

    Three new 'reduced' FeII containing sodium chalcogenido ferrates were obtained applying a reductive synthetic route. The mixed-valent sulfido ferrate Na7 [Fe2S6 ] , which forms bar-shaped crystals with metallic greenish luster, was synthesized in pure phase from natural pyrite and elemental sodium at a maximum temperature of 800 °C. Its centrosymmetric triclinic structure (SG P 1 bar , a = 764.15(2), b = 1153.70(2), c = 1272.58(3) pm, α = 62.3325 (7) , β = 72.8345 (8) , γ = 84.6394 (8) ° , Z = 3, R1 = 0.0185) exhibits two crystallographically different [Fe2S6 ] 7 - dimers of edge-sharing [FeS4 ] tetrahedra, with somewhat larger Fe-S distances than in the fully oxidized FeIII dimers of e.g. Na6 [Fe2III S6 ] . In contrast to the localized AFM ordered pure di-ferrates(III), the Curie-Weiss behavior of the magnetic susceptibility proves the rarely observed valence-delocalized S = 9/2 state of the mixed-valent FeIII /FeII dimer. The nearly spin-only value of the magnetic moment combined with the chemical bonding not generally differing from that in pure ferrates(II) and (III), provides a striking argument, that the reduction of the local Fe spin moments observed in all condensed sulfido ferrate moieties is connected with the AFM spin ordering. The two isotypic ferrates(II) Na2 [FeS2 ] and Na2 [FeSe2 ] with chain-like structural units (SG Ibam, a = 643.54(8)/ 660.81(1), b = 1140.2(2)/1190.30(2) c = 562.90(6)/585.59(1) pm, Z = 4, R1 = 0.0372/0.0466) crystallize in the K2 [ZnO2 ] -type structure. Although representing merely further members of the common series of chalcogenido metallates(II) Na2 [MIIQ2 ] , these two new phases, together with Na6 [FeS4 ] and Li2 [FeS2 ] , are the only examples of pure FeII alkali chalcogenido ferrates. The new compounds allow for a general comparison of di- and chain ferrates(II) and (III) and mixed-valent analogs concerning the electronic and magnetic properties (including Heisenberg super-exchange and double-exchange interactions

  16. EFFECT OF Mg AND TEMPERATURE ON Fe-Al ALLOY LAYER IN Fe/(Zn-6%Al-x%Mg) SOLID-LIQUID DIFFUSION COUPLES

    NASA Astrophysics Data System (ADS)

    Liang, Liu; Liu, Ya-Ling; Liu, Ya; Peng, Hao-Ping; Wang, Jian-Hua; Su, Xu-Ping

    Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe-Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe-Al alloy layer. It was found that the Fe2Al5Znx phase layer forms close to the iron sheet and the FeAl3Znx phase layer forms near the side of the melted Zn-6%Al-3%Mg in diffusion couples. When the Fe/(Zn-6%Al-3%Mg) diffusion couple is kept at 510∘C for more than 15min, a continuous Fe-Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples, the Fe-Al alloy layer on the interface of the Fe/(Zn-6% Al-3% Mg) diffusion couple is the thinnest. The Fe-Al alloy layer forms only when the diffusion temperature is above 475∘. These results show that the Fe-Al alloy layer in Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples is composed of Fe2Al5Znx and FeAl3Znx phase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe-Al alloy layer. When the Mg content in the Fe/(Zn-6%Al-x%Mg) diffusion couples is 3%, the growth of the Fe-Al alloy layer is inhibited. These results may explain why there is no obvious Fe-Al alloy layer formed on the interface of steel with a Zn-6%Al-3%Mg coating.

  17. Effects of Fe-Enrichment on the Equation of State and Stability of (Mg,Fe)SiO3 Perovskite and Post-Perovskite

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Holl, C. M.; Meng, Y.; Prakapenka, V.; Duffy, T. S.

    2010-12-01

    Fe-enrichment in the deep lower mantle has been proposed as an explanation for seismic anomalies such as large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs). In order to resolve the effect of Fe on the stability and equation of state of the lower mantle’s dominant constituent, (Mg,Fe)SiO3 perovskite, we have studied Fe-rich natural orthopyroxenes, (Mg0.61Fe0.37Ca0.02)SiO3 and (Mg0.25Fe0.70Ca0.05)SiO3 (compositions determined by microprobe analysis), at lower mantle P-T conditions. Pyroxene starting materials were mixed with Au (pressure calibrant and laser absorber) and loaded with NaCl or Ne (pressure medium and thermal insulator) in a symmetric diamond anvil cell. X-ray diffraction experiments at pressures up to 122 GPa with in-situ laser heating were performed at the GSECARS (13-ID-D) and HPCAT (16-ID-B) sectors of the Advanced Photon Source. Heating samples to 2000 K produced single-phase orthorhombic GdFeO3-type perovskite at 63 GPa for the Mg# 61 composition and at 72 GPa for the Mg# 25 composition. At lower pressures (56 GPa for Mg# 61, 67 GPa for Mg# 25), heating both compositions resulted in a mixture of perovskite, SiO2 and (Mg,Fe)O. These measurements provide new constraints on the dependence of (Mg,Fe)SiO3 perovskite stability on pressure and composition. Upon further compression to 93 GPa and higher pressures with laser heating, Mg# 25 perovskite transformed to a two-phase mixture of perovskite and post-perovskite. This is consistent with previous findings that Fe substitution destabilizes (Mg,Fe)SiO3 perovskite relative to (Mg,Fe)SiO3 post-perovskite (Mao et al. 2004, Caracas and Cohen 2005). The bulk modulus at 80 GPa (K80) is ~550 GPa for both Fe-rich perovskites, comparable to values measured for MgSiO3 perovskite (Lundin et al. 2008). However, the volume of Fe-rich perovskites increases linearly with Fe-content. The (Mg0.25Fe0.70Ca0.05)SiO3 perovskite is 3% greater at 80 GPa than V80 for the Mg end

  18. Melting relations in the system FeCO3-MgCO3 and thermodynamic modelling of Fe-Mg carbonate melts

    NASA Astrophysics Data System (ADS)

    Kang, Nathan; Schmidt, Max W.; Poli, Stefano; Connolly, James A. D.; Franzolin, Ettore

    2016-09-01

    To constrain the thermodynamics and melting relations of the siderite-magnesite (FeCO3-MgCO3) system, 27 piston cylinder experiments were conducted at 3.5 GPa and 1170-1575 °C. Fe-rich compositions were also investigated with 13 multi-anvil experiments at 10, 13.6 and 20 GPa, 1500-1890 °C. At 3.5 GPa, the solid solution siderite-magnesite coexists with melt over a compositional range of X Mg (=Mg/(Mg + Fetot)) = 0.38-1.0, while at ≥10 GPa solid solution appears to be complete. At 3.5 GPa, the system is pseudo-binary because of the limited stability of siderite or liquid FeCO3, Fe-rich carbonates decomposing at subsolidus conditions to magnetite-magnesioferrite solid solution, graphite and CO2. Similar reactions also occur with liquid FeCO3 resulting in melt species with ferric iron components, but the decomposition of the liquid decreases in importance with pressure. At 3.5 GPa, the metastable melting temperature of pure siderite is located at 1264 °C, whereas pure magnesite melts at 1629 °C. The melting loop is non-ideal on the Fe side where the dissociation reaction resulting in Fe3+ in the melt depresses melting temperatures and causes a minimum. Over the pressure range of 3.5-20 GPa, this minimum is 20-35 °C lower than the (metastable) siderite melting temperature. By merging all present and previous experimental data, standard state (298.15 K, 1 bar) thermodynamic properties of the magnesite melt (MgCO3L) end member are calculated and the properties of (Fe,Mg)CO3 melt fit by a regular solution model with an interaction parameter of -7600 J/mol. The solution model reproduces the asymmetric melting loop and predicts the thermal minimum at 1240 °C near the siderite side at X Mg = 0.2 (3.5 GPa). The solution model is applicable to pressures reaching to the bottom of the upper mantle and allows calculation of phase relations in the FeO-MgO-O2-C system.

  19. Magnetism in Na-filled Fe-based skutterudites

    DOE PAGES

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; ...

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe 4Sb 12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for amore » material near an itinerant ferromagnetic quantum critical point. NaFe 4P 12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe 4Sb 12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe 4As 12 shows intermediate behavior. We also present results for skutterudite FeSb 3, which is a metastable phase that has been reported in thin film form.« less

  20. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki

    2016-08-28

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less

  1. Effect of MgO spacer and annealing on interface and magnetic properties of ion beam sputtered NiFe/Mg/MgO/CoFe layer structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhusan Singh, Braj; Chaudhary, Sujeet

    2012-09-15

    The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thinmore » MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.« less

  2. Laser-induced chemiluminescence of NaMg

    NASA Astrophysics Data System (ADS)

    Benard, D. J.; Michels, H. H.

    1982-03-01

    An unstructured continuum emission around 670 nm was observed when Mg was added to an optically pumped heat pipe containing Na and K vapor, in good agreement with ab initio calculations of the NaMg potential energy curves. The corresponding excitation spectrum showed that the incident radiation was observed by NaK molecules (X → C transitions).

  3. Hydrogen kinetics studies of MgH2-FeTi composites

    NASA Astrophysics Data System (ADS)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  4. New series of triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotova, Irina Yu.; Buryat State University, Smolin St. 24a, Ulan-Ude 670000, Buryat Republic; Solodovnikov, Sergey F.

    Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized and single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown. In their structures, the MoO{sub 4} tetrahedra, pairs and trimers of edge-shared (Mg, R)O{sub 6} octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag{sup +} cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O{sub 6} octahedra and MoO{sub 4} tetrahedra in the framework form quadrangular windows penetrable for Ag{sup +} at elevated temperatures.more » Above 653–673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4–0.6 eV. At 773 K, AgMg{sub 3}Al(MoO{sub 4}){sub 5} shows electric conductivity 2.5·10{sup −2} S/cm and E{sub a}=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type. - Graphical abstract: Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized, AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were structurally characterized, ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} were measured. Display Omitted - Highlights: • Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized. • Single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown and their crystal structures were determined. • Disordering Ag{sup +} ions and penetrable framework structures of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) suggest 2D-character of silver-ion mobility. • Measured ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} are compatible with characteristics of the best ionic conductors of the NASICON type.« less

  5. Spin crossover in liquid (Mg,Fe)O at extreme conditions

    NASA Astrophysics Data System (ADS)

    Holmström, E.; Stixrude, L.

    2016-05-01

    We use first-principles free-energy calculations to predict a pressure-induced spin crossover in the liquid planetary material (Mg,Fe)O, whereby the magnetic moments of Fe ions vanish gradually over a range of hundreds of GPa. Because electronic entropy strongly favors the nonmagnetic low-spin state of Fe, the crossover has a negative effective Clapeyron slope, in stark contrast to the crystalline counterpart of this transition-metal oxide. Diffusivity of liquid (Mg,Fe)O is similar to that of MgO, displaying a weak dependence on element and spin state. Fe-O and Mg-O coordination increases from approximately 4 to 7 as pressure goes from 0 to 200 GPa. We find partitioning of Fe to induce a density inversion between the crystal and melt, implying separation of a basal magma ocean from a surficial one in the early Earth. The spin crossover induces an anomaly into the density contrast, and the oppositely signed Clapeyron slopes for the crossover in the liquid and crystalline phases imply that the solid-liquid transition induces a spin transition in (Mg,Fe)O.

  6. Shape anisotropy and hybridization enhanced magnetization in nanowires of Fe/MgO/Fe encapsulated in carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryee, Dennis; Seifu, Dereje

    Arrays of tunneling magnetoresistance (TMR) nanowires were synthesized for the first time by filling Fe/MgO/Fe inside vertically grown and substrate supported carbon nanotubes. The magnetic properties of nanowires and planar nanoscale thin films of Fe/MgO/Fe showed several similarities, such as two-fold magnetic symmetry and ratio of orbital moment to spin moment. Nanowires of Fe/MgO/Fe showed higher saturation magnetization by a factor of 2.7 compared to planar thin films of Fe/MgO/Fe at 1.5 kOe. The enhanced magnetic properties likely resulted from shape anisotropy of the nanowires and as well as the hybridization that occur between the π- electronic states of carbonmore » and 3d-bands of the Fe-surface.« less

  7. Asymmetric angular dependence of spin-transfer torques in CoFe/Mg-B-O/CoFe magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ling, E-mail: lingtang@zjut.edu.cn; Xu, Zhi-Jun, E-mail: xzj@zjut.edu.cn; Zuo, Xian-Jun

    Using a first-principles noncollinear wave-function-matching method, we studied the spin-transfer torques (STTs) in CoFe/Mg-B-O/CoFe(001) magnetic tunnel junctions (MTJs), where three different types of B-doped MgO in the spacer are considered, including B atoms replacing Mg atoms (Mg{sub 3}BO{sub 4}), B atoms replacing O atoms (Mg{sub 4}BO{sub 3}), and B atoms occupying interstitial positions (Mg{sub 4}BO{sub 4}) in MgO. A strong asymmetric angular dependence of STT can be obtained both in ballistic CoFe/Mg{sub 3}BO{sub 4} and CoFe/Mg{sub 4}BO{sub 4} based MTJs, whereas a nearly symmetric STT curve is observed in the junctions based on CoFe/Mg{sub 4}BO{sub 3}. Furthermore, the asymmetry ofmore » the angular dependence of STT can be suppressed significantly by the disorder of B distribution. Such skewness of STTs in the CoFe/Mg-B-O/CoFe MTJs could be attributed to the interfacial resonance states induced by the B diffusion into MgO spacer.« less

  8. Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius.

    PubMed

    Kojta, Anna K; Falandysz, Jerzy

    2016-06-01

    The aim of this study was to investigate and compare the levels of eight metallic elements in the fruiting bodies of Bay Bolete (Boletus badius; current name Imleria badia) collected from ten sites in Poland to understand better the value of this popular mushroom as an organic food. Bay Bolete fruiting bodies were collected from the forest area near the towns and villages of Kętrzyn, Poniatowa, Bydgoszcz, Pelplin, Włocławek, Żuromin, Chełmno, Ełk and Wilków communities, as well as in the Augustów Primeval Forest. Elements such as Ca, Fe, K, Mg, Mn, Na and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-OES), and mercury by cold vapor atomic absorption spectrometry (CV-AAS). This made it possible to assess the nutritional value of the mushroom, as well as possible toxicological risks associated with its consumption. The results were subjected to statistical analysis (Kruskal-Wallis test, cluster analysis, principal component analysis). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.

    1991-01-01

    The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.

  10. Mg-Al and Zn-Fe layered double hydroxides used for organic species storage and controlled release.

    PubMed

    Seftel, E M; Cool, P; Lutic, D

    2013-12-01

    Layered double hydroxides (LDH) containing (Mg and Al) or (Zn and Fe) were prepared by coprecipitation at constant pH, using NaOH and urea as precipitation agents. The most pure LDH phase in the Zn/Fe system was obtained with urea and in Mg/Al system when using NaOH. The incorporation of phenyl-alanine (Phe) anions in the interlayer of the LDH was performed by direct coprecipitation, ionic exchange and structure reconstruction of the mixed oxide obtained by the calcination of the coprecipitated product at 400°C. The reconstruction method and the direct coprecipitation in a medium containing Phe in the initial mixture were less successful in terms of high yields of organic-mineral composite than the ionic exchange method. A spectacular change in sample morphology and yield in exchanged solid was noticed for the Zn3Fe sample obtained by ionic exchange for 6h with Phe solution. A delivery test in PBS of pH=7.4 showed the release of the Phe in several steps up to 25 h indicating different host-guest interactions between the Phe and the LDH matrix. This behavior makes the preparation useful to obtain late delivery drugs, by the incorporation of the anion inside the LDH layer. © 2013.

  11. Fe/Mg smectite formation under acidic conditions on early Mars

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2016-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars have been hypothesized to form under neutral to alkaline conditions. These pH conditions would also be favorable for formation of widespread carbonate deposits which have not been detected on Mars. We propose that smectite deposits on Mars formed under moderately acidic conditions inhibiting carbonate formation. We report here the first synthesis of Fe/Mg smectite in an acidic hydrothermal system [200 °C, pHRT ∼ 4 (pH measured at room temperature) buffered with acetic acid] from Mars-analogue, glass-rich, basalt simulant with and without aqueous Mg or Fe(II) addition under N2-purged anoxic and ambient oxic redox conditions. Synthesized Fe/Mg smectite was examined by X-ray-diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy, scanning electron microscopy and electron microprobe to characterize mineralogy, morphology and chemical composition. Alteration of the glass phase of basalt simulant resulted in formation of the Fe/Mg smectite mineral saponite with some mineralogical and chemical properties similar to the properties reported for Fe/Mg smectite on Mars. Our experiments are evidence that neutral to alkaline conditions on early Mars are not necessary for Fe/Mg smectite formation as previously inferred. Phyllosilicate minerals could instead have formed under mildly acidic pH conditions. Volcanic SO2 emanation and sulfuric acid formation is proposed as the major source of acidity for the alteration of basaltic materials and subsequent formation of Fe/Mg smectite.

  12. Room-temperature ferromagnetism in Fe-based perovskite solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen The; Bac, Luong Huu; Trung, Nguyen Ngoc; Hoang, Nguyen The; Van Vinh, Pham; Dung, Dang Duc

    2018-04-01

    The integration of ferromagnetism in lead-free ferroelectric materials is important to fabricate smart materials for electronic devices. In this work, (1 - x)Bi0.5Na0.5TiO3 + xMgFeO3-δ materials (x = 0-9 mol%) were prepared through sol-gel method. X-ray diffraction characterization indicated that MgFeO3-δ materials existed as a well solid solution in lead-free ferroelectric Bi0.5Na0.5TiO3 materials. The rhombohedral structure of Bi0.5Na0.5TiO3 materials was distorted due to the random distribution of Mg and Fe cations into the host lattice. The reduced optical band gap and the induced room-temperature ferromagnetism were due to the spin splitting of transition metal substitution at the B-site of perovskite Bi0.5Na0.5TiO3 and the modification by A-site co-substitution. This work elucidates the role of secondary phase as solid solution in Bi0.5Na0.5TiO3 material for development of lead-free multiferroelectric materials.

  13. Transport and spin transfer torques in Fe/MgO/Fe tunnel barriers.

    NASA Astrophysics Data System (ADS)

    Heiliger, Christian

    2008-03-01

    The prediction of very high tunneling magnetoresistance (TMR) ratios in crystalline Fe/MgO/Fe [1,2] tunnel junctions has been verified by a number of experiments [3,4]. The high TMR can be understood in terms of the electronic structure of the system. In MgO the δ1 states at the Brillouin zone center decay the most slowly and dominate the tunnelling current. For coherent interfaces, which are achievable due to the small lattice mismatch between Fe and MgO, these δ1 states at the Brillouin zone center are half-metallic in the Fe layers. The dominance of the δ1 states and their half-metallicity cause the high tunnelling magnetoresistance measured in Fe/MgO/Fe tunnel junctions [5]. For the spin transfer torque, we calculate the linear response for small currents and voltages. Our calculations show that the half metallicity of the Fe δ1 states leads to a strong localization of the spin transfer torque to the interface. As a result, the linear current dependence of the torque in the plane of the two magnetizations is independent of the free layer thickness for more than three monolayers of Fe. For perfect samples we also find a linear current dependence of the out-of-plane component. However, this linear piece oscillates rapidly with thickness and averages to zero in the presence of structural imperfections like thickness fluctuation, in agreement with experiment [6]. In this talk I discuss the bias dependence of the TMR and spin transfer torque effects mentioned above and the influence on them of the following factors: the interface structure Fe/MgO, the barrier thickness, and the structure of the leads [7]. This work has been supported in part by the NIST-CNST/UMD-NanoCenter Cooperative Agreement. [1] W. Butler, X.-G. Zhang, T. Schulthess, J. MacLaren, Phys. Rev. B 63 (2001) 054416. [2] J. Mathon, A. Umerski, Phys. Rev. B 63 (2001) 220403. [3] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nature Materials 3 (2004) 868. [4] S.S.P. Parkin, C. Kaiser, A

  14. Metalliclike behavior of the exchange coupling in (001) Fe/MgO/Fe junctions

    NASA Astrophysics Data System (ADS)

    Bellouard, C.; Duluard, A.; Snoeck, E.; Lu, Y.; Negulescu, B.; Lacour, D.; Senet, C.; Robert, S.; Maloufi, N.; Andrieu, S.; Hehn, M.; Tiusan, C.

    2017-10-01

    Exchange magnetic coupling between Fe electrodes through a thin MgO interlayer in epitaxial junctions has been investigated as a function of temperature, MgO thickness, and interface quality. Depending on the MgO thickness, which has been varied from 1.5 to 4 monolayers, two opposite temperature dependences are clearly disentangled. For a thin MgO spacer, the main component decreases with temperature following a metalliclike behavior. On the contrary, for the thickest MgO layers, the main component increases with temperature, following an Arrhenius law. Moreover, the insertion of a monoatomic roughness at the bottom MgO interface, induced by the addition of a fraction of a Fe monolayer, exacerbates the metallic features as an oscillatory behavior from antiferromagnetic to ferromagnetic is observed. These results allow questioning the simple tunneling mechanism usually invoked for MgO coupling, and suggest a crossover behavior of the thin MgO spacer from metallic to insulating with a progressive opening of the gap.

  15. Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer

    NASA Astrophysics Data System (ADS)

    Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra

    2017-05-01

    Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.

  16. Fluor-ferro-leakeite, NaNa2(FC2+2Fe3+2Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.

    USGS Publications Warehouse

    Hawthorne, F.C.; Oberti, R.; Ungaretti, L.; Ottolini, L.; Grice, Joel D.; Czamanske, G.K.

    1996-01-01

    Fluor-ferro-leakeite is a new amphibole species from the Canada Pinabete pluton, Questa, New Mexico, U.S.A.; it occurs in association with quartz, alkali feldspar, acmite, ilmenite, and zircon. It forms as anhedral bluish black crystals elongated along c and up to 1 mm long. It is brittle, H = 6, Dmeas = 3.37 g/cm3, Dcalc = 3.34 g/cm3. In plane-polarized light, it is strongly pleochroic, X = very dark indigo blue, Y = gray blue, Z = yellow green; X ??? c = 10?? (in ??obtuse), Y = b, Z ??? a = 4?? (in ?? obtuse), with absorption X > Y > Z. Fluor-ferro-leakeite is biaxial positive, ?? = 1.675(2), ??= 1.683(2), ?? = 1.694(1); 2V = 87(2)??; dispersion is not visible because of the strong absorption. Fluor-ferro-leakeite is monoclinic, space group C2/m, a = 9.792(1), b = 17.938(1), c = 5.3133(4) A??, ??= 103.87(7)??, V = 906.0(1) A??3, Z = 2. The ten strongest X-ray diffraction lines in the powder pattern are [d(I,hkl)]: 2.710(100,151), 2.536(92,202), 3.404(57,131), 4.481(54,040), 8.426(45,110), 2.985(38,241), 2.585(38,061), 3.122(29,310), 2.165(26,261), and 1.586(25,403). Analysis by a combination of electron microprobe, ion microprobe, and crystal-structure refinement (Hawthorne et al. 1993) gives SiO2 51.12, Al2O3 1.13, TiO2 0.68, Fe2O3 16.73, FeO 8.87, MgO 2.02, MnO 4.51, ZnO 0.57, CaO 0.15, Na2O 9.22, K2O 1.19, Li2O 0.99, F 2.87, H2Ocalc 0.60, sum 99.44 wt%. The formula unit, calculated on the basis of 23 O atoms, is (K0.23Na0.76)(Na1.97Ca0.03)(Mg 0.46Fe2+1.4Mn2+0.59Zn0.07Fe3+1.93-Ti 0.08Al0.02Li0.61])(Si7.81Al 0.19)O22(F1.39OH0.61). A previous crystal-structure refinement (Hawthorne et al. 1993) shows Li to be completely ordered at the M3 site. Fluor-ferro-leakeite, ideally NaNa2(Fe2+2Fe3+2Li)Si8O22F2, is related to leakeite, NaNa2(Mg2Fe3+3Li)Si 8O22(OH)2, by the substitutions Fe2+ ??? Mg and F ??? OH.

  17. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  18. Melting behavior of (Mg,Fe)O solid solutions at high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Fei, Yingwei

    2008-07-01

    High pressure melting of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's lower mantle, is of fundamental importance for understanding the chemical differentiation, geodynamics and thermal evolution of the Earth's interior. We report the first systematic experimental study of melting behavior in the MgO-FeO system up to 3600 K and 7 GPa, indicating the ideal solution between solid and liquid (Mg,Fe)O in the MgO-rich portion. The zero pressure melting slope of MgO is ~221 K/GPa derived from our resistance heating measurements, which is several times higher than the value from the previous measurements in a CO2-laser heated diamond anvil cell, but consistent with the theoretically predicted melting curves. Our results combined with the previous first-principles simulations suggest that the melting temperature of MgO-rich (Mg,Fe)O is significantly higher than the geotherm through the lower mantle and this would place an upper bound on the solidus of the lower mantle.

  19. Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe

    NASA Astrophysics Data System (ADS)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2014-01-01

    The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.

  20. Modeling (Mg,Fe)O creep at Lowermost Mantle conditions

    NASA Astrophysics Data System (ADS)

    Reali, R.; Jackson, J. M.; Van Orman, J. A.; Carrez, P.; Cordier, P.

    2017-12-01

    The viscosity of the lower mantle results from the rheological behavior of its two main constituent minerals, aluminous (Mg,Fe)SiO3 bridgmanite and (Mg,Fe)O ferropericlase. Understanding the rheology of lower mantle aggregates is of primary importance in geophysics and it is a challenging task, due to the extreme time-varying conditions to which such aggregates are subjected.Here we focus on the creep behavior of (Mg,Fe)O at the bottom of the lower mantle, where the presence of thermo-chemical anomalies such as ultralow-velocity zones (ULVZ) can significantly alter the composition and therefore the properties of this region. Two different iron concentrations of (Mg1-xFex)O are considered: one mirroring the average composition of ferropericlase throughout most of the lower mantle (x = 0.20) and another representing a candidate component of ULVZs near the base of the mantle (x = 0.84) [1]. The investigated pressure-temperature conditions span from 120 GPa and 2800 K, corresponding to the geotherm at this depth, to core-mantle conditions of 135 GPa and 3800 K.In this study, dislocation creep of (Mg,Fe)O is investigated by Dislocation Dynamics (DD) simulations, a modeling tool which considers the collective motion and interactions of dislocations. To model their behavior, a 2.5 Dimensional Dislocation Dynamics approach (2.5D-DD) is employed. Within this method, both glide and climb mechanisms can be taken into account, and the interplay of these features results in a steady-state condition. This allows the retrieval of the creep strain rates at different temperatures, pressures, applied stresses and iron concentrations across the (Mg,Fe)O solid solution, providing information on the viscosity for these materials. This numerical approach has been validated at ambient conditions, where it was benchmarked with respect to experimental data on MgO [2]. [1] J.K. Wicks, J.M. Jackson, W. Sturhahn and D. Zhang, GRL, 44, 2017.[2] R. Reali, F. Boioli, K. Gouriet, P. Carrez, B

  1. Na(7)Mg(13)Nd(PO(4))(12).

    PubMed

    Jerbi, Hasna; Hidouri, Mourad; Mongi, Ben Amara

    2012-06-01

    Investigations of the quasi-ternary system Na(3)PO(4)-Mg(3)(PO(4))(2)-NdPO(4) allowed us to obtain the new phosphate hepta-sodium trideca-magnesium neodymium dodeca-kis-phosphate, Na(7)Mg(13)Nd(PO(4))(12), by applying a flux method. The crystal structure is isotypic with that of the previously reported Na(7)Mg(13)Ln(PO(4))(12) (Ln = Eu, La) compounds. It consists of a complex three-dimensional framework built up from an NdO(8) polyhedron (m symmetry), an MO(6) octa-hedron statistically occupied by M = Mg and Na, and eight MgO(x) (x = 5, 6) polyhedra (four with site symmetry m), linked either directely by sharing corners, edges and faces, or by one of the eight unique PO(4) tetra-hedra through common corners. Two of the PO(4) tetra-hedra are statisticaly disordered over a mirror plane. The whole structure can be described as resutling from an assembly of two types of structural units, viz [Mg(4)MP(4)O(22)](∞) (2) layers extending parallel to (100) and stacked along [100], and [Mg(4)NdP(4)O(36)](∞) (1) undulating chains running along the [010] direction. The six different Na(+) cations (five with site symmetry m and one with 0.5 occupancy) are situated in six distinct cavities delimited by the framework. The structure was refined from data of a racemic twin.

  2. Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries

    PubMed Central

    Huang, Weifeng; Zhou, Jing; Li, Biao; Ma, Jin; Tao, Shi; Xia, Dingguo; Chu, Wangsheng; Wu, Ziyu

    2014-01-01

    Na-ion batteries are gaining an increased recognition as the next generation low cost energy storage devices. Here, we present a characterization of Na3FePO4CO3 nanoplates as a novel cathode material for sodium ion batteries. First-principles calculations reveal that there are two paths for Na ion migration along b and c axis. In-situ and ex-situ Fe K-edge X-ray absorption near edge structure (XANES) point out that in Na3FePO4CO3 both Fe2+/Fe3+ and Fe3+/Fe4+ redox couples are electrochemically active, suggesting also the existence of a two-electron intercalation reaction. Ex-situ X-ray powder diffraction data demonstrates that the crystalline structure of Na3FePO4CO3 remains stable during the charging/discharging process within the range 2.0–4.55 V. PMID:24595232

  3. Composition dependence of spin transition in (Mg,Fe)SiO 3 bridgmanite

    DOE PAGES

    Dorfman, Susannah M.; Badro, James; Rueff, Jean -Pascal; ...

    2015-10-01

    Spin transitions in (Mg,Fe)SiO 3 bridgmanite have important implications for the chemistry and dynamics of Earth’s lower mantle, but have been complex to characterize in experiments. We examine the spin state of Fe in highly Fe-enriched bridgmanite synthesized from enstatites with measured compositions (Mg 0.61Fe 0.38Ca 0.01)SiO 3 and (Mg 0.25Fe 0.74Ca 0.01)SiO 3. Bridgmanite was synthesized at 78-88 GPa and 1800-2400 K and X-ray emission spectra were measured on decompression to 1 bar (both compositions) and compression to 126 GPa ((Mg 0.61Fe 0.38Ca 0.01)SiO 3 only) without additional laser heating. Observed spectra confirm that Fe in these bridgmanites ismore » dominantly high spin in the lower mantle. However, the total spin moment begins to decrease at ~50 GPa in the 74% FeSiO 3 composition. Lastly, these results support density functional theory predictions of a lower spin transition pressure in highly Fe-enriched bridgmanite and potentially explain the high solubility of FeSiO 3 in bridgmanite at pressures corresponding to Earth’s deep lower mantle.« less

  4. Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Chao; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070; Dai, Jing

    2015-05-15

    In this work, methyl orange (MO) was effectively removed from aqueous solution with the calcined product of hydrothermal synthesized Mg/Fe layered double hydroxide (Mg/Fe-LDH). The structure, composition, morphology and textural properties of the Mg/Fe-LDH before and after adsorption were characterized by X-ray diffraction, Fourier transformation infrared spectroscopy, transmission electron microscopy, nitrogen adsorption apparatus and X-ray photoelectron spectroscopy. It was confirmed that MO had been absorbed by calcined Mg/Fe-LDH which had strong interactions with MO. The adsorption of MO onto the Mg/Fe-LDH was systematically investigated by batch tests. The adsorption capacity of the Mg/Fe-LDH toward MO was found to be 194.9more » mg • g{sup −1}. Adsorption kinetics and isotherm studies revealed that the adsorption of MO onto Mg/Fe-LDH was a spontaneous and endothermic process. These results indicate that Mg/Fe-LDH is a promising material for the removal of MO.« less

  5. Mechanism of magnetoresistance ratio enhancement in MgO/NiFe/MgO heterostructure by rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Liu, Yang; Zhang, Jing-Yan; Sun, Li; Ding, Lei; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Yu, Guang-Hua

    2012-08-01

    To reveal thermal effects on the film quality/microstructure evolution and the resulted magnetoresistance (MR) ratio in MgO/NiFe/MgO heterostructures, positron annihilation spectroscopy studies have been performed. It is found that the ionic interstitials in the MgO layers recombine with the nearby vacancies at lower annealing temperatures (200-300 °C) and lead to a slow increase in sample MR. Meanwhile, vacancy defects agglomeration/removal and ordering acceleration in MgO will occur at higher annealing temperatures (450-550 °C) and the improved MgO and MgO/NiFe interfaces microstructure are responsible for the observed significant MR enhancement.

  6. Structure-dependent magnetoresistance and spin-transfer torque in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jia, Xingtao; Tang, Huimin; Wang, Shizhuo; Qin, Minghui

    2017-02-01

    We predict large magnetoresistance (MR) and spin transfer torque (STT) in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions based on first-principles scattering theory. MR as large as ˜100 % is found in one junction. Magnetic dynamic simulations show that STT acting on the antiferromagnetic order parameter dominates the spin dynamics, and an electronic bias of order 10-1mV and current density of order 105Acm-2 can switches a junction of three-layer MgO, they are about one order smaller than that in Fe |MgO |Fe junction with the same barrier thickness, respectively. The multiple scattering in the antiferromagnetic region is considered to be responsible for the enhanced spin torque and smaller switching current density.

  7. Giant strain control of magnetoelectric effect in Ta|Fe|MgO

    PubMed Central

    Odkhuu, Dorj

    2016-01-01

    The exploration of electric field controlled magnetism has come under scrutiny for its intriguing magnetoelectric phenomenon as well as technological advances in spintronics. Herein, the tremendous effect of an epitaxial strain on voltage-controlled perpendicular magnetic anisotropy (VPMA) is demonstrated in a transition-metal|ferromagnet|MgO (TM|FM|MgO) heterostructure from first-principles electronic structure computation. By tuning the epitaxial strain in Ta|Fe|MgO as a model system of TM|FM|MgO, we find distinctly different behaviours of VPMA from V- to Λ-shape trends with a substantially large magnetoelectric coefficient, up to an order of 103 fJV−1m−1. We further reveal that the VPMA modulation under strain is mainly governed by the inherently large spin-orbit coupling of Ta 5d–Fe 3d hybridized orbitals at the TM|FM interface, although the Fe 3d–O 2p hybridization at the FM|MgO interface is partly responsible in determining the PMA of Ta|Fe|MgO. These results suggest that the control of epitaxial strain enables the engineering of VPMA, and provides physical insights for the divergent behaviors of VPMA and magnetoelectric coefficients found in TM|FM|MgO experiments. PMID:27597448

  8. Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.

    PubMed

    Abdessameud, S; Mezbahul-Islam, M; Medraj, M

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.

  9. Effect of the interfacial O and Mg vacancies on electronic structure and transport properties of the FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction: DFT calculations

    NASA Astrophysics Data System (ADS)

    Sakhraoui, T.; Said, M.

    2017-12-01

    The electronic, magnetic and transport properties of oxygen or magnesium vacancies at the FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction are studied within first principles. Configurations with one O or Mg vacancy per C(2 × 2) surface unit cell, which is located in the MgO interfacial layers, are investigated. We observed that the O and Mg vacancies defect have a very little influence on the magnetic state of the spacer. Very interestingly, the Fe atoms exhibit an enhanced magnetic moment in the case of Mg-vacancy, this latter was found to decrease in the case of O-vacancy. The variations in the spin polarization and magnetic moment values for Fe and Rh atoms at the interface were found to be larger in presence of Mg vacancy. An analysis of the charge densities of our systems was also performed; large variations in the Mg-vacancy system were observed. This affects more the t2g states of the interfacial Fe atom. Moreover, we present an ab initio calculated transmission and I-V characteristics for FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction and we compare results to those of O and Mg-vacancy at the interface using the TRANSIESTA code, which combines the DFT electronic structure calculations with the non-equilibrium Green function formalism (NEGF) for transport properties. The results show that the zero-bias minority spin transmission is much larger than the majority spin transmission for all structures. In all systems and for all magnetic configurations, minority spin currents are higher than majority spin ones, this means that transport properties are, mainly, determined by minority spin channel.

  10. On local structural changes in lizardite-1 T: {Si4+/Al3+}, {Si4+/Fe3+}, [Mg2+/Al3+], [Mg2+/Fe3+] substitutions

    NASA Astrophysics Data System (ADS)

    Scholtzová, Eva; Smrčok, Ľubomír

    2005-09-01

    Geometrical changes induced by cation substitutions {Si4+/Al3+}[Mg2+/Al3+], {2Si4+/2Al3+} [2Mg2+/2Al3+], {Si4+/Fe3+} [Mg2+/Al3+] or [Mg2+/Fe3+], where {} and [] indicate tetrahedral and octahedral sheet in lizardite 1 T, are studied by ab-initio quantum chemistry calculations. The majority of the models are based on the chemical compositions reported for various lizardite polytypes with the amount of Al in the tetrahedral sheets reported to vary from 3.5% to 8% in the 1 T and 2 H 1, up to 30% in the 2 H 2 polytype. Si4+ by Fe3+ substitution in the tetrahedral sheet with an Al3+ (Fe3+) in the role of a charge compensating cation in the octahedral sheet is also examined. The cation substitutions result in the geometrical changes in the tetrahedral sheets, while the octahedral sheets remain almost untouched. Substituted tetrahedra are tilted and their basal oxygens pushed down from the plane of basal oxygens. Ditrigonal deformation of tetrahedral sheets depends on the substituting cation and the degree of substitution.

  11. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons

    NASA Astrophysics Data System (ADS)

    An, Yajun; Huang, Jin-Xiang; Griffin, W. L.; Liu, Chuanzhou; Huang, Fang

    2017-03-01

    We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in δ26Mg and δ56Fe of garnet peridotites from these two cratons. δ26Mg of whole rocks varies from -0.243‰ to -0.204‰ with an average of -0.225 ± 0.037‰ (2σ, n = 19), and δ56Fe from -0.038‰ to 0.060‰ with an average of -0.003 ± 0.068‰ (2σ, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show δ26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (⩽±0.05‰ for δ26Mg and δ56Fe, 2σ) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest δ26Mg and δ56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy δ26Mg and much lighter δ56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.

  12. Sequential magnetic switching in Fe/MgO(001) superlattices

    NASA Astrophysics Data System (ADS)

    Magnus, F.; Warnatz, T.; Palsson, G. K.; Devishvili, A.; Ukleev, V.; Palisaitis, J.; Persson, P. O. Å.; Hjörvarsson, B.

    2018-05-01

    Polarized neutron reflectometry is used to determine the sequence of magnetic switching in interlayer exchange coupled Fe/MgO(001) superlattices in an applied magnetic field. For 19.6 Å thick MgO layers we obtain a 90∘ periodic magnetic alignment between adjacent Fe layers at remanence. In an increasing applied field the top layer switches first followed by its second-nearest neighbor. For 16.4 Å MgO layers, a 180∘ periodic alignment is obtained at remanence and with increasing applied field the layer switching starts from the two outermost layers and proceeds inwards. This sequential tuneable switching opens up the possibility of designing three-dimensional magnetic structures with a predefined discrete switching sequence.

  13. Fe, Ca and Mg contents in selected fast food products in Poland.

    PubMed

    Grajeta, H; Prescha, A; Biernat, J

    2002-02-01

    The Fe and Mg contents in selected fast food products available in restaurants and fast food outlets in Poland were determined by AAS, and the Ca content by AES. The mean Fe contents in the studied fast food products were from 0.7 to 2.3 mg/100 g, or from 0.6 to 2.3 per single serving. The highest means for this element were found in a serving of hamburger (2.3 mg), fishburger (2.0 mg) and chicken sandwich (2.0 mg). The mean Ca contents in the studied products were from 11.6 to 192.2 mg/100 g, or 10 to 192.2 mg per serving. The highest means for this element were found in a serving of pizza (192.2 mg) and cheeseburger (134.8 mg). The mean Mg contents in the studied products were from 6.8 to 34.1 mg/100 g1 or 5.9 to 37.3 mg per serving. The highest means for this element were found in a serving of french fries (37.3 mg), chicken sandwich (34.7 mg) and fishburger (30.4 mg). Based on the Fe, Ca and Mg contents found in these products, the percentage of the Recommended Dietary Allowance (RDA) of these elements was calculated for one serving of each product. These calculations were done for various groups of people in Poland. The highest percentage of the recommended Fe intake could be covered by one serving of hamburger (15-23% RDA), fishburger (14-20% RDA), or chicken sandwich (13-20% RDA). The highest percentage of the recommended Ca intake could be covered by one serving of pizza (17-24% RDA) or cheeseburger (12-17% RDA); and for Mg one serving of french fries (11-19% RDA), chicken sandwich (10-17% RDA), or fishburger (9-15% RDA). From the conducted studies it may be concluded that some fast food products can serve as a source of Fe, Ca and Mg in the diet of people of various ages.

  14. Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys

    PubMed Central

    Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.

    2014-01-01

    Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361

  15. Raman spectroscopic study of the mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3, a pegmatite phosphate mineral from Santa Ana pegmatite, Argentina.

    PubMed

    Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; López, Andrés; Moreira, Caio; de Lena, Jorge Carvalho

    2013-10-01

    The pegmatite mineral qingheiite Na2(Mn(2+),Mg,Fe(2+))2(Al,Fe(3+))(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm(-1) assigned to the PO4(3-) symmetric stretching mode. Multiple Raman bands are observed in the PO4(3-) antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the ν4 and ν2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm(-1) are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Disturbance of tunneling coherence by oxygen vacancy in epitaxial Fe/MgO/Fe magnetic tunnel junctions.

    PubMed

    Miao, G X; Park, Y J; Moodera, J S; Seibt, M; Eilers, G; Münzenberg, M

    2008-06-20

    Oxygen vacancies in the MgO barriers of epitaxial Fe/MgO/Fe magnetic tunnel junctions are observed to introduce symmetry-breaking scatterings and hence open up channels for noncoherent tunneling processes that follow the normal WKB approximation. The evanescent waves inside the MgO barrier thus experience two-step tunneling, the coherent followed by the noncoherent process, and lead to lower tunnel magnetoresistance, higher junction resistance, as well as increased bias and temperature dependence. The characteristic length of the symmetry scattering process is determined to be about 1.6 nm.

  17. 230% room-temperature magnetoresistance in CoFeB /MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Djayaprawira, David D.; Tsunekawa, Koji; Nagai, Motonobu; Maehara, Hiroki; Yamagata, Shinji; Watanabe, Naoki; Yuasa, Shinji; Suzuki, Yoshishige; Ando, Koji

    2005-02-01

    Magnetoresistance (MR) ratio up to 230% at room temperature (294% at 20 K) has been observed in spin-valve-type magnetic tunnel junctions (MTJs) using MgO tunnel barrier layer fabricated on thermally oxidized Si substrates. We found that such a high MR ratio can be obtained when the MgO barrier layer was sandwiched with amorphous CoFeB ferromagnetic electrodes. Microstructure analysis revealed that the MgO layer with (001) fiber texture was realized when the MgO layer was grown on amorphous CoFeB rather than on polycrystalline CoFe. Since there have been no theoretical studies on the MTJs with a crystalline tunnel barrier and amorphous electrodes, the detailed mechanism of the huge tunneling MR effect observed in this study is not clear at the present stage. Nevertheless, the present work is of paramount importance in realizing high-density magnetoresistive random access memory and read head for ultra high-density hard-disk drives into practical use.

  18. Nematic fluctuations in iron arsenides NaFeAs and LiFeAs probed by 75As NMR

    NASA Astrophysics Data System (ADS)

    Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-03-01

    75As NMR measurements have been made on single crystals to study the nematic state in the iron arsenides NaFeAs, which undergoes a structural transition from a high-temperature (high-T ) tetragonal phase to a low-T orthorhombic phase at Ts=57 K and an antiferromagnetic transition at TN=42 K, and LiFeAs having a superconducting transition at Tc=18 K. We observe the in-plane anisotropy of the electric field gradient η even in the tetragonal phase of NaFeAs and LiFeAs, showing the local breaking of tetragonal C4 symmetry. Then, η is found to obey the Curie-Weiss (CW) law as well as in Ba (Fe1-xCox) 2As2 . The good agreement between η and the nematic susceptibility obtained by electronic Raman spectroscopy indicates that η is governed by the nematic susceptibility. From comparing η in NaFeAs and LiFeAs with η in Ba (Fe1-xCox) 2As2 , we discuss the carrier-doping dependence of the nematic susceptibility. The spin contribution to nematic susceptibility is also discussed from comparing the CW terms in η with the nuclear spin-lattice relaxation rate divided by temperature 1 /T1T . Finally, we discuss the nematic transition in the paramagnetic orthorhombic phase of NaFeAs from the in-plane anisotropy of 1 /T1T .

  19. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars suggests that neutral to mildly alkaline conditions prevailed during the early history of Mars. If early Mars surface geochemical conditions were neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. Why have so few carbonate deposits been detected compared to Fe/Mg smectites? Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would preclude the extensive formation of carbonate deposits. The goal of the proposed work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions.

  20. Fabrication of MgFe2O4/MoS2 Heterostructure Nanowires for Photoelectrochemical Catalysis.

    PubMed

    Fan, Weiqiang; Li, Meng; Bai, Hongye; Xu, Dongbo; Chen, Chao; Li, Chunfa; Ge, Yilin; Shi, Weidong

    2016-02-16

    A novel one-dimensional MgFe2O4/MoS2 heterostructure has been successfully designed and fabricated. The bare MgFe2O4 was obtained as uniform nanowires through electrospinning, and MoS2 thin film appeared on the surface of MgFe2O4 after further chemical vapor deposition. The structure of the MgFe2O4/MoS2 heterostructure was systematic investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometry (XPS), and Raman spectra. According to electrochemical impedance spectroscopy (EIS) results, the MgFe2O4/MoS2 heterostructure showed a lower charge-transfer resistance compared with bare MgFe2O4, which indicated that the MoS2 played an important role in the enhancement of electron/hole mobility. MgFe2O4/MoS2 heterostructure can efficiently degrade tetracycline (TC), since the superoxide free-radical can be produced by sample under illumination due to the active species trapping and electron spin resonance (ESR) measurement, and the optimal photoelectrochemical degradation rate of TC can be achieved up to 92% (radiation intensity: 47 mW/cm(2), 2 h). Taking account of its unique semiconductor band gap structure, MgFe2O4/MoS2 can also be used as an photoelectrochemical anode for hydrogen production by water splitting, and the hydrogen production rate of MgFe2O4/MoS2 was 5.8 mmol/h·m(2) (radiation intensity: 47 mW/cm(2)), which is about 1.7 times that of MgFe2O4.

  1. Apollo 15 Mg- and Fe-norites - A redefinition of the Mg-suite differentiation trend

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.; Marvin, U. B.; Mittlefehldt, D. W.

    1989-01-01

    The Apollo 15 highland rocks from the Apennine Front include clasts of mafic plutonic rocks from deep in the lunar crust that were brought to the surface by the Imbrium and Serenitatis impacts. The Apollo 15 norites exhibit wide variations in mineral and bulk compositions and include Fe-norites that plot between the three major pristine rock fields on a diagram of Mg' in mafic minerals vs An in paglioclase. Based on assemblages and compositions of minerals, and on ratios of elemental abundances, it is concluded that these Apollo 15 Fe-norites are differentiated members of the Mg-norite suite. The Apollo 15 and 17 norites and troctolites form a closely related suite of rocks, whose variations in mineral compositions represent the main differentiation trend of the Mg-suite. This trend in mineral compositions has a steeper slope than the previous Mg-suite field. The parent magmas for these Mg-suite rocks formed by partial melting deep in the lunar mantle. Differentiation by fractional crystallization may also have included assimilation of crustal components as the magmas rose from the mantle and crystallized plutons in the lower crust.

  2. Chemical and electronic studies of CoFeB / MgO / CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Read, J.; Cha, J.; Huang, P.; Egelhoff, W.; Muller, D.; Buhrman, R.

    2008-03-01

    MgO based magnetic tunnel junctions (MTJs), particularly the CoFeB/MgO/CoFeB system, exhibit large tunneling magnetoresistance (TMR) which makes them viable for MRAM [1] and sensor applications. Careful engineering of the MgO tunnel barriers, CoFeB electrodes, and their interfaces is essential for optimizing device performance [2,3], which motivates investigation of the chemical and electronic properties of high quality MTJs. We correlate scanning tunneling (STS), x-ray photoelectron (XPS) [4], and electron energy loss (EELS) [5] spectroscopies with current-in-plane tunneling (CIPT) measurements to gain insight on the electronic structure and chemistry of MgO MTJ structures. The measurements reveal that quite high TMR (>200%) can be obtained when there is substantial boron in the tunnel barrier, showing that proper doping of the MgO layer plays a significant role in the performance of such MTJs. We will discuss the impact of materials properties upon transport measurements and provide suggestions for greater control over MTJ device characteristics. [1] Parkin, Nat. Mater. 3, 862 (2004). [2] Nagamine, APL 89, 162507 (2006). [3] Lee, APL 90, 212507 (2007). [4] Read, APL 90, 132503 (2007). [5] Cha, APL 91, 062516 (2007).

  3. 24Mg(p, α) 21Na reaction study for spectroscopy of 21Na

    DOE PAGES

    Cha, S. M.; Chae, K. Y.; Kim, A.; ...

    2015-11-03

    The Mg-24(p, alpha)Na-21 reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in Na-21 for the astrophysically important F-17(alpha, p)Ne-20 reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched Mg-24 solid targets were used. When recoiling He-4 particles from the Mg-24(p, alpha)Na-21 reaction we used a highly segmented silicon detector array to detect them; it measured the yields of He-4 particles over a range of angles simultaneously. A observed a new level at 6661 ± 5 keVmore » in the present work. The extracted angular distributions for the first four levels of Na-21 and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.« less

  4. Interpretation of Na-K-Mg relations in geothermal waters

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    When using a Na-K-???Mg triangular diagram as an aid in the interpretation of a geothermal water, the estimated temperature of last water-rock equilibration may change by as much as 50??C, depending on which of the many Na/K geothermometers one assumes is correct. A particular geothermometer may work well in one place and not in another because of differences in the mineralogy of the phases that are in contact with the reservoir fluid. The position of the full equilibrium line that is used for geothermometry and for assessing degrees of departure from equilibrium also changes as the assumed K/???Mg geothermometer equation changes. The degree of ambiguity can be evaluated by utilizing the results of all the recently published Na/K geothermometers on a single Na-K-???Mg triangular plot.

  5. Negative tunneling magnetoresistance of Fe/MgO/NiO/Fe magnetic tunnel junction: Role of spin mixing and interface state

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-08-01

    Motivated by a recent tunneling magnetoresistance (TMR) measurement in which the negative TMR is observed in MgO/NiO-based magnetic tunnel junctions (MTJs), we have performed systematic calculations of transmission, current, and TMR of Fe/MgO/NiO/Fe MTJ with different thicknesses of NiO and MgO layers based on noncollinear density functional theory and non-equilibrium Green's function theory. The calculations show that, as the thickness of NiO and MgO layers is small, the negative TMR can be obtained which is attributed to the spin mixing effect and interface state. However, in the thick MTJ, the spin-flipping scattering becomes weaker, and thus, the MTJs recover positive TMR. Based on our theoretical results, we believe that the interface state at Fe/NiO interface and the spin mixing effect induced by noncollinear interfacial magnetization will play important role in determining transmission and current of Fe/MgO/NiO/Fe MTJ. The results reported here will be important in understanding the electron tunneling in MTJ with the barrier made by transition metal oxide.

  6. Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): systems Mg-Al, Mg-Fe and Mg-Al-Fe.

    PubMed

    Bruna, F; Celis, R; Pavlovic, I; Barriga, C; Cornejo, J; Ulibarri, M A

    2009-09-15

    Hydrotalcite-like compounds [Mg(3)Al(OH)(8)]Cl x 4H(2)O; [Mg(3)Fe(OH)(8)]Cl x 4H(2)O; [Mg(3)Al(0.5)Fe(0.5)(OH)(8)]Cl x 4H(2)O (LDHs) and calcined product of [Mg(3)Al(OH)(8)]Cl x 4H(2)O, Mg(3)AlO(4.5) (HT500), were studied as potential adsorbents of the herbicide MCPA [(4-chloro-2-methylphenoxy)acetic acid] as a function of pH, contact time and pesticide concentration, and also as support for the slow release of this pesticide, with the aim to reduce the hazardous effects that it can pose to the environment. The information obtained in the adsorption study was used for the preparation of LDH-MCPA complexes. The results showed high and rapid adsorption of MCPA on the adsorbents as well as that MCPA formulations based on LDHs and HT500 as pesticide supports displayed controlled release properties and reduced herbicide leaching in soil columns compared to a standard commercial MCPA formulation. Thereby, we conclude that the LDHs employed in this study can be used not only as adsorbents to remove MCPA from aqueous solutions, but also as supports for the slow release of this highly mobile herbicide, thus controlling its immediate availability and leaching.

  7. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3

  8. Structure and electromagnetic properties of FeSiAl particles coated by MgO

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhou, Ting-dong

    2017-03-01

    FeSiAl particles with a layer of MgO surface coating have excellent soft magnetic and electromagnetic properties. In order to obtain the FeSiAl/MgO composites, Mg(OH)2 sol prepared by sol-gel process was well-mixed with FeSiAl flake particles, and then treated by calcination at 823 K in vacuum. The microstructural, morphological and electromagnetic parameters of FeSiAl/MgO particles were tested. Accordingly, the electromagnetic wave reflection loss in the frequency range of 0.5-18 GHz was calculated. The results show that the surface coating increases coercivity Hc and decreases complex permittivity, leading to a good impedance matching. When the coating amount was 7.5%, reflection loss of the composite particles can reach to -33 dB.

  9. Effect of NiO spin orientation on the magnetic anisotropy of the Fe film in epitaxially grown Fe/NiO/Ag(001) and Fe/NiO/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, W.; Jin, E.; Wu, J.

    Single crystalline Fe/NiO bilayers were epitaxially grown on Ag(001) and on MgO(001), and investigated by Low Energy Electron Diffraction (LEED), Magneto-Optic Kerr Effect (MOKE), and X-ray Magnetic Linear Dichroism (XMLD). We find that while the Fe film has an in-plane magnetization in both Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems, the NiO spin orientation changes from in-plane direction in Fe/NiO/Ag(001) to out-of-plane direction in Fe/NiO/MgO(001). These two different NiO spin orientations generate remarkable different effects that the NiO induced magnetic anisotropy in the Fe film is much greater in Fe/NiO/Ag(001) than in Fe/NiO/MgO(001). XMLD measurement shows that the much greater magnetic anisotropy inmore » Fe/NiO/Ag(001) is due to a 90{sup o}-coupling between the in-plane NiO spins and the in-plane Fe spins.« less

  10. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Bie, Xiaofei; Kubota, Kei; Hosaka, Tomooki; Chihara, Kuniko; Komaba, Shinichi

    2018-02-01

    Electrochemical performance of Prussian blue analogues (PBAs) as positive electrode materials for non-aqueous Na-ion batteries is known to be highly dependent on their synthesis conditions according to the previous researches. Na-rich PBAs, NaxM[Fe(CN)6]·nH2O where M = Mn, Fe, Co, and Ni, are prepared via precipitation method under the same condition. The structure, chemical composition, morphology, valence of the transition metals, and electrochemical property of these samples are comparatively researched. The PBA with Mn shows large reversible capacity of 126 mAh g-1 in 2.0-4.2 V at a current density of 30 mA g-1 and the highest working voltage owning to high redox potential of Mn2+/3+ in MnN6 and Fe2+/3+ in FeC6. While, the PBA with Ni exhibits the best cyclability and rate performance though only 66 mAh g-1 is delivered. The significant differences in electrochemical behaviors of the PBAs originate from the various properties depending on different transition metals.

  11. CeLa enhanced corrosion resistance of Al-Cu-Mn-Mg-Fe alloy for lithium battery shell

    NASA Astrophysics Data System (ADS)

    Du, Jiandi; Ding, Dongyan; Zhang, Wenlong; Xu, Zhou; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-11-01

    Effects of CeLa addition on the localized corrosion and electrochemical corrosion behavior of Al-Cu-Mn-Mg-Fe lithium battery shell alloy were investigated by immersion testing and electrochemical testing in 0.6 M NaCl solution at different temperatures. Experimental results indicated that CeLa addition resulted in the formation of AlCuCe/La (Al8Cu4Ce and Al6Cu6La) local cathodes and corrosion activity of the main intermetallic particles decreased in the order of Al2CuMg, AlCuCe/La, Al6(Mn, Fe). Corrosion potential shifted positively due to CeLa alloying. Corrosion current density of the CeLa-containing alloy was lower than that of the CeLa-free alloy at room temperature. At room temperature, there was no obvious surface passivation for both alloys. At 80 °C CeLa addition resulted in a wide passive region at the anode polarization region. Electrochemical impedance spectroscopy (EIS) analysis also indicated that corrosion resistance of the CeLa-containing alloy was much higher than that of the CeLa-free alloy.

  12. Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density Functional Theory

    DTIC Science & Technology

    2013-08-20

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--13-9479 Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density...structure associated with Fe, Mn, and Mg water complexes using time-dependent density functional theory (TD-DFT). Calculation of excited state resonance

  13. Examination of the magnetic hyperthermia and other magnetic properties of CoFe2O4@MgFe2O4 nanoparticles using external field Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jeongho; Choi, Hyunkyung; Kim, Sam Jin; Kim, Chul Sung

    2018-05-01

    CoFe2O4@MgFe2O4 core/shell nanoparticles were synthesized by high temperature thermal decomposition with seed-mediated growth. The crystal structure and magnetic properties of the nanoparticles were investigated using X-ray diffractometry (XRD), vibrating sample magnetometry (VSM), and Mössbauer spectrometry. The magnetic hyperthermia properties were investigated using a MagneTherm device. Analysis of the XRD patterns showed that CoFe2O4@MgFe2O4 had a cubic spinel crystal structure with space group Fd-3m and a lattice constant (a0) of 8.3686 Å. The size and morphology of the CoFe2O4@MgFe2O4 nanoparticles were confirmed by HR-TEM. The VSM measurements showed that the saturation magnetization (MS) of CoFe2O4@MgFe2O4 was 77.9 emu/g. The self-heating temperature of CoFe2O4@MgFe2O4 was 37.8 °C at 112 kHz and 250 Oe. The CoFe2O4@MgFe2O4 core/shell nanoparticles showed the largest saturation magnetization value, while their magnetic hyperthermia properties were between those of the CoFe2O4 and MgFe2O4 nanoparticles. In order to investigate the hyperfine interactions of CoFe2O4, MgFe2O4, and CoFe2O4@MgFe2O4, we performed Mössbauer spectrometry at various temperatures. In addition, Mössbauer spectrometry of CoFe2O4@MgFe2O4 was performed at 4.2 K with applied fields of 0-4.5 T, and the results were analyzed with sextets for the tetrahedral A-site and sextets for the octahedral B-site.

  14. Effect of annealing on microstructure evolution in CoFeB/MgO/CoFeB heterostructures by positron annihilation

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Lu, Xiang-An; Zhao, Zhi-Duo; Li, Ming-Hua; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Zhang, Jing-Yan; Yu, Guang-Hua

    2013-09-01

    As one of the most powerful tools for investigation of defects of materials, positron annihilation spectroscopy was employed to explore the thermal effects on the film microstructure evolution in CoFeB/MgO/CoFeB heterostructures. It is found that high annealing temperature can drive vacancy defects agglomeration and ordering acceleration in the MgO barrier. Meanwhile, another important type of defects, vacancy clusters, which are formed via the agglomeration of vacancy defects in the MgO barrier after annealing, still exists inside the MgO barrier. All these behaviors in the MgO barrier could potentially impact the overall performance in MgO based magnetic tunnel junctions.

  15. Defect-Tolerant Diffusion Channels for Mg 2+ Ions in Ribbon-Type Borates: Structural Insights into Potential Battery Cathodes MgVBO 4 and Mg x Fe 2–xB 2O 5

    DOE PAGES

    Bo, Shou-Hang; Grey, Clare P.; Khalifah, Peter G.

    2015-06-10

    The reversible room temperature intercalation of Mg 2+ ions is difficult to achieve, but may offer substantial advantages in the design of next-generation batteries if this electrochemical process can be successfully realized. Two types of quadruple ribbon-type transition metal borates (Mg xFe 2-xB 2O 5 and MgVBO 4) with high theoretical capacities (186 mAh/g and 360 mAh/g) have been synthesized and structurally characterized through the combined Rietveld refinement of synchrotron and time-of-flight neutron diffraction data. Neither MgVBO 4 nor Mg xFe 2-xB 2O 5 can be chemically oxidized at room temperature, though Mg can be dynamically removed from themore » latter phase at elevated temperatures (approximately 200 - 500 °C). Findings show that Mg diffusion in the Mg xFe 2-xB 2O 5 structure is more facile for the inner two octahedral sites than for the two outer octahedral sites in the ribbons, a result supported by both the refined site occupancies after Mg removal and by bond valence sum difference map calculations of diffusion paths in the pristine material. Mg diffusion in this pyroborate Mg xFe 2-xB 2O 5 framework is also found to be tolerant to the presence of Mg/Fe disorder since Mg ions can diffuse through interstitial channels which bypass Fe-containing sites.« less

  16. The first Fe-based Na+-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19

    DOE PAGES

    Kan, W. H.; Huq, A.; Manthiram, A.

    2015-05-15

    We report the synthesis, structure, and electrochemistry of the first Na +-ion cathode with two distinct types of polyanions: Fe 3P 5SiO 19. The Fe-based cathode has a reversible capacity of ca. 70 mAh g -1; ca. 1.7 Na + ions per formula can be inserted/extracted at an average voltage of 2.5 V versus Na +/Na.

  17. Perpendicular magnetic anisotropy in Ta|Co{sub 40}Fe{sub 40}B{sub 20}|MgAl{sub 2}O{sub 4} structures and perpendicular CoFeB|MgAl{sub 2}O{sub 4}|CoFeB magnetic tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, B. S.; Li, D. L.; Yuan, Z. H.

    2014-09-08

    Magnetic properties of Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) thin films sandwiched between Ta and MgAl{sub 2}O{sub 4} layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl{sub 2}O{sub 4} structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy K{sub i} = 1.22 erg/cm{sup 2}, which further increases to 1.30 erg/cm{sup 2} after annealing, while MgAl{sub 2}O{sub 4}/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a coremore » structure of CoFeB/MgAl{sub 2}O{sub 4}/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.« less

  18. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki

    2016-05-15

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔH{sub L}) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔH{sub T}) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔH{submore » L} observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔH{sub T} shows the same sign with a small magnitude. The opposite directions of ΔH{sub L} indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.« less

  19. Study on the mechanism of perpendicular magnetic anisotropy in Ta/CoFeB/MgO system

    NASA Astrophysics Data System (ADS)

    Lou, Yongle; Zhang, Yuming; Guo, Hui; Xu, Daqing; Yimen, Zhang

    2017-06-01

    The mechanism of perpendicular magnetic anisotropy (PMA) in a MgO-based magnetic tunnel junction (MTJ) has been studied in this article. By comparing the magnetic properties and elementary composition analysis for different CoFeB-based structures, such as Ta/CoFeB/MgO, Ta/CoFeB/Ta and Ru/CoFeB/MgO structures, it is found that a certain amount of Fe-oxide existing at the interface of CoFeB/MgO is helpful to enhance the PMA and the PMA is originated from the interface of CoFeB/MgO. In addition, Ta film plays an important role to enhance the PMA in Ta/CoFeB/MgO structure. Project supported by the National Defense Advance Research Foundation (No. 9140A08XXXXXX0DZ106), the Basic Research Program of Ministry of Education, China (No. JY10000925005), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.11JK0912), the Scientific Research Foundation of Xi’an University of Science and Technology (No. 2010011), the Doctoral Research Startup Fund of Xi’an University of Science and Technology (No. 2010QDJ029).

  20. The effect of growth sequence on magnetization damping in Ta/CoFeB/MgO structures

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Huang, Dawei; Gao, Ming; Tu, Hongqing; Wang, Kejie; Ruan, Xuezhong; Du, Jun; Cai, Jian-Wang; He, Liang; Wu, Jing; Wang, Xinran; Xu, Yongbing

    2018-03-01

    Magnetization damping is a key parameter to control the critical current and the switching speed in magnetic random access memory, and here we report the effect of the growth sequence on the magnetic dynamics properties of perpendicularly magnetized Ta/CoFeB/MgO structures. Ultrathin CoFeB films have been grown between Ta and MgO but with different stack sequences, i.e. substrate/Ta/CoFeB/MgO/Ta and substrate/Ta/MgO/CoFeB/Ta. The magnetization dynamics induced by femtosecond laser was investigated by using all-optical pump-probe measurements. We found that the Gilbert damping constant was modulated by reversing stack structures, which offers the potential to tune the damping parameter by the growth sequence. The Gilbert damping constant was enhanced from 0.017 for substrate/Ta/CoFeB/MgO/Ta to 0.027 for substrate/Ta/MgO/CoFeB/Ta. We believe that this enhancement originates from the increase of intermixing at the CoFeB/Ta when the Ta atom layer was grown after the CoFeB layer.

  1. Optical and Luminescence Properties of β-NaFeO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Sarbjit; Tangra, Ankush Kumar; Lotey, Gurmeet Singh

    2018-05-01

    β-NaFeO2 nanoparticles have been synthesized by sol-gel method and their morphological, structural and optical properties investigated. Transmission electron microscope study reveals that the size of the synthesis nanoparticles is 37 nm and they are possessing spherical symmetry. X-ray diffraction pattern shows the orthorhombic crystal structure of nanoparticles with space group Pn21 a. UV-visible spectra of β-NaFeO2 divulges that these nanoparticles have direct band gap 2.35 eV. The observed Fourier transform infrared spectroscopy spectra confirms the presence of Fe-Na bonding at 1074 cm-1. The photoluminescence study of these nanoparticles shows that these nanoparticles possesses various transition in the visible spectrum.

  2. New double molybdate Na9Fe(MoO4)6: Synthesis, structure, properties

    NASA Astrophysics Data System (ADS)

    Savina, Aleksandra A.; Solodovnikov, Sergey F.; Basovich, Olga M.; Solodovnikova, Zoya A.; Belov, Dmitry A.; Pokholok, Konstantin V.; Gudkova, Irina A.; Stefanovich, Sergey Yu.; Lazoryak, Bogdan I.; Khaikina, Elena G.

    2013-09-01

    A new double molybdate Na9Fe(MoO4)6 was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, X-ray fluorescence analysis, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na9Fe(MoO4)6 were obtained and its structure was solved (the space group R3¯, a=14.8264(2), c=19.2402(3) Å, V=3662.79(9) Å3, Z=6, R=0.0132). The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)3. The basic structure units are polyhedral clusters composed of central FeО6 octahedron sharing edges with three Na(1)О6 octahedra. The clusters share common vertices with bridging МоО4 tetrahedra to form an open 3D framework where the cavities are occupied by Na(2) and Na(3) atoms. The compound melts incongruently at 904.7±0.2 K. Arrhenius type temperature dependence of electric conductivity σ has been registered in solid state (σ=6.8×10-2 S сm-1 at 800 K), thus allowing considering Na9Fe(MoO4)6 as a new sodium ion conductor.

  3. Strong magnon-phonon coupling in NaFeAs studied by neutron scattering

    NASA Astrophysics Data System (ADS)

    Li, Yu; Yamani, Zahra; Song, Yu; Zhang, Chenglin; Dai, Pengcheng

    We carried on inelastic neutron scattering experiment on the triple axis spectrometer in CNBC in Chalk River. We measured both the phonon and magnon in NaFeAs single crystals and their temperature dependence. Since structural transition temperature (TS) and the magnetic transition temperature (T N) are well separated in NaFeAs, it provides us an unique chance to exclude the consequence or magnetic order and focus on the so called nematic phase. As the previous paper on BaFe2As2, we observed the strong phonon softening nearby the structural transition temperature at very small q (q<0.1). This makes the phonon in NaFeAs deviate from the classical linear dispersion relationship for acoustic phonons. Besides the phonon softening, we also observe phonon hardening at a larger q range when the temperature goes down. This is accompanied by the stiffening of the magnons which can be represented by the linewidth of the low energy magnetic peaks. Our results suggest that there is strong coupling between the phonons and magnons in NaFeAs.

  4. A study of the properties and microstructure of Ni 81Fe 19 ultrathin films with MgO

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Han, Gan; Ding, Lei; Wang, Xiaocui; Liu, Yang; Feng, Chun; Wang, Haicheng; Yu, Guanghua

    2012-01-01

    The anisotropic magnetoresistance (AMR) of a Ta (5 nm)/MgO (3 nm)/Ni81Fe19 (10 nm)/MgO (2 nm)/Ta (3 nm) film with MgO-Nano Oxide Layer (NOL) increases dramatically from 1.05% to 3.24% compared with a Ta (5 nm)/Ni81Fe19 (10 nm)/Ta (3 nm) film without the MgO-NOL layer after annealing at 380 °C for 2 h. Although the MgO destroys the NiFe (1 1 1) texture, it enhances the specular electron scattering of the conduction electrons at the NOL interface and suppresses the interface reactions and diffusion at the Ta/NiFe and NiFe/Ta interfaces. The NiFe (1 1 1) texture was formed after the annealing, resulting in a higher AMR ratio. X-ray photoelectron spectroscope results show that Mg and Mg2+ were present in the MgOx films.

  5. Cap-Induced Magnetic Anisotropy in Ultra-thin Fe/MgO(001) Films

    NASA Astrophysics Data System (ADS)

    Brown-Heft, Tobias; Pendharkar, Mihir; Lee, Elizabeth; Palmstrom, Chris

    Magnetic anisotropy plays an important role in the design of spintronic devices. Perpendicular magnetic anisotropy (PMA) is preferred for magnetic tunnel junctions because the resulting energy barrier between magnetization states can be very high and this allows enhanced device scalability suitable for magnetic random access memory applications. Interface induced anisotropy is often used to control magnetic easy axes. For example, the Fe/MgO(001) system has been predicted to exhibit PMA in the ultrathin Fe limit. We have used in-situ magneto optic Kerr effect and ex-situ SQUID to study the changes in anisotropy constants between bare Fe/MgO(001) films and those capped with MgO, Pt, and Ta. In some cases in-plane anisotropy terms reverse sign after capping. We also observe transitions from superparamagnetic to ferromagnetic behavior induced by capping layers. Perpendicular anisotropy is observed for Pt/Fe/MgO(001) films after annealing to 300°C. These effects are characterized and incorporated into a magnetic simulation that accurately reproduces the behavior of the films. This work was supported in part by the Semiconductor Research Corporation programs (1) MSR-Intel, and (2) C-SPIN.

  6. High pressure structural investigation on alluaudites Na{sub 2}Fe{sub 3}(PO{sub 4}){sub 3}-Na{sub 2}FeMn{sub 2}(PO{sub 4}){sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jing; Huang, Weifeng; Qin, Shan

    Alluaudites are promising electrochemical materials benefited from the open structure. Structural variations of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) system have been studied by synchrotron radiation X-ray diffraction combined with diamond anvil cell technique up to ~10 GPa at room temperature. No phase transition is observed. The excellent structural stability is mainly due to the flexible framework plus strong covalent P-O bond. Mn{sup 2+} instead of Fe can be described as Na{sup +}+2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy. The replacement of Fe with larger Mn{sup 2+} is equivalentmore » to applying negative chemical pressure to the material. And it causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe. External pressure effect produces anisotropic lattice shrinkage. Structural considerations related to these variations and promising application prospects are discussed. - Graphical abstract: Figure 1 The crystal structure of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) projected along the c-axis. Alluaudites adopt a flexible framework plus strong covalent P-O bond, which contribute to excellent structural stability up to ~10 GPa. Mn{sup 2+} instead of Fe can be described as Na{sup ++}2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy, and it is equivalent to applying negative chemical pressure to the host. The substitution causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe.« less

  7. Topotactic redox chemistry of NaFeAs in water and air and superconducting behavior with stoichiometry change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todorov, I.; Chung, D. Y.; Claus, H.

    2010-07-13

    We report experimental evidence that shows superconductivity in NaFeAs occurs when it is Na deficient. The oxidation of NaFeAs progresses differently in water and in air. In water the material oxidizes slowly and slightly retaining the original anti-PbFCl structure. In air NaFeAs oxidizes topotactically quickly and extensively transforming to the ThCr{sub 2}Si{sub 2} structure type. Water acts as a mild oxidizing agent on the FeAs layer by extracting electrons and Na{sup +} cations from the structure, while oxidation in air is more extensive and leads to change in structure type from NaFeAs to NaFe{sub 2}As{sub 2}. The superconducting transition temperaturemore » moves dramatically during the oxidation process. Exposed to water for an extended time period NaFeAs shows a substantial increase in T{sub c} up to 25 K with contraction of unit cell volume. NaFe{sub 2}As{sub 2}, the air oxidized product, shows T{sub c} of 12 K. We report detailed characterization of the redox chemistry and transformation of NaFeAs in water and air using single crystal and powder X-ray diffraction, magnetization studies, transmission electron microscopy, Moessbauer spectroscopy, pOH and elemental analysis.« less

  8. Formation of Fe/mg Smectite Under Acidic Conditions from Synthetic Adirondack Basaltic Glass: an Analog to Fe/mg Smectite Formation on Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-01-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (< 53 microns) of Adirondack rock class composition was exposed to pH 4 (acetic acid buffer) and N2 purged (anoxic) solutions amended with 0 and 10 mM Mg or Fe(II). Basaltic glass in these solutions was heated to 200 C in batch reactors for 1, 7, and 14 days. X-ray diffraction analysis of reacted materials detected the presence of phyllosilicates as indicated by a approx. 15.03-15.23Angstroms (001) peak. Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550 C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Angstroms (02l) and 1.54Angstroms (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200 C for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060

  9. Formation of Fe/Mg Smectite under acidic conditions from synthetic Adirondack Basaltic Glass: An Analog to Fe/Mg Smectite Formation on Mars.

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Peretyazhko, T.; Morris, R. V.; Ming, D. W.

    2014-12-01

    Smectite has been detected as layered material hundreds of meters thick, in intracrater depositional fans, in plains sediments, and deposits at depth on Mars. If early Mars hosted a dense CO2 atmosphere, then extensive carbonate should have formed in the neutral/alkaline conditions expected for smectite formation. However, large carbonate deposits on Mars have not been discovered. Instead of neutral to moderately alkaline conditions, early Mars may have experienced mildly acidic conditions that allowed for Fe/Mg smectite formation but prevented widespread carbonate formation. The objective of this work is to demonstrate that Fe(II)/Mg-saponite and nontronite can form in mildly acidic solutions (e.g., pH 4). Synthetic basaltic glass (< 53 μm) of Adirondack rock class composition was exposed to pH 4 (acetic acid buffer) and N2 purged (anoxic) solutions amended with 0 and 10 mM Mg or Fe(II). Basaltic glass in these solutions was heated to 200ºC in batch reactors for 1, 7, and 14 days. X-ray diffraction analysis of reacted materials detected the presence of phyllosilicates as indicated by a ~15.03-15.23Ǻ (001) peak. Smectite was confirmed as the phyllosilicate after treatments with glycerol and KCl and heating to 550°C. Trioctahedral saponite was confirmed by the presence of a 4.58 to 4.63 Ǻ (02l) and 1.54Ǻ (060) peaks. Saponite concentration was highest, as indicated by XRD peak intensity, in the 10 mM Mg treatment followed by the 0 mM and then 10 mM Fe(II) treatments. This order of sapontite concentration suggests that Fe(II) additions may have a role in slowing the kinetics of saponite formation relative to the other treatments. Nontronite synthesis was attempted by exposing Adirondack basaltic glass to pH 4 oxic solutions (without N2 purge) at 200ºC for 14 days. X-ray diffraction analysis indicated that mixtures of trioctahedral (saponite) and dioctahedral (nontronite) may have formed in these experiments based on the 02l and 060 peaks. Mössbauer analysis

  10. Influence of Sporadic E layers on Mesospheric Na and Fe Layers over Arecibo

    NASA Astrophysics Data System (ADS)

    Raizada, S.; Tepley, C. A.; Zhou, Q.; Sarkhel, S.; Mathews, J. D.; Aponte, N.; Kerr, R.

    2014-12-01

    Arecibo offers unique opportunity to investigate the structure of the mesospheric metal layers and their response to Sporadic E as observed by the incoherent scatter radar data. Previous studies have shown higher occurrences of sporadic activity in the neutral Fe layers as compared to Na at mid-latitudes. Other studies demonstrated that Sporadic Na (NaS) layers are more common at low and high latitudes as compared to FeS. It is important to note that case studies based on a few nights of observations are significant as they can shed more light on factors that are important on short term scales. These efforts can also help in evaluation of the role played by these factors in the climatological or global studies. In this study, we have used two adjacent nights of simultaneous Na and Fe data obtained using resonance lidars at Arecibo, while the co-located Incoherent Scatter Radar (ISR) provides information about Sporadic E (ES). On both the nights (17 and 18 March 2004) ES was observed with electron densities exceeding 3000 electrons/cc. Some interesting observations are worth noting: The Fe main layer (below 90 km) was stronger than the corresponding sporadic layer around 95 km. However, Na data displayed a weaker main layer below 90 km with stronger NaS activity. Hence, the ratio of densities determined within layers of 3 km thickness centered at 97 km and at 87 km are less than 1 for Fe and exceeds 1 in the case of Na. A correlation analysis between Na/Ne and Fe/Ne also displays dissimilarities in the 94-100 km altitude range. An onsite all-sky imager recorded similar wave activities on both the nights with both ripple and band type structures that were observed in the 557.7 nm airglow. We will discuss the dissimilar response of Na and Fe to Sporadic E activity in relation to neutralization lifetimes of their respective ions and their sensitivity to temperatures.

  11. Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong

    2015-06-17

    Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can bemore » assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.« less

  12. High pressure experimental studies on Na3Fe(PO4)(CO3) and Na3Mn(PO4)(CO3): Extensive pressure behaviors of carbonophosphates family

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Huang, Weifeng; Wu, Xiang; Qin, Shan

    2018-04-01

    Carbon-bearing phases in the Earth's interior have profound implications for the long-term Earth carbon cycle. Here we investigate high-pressure behaviors of carbonophosphates bonshtedtite Na3Fe(PO4)(CO3) and sidorenkite Na3Mn(PO4)(CO3) in diamond anvil cells up to ∼12 GPa at room temperature. Modifications in in situ synchrotron X-ray diffraction patterns and Raman spectra confirm the structural stability of carbonophosphates within the pressure region. Fitting the third-order Birch-Murnaghan equation of state to the volume compression curve, the isothermal bulk modulus parameters are obtained to be K0 = 56(1) GPa, K0' = 3.3(1), V0 = 303.3(3) Å3 for Na3Fe(PO4)(CO3) and K0 = 54(1) GPa, K0' = 3.4(1), V0 = 313.4(2) Å3 for Na3Mn(PO4)(CO3). Crystallographic axes exhibit an elastic anisotropy with a more compressible c-axis relative to the ab-plane. An inverse linear correlation between the K0 value and the ionic radius of M2+ (M = Mg, Fe, Mn) is well determined for carbonophosphates. The pressure-dependence responsiveness of [PO4] and [CO3] in carbonophosphates show a negative relationship to the M2+ radius. We also discussed the effect of [PO4] group on the structural variations and high-pressure behaviors of carbonates. Furthermore, the geochemical properties of carbonophosphates hold implications to diamond genesis.

  13. Mechanisms for monovalent cation-dependent depletion of intracellular Mg2+:Na(+)-independent Mg2+ pathways in guinea-pig smooth muscle.

    PubMed

    Nakayama, Shinsuke; Nomura, Hideki; Smith, Lorraine M; Clark, Joseph F; Uetani, Tadayuki; Matsubara, Tatsuaki

    2003-09-15

    It has been suggested that magnesium deficiency is correlated with many diseases. 31P NMR experiments were carried out in order to investigate the effects of Na+ substitution on Mg2+ depletion in smooth muscle under divalent cation-free conditions. In the taenia of guinea-pig caeci, the intracellular free Mg2+ concentration ([Mg2+]i) was estimated from the chemical shifts of (1) the beta-ATP peak alone and (2) beta- and gamma-ATP peaks. Both estimations indicated that [Mg2+]i decreased only very slowly in Mg(2+)-free, Ca(2+)-free solutions in which Na+ was substituted with large cations such as NMDG (N-methyl-D-glucamine) and choline. Furthermore, the measurements of tension development supported the suggestion of preservation of intracellular Mg2+ with NMDG substitution. Substituting extracellular Na+ with the small cation, Li+, also shifted the beta-ATP peak towards a lower frequency, but the frequency shift was significantly less than that seen upon Na+ substitution with K+. The estimated [Mg2+]i depletion was, however, comparable with that seen after Na+ substitution with K+ using the titration curves of metal-free and Mg(2+)-bound ATP obtained in Li(+)-based model solutions. It was concluded that Mg2+ rapidly decreases only when small cations were the major electrolyte of the extracellular medium. Na+ substitutions with NMDG, choline or Li+ had little effect on intracellular ATP concentration after 100 min treatment.

  14. Structural Properties of Alternate Monatomic Layered [Fe/Co]n Epitaxial Films on MgO Substrate

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Saki, Yoshinobu; Kawasaki, Shohei; Doi, Masaaki; Sahashi, Masashi

    2008-06-01

    Body-centered-cubic (bcc) Fe50Co50 material is reported to show a high bulk spin scattering coefficient on current perpendicular to plane-giant magneto-resistance (CPP-GMR) system. But the origin of that phenomenon does not make sure yet. We prepared artificially alternate monatomic layered (AML) [Fe/Co] 41 MLs epitaxial films (Ts: 75, 250 °C) by monatomic deposition method and investigated the topology of AML [Fe/Co]n epitaxial films on MgO substrate with different orientation (001), (011) by the scanning tunnel microscopy (STM) and reflection high energy electron diffraction (RHEED), which we could confirm Frank-van der Merwe (FM) growth mode for AML [Fe/Co]n on MgO(001) and Volmer-Weber (VW) growth mode for that on Mg(011). The roughness of surface, Ra (0.20 nm) of AML [Fe/Co] 41 MLs epitaxial film grown at 75 °C on MgO(001) is smaller than that (0.46 nm) of AML [Fe/Co] grown at 250 °C on MgO(001), which has the large terraces of over 50 nm (Ra: 0.17 nm), even though there are some valleys between large terraces. Moreover we confirmed the structural properties of trilayered epitaxial films with AML [Fe/Co]n (Ra: 0.18 nm) and Fe50Co50 alloy epitaxial film on Au electrode by RHEED before confirming the characteristics of CPP-GMR devices.

  15. Ferroindialite (Fe2+,Mg)2Al4Si5O18, a new beryl-group mineral from the Eifel volcanic region, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Aksenov, S. M.; Pekov, I. V.; Ternes, B.; Schüller, W.; Belakovskiy, D. I.; Van, K. V.; Blass, G.

    2014-12-01

    A new mineral, ferroindialite, a Fe2+-dominant analog of indialite, has been found in a pyrometamorphosed xenolith of pelitic rock hosted in alkaline basalts. Associated minerals are phlogopite, sanidine, sillimanite, pyroxenes of the enstatite-ferrosilite series, wagnerite, fluorapatite, tridymite, zircon and almandine. Ferroindialite forms brown-purple to gray with a violet-blue tint short prismatic or thick tabular hexagonal crystals up to 1.5 mm in size. The new mineral is brittle, with a Mohs' hardness of 7. Cleavage is not observed. D meas = 2.66(1), D calc = 2.667 g/cm3. IR spectrum shows neither H2O nor OH groups. Ferroindialite is anomalously biaxial (-), α = 1.539(2), β = 1.552(2), γ = 1.554(2), 2 V meas = 30(10)°. The mineral is weakly pleochroic, ranging from colorless on X to pale violet on Z. Dispersion is weak, r < v. The chemical composition (electron microprobe, mean of five point analyses, wt %) is as follows: 0.14 Na2O, 0.46 K2O, 4.95 MgO, 1.13 MnO, 12.66 FeO, 2.64 Fe2O3, 30.45 Al2O3, 47.22 SiO2, total is 99.65. The distribution of total iron content between Fe2+ and Fe3+ was carried out according to structural data. The empirical formula of ferroindialite is: (K0.06Na0.03)(Fe{1.12/2+}Mg0.78Mn0.10)Σ2.00(Al3.79Fe{0.21/3+})Σ4.00Si4.98O18. The simplified formula is: (Fe2+,Mg)2Al4Si5O18. The crystal structure has been refined on a single crystal, R = 0.049. Ferroindialite is hexagonal, space group P6/ mcc; a = 9.8759(3), c = 9.3102(3) Å, V = 786.40(3) Å3, Z = 2. The strongest lines in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 8.59 (100) (100), 4.094 (27) (102), 3.390 (35) (112), 3.147 (19) (202), 3.055 (31) (211), 2.657 (12) (212), 1.695 (9) (224). The type specimen of ferroindialite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4400/1.

  16. Carotenoids, but not vitamin A, improve iron uptake and ferritin synthesis by Caco-2 cells from ferrous fumarate and NaFe-EDTA.

    PubMed

    García-Casal, María N; Leets, Irene

    2014-04-01

    Due to the high prevalence of iron and vitamin A deficiencies and to the controversy about the role of vitamin A and carotenoids in iron absorption, the objectives of this study were to evaluate the following: (1) the effect of a molar excess of vitamin A as well as the role of tannic acid on iron uptake by Caco-2 cells; (2) iron uptake and ferritin synthesis in presence of carotenoids without pro-vitamin A activity: lycopene, lutein, and zeaxantin; and (3) iron uptake and ferritin synthesis from ferrous fumarate and NaFe-EDTA. Cells were incubated 1 h at 37 °C in PBS pH 5.5, containing (59) Fe and different iron compounds. Vitamin A, ferrous fumarate, β-carotene, lycopene, lutein, zeaxantin, and tannic acid were added to evaluate uptake. Ferritin synthesis was measured 24 h after uptake experiments. Vitamin A had no effect on iron uptake by Caco-2 cells, and was significantly lower from NaFe-EDTA than from ferrous fumarate (15.2 ± 2.5 compared with 52.5 ± 8.3 pmol Fe/mg cell protein, respectively). Carotenoids increase uptake up to 50% from fumarate and up to 300% from NaFe-EDTA, since absorption from this compound is low when administered alone. We conclude the following: (1) There was no effect of vitamin A on iron uptake and ferritin synthesis by Caco-2cells. (2) Carotenoids significantly increased iron uptake from ferrous fumarate and NaFe-EDTA, and were capable of partially overcoming the inhibition produced by tannic acid. (3) Iron uptake by Caco-2 cell from NaFe-EDTA was significantly lower compared to other iron compounds, although carotenoids increased and tannic acid inhibited iron uptake comparably to ferrous fumarate. © 2014 Institute of Food Technologists®

  17. Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix

    NASA Astrophysics Data System (ADS)

    Schneeweiss, O.; Zboril, R.; Pizurova, N.; Mashlan, M.; Petrovsky, E.; Tucek, J.

    2006-01-01

    Thermally induced reduction of amorphous Fe2O3 nanopowder (2-3 nm) with nanocrystalline Mg (~20 nm) under a hydrogen atmosphere is presented as a novel route to obtain α-Fe and Fe3O4 magnetic nanoparticles dispersed in a MgO matrix. The phase composition, structural and magnetic properties, size and morphology of the nanoparticles were monitored by x-ray diffraction, 57Fe Mössbauer spectroscopy at temperatures of 24-300 K, transmission electron microscopy and magnetic measurements. Spherical magnetite nanoparticles prepared at a reaction temperature of 300 °C revealed a well-defined structure, with a ratio of tetrahedral to octahedral Fe sites of 1/2 being common for the bulk material. A narrow particle size distribution (20-30 nm) and high saturation magnetization (95 ± 5 A m2 kg-1) predispose the magnetite nanoparticles to various applications, including magnetic separation processes. The Verwey transition of Fe3O4 nanocrystals was found to be decreased to about 80 K. The deeper reduction of amorphous ferric oxide at 600 °C allows α-Fe (40-50 nm) nanoparticles to be synthesized with a coercive force of about 30 mT. They have a saturation magnetization 2.2 times higher than that of synthesized magnetite nanoparticles, which corresponds well with the ratio usually found for the pure bulk phases. The magnetic properties of α-Fe nanocrystals combined with the high chemical and thermal stability of the MgO matrix makes the prepared nanocomposite useful for various magnetic applications.

  18. Robust diamond-like Fe-Si network in the zero-strain Na xFeSiO 4 cathode

    DOE PAGES

    Ye, Zhuo; Zhao, Xin; Li, Shouding; ...

    2016-07-14

    Sodium orthosilicates Na 2 MSiO 4 ( M denotes transition metals) have attracted much attention due to the possibility of exchanging two electrons per formula unit. In this work, we report a group of sodium iron orthosilicates Na 2FeSiO 4. Their crystal structures are characterized by a diamond-like Fe-Si network. The Fe-Si network is quite robust against the charge/discharge process, which explains the high structural stability observed in experiment. Furthermore, using the density functional theory within the GGA + U framework and X-ray diffraction studies, the crystal structures and structural stabilities during the sodium extraction/re-insertion process are systematically investigated.

  19. BaFe2As2/Fe Bilayers with [001]-tilt Grain Boundary on MgO and SrTiO3 Bicrystal Substrates

    NASA Astrophysics Data System (ADS)

    Iida, K.; Haindl, S.; Kurth, F.; Hänisch, J.; Schulz, L.; Holzapfel, B.

    Co-doped BaFe2As2 (Ba-122) can be realized on both MgO and SrTiO3 bicrystal substrates with [001]-tilt grain boundary by employing Fe buffer layers. However, an additional spinel (i.e. MgAl2O4) buffer between Fe and SrTiO3 is necessary since an epitaxial, smooth surface of Fe layer can not be grown on bare SrTiO3. Both types of bicrystal films show good crystalline quality.

  20. Phase diagram and neutron spin resonance of superconducting NaFe 1 - x Cu x As

    DOE PAGES

    Tan, Guotai; Song, Yu; Zhang, Rui; ...

    2017-02-03

    In this paper, we use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe 1-xCu xAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x≈2% with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x≈50%. Using transport measurements, we demonstrate that the resistivity in NaFe 1-xCu xAs exhibits non-Fermi-liquid behavior near x≈1.8%. Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis inmore » NaFe 0.98Cu 0.02As. The resonance is high in energy relative to the superconducting transition temperature T c but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe 1-xCu xAs is continuously connected to an antiferromagnetically ordered insulating phase near x≈50% with significant electronic correlations. Finally, therefore, electron correlations is an important ingredient of superconductivity in NaFe 1-xCu xAs and other iron pnictides.« less

  1. NASICON-related Na3.4Mn0.4Fe1.6(PO4)3

    PubMed Central

    Yatskin, Michael M.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Ogorodnyk, Ivan V.; Slobodyanik, Nikolay S.

    2012-01-01

    The solid solution, sodium [iron(III)/manganese(II)] tris­(orthophosphate), Na3.4Mn0.4Fe1.6(PO4)3, was obtained using a flux method. Its crystal structure is related to that of NASICON-type compounds. The [(Mn/Fe)2(PO4)3] framework is built up from an (Mn/Fe)O6 octa­hedron (site symmetry 3.), with a mixed Mn/Fe occupancy, and a PO4 tetra­hedron (site symmetry .2). The Na+ cations are distributed over two partially occupied sites in the cavities of the framework. One Na+ cation (site symmetry -3.) is surrounded by six O atoms, whereas the other Na+ cation (site symmetry .2) is surrounded by eight O atoms. PMID:22807697

  2. Fabrication and Luminescence Characterization of a Silica Nanomatrix Embedded with NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Thangaraju, Dheivasigamani; Santhana, Vedi; Matsuda, Satoshi; Hayakawa, Yasuhiro

    2018-05-01

    Hexagonal NaYF4:Yb:Er:Tm@NaGdF4 core-shell nanocrystals were synthesized using a seed mediated hot injection method, and monodispersed Fe3O4 (4 nm) nanoparticles were prepared from iron(II) actylacetonate by a precursor thermal decomposition method. Structural and morphology verified NaYF4:Yb:Er:Tm@NaGdF4 and Fe3O4 nanoparticles were utilized for the preparation of NaYF4:Yb:Er:Tm@NaGdF4/Fe3O4@SiO2 nanocomposite using a micro-emulsion method. Existence of Fe3O4 in NaYF4:Yb:Er:Tm@NaGdF4 in SiO2 nano-spheres were confirmed with transmission electron microscopy. Luminescence measurement revealed that NaYF4:Yb:Er:Tm@NaGdF4 exhibited strong emissions at green and red regions, in addition to a weak blue emission also observed under 980 nm excitation. Up-conversion emission of the nanoparticle-embedded silica nanocomposite showed that the up-conversion emission was not affected by Fe3O4 nanoparticles.

  3. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2015-04-01

    In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the

  4. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Mücklich, A.; Grötzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-04-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6×1016 cm-2. As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles.

  5. An experimental study of ^{{{{Fe}}^{2 + } {-}{{Mg}}}} K_{{D}} between orthopyroxene and rhyolite: a strong dependence on H2O in the melt

    NASA Astrophysics Data System (ADS)

    Waters, Laura E.; Lange, Rebecca A.

    2017-06-01

    The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+-Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785-850 °C and 80-185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni-NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that ^{{{{Fe}}^{2 + } {-}{{Mg}}}} K_{{D}} between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+-Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.

  6. Regulating the local pH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis.

    PubMed

    Li, Qianwen; Wang, Donghui; Qiu, Jiajun; Peng, Feng; Liu, Xuanyong

    2018-05-01

    Hard tissue implant materials which can cause a suitable alkaline microenvironment are thought to be beneficial for stimulating osteoblast differentiation while suppressing osteoclast generation. To make the local pH around the interface between materials and cells controllable, we prepared a series of Mg-Fe layered double hydroxide (LDH) films on acid-etched pure titanium surfaces via hydrothermal treatment. By adjusting the Mg/Fe proportion ratio, the interlayer spacing of Mg-Fe LDHs was regulated, making their OH- exchange abilities adjustable, and this ultimately resulted in a microenvironment with a controllable pH value. In vitro experiments demonstrated that the Mg-Fe LDH film-modified titanium surface possessed good biocompatibility and osteogenic activity, especially the Mg-Fe LDH film with Mg/Fe proportion ratio of 4, which could form a suitable alkaline microenvironment for the growth and osteogenetic differentiation of stem cells. These results demonstrate the potential application of the prepared Mg-Fe LDH films in enhancing the osteogenesis of implant materials while providing a new way into the design of controllable alkaline environment.

  7. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Hwang, Jinkwang; Matsumoto, Kazuhiko; Orikasa, Yuki; Katayama, Misaki; Inada, Yasuhiro; Nohira, Toshiyuki; Hagiwara, Rika

    2018-02-01

    Maricite NaFePO4 (m-NaFePO4) was investigated as a positive electrode material for intermediate-temperature operation of sodium secondary batteries using ionic liquid electrolytes. Powdered m-NaFePO4 was prepared by a conventional solid-state method at 873 K and subsequently fabricated in two different conditions; one is ball-milled in acetone and the other is re-calcined at 873 K after the ball-milling. Electrochemical properties of the electrodes prepared with the as-synthesized m-NaFePO4, the ball-milled m-NaFePO4, and the re-calcined m-NaFePO4 were investigated in Na[FSA]-[C2C1im][FSA] (C2C1im+ = 1-ethyl-3-methylimidazolium, FSA- = bis(fluorosulfonyl)amide) ionic liquid electrolytes at 298 K and 363 K to assess the effects of temperature and particle size on their electrochemical properties. A reversible charge-discharge capacity of 107 mAh g-1 was achieved with a coulombic efficiency >98% from the 2nd cycle using the ball-milled m-NaFePO4 electrode at a C-rate of 0.1 C and 363 K. Electrochemical impedance spectroscopy using m-NaFePO4/m-NaFePO4 symmetric cells indicated that inactive m-NaFePO4 becomes an active material through ball-milling treatment and elevation of operating temperature. X-ray diffraction analysis of crystalline m-NaFePO4 confirmed the lattice contraction and expansion upon charging and discharging, respectively. These results indicate that the desodiation-sodiation process in m-NaFePO4 is reversible in the intermediate-temperature range.

  8. A novel reduced symmetry oxide (Mg3B2O6) for magnetic tunnel junctions based on FeCo or Fe leads

    NASA Astrophysics Data System (ADS)

    Stewart, Derek

    2010-03-01

    Magnetic tunnel junctions with high TMR values, such as FeMgOFe, capitalize on spin filtering in the oxide due to the band symmetry of incident electrons. However, these structures rely on magnetic leads and oxide regions of the same cubic symmetry class. This raises the question of whether reducing the oxide symmetry can enhance spin filtering. A new magnetic tunnel junction (FeCoMg3B2O6FeCo) is presented that uses a reduced symmetry oxide region (orthorhombic) to filter spins between two cubic magnetic leads. Symmetry analysis of coupling between states in the cubic leads and the orthorhombic oxide indicates that majority carrier tunneling through the oxide should be favored over minority carriers. Complex band structure analysis of Mg3B2O6 shows that the relevant evanescent states in the band gap are due to boron p states and that there is sufficient difference in the decay rates of the imaginary bands for spin filtering to occur. Electronic transport calculations through a FeMg3B2O6Fe magnetic tunnel junction are also performed to address the possible influence of interface states. Some recent experimental studies of FeCoBMgOFeCoB junctions, with B diffusion into the MgO region, indicate that this new type of junction may have already been fabricated. The prospect of developing a general class of magnetic tunnel junctions based on reduced symmetry oxides is also examined.

  9. Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Qu, Long; Luo, Dong; Fang, Shaohua; Liu, Yi; Yang, Li; Hirano, Shin-ichi; Yang, Chun-Chen

    2016-03-01

    Mg-doped Li2FeSiO4/C is synthesized by using Fe2O3 nanoparticle as iron source. Through Rietveld refinement of X-ray diffraction data, it is confirmed that Mg-doped Li2FeSiO4 owns monoclinic P21/n structure and Mg occupies in Fe site in the lattice. Through energy dispersive X-ray measurement, it is detected that Mg element is distributed homogenously in the resulting product. The results of transmission electron microscopy measurement reveal that the effect of Mg-doping on Li2FeSiO4 crystallite size is not obvious. As a cathode material for lithium-ion battery, this Mg-doped Li2FeSiO4/C delivers high discharge capacity of 190 mAh g-1 (the capacity was with respect to the mass of Li2FeSiO4) at 0.1C and its capacity retention of 100 charge-discharge cycles reaches 96% at 0.1C. By the analysis of electrochemical impedance spectroscopy, it is concluded that Mg-doping can help to decrease the charge-transfer resistance and increase the Li+ diffusion capability.

  10. Hydrogen storage properties of Mg xFe (x: 2, 3 and 15) compounds produced by reactive ball milling

    NASA Astrophysics Data System (ADS)

    Puszkiel, J. A.; Arneodo Larochette, P.; Gennari, F. C.

    This work deals with the assessment of the thermo-kinetic properties of Mg-Fe based materials for hydrogen storage. Samples are prepared from Mg xFe (x: 2, 3 and 15) elemental powder mixtures via low energy ball milling under hydrogen atmosphere at room temperature. The highest yield is obtained with Mg 15Fe after 150 h of milling (90 wt% of MgH 2). The thermodynamic characterization carried out between 523 and 673 K shows that the obtained Mg-Fe-H hydride systems have similar thermodynamic parameters, i.e. enthalpy and entropy. However, in equilibrium conditions, Mg 15Fe has higher hydrogen capacity and small hysteresis. In dynamic conditions, Mg 15Fe also shows better hydrogen capacity (4.85 wt% at 623 K absorbed in less than 10 min and after 100 absorption/desorption cycles), reasonably good absorption/desorption times and cycling stability in comparison to the other studied compositions. From hydrogen uptake rate measurements performed at 573 and 623 K, the rate-limiting step of the hydrogen uptake reaction is determined by fitting particle kinetic models. According to our results, the hydrogen uptake is diffusion controlled, and this mechanism does not change with the Mg-Fe proportion and temperature.

  11. Mg-Fe Isotope Systems of Mantle Xenoliths: Constrains on the Evolution of Siberian Craton

    NASA Astrophysics Data System (ADS)

    An, Y.; Kiseeva, E. S.; Sobolev, N. V.; Zhang, Z.

    2017-12-01

    Mantle xenoliths bring to the surface a variety of lithologies (dunites, lherzolites, harzburgites, wehrlites, eclogites, pyroxenites, and websterites) and represent snapshots of the geochemical processes that occur deep within the Earth. Recent improvements in the precision of the MC-ICP-MS measurements have allowed us to expand the amount of data on Mg and Fe isotopes for mantle-derived samples. For instance, to constrain the isotopic composition of the Earth based on the study of spinel and garnet peridotites (An et al., 2017; Teng et al., 2010), to trace the origin and to investigate the isotopic fractionation mechanism during metamorphic process using cratonic or orogenic eclogites (Li et al., 2011; Wang et al., 2012) and to reveal the metasomatism-induced mantle heterogeneity by pyroxenites (Hu et al., 2016). Numerous multi-stage modification events and mantle layering are detected in the subcontinental lithospheric mantle under the Siberian craton (Ashchepkov et al., 2008a; Sobolev et al., 1975, etc). Combined analyses of Mg and Fe isotopic systems could provide new constraints on the formation and evolution of the ancient cratonic mantle. In order to better constrain the magnitude and mechanism of inter-mineral Mg and Fe isotopic fractionations at high temperatures, systematic studies of mantle xenoliths are needed. For example, theoretical calculations and natural samples measurements have shown that large equilibrium Mg isotope fractionations controlled by the difference in coordination number of Mg among minerals could exist (Huang et al., 2013; Li et al., 2011). Thus, the Mg isotope geothermometer could help us trace the evolution history of ancient cratons. In this study we present Mg and Fe isotopic data for whole rocks and separated minerals (clinopyroxene (cpx) and garnet (grt)) from different types of mantle xenoliths (garnet pyroxenites, eclogites, grospydites and garnet peridotites) from a number of kimberlite pipes in Siberian craton (Udachnaya

  12. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.

    PubMed

    Hong, Daeho; Chou, Da-Tren; Velikokhatnyi, Oleg I; Roy, Abhijit; Lee, Boeun; Swink, Isaac; Issaev, Ilona; Kuhn, Howard A; Kumta, Prashant N

    2016-11-01

    3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices. In the present study, the authors employed CALPHAD modeling to systematically study and modify the Fe-Mn alloy composition to achieve enhanced degradation rates. Accordingly, Ca and Mg addition to Fe-35wt% Mn solid solution predicted increase in degradation rates. In order to validate the CALPHAD results, Fe - (35-y)wt% Mn - ywt% X (X=Ca, Mg, and y=0, 1, 2) were synthesized by using high energy mechanical alloying (HEMA). Sintered pellets of Fe-Mn-Ca and Fe-Mn-Mg were then subjected to potentiodynamic polarization (PDP) and live/dead cell viability tests. Sintered pellets of Fe-Mn, Fe-Mn-Ca, and Fe-Mn-Mg also exhibited MC3T3 murine pre-osteoblast cells viability in the live/dead assay results. Fe-Mn and Fe-Mn-1Ca were thus accordingly selected for 3D printing and the results further confirmed enhanced degradation of Ca addition to 3D printed constructs validating the theoretical and alloy development studies. Live/dead and MTT cell viability results also confirmed good cytocompatibility of the 3D-printed Fe-Mn and Fe-Mn-1Ca constructs. Bone grafting is widely used for the treatment of cranio-maxillofacial bone injuries. 3D printing of biodegradable Fe alloy is anticipated to be advantageous over current bone grafting techniques. 3D printing offers the fabrication of precise and tailored bone grafts to fit the patient specific bone defect needs. Biodegradable Fe alloy is a good candidate for 3D printing synthetic grafts to regenerate bone

  13. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal.

    PubMed

    Zhao, Ling; Li, Xinyong; Zhao, Qidong; Qu, Zhenping; Yuan, Deling; Liu, Shaomin; Hu, Xijun; Chen, Guohua

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO(2) adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe(2)O(4) nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe(2)O(4) nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO(2) oxidative adsorption on MgFe(2)O(4) nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe(2)O(4). The adsorption equilibrium isotherm of SO(2) was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe(2)O(4) nanospheres possess a good potential as the solid-state SO(2) adsorbent for applications in hot fuel gas desulfurization. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization

    PubMed Central

    Ding, Yi; Liu, Le; Fang, Yaowei; Zhang, Xu; Lyu, Mingsheng; Wang, Shujun

    2018-01-01

    We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg); histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption. PMID:29562655

  15. Differential Depletion of Mg and Fe in Planetary Nebulae: Implications for the Composition of AGB-Star Dust

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Prasla, F.; Speck, A. K.

    2012-01-01

    We have investigated the gas-phase abundances of Mg and Fe, both refractory elements that are potentially major constituents of silicates and other minerals, for 25 planetary nebulae. The Mg abundances are derived from Mg II 4481 A, a recombination line of Mg++; we obtain Fe/H from [Fe III] 4658 A, after correcting for ionization structure. We find strikingly different behavior for the two elements. Fe is deficient by factors of 20-200 relative to solar, presumably due to incorporation into dust that condensed while the star was on the Asymptotic Giant Branch (AGB). On the other hand, Mg/H is virtually solar, implying that Mg is at most minimally depleted. This result is surprising since some of the nebulae display mid-infrared emission features often attributed to forsterite, the pure-Mg form of crystalline olivine. If this identification is correct, there must be only a small mass of Mg-rich crystalline silicate dust, coexisting with a larger amount of Fe-rich amorphous silicates or another Fe-bearing material. Another possibility is that the observed features might actually arise from Fe-rich crystalline silicates such as fayalite, which provide a good fit to the spectra of some AGB stars (Pitman et al. 2010, MNRAS, 406, 460; Guha Nigoya et al. 2011, ApJ, 733, 93). Finally, our Mg abundances are based on an optical recombination line (ORL), and such lines from C, N, O, Ne tend to be anomalously strong in nebulae. Although empirically Mg does not correlate with the ORL abundance discrepancy (Barlow et al. 2003, ASPC, 209, 273; Wang & Liu 2007, MNRAS, 381, 669), solving the origin of the ORL effect would increase our confidence in our Mg/H values. This work was supported by NSF grants AST-0708245 to HLD and CAREER AST-0642991 to AKS, and Big XII Faculty Fellowships to both.

  16. Metastable electronic populations and relaxation of Fe(I), Fe(II), and Fe(III) in MgO observed by Mössbauer emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuczek, F.; Spiering, H.; Gütlich, P.

    1990-06-01

    Magnetic-field Mössbauer emission spectra of 57Co in MgO single crystals covering a broad velocity range and measured up to high signal-to-noise ratios are presented. In accordance with a previous study, three charge states of 57Fe are found after 57Co(EC)57Fe (EC stands for electron capture). The evaluation of the Fe(III) fraction indicates nonthermalized populations of the 6A1 ground-state Zeeman levels. The field, temperature, and angular dependences of these populations are evaluated and display qualitative differences to the findings in 57Co/LiNbO3. The implications of the cubic symmetry on the spin-selective ground-state population are considered. In addition, a completely analogous phenomenon is evidenced for the first time within an Fe(II) electronic manifold, namely, the Γ5g ground state of Fe(II) in MgO, after the nuclear decay. In contrast to the Fe(III) case, these populations are not static within the Mössbauer time window. It turns out that the attainment of thermal equilibrium can be conveniently observed by changing the field value, evidencing a direct relaxation process at 4.2 K within Γ5g. The relaxation rates are compatible with static strain data; an initial alignment is observed. Finally, there is strong evidence that the Fe(I) fraction is also populated out of thermal equilibrium. In addition to these ground-state spectra, two features are present that may be attributed to metastable excited states of Fe(II) and Fe(III). It is described in detail how these various contributions can be disentangled.

  17. Disproportionation of (Mg,Fe)SiO 3 perovskite in Earth's deep lower mantle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Meng, Y.; Yang, W.

    2014-05-22

    The mineralogical constitution of the Earth's mantle dictates the geophysical and geochemical properties of this region. Previous models of a perovskite-dominant lower mantle have been built on the assumption that the entire lower mantle down to the top of the D" layer contains ferromagnesian silicate [(Mg,Fe)SiO 3] with nominally 10 mole percent Fe. On the basis of experiments in laser-heated diamond anvil cells, at pressures of 95 to 101 gigapascals and temperatures of 2200 to 2400 kelvin, we found that such perovskite is unstable; it loses its Fe and disproportionates to a nearly Fe-free MgSiO 3 perovskite phase and anmore » Fe-rich phase with a hexagonal structure. This observation has implications for enigmatic seismic features beyond ~2000 kilometers depth and suggests that the lower mantle may contain previously unidentified major phases.« less

  18. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth's deep lower mantle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Meng, Y.; Yang, W.

    2014-05-22

    The mineralogical constitution of the Earth’s mantle dictates the geophysical and geochemical properties of this region. Previous models of a perovskite-dominant lower mantle have been built on the assumption that the entire lower mantle down to the top of the D'' layer contains ferromagnesian silicate [(Mg,Fe)SiO3] with nominally 10 mole percent Fe. On the basis of experiments in laser-heated diamond anvil cells, at pressures of 95 to 101 gigapascals and temperatures of 2200 to 2400 kelvin, we found that such perovskite is unstable; it loses its Fe and disproportionates to a nearly Fe-free MgSiO3 perovskite phase and an Fe-rich phasemore » with a hexagonal structure. This observation has implications for enigmatic seismic features beyond ~2000 kilometers depth and suggests that the lower mantle may contain previously unidentified major phases.« less

  19. The Raman spectrum of Ca-Mg-Fe carbonates; Applications in geobiology

    NASA Astrophysics Data System (ADS)

    van Zuilen, M. A.; Rividi, N.; Ménez, B.; Philippot, P.

    2012-04-01

    Carbonates form a very important mineral group in geobiological studies. They are a common mineral matrix for putative carbonaceous microfossils in Archean greenstone belts, form an important chemical deposit in seafloor hydrothermal systems, and are a common product in biomineralization processes. In many geobiological studies there is a specific need for simple characterization of carbonate composition while avoiding complex sample preparation or sample destruction. Raman spectroscopy is a highly versatile non-destructive technique enabling in-situ characterization of minerals and carbonaceous materials. It can be combined with confocal microscopy enabling high-resolution Raman mapping of entire rock thin sections, or can be integrated in submersibles and potentially Mars-rovers for direct field-based mineral identification. It is thus important that well-established spectral databases exist which enable unambiguous identification of a wide variety of carbonate minerals. The most common carbonates in the Ca-Mg-Fe system include the CaCO3 polymorphs calcite, aragonite, and vaterite, as well as the solid solutions CaMg(CO3)2-CaFe(CO3)2 (dolomite-ankerite) and MgCO3-FeCO3 (magnesite-siderite). Although various carbonate end-members have been studied exhaustively by Raman spectroscopy, a simple protocol for rapid distinction of various carbonate solid solutions is still lacking. Here we present a detailed study of Raman shifts in various carbonate standards of known composition in the Ca-Mg-Fe system. Carbonates with rhombohedral symmetry display a Raman spectrum with six characteristic vibrational modes - four of these represent vibrations within the (CO3)2- unit and two represent external vibrations of the crystal lattice. We show that Raman band shifts of internal mode 2ν2 (range 1725-1765 cm-1), and external modes T (range 170-215 cm-1) and L (range 285-330 cm-1) for siderite-magnesite and ankerite-dolomite solid solutions display distinct and well defined

  20. Selenium adsorption and speciation with Mg-FeCO₃ layered double hydroxides loaded cellulose fibre.

    PubMed

    Chen, Ming-Li; An, Myog-Il

    2012-06-15

    A novel adsorbent was developed by coating Mg-FeCO(3) layered double hydroxides (LDHs) on cellulose fibre. The LDHs take up significant amount of selenite and selenate in a wide pH range with similar sorption capacities (pH 3.8-8.0 for selenite and pH 5.8-7.0 for selenate). A mini-column packed with Mg-FeCO(3) LDHs layer coated cellulose fibre particles was incorporated into a sequential injection system for uptake of selenite at pH 6.0. The retained selenite was afterwards collected with 70 μ L of 0.8%(m/v) NaOH as eluent, followed by hydride generation and atomic fluorescence spectrometric detection. Total inorganic selenium was adsorbed at pH 6.0 by the LDHs-cellulose fibre mini-column after selenate was pre-reduced to selenite by 2.0 mol L(-1) HCl at 80°C, and selenium speciation was performed by difference. With a sample volume of 1.0 mL, an enrichment factor of 13.3 was derived with a detection limit of 11 ng L(-1) within a linear range of 0.04-4.0 μg L(-1). A relative standard deviation (RSD) of 3.3% (0.5 μg L(-1), n=11) was achieved. The procedure was validated by analyzing selenium in a certified reference material GBW 10010 (rice), and speciation of inorganic selenium in natural water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Spin injection into silicon in three-terminal vertical and four-terminal lateral devices with Fe/Mg/MgO/Si tunnel junctions having an ultrathin Mg insertion layer

    NASA Astrophysics Data System (ADS)

    Sato, Shoichi; Nakane, Ryosho; Hada, Takato; Tanaka, Masaaki

    2017-12-01

    We demonstrate that the spin injection/extraction efficiency is enhanced by an ultrathin Mg insertion layer (⩽2 nm) in Fe /Mg /MgO /n+-Si tunnel junctions. In diode-type vertical three-terminal devices fabricated on a Si substrate, we observe the narrower three-terminal Hanle (N-3TH) signals indicating true spin injection into Si and estimate the spin polarization in Si to be 16% when the thickness of the Mg insertion layer is 1 nm, whereas no N-3TH signal is observed without the Mg insertion. This means that the spin injection/extraction efficiency is enhanced by suppressing the formation of a magnetically dead layer at the Fe/MgO interface. We also observe clear spin transport signals, such as nonlocal Hanle signals and spin-valve signals, in a lateral four-terminal device with the same Fe /Mg /MgO /n+-Si tunnel junctions fabricated on a Si-on-insulator substrate. It is found that both the intensity and linewidth of the spin signals are affected by the geometrical effects (device geometry and size). We have derived analytical functions taking into account the device structures, including channel thickness and electrode size, and estimated important parameters: spin lifetime and spin polarization. Our analytical functions explain the experimental results very well. Our study shows the importance of suppressing a magnetically dead layer and provides a unified understanding of spin injection/detection signals in different device geometries.

  2. Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional

    NASA Astrophysics Data System (ADS)

    Cheng, Ya; Wang, Xianlong; Zhang, Jie; Yang, Kaishuai; Zhang, Chuanguo; Zeng, Zhi; Lin, Haiqin

    2018-04-01

    Pressure-induced spin crossover behaviors of Fe-bearing MgO were widely investigated by using an LDA  +  U functional for describing the strongly correlated Fe–O bonding. Moreover, the simulated spin crossover pressures depend on the applied U values, which are sensitive to environments and parameters. In this work, the spin crossover pressures of (Mg1‑x ,Fe x )O are investigated by using the hybrid functional with a uniform parameter. Our results indicate that the spin crossover pressures increase with increasing iron concentration. For example, the spin crossover pressure of (Mg0.03125,Fe0.96875)O and FeO was 56 GPa and 127 GPa, respectively. The calculated crossover pressures agreed well with the experimental observations. Therefore, the hybrid functional should be an effective method for describing the pressure-induced spin crossover behaviors in transition metal oxides.

  3. The reactivity of Fe/Ni colloid stabilized by carboxymethylcellulose (CMC-Fe/Ni) toward chloroform.

    PubMed

    Jin, Xin; Li, Qun; Yang, Qi

    2018-05-16

    The use of stabilizers can prevent the reactivity loss of nanoparticles due to aggregation. In this study, carboxymethylcellulose (CMC) was selected as the stabilizer to synthesize a highly stable CMC-stabilized Fe/Ni colloid (CMC-Fe/Ni) via pre-aggregation stabilization. The reactivity of CMC-Fe/Ni was evaluated via the reaction of chloroform (CF) degradation. The effect of background solution which composition was affected by the preparation of Fe/Ni (Fe/Ni precursors, NaBH 4 dosage) and the addition of solute (common ions, sulfur compounds) on the reactivity of CMC-Fe/Ni was also investigated. Additionally, the dried CMC-Fe/Ni was used for characterization in terms of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that CMC stabilization greatly improved the reactivity of Fe/Ni bimetal and CF (10 mg/L) could be completely degraded by CMC-Fe/Ni (0.1 g/L) within 45 min. The use of different Fe/Ni precursors resulting in the variations of background solution seemed to have no obvious influence on the reactivity of CMC-Fe/Ni, whereas the dosage of NaBH 4 in background solution showed a negative correlation with the reactivity of CMC-Fe/Ni. Besides, the individual addition of external solutes into background solution all had an adverse effect on the reactivity of CMC-Fe/Ni, of which the poisoning effect of sulfides (Na 2 S, Na 2 S 2 O 4 ) was significant than common ions and sulfite.

  4. Crystallization of MgFe2O4 from a glass in the system K2O/B2O3/MgO/P2O5/Fe2O3

    NASA Astrophysics Data System (ADS)

    El Shabrawy, Samha; Bocker, Christian; Rüssel, Christian

    2016-10-01

    Spherical magnetic Mg-Fe-O nanoparticles were successfully prepared by the crystallization of glass in the system K2O/B2O3/MgO/P2O5/Fe2O3. The magnetic glass ceramics were prepared by melting the raw materials using the conventional melt quenching technique followed by a thermal treatment at temperatures in the range 560-700 °C for a time ranging from 2 to 8 h. The studies of the X-ray diffraction, electron microscopy and FTIR spectra confirmed the precipitation of finely dispersed spherical (Mg, Fe) based spinel nanoparticles with a minor quantity of hematite (α-Fe2O3) in the glass matrix. The average size of the magnetic nano crystals increases slightly with temperature and time from 9 to 15 nm as determined by the line broadening from the XRD patterns. XRD studies show that annealing the glass samples for long periods of time at temperature ≥604 °C results in an increase of the precipitated hematite concentration, dissolution of the spinel phase and the formation of magnesium di-borate phase (Mg2B2O5). For electron microscopy, the particles were extracted by two methods; (i) replica extraction technique and (ii) dissolution of the glass matrix by diluted acetic acid. An agglomeration of the nano crystals to larger particles (25-35 nm) was observed.

  5. Effect of interfacial structures on spin dependent tunneling in epitaxial L1 0-FePt/MgO/FePt perpendicular magnetic tunnel junctions

    DOE PAGES

    Yang, G.; Li, D. L.; Wang, S. G.; ...

    2015-02-24

    In this study, epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L1 0-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300 K and 10 K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photoemission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Finally,more » both these structures have a dominant role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions.« less

  6. IMF and [Na/Fe] abundance ratios from optical and NIR spectral features in early-type galaxies

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; Vazdekis, A.; Ferreras, I.; Pasquali, A.; Allende Prieto, C.; Röck, B.; Aguado, D. S.; Peletier, R. F.

    2017-01-01

    We present a joint analysis of the four most prominent sodium-sensitive features (Na D, Na I λ8190Å, Na I λ1.14 μm, and Na I λ2.21 μm), in the optical and near-infrared spectral ranges, of two nearby, massive (σ ˜ 300 km s-1), early-type galaxies (named XSG1 and XSG2). Our analysis relies on deep Very Large Telescope/X-Shooter long-slit spectra, along with newly developed stellar population models, allowing for [Na/Fe] variations, up to ˜1.2 dex, over a wide range of age, total metallicity, and initial mass function (IMF) slope. The new models show that the response of the Na-dependent spectral indices to [Na/Fe] is stronger when the IMF is bottom heavier. For the first time, we are able to match all four Na features in the central regions of massive early-type galaxies finding an overabundance of [Na/Fe] in the range 0.5-0.7 dex and a bottom-heavy IMF. Therefore, individual abundance variations cannot be fully responsible for the trends of gravity-sensitive indices, strengthening the case towards a non-universal IMF. Given current limitations of theoretical atmosphere models, our [Na/Fe] estimates should be taken as upper limits. For XSG1, where line strengths are measured out to ˜0.8 Re, the radial trend of [Na/Fe] is similar to [α/Fe] and [C/Fe], being constant out to ˜0.5 Re, and decreasing by ˜0.2-0.3 dex at ˜0.8 Re, without any clear correlation with local metallicity. Such a result seems to be in contrast to the predicted increase of Na nucleosynthetic yields from asymptotic giant branch stars and Type II supernovae. For XSG1, the Na-inferred IMF radial profile is consistent, within the errors, with that derived from TiO features and the Wing-Ford band presented in a recent paper.

  7. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    NASA Astrophysics Data System (ADS)

    Li, Jian-wei; Zhao, Chong-jun; Feng, Chun; Zhou, Zhongfu; Yu, Guang-hua

    2015-08-01

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three orders of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.

  8. Impact of interface manipulation of oxide on electrical transport properties and low-frequency noise in MgO/NiFe/MgO heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian-wei; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083; Zhao, Chong-jun

    2015-08-15

    Low-frequency noise and magnetoresistance in sputtered-deposited Ta(5 nm)/MgO (3 nm)/NiFe(10 nm)/MgO(3 nm)/Ta(3 nm) films have been measured as a function of different annealing times at 400°C. These measurements did not change synchronously with annealing time. A significant increase in magnetoresistance is observed for short annealing times (of the order of minutes) and is correlated with a relatively small reduction in 1/f noise. In contrast, a significant reduction in 1/f noise is observed for long annealing times (of the order of hours) accompanied by a small change in magnetoresistance. After annealing for 2 hours, the 1/f noise decreases by three ordersmore » of magnitude. Transmission electron microscopy and slow positron annihilation results implicate the cause being micro-structural changes in the MgO layers and interfaces following different annealing times. The internal vacancies in the MgO layers gather into vacancy clusters to reduce the defect density after short annealing times, whereas the MgO/NiFe and the NiFe/MgO interfaces improve significantly after long annealing times with the amorphous MgO layers gradually crystallizing following the release of interfacial stress.« less

  9. High-Pressure Study of Perovskites and Postperovskites in the (Mg,Fe)GeO 3 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Camelia V.; Dutta, Rajkrishna; Cava, Robert J.

    2017-06-22

    The effect of incorporation of Fe 2+ on the perovskite (Pbnm) and postperovskite (Cmcm) structures was investigated in the (Mg,Fe)GeO 3 system at high pressures and temperatures using laser-heated diamond anvil cell and synchrotron X-ray diffraction. Samples with compositions of Mg# ≥ 48 were shown to transform to the perovskite (~30 GPa and ~1500 K) and postperovskite (>55 GPa, ~1600–1800 K) structures. Compositions with Mg# ≥ 78 formed single-phase perovskite and postperovskite, whereas those with Mg# < 78 showed evidence for partial decomposition. The incorporation of Fe into the perovskite structure causes a decrease in octahedral distortion as well asmore » a modest decrease in bulk modulus (K 0) and a modest increase in zero-pressure volume (V 0). It also leads to a decrease in the perovskite-to-postperovskite phase transition pressure by ~9.5 GPa over compositions from Mg#78 to Mg#100.« less

  10. The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Jakymiw, Clément; Vočadlo, Lidunka; Dobson, David P.; Bailey, Edward; Thomson, Andrew R.; Brodholt, John P.; Wood, Ian G.; Lindsay-Scott, Alex

    2018-04-01

    ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earth's deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure ( Cmcm; commonly referred to as the "post-perovskite" structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 ( P63/ mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 ( P21/ m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite → La2S3 structure → Sb2S3 structure → P63/ mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite → CaIrO3 structure → Sb2

  11. Mg1-xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, S.; Mazaleyrat, F.; Kane, S. N.

    2018-04-01

    Correlation between cationic distribution, magnetic properties of Mg1-xZnxFe2O4 (0.0 ≤ x ≤ 1.0) ferrite is demonstrated, hardly shown in literature. X-ray diffraction (XRD) confirms the formation of cubic spinel nano ferrites with grain diameter between 40.8 to 55.4 nm. Energy dispersive spectroscopy (EDS) confirms close agreement of Mg/Fe, Zn/Fe molar ratio, presence of all elements (Mg, Zn, Fe, O), formation of estimated ferrite composition. Zn addition (for Mg) shows: i) linear increase of lattice parameter aexp, accounted for replacement of an ion with higher ionic radius (Zn > Mg); ii) presence of higher population of Fe3+ ions on B site, and unusual occurrence of Zn, Mg on A and B site leads to non-equilibrium cation distribution where we observe inverse to mixed structure, and is in contrast to reported literature where inverse to normal transition is reported; iii) effect on A-A, A-B, B-B exchange interactions, affecting coercivity Hc, Ms. A new empirical relation is also obtained showing linear relation between saturation magnetization Ms - inversion parameter δ, oxygen parameter u4 ¯ 3 m. Non-zero Y-K angle (αYK) values implies Y-K type magnetic ordering in the studied samples.

  12. Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation

    NASA Astrophysics Data System (ADS)

    Gao, Jia; Yang, Shaogui; Li, Na; Meng, Lingjun; Wang, Fei; He, Huan; Sun, Cheng

    2016-08-01

    A novel microwave (MW) catalyst, MgFe2O4 loaded on SiC (MgFe2O4-SiC), was successfully synthesized by sol-gel method, and pure MgFe2O4 was used as reference. The MgFe2O4 and MgFe2O4-SiC catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N2 adsorption analyzer (BET specific surface area), X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of the prepared catalysts were measured by vector network analyzer. The reflection loss (RL) based on the electromagnetic parameters calculated in Matlab showed MgFe2O4-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range, revealing the excellent MW absorption property of MgFe2O4-SiC. MW-induced degradation of Direct Black BN (DB BN) over as-synthesized MgFe2O4-SiC indicated that degradation efficiency of DB BN (20 mg L-1) in 5 min reached 96.5%, the corresponding TOC removal was 65%, and the toxicity of DB BN after degradation by MgFe2O4-SiC obviously decreased. The good stability and applicability of MgFe2O4-SiC on the degradation process were also discovered. Moreover, the ionic chromatogram during degradation of DB BN demonstrated that the C-S, C-N and azo bonds in the DB BN molecule were destroyed gradually. MW-induced rad OH and holes could be responsible for the efficient removal involved in the system. These findings make MgFe2O4-SiC become an excellent MW absorbent as well as an effective MW catalyst with rapid degradation of DB BN. Therefore, it may be promising for MgFe2O4-SiC under MW radiation to deal with various dyestuffs and other toxic organic pollutants.

  13. Investigation on the formation process of single-crystalline GaO x barrier in Fe/GaO x /MgO/Fe magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Krishna, N. S.; Doko, N.; Matsuo, N.; Saito, H.; Yuasa, S.

    2017-11-01

    We have grown Fe(0 0 1)/GaO x (0 0 1)/MgO(0 0 1)/Fe(0 0 1) magnetic tunnel junctions (MTJs) with or without in situ annealing after the deposition of GaO x layer and performed structural characterizations by focusing on the formation process of the single-crystalline GaO x . It was found that, even without the in situ annealing, the as-grown GaO x grown on the MgO was mostly single-crystalline except near the surface region (amorphous). The crystallization temperature of the amorphous region was reduced from 500 °C down to 250 °C by depositing the Fe upper electrode (poly-crystalline). It was clarified that the crystallization of the amorphous region near the Fe/GaO x interface caused the realignments of the crystal grains in the poly-crystalline Fe upper electrode, and, as a result, the fully epitaxial Fe/GaO x /MgO/Fe structure is eventually formed. All the MTJs showed high tunneling magnetoresistance ratios (about 100%) at room temperature, which was almost independent of the formation temperature of the single-crystalline GaO x .

  14. The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2

    NASA Astrophysics Data System (ADS)

    Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph

    The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed

  15. Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2

    NASA Astrophysics Data System (ADS)

    Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias

    2018-04-01

    The compound NaFe2(PO4)(SO4)2 is successfully synthesized via a solid state reaction route and its crystal structure is determined using powder X-ray diffraction data. NaFe2(PO4)(SO4)2 phase is also characterized by cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. NaFe2(PO4)(SO4)2 crystallizes with the well-known NASICON-type structure. SAED and HRTEM experiments confirm the structural model, and no ordering between the PO4-3 and SO4-2 polyanions is detected. The electrochemical tests indicate that NaFe2(PO4)(SO4)2 is a 3 V sodium intercalating cathode. The electrical conductivity is relatively low (2.2 × 10-6 Scm-1 at 200 °C) and the obtained activation energy is ∼0.60eV. The GITT experiments indicate that the diffusivity values are in the range of 10-11-10-12 cm2/s within the measured sodium concentrations.

  16. Mössbauer study and magnetic properties of MgFe2O4 crystallized from the glass system B2O3/K2O/P2O5/MgO/Fe2O3

    NASA Astrophysics Data System (ADS)

    Shabrawy, S. El; Bocker, C.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2017-01-01

    An iron containing magnesium borate glass with the mol% composition 51.7 B2O3/9.3 K2O /1 P2O5/27.6MgO/10.4Fe2O3was prepared by the conventional melts quenching method followed by a thermal treatment process at temperatures in the range from 530 to 604 °C.The thermally treated samples were characterized by X-ray diffraction, scanning and transmission electron microscopy. It was shown that superparamagnetic MgFe2O4 nanoparticles were formed during thermal treatment. The size of the spinel type crystals was in the range from 6 to 15 nm. Mössbauer spectra of the powdered glass ceramic samples and the extracted nanoparticles after dissolving the glass matrix in diluted acid were recorded at room temperature. The deconvolution of the spectra revealed the crystallization of two spinel phases MgFe2O4 (as a dominant phase) and superparamagnetic maghemite, γ-Fe2O3 (as a secondary phase). Room temperature magnetic measurements showed that, increasing the crystallization temperature changed the superparamagnetic behavior of the samples to ferrimagnetic behavior. The Curie temperatures of the samples were measured and showed a higher value than that of the pure bulk MgFe2O4.

  17. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A High Pressure Post-Perovskite Phase Transition in NaMgF3--a MgSiO3 Analog Material

    NASA Astrophysics Data System (ADS)

    Martin, C.; Liu, H.; Crichton, W.; Parise, J. B.

    2005-12-01

    Since Murakami et al. (2004) identified a perovskite (pv, Pbnm) to post-perovskite (ppv, Cmcm) structural phase transition in MgSiO3, the transition has been reported to occur in many oxides at ultra-high pressures (>60 GPa). The layered ppv structure is rapidly shaping a better understanding of seismic anisotropy in the controversial D" region of the lower mantle. While the ppv unit cell may be derived from indexing of the powder pattern, the structure adopted at high pressure is experimentally ill-constrained due to compromised powder diffraction statistics typically obtained from small sample volumes at extreme conditions in the diamond anvil cell. NaMgF3, a structural analog material to MgSiO3 pv, exhibits a large compressibility and presents the possibility of reducing the pv-ppv transition pressure, allowing for improved powder statistics from a larger sample volume. In accordance with our previous theoretical and experimental evidence (Liu et al., 2005; Parise et al., 2004), we have observed a phase transition in NaMgF3 during two recent independent high pressure trials utilizing monochromatic x-ray diffraction and in-situ laser heating in the diamond anvil cell at pressures as low as 30 GPa. From our analysis thus far, we have found the unit cell of the high pressure phase cannot be indexed according to pv (Pbnm) or close permutations of ppv (Cmcm) unit cells predicted for NaMgF3 or unit cells observed for ppv MgSiO3 and MgGeO3. In addition, we have precluded a breakdown to high pressure phases of NaF and MgF3 as an explanation for the observed data. Upon pressure release, we observe diffraction peaks from the high pressure phase in the absence of pv NaMgF3, suggesting the high pressure structure is quenchable to ambient conditions. The results of the work in progress will be presented at the meeting.

  19. Experimentally determined isotope effect during Mg-Fe interdiffusion in olivine

    NASA Astrophysics Data System (ADS)

    Sio, C. K. I.; Roskosz, M.; Dauphas, N.; Bennett, N.; Mock, T. D.; Shahar, A.

    2017-12-01

    Isotopic fractionation provides the most direct means to investigate the nature of chemical zoning in minerals, which can be produced by either diffusive transport or crystal growth. Misinterpreting the nature of chemical zoning can result in erroneous conclusions regarding magmatic cooling rates and diffusion timescales. Isotopes are useful in this regard because the light isotopes diffuse faster than their heavier counterparts. As a result, isotopic fractionations should be associated with chemical zoning profiles if they are diffusion-driven. In contrast, little isotopic fractionation is associated with crystal growth during slow cooling at magmatic temperatures. The isotope effect for diffusion is described by β and is related to the mass (m) and diffusivity (D) of isotopes i and j of an element via: Di/Dj = (mj/mi)β. To model isotopic profiles, knowledge of β is required. Several estimates of β for Mg and Fe diffusion in olivine have been reported using natural samples but these estimates are uncertain because they depend on the choice of modeling parameters (Sio et al., 2013; Oeser et al., 2015; Collinet et al., 2017). We have experimentally determined β for FeFe) in olivine as a function of crystallographic orientation, composition, and temperature. Thirty experiments have been conducted by juxtaposing crystallographically oriented olivine crystals to make Fo83.4-Fo88.8 and Fo88.8-Fo100 diffusion couples. These diffusion couples were annealed in a 1 atm gas mixing furnace at 1200 °C, 1300 °C or 1400 °C at QFM - 1.5 for up to 15 days. Chemical profiles were characterized using an electron microprobe and isotopic analyses were done using laser ablation MC-ICPMS. We found a crystallographic dependence of βFe for the Fo88.8-Fo100 couple where βFe [100] ≈ βFe [010] > βFe [001]. For the Fo83.4-Fo88.8 couple, βFe is 0.16 ± 0.09 (2σ) for all 3 major crystallographic axes. A temperature dependence of βFe could not be resolved. These

  20. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    PubMed

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  1. In situ investigations of phase transformations in Fe-sheathed MgB2 wires

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Pinholt, R.; Andersen, N. H.; Kovác, P.; Husek, I.; Homeyer, J.

    2006-01-01

    The phase evolution inside Fe-sheathed wires containing precursor powders consisting of a mixture of Mg and B has been studied in situ by means of x-ray diffraction with hard synchrotron radiation (90 keV). Mg was found to disappear progressively during the heating stage. At 500 °C, the intensity of the Mg diffraction lines is reduced by about 20%. This effect is partly attributable to MgO formation. The MgB2 phase was detected from 575 °C. Fe2B was forming at the interface between the sheath and the ceramic core at sintering temperatures of 780 and 700 °C, but not at 650 °C. The formation rate of this phase is strongly dependent on the heat treatment temperature. Its presence can be readily detected as soon as the average interface reaction thickness exceeds 150-200 nm.

  2. Novel ZnO/MgO/Fe2O3 composite optomagnetic nanoparticles.

    PubMed

    Kamińska, I; Sikora, B; Fronc, K; Dziawa, P; Sobczak, K; Minikayev, R; Paszkowicz, W; Elbaum, D

    2013-05-15

    A facile sol-gel synthesis of novel ZnO/MgO/Fe2O3 nanoparticles (NPs) is reported and their performance is compared to that of ZnO/MgO. Powder x-ray diffraction (XRD) patterns reveal the crystal structure of the prepared samples. The average particle size of the sample was found to be 4.8 nm. The optical properties were determined by UV-vis absorption and fluorescence measurements. The NPs are stable in biologically relevant solutions (phosphate buffered saline (PBS), 20 mM, pH = 7.0) contrary to ZnO/MgO NPs which degrade in the presence of inorganic phosphate. Superparamagnetic properties were determined with a superconducting quantum interference device (SQUID). Biocompatible and stable in PBS ZnO/MgO/Fe2O3 core/shell composite nanocrystals show luminescent and magnetic properties confined to a single NP at room temperature (19-24 ° C), which may render the material to be potentially useful for biomedical applications.

  3. Effect of interfacial structures on spin dependent tunneling in epitaxial L1{sub 0}-FePt/MgO/FePt perpendicular magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, G.; Li, D. L.; Wang, S. G., E-mail: Sgwang@iphy.ac.cn

    2015-02-28

    Epitaxial FePt(001)/MgO/FePt magnetic tunnel junctions with L1{sub 0}-FePt electrodes showing perpendicular magnetic anisotropy were fabricated by molecular beam epitaxial growth. Tunnel magnetoresistance ratios of 21% and 53% were obtained at 300 K and 10 K, respectively. Our previous work, based on transmission electron microscopy, confirmed a semi-coherent interfacial structure with atomic steps (Kohn et al., APL 102, 062403 (2013)). Here, we show by x-ray photoemission spectroscopy and first-principles calculation that the bottom FePt/MgO interface is either Pt-terminated for regular growth or when an Fe layer is inserted at the interface, it is chemically bonded to O. Both these structures have a dominantmore » role in spin dependent tunneling across the MgO barrier resulting in a decrease of the tunneling magnetoresistance ratio compared with previous predictions.« less

  4. Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs

    DOE PAGES

    Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...

    2016-06-13

    We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less

  5. The influence of an MgO nanolayer on the planar Hall effect in NiFe films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minghua, E-mail: mhli@ustb.edu.cn; Department of Electrical Engineering, University of California, Los Angeles, California 90095; Zhao, Zhiduo

    2015-03-28

    The Planar Hall Effect (PHE) in NiFe films was studied using MgO as the buffer and capping layer to reduce the shunt effect. The thermal annealing was found to be effective in increasing the sensitivity. The sensitivity of the magnetic field reached as high as 865 V/AT in a MgO (3 nm)/NiFe (5 nm)/MgO(3 nm)/Ta(3 nm) structure after annealing at 500 °C for 2 h, which is close to the sensitivity of semiconductor Hall Effect (HE) sensors. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) were used to study the sample. The results show that the top crystallization of MgO and NiFemore » (111) texture were improved by proper annealing. The smooth and clear bottom MgO/NiFe and top NiFe/MgO interface is evident from our data. In addition, the shunt current of Ta was decreased. These combined factors facilitate the improvement of the sensitivity of the magnetic field.« less

  6. Growth, structure, and magnetic properties of γ-Fe2O3 epitaxial films on MgO

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Kim, Y. J.; Thevuthasan, S.; Chambers, S. A.; Lubitz, P.

    1997-04-01

    Single-crystal epitaxial thin films of γ-Fe2O3(001) have been grown on MgO(001) using oxygen-plasma-assisted molecular beam epitaxy. The structure and magnetic properties of these films have been characterized by a variety of techniques, including reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy and x-ray photoelectron/Auger electron diffraction (XPD/AED), vibrating sample magnetometry, and ferromagnetic resonance. Real-time RHEED reveals that the film growth occurs in a layer-by-layer fashion. The γ-Fe2O3(001) film surface exhibits a (1×1) LEED pattern. The growth of γ-Fe2Ooverflow="scroll">3 films at 450 °C is accompanied by significant Mg outdiffusion. AED of Mg KLL Auger emission reveals that Mg substitutionally incorporates in the γ-Fe2O3 lattice, occupying the octahedral sites. Magnetic moments are ˜2300 G and ˜4500 G for γ-Fe2O3 films grown at 250 °C and 450 °C, respectively. The high magnetic moment for the films grown at 450 °C could be attributed to the high degree of structural order of the films and Mg substitution at octahedral sites.

  7. Magnetic anisotropy modulation of epitaxial Fe3O4 films on MgO substrates

    NASA Astrophysics Data System (ADS)

    Chichvarina, O.; Herng, T. S.; Xiao, W.; Hong, X.; Ding, J.

    2015-05-01

    Fe3O4 has been widely studied because of its great potential in spintronics and other applications. As a magnetic electrode, it is highly desired if magnetic anisotropy can be controlled. Here, we report the results from our systematic study on the magnetic properties of magnetite (Fe3O4) thin films epitaxially grown on various MgO substrates. Strikingly, we observed a prominent perpendicular magnetic anisotropy in Fe3O4 film deposited on MgO (111) substrate. When measured in out-of-plane direction, the film (40 nm thick) exhibits a well-defined square hysteresis loop with coercivity (Hc) above 1 kOe, while much lower coercivity was obtained in the in-plane orientation. In sharp contrast, the films deposited onto MgO (100) and MgO (110) substrates show in-plane magnetic anisotropy. These films exhibit a typical soft magnet characteristic—Hc lies within the range of 200-400 Oe. All the films showed a clear Verwey transition near 120 K—a characteristic of Fe3O4 material. In addition, a series of magnetoresistance (MR) measurements is performed and the MR results are in good agreement with the magnetic observations. The role of the substrate orientation and film thickness dependency is also investigated.

  8. Sintering and crystallization behavior of CaMgSi{sub 2}O{sub 6}-NaFeSi{sub 2}O{sub 6} based glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; Kansal, Ishu; Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia, 41100 Modena

    2009-11-01

    We report on the synthesis, sintering, and crystallization behaviors of a glass with a composition corresponding to 90 mol % CaMgSi{sub 2}O{sub 6}-10 mol % NaFeSi{sub 2}O{sub 6}. The investigated glass composition crystallized superficially immediately after casting of the melt and needs a high cooling rate (rapid quenching) in order to produce an amorphous glass. Differential thermal analysis and hot-stage microscopy were employed to investigate the glass forming ability, sintering behavior, relative nucleation rate, and crystallization behavior of the glass composition. The crystalline phase assemblage in the glass-ceramics was studied under nonisothermal heating conditions in the temperature range of 850-950more » deg. C in both air and N{sub 2} atmosphere. X-ray diffraction studies adjoined with the Rietveld-reference intensity ratio method were employed to quantify the amount of crystalline phases, while electron microscopy was used to shed some light on the microstructure of the resultant glass-ceramics. Well sintered glass-ceramics with diopside as the primary crystalline phase were obtained where the amount of diopside varied with the heating conditions.« less

  9. Phase boundary between cubic B1 and rhombohedral structures in (Mg,Fe)O magnesiowüstite determined by in situ X-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Dymshits, Anna M.; Litasov, Konstantin D.; Shatskiy, Anton; Chanyshev, Artem D.; Podborodnikov, Ivan V.; Higo, Yuji

    2018-01-01

    The phase relations and equation of state of (Mg0.08Fe0.92)O magnesiowüstite (Mw92) have been studied using the Kawai-type high-pressure apparatus coupled with synchrotron radiation. To determine the phase boundary between the NaCl-type cubic (B1) and rhombohedral ( rB1) structures in Mw92, in situ X-ray observations were carried out at pressures of 0-35 GPa and temperatures of 300-1473 K. Au and MgO were used as the internal pressure markers and metallic Fe as oxygen fugacity buffer. The phase boundary between B1 and rB1 structures was described by a linear equation P (GPa) = 1.6 + 0.033 × T (K). The Clapeyron slope (d P/d T) determined in this study is close to that obtained at pressures above 70 GPa but steeper than that obtained for FeO. An addition of MgO to FeO structure expands the stability field of the rB1 phase to lower pressures and higher temperatures. Thus, the rB1 phase may be stabilized with respect to the B1 phase at a lower pressures. The pressure-volume-temperature equation of state of B1-Mw92 was determined up to 30 GPa and 1473 K. Fitting the hydrostatic compression data up to 30 GPa with the Birch-Murnaghan equation of state (EoS) yielded: unit cell volume ( V 0, T0), 79.23 ± 4 Å3; bulk modulus ( K 0, T0), 183 ± 4 GPa; its pressure derivative ( K' T ), 4.1 ± 0.4; (∂ K 0, T /∂ T) = -0.029 ± 0.005 GPa K‒1; a = 3.70 ± 0.27 × 10-5 K-1 and b = 0.47 ± 0.49 × 10-8 K-2, where α0, T = a + bT is the volumetric thermal expansion coefficient. The obtained bulk modulus of Mw92 is very close to the value expected for stoichiometric iron-rich (Mg,Fe)O. This result confirms the idea that the bulk modulus of (Mg,Fe)O is greatly affected by the actual defect structure, caused by either Mg2+ or vacancies.

  10. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure ofmore » the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.« less

  11. Effect of Fe-site isovalent and aliovalent doping on the magnetic, electric and optical properties of BiFe0.875Cr0.125O3

    NASA Astrophysics Data System (ADS)

    Zhou, Yunhua; Zhang, Ren; Fan, Yingfang; Wang, Zhongchao; Mao, Weiwei; Zhang, Jian; Min, Yonggang; Yang, Jiangping; Pu, Yong; Li, Xing'ao

    2018-02-01

    The magnetic, electric and optical properties of BiFe0.875Cr0.125O3 (BFCO) doped with aliovalent ions (Na+, Mg2+) and isovalent ion (Al3+) are investigated by the first principle spin-polarized density functional theory calculations. It is demonstrated that the substitution of M (M = Na+, Mg2+, Al3+) for Fe can produce net magnetic moments of 3.0, 2.0 and 3.0 μB, respectively. Besides, Na+ doped BFCO exhibits metallicity while Mg2+ doped system behaves as half-metallicity. Systematic study of electronic structures show that this conversion from semiconductor (BFCO) to half-metal or metal is mainly attributed to the shifting of O 2p, Bi 6s, and Cr 3d states induced by doping with aliovalent Na+ or Mg2+. Furthermore, the aliovalent ions doped samples express high static dielectric constants of 12.08, 29.44, large refractive indexs of 5.41, 3.46 and both their absorption edges near zero, suggesting advanced optical response in visible region of the doped samples.

  12. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    PubMed

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al-5Mg-Mn alloy with low Fe content (<0.1 wt %), intermetallic Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  13. Dependency of tunneling magneto-resistance on Fe insertion-layer thickness in Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based magnetic tunneling junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyo-Suk; Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701; Park, Jea-Gun, E-mail: parkjgL@hanyang.ac.kr

    For Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based perpendicular magnetic tunneling junctions spin valves with [Co/Pd]{sub n}-synthetic-antiferromagnetic (SyAF) layers, the tunneling-magneto-resistance (TMR) ratio strongly depends on the nanoscale Fe insertion-layer thickness (t{sub Fe}) between the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer and MgO tunneling barrier. The TMR ratio rapidly increased as t{sub Fe} increased up to 0.4 nm by improving the crystalline linearity of a MgO tunneling barrier and by suppressing the diffusion of Pd atoms from a [Co/Pd]{sub n}-SyAF. However, it abruptly decreased by further increasing t{sub Fe} in transferring interfacial-perpendicular magnetic anisotropy into the IMA characteristic of the Co{sub 2}Fe{sub 6}B{sub 2}more » pinned layer. Thus, the TMR ratio peaked at t{sub Fe} = 0.4 nm: i.e., 120% at 29 Ωμm{sup 2}.« less

  14. The high-pressure electronic structure of magnesiowustite (Mg, Fe)O: applications to the physics and chemistry of the lower mantle

    USGS Publications Warehouse

    Sherman, David M.

    1991-01-01

    The electronic structure of magnesiowustite is investigated using self-consistent field X?? scattered wave (SCF-X??-SW) molecular orbital calculations on (FeO6)10- and (FeMg12O14)2- clusters. Calculated one-electron transition energies are used to interpret the optical spectrum of (Mg, Fe)O. The results are applied to the electrical and thermal conductivity of the lower mantle. This is especially true if Fe2+ adopts the low-spin configuration. The geophysically significant properties of (Fe, Mg)O probably result from defect Fe3+. -from Author

  15. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  16. Ultrafast demagnetization enhancement in CoFeB/MgO/CoFeB magnetic tunneling junction driven by spin tunneling current.

    PubMed

    He, Wei; Zhu, Tao; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua

    2013-10-07

    The laser-induced ultrafast demagnetization of CoFeB/MgO/CoFeB magnetic tunneling junction is exploited by time-resolved magneto-optical Kerr effect (TRMOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electrons tunneling current. It opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions.

  17. Octahedral cation partitioning in Mg,Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5 Fe2+ 0.5)2SiO4 (Fa50)

    NASA Astrophysics Data System (ADS)

    Morozov, Mikhail; Brinkmann, Christian; Grodzicki, Michael; Lottermoser, Werner; Tippelt, Gerold; Amthauer, Georg; Kroll, Herbert

    2005-11-01

    The high-temperature partitioning of Fe2+ and Mg between the two non-equivalent octahedral M1 and M2 sites in synthetic olivine (Fa50) was studied by Mössbauer spectroscopy. Powder samples have been equilibrated in annealing experiments performed under reducing oxygen fugacity at temperatures between 500 and 800°C followed by rapid quenching in order to prevent redistribution of cations. M-site ordering with Fe2+ preferring M1, Mg preferring M2 sites increases continuously with rising equilibrium temperature. K D values increase from 1.21 at 500°C to 1.48 at 750°C. The results are consistent with both room temperature as well as in situ high temperature single crystal X-ray diffraction experiments of Heinemann et al. [8, 9].

  18. Investigations on FCAM-III (Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36): A new homologue of the aenigmatite structure-type in the system CaO-MgO-Fe2O3-Al2O3

    NASA Astrophysics Data System (ADS)

    Zöll, Klaus; Kahlenberg, Volker; Krüger, Hannes; Tropper, Peter

    2018-02-01

    In the course of a systematic study of a part of the quaternary system Fe2O3-CaO-Al2O3-MgO (FCAM) the previously unknown compound Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 (FCAM-III) has been synthesized. By analogy with the so-called SFCA series [1-5], our investigation in the system of FCAM shows the existence of a stoichiometric homologous series M14+6nO20+8n, where M = Fe, Ca, Al, Mg and n = 1 or 2. In air, we can prove the formation of coexisting FCAM-III and FCAM-I solid solutions at 1400 °C. By increasing the temperature up to 1425 °C FCAM-I disappears completely and FCAM-III co-exists with magnesiumferrite and a variety of calcium iron oxides. At 1450 °C FCAM-III breaks down to a mixture of FCAM-I again as well as magnesioferrite and melt. Small single-crystals of FCAM-III up to 35 μm in size could be retrieved from the 1425 °C experiment and were subsequently characterized using electron microprobe analysis and synchroton X-ray single-crystal diffraction. Finally the Fe2+/Fetot ratio was calculated from the total iron content based on the crystal-chemical formula obtained from EMPA measurements and charge balance considerations. FCAM-III or Ca2.38Mg2.09Fe3+10.61Fe2+1.59Al9.33O36 has a triclinic crystal structure (space group P 1 ̅). The basic crystallographic data are: a = 10.223(22) Å, b = 10.316(21) Å, c = 14.203(15) Å, α = 93.473(50)°, β = 107.418(67)°, γ = 109.646(60)°, V = 1323.85(2) ų, Z = 1. Using Schreinemaker's technique to analyze the phase relations in the system Fe2O3-CaO-Al2O3-MgO it was possible to obtain the semi-quantitative stability relations between the participating phases and construct a topologically correct phase sequence as a function of T and fO2. The analysis shows that Ca2Al0.5Fe1.5O5 (C2A0.25F0.75) and CaAl1.5Fe2.5O7 (CA0.75F1.25) with higher calculated Fe2+ contents are preferably formed at lower oxygen fugacity and react to CaAl0.5Fe1.5O4 (CA0.25F0.75) by increasing fO2. Spinel-type magnesium

  19. Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property

    NASA Astrophysics Data System (ADS)

    Shetty, Krushitha; Lokesh, S. V.; Rangappa, Dinesh; Nagaswarupa, H. P.; Nagabhushana, H.; Anantharaju, K. S.; Prashantha, S. C.; Vidya, Y. S.; Sharma, S. C.

    2017-02-01

    Here, a green route has been reported to convert Graphene Oxide (GO) to reduced graphene oxide (RGO) using clove extract. A modest and eco-accommodating sol-gel strategy has been employed to prepare MgFe2O4 nanoparticles, MgFe2O4-RGO nanocomposite samples. The samples were analyzed by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-Visible Spectroscopy, Scanning Electron Microcopy (SEM), Transmission Electron Microscopy (TEM), Photoluminescence (PL) and Electrochemical Impedance Spectroscopy (EIS). PXRD result revealed that the prepared samples were cubic spinel in nature. SEM results uncovered flake like surface morphology of the prepared nanomaterial. Better PL emission signature was observed when excited at 329 nm. PL studies demonstrated that the present samples were potential for the fabrication of white component of white light emitting diodes (WLEDs). Further, MgFe2O4-RGO nanocomposite showed enhanced photocatalytic movement (PCM) and photostability under Sunlight in the decomposition of Malachite Green (MG) compared to MgFe2O4. This can be attributed to the interaction of MgFe2O4 surface with RGO sheets which results in PL quenching, demonstrates that the recombination of photo-induced electrons and holes in MgFe2O4-RGO nanocomposite is more effectively inhibited. A possible mechanism for the enhanced properties of MgFe2O4-RGO nanocomposite was discussed. Moreover, MgFe2O4-RGO photocatalyst also showed easy magnetic separation with high reusability. These results unveil that the synthesized sample can be used in display applications and also as a potential photocatalyst.

  20. The Systematics of Activity-Composition Relations in Mg-Fe2+ Oxide and Silicate Solid Solutions

    NASA Astrophysics Data System (ADS)

    O'Neill, H. S.

    2006-12-01

    The need to quantify activity-composition relations of mineral solid solutions for petrologic modelling has prompted many experimental studies, but different studies on the same system often appear to show a startling lack of consistency. A good example is Mg-Fe2+ mixing in garnet (the pyrope-almandine join). This is understandable because the energies of mixing in solid solutions are often obtained experimentally as small difference between large numbers. In particular, the fallacy of using a sequential approach to data fitting to a thermodynamic model leads to the accumulated errors being artificially concentrated onto the last step of the fitting process, which is usually that part of the model dealing with the excess energies of mixing. This gives rise to erroneous activity-composition relations, often apparently showing complex deviations from ideality. Systemizing the results of many studies can reveal underlying patterns of behaviour while also identifying outliers and anomalies that may be worth reinvestigating. Davies and Navrotsky [1] showed that the energies of mixing of many different pairs of ions with the same charge correlated well with the difference in molar volumes of the end-members, within a particular crystal structure. This empirical work is now supported by theoretical calculations. It underlies the modern approach to melt/crystal trace-element partitioning. Provided an internally consistent dataset is used, an analogous correlation may be demonstrated across different crystal structures for the mixing of one pair of ions, such as Mg and Fe2+. Activity-composition relations in MgO-"FeO" magnesiowuestite solutions in equilibrium with iron metal were used to obtain the properties of Mg-Fe olivine solutions from magnesiowuestite/olivine partitioning [2]. New results at 1400 K, 1 bar and 1473 K, 25 kb (O'Neill and Pownceby, in prep.) confirm previous work that mixing in Mg-Fe olivine is regular (symmetrical) with W Mg-Fe = 2.5 kJ/mol, with an

  1. β-Li0.37Na0.63Fe(MoO4)2

    PubMed Central

    Souilem, Amira; Zid, Mohamed Faouzi; Driss, Ahmed

    2014-01-01

    The title compound, lithium/sodium iron(III) bis­[ortho­molyb­date(VI)], was obtained by a solid-state reaction. The main structure units are an FeO6 octa­hedron, a distorted MoO6 octa­hedron and an MoO4 tetra­hedron sharing corners. The crystal structure is composed of infinite double MoFeO11 chains along the b-axis direction linked by corner-sharing to MoO4 tetra­hedra so as to form Fe2Mo3O19 ribbons. The cohesion between ribbons via mixed Mo—O—Fe bridges leads to layers arranged parallel to the bc plane. Adjacent layers are linked by corners shared between MoO4 tetra­hedra of one layer and FeO6 octa­hedra of the other layer. The Na+ and Li+ ions partially occupy the same general position, with a site-occupancy ratio of 0.631 (9):0.369 (1). A comparison is made with AFe(MoO4)2 (A = Li, Na, K and Cs) structures. PMID:24764805

  2. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic

  3. The Fe2(+)-Mg interdiffusion in orthopyroxene: Constraints from cation ordering and structural data and implications for cooling rates of meteorites

    NASA Technical Reports Server (NTRS)

    Ganguly, J.; Tazzoli, V.

    1993-01-01

    Orthopyroxene crystals in a number of meteorites exhibit compositional zoning of Fe and Mg, which provide important constraint on their cooling rates. However, attempts to model cooling rate of these crystals from Fe-Mg zoning profiles suffer from the lack of any measured or theoretically well constrained Fe-Mg interdiffusion data in OP(x) It has been assumed that Fe-Mg interdiffusion in OP(x) only slightly slower than that in olivine. The purpose of this paper is to (1) calculate the Fe-Mg fractionation, and (2) provide analytical formulation relating cooling rate to the length of the diffusion zone across the interface of the overgrowth of a mineral on itself with application to Mg diffusion profile across OP(x) growth on OP(x) in certain mesosiderites.

  4. Effects of Be, Sr, Fe and Mg interactions on the microstructure and mechanical properties of aluminum based aeronautical alloys

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed Fawzy

    The present work was carried out on a series of heat-treatable aluminum-based aeronautical alloys containing various amounts of magnesium (Mg), iron (Fe), strontium (Sr) and beryllium (Be). Tensile test bars (dendrite arm spacing ~ 24mum) were solutionized for either 5 or 12 hours at 540°C, followed by quenching in warm water (60°C). Subsequently, these quenched samples were aged at 160°C for times up to 12 hours. Microstructural assessment was performed. All heat-treated samples were pulled to fracture at room temperature using a servo-hydraulic tensile testing machine. The results show that Be causes partial modification of the eutectic silicon (Si) particles similar to that reported for Mg addition. Addition of 0.8 wt.% Mg reduced the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, without Sr, a peak corresponding to the formation of a Be-Fe phase (Al8Fe2BeSi) was detected at 611°C. The Be-Fe phase precipitates in a script-like morphology. A new quinary eutectic-like reaction was observed to take place near the end of solidification of high Mg, high Fe, Be-containing alloys. This new reaction is composed mainly of fine particles of Si, Mg2Si, pi-Al 8Mg3FeSi6 and (Be-Fe) phases. The volume fraction of this reaction decreased with the addition of Sr. The addition of Be has a noticeable effect on decreasing the beta-phase length, or volume fraction, this effect may be limited by adding Sr. Beryllium addition also results in the precipitation of the beta-phase in a nodular form, which reduces the harmful effects of these intermetallics on the alloy mechanical properties. Increasing both Mg and Fe levels led to an increase in the amount of the pi-phase; increasing the iron content led to an increase in the volume fraction of the partially soluble beta- and pi-phases, while Mg2Si particles were completely dissolved. The beta-phase platelets were observed to undergo changes in their morphology due to the

  5. The Pressure-Volume-Temperature Equation of State of Iron-Rich (Mg,Fe)O

    NASA Astrophysics Data System (ADS)

    Wicks, J. K.; Jackson, J. M.; Zhuravlev, K. K.; Prakapenka, V.

    2012-12-01

    Seismic observations near the base of the core-mantle boundary (CMB) have detected 5-20 km thick patches in which the seismic wave velocities are reduced by up to 30%. These ultra-low velocity zones (ULVZs) have been interpreted as aggregates of partially molten material (e.g. Williams and Garnero 1996, Hernlund and Jellinek, 2010) or as solid, iron-enriched residues (e.g. Knittle and Jeanloz, 1991; Mao et al., 2006; Wicks et al., 2010), typically based on proposed sources of velocity reduction. The stabilities of these structure types have been explored through dynamic models that have assembled a relationship between ULVZ stability and density (Hernlund and Tackley, 2007; Bower et al., 2010). Now, to constrain the chemistry of ULVZs, more information is needed on the relationship between density and sound velocity of candidate phases. Recently, we have shown that the characteristically low sound speeds of ULVZs can be produced by small amounts of iron-rich (Mg,Fe)O, which is likely to be found in iron-rich assemblages based on current partitioning studies (eg. Sakai et al., 2010; Tange et al., 2009). We determined the Debye velocity (VD) of (Mg.1657Fe.84)O using nuclear resonant inelastic x-ray scattering (NRIXS), and calculated the seismically relevant compressional (VP) and shear (VS) wave velocities up to 120 GPa using an equation of state of a similar composition (Wicks et al., 2010). These densities and sound velocities, in turn, are consistent with reasonable morphologies of modeled solid ULVZs (Bower et al., 2011). To increase the accuracy of density and sound velocity predictions, measurements must be made at elevated temperatures to correctly predict the properties of iron-rich (Mg,Fe)O at mantle conditions. In this study, we present the pressure-volume-temperature equation of state of (Mg.0657Fe.94)O measured up to pressures of 120 GPa and temperatures of 2000 K. Volume was measured with x-ray diffraction at beamline 13-ID-D of the Advanced Photon

  6. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures

    NASA Astrophysics Data System (ADS)

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L.; Zhang, Qianfan; Zhao, Weisheng

    2015-12-01

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  7. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures.

    PubMed

    Peng, Shouzhong; Wang, Mengxing; Yang, Hongxin; Zeng, Lang; Nan, Jiang; Zhou, Jiaqi; Zhang, Youguang; Hallal, Ali; Chshiev, Mairbek; Wang, Kang L; Zhang, Qianfan; Zhao, Weisheng

    2015-12-11

    Spin-transfer-torque magnetic random access memory (STT-MRAM) attracts extensive attentions due to its non-volatility, high density and low power consumption. The core device in STT-MRAM is CoFeB/MgO-based magnetic tunnel junction (MTJ), which possesses a high tunnel magnetoresistance ratio as well as a large value of perpendicular magnetic anisotropy (PMA). It has been experimentally proven that a capping layer coating on CoFeB layer is essential to obtain a strong PMA. However, the physical mechanism of such effect remains unclear. In this paper, we investigate the origin of the PMA in MgO/CoFe/metallic capping layer structures by using a first-principles computation scheme. The trend of PMA variation with different capping materials agrees well with experimental results. We find that interfacial PMA in the three-layer structures comes from both the MgO/CoFe and CoFe/capping layer interfaces, which can be analyzed separately. Furthermore, the PMAs in the CoFe/capping layer interfaces are analyzed through resolving the magnetic anisotropy energy by layer and orbital. The variation of PMA with different capping materials is attributed to the different hybridizations of both d and p orbitals via spin-orbit coupling. This work can significantly benefit the research and development of nanoscale STT-MRAM.

  8. Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: evaluations of phosphorus intercalation activity and cellular cytotoxicity

    NASA Astrophysics Data System (ADS)

    Lung, Yung-Feng; Sun, Ying-Sui; Lin, Chun-Kai; Uan, Jun-Yen; Huang, Her-Hsiung

    2016-09-01

    The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg2+: Fe3+ ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability.

  9. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides

    NASA Astrophysics Data System (ADS)

    Matysina, Z. A.; Zaginaichenko, S. Yu.; Shchur, D. V.; Gabdullin, M. T.

    2016-06-01

    Based on molecular-kinetic representations, theory of hydrogen absorption-desorption processes in binary Mg-Fe and Mg-Ni alloys is developed. Free energies of hydrides of these alloys are calculated. Equations of their thermodynamically equilibrium state determining the P-T-c diagrams are derived. A temperature dependence of the desorbed hydrogen concentration is established. A maximal desorption temperature is estimated. The state diagrams determining the concentration dependence of the maximal desorption temperature are constructed. Isopleths and isotherms of hydrogen solubility in the alloys are calculated. The possibility of manifestation of the hysteresis effect in hydrogen solubility isotherms is revealed and the decrease of the width and length of a hysteresis loop with increasing temperature is demonstrated together with the influence of the magnesium hydrate MgH2 in Mg2FeH6 samples and running of chemical reactions on the behavior of the isotherms and the occurrence of bends and jumps in them. All established functional dependences of the sorption properties of the examined alloys are compared with experimental data available from the literature.

  10. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  11. Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts

    NASA Astrophysics Data System (ADS)

    Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan

    2017-06-01

    Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a

  12. Spin transport and accumulation in n{sup +}-Si using Heusler compound Co{sub 2}FeSi/MgO tunnel contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Mizue, E-mail: mizue.ishikawa@toshiba.co.jp; Sugiyama, Hideyuki; Inokuchi, Tomoaki

    2015-08-31

    We investigate spin transport and accumulation in n{sup +}-Si using Heusler compound Co{sub 2}FeSi/MgO/Si on insulator (SOI) devices. The magnitudes of the non-local four- and three-terminal Hanle effect signals when using Heusler compound Co{sub 2}FeSi/MgO/SOI devices are larger than when using CoFe/MgO/SOI devices, whereas the preparation methods of MgO layers on SOI are exactly same in both devices. Different bias voltage dependencies on the magnitude of spin accumulation signals are also observed between these devices. Especially, Co{sub 2}FeSi/MgO/SOI devices show large spin accumulation signals compared with CoFe/MgO/SOI devices in the low bias voltage region less than ∼1000 mV in which themore » increase of the spin polarization is expected from the estimation of the density of states in Heusler compound Co{sub 2}FeSi and CoFe under spin extraction conditions. These results indicate that the species of ferromagnetic material definitely affects the magnitude and behavior of the spin signals. The use of highly polarized ferromagnets such as Heusler compounds would be important for improving the spin polarization and the magnitude of spin signals through Si channels.« less

  13. Current-induced spin-orbit torque switching of perpendicularly magnetized Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyol, Mustafa; Department of Physics, University of Çukurova, Adana 01330; Yu, Guoqiang

    2015-04-20

    We study the effect of the oxide layer on current-induced perpendicular magnetization switching properties in Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} tri-layers. The studied structures exhibit broken in-plane inversion symmetry due to a wedged CoFeB layer, resulting in a field-like spin-orbit torque (SOT), which can be quantified by a perpendicular (out-of-plane) effective magnetic field. A clear difference in the magnitude of this effective magnetic field (H{sub z}{sup FL}) was observed between these two structures. In particular, while the current-driven deterministic perpendicular magnetic switching was observed at zero magnetic bias field in Hf|CoFeB|MgO, an external magnetic field is necessary to switch the CoFeBmore » layer deterministically in Hf|CoFeB|TaO{sub x}. Based on the experimental results, the SOT magnitude (H{sub z}{sup FL} per current density) in Hf|CoFeB|MgO (−14.12 Oe/10{sup 7} A cm{sup −2}) was found to be almost 13× larger than that in Hf|CoFeB|TaO{sub x} (−1.05 Oe/10{sup 7} A cm{sup −2}). The CoFeB thickness dependence of the magnetic switching behavior, and the resulting  H{sub z}{sup FL} generated by in-plane currents are also investigated in this work.« less

  14. Extraction of Mg(OH)2 from Mg silicate minerals with NaOH assisted with H2O: implications for CO2 capture from exhaust flue gas.

    PubMed

    Madeddu, Silvia; Priestnall, Michael; Godoy, Erik; Kumar, R Vasant; Raymahasay, Sugat; Evans, Michael; Wang, Ruofan; Manenye, Seabelo; Kinoshita, Hajime

    2015-01-01

    The utilisation of Mg(OH)2 to capture exhaust CO2 has been hindered by the limited availability of brucite, the Mg(OH)2 mineral in natural deposits. Our previous study demonstrated that Mg(OH)2 can be obtained from dunite, an ultramafic rock composed of Mg silicate minerals, in highly concentrated NaOH aqueous systems. However, the large quantity of NaOH consumed was considered an obstacle for the implementation of the technology. In the present study, Mg(OH)2 was extracted from dunite reacted in solid systems with NaOH assisted with H2O. The consumption of NaOH was reduced by 97% with respect to the NaOH aqueous systems, maintaining a comparable yield of Mg(OH)2 extraction, i.e. 64.8-66%. The capture of CO2 from a CO2-N2 gas mixture was tested at ambient conditions using a Mg(OH)2 aqueous slurry. Mg(OH)2 almost fully dissolved and reacted with dissolved CO2 by forming Mg(HCO3)2 which remained in equilibrium storing the CO2 in the aqueous solution. The CO2 balance of the process was assessed from the emissions derived from the power consumption for NaOH production and Mg(OH)2 extraction together with the CO2 captured by Mg(OH)2 derived from dunite. The process resulted as carbon neutral when dunite is reacted at 250 °C for durations of 1 and 3 hours and CO2 is captured as Mg(HCO3)2.

  15. Effect of MgO on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-06-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.

  16. Scaling of anomalous Hall effect in Ta/CoFeB/MgAl2O4/Ta multilayers

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Zhang, Qimeng; Meng, Kangkang; Chen, Jikun; Xu, Xiaoguang; Miao, Jun; Jiang, Yong

    2017-06-01

    The anomalous Hall effect (AHE) is studied in Ta/CoFeB/MgAl2O4/Ta multilayers with different thicknesses of MgAl2O4 (t), which causes in-plane magnetic anisotropy (IMA) for t = 1.0 nm and perpendicular magnetic anisotropy (PMA) for t ≥ 1.2 nm. Conventional scaling was demonstrated to be not inadequate in our case. The origin of the AHE in Ta/CoFeB/MgAl2O4/Ta multilayers is mainly an extrinsic mechanism. The contribution of skew scattering (SS) is unneglectable, and both the SS and side jump are enhanced when the magnetic anisotropy changes from IMA to PMA, indicating that the oxidation at the interface of CoFeB/MgAl2O4 has a dominant influence on the AHE.

  17. Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.

    We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less

  18. Kinetics of Fe2+-Mg order-disorder in orthopyroxene: experimental studies and applications to cooling rates of rocks

    NASA Astrophysics Data System (ADS)

    Stimpfl, M.; Ganguly, J.; Molin, G.

    2005-10-01

    We determined the forward rate constant (K+) for the Fe2+-Mg order-disorder between the M2 and M1 sites of orthopyroxene (OPx), which is described by the homogeneous reaction Fe2+ (M2) + Mg(M1) ↔ Mg(M2) + Fe2+ (M1), by both ordering and disordering experiments at isothermal condition and also by continuous cooling experiments. The rate constant was determined as a function of temperature in the range of 550-750°C, oxygen fugacity between quartz-fayalite-iron and Ni-NiO buffers, and at compositions of 16 and 50 mol% ferrosilite component. The K+ value derived from disordering experiment was found to be larger than that derived from ordering experiment at 550°C, while at T>580°C, these two values are essentially the same. The fO2 dependence of the rate constant can be described by the relation K+ α (fO2) n with n=5.5-6.5, which is compatible with the theoretically expected relation. The Arrhenius relation at the WI buffer condition is given by ln (C_{text{o}} {text{K}}^+) = - {41511 - 12600{text{X}}_{{text{Fe}}} }/{{T({text{K}})}} + 28.26 + 5.27{text{X}}_{{text{Fe}}}, min^{-1} where C o represents the total number of M2 + M1 sites occupied by Fe2+ and Mg per unit volume of the crystal. The above relation can be used to calculate the cooling rates of natural OPx crystals around the closure temperature ( T c) of Fe-Mg ordering, which are usually below 300°C for slowly cooled rocks. We determined the Fe-Mg ordering states of several OPx crystals (˜ Fs50) from the Central Gneissic Complex (Khtada Lake), British Columbia, which yields T c ˜290°C. Numerical simulation of the change of Fe2+-Mg ordering in OPx as a function of temperature using the above expression of rate constant and a non-linear cooling model yields quenched values of ordering states that are in agreement with the observed values for cooling rates of 11-17°C/Myr below 300°C. The inferred cooling rate is in agreement with the available geochronological constraints.

  19. Crossover from Commensurate to Incommensurate Antiferromagnetism in Stoichiometric NaFeAs Revealed by Single-Crystal 23Na,75As-NMR Experiments

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kentaro; Mezaki, Yuji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Takigawa, Masashi

    2011-03-01

    We report the results of 23Na and 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of stoichiometric NaFeAs. The NMR spectra reveal a tetragonal to twinned-orthorhombic structural phase transition at TO = 57 K and an antiferromagnetic (AF) transition at TAF = 45 K. The divergent behavior of nuclear relaxation rate near TAF shows significant anisotropy, indicating that the critical slowing down of stripe-type AF fluctuations are strongly anisotropic in spin space. The NMR spectra at sufficiently low temperatures consist of sharp peaks showing a commensurate stripe AF order with a small moment of ˜0.3 μB. However, the spectra just below TAF exhibit a highly asymmetric broadening pointing to an incommensurate modulation. The commensurate-incommensurate crossover in NaFeAs shows a certain similarity to the behavior of SrFe2As2 under high pressure.

  20. Investigation of sodium insertion–extraction in olivine Na x FePO 4 (0 ≤ x ≤ 1) using first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracibar, A.; Carrasco, J.; Saurel, D.

    Olivine NaFePO4 has recently attracted the attention of the scientific community as a promising cathode material for Na-ion batteries. In this work we combine density functional theory (DFT) calculations and high resolution synchrotron X-ray diffraction (HRXRD) experiments to study the phase stability of NaxFePO4 along the whole range of sodium compositions (0 ≤ x ≤ 1). DFT calculations reveal the existence of two intermediate structures governing the phase stability at x = 2/3 and x = 5/6. This is in contrast to isostructural LiFePO4, which is a broadly used cathode in Li-ion batteries. Na2/3FePO4 and Na5/6FePO4 ground states both alignmore » vacancies diagonally within the ab plane, coupled to a Fe2+/Fe3+ alignment. HRXRD data for NaxFePO4 (2/3 < x < 1) materials show common superstructure reflections up to x = 5/6 within the studied compositions. The computed intercalation voltage profile shows a voltage difference of 0.16 V between NaFePO4 and Na2/3FePO4 in agreement with the voltage discontinuity observed experimentally during electrochemical insertion.« less

  1. High magnetic coercivity of FePt-Ag/MgO granular nanolayers

    NASA Astrophysics Data System (ADS)

    Roghani, R.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.

  2. Anomalous double-stripe charge ordering in β -NaFe2O3 with double triangular layers consisting of almost perfect regular Fe4 tetrahedra

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shintaro; Ueda, Hiroaki; Michioka, Chishiro; Yoshimura, Kazuyoshi; Nakamura, Shin; Katsufuji, Takuro; Sawa, Hiroshi

    2018-05-01

    The physical properties of the mixed-valent iron oxide β -NaFe2O3 were investigated by means of synchrotron radiation x-ray diffraction, magnetization, electrical resistivity, differential scanning calorimetry, 23Na NMR, and 57FeM o ̈ssbauer measurements. This compound has double triangular layers consisting of almost perfect regular Fe4 tetrahedra, which suggests geometrical frustration. We found that this compound exhibits an electrostatically unstable double-stripe-type charge ordering, which is stabilized by the cooperative compression of Fe3 +O6 octahedra, owing to a valence change and Fe2 +O6 octahedra due to Jahn-Teller distortion. Our results indicate the importance of electron-phonon coupling for charge ordering in the region of strong charge frustration.

  3. Magnetic properties of superparamagnetic β-NaFeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Sarbjit; Tovstolytkin, Alexandr; Lotey, Gurmeet Singh

    2018-07-01

    Superparamagnetic β-NaFeO2 nanoparticles of particle size 37 nm with orthorhombic crystal structure and space group Pn21a have been prepared by sol-gel method. Temperature dependent magnetic study has been performed. Its systematic analysis has been done to calculate the Curie and blocking temperatures along with its magnetic susceptibility. The Langevin fitting of the magnetic data has been carried out. It has been shown that the synthesized nanoparticles exhibit superparamagnetic behavior. The Neel's relaxation time has been calculated to further support its superparamagnetic nature. The synthesized β-NaFeO2 nanoparticles behave like ferromagnets below 80 K; they are superparamagnetic above 80 K-340 K and thereafter as paramagnetic. The possible mechanism of superparamagnetism has been discussed. It has been concluded that these nanoparticles can find wide applications in the area of biomedical sciences.

  4. Bio-inspired route for the synthesis of spherical shaped MgO:Fe(3+) nanoparticles: Structural, photoluminescence and photocatalytic investigation.

    PubMed

    Anilkumar, M R; Nagaswarupa, H P; Nagabhushana, H; Sharma, S C; Vidya, Y S; Anantharaju, K S; Prashantha, S C; Shivakuamra, C; Gurushantha, K

    2015-01-01

    MgO:Fe(3+) (0.1-5 mol%) nanoparticles (NPs) were synthesized via eco-friendly, inexpensive and simple low temperature solution combustion route using Aloe vera gel as fuel. The final products were characterized by SEM, TEM and HRTEM. PXRD data and Rietveld analysis revealed the formation of cubic system. The influence of Fe(3+) ion concentration on the structure morphology, UV absorption, PL emission and photocatalytic activity of MgO:Fe(3+) NPs were investigated. The yellow emission with CIE chromaticity coordinates (0.44, 0.52) and average correlated color temperature value was found to be 3540 K which corresponds to warm light of NPs. The control of Fe(3+) on MgO matrix influences the photocatalytic decolorization of methylene blue (MB) under UV light. The enhanced photocatalytic activity of MgO:Fe(3+) (4 mol%) was attributed to dopant concentration, effective crystallite size, textural properties, decreased band gap and capability for reducing the electron-hole pair recombination. Further, the trends of inhibitory effect in the presence of different radical scavengers were explored. These findings open up new avenues for the exploration of Fe-doped MgO in eco-friendly water applications and in the process of display devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Adsorption of proteins on γ-Fe2O3 and γ-Fe2O3/SiO2 magnetic materials

    NASA Astrophysics Data System (ADS)

    Khokhlova, T. D.

    2017-10-01

    γ-Fe2O3-SiO2 composites are synthesized via the coprecipitation of a γ-Fe2O3 magnetic carrier (with specific surface S = 17 m2/g and pore volume V = 0.51 cm3/g) and silicon dioxide from an aqueous glass (sodium silicate) solution. The effect coagulation agent NaCl has on the coprecipitation process and structural characteristics of the composite is discussed. Adding NaCl to the aqueous glass solution prevents the formation of SiO2 macrogel making it possible to obtain highly porous composites with high adsorption capacity for proteins cytochrome C and hemoglobin. It is established that a composite that is 50% SiO2 and produced with the addition of 5% NaCl ( S = 150 m2/g and V = 0.87 cm3/g) has a sixfold and twofold higher capacity (280 and 175 mg/g) for cytochrome C and hemoglobin, respectively, than the initial ferric oxide (45 and 82 mg/g). The capacity for cytochrome C and hemoglobin of a composite synthesized without NaCl ( S = 50 m2/g and V = 0.45 cm3/g) is 19 and 20 mg/g, respectively, which is twofold and fourfold lower than those of the initial γ-Fe2O3. The dependence of protein adsorption on pH and the ionic strength of a solution is studied, and the conditions for the maximum adsorption and complete desorption of proteins are established. It is concluded that composites synthesized with additions of NaCl can be used as magnetocontrollable sorbents for the purification, concentration, and immobilization of proteins, and for the preparation of biocatalysts based on immobilized enzymes.

  6. Structural, vibrational and thermodynamic properties of Mg2 FeH6 complex hydride

    NASA Astrophysics Data System (ADS)

    Zhou, H. L.; Yu, Y.; Zhang, H. F.; Gao, T.

    2011-02-01

    Mg2FeH6, which has one of the highest hydrogen storage capacities among Mg based 3d-transitional metal hydrides, is considered as an attractive material for hydrogen storage. Within density-functional perturbation theory (DFPT), we have investigated the structural, vibrational and thermodynamic properties of Mg2FeH6. The band structure calculation shows that this compound is a semiconductor with a direct X-X energy gap of 1.96 eV. The calculated phonon frequencies for the Raman-active and the infrared-active modes are assigned. The phonon dispersion curves together with the corresponding phonon density of states and longitudinal-transverse optical (LO-TO) splitting are also calculated. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as free energy, internal energy, entropy and heat capacity within the quasi-harmonic approximation based on the calculated phonon density of states.

  7. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  8. Iron isotope effect in the iron arsenide superconductor (Ca0.4Na0.6)Fe2As2

    NASA Astrophysics Data System (ADS)

    Tsuge, Y.; Nishio, T.; Iyo, A.; Tanaka, Y.; Eisaki, H.

    2014-05-01

    We report a new sample synthesis technique for polycrystalline (Ca1-xNax)Fe2As2 (0Na0.6)Fe2As2 with three types of iron isotopes (54Fe, natural Fe, and 57Fe). We synthesized isotope samples carefully not to give rise to a difference in the Na content x between different isotope samples, which becomes potentially a factor for an extrinsic difference in the superconducting transition temperature Tc between those samples. No significant difference in lattice parameters between those samples is shown by measurements of powder x-ray diffraction (XRD), implying that the Na content in samples is well-controlled. Our estimate of the iron isotope coefficient αFe defined by -d InTc/d lnMFe, where MFe is the iron isotope mass, is -0.19. These indicate that in (Ca0.4Na0.6)Fe2As2, the iron isotope coefficient becomes definitely negative. We discuss the implications of this fact, considering previous measurements of an iron isotope effect in different iron-based superconductors.

  9. Structure and properties of α-NaFeO{sub 2}-type ternary sodium iridates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroudi, Kristen, E-mail: kbaroudi@princeton.edu; Yim, Cindi; Wu, Hui

    2014-02-15

    The synthesis, structure, and elementary magnetic and electronic properties are reported for layered compounds of the type Na{sub 3−x}MIr{sub 2}O{sub 6} and Na{sub 3−x}M{sub 2}IrO{sub 6}, where M is a transition metal from the 3d series (M=Zn, Cu, Ni, Co, Fe and Mn). The rhombohedral structures, in space group R−3m, were determined by refinement of neutron and synchrotron powder diffraction data. No clear evidence for long range 2:1 or 1:2 honeycomb-like M/Ir ordering was found in the neutron powder diffraction patterns except in the case of M=Zn, and thus in general the compounds are best designated as sodium deficient α-NaFeO{submore » 2}-type phases with formulas Na{sub 1−x}M{sub 1/3}Ir{sub 2/3}O{sub 2} or Na{sub 1−x}M{sub 2/3}Ir{sub 1/3}O{sub 2}. Synchrotron powder diffraction patterns indicate that several of the compounds likely have honeycomb in-plane metal–iridium ordering with disordered stacking of the layers. All the compounds are sodium deficient under our synthetic conditions and are black and insulating. Weiss constants derived from magnetic susceptibility measurements indicate that Na{sub 0.62}Mn{sub 0.61}Ir{sub 0.39}O{sub 2}, Na{sub 0.80}Fe{sub 2/3}Ir{sub 1/3}O{sub 2}, Na{sub 0.92}Ni{sub 1/3}Ir{sub 2/3}O{sub 2}, Na{sub 0.86}Cu{sub 1/3}Ir{sub 2/3}O{sub 2}, and Na{sub 0.89}Zn{sub 1/3}Ir{sub 2/3}O{sub 2} display dominant antiferromagnetic interactions. For Na{sub 0.90}Co{sub 1/3}Ir{sub 2/3}O{sub 2} the dominant magnetic interactions at low temperature are ferromagnetic while at high temperatures they are antiferromagnetic; there is also a change in the effective moment. Low temperature specific heat measurements (to 2 K) on Na{sub 0.92}Ni{sub 1/3}Ir{sub 2/3}O{sub 2} indicate the presence of a broad magnetic ordering transition. X-ray absorption spectroscopy shows that iridium is at or close to the 4+ oxidation state in all compounds. {sup 23}Na nuclear magnetic resonance measurements comparing Na{sub 2}IrO{sub 3} to Na{sub 0.92}Ni{sub 1

  10. Enhancements of magnetic properties and planar magnetoresistance by electric fields in γ-Fe{sub 2}O{sub 3}/MgO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Bin; Qin, Hongwei; Pei, Jinliang

    2016-05-23

    The treatment of perpendicular electric field upon γ-Fe{sub 2}O{sub 3}/MgO film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity, and saturation magnetizing field) of the film. The enhancement of saturation magnetization after the treatment of electric field may be connected with the combined shift effects of Mg ions from MgO to γ-Fe{sub 2}O{sub 3} and O{sup 2−} ions from γ-Fe{sub 2}O{sub 3} to MgO. The negative magnetoresistance of the γ-Fe{sub 2}O{sub 3}/MgO film also enhances with the treatment of perpendicular electric field at room temperature, possibly due to the increasing of electron hopping rate betweenmore » Fe{sup 2+} and Fe{sup 3+}.« less

  11. The Effect of deposition rate on FePt/MgO crystal orientation

    NASA Astrophysics Data System (ADS)

    Sheikhi, M.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    FePt granular layers which are made in suitable conditions can have three types of ordering that are crystalline, compositional orders and directional configuration of nanoparticles. Formation of fct structure with L10 compositional ordering requires high temperature. At this temperature, a problem is the size control of the nanoparticles and another problem is control of their crystal orientation. Fabrication method and the use of suitable substrates can help solving these problems. In direct synthesis by sputtering method on the warm substrate the size of FePt nanoparticles in L10 compositional ordered phase can be controlled. We show that crystal orientation of L10-FePt nanoparticles on a thin layer of MgO depends on the rate of deposition. This becomes clear from the results of the XRD analyses of samples. Based on these results in synthesis at room temperature with deposition rate of upper than 1.5 Å/s after annealing, (001) peak is dominated and at rate of lower than 1.0 Å/s just (111) peak is appeared. In direct synthesis with intermediate rate (111) and (110) peaks can be seen. Moreover, the difference of the shape of hysteresis loops of samples in parallel and vertical directions are the witnesses for orientation of samples in presence of MgO layer and the effect of FePt deposition rate on it.

  12. Vibrational and elastic properties of silicate spinels A2SiO4 (A = Mg, Fe, Ni, and Co)

    NASA Astrophysics Data System (ADS)

    Kushwaha, A. K.; Ma, C.-G.; Brik, M. G.; Akbudak, S.

    2018-06-01

    A six-parameter bond-bending force constant model is used to calculate the zone-center (Γ = 0) Raman and infrared phonon mode frequencies, elastic constants and related properties, the Debye temperatures, and sound velocities along high-symmetry directions for A2SiO4 (A = Mg, Fe, Ni, and Co) spinels. The main outcomes of the calculations are that the interactions between Si and O atoms (first-neighbor interaction) are stronger than those between A and Oatoms (A = Mg, Fe, Ni, and Co) (second-neighbor interaction). The elastic constants C11, C12, and C44 decrease in the order Mg > Fe > Ni > Co. The calculated bulk modulus, Poisson's ratio, and anisotropy decrease in the sequence Fe2SiO4 → Ni2SiO4 → Co2SiO4 → Mg2SiO4. On comparison, we find overall good agreement with the available experimental and previously calculated data.

  13. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  14. High surface stability of magnetite on bi-layer Fe3O4/Fe/MgO(0 0 1) films under 1 MeV Kr+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Krupska, M.; Balogh, A. G.; Malinsky, P.; Mackova, A.

    2017-12-01

    We investigate the stability of the bi-layer Fe3O4/Fe(0 0 1) films grown epitaxially on MgO(0 0 1) substrates with the layer thickness in the range of 25-100 nm upon 1 MeV Kr+ ion irradiation. The layer structure and layer composition of the films before and after ion irradiation were studied by XRR, RBS and RBS-C techniques. The interdiffusion and intermixing was analyzed. No visible change in the RBS spectra was observed upon irradiation with ion fluence below 1015 Kr cm-2. The bi-layer structure and the stoichiometric Fe3O4 layer on the surface were well preserved after Kr+ ion irradiation at low damage levels, although the strong intermixing implied a large interfacial (Fe x O y ) and (Fe, Mg)O y layer respective at Fe3O4-Fe and Fe-MgO interface. The high ion fluence of 3.8  ×  1016 Kr cm-2 has induced a complete oxidization of the buffer Fe layer. Under such Kr fluence, the stoichiometry of the Fe3O4 surface layer was still preserved indicating its high stability. The entire film contains Fe x O y -type composition at ion fluence large than 5.0  ×  1016 Kr cm-2.

  15. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  16. Simulated space weathering of Fe- and Mg-rich aqueously altered minerals using pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.

    2017-08-01

    Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe

  17. Shear response of Fe-bearing MgSiO3 post-perovskite at lower mantle pressures

    PubMed Central

    METSUE, Arnaud; TSUCHIYA, Taku

    2013-01-01

    We investigate the shear response of possible slip systems activated in pure and Fe-bearing MgSiO3 post-perovskite (PPv) through ab initio generalized stacking fault (GSF) energy calculations. Here we show that the [100](001) slip system has the easiest response to plastic shear among ten possible slip systems investigated. Incorporation of Fe2+ decreases the strength of all slip systems but does not change the plastic anisotropy style. Therefore, pure and Fe-bearing MgSiO3 PPv should demonstrate similar LPO patterns with a strong signature of the [100](001) slip system. An aggregate with this deformation texture is expected to produce a VSH > VSV type polarization anisotropy, being consistent with seismological observations. PMID:23318681

  18. Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application

    NASA Astrophysics Data System (ADS)

    Saritas, Sevda; Kundakci, Mutlu; Coban, Omer; Tuzemen, Sebahattin; Yildirim, Muhammet

    2018-07-01

    Iron oxide is a widely used sensitive material for gas sensor applications. They have fascinated much attention in the field of gas sensing and detecting under atmospheric conditions and at 200 °C temperature due to their low cost in production; simplicity and fast of their use; large number of detectable gases. Iron oxide gas sensors constitute investigated for hazardous gases used in various fields. The morphological structure (particle size, pore size, etc.), optical, magnetic and electrical properties of Ni:Fe2O3, Mg:Fe2O3 and Fe2O3 thin films which grown by Spray pyrolysis (SP) have been investigated. XRD, Raman and AFM techniques have been used for structural analysis. AFM measurements have been provided very useful information about surface topography. I-V (Van der Pauw) technique has been used for response of gas sensor. These devices offer a wide variety of advantages over traditional analytical instruments such as low cost, short response time, easy manufacturing, and small size.

  19. Preparation and structure of Na2Ag5Fe3(P2O7)4 -Ag metal composite: Insights on electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Marschilok, Amy C.; Takeuchi, Esther S.

    ABSTRACT Ag 7Fe 3(P 2O 7) 4is a 3D structured material which has been recently studied as a possible cathode material for lithium batteries. Notably, Na 7Fe 3(P 2O 7) 4is reported to be a fast-ion conductor, yet poor electrical conductor. Here, partial replacement of Na +for Ag +yielded Na 2Ag 5Fe 3(P 2O 7) 4pyrophosphate framework where the formation of Ag metal is proposed to increase the intrinsic low electrical conductivity of this polyanion electrode. Specifically, the Ag 5Na 2Fe 3(P 2O 7) 4-Ag composite is synthesized via chemical reduction of Ag 7Fe 3(P 2O 7) 4using NaBH 4.more » The occupancy of Ag +and Na +in each site was determined via Rietveld analysis of the diffraction pattern. Electrochemistry of the Ag 5Na 2Fe 3(P 2O 7) 4-Ag metal composite was explored with voltammetry and galvanostatic charge/discharge cycling. The Ag 5Na 2Fe 3(P 2O 7) 4-Ag metal composite electrodes displayed good rate capability assisted by the presence of Ag metal from the chemical reduction and in-situ electrochemical formation of a Ag conductive network.« less

  20. Giant interfacial perpendicular magnetic anisotropy in Fe/CuIn 1 -xGaxSe2 beyond Fe/MgO

    NASA Astrophysics Data System (ADS)

    Masuda, Keisuke; Kasai, Shinya; Miura, Yoshio; Hono, Kazuhiro

    2017-11-01

    We study interfacial magnetocrystalline anisotropies in various Fe/semiconductor heterostructures by means of first-principles calculations. We find that many of those systems show perpendicular magnetic anisotropy (PMA) with a positive value of the interfacial anisotropy constant Ki. In particular, the Fe/CuInSe 2 interface has a large Ki of ˜2.3 mJ /m2 , which is about 1.6 times larger than that of Fe/MgO known as a typical system with relatively large PMA. We also find that the values of Ki in almost all the systems studied in this work follow the well-known Bruno's relation, which indicates that minority-spin states around the Fermi level provide dominant contributions to the interfacial magnetocrystalline anisotropies. Detailed analyses of the local density of states and wave-vector-resolved anisotropy energy clarify that the large Ki in Fe/CuInSe 2 is attributed to the preferable 3 d -orbital configurations around the Fermi level in the minority-spin states of the interfacial Fe atoms. Moreover, we have shown that the locations of interfacial Se atoms are the key for such orbital configurations of the interfacial Fe atoms.

  1. Growth, structure, and magnetic properties of {gamma}-Fe{sub 2}O{sub 3} epitaxial films on MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y.; Kim, Y.J.; Thevuthasan, S.

    1997-04-01

    Single-crystal epitaxial thin films of {gamma}-Fe{sub 2}O{sub 3}(001) have been grown on MgO(001) using oxygen-plasma-assisted molecular beam epitaxy. The structure and magnetic properties of these films have been characterized by a variety of techniques, including reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy and x-ray photoelectron/Auger electron diffraction (XPD/AED), vibrating sample magnetometry, and ferromagnetic resonance. Real-time RHEED reveals that the film growth occurs in a layer-by-layer fashion. The {gamma}-Fe{sub 2}O{sub 3}(001) film surface exhibits a (1{times}1) LEED pattern. The growth of {gamma}-Fe{sub 2}O{sub 3} films at 450 {degree}C is accompanied by significant Mg outdiffusion. AED ofmore » Mg KLL Auger emission reveals that Mg substitutionally incorporates in the {gamma}-Fe{sub 2}O{sub 3} lattice, occupying the octahedral sites. Magnetic moments are {approximately}2300 G and {approximately}4500 G for {gamma}-Fe{sub 2}O{sub 3} films grown at 250{degree}C and 450{degree}C, respectively. The high magnetic moment for the films grown at 450{degree}C could be attributed to the high degree of structural order of the films and Mg substitution at octahedral sites. {copyright} {ital 1997 American Institute of Physics.}« less

  2. Moessbauer spectroscopy of Mg(0.9)Fe(0.1)SiO3 perovskite

    NASA Technical Reports Server (NTRS)

    Jeanloz, Raymond; O'Neill, Bridget; Pasternak, Moshe P.; Taylor, R. D.; Bohlen, Steven R.

    1992-01-01

    Ambient pressure Moessbauer spectra of Mg(0.9)Fe-57(0.1)SiO3 perovskite synthesized at pressure-temperature conditions of about 50 GPa and 1700 K show that the iron is entirely high-spin Fe(2+) and appears to be primarily located in the octahedral site within the crystal structure. We observe broad Moessbauer lines, suggesting a distribution of electric-field gradients caused by disorder associated with the Fe ions. Also, the perovskite exhibits magnetic ordering at temperatures lower than 5 K, implying that there is a magnetic contribution to the absolute ('third-law') entropy of this phase.

  3. Ferromagnetic alloy material CoFeC with high thermal tolerance in MgO/CoFeC/Pt structure and comparable intrinsic damping factor with CoFeB

    NASA Astrophysics Data System (ADS)

    Chen, Shaohai; Zhou, Jing; Lin, Weinan; Yu, Jihang; Guo, Rui; Poh, Francis; Shum, Danny; Chen, Jingsheng

    2018-02-01

    The thermal tolerance and perpendicular magnetic anisotropy (PMA) of ferromagnetic alloy Co40Fe40C20 in the structure MgO/CoFeC/Pt (or Ta) were investigated and compared with the commonly used CoFeB alloy. It is found that the PMA of CoFeC with {{K}i,CoFeC}=2.21 erg c{{m}-2} , which is 59% higher than that of CoFeB, can be obtained after proper post-annealing treatment. Furthermore, CoFeC alloy provides better thermal tolerance to temperature of 400 °C than CoFeB. The studies on ferromagnetic resonance show that the intrinsic damping constant α in of Co40Fe40C20 alloy is 0.0047, which is similar to the reported value of 0.004 for Co40Fe40B20 alloy. The comprehensive comparisons indicate that CoFeC alloy is a promising candidate for the application of the integration of spin torque transfer magnetic random access memory with complementary metal-oxide semiconductor processes.

  4. Laser MBE-grown CoFeB epitaxial layers on MgO: Surface morphology, crystal structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, Andrey K.; Bursian, Viktor E.; Krichevtsov, Boris B.; Mashkov, Konstantin V.; Suturin, Sergey M.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2018-01-01

    Epitaxial layers of CoFeB were grown on MgO by means of laser molecular beam epitaxy using C o40F e40B20 target. The growth was combined with in situ structural characterization by three-dimensional reciprocal space mapping obtained from reflection high energy electron diffraction (RHEED) data. High-temperature single stage growth regime was adopted to fabricate CoFeB layers. As confirmed by the atomic force microscopy, the surface of CoFeB layers consists of closely spaced nanometer sized islands with dimensions dependent on the growth temperature. As shown by RHEED and XRD analysis, the CoFeB layers grown at high-temperature on MgO(001) possess body centered cubic (bcc) crystal structure with the lattice constant a =2.87 Å close to that of the C o75F e25 alloy. It was further shown that following the same high-temperature growth technique the MgO/CoFeB/MgO(001) heterostructures can be fabricated with top and bottom MgO layers of the same crystallographic orientation. The CoFeB layers were also grown on the GaN(0001) substrates using MgO(111) as a buffer layer. In this case, the CoFeB layers crystallize in bcc crystal structure with the (111) axis perpendicular to the substrate surface. The magnetic properties of the CoFeB/MgO (001) heterostructures have been investigated by measuring magnetization curves with a vibrating sample magnetometer as well as by performing magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR) studies. FMR spectra were obtained for the variety of the magnetic field directions and typically consisted of a single relatively narrow resonance line. The magnetization orientations and the resonance conditions were calculated in the framework of a standard magnetic energy minimization procedure involving a single K1 c cubic term for the magnetocrystalline anisotropy. This allows a fairly accurate description of the angular dependences of the resonance fields—both in-plane and out-of-plane. It was shown that CoFeB layers exhibit

  5. Interfacial perpendicular magnetic anisotropy in CoFeB/MgO structure with various underlayers

    NASA Astrophysics Data System (ADS)

    Oh, Young-Wan; Lee, Kyeong-Dong; Jeong, Jong-Ryul; Park, Byong-Guk

    2014-05-01

    Interfacial perpendicular magnetic anisotropy (PMA) in CoFeB/MgO structures was investigated and found to be critically relied on underlayer material and annealing temperature. With Ta or Hf underlayer, clear PMA is observed in as-deposited samples while no PMA was shown in those with Pt or Pd. This may be attributed to smaller saturation magnetization of the films with Ta or Hf underlayer, which makes the PMA of CoFeB/MgO interface dominates over demagnetization field. On the contrary, samples with Pt or Pd demonstrate PMA only after annealing, which might be due to the CoPt (or CoPd) alloy formation that enhances PMA.

  6. Experimental Determination of Fe-Mg Interdiffusion Coefficients in Orthopyroxene Using Pulsed Laser Ablation and Nanoscale Thin Films

    NASA Astrophysics Data System (ADS)

    Ter Heege, J. H.; Dohmen, R.; Becker, H.; Chakraborty, S.

    2006-12-01

    Fe-Mg interdiffusion in silicate minerals is of interest in petrological studies for determining the closure temperature of geothermometers and for determining cooling rates from compositional profiles. It is also relevant for studies of the physical properties of silicates, such as rheology or electrical conductivity, because knowledge of its dependence on oxygen fugacity can aid in the understanding of point defect chemistry. Compositionally zoned orthopyroxenes are common in meteorites, mantle rocks, lower crustal rocks and a variety of plutonic and volcanic igneous rocks. However, experimental difficulties have precluded direct determination of Fe-Mg diffusion rates in orthopyroxenes so far and the available information comes from (1) Mg tracer diffusion coefficients obtained from isotope tracer studies using enriched ^{25}MgO films [1], (2) calculations of interdiffusion rates based on the (diffusion-controlled) order-disorder kinetics measured in orthopyroxene [2], and (3) indirect estimates from the comparison of diffusion widths in coexisting garnets and olivines, in which Fe-Mg diffusion rates are relatively well known [e.g., 3]. We have directly measured Fe-Mg interdiffusion coefficients parallel to the [001] direction in two natural orthopyroxene single crystals (approximately En95Fs5 and En90Fs10) using diffusion couples consisting of an olivine thin film (Fo30Fa70, typically 20 - 50 nm thick) deposited under vacuum on pre-heated, polished and oriented pyroxene single crystals using a pulsed laser ablation deposition technique. Samples were annealed for 4 - 337 hours at 800 - 1100 °C under atmospheric pressure in a continuous flow of CO + CO2 to control the oxygen fugacity between 10-16 and 10^{-12} bar within the stability field of pyroxene. Film thickness and compositional profiles were measured using Rutherford backscattering Spectroscopy (RBS) on reference and annealed samples, and Fe concentration depth profiles were extracted from the RBS spectra

  7. Reduction of CaO and MgO Slag Components by Al in Liquid Fe

    NASA Astrophysics Data System (ADS)

    Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.

    2018-05-01

    This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

  8. Probing magnetic transitions in (Mg,Fe)GeO3-perovskite with Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wicks, J. K.; Tracy, S. J.; Stan, C. V.; Bi, W.; Alp, E. E.; Xiao, Y.; Chow, P.; Duffy, T. S.

    2016-12-01

    The effect of iron on the properties of major lower mantle minerals must be understood for proper interpretation of seismic and geodynamic data. The role of Fe in bridgmanite in the deep earth is complicated as Fe can occupy two different crystallographic sites (8-fold site or octahedral site) and adopt different valence states (2+,3+) and electronic configurations (high or low spin). Previous experimental and theoretical work on this material has reported a pressure-induced low- to high-QS (quadrupole splitting) transition at 30 GPa, explained by a small lateral displacement of the Fe2+ ion (e.g. Jackson et al., 2005, Hsu et al., 2010). Further insight into the nature of this transition can be obtained through the study of germanates which are well-known to be effective analogues for silicates. The perovskite (Pv) to post-perovskite (pPv) transition is reduced by 50 GPa in MgGeO3 compared with MgSiO3. Despite this, a recent theoretical study predicts that in the Ge analogue the low- to high-QS transition should be 20 GPa higher in the germanate due to its larger unit cell (Shukla et al., 2015). 57Fe-enriched (Mg0.8Fe0.2)GeO3 perovskite was synthesized at 40 GPa with laser heating at Sector 13-ID-D, as confirmed with X-ray diffraction. Conventional and synchrotron Mössbauer spectroscopy was conducted at Sector 3 and Sector 16 of the Advanced Photon source, Argonne National Laboratory over the stability field of germanate perovskite: 39-61 GPa. This study took advantage of the new capability of synchrotron Mössbauer spectroscopy conducted during the APS operations in hybrid mode, which expanded the experimental time window from 150 to 800 ns. Preliminary analysis indicates that iron is predominately Fe2+ with some Fe3+ contribution at low pressure. With increasing pressure, we find the appearance of a third high-QS site, consistent with similar observations in the silicate. Our results provide new insights into high-pressure behavior of Fe in perovskite

  9. Mg-Doped CuFeO 2 Photocathodes for Photoelectrochemical Reduction of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jing; Wuttig, Anna; Krizan, Jason W.

    2013-05-22

    Mg-doped CuFeO 2 delafossite is reported to be photoelectrochemically active for CO 2 reduction. The material was prepared via conventional solid-state methods, and subsequently assembled into an electrode as a pressed pellet. Addition of a Mg 2+ dopant is found to substantially improve the conductivity of the material, with 0.05% Mg-doped CuFeO 2 electrodes displaying photocathodic currents under visible irradiation. Photocurrent is found to onset at irradiation wavelengths of ~800 nm with the incident photon-to-current efficiency reaching a value of 14% at 340 nm using an applied electrode potential of –0.4 V vs SCE. Photoelectrodes were determined to have amore » –1.1 V vs SCE conduction band edge and were found capable of the reduction of CO 2 to formate at 400 mV of underpotential. The conversion efficiency is maximized at –0.9 V vs SCE, with H 2 production contributing as a considerable side reaction. Lastly, these results highlight the potential to produce Mg-doped p-type metal oxide photocathodes with a band structure tuned to optimize CO 2 reduction.« less

  10. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries.

    PubMed

    Kumar, Ajay; Jayakumar, O D; Jagannath; Bashiri, Parisa; Nazri, G A; Naik, Vaman M; Naik, Ratna

    2017-10-14

    A series of porous Li 2 Fe 1-x Mg x SiO 4 /C (x = 0, 0.01, 0.02, 0.04) nanocomposites (LFS/C, 1Mg-LFS/C, 2Mg-LFS and 4Mg-LFS/C) have been synthesized via a solvo-thermal method using the Pluronic P123 polymer as an in situ carbon source. Rietveld refinement of the X-ray diffraction data of Li 2 Fe 1-x Mg x SiO 4 /C composites confirms the formation of the monoclinic P2 1 structure of Li 2 FeSiO 4 . The addition of Mg facilitates the growth of impurity-free Li 2 FeSiO 4 with increased crystallinity and particle size. Despite having the same percentage of carbon content (∼15 wt%) in all the samples, the 1Mg-LFS/C nanocomposite delivered the highest initial discharge capacity of 278 mA h g -1 (∼84% of the theoretical capacity) at the C/30 rate and also exhibited the best rate capability and cycle stability (94% retention after 100 charge-discharge cycles at 1C). This is attributed to its large surface area with a narrow pore size distribution and a lower charge transfer resistance with enhanced Li-ion diffusion coefficient compared to other nanocomposites.

  11. Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires

    NASA Astrophysics Data System (ADS)

    Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo

    2010-06-01

    The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B <= 16 T. Both transport and magnetic Jc were determined. Superconducting transition temperature Tc of doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.

  12. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  13. Saturation of VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Williamson, M.; de Rozieres, M.; Almasi, H.; Chao, X.; Wang, W.; Wang, J.-P.; Tsoi, M.

    2018-05-01

    Voltage controlled magnetic anisotropy (VCMA) currently attracts considerable attention as a novel method to control and manipulate magnetic moments in high-speed and low-power spintronic applications based on magnetic tunnel junctions (MTJs). In our experiments, we use ferromagnetic resonance (FMR) to study and quantify VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB MTJ pillars. FMR is excited by applying a microwave current and detected via a small rectified voltage which develops across MTJ at resonance. The VCMA effective field can be extracted from the measured resonance field and was found to vary as a function of electrical bias applied to MTJ. At low applied biases, we observe a linear shift of the VCMA field as a function of the applied voltage which is consistent with the VCMA picture based on the bias-induced electron migration across the MgO/CoFeB interface. At higher biases, both positive and negative, we observe a deviation from the linear behavior which may indicate a saturation of the VCMA effect. These results are important for the design of MTJ-based applications.

  14. Architecture, microstructure and Jc anisotropy of highly oriented biaxially textured Co-doped BaFe2As2 on Fe/IBAD-MgO-buffered metal tapes

    NASA Astrophysics Data System (ADS)

    Trommler, S.; Hänisch, J.; Matias, V.; Hühne, R.; Reich, E.; Iida, K.; Haindl, S.; Schultz, L.; Holzapfel, B.

    2012-08-01

    Optimized, biaxially textured BaFe1.8Co0.2As2 thin films with an in-plane alignment of 1.7° have been realized on high-quality IBAD-textured MgO-coated technical substrates utilizing additional Fe buffer layers. High critical current densities (Jc) were achieved, comparable to films on single crystalline MgO (Jc ≥ 1 MA cm-2 at 4 K, self-field). Transmission electron microscopy investigations reveal a small number of c-axis correlated defects introduced by the MgO template. The effect of these defects on the Jc anisotropy was determined in angular-dependent electronic transport measurements.

  15. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2018-01-01

    We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.

  16. Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, S.; Prabu, D.; Srinivas, V.

    2017-05-01

    Magnesium ferrite, MgFe2O4, (MgFO) nanoparticles (NPs) have been synthesized through sol-gel process. Subsequently, as prepared particles were coated with Zinc-oxide (ZnO) layer(s) through ultrasonication process. Thermal stability, structure and magnetic properties of as-prepared (AP) and annealed samples in the temperature range of 350 °C-1200 °C have been investigated. Structural data suggests that AP MgFO NPs and samples annealed below 500 °C in air exhibit stable ferrite phase. However, α-Fe2O3 and a small fraction of MgO secondary phases appear along with ferrite phase on annealing in the temperatures range 500 °C- 1000 °C. This results in significant changes in magnetic moment for AP NPs 0.77 μB increases to 0.92 μB for 1200 °C air annealed sample. The magnetic properties decreased at intermediate temperatures due to the presence of secondary phases. On the other hand, pure ferrite phase could be stabilized with an optimum amount of ZnO coated MgFO NPs for samples annealed in the temperature range 500 °C-1000 °C with improvement in magnetic behavior compared to that of MgFO samples.

  17. Sintering of (Ni,Mg)(Al,Fe)2O4 Materials and their Corrosion Process in Na3AlF6-AlF3-K3AlF6 Electrolyte

    NASA Astrophysics Data System (ADS)

    Xu, Yibiao; Li, Yawei; Yang, Jianhong; Sang, Shaobai; Wang, Qinghu

    2017-06-01

    The application of ledge-free sidewalls in the Hall-Héroult cells can potentially reduce the energy requirement of aluminum production by about 30 pct (Nightingale et al. in J Eur Ceram, 33:2761-2765, 2013). However, this approach poses great material challenges since such sidewalls are in direct contact with corrosive electrolyte. In the present paper, (Ni,Mg)(Al,Fe)2O4 materials were prepared using fused magnesia, reactive alumina, nickel oxide, and iron oxide powders as the starting materials. The sintering behaviors of specimens as well as their corrosion resistance to molten electrolyte have been investigated by means of X-ray diffraction and scanning electron microscope. The results show that after firing at temperature ranging from 1673 K (1400 °C) up to 1873 K (1600 °C), all the specimens prepared are composed of single-phase (Ni,Mg)(Al,Fe)2O4 composite spinel, the lattice parameter of which increases with increasing Fe3+ ion concentration. Increasing the iron oxide content enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed smaller pores in the matrix. The corrosion tests show that corrosion layers consist of fluoride and Ni(Al,Fe)2O4 composite spinel grains are produced in specimens with Fe/Al mole ratio no more than 1, whereas dense Ni(Al,Fe)2O4 composite spinel layers are formed on the surface of the specimens with Fe/Al mole ratio more than 1. The dense Ni(Al,Fe)2O4 composite spinel layers formed improve the corrosion resistance of the specimens by inhibiting the infiltration of electrolyte and hindering the chemical reaction between the specimen and electrolyte.

  18. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  19. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  20. High-pressure behaviour of Cr-Fe-Mg-Al spinels: applications to diamond geobarometry

    NASA Astrophysics Data System (ADS)

    Periotto, Benedetta; Bruschini, Enrico; Nestola, Fabrizio; Lenaz, Davide; Princivalle, Francesco; Andreozzi, Giovanni B.; Bosi, Ferdinando

    2014-05-01

    Spinels belonging to the chromite - magnesiochromite - hercynite (FeCr2O4-MgCr2O4-FeAl2O4) system are among the most common inclusions found in diamonds (Stachel and Harris 2008). In particular, although FeCr2O4 and MgCr2O4 components sum to between 85 and 88% of spinels found in diamonds, hercynite FeAl2O4 plays a not negligible role in determining their thermo-elastic properties with concentrations reaching 7-9 % (other minor end-members like MgAl2O4, MgFe2O4 and Fe2O3 rarely reach 2-3% in total, see Lenaz et al. 2009). Recent studies were focused on the determination of the diamond formation pressure by the so-called "elastic method" (see for example Nestola et al. 2011 and references therein). It was demonstrated that accurate and precise thermo-elastic parameters are fundamental to minimize the uncertainty of formation pressure. In this work we have determined the equations of state at room temperature of three synthetic spinel end-members chromite - magnesiochromite - hercynite and one natural spinel crystal extracted from a diamond (from Udachnaya mine, Siberia, Russia) by single-crystal X-ray diffraction in situ at high-pressure. A diamond-anvil cell was mounted on a STADI IV diffractometer equipped with a point detector and motorized by SINGLE software (Angel and Finger 2011). The natural crystal was investigated to test (and possibly validate) the "empirical prediction model", capable to provide bulk modulus and its first pressure derivative only knowing the composition of the spinels found in diamonds. Such prediction model could be used to obtain pressure of formation for the diamond-spinel pair through the elastic method. Details and results will be discussed. The research was funded by the ERC Starting Grant to FN (grant agreement n° 307322). References Angel R.J., Finger L.W. (2011) SINGLE A program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247-251. Lenaz D., Logvinova A.M., Princivalle F., Sobolev N. (2009

  1. Fast solution combustion synthesis of porous NaFeTi3O8 with superior sodium storage properties

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Bao; Li, Xue; Xiao, Qian

    2018-01-01

    In this work, NaFeTi3O8 with three-dimensional porous net-like sheet morphology is firstly prepared by a simple and effective solution combustion method. Encouragingly, when being assessed as an anode electrode for sodium ion batteries, the NaFeTi3O8 net-like sheet composite exhibits superior electrochemical properties. We also study the effect of the combustion fuel glycine. The results indicate that the NaFeTi3O8 composite tends to be porous with glycine as the combustion fuel, which displays more excellent long cyclic stability (discharge capacity of 91 mA h g-1 after 1000 cycles at the current density of 0.5 A g-1) and superior rate performance (84.4 mA h g-1 even at 1.6 A g-1) than that of NaFeTi3O8 without glycine as the combustion agent. The enhanced electrochemical properties could be ascribed to the unique porous morphology, which achieves better electrolyte infiltration and faster ion diffusion. [Figure not available: see fulltext.

  2. Polarized neutron reflectivity study of perpendicular magnetic anisotropy in MgO/CoFeB/W thin films

    NASA Astrophysics Data System (ADS)

    Ambaye, Haile; Zhan, Xiao; Li, Shufa; Lauter, Valeria; Zhu, Tao

    In this work we study the origin of PMA in MgO/CoFeB/W trilayer systems using polarized neutron reflectivity. Recently, the spin Hall effect in the heavy metals, such as Pt and Ta, has been of significant interest for highly efficient magnetization switching of the ultrathin ferromagnets sandwiched by such a heavy metal and an oxide, which can be used for spintronic based memory and logic devices. Most work has focused on heavy-metal/ferromagnet/oxide trilayer (HM/FM/MO) structures with perpendicular magnetic anisotropy (PMA), where the oxide layer plays the role of breaking inversion symmetry .No PMA was found in W/CoFeB/MgO films. An insertion of Hf layer in between the W and CoFeB layers, however, has been found to create a strong PMA. Roughness and formation of interface alloys by interdiffusion influences the extent of PMA. We intend to identify these influences using the depth sensitive technique of PNR. In our previous study, we have successfully performed polarized neutron reflectometry (PNR) measurements on the Ta/CoFeB/MgO/CoFeB/Ta thin film with MgO thickness of 1 nm. The PNR measurements were carried out using the BL-4A Magnetic Reflectometer at SNS. This work has been supported by National Basic Research Program of China (2012CB933102). Research at SNS was supported by the Office of BES, DOE.

  3. BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swerts, J., E-mail: Johan.Swerts@imec.be; Mertens, S.; Lin, T.

    Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface ofmore » the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.« less

  4. Thermoelasticity of (Mg,Fe)SiO3 perovskite

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Wu, Zhongqing; Hsu, Han; Cococcioni, Matteo; Wentzcovitch, Renata

    2015-03-01

    We present LDA+U calculations of high temperature elastic properties of (Mg(1 - x)Fex2+)SiO3 bridgemanite (0 <= x <= 0 . 125), the most abundant constituent of Earth's lower mantle. Calculations of aggregate elastic moduli and acoustic velocities for the Mg-end member (x=0) are in excellent agreement with the latest high pressure and high temperature experimental measurements. In the iron bearing system, we particularly focus on the change in thermoelastic parameters across the state change that occurs in ferrous iron above ~30 GPa, often attributed to a high-spin (HS) to intermediate spin (IS) crossover but explained by calculations as a lateral displacement of substitutional iron in the perovskite cage. We show that the measured effect on the equation of state of this change in the state of iron can be explained by the lateral displacement of substitutional iron, not by the HS to IS crossover. Calculated elastic properties of (Mg0.875 Fe0.125 2 +)SiO3 along an adiabatic mantle geotherm, somewhat overestimate longitudinal velocities but produce densities and shear velocities consistent with Preliminary Reference Earth Model data throughout most of the lower mantle. Research supported by NSF/EAR and NSF/CAREER.

  5. Structural characterization of Mg substituted on A/B sites in NiFe_2O_4 nanoparticles using autocombustion method

    NASA Astrophysics Data System (ADS)

    De, Manojit; Tewari, H. S.

    2017-07-01

    In the present paper, we are reporting the synthesis of pure nickel and magnesium ferrite [NiFe_2O_4, MgFe_2O_4] and magnesium-substituted nickel ferrite (Ni_{1-x}Mg_{x/y}Fe_{2-y}O_4; x=y=0.60) on A/B sites with particles size in nanometer range using autocombustion technique. In this study, it has been observed that with increase in sintering temperature, the estimated bulk density of the materials increases. The XRD patterns of the samples show the formation of single-phase materials and the lattice parameters are estimated from XRD patterns. From Raman spectra, the Raman shift of pure NiFe_2O_4 and MgFe_2O_4 are comparable with the experimental values reported in literature. The Raman spectra give five Raman active modes (A_{{1g}} + Eg + 3F_{2g}) which are expected in the spinel structure.

  6. Localization via exchange splitting in NaFe1-xCuxAs

    NASA Astrophysics Data System (ADS)

    Charnukha, Aliaksei; Yin, Zhiping; Song, Yu; Cao, Chongde; Dai, Pengcheng; Basov, Dimitri

    Iron-based high-temperature superconductors have emerged as a distinct material family believed to bridge the wide gap in understanding between conventional low-temperature and unconventional high-temperature copper-based superconductors. And yet, compounds that bear close resemblance to strongly correlated superconducting cuprates have been hard to come by. Recently, copper substitution in a quintessential iron pnictide, NaFeAs, has been demonstrated to result in a semiconducting transport behavior, suggesting the possibility of a strongly correlated Mott insulating electronic state. Here we use optical spectroscopy and dynamical mean-field theory to demonstrate explicitly that the excitation spectrum of NaFe0.5Cu0.5As possesses a sizable gap below the Neel temperature and remains unchanged up to room temperature due to the persistence of short-range antiferromagnetic correlations. We show that all of the observed experimental properties can be explained remarkably well as a result of exchange splitting in the predominantly Fe- d-derived electronic band structure induced by local antiferromagnetic order. On-site repulsion, on the contrary, is insufficient to drive localization. Our results paint a fuller picture of the intermediate character of correlations in iron-pnictides.

  7. Synthesis, Characterization, and Application of Core–Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents

    PubMed Central

    2015-01-01

    Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM–1 s–1 at 3T, a high affinity to [18F]-fluoride or radiometal-bisphosphonate conjugates (e.g., 64Cu and 99mTc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging. PMID:26172432

  8. Enhanced vibronic interaction caused by local lattice symmetry lowering in the (Fe, Mg)As2 ternary system

    NASA Astrophysics Data System (ADS)

    Pishtshev, A.; Rubin, P.

    2018-04-01

    By means of periodic density functional theory (DFT) electronic structure calculations, we investigate iron-site doping effects in a structural model of bulk FeAs2. Simulations performed within the projector augmented-wave method-Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional scheme reveal that the impacts of the two stoichiometric substitutions FeMg and Fe → Ni are radically different with respect to the structural and electronic behavior of the dopants. In particular, unlike the Ni dopant, the Mg dopant incorporated in FeAs2 occupies a noncentral equilibrium position characterized by an off-center displacement from the reference higher-symmetry position. Analysis of the respective electron and vibrational factors allows us to explain this result in terms of the local pseudo Jahn-Teller effect (pJTE). On the basis of DFT calculations, we deduce which electron orbitals and lattice vibrational modes are appropriate for promoting the local instability at the origin of the pJTE. Quantitative evaluations of the pJTE parameters performed within the polyatomic formalism of an effective tight-binding model show that it is just the enhanced vibronic interaction in the Mg-[FeAs6] cluster that is responsible for the local lattice symmetry breaking.

  9. Experimental study of the astrophysically important Na 23 ( α , p ) Mg 26 and Na 23 ( α , n ) Al 26 reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.

    The 23Na(α,p) 26Mg and 23Na(α,n) 26Al reactions are important for our understanding of the 26Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using 4He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the 23Na(α,p) 26Mg and the 23Na(α,n) 26Al reactions are in good agreementmore » with previous experiments and with statistical-model calculations. As a result, the astrophysical reaction rate of the 23Na(α,n) 26Al reaction has been reevaluated and it was found to be larger than the recommended rate.« less

  10. Experimental study of the astrophysically important Na 23 ( α , p ) Mg 26 and Na 23 ( α , n ) Al 26 reactions

    DOE PAGES

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; ...

    2016-12-19

    The 23Na(α,p) 26Mg and 23Na(α,n) 26Al reactions are important for our understanding of the 26Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using 4He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the 23Na(α,p) 26Mg and the 23Na(α,n) 26Al reactions are in good agreementmore » with previous experiments and with statistical-model calculations. As a result, the astrophysical reaction rate of the 23Na(α,n) 26Al reaction has been reevaluated and it was found to be larger than the recommended rate.« less

  11. The effect of Mg-doping and Cu nonstoichiometry on the photoelectrochemical response of CuFeO 2

    DOE PAGES

    Wuttig, Anna; Krizan, Jason W.; Gu, Jing; ...

    2016-11-14

    Here, we report the tuning of CuFeO 2 photoelectrodes by Mg doping and Cu deficiency to demonstrate the effects of carrier concentration on the photoresponse. Carrier type and concentration were quantitatively assessed using the Hall effect on pure, Mg-incorporated, and Cu-deficient pellets (CuFe 1–xMg xO 2 and Cu 1–yFeO 2, x = 0, 0.0005, 0.005, 0.02, and y = 0.005, 0.02) over the range of thermodynamic stability achievable using solid-state synthesis. The same samples were used in a photoelectrochemical cell to measure their photoresponse. We find that the material with the lowest p-type carrier concentration and the highest carrier mobilitymore » shows the largest photoresponse. Furthermore, we show that increasing the p-type carrier concentration and thus the conductivity to high levels is limited by the delafossite defect chemistry, which changes the majority carrier type from p-type to n-type near the Mg solubility limit (x = 0.05) and at high Cu defect concentrations.« less

  12. Bias Dependence of the Electrical Spin Injection into GaAs from Co -Fe -B /MgO Injectors with Different MgO Growth Processes

    NASA Astrophysics Data System (ADS)

    Barate, P.; Liang, S. H.; Zhang, T. T.; Frougier, J.; Xu, B.; Schieffer, P.; Vidal, M.; Jaffrès, H.; Lépine, B.; Tricot, S.; Cadiz, F.; Garandel, T.; George, J. M.; Amand, T.; Devaux, X.; Hehn, M.; Mangin, S.; Tao, B.; Han, X. F.; Wang, Z. G.; Marie, X.; Lu, Y.; Renucci, P.

    2017-11-01

    We investigate the influence of the MgO growth process on the bias dependence of the electrical spin injection from a Co -Fe -B /MgO spin injector into a GaAs-based light-emitting diode (spin LED). With this aim, textured MgO tunnel barriers are fabricated either by sputtering or molecular-beam-epitaxy (MBE) methods. For the given growth parameters used for the two techniques, we observe that the circular polarization of the electroluminescence emitted by spin LEDs is rather stable as a function of the injected current or applied bias for the samples with sputtered tunnel barriers, whereas the corresponding circular polarization decreases abruptly for tunnel barriers grown by MBE. We attribute these different behaviors to the different kinetic energies of the injected carriers linked to differing amplitudes of the parasitic hole current flowing from GaAs to Co-Fe-B in both cases.

  13. The Electrochemical Co-reduction of Mg-Al-Y Alloys in the LiCl-NaCl-MgCl2-AlF3-YCl3 Melts

    NASA Astrophysics Data System (ADS)

    Li, Mei; Liu, Yaochen; Han, Wei; Wang, Shanshan; Zhang, Milin; Yan, Yongde; Shi, Weiqun

    2015-04-01

    The electrochemical formation of Mg-Al-Y alloys was studied in the LiCl-NaCl-MgCl2 melts by the addition of AlF3 and YCl3 on a molybdenum electrode at 973 K (700 °C). In order to reduce the volatilization of salt solvent in the electrolysis process, the volatile loss of LiCl-NaCl-MgCl2 and LiCl-KCl-MgCl2 melts was first measured in the temperature range from 873 K to 1023 K (600 °C to 750 °C). Then, the electrochemical behaviors of Mg(II), Al(III), Y(III) ions and alloy formation processes were investigated by cyclic voltammetry, chronopotentiometry, and open circuit chronopotentiometry. The cyclic voltammograms indicate that the under-potential deposition of magnesium and yttrium on pre-deposited Al leads to formation of Mg-Al and Al-Y intermetallic compounds. The Mg-Al-Y alloys were prepared by galvanostatic electrolysis in the LiCl-NaCl-MgCl2-AlF3-YCl3 melts and characterized by X-ray diffraction and scanning electron microscopy with energy dispersive spectrometry. Composition of the alloys was analyzed by inductively coupled plasma-atomic emission spectrometer, and current efficiency was also determined by the alloy composition.

  14. Dry (Mg,Fe)SiO 3 perovskite in the Earth's lower mantle

    DOE PAGES

    Panero, Wendy R.; Pigott, Jeffrey S.; Reaman, Daniel M.; ...

    2015-02-26

    Combined synthesis experiments and first-principles calculations show that MgSiO 3-perovskite with minor Al or Fe does not incorporate significant OH under lower mantle conditions. Perovskite, stishovite, and residual melt were synthesized from natural Bamble enstatite samples (Mg/(Fe+Mg) = 0.89 and 0.93; Al 2O 3 < 0.1 wt% with 35 and 2065 ppm wt H 2O, respectively) in the laser-heated diamond anvil cell at 1600-2000 K and 25-65 GPa. Combined Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction, and ex-situ transmission electron microscopy (TEM) analysis demonstrates little difference in the resulting perovskite as a function of initial water content. Four distinct OHmore » vibrational stretching bands are evident upon cooling below 100 K (3576, 3378, 3274, and 3078 cm -1), suggesting 4 potential bonding sites for OH in perovskite with a maximum water content of 220 ppm wt H 2O, and likely no more than 10 ppm wt H 2O. Complementary, Fe-free, first-principles calculations predict multiple potential bonding sites for hydrogen in perovskite, each with significant solution enthalpy (0.2 eV/defect). We calculate that perovskite can dissolve less than 37 ppm wt H 2O (400 ppm H/Si) at the top of the lower mantle, decreasing to 31 ppm wt H 2O (340 ppm H/Si) at 125 GPa and 3000 K in the absence of a melt or fluid phase. Here, we propose that these results resolve a long-standing debate of the perovskite melting curve and explain the order of magnitude increase in viscosity from upper to lower mantle.« less

  15. Ionic substitution of Mg2+ for Al3+ and Fe3+ with octahedral coordination in hydroxides facilitate precipitation of layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Paikaray, Susanta; Essilfie-Dughan, Joseph; Hendry, M. Jim

    2018-01-01

    Precipitation of hydrotalcite-like layered double hydroxides (HT-LDHs) from CO32--SO42--rich acidic and alkaline aqueous media through ionic substitution of Mg2+ for Al3+ + Fe3+ and vice versa was investigated under ambient conditions. Diffractogram, spectroscopic, microprobe, microscopic, and synchrotron techniques were used to examine the mechanisms involved. The cations facilitated rapid precipitation of HT-LDH in alkaline conditions (pH ≥ 8.2) with SO42- and CO32- as the counter charge balancing interlayer anions, while initial formation of Fe3+- and Al3+-hydroxides in acidic conditions (pH ≥ 2.4) with subsequent transformation to MgAlFe-type HT-LDH (pH ≥ 8.2) occurred through substitution of Mg2+ for Al3+ and Fe3+. Substitution of Al3+ and Fe3+ in Mg2+-hydroxides did not yield HT-LDH, while the reverse, i.e., Mg2+ substitution in Al3+ and Fe3+-hydroxides, produced initial poorly ordered amorphous HT-LDH that gained better crystallinity and crystallite size upon neutralization. Linear combination fit analyses of XANES data suggest schwertmannite constituted the predominant Fe-phase until pH ∼3.7 followed by ferrihydrite and eventually HT-LDH after pH ≥ 10; basaluminite and epsomite constituted the predominant Al and Mg phases until pH ∼4.5, after which HT-LDH with minor Al(OH)3 and HT-LDH with brucite, respectively, predominated. The study highlights that Mg2+ substitution in Al- and Fe-precipitates is the governing mechanism for HT-LDH precipitation in oxic environments through neutralization of acidic cationic aqueous residues.

  16. Hot-corrosion of AISI 1020 steel in a molten NaCl/Na2SO4 eutectic at 700°C

    NASA Astrophysics Data System (ADS)

    Badaruddin, Mohammad; Risano, Ahmad Yudi Eka; Wardono, Herry; Asmi, Dwi

    2017-01-01

    Hot-corrosion behavior and morphological development of AISI 1020 steel with 2 mg cm-2 mixtures of various NaCl/Na2SO4 ratios at 700°C were investigated by means of weight gain measurements, Optical Microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The weight gain kinetics of the steel with mixtures of salt deposits display a rapid growth rates, compared with the weight gain kinetics of AISI 1020 steel without salt deposit in dry air oxidation, and follow a steady-state parabolic law for 49 h. Chloridation and sulfidation produced by a molten NaCl/Na2SO4 on the steel induced hot-corrosion mechanism attack, and are responsible for the formation of thicker scale. The most severe corrosion takes place with the 70 wt.% NaCl mixtures in Na2SO4. The typical Fe2O3 whisker growth in outer part scale was attributed to the FeCl3 volatilization. The formation of FeS in the innermost scale is more pronounced as the content of Na2SO4 in the mixture is increased.

  17. Particle size dependence of heating power in MgFe2O4 nanoparticles for hyperthermia therapy application

    NASA Astrophysics Data System (ADS)

    Reza Barati, Mohammad; Selomulya, Cordelia; Suzuki, Kiyonori

    2014-05-01

    Magnetic nanoparticles with narrow size distributions have successfully been synthesized by an ultrasonic assisted co-precipitation method. The effects of particle size on magnetic properties, heat generation by AC fields, and the cell cytotoxicity were investigated for MgFe2O4 nanoparticles with mean diameters varying from 7 ± 0.5 nm to 29 ± 1 nm. The critical size for superparamagnetic to ferrimagnetic transition (DS→F) of MgFe2O4 was determined to be about 13 ± 0.5 nm at 300 K. The specific absorption rate (SAR) of MgFe2O4 nanoparticles was strongly size dependent; it showed a maximum value of 19 W/g when the particle size was 10 ± 0.5 nm at which the Néel and Brownian relaxations are the major cause of heating. The SAR value was suppressed dramatically by 46% with increasing particle size from 10 ± 0.5 nm to 13 ± 0.5 nm, where Néel relaxation slows down and SAR results primarily from Brownian relaxation loss. A further reduction in SAR value was evident when the size was increased from 13 ± 0.5 nm to 16 ± 1 nm, where the superparamagnetic to ferromagnetic transition occurs. However, SAR showed a tendency to increase with particle size again above 16 ± 1 nm where hysteresis loss becomes the dominant mechanism of heat generation. The particle size dependence of SAR in the superparamagnetic region was well described by considering the effective relaxation time estimated based on a log-normal size distribution. The clear size dependence of SAR is attributable to the high degree of monodispersity of particles synthesized here. The high SAR value of water-based MgFe2O4 magnetic suspension combined with low cell cytotoxicity suggests a great potential of MgFe2O4 nanoparticles for magnetic hyperthermia therapy applications.

  18. Menzerite-(Y) a New Species {(Y REE)(Ca Fe2plus)2}[(Mg Fe2plus)(Fe3plus Al)](Si3)O12 from a Felsic Granulite Parry Sound Ontario and a New Garnet End-member (Y2Ca)Mg2(SiO4)3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Grew; J Marsh; M Yates

    2011-12-31

    Menzerite-(Y), a new mineral species, forms reddish brown cores, n = 1.844 (20), up to 70 {micro}m across, rimmed successively by euhedral almandine containing up to 2.7 wt% Y{sub 2}O{sub 3} and by K-feldspar in a felsic granulite on Bonnet Island in the interior Parry Sound domain, Grenville Orogenic Province, Canada. It is named after Georg Menzer (1897-1989), the German crystallographer who solved the crystal structure of garnet. Single-crystal X-ray-diffraction results yielded space group Ia3d, a = 11.9947(6) {angstrom}. An electron-microprobe analysis of the grain richest in Y (16.93 wt% Y{sub 2}O{sub 3}) gave the following formula, normalized to eightmore » cations and 12 oxygen atoms: {l_brace}Y{sub 0.83}Gd{sub 0.01}Dy{sub 0.05}Ho{sub 0.02}Er{sub 0.07}Tm{sub 0.01}Yb{sub 0.06}Lu{sub 0.02}Ca{sub 1.37}Fe{sub 0.49}{sup 2+}Mn{sub 0.07}{r_brace} [Mg{sub 0.55}Fe{sub 0.42}{sup 2+}Fe{sub 0.58}{sup 3+}Al{sub 0.35} V{sub 0.01}Sc{sub 0.01}Ti{sub 0.08}](Si{sub 2.82}Al{sub 0.18})O{sub 12}, or {l_brace}(Y,REE)(Ca,Fe{sup 2+}){sub 2}{r_brace}[(Mg,Fe{sup 2+})(Fe{sup 3+},Al)](Si{sub 3})O{sub 12}. Synchrotron micro-XANES data gave Fe{sup 3+}/{Sigma}Fe = 0.56(10) versus 0.39(2) calculated from stoichiometry. The scattering power refined at the octahedral Y site, 17.68 epfu, indicates that a relatively light element contributes to its occupancy. Magnesium, as determined by electron-microprobe analyses, would be a proper candidate. In addition, considering the complex occupancy of this site, the average Y-O bond length of 2.0244(16) {angstrom} is in accord with a partial occupancy by Mg. The dominance of divalent cations with Mg > Fe{sup 2+} and the absence of Si at the octahedral Y site (in square brackets) are the primary criteria for distinguishing menzerite-(Y) from other silicate garnet species; the menzerite-(Y) end-member is {l_brace}Y{sub 2}Ca{r_brace}[Mg{sub 2}](Si{sub 3})O{sub 12}. The contacts of menzerite-(Y) with almandine are generally sharp and, in places, cuspate

  19. Synthesis, structure and electrochemical properties of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, Stanislav S.; Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow; Kuzovchikov, Sergey M.

    2016-10-15

    LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate was synthesized via conventional solid-state and novel freeze-drying routes. The crystal structure was refined based on neutron powder diffraction (NPD) data and validated by electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM). The alkali ions are ordered in LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F and the transition metals jointly occupy the same crystallographic sites. The oxidation state and oxygen coordination environment of the Fe atoms were verified by {sup 57}Fe Mössbauer spectroscopy. Electrochemical tests of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F cathode material demonstrated a reversible activity of the Fe{sup 3+}/Fe{sup 2+} redox couple at the electrodemore » potential near 3.4 V and minor activity of the Co{sup 3+}/Co{sup 2+} redox couple over 5 V vs Li/Li{sup +}. The material exhibited the discharge capacity of more than 82% (theo.) regarding Fe{sup 3+}/Fe{sup 2+} in the 2.4÷4.6 V vs Li/Li{sup +} potential range. - Graphical abstract: The ball-polyhedral representation of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F crystal structure. The MO{sub 4}F{sub 2} units are depicted as blue octahedra, PO{sub 4} units as orange tetrahedra, sodium atoms are designated as yellow (Na1), lithium – red and brown (Li2, Li3 resp.), fluorine – green, oxygen – violet spheres. - Highlights: • Freeze-drying method was successfully applied to the synthesis of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F. • The crystal structure of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F was refined based on NPD and validated by ED and HRTEM. • LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F demonstrated a reversible Li de/intercalation in the 2.5÷4.6 V vs Li/Li{sup +} range.« less

  20. Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence.

    PubMed

    Tao, Bingshan; Barate, Philippe; Devaux, Xavier; Renucci, Pierre; Frougier, Julien; Djeffal, Abdelhak; Liang, Shiheng; Xu, Bo; Hehn, Michel; Jaffrès, Henri; George, Jean-Marie; Marie, Xavier; Mangin, Stéphane; Han, Xiufeng; Wang, Zhanguo; Lu, Yuan

    2018-05-31

    Remanent spin injection into a spin light emitting diode (spin-LED) at zero magnetic field is a prerequisite for future application of spin optoelectronics. Here, we demonstrate the remanent spin injection into GaAs based LEDs with a thermally stable Mo/CoFeB/MgO spin injector. A systematic study of magnetic properties, polarization-resolved electroluminescence (EL) and atomic-scale interfacial structures has been performed in comparison with the Ta/CoFeB/MgO spin injector. The perpendicular magnetic anisotropy (PMA) of the Mo/CoFeB/MgO injector shows more advanced thermal stability than that of the Ta/CoFeB/MgO injector and robust PMA can be maintained up to 400 °C annealing. The remanent circular polarization (PC) of EL from the Mo capped spin-LED reaches a maximum value of 10% after 300 °C annealing, and even remains at 4% after 400 °C annealing. In contrast, the Ta capped spin-LED almost completely loses the remanent PC under 400 °C annealing. Combined advanced electron microscopy and spectroscopy studies reveal that a large amount of Ta diffuses into the MgO tunneling barrier through the CoFeB layer after 400 °C annealing. However, the diffusion of Mo into CoFeB is limited and never reaches the MgO barrier. These findings afford a comprehensive perspective to use the highly thermally stable Mo/CoFeB/MgO spin injector for efficient electrical spin injection in remanence.

  1. A New Green Chemical Synthesis Strategy for Synthesis of L10 FePt Nanoparticles from Layered Precursor Fe(H2O)6PtCl6

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George; Hu, Xiaocao; Capobianchi, Aldo; Gallagher, Ryan

    2014-03-01

    In this work, a new green chemical strategy for the synthesis of L10 FePt nanoparticles is reported. The starting material is a polycrystalline molecular complex (Fe(H2O)6PtCl6) , in which Fe and Pt atoms are arranged on alternating planes. The starting compound was milled with crystalline NaCl and then annealed under forming gas (5 % H2 and 95 % Ar) at 450 °C for 2h. Finally, the mixture was washed with water to remove the NaCl and L10 FePt nanoparticles were obtained. Transmission electron microscopy (TEM) images revealed that this method is able to produce L10 nanoparticles with different average size varying from 13.9 nm to 5.4 nm depending on the (Fe(H2O)6PtCl6) /NaCl ratio. With smaller (Fe(H2O)6PtCl6) /NaCl ratio(10mg/20g) and longer milling time(15h), FePt nanoparticles had a smaller size and narrower size distribution. The X-Ray Diffraction (XRD) pattern showed the presence of the characteristic peaks of the fct phase. The hysteresis loop, measured both at room temperature and 50 K, shows a high coercivity of 7.6 kOe and 11.2 kOe, respectively as expected for the high anisotropy L10 phase. Larger precursor/NaCl ratio and shorter ball milling time led to larger coercivity.

  2. Simple synthesis of graphene nanocomposites MgO-rGO and Fe2O3-rGO for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, Seham K.; Ionov, Andrey; Mozhchil, R. N.; Naqvi, Alim H.

    2018-05-01

    Hummer's method was used to prepare graphene oxide (GO) by chemical exfoliation of graphite. Simple precipitation method was used for the preparation of hybrid nanocomposites MgO-rGO and Fe2O3-rGO. A 0.3 Molar of corresponding metal nitrate solution and GO solution are used for the preparation process. XRD, FT-IR, and XPS were used to characterize the prepared nanocomposites. The reduction of GO into reduced rGO in the formed nanocomposites was confirmed. Morphological characterization showed the formation of needle-shaped nanocrystals of MgO successfully grown on graphene nanosheet with average crystallite size 8.4 nm. Hematite nanocomposite Fe2O3-rGO forms rod-shaped crystals with average crystallite size 27.5 nm. The saturation magnetization observed for Fe2O3-rGO is less than reported value for the pure Fe2O3 nanoparticles. Thermal properties of as-prepared hybrid nanocomposites MgO-rGO and Fe2O3-rGO showed thermal stability of the prepared nanocomposite over long range of temperature.

  3. Combustion of Na 2B 4O 7 + Mg + C to synthesis B 4C powders

    NASA Astrophysics Data System (ADS)

    Guojian, Jiang; Jiayue, Xu; Hanrui, Zhuang; Wenlan, Li

    2009-09-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2B 4O 7), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2B 4O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2B 4O 7 than stoichiometric ratio in Na 2B 4O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  4. Effect of Fe3O4 addition on removal of ammonium by zeolite NaA.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-01-15

    Magnetic zeolite NaA with different Fe(3)O(4) loadings was prepared by hydrothermal synthesis based on metakaolin and Fe(3)O(4). The effect of added Fe(3)O(4) on the removal of ammonium by zeolite NaA was investigated by varying the Fe(3)O(4) loading, pH, adsorption temperature, initial concentration, adsorption time. Langmuir, Freundlich, and pseudo-second-order modeling were used to describe the nature and mechanism of ammonium ion exchange using both zeolite and magnetic zeolite. Thermodynamic parameters such as change in Gibbs free energy, enthalpy and entropy were calculated. The results show that all the selected factors affect the ammonium ion exchange by zeolite and magnetic zeolite, however, the added Fe(3)O(4) apparently does not affect the ion exchange performance of zeolite to the ammonium ion. Freundlich model provides a better description of the adsorption process than Langmuir model. Moreover, kinetic analysis indicates the exchange of ammonium on the two materials follows a pseudo-second-order model. Thermodynamic analysis makes it clear that the adsorption process of ammonium is spontaneous and exothermic. Regardless of kinetic or thermodynamic analysis, all the results suggest that no considerable effect on the adsorption of the ammonium ion by zeolite is found after the addition of Fe(3)O(4). According to the results, magnetic zeolite NaA can be used for the removal of ammonium due to the good adsorption performance and easy separation method from aqueous solution. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Effects of cation ordering on the elastic and electronic properties of Mg-Fe silicate phases at high pressures

    NASA Astrophysics Data System (ADS)

    Das, Pratik Kr.; Mandal, Nibir; Arya, A.

    2017-12-01

    Olivine [(Mg, Fe)2SiO4] and pyroxene [(Mg, Fe)Si2O6] are naturally occurring silicate phases. Both the phases crystallize with orthorhombic symmetry, displaying ordering of Mg2+ and Fe2+ in their non-equivalent octahedral lattice sites (M1, M2). We address two major issues: (1) how far an inversion of the cation ordering: type I (Mg2+ in M1; Fe2+ in M2) to type II (Mg2+ in M2; Fe2+in M1) can modify their elastic properties and (2) what are the effects of this inversion on their electronic properties? Using density functional theory, we calculate the elastic constant tensors (Cij) as a function of hydrostatic pressure for types I and II ordering. Our calculations suggest that the inversion (types I to II) in olivine significantly reduces the shear elastic constant C55 (˜25%). This has little effect on the Cij of pyroxene in ambient condition, but the effects become strong at elevated pressures (100 GPa), resulting in large variations (>40%) of all the shear elastic constants: C44, C55, and C66. We predict contrasting variations in compressional (VP) and shear (VS) wave velocities by 1% and 9% and by 2% and 11% for olivine and pyroxene, respectively, on types I to II switchover. Our Debye temperature (θD) calculations show that θD of olivine is less sensitive to ordering inversion, whereas that of pyroxene varies substantially (˜22%) under ambient condition. We evaluate the electronic DOS of pyroxene, and obtain a large difference in the magnetic moment between types I and II.

  6. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.

    PubMed

    Stavila, Vitalie; Bhakta, Raghunandan K; Alam, Todd M; Majzoub, Eric H; Allendorf, Mark D

    2012-11-27

    We demonstrate that NaAlH(4) confined within the nanopores of a titanium-functionalized metal-organic framework (MOF) template MOF-74(Mg) can reversibly store hydrogen with minimal loss of capacity. Hydride-infiltrated samples were synthesized by melt infiltration, achieving loadings up to 21 wt %. MOF-74(Mg) possesses one-dimensional, 12 Å channels lined with Mg atoms having open coordination sites, which can serve as sites for Ti catalyst stabilization. MOF-74(Mg) is stable under repeated hydrogen desorption and hydride regeneration cycles, allowing it to serve as a "nanoreactor". Confining NaAlH(4) within these pores alters the decomposition pathway by eliminating the stable intermediate Na(3)AlH(6) phase observed during bulk decomposition and proceeding directly to NaH, Al, and H(2), in agreement with theory. The onset of hydrogen desorption for both Ti-doped and undoped nano-NaAlH(4)@MOF-74(Mg) is ∼50 °C, nearly 100 °C lower than bulk NaAlH(4). However, the presence of titanium is not necessary for this increase in desorption kinetics but enables rehydriding to be almost fully reversible. Isothermal kinetic studies indicate that the activation energy for H(2) desorption is reduced from 79.5 kJ mol(-1) in bulk Ti-doped NaAlH(4) to 57.4 kJ mol(-1) for nanoconfined NaAlH(4). The structural properties of nano-NaAlH(4)@MOF-74(Mg) were probed using (23)Na and (27)Al solid-state MAS NMR, which indicates that the hydride is not decomposed during infiltration and that Al is present as tetrahedral AlH(4)(-) anions prior to desorption and as Al metal after desorption. Because of the highly ordered MOF structure and monodisperse pore dimensions, our results allow key template features to be identified to ensure reversible, low-temperature hydrogen storage.

  7. Constraining the astrophysical 23Mg(p, γ)24Al reaction rate using the 23Na(d,p)24Na reaction

    NASA Astrophysics Data System (ADS)

    Bennett, E. A.; Catford, W. N.; Christian, G.; Dede, S.; Hallam, S.; Lotay, G.; Ota, S.; Saastamoinen, A.; Wilkinson, R.

    2017-09-01

    The 23Mg(p, γ)24Al reaction provides an escape from the Ne-Na cycle in classical novae and is therefore important in understanding nova nucleosynthesis in the A > 20 mass range. Although several resonances may contribute to the overall rate at novae temperatures, the resonance at 475 keV is thought to be dominant. The strength of this resonance has been directly measured using a radioactive 23Mg beam impinging on a windowless H2 gas target; however, recent high-precision 24Al mass measurements have called this result into question. Here we make an indirect measurement using the 23Na(d,p)24Na reaction in inverse kinematics to study the mirror state of the 475 keV resonance in 24Na. The experiment, performed at the Texas A&M Cyclotron Institute, utilized the TIARA silicon array, four HPGe detectors, and the MDM spectrometer to measure the excited states of the 24Na nucleus. Preliminary results from the experiment will be presented along with progress from the ongoing analysis.

  8. Effect of Synthesis Parameter on Crystal Structures and Magnetic Properties of Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe2O4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maulia, R.; Putra, R. A.; Suharyadi, E.

    2017-05-01

    Mg0.5Ni0.5Fe2O4 nanoparticles have been successfully synthesized by using co-precipitation method and varying the synthesis parameter, i.e. synthesis temperature and NaOH concentration. X-ray Diffraction (XRD) pattern showed that nanoparticles have cubic spinel structures with an additional phase of γ-Fe2O3 and particle size varies within the range of 4.3 - 6.7 nm. This variation is due to the effect of various synthesis parameters. Transmission Electron Microscopy (TEM) image showed that the nanoparticles exhibited agglomeration. The observed diffraction ring from selected area electron diffraction showed that the sample was polycrystalline and confirmed the peak appearing in XRD. The coercivities showed an increasing trend with an increase in particle size from 44.7 Oe to 49.6 Oe for variation of NaOH concentration, and a decreasing trend with an increase in particle size from 46.8 to 45.1 Oe for variation of synthesis temperature. The maximum magnetization showed an increasing trend with an increase in the ferrite phase from 3.7 emu/g to 5.4 emu/g possessed in the sample with variations on NaOH concentration. The maximum magnetization for the sample with variations on synthesis temperature varied from 4.4 emu/g to 5.7 emu/g due to its crystal structures.

  9. Pulsed laser deposition of SmFeAsO1-δ on MgO(100) substrates

    NASA Astrophysics Data System (ADS)

    Haindl, Silvia; Kinjo, Hiroyuki; Hanzawa, Kota; Hiramatsu, Hidenori; Hosono, Hideo

    2018-04-01

    Layered iron oxyarsenides are novel interesting semimetallic compounds that are itinerant antiferromagnets in their ground state with a transition to high-temperature superconductivity upon charge carrier doping. The rare earth containing mother compounds offer rich physics due to different antiferromagnetic orderings: the alignment of Fe magnetic moments within the FeAs sublattice, which is believed to play a role for the superconducting pairing mechanism, and the ordering of the rare-earth magnetic moments at low temperatures. Here, we present thin film preparation and a film growth study of SmFeAsO on MgO(100) substrates using pulsed laser deposition (PLD). In general, the PLD method is capable to produce iron oxyarsenide thin films, however, competition with impurity phase formation narrows the parameter window. We assume that the film growth in an ultra-high vacuum (UHV) environment results in an oxygen-deficient phase, SmFeAsO1-δ. Despite the large lattice misfit, we find epitaxial oxyarsenide thin film growth on MgO(100) with evolving film thickness. Bragg reflections are absent in very thin films although they locally show indications for pseudomorphic growth of the first unit cells. We propose the possibility for a Stranski-Krastanov growth mode as a result of the large in-plane lattice misfit between the iron oxypnictide and the MgO unit cells. A columnar 3-dimensional film growth mode dominates and the surface roughness is determined by growth mounds, a non-negligible parameter for device fabrication as well as in the application of surface sensitive probes. Furthermore, we found evidence for a stratified growth in steps of half a unit cell, i.e. alternating growth of (FeAs)- and (SmO1-δ)+ layers, the basic structural components of the unit cell. We propose a simple model for the growth kinetics of this compound.

  10. Cross Section Measurements of the Reaction 23Na(p, γ)24Mg

    NASA Astrophysics Data System (ADS)

    Boeltzig, Axel; Deboer, Richard James; Macon, Kevin; Wiescher, Michael; Best, Andreas; Imbriani, Gianluca; Gyürky, György; Strieder, Frank

    2017-09-01

    The reaction 23Na(p, γ)24Mg can provide a link from the NeNa to the MgAl cycle in stellar burning and is therefore of interest in nuclear astrophysics. To determine the reaction rates at stellar temperatures, new cross section measurements at low proton energies have been performed recently, and further experiments are underway. The current cross section data implies that the reaction rate up to temperatures of 1 GK is determined by a few narrow resonances and direct capture. Complementary to these experimental efforts at low proton energies, cross section measurements at higher energies can help to constrain the direct capture and broad resonance contributions to the cross section and reduce the uncertainty of the extrapolation towards stellar energies. In this paper we report an experiment to measure the 23Na(p, γ)24Mg cross section with a solid target setup at the St. ANA 5U accelerator at the University of Notre Dame. The experiment and the current status of data analysis will be described. This work benefited from support by the National Science Foundation under Grant No. PHY-1430152 (JINA-CEE), the Nuclear Science Laboratory (NSL), the Istituto Nazionale di Fisica Nucleare (INFN), and the Gran Sasso Science Institute (GSSI).

  11. Irradiation-induced formation of a spinel phase at the FeCr/MgO interface

    DOE PAGES

    Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; ...

    2015-04-27

    Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni 3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However,more » under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.« less

  12. Analysis of Relations Between the Level of Mg, Zn, Ca, Cu, and Fe and Depressiveness in Postmenopausal Women.

    PubMed

    Szkup, Małgorzata; Jurczak, Anna; Brodowska, Aleksandra; Brodowska, Agnieszka; Noceń, Iwona; Chlubek, Dariusz; Laszczyńska, Maria; Karakiewicz, Beata; Grochans, Elżbieta

    2017-03-01

    Numerous observations suggest a possible connection between the levels of Mg, Zn, Fe, and Zn and the incidence of depressive symptoms. Depression is two to three times more common in women than in men. The menopausal period is extremely conducive to depressive disorders. The aim of this study was to assess the severity of depressive symptoms in postmenopausal women depending on the levels of Mg, Zn, Ca, Cu, and Fe. The study included 198 healthy postmenopausal women at the average age of 56.26 ± 5.55 years. In the first part of the study, standardized research tools were used, namely the Primary Care Evaluation of Mental Disorders (PRIME-MD) and the Beck Depression Inventory (BDI). The second part involved biochemical analysis of Mg, Zn, Ca, Cu, and Fe levels in blood serum. The lowest Cu levels were observed in women without depressive symptoms (1.07 ± 0.22 mg/l) and the highest in those with severe depressive symptoms (1.19 ± 0.17 mg/l), (p ≤ 0.05). The lowest Mg levels were observed in women with depressive symptoms (14.28 ± 2.13 mg/l), and the highest in women without depressive symptoms (16.30 ± 3.51 mg/l), (p ≤ 0.05). The average serum Mg levels (15.75 ± 3.23 mg/l) decreased compared to the reference values (18.77-24 mg/l). What is striking is a potential relation between the levels of Mg and Cu and depressiveness. Our results indicate to a higher vulnerability to depression in a group of women with lower levels of Mg and higher levels of Cu.

  13. Selective Extraction and Recovery of Nd and Dy from Nd-Fe-B Magnet Scrap by Utilizing Molten MgCl2

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Okabe, Toru H.

    2018-06-01

    Fundamental experiments are conducted with the aim of developing an efficient recycling process for rare earth elements (REEs) from neodymium-iron-boron (Nd-Fe-B) permanent magnet scrap. Molten magnesium dichloride (MgCl2) was chosen as an extraction medium, which can selectively chlorinate and extract REEs in magnet alloys. Dysprosium-containing Nd-Fe-B magnet alloy was immersed in molten MgCl2 at 1273 K (1000 °C) for 3 to 12 hours. The results of the experiments clearly show that the REEs in the magnetic alloy were successfully extracted into the molten salt, while the Fe-B alloy remained in a solid form. The extraction ratios of Nd and Dy were at most 87 and 78 mass pct, respectively. After the extraction experiment, excess MgCl2 and Mg were removed by vacuum distillation and the rare earth chlorides were recovered. Thus, the feasibility of this method for efficient recovery of rare earths using molten MgCl2 is demonstrated.

  14. Selective Extraction and Recovery of Nd and Dy from Nd-Fe-B Magnet Scrap by Utilizing Molten MgCl2

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Okabe, Toru H.

    2018-02-01

    Fundamental experiments are conducted with the aim of developing an efficient recycling process for rare earth elements (REEs) from neodymium-iron-boron (Nd-Fe-B) permanent magnet scrap. Molten magnesium dichloride (MgCl2) was chosen as an extraction medium, which can selectively chlorinate and extract REEs in magnet alloys. Dysprosium-containing Nd-Fe-B magnet alloy was immersed in molten MgCl2 at 1273 K (1000 °C) for 3 to 12 hours. The results of the experiments clearly show that the REEs in the magnetic alloy were successfully extracted into the molten salt, while the Fe-B alloy remained in a solid form. The extraction ratios of Nd and Dy were at most 87 and 78 mass pct, respectively. After the extraction experiment, excess MgCl2 and Mg were removed by vacuum distillation and the rare earth chlorides were recovered. Thus, the feasibility of this method for efficient recovery of rare earths using molten MgCl2 is demonstrated.

  15. [Characterization and optimization of the NaOH-EDTA extracts for solution 31P-NMR analysis of organic phosphorus in river sediments].

    PubMed

    Zhang, Wen-Qiang; Shan, Bao-Qing; Zhang, Hong; Tang, Wen-Zhong

    2014-01-01

    Optimization and mechanism of NaOH-EDTA extraction solutions were studied in phosphorus (P) pollution river sediments, which were Fe, Al-rich sediment, by solution 31P nuclear magnetic resonance spectroscopy (31P-NMR). Different proportions of NaOH and EDTA showed different extraction efficiency on total P (TP) and organic P (Po) in the sediment. The concentration of Po in NaOH + EDTA extract was higher than that in NaOH extract. The mechanism was that the TP and Po were released under the conditions of EDTA chelating with Fe and Al. The concentration of TP and Po were the highest in 1.00 mol x L(-1) NaOH +75 mmol x L(-1) EDTA extract and 0.25 mol x L(-1) NaOH + 50 mmol x L(-1) EDTA extract, which were 3.88 mg x g(-1) and 0.24 mg x g(-1), respectively. The extractions of Fe, Mn, Ca, Mg, Al were increasing as the EDTA increased under the same NaOH concentration. Extraction efficiency of Fe, Mn, Ca showed negative correlation with the pH of the extracting solution (P < 0.01). Exponential relationship was found between the extraction of Al and the pH of the extraction solution (P < 0.01) because of the AlO2- and EDTA-Al complex. The quality of spectra of NaOH-EDTA extract was better than that of NaOH extract. Six P species were detected in different extractions, including phosphonates, orthophosphate, pyrophosphate, orthophosphate monoesters, phospholipids and deoxyribonucleic acids. Therefore, 0. 25 mol x L(-1) NaOH + 50 mmol x L(-1) EDTA was the optimization extraction solution for Po analysis in Fe and Al-rich river sediment by 31P-NMR.

  16. Gigantic perpendicular magnetic anisotropy of heavy transition metal cappings on Fe/MgO(0 0 1)

    NASA Astrophysics Data System (ADS)

    Taivansaikhan, P.; Odkhuu, D.; Rhim, S. H.; Hong, S. C.

    2017-11-01

    Effects of capping layer by 5d transition metals (TM = Hf, Ta, W, Re, Os, Ir, Pt, and Au) on Fe/MgO(0 0 1), a typical magnetic tunneling junction, are systematically investigated using first-principles calculation for magnetism and magnetocrystalline-anisotropy (MCA). The early TMs having less than half-filled d bands favor magnetization antiparallel to Fe, whereas the late TMs having more than half-filled d bands favor parallel, which is explained in the framework of kinetic exchange energy. The Os capping, isovalent to Fe, enhances MCA significantly to gigantic energy of +11.31 meV/cell, where positive contribution is mostly from the partially filled majority d bands of magnetic quantum number of |m| = 1 along with stronger spin-orbit coupling of Os than Fe. Different TM cappings give different MCA energies as the Fermi level shifts according to the valence of TM: Re and Ir, just one valence more or less than Os, have still large PMCA but smaller than the Os. In the W and Pt cappings, valence difference by two, PMCA are further reduced; MCAs are lowered compared to Fe/MgO(0 0 1) by the cappings of the very early TMs (Hf and Ta), while the very late TM (Au) switches sign to in-plane MCA.

  17. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    NASA Astrophysics Data System (ADS)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  18. The orthorhombic to high-P monoclinic phase transition in Mg-Fe Pyroxenes: Can it produce a seismic discontinuity?

    NASA Astrophysics Data System (ADS)

    Woodland, Alan B.

    The orthorhombic to high-P monoclinic phase transition in (Mg,Fe)SiO3 pyroxene with a mantle-relevant composition (XFs = 0.1) is expected to occur at ˜300 km depth [Woodland and Angel, 1997]. However, the divariant nature of the phase transition in the Mg-Fe system leaves the question open as to whether this transition occurs over a narrow enough pressure interval to cause a seismic discontinuity. New experimental results with binary Mg-Fe pyroxenes constrain the divariant loop to be 0.2 GPa wide at the composition of XFs = 0.4 and on the order of 0.15 GPa for a mantle-relevant composition. This implies that the phase transition will be complete over a depth interval of about 5-6 km in the mantle and it is concluded that the divariant loop of the orthorhombic to high-P monoclinic phase transition in (Mg,Fe)SiO3 pyroxene is indeed narrow enough to produce a “jump” in seismic velocities. The experimentally observed metastable behavior of orthopyroxene could further reduce the effective depth interval of this phase transition. The expected location of this phase transition coincides with a small magnitude seismic discontinuity, the “X-discontinuity”, occasionally observed in seismic profiles at ˜300 km depth, and thus provides a viable petrologic explanation for the origin of this discontinuity, if it truly exists.

  19. In-situ studies of Fe2B phase formation in MgB2 wires and tapes by means of high-energy x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Grivel, J. C.; Andersen, N. H.; Pinholt, R.; Ková, P.; Husek, I.; Hässler, W.; Herrmann, M.; Perner, O.; Rodig, C.; Homeyer, J.

    2006-06-01

    The phase transformations occurring in the ceramic core of Fe-sheathed MgB2 wires and tapes prepared by in-situ reaction of Mg and B precursor powders, have been studied by means of high-energy x-ray diffraction. In particular, the time evolution of the Fe2B phase, forming at the interface between the sheath and the ceramic, was studied at different sintering temperatures. The reactivity of the sheath towards Fe2B formation is strongly dependent on powder pre-treatment. In wires produced with commercial Mg and B powders without additional mechanical activation, the Fe2B phase starts forming around 650°C. In contrast, in tapes produced from a mixture of Mg and B powders subjected to high-energy ball milling, the interfacial Fe2B layer forms readily at 600°C. The increase of Fe2B volume fraction is linear to first approximation, showing that the interfacial layer does not act as a diffusion barrier against further reaction between the sheath and the ceramic core. If the ceramic core is converted to MgB2 at a temperature, which is low enough to avoid Fe2B formation, the interface is stable during further annealing at temperatures up to 700°C at least. However, too high annealing temperatures (T > 800°C), would result in formation of Fe2B, probably following the partial decomposition of MgB2.

  20. Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyuil; Tanatar, Makariy A.; Spyrison, Nicholas

    2012-07-30

    The London penetration depth was measured in single crystals of self-doped Na1-δFeAs (from under doping to optimal doping, Tc from 14 to 27 K) and electron-doped Na(Fe1-xCox)As with x ranging from undoped, x=0, to overdoped, x=0.1. In all samples, the low-temperature variation of the penetration depth exhibits a power-law dependence, Δλ(T)=ATn, with the exponent that varies in a domelike fashion from n˜1.1 in the underdoped, reaching a maximum of n˜1.9 in the optimally doped, and decreasing again to n˜1.3 on the overdoped side. While the anisotropy of the gap structure follows a universal domelike evolution, the exponent at optimal doping,more » n˜1.9, is lower than in other charge-doped Fe-based superconductors (FeSCs). The full-temperature range superfluid density, ρs(T)=λ(0)/λ(T)2, at optimal doping is also distinctly different from other charge-doped FeSCs but is similar to isovalently substituted BaFe2(As1-xPx)2, believed to be a nodal pnictide at optimal doping. These results suggest that the superconducting gap in Na(Fe1-xCox)As is highly anisotropic even at optimal doping.« less

  1. First Simultaneous and Common-Volume Lidar Observations of Na and Fe Metals, Temperatures, and Vertical Winds in Antarctica

    NASA Astrophysics Data System (ADS)

    Chu, X.

    2017-12-01

    A new STAR Na Doppler lidar will be installed to Arrival Heights near McMurdo Station, Antarctica in October 2017. This new lidar will be operated next to an existing Fe Boltzmann lidar to make simultaneous and common-volume measurements of metal Na and Fe layers, neutral temperatures, and vertical winds in the mesosphere and thermosphere, up to nearly 200 km. These measurements will be used to study a variety of science topics, e.g., the meteoric metal layers, wave dynamics, polar mesospheric clouds, constituent and heat fluxes, and cosmic dust. The discoveries of thermospheric neutral Fe layers and persistent gravity waves by the Fe Boltzmann lidar observations has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere coupling and processes. This paper will report the first summer results from the simultaneous Na and Fe lidar observations from Antarctica, and highlight important discoveries made by the Fe lidar during its first seven years of campaign at McMurdo. A thermosphere-ionosphere Fe/Fe+ (TIFe) model will be introduced to explain the TIFe layers in Antarctica.

  2. Equation of State of Iron-Rich (Mg,Fe)O

    NASA Astrophysics Data System (ADS)

    Dobrosavljevic, V.; Jackson, J. M.

    2017-12-01

    Recent seismic observations of the core-mantle boundary (CMB) have provided increasing evidence for the presence of a boundary layer rich in chemical diversity with lateral variations in seismic velocities and densities. Exploring causes of observed anomalies such as ultralow-velocity zones (ULVZs) in this region can lead to a deeper understanding of phenomena like hotspot volcanism and heat flow from the core. One potential explanation for the presence of these lateral heterogeneities may be iron enrichment in lower mantle minerals such as magnesiowüstite, possibly resulting from melting events or interactions with the iron-dominant outer core. Relatively little study has been directed toward iron-rich members of the (Mg,Fe)O solid solution despite the possibility for even low levels of iron enrichment to have significant impact on elastic properties. To that end, we present results from a powder x-ray diffraction study on (Mg0.06Fe0.94)O up to 90 GPa at 300 K using helium as a pressure-transmitting medium. The measurements were conducted at beamline 12.2.2 of the Advanced Light Source of Lawrence Berkeley National Laboratory. The diffraction data were used to determine the equations of state for the material's B1 cubic and rhombohedral phases and constrain the transition pressure at ambient temperature. We combine our results with pressure-temperature-volume measurements on an identical composition (Wicks et al. 2015) to produce a well-constrained thermal equation of state. Using these results, we report a thermal elasticity model for magnesiowüstite at CMB conditions for use in dynamic modeling and comparison against seismic observations.

  3. Syntheses, crystal structures, and magnetic properties of the oxalato-bridged mixed-valence complexes (FeII(bpm)3]2[FeIII2(ox)5].8H2O and FeII(bpm)3Na(H2O)2Fe(ox)(3).4H2O (bpm = 2,2'-bipyrimidine).

    PubMed

    Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M

    2001-02-12

    The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na

  4. [Elimination of As(V) by bead cellulose adsorbent loaded with Fe (beta-FeOOH) from groundwater].

    PubMed

    Guo, Xue-jun; Chen, Fu-hua

    2005-05-01

    A new adsorbent, bead cellulose impregnated with Fe oxide hydroxide (beta-FeOOH) was prepared, which is porous and has excellent mechanical properties. The content of iron, the reactive center of the adsorbent was 360 mg/mL at the most (50% in mass). Batch sorption experiments show that the adsorbent had 15.6 mg/mL (33.2 mg/g) of As(V) maximum sorption while the iron content was 220 mg/mL. The adsorbent had good kinetic property for arsenate and the adsorption equilibrium reached in 10 h. The sorption kinetic data can be described by Lagergren pseudo-second order rate equation. The addition of chloride, sulfate and silicate did not affecte the arsenic adsorption. The column experiment indicated that the breakthrough bed volume was 5000 BV while influent As(V) concentration was 500 microg/L and empty contact time was 5.9 min. The spent adsorbent can be regenerated eluting with 1.5 mol x L(-1) NaOH solutions, and the desorption and regeneration process were more than 90%. The FeOOH was chemically stable during the column adsorption and regeneration. The preparation method is simple and innovative. The adsorbent has good future applying for the arsenic removal from groundwater and drinking water.

  5. Effects of Composition and Iron Spin State on the Structural Transition of (Mg,Fe)CO3 in the Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Hsu, H.; Huang, S. C.; Wei, C. M.; Hsing, C. R.

    2015-12-01

    Iron-bearing magnesium carbonates (Mg,Fe)CO3 are believed the major carbon carriers in the Earth's deep lower mantle; they may play a crucial role in the Earth's deep carbon cycle. Knowledge of the physical and chemical properties of these carbonates is thus essential for our understanding of the mantle's role in global carbon cycle. Experiments have shown that (Mg,Fe)CO3 ferromagnesite (calcite structure) can be stable up to 80-100 GPa. At 45-50 GPa, ferromangsite undergoes a high-spin to low-spin transition, accompanied by a volume reduction and elastic anomalies. Starting ~100 GPa, ferromagnesite goes through a complicated structural transition. The detail of this transition and the atomic structures of high-pressure (Mg,Fe)CO3 phases are still highly debated. Experimental observations and theoretical results are inconsistent so far. In experiments, several distinct high-pressure (Mg,Fe)CO3 structures have been reported, including a P21/c phase [1] and a Pmm2 phase [2]. In theory, a C2/m phase [3] and a P-1 phase [4] have been suggested, while the Pmm2 phase is not found. One possible reason for such a discrepancy is that all available theoretical calculations so far are based on pure MgCO3, while experimental works are performed using (Mg,Fe)CO3 with high iron concentration ( > 50%). Clearly, the concentration of iron and the possible iron spin crossover can significantly affect the stability of these high-pressure (Mg,Fe)CO3 phases. Here, we use density functional theory + self-consistent Hubbard U (DFT+Usc) calculations to study this structural transition. The effects of composition and iron spin state on these (Mg,Fe)CO3 phases are also discussed. Our results can be expected to provide insightful information for better understanding the Earth's deep carbon cycle.[1] E. Boulard et al., Proc. Natl. Acad. Sci. USA 108, 5184 (2011).[2] J. Liu et al., Sci. Rep. 5, 7640 (2015). [3] A. R. Oganov et al., Earth Planet. Sci. Lett. 273, 38 (2008). [4] C. J. Pickard and

  6. The Partial Molar Volume and Compressibility of the FeO Component in Model Basalts (Mixed CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6 Liquids) at 0 GPa: evidence of Fe2+ in 6-fold coordination

    NASA Astrophysics Data System (ADS)

    Guo, X.; Lange, R. A.; Ai, Y.

    2010-12-01

    FeO is an important component in magmatic liquids and yet its partial molar volume at one bar is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Moreover, there is growing evidence from spectroscopic studies that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and it is expected that the partial molar volume and compressibility of the FeO component will vary accordingly. We have conducted both density and relaxed sound speed measurements on four liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system: (1) Di-Hd (50:50), (2) An-Hd (50:50), (3) An-Di-Hd (33:33:33) and (4) Hd (100). Densities were measured between 1573 and 1838 K at one bar with the double-bob Archimedean method using molybdenum bobs and crucibles in a reducing gas (1%CO-99%Ar) environment. The sound speeds were measured under similar conditions with a frequency-sweep acoustic interferometer, and used to calculate isothermal compressibility. All the density data for the three multi-component (model basalt) liquids were combined with density data on SiO2-Al2O3-CaO-MgO-K2O-Na2O liquids (Lange, 1997) in a fit to a linear volume equation; the results lead to a partial molar volume (±1σ) for FeO =11.7 ± 0.3(±1σ) cm3/mol at 1723 K. This value is similar to that for crystalline FeO at 298 K (halite structure; 12.06 cm3/mol), which suggests an average Fe2+ coordination of ~6 in these model basalt compositions. In contrast, the fitted partial molar volume of FeO in pure hedenbergite liquid is 14.6 ± 0.3 at 1723 K, which is consistent with an average Fe2+ coordination of 4.3 derived from EXAFS spectroscopy (Rossano, 2000). Similarly, all the compressibility data for the three multi-component liquids were combined with compressibility data on SiO2-Al2O3-CaO-MgO liquids (Ai and Lange, 2008) in a fit to an ideal mixing model for melt compressibility; the results lead to a partial molar

  7. Effect of Initial FeO Content and CaO:SiO2 Ratio on the Reduction Smelting Kinetics of the CaO-SiO2-MgOsatd.-FeO Slag System

    NASA Astrophysics Data System (ADS)

    Kim, Jong Bae; Sohn, Il

    2018-02-01

    The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.

  8. FeO and MgO in plagioclase of lunar anorthosites: Igneous or metamorphic?

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1994-01-01

    The combined evidence from terrestrial anorthosites and experimental laboratory studies strongly implies that lunar anorthosites have been subjected to high-grade metamorphic events that have erased the igneous signatures of FeO and MgO in their plagioclases. Arguments to the contrary have, to this point, been more hopeful than rigorous.

  9. High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-δ perovskites as prospective electrode materials for symmetrical SOFC

    NASA Astrophysics Data System (ADS)

    Istomin, S. Ya.; Morozov, A. V.; Abdullayev, M. M.; Batuk, M.; Hadermann, J.; Kazakov, S. M.; Sobolev, A. V.; Presniakov, I. A.; Antipov, E. V.

    2018-02-01

    La1-yCayFe0.5+x(Mg,Mo)0.5-xO3-δ oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mössbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-δ and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-δ) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-δ is oxygen deficient with δ ≈ 0.15. Oxides are stable in reducing atmosphere (Ar/H2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x≥0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.

  10. Voltage control of magnetic anisotropy in epitaxial Ru/Co2FeAl/MgO heterostructures

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji

    2017-03-01

    Voltage control of magnetic anisotropy (VCMA) in magnetic heterostructures is a key technology for achieving energy-efficiency electronic devices with ultralow power consumption. Here, we report the first demonstration of the VCMA effect in novel epitaxial Ru/Co2FeAl(CFA)/MgO heterostructures with interfacial perpendicular magnetic anisotropy (PMA). Perpendicularly magnetized tunnel junctions with the structure of Ru/CFA/MgO were fabricated and exhibited an effective voltage control on switching fields for the CFA free layer. Large VCMA coefficients of 108 and 139 fJ/Vm for the CFA film were achieved at room temperature and 4 K, respectively. The interfacial stability in the heterostructure was confirmed by repeating measurements. Temperature dependences of both the interfacial PMA and the VCMA effect were also investigated. It is found that the temperature dependences follow power laws of the saturation magnetization with an exponent of ~2, where the latter is definitely weaker than that of conventional Ta/CoFeB/MgO. The significant VCMA effect observed in this work indicates that the Ru/CFA/MgO heterostructure could be one of the promising candidates for spintronic devices with voltage control.

  11. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  12. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications.

    PubMed

    Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D

    2017-12-01

    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Removal of Nonylphenol by using Fe-doped NaBiO3 compound as an efficient visible-light-heterogeneous Fenton-like catalyst.

    PubMed

    An, Junjian; Huang, Mengxuan; Wang, Mengling; Chen, Jiali; Wang, Peng

    2018-04-12

    Fe-doped NaBiO 3 nanoscaled compounds were prepared by hydrothermal method and evaluated as a highly efficient photo-Fenton-like catalyst under visible light irradiation. The Fe-doped NaBiO 3 compound had a specific surface area of 41.42 m 2  g -1 , which is considerably larger than that of NaBiO 3 nanoparticles (28.81 m 2  g -1 ). The compound exhibited an excellent visible light-Fenton-like catalysis activity, which is influenced by the iron content of the compound and the pH value of the solution. Under the optimal conditions, the Fe-doped NaBiO 3 compound led to fast degradation of Nonylphenol with an apparent rate constant of 5.71 × 10 -2 min -1 , which was 8.23-fold of that achieved by using NaBiO 3 . The significantly enhanced visible light-Fenton-like catalytic property of the Fe-doped NaBiO 3 was attributed to the large surface area and the high adsorption capacity of the compound, and the Fenton catalytic ability of iron in the compound.

  14. X-ray and Mössbauer study of structural changes in K3Na(FeO4)2

    NASA Astrophysics Data System (ADS)

    Dedushenko, S. K.; Zhizhin, M. G.; Perfiliev, Yu. D.

    2005-11-01

    Mixed potassium sodium ferrate(VI), K3Na(FeO4)2, has been synthesized by precipitation from alkaline solution. At room temperature it decomposes spontaneously giving Fe(III) compounds and ferrate(VI) with a structure similar to that of K2FeO4, which is confirmed by X-ray diffraction and Mössbauer spectroscopy.

  15. Flux-pinning and inhomogeneity in MgB 2 /Fe wires

    NASA Astrophysics Data System (ADS)

    Husnjak, O.; Babić, E.; Kušević, I.; Wang, X. L.; Soltanian, S.; Dou, S. X.

    2007-08-01

    Transport critical current densities Jc and irreversibility fields B of undoped and nanoparticle doped (10 wt% SiC) Fe-sheathed MgB 2 wires were measured from 2 to 40 K in magnetic field B≤16 T. For the best segments of wires (≤1 cm) both the magnitude and field variations of Jc and the pinning force density Fp=JcB depend only on the magnitude of B, hence the strength of flux-pinning. B of doped wire for T≤30 K is ˜1.4 times larger than that of undoped and reaches that of NbTi (10 T at 4.2 K) already at 20 K. Accordingly, its high-field Jcs and Fps are large, typically three times larger than the best literature results, and are limited by the porosity and inhomogeneity of the superconducting cores in present-day MgB 2 wires.

  16. Formation of the Fe-Containing Intermetallic Compounds during Solidification of Al-5Mg-2Si-0.7Mn-1.1Fe Alloy

    NASA Astrophysics Data System (ADS)

    Que, Zhongping; Wang, Yun; Fan, Zhongyun

    2018-06-01

    Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.

  17. Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry

    DOE PAGES

    Yin, Jiefu; Takeuchi, Esther S.; Takeuchi, Kenneth J.; ...

    2016-08-12

    We demonstrated the synthesis and characterization of Mg-birnessite (Mg xMnO 2) with different crystallite sizes, prepared though low temperature precipitation and ion exchange. The influence of crystallite size on electrochemical performance of Mg-birnessite was studied for the first time, where material with smaller crystallite size was demonstrated to have enhanced capacity and rate capability in Li ion, Na ion, and Mg ion based electrolytes. Cation diffusion using GITT type testing demonstrated the ion diffusion coefficient of Mg 2+ was ~10× lower compared with Li + and Na +. This work illustrates that tuning of inorganic materials properties can lead tomore » significant enhancement of electrochemical performance in lithium, sodium as well as magnesium based batteries for materials such as Mg-birnessite and provides a deliberate approach to improve electrochemical performance.« less

  18. Implications for the melting phase relations in the MgO-FeO system at Core-Mantle Boundary conditions

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.

    2017-12-01

    At nearly 2900 km depth, the core-mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron-alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure and seismic velocities. Here we compute the melting phase relations of (Mg,Fe)O ferropericlase, the second most abundant mineral in the Earth's mantle, at CMB conditions and find that ultralow-velocity zones (ULVZs) could be explained by solid ferropericlase with 35 < Mg# = 100×(Mg/(Mg+Fe) by mol%) < 65. For compositions outside of this range, a solid ferropericlase cannot explain ULVZs. Additionally, solid ferropericlase can also provide a matrix for iron infiltration at the CMB by morphological instability, providing a mechanism for a high electrical conductivity layer of appropriate length scale inferred from core nutations.

  19. A simple route to improve rate performance of LiFePO4/reduced graphene oxide composite cathode by adding Mg2+ via mechanical mixing

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Liu, Hao; Gong, Li; Hou, Yanglong; Li, Quan

    2017-04-01

    Introducing Mg2+ to LiFePO4 and reduced graphene oxide composite via mechanical mixing and annealing leads to largely improved rate performance of the cathode (e.g. ∼78 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite with Mg2+ introduction vs. ∼37 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite). X-ray photoelectron spectroscopy unravels that the enhanced reduction of Fe2+ to Fe0 occurs in the simultaneous presence of Mg2+ and reduced graphene oxide, which is beneficial for the rate capability of cathode. The simple fabrication process provides a simple and effective means to improve the rate performance of the LiFePO4 and reduced graphene oxide composite cathode.

  20. Effects of Mg nanopowders intergranular addition on the magnetic properties and corrosion resistance of sintered Nd-Fe-B

    NASA Astrophysics Data System (ADS)

    Li, Zhi-jie; Wang, Xiao-er; Li, Jia-yang; Li, Jia; Wang, Hong-zhi

    2017-11-01

    In order to improve the magnetic properties and corrosion resistance of sintered Nd-Fe-B magnets, the (PrNd)29.9Dy0.1B1Co1Cu0.15Febal (wt%) powders were mixed with Mg nanopowders, as grain boundary modifiers. For Nd-Fe-B magnets with 0.1-0.4 wt% Mg addition, the result showed that addition amount of 0.1 wt% Mg, Hcj reaches the maximum value of 999.1 kA/m, Br reaches 1.436T, (BH)max reaches 396.9 kJ/m3 and magnet density is 7.42 g/cm3, which are related to the microstructural modification of grain boundaries and the magnet density. Effects of Mg addition on corrosion behavior in sulphuric acid and sodium chloride solution were researched by electrochemical workstation. With increase of Mg addition level, the magnet turns to have a higher corrosion potential and lower corrosion current density, the corrosion poverty is improved. However, temperature coefficient remained nearly unchanged with Mg addition.

  1. Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures.

    PubMed

    Yamanaka, Takamitsu; Hirose, Kei; Mao, Wendy L; Meng, Yue; Ganesh, P; Shulenburger, Luke; Shen, Guoyin; Hemley, Russell J

    2012-01-24

    X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg(0.9)Fe(0.1))SiO(3) and (Mg(0.6)Fe(0.4))SiO(3) at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO(3)-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm(3)) than the former (ρ = 5.694(8) g/cm(3)) due to both the larger amount of iron and the smaller ionic radius of Fe(2+) as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe(2+) also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe(2+) in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered.

  2. Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.

    Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less

  3. Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries

    DOE PAGES

    Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.

    2017-05-04

    Here we report for the first time the feasibility of using metal–organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode–electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing tomore » its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.« less

  4. Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method

    NASA Astrophysics Data System (ADS)

    Kurian, Jessyamma; Mathew, M. Jacob

    2018-04-01

    In this paper we report the structural, optical and magnetic studies of three spinel ferrites namely CuFe2O4, MgFe2O4 and ZnFe2O4 prepared in an autoclave under the same physical conditions but with two different liquid medium and different surfactant. We use water as the medium and trisodium citrate as the surfactant for one method (Hydrothermal method) and ethylene glycol as the medium and poly ethylene glycol as the surfactant for the second method (solvothermal method). The phase identification and structural characterization are done using XRD and morphological studies are carried out by TEM. Cubical and porous spherical morphologies are obtained for hydrothermal and solvothermal process respectively without any impurity phase. The optical studies are carried out using FTIR and UV-Vis reflectance spectra. In order to elucidate the nonlinear optical behaviour of the prepared nanomaterial, open aperture z-scan technique is used. From the fitted z-scan curves nonlinear absorption coefficient and the saturation intensity are determined. The magnetic characterization of the samples is performed at room temperature using vibrating sample magnetometer measurements. The M-H curves obtained are fitted using theoretical equation and the different components of magnetization are determined. Nanoparticles with high saturation magnetization are obtained for MgFe2O4 and ZnFe2O4 prepared under solvothermal reaction. The magnetic hyperfine parameters and the cation distribution of the prepared materials are determined using room temperature Mössbauer spectroscopy. The fitted spectra reveal the difference in the magnetic hyperfine parameters owing to the change in size and morphology.

  5. Superspace description of wagnerite-group minerals (Mg,Fe,Mn)2(PO4)(F,OH)

    PubMed Central

    Lazic, Biljana; Armbruster, Thomas; Chopin, Christian; Grew, Edward S.; Baronnet, Alain; Palatinus, Lukas

    2014-01-01

    Reinvestigation of more than 40 samples of minerals belonging to the wagnerite group (Mg, Fe, Mn)2(PO4)(F,OH) from diverse geological environments worldwide, using single-crystal X-ray diffraction analysis, showed that most crystals have incommensurate structures and, as such, are not adequately described with known polytype models (2b), (3b), (5b), (7b) and (9b). Therefore, we present here a unified superspace model for the structural description of periodically and aperiodically modulated wagnerite with the (3+1)-dimensional superspace group C2/c(0β0)s0 based on the average triplite structure with cell parameters a ≃ 12.8, b ≃ 6.4, c ≃ 9.6 Å, β ≃ 117° and the modulation vectors q = β b*. The superspace approach provides a way of simple modelling of the positional and occupational modulation of Mg/Fe and F/OH in wagnerite. This allows direct comparison of crystal properties. PMID:24675594

  6. A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries.

    PubMed

    Shakoor, Rana A; Park, Chan Sun; Raja, Arsalan A; Shin, Jaeho; Kahraman, Ramazan

    2016-02-07

    The development of secondary batteries based on abundant and cheap elements is vital. Among various alternatives to conventional lithium-ion batteries, sodium-ion batteries (SIBs) are promising due to the abundant resources and low cost of sodium. While there are many challenges associated with the SIB system, cathode is an important factor in determining the electrochemical performance of this battery system. Accordingly, ongoing research in the field of SIBs is inclined towards the development of safe, cost effective cathode materials having improved performance. In particular, pyrophosphate cathodes have recently demonstrated decent electrochemical performance and thermal stability. Herein, we report the synthesis, electrochemical properties, and thermal behavior of a novel Na2Fe0.5Mn0.5P2O7 cathode for SIBs. The material was synthesized through a solid state process. The structural analysis reveals that the mixed substitution of manganese and iron has resulted in a triclinic crystal structure (P1[combining macron] space group). Galvanostatic charge/discharge measurements indicate that Na2Fe0.5Mn0.5P2O7 is electrochemically active with a reversible capacity of ∼80 mA h g(-1) at a C/20 rate with an average redox potential of 3.2 V. (vs. Na/Na(+)). It is noticed that 84% of initial capacity is preserved over 90 cycles showing promising cyclability. It is also noticed that the rate capability of Na2Fe0.5Mn0.5P2O7 is better than Na2MnP2O7. Ex situ and CV analyses indicate that Na2Fe0.5Mn0.5P2O7 undergoes a single phase reaction rather than a biphasic reaction due to different Na coordination environment and different Na site occupancy when compared to other pyrophosphate materials (Na2FeP2O7 and Na2MnP2O7). Thermogravimetric analysis (25-550 °C) confirms good thermal stability of Na2Fe0.5Mn0.5P2O7 with only 2% weight loss. Owing to promising electrochemical properties and decent thermal stability, Na2Fe0.5Mn0.5P2O7, can be an attractive cathode for SIBs.

  7. Synthesis of quenchable high-pressure form of magnetite (h-Fe3O4) with composition [4](Fe0.732+ Mg0.26)[6](Fe0.713+ Cr0.14Al0.10 Si0.04)2O4

    NASA Astrophysics Data System (ADS)

    Koch-Müller, Monika; Mugnaioli, Enrico; Rhede, Dieter; Speziale, Sergio; Kolb, Ute; Wirth, Richard

    2014-05-01

    Cubic inverse-spinel magnetite transforms under pressure to orthorhombic normal-spinel magnetite, h-Fe3O4 ( e.g. Fei et al. 1999; Bengtson et al. 2013). The pressure at which the transition takes place is still controversial. The high-pressure form is reported to be not quenchable to ambient conditions. We report the synthesis of h-magnetite which incorporates considerable amounts of additional cations (Cr, Mg, Al, Si) and is quenchable to ambient conditions. Two experiments were performed at 18 GPa and 1800 ° C in a multi-anvil press. The run products were investigated by electron microprobe, transmission electron microscopy and electron diffraction tomography. We observed the formation of h-magnetite in both experiments. In experiment MA-367 we used an oxide mixture with a majoritic stoichiometry Mg1.8Fe1.2(Al1.4 Cr0.2Si0.2Mg0.2)Si3O12 as starting material, with Si and Mg in excess. The Fe-oxide phase forms elongated aggregates 10-30 μm in length, mutually intergrown with majorite, the latter being the main phase of the run products coexisting with small amounts of stishovite. The formula for h-magnetite in run MA-367 was calculated as [4](Fe0.732+ Mg0.26)[6](Fe0.713+ Cr0.14Al0.10 Si0.04)2O4. In the second experiment (MA-376) we used an oxide mixture corresponding to the composition of h-magnetite obtained in MA-367. In this experiment the main phase was h-magnetite with composition [4](Fe0.982+)[6](Fe0.683+ Cr0.17Al0.13 Si0.02)2O4coexisting with very small amounts of wadsleyite. Interestingly no magnesium was incorporated into the Fe-oxide in this experiment compared to MA-367 and no iron was found in the coexisting wadsleyite. For the first time it was possible to perform electron diffraction on recovered h-magnetite of both experiments and we observed that -at least in our case- the h-magnetite structure can better be described in space group Amam than in space group Bbmm as previously proposed. The substitution of Fe by Cr, Mg, Al and Si, all smaller in

  8. Improving iron absorption from a Peruvian school breakfast meal by adding ascorbic acid or Na2EDTA.

    PubMed

    Davidsson, L; Walczyk, T; Zavaleta, N; Hurrell, R

    2001-02-01

    Iron-fortified school breakfasts have been introduced in Peru to combat childhood iron deficiency. We evaluated whether iron absorption from a school breakfast meal was improved by increasing the ascorbic acid content or by adding an alternative enhancer of iron absorption, Na2EDTA. In a crossover design, iron absorption from test meals was evaluated by erythrocyte incorporation of 58Fe and 57Fe. The test meals (wheat bread and a drink containing cereal, milk, and soy) contained 14 mg added Fe (as ferrous sulfate) including 2.0-2.6 mg 58Fe or 4.0-7.0 mg 57Fe. Geometric mean iron absorption increased significantly from 5.1% to 8.2% after the molar ratio of ascorbic acid to fortification iron was increased from 0.6:1 to 1.6:1 (P < 0.01; n = 9). Geometric mean iron absorption increased significantly from 2.9% to 3.8%, from 2.2% to 3.5%, and from 2.4% to 3.7% after addition of Na2EDTA at molar ratios relative to fortification iron of 0.3:1, 0.7:1, and 1:1, respectively, compared with test meals containing no added enhancers (P < 0.01; n = 10 for all). Iron absorption after addition of ascorbic acid (molar ratio 0.6:1) was not significantly different from that after addition of Na2EDTA (molar ratio 0.7:1). Ascorbic acid and Na2EDTA did not differ significantly in their enhancing effects on iron absorption at molar ratios of 0.6:1 to 0.7:1 relative to fortification iron. Additional ascorbic acid (molar ratio 1.6:1) increased iron absorption significantly. Increasing the molar ratio of Na2EDTA to fortification iron from 0.3:1 to 1:1 had no effect on iron absorption.

  9. Manipulation of perpendicular magnetic anisotropy of single Fe atom adsorbed graphene via MgO(1 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Fu, Mingming; Tang, Weiqing; Wu, Yaping; Ke, Congming; Guo, Fei; Zhang, Chunmiao; Yang, Weihuang; Wu, Zhiming; Kang, Junyong

    2018-05-01

    Perpendicular magnetic anisotropy is significantly important for realizing a long-term retention of information for spintronics devices. Inspired by 2D graphene with its high charge carrier mobility and long spin diffusion length, we report a first-principles design framework on perpendicular magnetic anisotropy engineering of a Fe atom adsorbed graphene by employing a O-terminated MgO (1 1 1) substrate. Determined by the adsorption sites of the Fe atom, a tunable magnetic anisotropy is realized in Fe/graphene/MgO (1 1 1) structure, with the magnetic anisotropy energy of  ‑0.48 meV and 0.23 meV, respectively, corresponding to the in-plane and out of plane easy magnetizations. Total density of states suggest a half-metallicity with a 100% spin polarization in the system. Decomposed densities of Fe-3d states reveal the orbital contributions to the magnetic anisotropy for different Fe adsorption sites. Bonding interaction and charge redistribution regulated by MgO substrate are found responsible for the novel perpendicular magnetic anisotropy engineering in the system. The effective manipulation of perpendicular magnetic anisotropy in present work offers some references for the design and construction of 2D spintronics devices.

  10. Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions.

    PubMed

    Jung, Kyung-Won; Lee, Soonjae; Lee, Young Jae

    2017-12-01

    In this work, magnesium ferrite (MgFe 2 O 4 )/biochar magnetic composites (MFB-MCs) were prepared and utilized to remove phosphate from aqueous solutions. MFB-MCs were synthesized via co-precipitation of Fe and Mg ions onto a precursor, followed by pyrolysis. Characterization results confirmed that MgFe 2 O 4 nanoparticles with a cubic spinel structure were successfully embedded in the biochar matrix, and this offered magnetic separability with superparamagnetic behavior and enabled higher phosphate adsorption performance than that of pristine biochar and sole MgFe 2 O 4 nanoparticles. Batch experiments indicated that phosphate adsorption on the MFB-MCs is highly dependent on the pH, initial phosphate concentration, and temperature, while it was less affected by ionic strength. Analysis of activation and thermodynamic parameters as well as the isosteric heat of adsorption demonstrated that the phosphate adsorption is an endothermic and physisorption process. Lastly, highly efficient recyclability of the MFB-MCs suggested that they are a promising adsorbent for phosphate removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Divalent metal ions modulated strong frustrated M(II)-Fe(III)3O (M = Fe, Mn, Mg) chains with metamagnetism only in a mixed valence iron complex.

    PubMed

    Wu, Qi-Long; Han, Song-De; Wang, Qing-Lun; Zhao, Jiong-Peng; Ma, Feng; Jiang, Xue; Liu, Fu-Chen; Bu, Xian-He

    2015-10-25

    Linking magnetically frustrated triangular FeO units by divalent metal ions (M(II) = Fe(II) for 1, Mn(II) for 2) gives isostructural 1D spin chains. Strong antiferromagnetic interactions were found in these complexes with significant frustrations but very interesting ferrimagnetic like transition and metamagnetism were found in mixed valence 1. By comparing the magnetic behaviours with isostructural complex 3 (with M(II) = Mg(II)), it is proposed that the spins of Fe(II) ions and Mn(II) ions have ferromagnetic and antiferromagnetic contributions respectively.

  12. Spin crossover in (Mg,Fe3+)(Si,Fe3+)O3 bridgmanite: effects of disorder, iron concentration, and temperature

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Wentzcovitch, Renata

    The spin crossover of iron in Fe3+-bearing bridgmanite, the most abundant mineral of the Earth's lower mantle, is by now a well-established phenomenon, though several aspects of this crossover remain unclear. Here we investigate effects of disorder, iron concentration, and temperature on this crossover using ab initio LDA + USC calculations. Disorder and concentration effects are addressed using complete statistical samplings of coupled substituted configurations up to 80 atoms supercells, while the vibrational effects using the quasiharmonic approximation. Our calculated compression curves for iron-free and iron-bearing bridgmanite compare well with the latest experimental measurements. The comparison also suggests that in a closed system, Fe2+ present in the sample may transform into Fe3+ by introduction of Mg and O vacancies with increasing pressure. As in the spin crossover in ferropericlase, this crossover in bridgmanite is accompanied by a clear volume reduction and an anomalous softening of the bulk modulus throughout the crossover pressure range. Though the concentration of [Fe3+]Si in bridgmanite may be small, related elastic anomalies may impact the interpretation of radial and lateral velocity structures of the Earth's lower mantle. This research was supported primarily by NSF Grant EAR 1348066. Computations are performed at the Minnesota Supercomputing Institute (MSI).

  13. Microstructure, Mechanical Properties, and Age-Hardening Behavior of an Al-Si-Fe-Mn-Cu-Mg Alloy Produced by Spray Deposition

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Jishan, Zhang; Baiqing, Xiong; Yongan, Zhang

    2011-02-01

    It has been recognized generally that the spray-deposited process is an innovative technique of rapid solidification. In this paper, Al-20Si-5Fe-3Mn-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray-deposited alloy were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and tensile tests. It is observed that the microstructure of spray-deposited Al-20Si-5Fe-3Mn-3Cu-1Mg alloy is composed of the α-Al,Si and the particle-like Al15(FeMn)3Si2 compounds. The aging process of the alloy was investigated by microhardness measurement, differential scanning calorimetry analysis, and TEM observations. The results indicate that the two types of precipitates, S-Al2CuMg and σ-Al5Cu6Mg2 precipitate from matrix and improve the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300 °C).

  14. Formation of the Fe,Mg-Silicates, Fe0, and Graphite (Diamond) Assemblage as a Result of Cohenite Oxidation under Lithospheric Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Bataleva, Yu. V.; Palyanov, Yu. N.; Borzdov, Yu. M.; Zdrokov, E. V.; Novoselov, I. D.; Sobolev, N. V.

    2018-03-01

    Experimental studies in the Fe3C-SiO2-MgO system ( P = 6.3 GPa, T = 1100-1500°C, t = 20-40 h) have been carried out. It has been established that carbide-oxide interaction resulted in the formation of Fe-orthopyroxene, graphite, wustite, and cohenite (1100 and 1200°C), as well as a Fe-C-O melt (1300-1500°C). The main processes occurring in the system at 1100 and 1200°C are the oxidation of cohenite, the extraction of carbon from carbide, and the crystallization of metastable graphite, as well as the formation of ferrosilicates. At T ≥ 1300°C, graphite crystallization and diamond growth occur as a result of the redox interaction of a predominantly metallic melt (Fe-C-O) with oxides and silicates. The carbide-oxide interaction studied can be considered as the basis for modeling a number of carbon-producing processes in the lithospheric mantle at fO2 values near the iron-wustite buffer.

  15. Proton threshold states in the Na22(p,γ)Mg23 reaction and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Comisel, H.; Hategan, C.; Graw, G.; Wolter, H. H.

    2007-04-01

    Proton threshold states in Mg23 are important for the astrophysically relevant proton capture reaction Na22(p,γ)Mg23. In the indirect determination of the resonance strength of the lowest states, which were not accessible by direct methods, some of the spin-parity-assignments remained experimentally uncertain. We have investigated these states with shell model, Coulomb displacement, and Thomas-Ehrman shift calculations. From the comparison of calculated and observed properties, we relate the lowest relevant resonance state at Ex=7643 keV to an excited 3/2+ state in accordance with a recent experimental determination by Jenkins From this we deduce significantly improved values for the Na22(p,γ)Mg23 reaction rate at stellar temperatures below T9=0.1 K.

  16. Formation of "Chemically Pure" Magnetite from Mg-Fe-Carbonates Implications for the Exclusively Inorganic Origin of Magnetite and Sulfides in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Lauer, H. V., Jr.; Morris, R. V.; Trieman, A. H.; McKay, G. A.

    2006-01-01

    Magnetite and sulfides in the black rims of carbonate globules in Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al. that they are biogenic in origin. However, exclusively inorganic (abiotic) processes are able to account for the occurrence of carbonate-sulfide-magnetite assemblages in the meteorite. We have previously precipitated chemically zoned and sulfide-bearing carbonate globules analogous to those in ALH84001 (at less than or equal to 150 C) from multiple fluxes of variable-composition Ca-Mg-Fe-CO2-S-H2O solutions. Brief heating of precipitated globules to approx. 470 C produced magnetite and pyrrhotite within the globules by thermal decomposition of siderite and pyrite, respectively. We have also shown that morphology of magnetite formed by inorganic thermal decomposition of Fe-rich carbonate is similar to the morphology of so-called biogenic magnetite in the carbonate globules of ALH84001. Magnetite crystals in the rims of carbonate globules in ALH84001 are chemically pure [Note: "Chemically pure" is defined here as magnetite with Mg at levels comparable or lower than Mg detected by [8] in ALH84001 magnetite]. A debate continues on whether or not chemically pure magnetite can form by the thermal decomposition of mixed Mg-Fe-carbonates that have formed under abiotic conditions. Thomas-Keprta et al. argue that it is not possible to form Mg-free magnetite from Mg-Fe-carbonate based on thermodynamic data. We previously suggested that chemically pure magnetite could form by the thermal decomposition of relatively pure siderite in the outer rims of the globules. Mg-Fe-carbonates may also thermally decompose under conditions conducive for formation of chemically pure magnetite. In this paper we show through laboratory experiments that chemically pure magnetite can form by an inorganic process from mixed Mg-Fe-carbonates.

  17. Experimental deformation of (Mg,Fe)O ferropericlase in a resistive-heated DAC at conditions of the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Immoor, J.; Marquardt, H.; Miyagi, L. M.; Lin, F.; Speziale, S.; Merkel, S.; Liermann, H. P.

    2017-12-01

    Seismic anisotropy in Earth's lowermost mantle, resulting from crystallographic preferred orientation (CPO) of elastically anisotropic minerals, is the most promising observable to map mantle flow patterns. The shear wave anisotropy observed in the lowermost mantle might be caused by CPO of (Mg,Fe)O ferropericlase that is characterized by large elastic anisotropy in the deep lower mantle. However, our understanding of the slip system activities of ferropericlase at conditions of the lowermost mantle is still incomplete. Here, we present results of an experimental study designed to determine slip system activities in (Mg,Fe)O at P-T conditions of the lower mantle. In-situ deformation experiments on powders of (Mg0.8Fe0.2)O were conducted in a graphite heated diamond anvil cell (DAC) up to a temperature of 1400K. Synchrotron x-ray diffraction data were fit with the program MAUD (Materials Analysing Using Diffraction) to extract textures and lattice strains. The experimental results were modelled using the Elasto-Viscoplastic Self Consistent (EVPSC) code. Our data indicate a change in slip system activities from dominant {110} to increasing {100} slip at temperatures above 1150 K and pressures corresponding to the mid-lower mantle. Our findings indicate an effect of both pressure and temperature on the plasticity of (Mg,Fe)O and, hence, pave the way to a better understanding of with a potential change of dominant slip system between 40-60 GPa in MgO predicted from numerical models (Amodeo et al., 2012). We use the results to model the possible contribution of ferropericlase CPO to observed seismic anisotropy in the D'' layer in the lowermost mantle. Amodeo et al. (2012) Phil Mag, 92, 1523-1541

  18. Nanoscaled Na3PS4 Solid Electrolyte for All-Solid-State FeS2/Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances.

    PubMed

    Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Xu, Xiaoxiong; Li, Hong; Zhang, Qiang; Cai, Liangting; Hu, Yong-Sheng; Yao, Xiayin

    2018-04-18

    Nanosized Na 3 PS 4 solid electrolyte with an ionic conductivity of 8.44 × 10 -5 S cm -1 at room temperature is synthesized by a liquid-phase reaction. The resultant all-solid-state FeS 2 /Na 3 PS 4 /Na batteries show an extraordinary high initial Coulombic efficiency of 95% and demonstrate high energy density of 611 Wh kg -1 at current density of 20 mA g -1 at room temperature. The outstanding performances of the battery can be ascribed to good interface compatibility and intimate solid-solid contact at FeS 2 electrode/nanosized Na 3 PS 4 solid electrolytes interface. Meanwhile, excellent cycling stability is achieved for the battery after cycling at 60 mA g -1 for 100 cycles, showing a high capacity of 287 mAh g -1 with the capacity retention of 80%.

  19. A kinetic study of struvite precipitation recycling technology with NaOH/Mg(OH)2 addition.

    PubMed

    Yu, Rongtai; Ren, Hongqiang; Wang, Yanru; Ding, Lili; Geng, Jingji; Xu, Ke; Zhang, Yan

    2013-09-01

    Struvite precipitation recycling technology is received wide attention in removal ammonium and phosphate out of wastewater. While past study focused on process efficiency, and less on kinetics. The kinetic study is essential for the design and optimization in the application of struvite precipitation recycling technology. The kinetics of struvite with NaOH/Mg(OH)2 addition were studied by thermogravimetry analysis with three rates (5, 10, 20 °C/min), using Friedman method and Ozawa-Flynn-Wall method, respectively. Degradation process of struvite with NaOH/Mg(OH)2 addition was three steps. The stripping of ammonia from struvite was mainly occurred at the first step. In the first step, the activation energy was about 70 kJ/mol, which has gradually declined as the reaction progress. By model fitting studies, the proper mechanism function for struvite decomposition process with NaOH/Mg(OH)2 addition was revealed. The mechanism function was f(α)=α(α)-(1-α)(n), a Prout-Tompkins nth order (Bna) model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Electronic spin state of Fe,Al-containing MgSiO3 perovskite at lower mantle conditions

    NASA Astrophysics Data System (ADS)

    Kupenko, I.; McCammon, C.; Sinmyo, R.; Prescher, C.; Chumakov, A. I.; Kantor, A.; Rüffer, R.; Dubrovinsky, L.

    2014-02-01

    We have investigated silicate perovskite with composition Mg0.83Fe0.21Al0.06Si0.91O3 relevant for the lower mantle at pressures up to 81 GPa and temperatures up to 2000 K using conventional Mössbauer spectroscopy and synchrotron Nuclear Forward Scattering (NFS) combined with double-sided laser heating in a diamond anvil cell. Room temperature Mössbauer and NFS spectra at low pressure are dominated by high-spin Fe2 +, with minor amounts of Fe3 + and a component assigned to a metastable position of high-spin Fe2 + in the A-site predicted by computational studies. NFS data show a sharp transition (< 20 GPa) from high-spin Fe2 + to a new component with extremely high quadrupole splitting, similar to previous studies. Mössbauer data show the same transition, but over a broader pressure range likely due to the higher pressure gradient. The new Fe2 + component is assigned to intermediate-spin Fe2 +, consistent with previous X-ray emission studies. NFS data at high temperatures and high pressures comparable to those in the lower mantle are consistent with the presence of Fe2 + only in the intermediate-spin state and Fe3 + only in the high-spin state. Our results are therefore consistent with the occurrence of spin crossover only in Fe2 + in Fe-, Al-containing perovskite within the lower mantle.

  1. Reflectance spectra of Fe(2+)-Mg(2+) disordered pyroxenes: Implications to remote-sensed spectra of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Besancon, James R.; Pratt, Stephen F.

    1991-01-01

    The reflectance spectra of Fe(2+)-Mg(2+) disordered orthopyroxenes are relevant to surfaces of terrestrial planets onto which basaltic magma has been extruded. If cooling rates of basalt lava flows were fast, equilibrium iron intersite partitioning may not have been achieved so that abnormal enrichments of Fe(2+) ions in M1 sites would occur. The two intense pyroxene Fe(2+) site CF bands in the 1 micron and 2 micron regions would continue to dominate the the reflectance spectra so that the pyroxene composition and structure type would be readily identified in telescopic spectral profiles. However, abnormal intensification of the Fe(2+)/M1 site CF band at 1.20 microns could lead to the false identification of olivine in remote sensed spectra because in pyroxene-olivine mixtures the inflection around 1.20 microns is the only spectral feature for detecting the presence of olivine. The identification of iron-bearing plagioclase feldspars, too, would be obscured by the pyroxene Fe(2+)/M1 site CF band at 1.20 microns. Such interference would be a major problem if in situ reflectance spectra could be measured on the surface of Venus where ambient temperatures are as high as 475 C. Disordering of Fe(2+) and Mg(2+) ions comparable to that in the orthopyroxenes used in this spectral chemical study might be expected in low Ca pyroxenes occurring on the Venusian surface. Researchers conclude that Fe(2+)/M1 site spectral features need to be carefully assessed in remote-sensed spectra before deductions are made about the presence of olivine on planetary surfaces.

  2. Mg shallow doping effects on the ac magnetic self-heating characteristics of γ-Fe2O3 superparamagnetic nanoparticles for highly efficient hyperthermia

    NASA Astrophysics Data System (ADS)

    Jang, Jung-tak; Bae, Seongtae

    2017-10-01

    The effects of Mg doping on the magnetic and AC self-heating temperature rising characteristics of γ-Fe2O3 superparamagnetic nanoparticles (SPNPs) were investigated for hyperthermia applications in biomedicine. The doping concentration of nonmagnetic Mg2+ cation was systematically controlled from 0 to 0.15 at. % in Mgx-γFe2O3 SPNPs during chemically and thermally modified one-pot thermal decomposition synthesis under bubbling O2/Ar gas mixture. It was empirically observed that the saturation magnetization (Ms) and the out-of-phase magnetic susceptibility ( χm″)of Mgx-γFe2O3 SPNPs were increased by increasing the Mg2+ cation doping concentration from 0.05 to 0.13 at. %. Correspondingly, the AC magnetically induced self-heating temperature (Tac,max) in solid state and the intrinsic loss power in water were increased up to 184 °C and 14.2 nH m2 kg-1 (Mgx-γFe2O3, x = 0.13), respectively, at the biologically and physiologically safe range of AC magnetic field (Happl × fappl = 1.2 × 109 A m-1 s-1). All the chemically and physically analyzed results confirmed that the dramatically improved AC magnetic induction heating characteristics and the magnetic properties of Mgx-γFe2O3 SPNPs (x = 0.13) are primarily due to the significantly enhanced magnetic susceptibility (particularly, χm″) and the improved AC/DC magnetic softness (lower AC/DC magnetic anisotropy) resulting from the systematically controlled nonmagnetic Mg2+ cation concentrations and distributions (occupation ratio) in the Fe vacancy sites of γ-Fe2O3 (approximately 12% vacancy), instead of typically well-known Fe3O4 (no vacancy) SPNPs. The cell viability and biocompatibility with U87 MG cell lines demonstrated that Mgx-γFe2O3 SPNPs (x = 0.13) has promising bio-feasibility for hyperthermia agent applications.

  3. Spinel, YbFe2O4, and Yb2Fe3O7 types of structure for compounds in the In2O3 and Sc2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn) at temperatures over 1000C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimizuka, N.; Mohri, T.

    In the Sc2O3-Ga2O3-CuO, Sc2O3-Ga2O3-ZnO, and Sc2O3-Al2O3-CuO systems, ScGaCuO4, ScGaZnO4, and ScAlCuO4 with the YbFe2O4-type structure and Sc2Ga2CuO7 with the Yb2Fe3O7-type structure were obtained. In the In2O3-A2O3-BO systems (A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, or Zn), InGaFeO4, InGaNiO4, and InFeT MgO4 with the spinel structure, InGaZnO4, InGaMgO4, and InAl-CuO4 with the YbFe2O4-type structure, and In2Ga2MnO7 and In2Ga2ZnO7 with the Yb2Fe3O7-type structure were obtained. InGaMnO4 and InFe2O4 had both the YbFe2O4-type and spinel-type structures. The revised classification for the crystal structures of AB2O4 compounds is presented, based upon the coordination numbers of constituent A and B cations. 5more » references, 2 tables.« less

  4. Shape-Control of a 0D/1D NaFe0.9Mn0.1PO4 Nano-Complex by Electrospinning

    NASA Astrophysics Data System (ADS)

    Shin, Mi-Ra; Son, Jong-Tae

    2018-03-01

    NaFePO4 with a maricite structure was one of the most promising candidates for sodium ion batteries (SIBs) due to its advantages of environmental friendly and having low cost. However, it has low electrochemical conductivity and energy density, which impose limitations on its application as commercial cathode materials. In this study, other transition-metal ions such as Mn2+ were substituted into the iron (Fe2+) site in NaFePO4 to increase the surface area and the number of nanofibers in the prepared one-dimensional (1D) nano-sized material with 0D/1D dimensions to enhance the energy density. Also, the 0D/1D NaFe0.9Mn0.1PO4 cathode material has increased electrochemical conductivity because the fiber size was reduced to the nano-scale level by using the electrospinning method in order to decrease the diffusion path of Na-ions. The morphology of the 0D/1D nanofiber was evaluated by Field-emission scanning electron microscope and atomic force microscope analyses. The NaFe0.9Mn0.1PO4 nanofibers had a diameter of approximately 180 nm, while the spherical particle had a diameter 1 μm. The 0D/1D nano-sized cathode material show a discharge capacity of 27 mAhg -1 at a 0.05 C rate within the 2.0 4.5 V voltage range and a low R ct of 110 Ω.

  5. Constraining Thermal Histories by Monte Carlo Simulation of Mg-Fe Isotopic Profiles in Olivine

    NASA Astrophysics Data System (ADS)

    Sio, C. K. I.; Dauphas, N.

    2016-12-01

    In thermochronology, random time-temperature (t-T) paths are generated and used as inputs to model fission track data. This random search method is used to identify a range of acceptable thermal histories that can describe the data. We have extended this modeling approach to magmatic systems. This approach utilizes both the chemical and stable isotope profiles measured in crystals as model constraints. Specifically, the isotopic profiles are used to determine the relative contribution of crystal growth vs. diffusion in generating chemical profiles, and to detect changes in melt composition. With this information, tighter constraints can be placed on the thermal evolution of magmatic bodies. We use an olivine phenocryst from the Kilauea Iki lava lake, HI, to demonstrate proof of concept. We treat this sample as one with little geologic context, then compare our modeling results to the known thermal history experienced by that sample. To complete forward modeling, we use MELTS to estimate the boundary condition, initial and quench temperatures. We also assume a simple relationship between crystal growth and cooling rate. Another important parameter is the isotopic effect for diffusion (i.e., the relative diffusivity of the light vs. heavy isotope of an element). The isotopic effects for Mg and Fe diffusion in olivine have been estimated based on natural samples; experiments to better constrain these parameters are underway. We find that 40% of the random t-T paths can be used to fit the Mg-Fe chemical profiles. However, only a few can be used to simultaneously fit the Mg-Fe isotopic profiles. These few t-T paths are close to the independently determined t-T history of the sample. This modeling approach can be further extended other igneous and metamorphic systems where data exist for diffusion rates, crystal growth rates, and isotopic effects for diffusion.

  6. Evaluation and comparision of dc resistivity of NiZr x Co x Fe2-2x O4, Ni0.5Sn0.5Co x Mn x Fe2-2x O4, Mg1-x Ca x Ni y Fe2-y O4 and Mg1-x Ni x Co y Fe2-y O4 nanocrytalline materials

    NASA Astrophysics Data System (ADS)

    Ali, Rajjab; Gilani, Zaheer Abbas; Shahzad Shifa, Muhammad; Asghar, H. M. Noor Ul Huda Khan; Azhar Khan, Muhammad; Naeem Anjum, Muhammad; Nauman Usmani, Muhammad; Farooq Warsi, Muhammad; Khawaja, Imtiaz U.

    2017-11-01

    Four series nanocrystalline ferrites with nominal composition, NiZr x Co x Fe2-2x O4 (x  =  0.0, 0.2, 0.4, 0.6, 0.8) Ni0.5Sn0.5Co x Mn x Fe2-2x O4 (x  =  0.0, 0.2, 0.4, 0.6, 0.8), Mg1-x Ca x Ni y Fe2-y O4 (x  =  0.0, 0.2, 0.4, 0.6, 0.8; y  =  0, 04, 0.8, 1.2, 1.6) and Mg1-x Ni x Co y Fe2-y O4 (x,y  =  0.0, 0.2, 0.4, 0.6, 0.8) have been fabricated using the microemulsion synthesis route. The synthesized materials are investigated for dc electrical resistivity measurements. The variation of dc electrical resistivity of these materials has been explainedon the basis of hopping mechanism of both holes and electrons.

  7. Density Functional Study for Chemical Reaction between Cr and Fe with Sodium Diethyldithiocarbamate (NaDDC)

    NASA Astrophysics Data System (ADS)

    Setiyanto, Henry; Muhida, Rifki; Kishi, Tomoya; Rahman, Md. Mahmudur; Dipojono, Hermawan K.; Diño, Wilson A.; Matsumoto, Shigeno; Kasai, Hideaki

    Analytical chemistry in the perspective of ab initio molecular orbital calculation is introduced by investigating the chemical reaction between transition metals Cr and Fe with sodium diethyldithiocarbamate (NaDDC), a complexing agent to detect and extract Cr in human blood sample. Using density functional theory—based calculations, we determine the stable structure of the Cr-DDC and Fe-DDC complexes and obtain its dissociation energies. We found dissociation energy values of -3.24 and -2.67 eV for Cr and Fe complexes, respectively; and hence the formation of the former complex is more favorable than the formation of the latter.

  8. Ehimeite, NaCa2Mg4CrSi6Al2O22(OH)2: The first Cr-dominant amphibole from the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Nishio-Hamane, Daisuke; Ohnishi, Masayuki; Minakawa, Tetsuo; Yamaura, Jun-Ichi; Saito, Shohei; Kadota, Ryo

    The first Cr-dominant amphibole, ehimeite, ideally NaCa2Mg4CrSi6Al2O22(OH)2, has been found in a chromitite deposit in the Akaishi Mine, Higashi-Akaishi Mountain, Ehime Prefecture, Japan. Ehimeite occurs as prismatic crystals of up to 1.5 cm in length and 0.5 cm in width and is found in association with chromite, kämmererite (Cr-rich clinochlore), Cr-poor clinochlore, phlogopite, and uvarovite. It is transparent, emerald green to pale green in color with pale green streaks, and has a vitreous luster. Optically, it is biaxial positive with α = 1.644(2), β = 1.647(2), γ = 1.659(2), and 2Vcalc. = 53°. It has a Mohs’ hardness of 6 and densities of 3.08(3) g/cm3 (measured using heavy liquids) and 3.121 g/cm3 (calculated from powder diffraction data and the empirical formula). The empirical formula is (Na0.88K0.07)Σ0.95(Ca1.89Na0.02Mg0.09)Σ2.00(Mg4.03Cr0.62Al0.19Fe3+0.07Fe2+0.07Ti0.03)Σ5.00(Si6.14Al1.86)Σ8.00O22(OH)2 on the basis of O = 22 and OH = 2, and ehimeite mainly forms a solid solution, NaCa2Mg4(Cr, Al)Si6Al2O22(OH)2, with pargasite. It has a monoclinic unit cell with a = 9.9176(14) Å, b = 18.0009(12) Å, c = 5.2850(7) Å, β = 105.400(7)°, V = 909.6 (17) Å3, and Z = 2, and it belongs to the space group C2/m, as refined from powder XRD data. The eight strongest lines in the powder XRD pattern [d (Å), I/I0, hkl] are (3.370, 58, 150), (2.932, 43, 221), (2.697, 81, 151), (2.585, 50, 061), (2.546, 100, 202), (2.346, 42, 351), (2.156, 35, 261), and (1.514, 55, 263). The crystal structure has been refined to R1 = 0.0488 using single-crystal XRD data. It has been concluded that ehimeite in the Akaishi Mine was formed by the reaction of chromitite and the metamorphic fluid in the retrograde stage of serpentinization during the Sanbagawa metamorphism.

  9. Thermodynamic description of Tc(iv) solubility and hydrolysis in dilute to concentrated NaCl, MgCl2 and CaCl2 solutions.

    PubMed

    Yalçıntaş, Ezgi; Gaona, Xavier; Altmaier, Marcus; Dardenne, Kathy; Polly, Robert; Geckeis, Horst

    2016-06-07

    We present the first systematic investigation of Tc(iv) solubility, hydrolysis and speciation in dilute to concentrated NaCl, MgCl2 and CaCl2 systems, and comprehensive thermodynamic and activity models for the system Tc(4+)-H(+)-Na(+)-Mg(2+)-Ca(2+)-OH(-)-Cl(-)-H2O using both SIT and Pitzer approaches. The results are advancing the fundamental scientific understanding of Tc(iv) solution chemistry and are highly relevant in the applied context of nuclear waste disposal. The solubility of Tc(iv) was investigated in carbonate-free NaCl-NaOH (0.1-5.0 M), MgCl2 (0.25-4.5 M) and CaCl2 (0.25-4.5 M) solutions within 2 ≤ pHm≤ 14.5. Undersaturation solubility experiments were performed under an Ar atmosphere at T = 22 ± 2 °C. Strongly reducing conditions (pe + pHm≤ 2) were imposed with Na2S2O4, SnCl2 and Fe powder to stabilize technetium in the +IV redox state. The predominance of Tc(iv) in the aqueous phase was confirmed by solvent extraction and XANES/EXAFS spectroscopy. Solid phase characterization was accomplished after attaining thermodynamic equilibrium using XRD, SEM-EDS, XANES/EXAFS, TG-DTA and quantitative chemical analysis, and indicated that TcO2·0.6H2O(s) exerts solubility-control in all evaluated systems. The definition of the polyatomic Tc3O5(2+) species instead of TcO(2+) is favoured under acidic conditions, consistently with slope analysis (mTcvs. pHm) of the solubility data gained in this work and spectroscopic evidence previously reported in the literature. The additional formation of Tc(iv)-OH/O-Cl aqueous species in concentrated chloride media ([Cl(-)] = 9 M) and pHm≤ 4 is suggested by solubility and EXAFS data. The pH-independent behaviour of the solubility observed under weakly acidic to weakly alkaline pHm conditions can be explained with the equilibrium reaction TcO2·0.6H2O(s) + 0.4H2O(l) ⇔ TcO(OH)2(aq). Solubility data determined in dilute NaCl systems with pHm≥ 11 follow a well-defined slope of +1, consistent with the predominance of

  10. Enhanced photodegradation of 2,4-dichlorophenoxyacetic acid using a novel TiO2@MgFe2O4 core@shell structure.

    PubMed

    Huy, Bui The; Jung, Da-Som; Kim Phuong, Nguyen Thi; Lee, Yong-Ill

    2017-10-01

    A novel TiO 2 @MgO-Fe 2 O 3 core-shell structure has been synthesized via a hydrolysis and co-precipitation method followed by calcination at 500 °C and has proven to be an efficient photocatalyst. The obtained TiO 2 @MgO-Fe 2 O 3 core-shell was characterized by scanning electron microscopy, X-ray diffraction, and UV-Vis diffused reflectance techniques. Its photocatalytic activity toward 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated in aqueous solutions with and without visible light irradiation in the presence and absence of hydrogen peroxide. It was revealed that a strong electronic coupling exists between two components within the TiO 2 @MgO-Fe 2 O 3 core-shell structure. The present findings clearly highlight that TiO 2 @MgO-Fe 2 O 3 exhibits excellent photocatalytic activity under visible light irradiation in the presence of H 2 O 2 . More than 83% degradation of 2,4-D was observed within 240 min, at an initial concentration of 100 mg L -1 with 0.5 g of catalyst per liter. Moreover, the material showed high chemical stability after four consecutive experiments with no significant difference in the rate of photocatalytic degradation. Therefore, the results reported herein offer a green, low cost and highly efficient photocatalyst for environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Tunnel Magneto Resistance of Fe/Insulator/Fe

    NASA Astrophysics Data System (ADS)

    Aryee, Dennis; Seifu, Dereje

    Tri-layer thin films of Fe/Insulator/Fe were synthesized using magnetron DC/ RF sputtering with MgO insulator and Bi2Te3 topological insulators as middle buffer layer. The multi-layered samples thus produced were studied using in-house built magneto-optic Kerr effect (MOKE) instrument, vibrating sample magnetometer (VSM), torque magnetometer (TMM), AFM, MFM, and magneto-resistance (MR). This system, that is Fe/Insulator/Fe on MgO(100) substrate, is a well-known tunnel magneto resistance (TMR) structure often used in magnetic tunnel junction (MTJ) devices. TMR effect is a method by which MTJs are used in developing magneto-resistive random access memory (MRAM), magnetic sensors, and novel logic devices. The main purpose behind this research is to measure the magnetic anisotropy of Fe/Insulator /Fe structure and correlate it to magneto-resistance. In this presentation, we will present results from MOKE, VSM, TMM, AFM, MFM, and MR studies of Fe/Insulator/Fe on MgO(100). We would like to acknowledge support by NSF-MRI-DMR-1337339.

  12. Growth of L1{sub 0}-ordered crystal in FePt and FePd thin films on MgO(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futamoto, Masaaki, E-mail: futamoto@elect.chuo-u.ac.jp; Nakamura, Masahiro; Ohtake, Mitsuru

    2016-08-15

    Formation of L1{sub 0}-oredered structure from disordered A1 phase has been investigated for FePt and FePd films on MgO(001) substrates employing a two-step method consisting of low temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. L1{sub 0}-(001) variant crystal with the c-axis perpendicular to the substrate grows preferentially in FePd films whereas L1{sub 0}-(100), (010) variants tend to be mixed with the L1{sub 0}-(001) variant in FePt films. The structure analysis by X-ray diffraction indicates that a difference in A1 lattice strain is the influential factor that determines the resulting L1{sub 0}-variant structure in ordered thinmore » films. Misfit dislocations and anti-phase boundaries are observed in high-resolution transmission electron micrographs of 10 nm-thick Fe(Pt, Pd) film consisting of L1{sub 0}-(001) variants which are formed through atomic diffusion at 600 °C in a laterally strained FePt/PeFd epitaxial thin film. Based on the experimental results, a nucleation and growth model for explaining L1{sub 0}-variant formation is proposed, which suggests a possibility in tailoring the L1{sub 0} variant structure in ordered magnetic thin films by controlling the alloy composition, the layer structure, and the substrate material.« less

  13. Synthesis and Equation of State of Perovskites and Post-Perovskites in the (Mg,Fe)GeO3 System

    NASA Astrophysics Data System (ADS)

    Stan, C. V.; Dutta, R.; Krizan, J. W.; Cava, R. J.; Prakapenka, V.; Duffy, T. S.

    2016-12-01

    Knowledge of the effect of Fe on the physical and chemical properties of bridgmanite (perovskite, pv) and post-perovskite (ppv) is essential for interpreting seismic and geodynamic studies of the deep Earth. Silicate ppv is especially challenging to study due to the high pressure and temperature required for its synthesis ( 125 GPa and 2500 K in MgSiO3). This restricts the range of experiments possible and makes it very difficult to achieve well-characterized pressure-temperature conditions. Germanates have often been used as analogues because they undergo a similar sequence of phase transitions, but at lower pressures than their silicate counterparts. For example, MgGeO3 ppv can be synthesized at 63 GPa and 1800 K. In this study, polycrystalline pyroxenes (px) with compositions of (MgxFe1-x)2Ge2O6 (x = 1, 0.92, 0.78, 0.61, 0.52, 0) were synthesized and characterized using x-ray diffraction, Raman, Mössbauer, and microprobe analysis at ambient conditions. The px samples were found to exhibit a linear increase in lattice parameters and Raman mode shift with iron content. High-pressure x-ray diffraction experiments in the laser-heated diamond anvil cell were performed at beamline 13-ID-D of the Advanced Photon Source. All compositions were shown to transform to the pv ( 30 GPa and 1500 K) and ppv (> 55 GPa, 1600-1800 K) structures. Compositions with Mg# > 78 formed single-phase pv and ppv. Incorporation of Fe into the pv structure causes a decrease in octahedral distortion relative to the ideal cubic pv. Additionally, it leads to a modest decrease in bulk modulus (K0) and a modest increase in zero pressure volume (V0), and lowers the pv to ppv phase transition pressure by 10 GPa in the case of Mg#78 versus Mg#100. These novel high-pressure and -temperature analog phases can be of use for further investigation of the effect of Fe on the behavior of pv and ppv, including studies of site occupancies, spin state, and partitioning behavior.

  14. KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production.

    PubMed

    Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin

    2013-09-21

    Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.

  15. The abnormal electrical and optical properties in Na and Ni codoped BiFeO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xunling; Liu, Weifang, E-mail: wfliu@tju.edu.cn, E-mail: shouyu.wang@yahoo.com; Zhang, Hong

    2015-05-07

    Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} (x = 0, 0.005, 0.01, 0.015) nanoparticles are prepared via a sol-gel method. Weak ferromagnetism and exchange bias phenomenon without field cooling are observed in the samples. The oxygen vacancy concentration and leakage current density are increased with increasing the Ni content. However, with the increase of Ni content, the band gap of Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} nanoparticles first decreases and then increases. To explain the abnormal phenomenon, the interplay of oxygen vacancy donor and hole acceptor is analyzed and a phenomenological qualitative model based on the electronic energy band is proposed. Additionally, themore » threshold switching behavior appears in Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} samples with x = 0.01, 0.015 and the effect is qualitatively explained by introducing a conducting channel model based on the high-density mobile charges.« less

  16. EFFECTS of DUAL DOPING OF C AND TiC NANOPARTICLES ON SUPERCONDUCTING PROPERTIES OF Fe-SHEATHED MgB{sub 2} TAPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, H.; Liang, G.

    2010-04-08

    Fe-sheathed MgB{sub 2} wires doped with C and TiC nanoparticles in the formula MgB{sub 2-x}C{sub x}+yTiC(x = 0, 0.05, 0.1, 0.15, 0.2, and y = 0, 2.5 wt.%, 5 wt.%) were investigated. X-ray diffraction patterns indicate that the core materials in the wires contain small amount of Fe{sub 2}B and MgO impurity phases, and the peaks shift with the variation of doping amount. It is found that the critical temperature T{sub c} decreases with the increase of doping amount. Strong in-field current carrying capability enhancement was observed on MgB{sub 1.95}C{sub 0.05}+2.5 wt.% TiC.

  17. Temperature and Time Constraints on Dissolution, Fe-Mg Exchange and Zoning between Relict Forsterite and Chondrule Melt - Implications for Thermal History of Chondrules

    NASA Astrophysics Data System (ADS)

    Ustunisik, G. K.; Ebel, D. S. S.; Walker, D.

    2016-12-01

    The chemical and textural characteristics of different generations of relict olivine grains in chondrules record the fact that chondrules were re-melted. Mineral dissolution, Fe-Mg exchange, and zoning within the relict crystals constrain the T-t aspects of this re-melting process. Here, we performed isothermal and dynamic cooling experiments at LDEO of Columbia University. For each run, a cubic crystal of known dimensions of Mogok forsterite (Fo99) was placed in synthetic Type IIA chondrule mesostasis with 4.92 wt% FeO (TLiq 1315ºC). Pressed pellets of this mixture were hung on Pt-wire loops and inserted in vertical Deltech furnace where CO-CO2 gas mixtures kept fO2 IW-1. For isothermal experiments, each charge was heated to 1428ºC, 1350ºC, 1250ºC, and 1150ºC and was held there from 20 mins to several days (>3 days) before drop-quenching into cold water. The dynamic crystallization experiments were held at 1428ºC for 20 mins, cooled at rates of 75ºC, 722ºC, and 1444ºC/hr to 1000ºC and then water quenched. X-ray-CT and EMPA at AMNH were used to image the partially resorbed/zoned olivines in 3-D before and after each run to observe textural evolution of the crystal shapes and volumes and to determine chemical changes. The isothermal experiments at 1150 and 1250ºC for 20 mins, produced no bulk FeO diffusion into the Mogok forsterite. Very minor Fe-Mg exchange at the crystal rims gives slight MgO zoning within the nearby melt. With increasing duration (1 hr and 22 hrs), at 1250ºC, embayments of melt form into the rims of the crystal (amplified at 22 hrs) with significant Fe-Mg exchange. FeO content of Mogok increased with major MgO zonation within nearby melt. At 1150ºC, the same increase in FeO in Mogok and zonation in nearby glass could only be achieved in >3 days experiment. At high Ts (1428ºC) in 20 min run, 75 volume % of Mogok forsterite has been dissolved into the melt. Resorption erodes the Fe-Mg exchange at the rims of the crystal. At longer

  18. Fe-Mg substitution in aluminate spinels: effects on elastic properties investigated by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Bruschini, Enrico; Speziale, Sergio; Bosi, Ferdinando; Andreozzi, Giovanni B.

    2018-03-01

    We investigated by a multi-analytical approach (Brillouin scattering, X-ray diffraction and electron microprobe) the dependence of the elastic properties on the chemical composition of six spinels in the series (Mg1-x ,Fe x )Al2O4 (0 ≤ x ≤ 0.5). With the exception of C 12, all the elastic moduli (C 11, C 44, K S0 and G) are insensitive to chemical composition for low iron concentration, while they decrease linearly for higher Fe2+ content. Only C 12 shows a continuous linear increase with increasing Fe2+ across the whole compositional range under investigation. The high cation disorder showed by the sample with x = 0.202 has little or no influence on the elastic parameters. The range 0.202 < x < 0.388 bounds the percolation threshold (p c) for nearest neighbor interaction of Fe in the cation sublattices of the spinel structure. Below x = 0.202, the iron atoms are diluted in the system and far from each other, and the elastic moduli are nearly constant. Above x = 0.388, Fe atoms form extended interconnected clusters and show a cooperative behavior thus affecting the single-crystal elastic moduli. The elastic anisotropy largely increases with the introduction of Fe2+ in substitution of magnesium in spinel. This behavior is different with respect to other spinels containing transition metals such as Mn2+ and Co2+.

  19. Density functional theory study of small X-doped Mg(n) (X = Fe, Co, Ni, n = 1-9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties.

    PubMed

    Kong, Fanjie; Hu, Yanfei

    2014-03-01

    The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).

  20. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study.

    PubMed

    Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2016-11-01

    In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness

    NASA Astrophysics Data System (ADS)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.

    2018-05-01

    Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.

  2. The 21 Na (p,γ) 22 Mg reaction from Ec.m. =200 to 1103 keV in novae and x-ray bursts

    NASA Astrophysics Data System (ADS)

    D'Auria, J. M.; Azuma, R. E.; Bishop, S.; Buchmann, L.; Chatterjee, M. L.; Chen, A. A.; Engel, S.; Gigliotti, D.; Greife, U.; Hunter, D.; Hussein, A.; Hutcheon, D.; Jewett, C. C.; José, J.; King, J. D.; Laird, A. M.; Lamey, M.; Lewis, R.; Liu, W.; Olin, A.; Ottewell, D.; Parker, P.; Rogers, J.; Ruiz, C.; Trinczek, M.; Wrede, C.

    2004-06-01

    The long-lived radioactive nuclide 22 Na ( t1/2 =2.6 yr) is an astronomical observable for understanding the physical processes of oxygen-neon novae. Yields of 22Na in these events are sensitive to the unknown total rate of the 21 Na (p,γ) 22 Mg reaction. Using a high intensity 21 Na beam at the TRIUMF-ISAC facility, the strengths of seven resonances in 22 Mg , of potential astrophysical importance, have been directly measured at center of mass energies from Ec.m. =200 to 1103 keV . We report the results obtained for these resonances and their respective contributions to the 21 Na (p,γ) 22 Mg rate in novae and x-ray bursts, and their impact on 22 Na production in novae.

  3. Comparative evaluation of some commercially available brands of pharmaceutical preparations for Na, K and Mg concentrations.

    PubMed

    Hayat, Sikander; Chughtai, Muhammad Ismail; Ansari, Tariq Mahmood; Kamal, Ghulam Mustafa

    2012-04-01

    A study was carried out to investigate the concentrations of macro-elements (Na(+), K(+) and Mg(+2)) in twelve commercially available pharmaceutical preparations used as sex stimulant, by Atomic Absorption Spectrophotometer. A wet digestion method was adopted to prepare the samples. The results indicated that sodium concentration was maximum (3702 ± 29 μg g(-1)) in LB and minimum (495 ± 06 μg g(-1)) in H-E-H. Potassium concentration was maximum (6337 ± 13 μg g(-1)) in NBA while minimum (150 ± 06 μg g(-1)) in ZGRA. Magnesium concentration was maximum in V-100 (9226 ± 11 μg g(-1)) and minimum in FGRA (1194 ± 25 μg g(-1)). The concentration of macro-elements in the imported herbal preparations was in the order of MgMg. Some of these herbal preparations contain high level of macro-elements than the recommended daily dietary allowances. The excessive use of such preparations may cause severe allergic reactions, kidney damage and pulmonary atherosclerosis.

  4. Phase transition behavior of (K,Na)NbO3-based high-performance lead-free piezoelectric ceramic composite with different phase compositions depending on Na fraction

    NASA Astrophysics Data System (ADS)

    Yamada, Hideto; Matsuoka, Takayuki; Yamazaki, Masato; Ohbayashi, Kazushige; Ida, Takashi

    2018-01-01

    The structures of the main (K1- x Na x )NbO3 perovskite in a high-performance lead-free piezoelectric ceramic composite (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-MgO-Fe2O3 (x = 0.52 and 0.70) with trace amounts of LiMgFeTiO4 inverse spinel and (Li,K)2(Mg,Fe,Ti,Nb)6O13 layered structure have been investigated by transmission electron microscopy (TEM) and synchrotron powder X-ray diffractometry (XRD) with varying temperatures. The bright-field TEM images have shown tetragonal 90°-domain contrasts at 80 and 40 °C, and the XRD profile has been simulated by adding an average structure of two differently oriented tetragonal structures bound by a 90°-domain wall for the x = 0.52 sample. Aggregates of tilted NbO6 nanodomains have been observed in a high-resolution TEM image, and the crossover of P4mm-Amm2 features from 60 to 20 °C and diffuse 2 × 2 × 2 superlattice reflections of the tilted NbO6 Imm2 structure have been observed in XRD data for the x = 0.70 sample.

  5. Different Effects of Al Substitution for Mn or Fe on the Structure and Electrochemical Properties of Na0.67Mn0.5Fe0.5O2 as a Sodium Ion Battery Cathode Material.

    PubMed

    Wang, Huibo; Gao, Rui; Li, Zhengyao; Sun, Limei; Hu, Zhongbo; Liu, Xiangfeng

    2018-05-07

    P2-type layered oxides based on the elements Fe and Mn have attracted great interest as sodium ion battery (SIB) cathode materials owing to their inexpensive metal constituents and high specific capacity. However, they suffer from rapid capacity fading and complicated phase transformations. In this study, we modulate the crystal structure and optimize the electrochemical performances of Na 0.67 Mn 0.5 Fe 0.5 O 2 by Al doping for Mn or Fe, respectively, and the roles of Al in the enhancement of the rate capability and cycling performance are unraveled. (1) The substitution of Al for Mn or Fe decreases the lattice parameters a and c but enlarges d spacing and lengthens Na-O bonds, which enhances Na + diffusion and rate capability especially for Na 0.67 Mn 0.5 Fe 0.47 Al 0.03 O 2 . (2) Al doping reduces the thickness of TMO 2 and strengthens TM-O/O-O bonding. This enhances the layered structure stability and the capacity retention. (3) Al doping mitigates Mn 3+ and Jahn-Teller distortion, mitigating the irreversible phase transition. (4) Al doping also alleviates the lattice volume variation and the structure strain. This further improves the stability of the layered structure and the cycling performances particularly in the case of Al doping for Fe. The in-depth insights into the roles of Al substitution might be also useful for designing high-performance cathode materials for SIBs through appropriate lattice doping.

  6. Study of Structural and Magnetic Properties of Silica and Polyethylene Glycol (PEG-4000)-Encapsulated Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe2O4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Deswardani, F.; Maulia, R.; Suharyadi, E.

    2017-05-01

    Mg0.5Ni0.5Fe2O4 has been successfully synthesized by using co-precipitation method. Two series of Mg0.5Ni0.5Fe2O4 silica encapsulated have been prepared by varying the concentration of silica and variation of PEG-4000 concentration. Analysis of X-Ray Diffraction (XRD) pattern showed that nanoparticles contained Mg0.5Ni0.5Fe2O4 spinel phase and γ-Fe2O3 phase with a particle size of 5.1 nm. The various of silica encapsulation give rise to produce a new phase of SiO2 and increase the particle size to 16.1 nm. PEG-4000 encapsulation affected to create a new phase of γ-FeO(OH), and reduce the particle size down to 4.5 nm. Fourier Transform Infra Red (FTIR) for Mg0.5Ni0.5Fe2O4 showed absorption peaks around 300-600 cm-1 which are M-O bond vibration. After silica encapsulation, there was new bond vibration typical of silica such as Si-O-Si (1049.28 cm-1), Si-OH (779.24 cm-1), and Si-O-Fe (570.93 cm-1). The PEG-4000 encapsulation creates a new vibration for typical of PEG-like of C-O (1103.28 cm-1) and C-H (925.83, 1481.33, and 2924.09 cm-1). Both of encapsulations series have M-O bond vibration indicating the presence of Mg0.5Ni0.5Fe2O4. After silica encapsulation, the coercivity of Mg0.5Ni0.5Fe2O4 decreased from 47 Oe to 10 Oe due to the decrease of particle size. Even though, the discrepancy of particle size as the effect of PEG-4000 encapsulation, the coercivity just slightly reduced to 46 Oe. The saturation magnetization of Mg0.5Ni0.5Fe2O4 decreased from 4.7 emu/g to 1 emu/g after silica encapsulation because diamagnetic SiO2. Otherwise, the saturation magnetization increased to 7.7 emu/g after PEG-4000 encapsulation because of domination of Mg0.5Ni0.5Fe2O4 phase ratio.

  7. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes.

    PubMed

    Chen, Desheng; Zhao, Longsheng; Liu, Yahui; Qi, Tao; Wang, Jianchong; Wang, Lina

    2013-01-15

    A novel process for recovering iron, titanium, and vanadium from titanomagnetite concentrates has been developed. In the present paper, the treatment of rich titanium-vanadium slag by NaOH molten salt roasting and water leaching processes is investigated. In the NaOH molten salt roasting process, the metallic iron is oxidized into ferriferous oxide, MgTi(2)O(5) is converted to NaCl-type structure of Na(2)TiO(3), and M(3)O(5) (M=Ti, Mg, Fe) is converted to α-NaFeO(2)-type structure of NaMO(2), respectively. Roasting temperature and NaOH-slag mass ratio played a considerable role in the conversion of titanium in the rich titanium-vanadium slag during the NaOH molten salt roasting process. Roasting at 500 °C for 60 min and a 1:1 NaOH-slag mass ratio produces 96.3% titanium conversion. In the water leaching process, the Na(+) was exchanged with H(+), Na(2)TiO(3) is converted to undefined structure of H(2)TiO(3), and NaMO(2) is converted to α-NaFeO(2)-type structure of HMO(2). Under the optimal conditions, 87.3% of the sodium, 42.3% of the silicon, 43.2% of the aluminum, 22.8% of the manganese, and 96.6% of the vanadium are leached out. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Removal of Cd2+ and Cu2+ ions from aqueous solution by using Fe-Fe3O4/graphene oxide as a novel and efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Le, Giang H.; Ha, Anh Q.; Nguyen, Quang K.; Nguyen, Kien T.; Dang, Phuong T.; Tran, Hoa T. K.; Vu, Loi D.; Nguyen, Tuyen V.; Lee, Gun D.; Vu, Tuan A.

    2016-10-01

    The nano Fe-Fe3O4/graphene oxide (GO) was successfully synthesized by the precipitation method and followed by chemical reduction using FeCl3 as iron sources and NaBH4 as reducing agent. The products were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), BET, x-ray photoelectron spectroscopy (XPS) and VMS. From the obtained XRD and XPS results, it revealed the formation of both Fe and Fe3O4 nano particles on GO surface. TEM images showed that both Fe3O4/GO and Fe-Fe3O4/GO had small particle size of 10-20 nm and uniform size distribution. Fe3O4/GO and Fe-Fe3O4/GO were used as adsorbents for removal of Cd2+ and Cu2+ ions from aqueous solution. Maximum adsorption capacity (Q max) of Fe-Fe3O4/GO for Cu2+ and Cd2+ are 90.0 mg g-1 and 108.6 mg g-1, respectively. These values are much higher as compared to those of Fe3O4/GO as well as those reported in the literature. Additionally, this novel adsorbent can be reused by washing with diluted Hcl solution and easily recovered by applying the magnetic field. The Cd2+ adsorption isotherm fits better for the Langmuir model that of the Freundlich model and it obeys the pseudo-second order kinetic equation.

  9. Magnetoelectric effect in nanogranular FeCo-MgF films at GHz frequencies

    NASA Astrophysics Data System (ADS)

    Ikeda, Kenji; Kobayashi, Nobukiyo; Arai, Ken-Ichi; Yabukami, Shin

    2018-01-01

    The magnetoelectric effect is a key issue for material science and is particularly significant in the high frequency band, where it is indispensable in industrial applications. Here, we present for the first time, a study of the high frequency tunneling magneto-dielectric (TMD) effect in nanogranular FeCo-MgF films, consisting of nanometer-sized magnetic FeCo granules dispersed in an MgF insulator matrix. Dielectric relaxation and the TMD effect are confirmed at frequencies over 10 MHz. The frequency dependence of dielectric relaxation is described by the Debye-Fröhlich model, taking relaxation time dispersion into account, which reflects variations in the nature of the microstructure, such as granule size, and the inter-spacing between the granules that affect the dielectric response. The TMD effect reaches a maximum at a frequency that is equivalent to the inverse of the relaxation time. The frequency where the peak TMD effect is observed varies between 12 MHz and 220 MHz, depending on the concentration of magnetic metal in the nanogranular films. The inter-spacing of the films decreases with increasing magnetic metal concentration, in accordance with the relaxation time. These results indicate that dielectric relaxation is controlled by changing the nanostructure, using the deposition conditions. A prospective application of these nanogranular films is in tunable impedance devices for next-generation mobile communication systems, at frequencies over 1 GHz, where capacitance is controlled using the applied magnetic field.

  10. Light, alpha, and Fe-peak element abundances in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did notmore » show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge

  11. Effect of synthesis route on the uptake of Ni and Cd by MgFe2O4 nanopowders

    NASA Astrophysics Data System (ADS)

    Al-Najar, B.; Khezami, L.; Judith Vijaya, J.; Lemine, O. M.; Bououdina, M.

    2017-01-01

    In this study, MgFe2O4 nanopowders were synthesized through two different methods, sol-gel method (SG) and modified sol-gel with Ammonia (MSG-A). The influence of synthesis route was investigated in terms of phase stability, pores size and surface area, magnetic properties and uptake of Ni and Cd metals from aqueous solution. Rietveld refinements of x-ray diffraction patterns confirmed the formation of single spinel phase for SG sample, while minor impurity was detected for SGM-A sample (few amount of MgO). The crystallite size was found to be sensitive to the preparation method; it ranges from 4 nm for SG to 15 nm for MSG-A. Magnetization experiment at room temperature showed ferromagnetic behavior with a saturation magnetization ( M s) ranging from 5.39 emu/g for SG to 9.93 emu/g for MSG-A. Preliminary results showed that SG and MSG-A samples are efficient adsorbent for Ni and Cd metal ions from aqueous solution. Maximum quantity of 62.67 and 61.2 mg of Ni(II) and 36.49 and 32.84 mg of Cd(II) was adsorbed per gram of MgFe2O4 synthesized by SG and MSG-A, respectively.

  12. Large enhancement of Blocking temperature by control of interfacial structures in Pt/NiFe/IrMn/MgO/Pt multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Wang, Shouguo, E-mail: sgwang@ustb.edu.cn; Han, Gang

    2015-09-15

    The Blocking temperature (T{sub B}) of Pt/NiFe/IrMn/MgO/Pt multilayers was greatly enhanced from far below room temperature (RT) to above RT by inserting 1 nm thick Mg layer at IrMn/MgO interface. Furthermore, the exchange bias field (H{sub eb}) was increased as well by the control of interfacial structures. The evidence for a significant fraction of Mn-O bonding at IrMn/MgO interface without Mg insertion layer was provided by X-ray photoelectron spectroscopy. The bonding between Mn and O can decrease the antiferromagnetism of IrMn film, leading to lower value of T{sub B} in Pt/NiFe/IrMn/MgO/Pt multilayers. Ultrathin Mg film inserted at IrMn/MgO interface actingmore » as an oxygen sinking layer can suppress the oxidation reactions between Mn and O and reduce the formation of Mn-O bonding greatly. The oxidation suppression results in the recovery of the antiferromagnetism of IrMn film, which can enhance T{sub B} and H{sub eb}. Furthermore, the high resolution transmission electron microscopy demonstrates that the Mg insertion layer can efficiently promote a high-quality MgO (200) texture. This study will enhance the understanding of physics in antiferromagnet-based spintronic devices.« less

  13. Structural and electrochemical properties of Fe-doped Na2Mn3-xFex(P2O7)2 cathode material for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Huatao; Zhao, Yanming; Zhang, Hui; Lian, Xin; Dong, Youzhong; Kuang, Quan

    2017-12-01

    A series of Fe-doped Na2Mn3-xFex(P2O7)2 (x = 0.0, 0.5, 1.0, 1.5 and 2.0) compounds have been successfully prepared by using sol-gel method. Rietveld refinement results indicate that single phase Na2Mn3-xFex(P2O7)2 with triclinic structure can be obtained within 0 ≤ x ≤ 2 although no Na2Fe3(P2O7)2 existing under our experimental conditions, and the cell parameters (including a, b, c and V) are decreasing with the increasing of x. Our results reveal that Na2Mn3(P2O7)2 exhibits an electrochemical activity in the voltage range of 1.5 V-4.5 V vs. Na+/Na when using as the cathode material for SIBs although it gives a limited rate capability and poor capacity retention. However, the electrochemical performance of Fe-doped Na2Mn3-xFex(P2O7)2 (0 ≤ x ≤ 2) can be improved significantly where cycle performance and rate capability can be improved significantly than that of the pristine one. Sodium ion diffusion coefficient can be increased by about two orders of magnitude with the Fe-doping content higher than x = 0.5.

  14. Zaoyang chondrite cooling history from pyroxene Fe(2+)-Mg intracrystalline ordering and exolutions

    NASA Technical Reports Server (NTRS)

    Molin, G. M.; Tribaudino, M.; Brizi, E.

    1993-01-01

    The Zaoyang ordinary chondrite fell as a single 14.15-kg mass in Hubey province (China) in October 1984 and was classified as a non-brecciated H5 chondrite, shock facies b. Cooling rate in pyroxenes can be calculated down to about 1000 C by using fine textures and at still lower temperatures (700 to 200 C) by intracrystalline ordering processes. The crystal chemistry of clinopyroxene and orthopyroxene from the matrix of the H5 Zaoyang chondrite has been investigated by X-ray structure refinement and detailed microprobe analysis. By comparison with terrestrial pyroxenes cell and polyhedral volumes in clino- and orthopyroxenes show a low crystallization pressure. Fe(2+) and Mg are rather disordered in M1 and M2 sites of clino- and orthopyroxenes; the closure temperatures of the exchange reaction are 600 and 512 C respectively, which is consistent with a quite fast cooling rate, estimated of the order of one degree per day. The closure temperature for the intercrystalline Ca-Mg exchange reaction for clino- and orthopyroxene showing clinopyroxene lamellae about 10 microns thick. Kinetic evaluations based on the thickness of exolved lamellae give a cooling rate of not more than a few degrees per 10(exp 4) years. The different cooling rates obtained from Fe(2+)-Mg intracrystalline partitioning and exolution lamellae suggest an initial episode of slow cooling at 900 C, followed by faster cooling at temperatures of 600-500 C at low pressure conditions. The most probable scenario of the meteorite history seems that the exolved orthopyroxene entered the parental chondrite body after exolution had taken place at high temperature. Subsequent fast cooling occurred at low temperature after the formation of the body.

  15. Effect of the cation size on the framework structures of magnesium tungstate, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO4)3 (R = Rb, Cs).

    PubMed

    Han, Shujuan; Wang, Ying; Jing, Qun; Wu, Hongping; Pan, Shilie; Yang, Zhihua

    2015-03-28

    A series of alkali metal magnesium tungstates, A4Mg(WO4)3 (A = Na, K), R2Mg2(WO4)3 (R = Rb, Cs), were synthesized from a high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Interestingly, Na4Mg(WO4)3 crystallizes in the monoclinic space group C2/c, while K4Mg(WO4)3 having an identical stoichiometry with Na4Mg(WO4)3, exhibits a different framework structure belonging to triclinic symmetry with the space group P1[combining macron]. Isostructural Rb2Mg2(WO4)3 and Cs2Mg2(WO4)3 crystallize in the space group P213 of cubic symmetry and reveal a three dimensional framework composed of isolated WO4 tetrahedra, MgO6 octahedra and RO12 (R = Rb, Cs) polyhedra. The effect of the alkali metal cation size on the framework structures of magnesium tungstate has been discussed in detail. In addition, the infrared spectra, as well as the UV-Vis-NIR diffuse reflectance spectroscopy data, are reported. The first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties.

  16. The influence of PEG-4000 and silica on crystal structure and magnetic properties of magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puspitarum, Deska Lismawenning; Hermawan, Agung; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id

    2016-04-19

    In this paper, reports the influence of polyethylene glycol (PEG-4000) and silica on crystal structure and magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles which is synthesized by the co-precipitation method. The particle size of before coated MgFe{sub 2}O{sub 4} was around 10.5 nm, and became 5.2 nm after PEG-4000 coating and 18.8 nm after silica coating. After coating, there were appeared new phases, α-Fe{sub 2}O{sub 3} (antiferromagnetic), SiO{sub 2} and γ-FeO(OH) which are paramagnetics. The second phase sample decreased responses to the external field. Transmission Electron Microscopy (TEM) morphology analysis on nanoparticles which was coated with PEG 4000 showed that the particles becomemore » more spherical, more dispersive, and less aglomerated. The magnetic hysteresis loops which was investigated with Vibrating Sample Magnetometer (VSM) indicated that coercivity of MgFe{sub 2}O{sub 4} was 120.7 Oe, and then decreased to 40.9 Oe after coating and 34.7 Oe for coating with PEG-4000 and silica, respectively. At 15 kOe, the magnetization value decreased from 2.69 emu/g to 0.96 emu/g after coating with PEG-4000 and increased 2.82 emu/g after silica coating. The result revealed the coating with both PEG-4000 and silica influence the magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles.« less

  17. A study on magneto-optic properties of CoxMg1-xFe2O4 nanoferrofluids

    NASA Astrophysics Data System (ADS)

    Karthick, R.; Ramachandran, K.; Srinivasan, R.

    2018-04-01

    Nanoparticles of CoxMg1-xFe2O4 (x = 0.1, 0.5, 0.9) were synthesized using chemical co-precipitation method. Characterization by X-ray diffraction technique confirmed the formation of cubic crystalline structure and the crystallite size of the samples obtained using Debye-Scherrer approximation were found to increase with increasing cobalt substitution. Surface morphology and the Chemical composition of the samples were visualized using scanning electron microscope (SEM) with energy dispersive analysis of X-rays (EDAX). Room temperature magnetic parameters of the nanoparticles by vibrating sample magnetometer (VSM) revealed the magnetic properties such as Saturation magnetization (Ms), Remanent magnetization (Mr) and Coercive field (Hc) found to increase with increasing cobalt substitution. Faraday rotation measurements on CoxMg1-xFe2O4 ferrofluids exhibited increase in rotation with cobalt substitution. Further, there is an increase in Faraday rotation with increasing magnetic field for all the samples.

  18. High-Energy-Density Aqueous Magnesium-Ion Battery Based on a Carbon-Coated FeVO4 Anode and a Mg-OMS-1 Cathode.

    PubMed

    Zhang, Hongyu; Ye, Ke; Zhu, Kai; Cang, Ruibai; Yan, Jun; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2017-12-01

    Porous FeVO 4 is prepared by hydrothermal method and further modified by coating with carbon to obtain FeVO 4 /C with a hierarchical pore structure. FeVO 4 /C is used as an anodic electrode in aqueous rechargeable magnesium-ion batteries. The FeVO 4 /C material not only has improved electrical conductivity as a result of the carbon coating layer, but also has an increased specific surface area as a result of the hierarchical pore structure, which is beneficial for magnesium-ion insertion/deinsertion. Therefore, an aqueous rechargeable magnesium-ion full battery is successfully constructed with FeVO 4 /C as the anode, Mg-OMS-1 (OMS=octahedral molecular sieves) as the cathode, and 1.0 mol L -1 MgSO 4 as the electrolyte. The discharge capacity of the Mg-OMS-1//FeVO 4 /C aqueous battery is 58.9 mAh g -1 at a current density of 100 mA g -1 ; this value is obtained by calculating the total mass of two electrodes and the capacity retention rate of this device is 97.7 % after 100 cycles, with almost 100 % coulombic efficiency, which indicates that the system has a good electrochemical reversibility. Additionally, this system can achieve a high energy density of 70.4 Wh kg -1 , which provides powerful evidence that an aqueous magnesium-ion battery is possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sensitivity of the mayfly Adenophlebia auriculata (Ephemeroptera: Leptophlebiidae) to MgSO4 and Na2SO4

    NASA Astrophysics Data System (ADS)

    Vellemu, E. C.; Mensah, P. K.; Griffin, N. J.; Odume, O. N.

    2017-08-01

    Acid mine drainage (AMD) continues to deteriorate water quality in freshwater ecosystems. Sulphates, a major salt component in AMD, can exacerbate AMD effects in freshwater because salts are toxic to aquatic life in high concentrations. Sulphates are predominant in South African AMD impacted freshwater ecosystems. In this study, the sensitivity of nymphs of the mayfly Adenophlebia auriculata (Ephemeroptera: Leptophlebiidae) was investigated by exposing the organisms to magnesium sulphate (MgSO4) and sodium sulphate (Na2SO4) as models of mining salinisation in short-term (96 h) and long-term (240 h) in static system tests. Short-term and long-term lethal concentrations of each salt were estimated using regression analyses. The results indicated that A. auriculata was more sensitive to MgSO4 (LC50 = 3.81 g/L) than Na2SO4 (LC50 = 8.78 g/L) after short-term exposures. However, this species became sensitive to Na2SO4 (LC10 = 0.19 g/L) but tolerant to MgSO4 (LC10 = 0.35 g/L) after long-term exposures. These results suggest that the 0.25 g/L sulphate compliance limit for South Africa is inadequate to protect A. auriculata from Na2SO4 toxicity in the long-term, yet it overprotects this species from MgSO4 exposures in the short-term. The findings of this study are an important major step in understanding the ecological effects of AMD to aquatic life.

  20. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-x Mg x Fe2O4 nanoparticle ferrites

    NASA Astrophysics Data System (ADS)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ˜ 32 nm to ˜ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ˜ 57.35 emu/g to ˜ 61.49 emu/g and ˜ 603.26 Oe to ˜ 684.11 Oe (1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  1. Average [O II] nebular emission associated with Mg II absorbers: dependence on Fe II absorption

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Srianand, Raghunathan; Petitjean, Patrick; Noterdaeme, Pasquier

    2018-05-01

    We investigate the effect of Fe II equivalent width (W2600) and fibre size on the average luminosity of [O II] λλ3727, 3729 nebular emission associated with Mg II absorbers (at 0.55 ≤ z ≤ 1.3) in the composite spectra of quasars obtained with 3 and 2 arcsec fibres in the Sloan Digital Sky Survey. We confirm the presence of strong correlations between [O II] luminosity (L_{[O II]}) and equivalent width (W2796) and redshift of Mg II absorbers. However, we show L_{[O II]} and average luminosity surface density suffer from fibre size effects. More importantly, for a given fibre size, the average L_{[O II]} strongly depends on the equivalent width of Fe II absorption lines and found to be higher for Mg II absorbers with R ≡W2600/W2796 ≥ 0.5. In fact, we show the observed strong correlations of L_{[O II]} with W2796 and z of Mg II absorbers are mainly driven by such systems. Direct [O II] detections also confirm the link between L_{[O II]} and R. Therefore, one has to pay attention to the fibre losses and dependence of redshift evolution of Mg II absorbers on W2600 before using them as a luminosity unbiased probe of global star formation rate density. We show that the [O II] nebular emission detected in the stacked spectrum is not dominated by few direct detections (i.e. detections ≥3σ significant level). On an average, the systems with R ≥ 0.5 and W2796 ≥ 2 Å are more reddened, showing colour excess E(B - V) ˜ 0.02, with respect to the systems with R < 0.5 and most likely trace the high H I column density systems.

  2. Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method.

    PubMed

    Manohar, A; Krishnamoorthi, C

    2017-08-01

    Biocompatible Mg 1-x Zn x Fe 2 O 4 (x=0.2, 0.4, 0.5, 0.6 & 0.8) nanoparticles were synthesized by solvothermal reflux method. All compounds were crystallized in cubic spinel structure with slightly enhance of lattice parameter with biocompatible substituent Zn 2+ concentration. All compounds were shown spherical geometry with average particle diameter is around 12nm (colloidal size). The spinel structure formation was confirmed by X-ray diffraction,electron diffraction, infrared, Raman shift measurements. Infrared analysis shows oleic acid coating on the surface of nanoparticles and TGA analysis shows that oleic acid desorbs from nanoparticle by decomposition at around 400°C. UV-Vis-NIR spectra show all the compounds show energy band gap in the semiconductor range (≈ 1.9eV). All compounds show superparamagnetic characteristics at room temperature with enhanced saturated mass magnetization (M s ) with Zn 2+ concentration up to x=0.5 and then reduces with further enhance of x up to 0.8. The M s changes were ascribed to occupation of Zn 2+ at tetrahedral sites and proportional enhance of Fe 3+ at octahedral sites. The enhanced Fe 3+ concentration at octahedral sublattice leads to formation Fe 3+ -O 2- -Fe 3+ networks which favor antiferromagnetic interactions due to superexchange phenomenon. Photocatalytic activity of all compounds were studied through methylene blue (MB) degradation analysis. All compounds show ≈ 96% degradation of MB upon 70min irradiation of light on photoreactor vessel. In addition, photocatalytic activity (degradation efficiency) enhances with Zn 2+ concentration in MgFe 2 O 4 . The Zn 2+ substitution enhances both M s and photocatalytic activity biocompatible of MgFe 2 O 4 nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  3. Osumilite-(Mg): Validation as a mineral species and new data

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Rastsvetaeva, R. K.; Aksenov, S. M.; Belakovskiy, D. I.; Van, K. V.; Schüller, W.; Ternes, B.

    2013-12-01

    Osumilite-(Mg), the Mg-dominant analogue of osumilite, has been approved by the CNMNC IMA as a new mineral species. The holotype sample has been found at Bellerberg, Eifel volcanic area, Germany. Fluorophlogopite, sanidine, cordierite, mullite, sillimanite, topaz, pseudobrookite and hematite are associated minerals. Osumilite-(Mg) occurs as short prismatic or thick tabular hexagonal crystals reaching 0.5 × 1 mm in size in the cavities in basaltic volcanic glasses at their contact with thermally metamorphosed xenoliths of pelitic rocks. The mineral is brittle, with Mohs' hardness 6.5. Cleavage was not observed. Color is blue to brown. D meas = 2.59(1), D calc = 2.595 g/cm3. No bands corresponding to H2O and OH-groups are in the IR spectrum. Osumilite-(Mg) is uniaxial (+), ω = 1.539(2), ɛ = 1.547(2). The chemical composition (electron microprobe, average of 5 point analyses, wt %) is: 0.08 Na2O, 3.41 K2O, 0.04 CaO, 7.98 MgO, 0.28 MnO, 21.57 Al2O3, 3.59 Fe2O3, 62.33 SiO2, total 99.28. The empirical formula is: (K0.72Na0.03Ca0.01)(Mg1.97Mn0.04)[Al4.21Fe{0.45/3+}Si10.32]O30. The simplified formula is: KMg2Al3(Al2Si10)O10. The crystal structure was refined on a single crystal, R = 0.0294. Osumilite-(Mg) is hexagonal, space group P6/ mcc; a = 10.0959(1), c = 14.3282(2)Å, V = 1264.79(6) Å3, Z = 2. The strongest reflections in the X-ray powder diffraction pattern [ d, Å I %) ( hkl)] are: 7.21 (37) (002), 5.064 (85) (110), 4.137 (45) (112), 3.736 (43) (202), 3.234 (100) (211), 2.932 (42) (114), 2.767 (51) (204). A type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  4. Mössbauer spectroscopy of ZnxMg1-x Fe2O4 (0 ≤ x ≤ 0.74) nanostructures crystallized from borate glasses

    NASA Astrophysics Data System (ADS)

    El Shabrawy, S.; Miglierini, M.; Schaaf, P.; Tzankov, D.; Georgieva, M.; Harizanova, R.; Rüssel, C.

    2018-03-01

    Glasses in the system 51.7 B2O3/9.3 K2O/1 P2O5/10.4 Fe2O3/(27.6 - y) MgO/y ZnO (with y = 0, 1, 2.5, 5, 7.5, 10, 13.8, and 20) were prepared by the conventional melt quenching method. The glass samples were thermally treated at 560 °C for 3 h in ambient conditions. Using 57Fe Mössbauer spectroscopy, the effect of the substitution of MgO by ZnO in the glass network and the effect on the precipitated crystallized phase was studied. The results showed that the ratio of Zn2+:Mg2+ in the precipitated crystals increases with the ZnO concentration in the glass. The isomer shift values indicated that iron occurs as Fe3+, which is distributed at the tetrahedral (A) and the octahedral [B] sites. Introducing ZnO leads to a relative increase of the Fe3+ concentration at the B sites at the expense of that occupying the A sites. This indicates the precipitation of ZnxMg1-x Fe2O4 nanoparticles, where Zn2+ ions favorably occupy the A sites. The average hyperfine field of the samples showed a strong dependence on the Zn concentration. At the highest Zn concentration of 13.8 and 20 mol%, the samples are paramagnetic, while for the smaller ones, the samples are superparamagnetic.

  5. SALT long-slit spectroscopy of LBQS 2113-4538: variability of the Mg II and Fe II component

    NASA Astrophysics Data System (ADS)

    Hryniewicz, K.; Czerny, B.; Pych, W.; Udalski, A.; Krupa, M.; Świȩtoń, A.; Kaluzny, J.

    2014-02-01

    Context. The Mg II line is of extreme importance in intermediate redshift quasars since it allows us to measure the black hole mass in these sources and to use these sources as probes of the distribution of dark energy in the Universe, as a complementary tool to SN Ia. Aims: Reliable use of Mg II requires a good understanding of all the systematic effects involved in the measurement of the line properties, including the contamination by Fe II UV emission. Methods: We performed three spectroscopic observations of a quasar LBQS 2113-4538 (z = 0.956) with the SALT telescope, separated in time by several months and we analyze in detail the mean spectrum and the variability in the spectral shape. Results: We show that even in our good-quality spectra the Mg II doublet is well fit by a single Lorentzian shape. We tested several models of the Fe II pseudo-continuum and showed that one of them well represents all the data. The amplitudes of both components vary in time, but the shapes do not change significantly. The measured line width of LBQS 2113-4538 identifies this object as a class A quasar. The upper limit of 3% for the contribution of the narrow line region (NLR) to Mg II may suggest that the separation of the broad line region and NLR disappears in this class of objects. Based on observations made with the Southern African Large Telescope (SALT) under program 2012-1-POL-008 (PI: Czerny).Fe II template shown in Fig. 8 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A34

  6. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Abraham, A. Godlyn; Manikandan, A.; Manikandan, E.; Vadivel, S.; Jaganathan, S. K.; Baykal, A.; Renganathan, P. Sri

    2018-04-01

    In this study, spinel magnesium cobalt ferrite (CoxMg1-xFe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanocomposites were synthesized successfully by modified sol-gel combustion method. Magnesium nitrate, cobalt nitrate and iron nitrate were used as the source of divalent (Mg2+ and Co2+) and trivalent (Fe3+) cations, respectively and urea were used as the reducing (fuel) agent. The effects of cobalt ions on morphology, structural, optical, magnetic and photo-catalytic properties of spinel CoxMg1-xFe2O4 nanocomposites were investigated. Various characterization methods, including X-ray powder diffraction (XRD), high resolution scanning electron microscope (HR-SEM), transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM) and photo-catalytic degradation (PCD) activity were used to study the phase purity, microstructure, particle size, elemental composition, functional group determination, band gap calculation, magnetic properties and degradation efficiency of nanoparticles, respectively. The observed results showed that the final products consists cubic spinel phase with sphere-like nanoparticles morphologies. Furthermore, spinel Co0.6Mg0.4Fe2O4 nanocomposite showed highest PCD efficiency (98.55%) than other composition of ferrite nanoparticles.

  7. Improving the characteristics of foundry alloys AlSiCuMg during manufacturing

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno Filipe Marques

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de

  8. Anoxic Corrosion of Steel and Lead in Na - Cl ± Mg-Dominated Brines in Atmospheres Containing CO2

    NASA Astrophysics Data System (ADS)

    Roselle, G. T.; Johnsen, S.; Allen, C.; Roselle, R.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a deep geologic repository developed by the U.S. Department of Energy for the disposal of transuranic radioactive waste in bedded salt (Permian Salado Fm.). In order to minimize radionuclide release from the repository it is desirable to maintain these species in their least-soluble form (i.e., low oxidation states). Post-closure conditions in the WIPP will control the speciation and solubility of radionuclides in the waste. Microbially-produced CO2 from cellulosic, plastic and rubber materials in the waste may acidify any brine present and increase the actinide solubilities. Thus, the DOE emplaces MgO in the repository to buffer fCO2 and pH within ranges favoring lower actinide solubilities. Large quantities of low-C steel and Pb present in the WIPP may also consume CO2. We present initial results from a series of multiyear experiments investigating the corrosion of steel and Pb alloys under WIPP-relevant conditions. The objective is to determine the extent to which these alloys consume CO2 via the formation of carbonates or other phases, potentially supporting MgO in CO2 sequestration. In these experiments steel and Pb coupons are immersed in brines under WIPP-relevant conditions using a continuous gas flow-through system. The experimental apparatus maintains the following conditions: pO2 < 5 ppm; temperature of 26 °C; relative humidity at 78%±10%; and a range of pCO2 values (0, 350, 1500 and 3500 ppm, balance N2). Four high-ionic-strength-brines are used: Generic Weep Brine (GWB), a Na-Mg-Cl dominated brine associated with the Salado Fm.; Energy Research and Development Administration WIPP Well 6 (ERDA-6), a predominately Na-Cl brine; GWB with organic ligands (EDTA, acetate, citrate, and oxalate); and ERDA-6 with the same organic ligands. Steel coupons removed after 6 months show formation of several phases dependent on the pCO2. SEM analysis with EDS shows the presence of a green FeMg)-chlori-hydroxide phase at p

  9. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    PubMed

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  10. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca and Fe doped MgO (001) surface basic sites

    PubMed Central

    Hatch, Courtney; Orlando, Roberto

    2012-01-01

    The electronic properties of undoped and Ca or Fe doped MgO (001) surfaces, as well as their propensity towards atmospheric acidic gas (CO2, SO2 and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, Osurf, using periodic Density Functional Theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the Osurf sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe doped MgO (001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca doped MgO (001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces. PMID:22775293

  11. Mg, Al, Si, Ca, Ti, Fe, and Ni abundance for a sample of solar analogues

    NASA Astrophysics Data System (ADS)

    López-Valdivia, Ricardo; Bertone, Emanuele; Chávez, Miguel

    2017-05-01

    We report on the determination of chemical abundances of 38 solar analogues, including 11 objects previously identified as super-metal-rich stars. We have measured the equivalent widths for 34 lines of 7 different chemical elements (Mg, Al, Si, Ca, Ti, Fe and Ni) in high-resolution (R ˜ 80 000) spectroscopic images, obtained at the Observatorio Astrofísico Guillermo Haro (Sonora, Mexico), with the Cananea High-resolution Spectrograph. We derived chemical abundances using atlas12 model atmospheres and the Fortran code moog. We confirmed the super-metallicity status of six solar analogues. Within our sample, BD+60 600 is the most metal rich star ([Fe/H] = +0.35 dex), while for HD 166991, we obtained the lowest iron abundance ([Fe/H] = -0.53 dex). We also computed the so-called [Ref] index for 25 of our solar analogues, and we found that BD+60 600 ([Ref] = +0.42) and BD+28 3198 ([Ref] = +0.34) are good targets for exoplanet search.

  12. H T P21/ c- C2/ c phase transition and kinetics of Fe2+-Mg order-disorder of an Fe-poor pigeonite: implications for the cooling history of ureilites

    NASA Astrophysics Data System (ADS)

    Alvaro, Matteo; Cámara, Fernando; Domeneghetti, M. Chiara; Nestola, Fabrizio; Tazzoli, Vittorio

    2011-09-01

    A natural Ca-poor pigeonite (Wo6En76Fs18) from the ureilite meteorite sample PCA82506-3, free of exsolved augite, was studied by in situ high-temperature single-crystal X-ray diffraction. The sample, monoclinic P21/ c, was annealed up to 1,093°C to induce a phase transition from P21/ c to C2/ c symmetry. The variation with increasing temperature of the lattice parameters and of the intensity of the b-type reflections ( h + k = 2 n + 1, present only in the P21/ c phase) showed a displacive phase transition P21/ c to C2/ c at a transition temperature T Tr = 944°C, first order in character. The Fe-Mg exchange kinetics was studied by ex situ single-crystal X-ray diffraction in a range of temperatures between the closure temperature of the Fe-Mg exchange reaction and the transition temperature. Isothermal disordering annealing experiments, using the IW buffer, were performed on three crystals at 790, 840 and 865°C. Linear regression of ln k D versus 1/ T yielded the following equation: ln k_{{D}} = - 3717( ± 416)/T(K) + 1.290( ± 0.378);quad (R2 = 0.988) . The closure temperature ( T c) calculated using this equation was ˜740(±30)°C. Analysis of the kinetic data carried out taking into account the e.s.d.'s of the atomic fractions used to define the Fe-Mg degree of order, performed according to Mueller's model, allowed us to retrieve the disordering rate constants C 0 K {dis/+} for all three temperatures yielding the following Arrhenius relation: ln ( {C0 K_{{dis}}^{ + } } ) = ln K0 - Q/(RT) = 20.99( ± 3.74) - 26406( ± 4165)/T(K);quad (R2 = 0.988) . An activation energy of 52.5(±4) kcal/mol for the Fe-Mg exchange process was obtained. The above relation was used to calculate the following Arrhenius relation modified as a function of X Fe (in the range of X Fe = 0.20-0.50): ln ( {C0 K_{{dis}}^{ + } } ) = (21.185 - 1.47X_{{Fe}} ) - {{(27267 - 4170X_{{Fe}} )}/T(K)} . The cooling time constant, η = 6 × 10-1 K-1 year-1 calculated on the PCA82506-3 sample, provided

  13. Structural, dielectric and magnetic studies of Mn doped Y-type barium hexaferrite (Ba2Mg2Fe12O22)

    NASA Astrophysics Data System (ADS)

    Abdullah, Md. F.; Pal, P.; Mohapatra, S. R.; Yadav, C. S.; Kaushik, S. D.; Singh, A. K.

    2018-04-01

    The polycrystalline single phase Ba2Mg2Fe12O22 (BMF) and Ba2Mg2Fe11.52Mn0.48O22 (BMFM) were prepared using conventional solid state reaction route. We report the modification in structural, dielectric and magnetic properties of BMF due to 4% Mn doping at Fe site. Phase purity of both sample are confirmed by the Reitveld refinement of XRD data. Temperature dependent dielectric study shows decrease in dielectric constant (ɛ') and dielectric loss (tan δ) due to 4% Mn doping in parent sample. The ferrimagnetic to paramagnetic transition temperature (Tc) in doped sample decreases from 277°C to 150°C. Room temperature magnetization measurement shows ferrimagnetic behavior for both the samples. We have fitted the saturation magnetization data at 300 K by using least square method which confirms the enhancement of saturation magnetization and magnetic anisotropy constant in doped sample.

  14. Electrical conductivity, thermopower and 57Fe Mössbauer spectroscopy of aegirine (NaFeSi2O6)

    NASA Astrophysics Data System (ADS)

    Schmidbauer, E.; Kunzmann, Th.

    DC and AC electrical conductivities were measured on samples of two different crystals of the mineral aegirine (NaFeSi2O6) parallel (∥) and perpendicular (⊥) to the [001] direction of the clinopyroxene structure between 200 and 600 K. Impedance spectroscopy was applied (20 Hz-1 MHz) and the bulk DC conductivity σDC was determined by extrapolating AC data to zero frequency. In both directions, the log σDC - 1/T curves bend slightly. In the high- and low-temperature limits, differential activation energies were derived for measurements ∥ [001] of EA 0.45 and 0.35 eV, respectively, and the numbers ⊥ [001] are very similar. The value of σDC ∥ [001] with σDC(300 K) 2.0 × 10-6 Ω-1cm-1 is by a factor of 2-10 above that measured ⊥ [001], depending on temperature, which means anisotropic charge transport. Below 350 K, the AC conductivity σ'(ω) (ω/2π=frequency) is enhanced relative to σDC for both directions with an increasing difference for rising frequencies on lowering the temperature. An approximate power law for σ'(ω) is noted at higher frequencies and low temperatures with σ'(ω) ωs, which is frequently observed on amorphous and disordered semiconductors. Scaling of σ'(ω) data is possible with reference to σDC, which results in a quasi-universal curve for different temperatures. An attempt was made to discuss DC and AC results in the light of theoretical models of hopping charge transport and of a possible Fe2+ --> Fe3+ electron hopping mechanism. The thermopower Θ (Seebeck effect) in the temperature range 360 K < T < 770 K is negative in both directions. There is a linear Θ - 1/T relationship above 400 K with activation energy EΘ 0.030 eV ∥ [001] and 0.070 eV ⊥ [001]. 57Fe Mössbauer spectroscopy was applied to detect Fe2+ in addition to the dominating concentration of Fe3+.

  15. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  16. Spin Crossover in Solid and Liquid (Mg,Fe)O at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.; Holmstrom, E.

    2016-12-01

    Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lowermantle (24-136 GPa). Understanding the properties of this component is importantnot only in the solid state, but also in the molten state, as theplanet almost certainly hosted an extensive magma ocean initiallyWith increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties.Using first-principles molecular dynamics simulations,thermodynamic integration, and adiabatic switching, we present a phasediagram of the spin crossover In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasingtemperature favors the high spin state, while in the liquid the oppositeoccurs, due to the higher electronic entropy of the low spin state. Becausethe physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth.

  17. A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System

    NASA Astrophysics Data System (ADS)

    Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.

    2017-03-01

    The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.

  18. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jiandi

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature.more » However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.« less

  19. Effect of annealing on the temperature dependence of inelastic tunneling contributions vis-à-vis tunneling magnetoresistance and barrier parameters in CoFe/MgO/NiFe magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhusan Singh, Braj; Chaudhary, Sujeet, E-mail: sujeetc@physics.iitd.ac.in

    The effect of annealing on the changes in the inelastic tunneling contributions in tunneling conductance of ion beam sputtered CoFe/MgO/NiFe magnetic tunnel junctions (MTJs) is investigated. The inelastic contributions are evaluated using hopping conduction model of Glazman and Matveev in the temperature range of 25–300 K. The hopping through number of series of localized states present in the barrier due to structural defects increases from 9 (in as deposited MTJ) to 18 after annealing (at 200 °C/1 h); although no changes in the interface roughness of CoFe-MgO and MgO-NiFe interfaces are observed as revealed by the x-ray reflectance studies on planar MTJs. Themore » bias dependence of tunneling magnetoresistance (TMR) at 25 K is found to get improved after annealing as revealed by the value V{sub 1/2} (the bias value at which the TMR reaches to half of its value at nearly zero bias); which is 78 mV (in MTJ annealed at 200 °C/1 h) 2.5 times the value of 33 mV (in as deposited MTJ). At 25 K the inelastic tunneling spectra revealed the presence of zero bias anomaly and magnon excitations in the range of 10–15 mV. While the barrier height exhibited a strong temperature dependence with nearly 100% increase from the value at 300 K to 25 K, the temperature dependence of TMR becomes steep after annealing.« less

  20. Structure of Fe(III) precipitates generated by Fe(0) electrocoagulation in the presence of groundwater ions

    NASA Astrophysics Data System (ADS)

    van Genuchten, C. M.; Pena, J.; Addy, S. E.; Gadgil, A. J.

    2012-12-01

    -ranged atomic pair correlations as 2-line ferrihydrite (2LFH), rather than lepidocrocite (Lp) which is generated in an NaCl electrolyte. However, when Ca or Mg is added to oxyanion electrolytes, Fe-Fe polymerization and particle size both tend to increase and a Lp-like material with characteristic Fe-O and Fe-Fe pair correlations is once again favored. The presence of either Ca or Mg also enhances the removal P, As(V), and to a lesser extent, Si per mass of Fe. The analysis from EXAFS and PDF spectra provide new insights into the polyhedral connectivity of nanoscale oxyanion-bearing HFO formed under a wide range of chemical conditions, improving predictions of EC performance in the field and allowing for knowledge-based improvements in the design of future EC systems. Our PDF data also show that the most disordered EC precipitate samples (formed at high oxyanion/Fe ratios) all share a similar "backbone" of 3-4 peaks beyond the first 4 Å, regardless of the oxyanion present during synthesis. Using 2LFH as a reference, we index all atomic pair correlations throughout the coherently scattering structure of our disordered samples.

  1. Experimental study of Fe-Mg- and Ca-distribution between coexisting ortho- and clinopyroxenes at P=294 MPa, T=750 and 800° C

    NASA Astrophysics Data System (ADS)

    Fonarev, V. I.; Graphchikov, A. A.

    1982-07-01

    The Fe-Mg-Ca-distribution was investigated in synthesis experiments and with the mineral assemblage orthopyroxene+clinopyroxene+quartz. The phase compositions were identified by X-ray diffraction and, where possible, by electron microprobe. The attainment of equilibrium in the run products was signalled by the compositions from control runs (different solutions) becoming closely similar, by recycling runs, by the attainment of equilibrium from different directions (depending on the composition of starting phases), and by special kinetic experiments. The study produced the following results: (1) the Ca content of the clinopyroxenes decreases with increasing Fe (mol%) from 48.4 at X {Cpx/Fe}=5 to 39.8 at X {Cpx/Fe}=45 (800° C); from 47.6 at X {Cpx/Fe}= 10 to 41.7 at X {Cpx/Fe}=45 (750° C); increasing temperature expands the stability field of the less calcic clinopyroxenes. (2) The Ca content of orthopyroxenes increases slightly with Fe content from 1.8 at X {Opx/Fe}=20.5 to 3.2 at X {Opx/Fe}=75; the temperature effect on the Ca content under the T, P conditions of the experiment was not large. (3) Fe and Mg distribution between the coexisting ortho-and clinopyroxenes is largely temperature-dependent, particularly in the compositional range X {Opx/Fe}=15 75 mol%; as T increases, Fe redistributes from the rhombic to monoclinic mineral. Preliminary estimates of rock formation temperatures using the obtained data show that most of the known two-pyroxene geothermometers overstate the actual values by 50 150° C.

  2. Synchrotron in-situ deformation experiments of perovskite + (Mg,Fe)O aggregates under shallow lower mantle conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Girard, J.; Amulele, G.; Farla, R. J.; Liu, Z.; Mohiuddin, A.; Karato, S.

    2013-12-01

    Experimental studies on rheological properties of mantle's minerals are crucial to understand the dynamics of Earth's interior, but direct experimental studies under the relevant lower mantle conditions are challenging. Most of the earlier studies were performed at lower mantle pressures but low temperatures using DAC (diamond anvil cell) (e.g., Merkel et al., 2003)), and in DAC experiments strain-rate and stress are unknown. Some previous studies were carried out under high pressures and high temperatures (e.g, Cordier et al., 2004) , but quantitative results on rheological behaviour of said minerals were not obtained. Here we present the results of the first in-situ deformation experiments of perovskite + (Mg,Fe)O (Pv + fp) aggregates using RDA (rotational Drickamer apparatus). The RDA has a better support for the anvils at high pressure than the more commonly used D-DIA apparatus and hence we can reach higher pressures and temperatures than the D-DIA. We have recently made new modifications to the cell assembly to reach the lower mantle conditions with less interference in X-ray diffraction patterns by the surrounding materials. The starting material was ringwoodite synthesized using a multi-anvil. In-situ deformation experiments were then carried at pressure up to 28 GPa (calculated from thermal EOS of Pt) and estimated temperatures up to 2200 K using RDA. Under these conditions, ringwoodite transformed to Pv + fp. We subsequently deformed the sample between strain rates of 10-4 to 10-5 s-1. Stress and strain were measured in-situ using X-ray synchrotron beam. The recovered sample analyses show evidence of perovskite+(Mg,Fe)O microstructure (Fig. 1). The radial X-ray diffraction data are being analysed to determine the stress levels of two minerals. Also microstructures of deformed specimens are studied to understand the deformation mechanisms and strain partitioning. The results will contribute towards our understanding of the rheological properties of the

  3. Iron(III) solubility and speciation in aqueous solutions. experimental study and modelling: part 1. hematite solubility from 60 to 300°C in NaOH-NaCl solutions and thermodynamic properties of Fe(OH) 4 -(aq)

    NASA Astrophysics Data System (ADS)

    Diakonov, Igor I.; Schott, Jacques; Martin, Francois; Harrichourry, Jean-Claude; Escalier, Jocelyne

    1999-08-01

    The solubility of natural and synthetic hematite (α-Fe 2O 3) was measured in NaOH-NaCl solutions (0.007 ≤ m(NaOH) ≤ 2.0) between 60 and 300°C at saturated water vapour pressure and under excess oxygen. Solubility constants determined in the present study and by Yishan et al. (1986) at 300°C were combined with the thermodynamic properties of hematite (Hemingway, 1990) and water (SUPCRT92, Johnson et al., 1992) to generate within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model the standard partial molal thermodynamic properties at 25°C and 1 bar, and the revised HKF equations of state parameters of Fe(OH) 4 -. The extrapolated value for the Gibbs energy of formation for Fe(OH) 4 - at 25°C is -201.97 kcal/mol. Thermodynamic calculations show that Fe(OH) 4 - exhibits a chemical behaviour different from that of Ga(OH) 4 - and Al(OH) 4 -.

  4. Study of Np(V) Sorption by Ionic Exchange on Na, K, Ca and Mg-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Benedicto, A.; Begg, J.; Zhao, P.; Kersting, A. B.; Zavarin, M.

    2012-12-01

    The transport behavior of actinides in soil and ground water are highly influenced by clay minerals due to their ubiquity in the environment, reactivity and colloidal properties. Neptunium(V) has been introduced in the environment as a result of nuclear weapons testing [e.g. 1, 2] and is a radionuclide of potential interest for safety assessment of high level radioactive waste disposal because its long half-life and high toxicity [3]. Surface complexation and ionic exchange have been identified as Np(V) sorption mechanisms onto montmorillonite. At pH below 5, Np(V) sorption is mainly attributed to ionic exchange. This study examines Np(V) ion exchange on Na, K, Ca and Mg forms of montmorillonite. Experiments were carried out using 237Np concentrations between 2 x 10-8 M and 5 x 10-6 M at three different ionic strengths 0.1, 0.01 and 0.001M. The pH was maintained at 4.5. Np(V) sorption to montmorillonite homoionized with monovalent cations (Na and K) demonstrated a markedly different behavior to that observed for montmorillonite homoionized with divalent cations (Ca and Mg). Np sorption to Na and K-montmorillonite was greater than Np sorption to Ca and Mg-montmorillonite. Isotherms with Na and K-montmorillonite showed a strong dependence on ionic strength: the percentage of Np adsorbed was near zero at 0.1M ionic strength, but increased to 30% at 0.001 M ionic strength. This suggests ionic exchange is the main Np adsorption mechanism under the experimental conditions investigated. Dependence on ionic strength was not observed in the Np sorption isotherms for Ca and Mg-montmorillonite indicating a low exchange capacity between Np and divalent cations. Modeling of the sorption experimental data will allow determination of the Na+↔NpO2+ and K+↔NpO2+ ionic exchange constants on montmorillonite. References: [1] A. R. Felmy; K. J. Cantrell; S. D. Conradson, Phys. Chem. Earth 2010, 35, 292-297 [2] D. K. Smith; D. L. Finnegan; S. M. Bowen, J. Environ. Radioact. 2003, 67

  5. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.

    PubMed

    Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong

    2015-09-01

    Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    PubMed

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  7. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2

    NASA Astrophysics Data System (ADS)

    Maitra, Urmimala; House, Robert A.; Somerville, James W.; Tapia-Ruiz, Nuria; Lozano, Juan G.; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A.; Massel, Felix; Pickup, David M.; Ramos, Silvia; Lu, Xingye; McNally, Daniel E.; Chadwick, Alan V.; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C.; Roberts, Matthew R.; Bruce, Peter G.

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+-O(2p)-Li+ interactions). Na2/3[Mg0.28Mn0.72]O2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3[Mg0.28Mn0.72]O2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+ remains in Na2/3[Mg0.28Mn0.72]O2, which stabilizes oxygen.

  8. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    USGS Publications Warehouse

    Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  9. Measurement of the 21Na(p,{gamma})22Mg Reaction with the Dragon Facility at TRIUMF-ISAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.A.; Bishop, S.; D'Auria, J.M.

    2003-08-26

    The DRAGON recoil separator facility, designed to measure the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now operational at the TRIUMF-ISAC radioactive beam facility in Vancouver, Canada. We report on first measurements of the 21Na(p,{gamma})22Mg reaction rate with radioactive beams of 21Na.

  10. 3D CNT macrostructure synthesis catalyzed by MgFe2O4 nanoparticles-A study of surface area and spinel inversion influence

    NASA Astrophysics Data System (ADS)

    Zampiva, Rúbia Young Sun; Kaufmann Junior, Claudir Gabriel; Pinto, Juliano Schorne; Panta, Priscila Chaves; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2017-11-01

    The MgFe2O4 spinel exhibits remarkable magnetic properties that open up numerous applications in biomedicine, the environment and catalysis. MgFe2O4 nanoparticles are excellent catalyst for carbon nanotube (CNT) production. In this work, we proposed to use MgFe2O4 nanopowder as a catalyst in the production of 3D macroscopic structures based on CNTs. The creation of these nanoengineered 3D architectures remains one of the most important challenges in nanotechnology. These systems have high potential as supercapacitors, catalytic electrodes, artificial muscles and in environmental applications. 3D macrostructures are formed due to an elevated density of CNTs. The quantity and quality of the CNTs are directly related to the catalyst properties. A heat treatment study was performed to produce the most effective catalyst. Factors such as superficial area, spinel inversion, crystallite size, degree of agglomeration and its correlation with van der Waals forces were examined. As result, the ideal catalyst properties for CNT production were determined and high-density 3D CNT macrostructures were produced successfully.

  11. Proton threshold states in the {sup 22}Na(p,{gamma}){sup 23}Mg reaction and astrophysical implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comisel, H.; Hategan, C.; Graw, G.

    Proton threshold states in {sup 23}Mg are important for the astrophysically relevant proton capture reaction {sup 22}Na(p,{gamma}){sup 23}Mg. In the indirect determination of the resonance strength of the lowest states, which were not accessible by direct methods, some of the spin-parity-assignments remained experimentally uncertain. We have investigated these states with shell model, Coulomb displacement, and Thomas-Ehrman shift calculations. From the comparison of calculated and observed properties, we relate the lowest relevant resonance state at E{sub x}=7643 keV to an excited 3/2{sup +} state in accordance with a recent experimental determination by Jenkins et al. From this we deduce significantly improvedmore » values for the {sup 22}Na(p,{gamma}){sup 23}Mg reaction rate at stellar temperatures below T{sub 9}=0.1 K.« less

  12. Luminescence characteristics of Dy3+ activated Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphor

    NASA Astrophysics Data System (ADS)

    Wani, Javaid A.; Dhoble, N. S.; Dhoble, S. J.

    2012-11-01

    In this paper, we have reported a new Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ thermoluminescence (TL) phosphor prepared via the wet chemical method. Prepared phosphor was characterized by X-ray powder diffraction, photoluminescence (PL), TL and scanning electronmicroscopy techniques. The scanning electronmicroscopic image of Na 2Sr 2Mg (BO 3)2F 2:Dy 3+ phosphor confirms the micron size of particles. Under the PL study, the characteristic emission spectrum of Dy 3+ corresponding to 4F 9/2→6H 15/2 (481 nm) and 4F 9/2→6H 13/2 (576 nm) transitions was observed. The TL property of the as prepared phosphor was also found to be good. TL intensity of Na 2Sr2Mg(BO 3)F 2:Dy 3+ phosphors at 0.99 kGy exposure of γ-irradiations was compared with standard CaSO 4:Dy phosphor. It was seen that TL intensity of Na 2Sr 2Mg (BO 3)2F 2: Dy 3+ phosphors is 1.1 times less compared with the standard CaSO 4:Dy TL dosimeter phosphor. The kinetic parameters are also discussed in detail. The values of activation energy E (eV) and frequency factor S (s -1) were found to be 0.57 eV and 1.25×106 s-1, respectively.

  13. Zeolite Y encapsulated with Fe-TiO2 for ultrasound-assisted degradation of amaranth dye in water.

    PubMed

    Alwash, Atheel Hassan; Abdullah, Ahmad Zuhairi; Ismail, Norli

    2012-09-30

    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. MgSiO3-FeSiO3-Al2O3 in the Earth's lower mantle: Perovskite and garnet at 1200 km depth

    NASA Technical Reports Server (NTRS)

    O'Neill, Bridget; Jeanloz, Raymond

    1994-01-01

    Natural pyroxene and garnet starting material are used to study the effects of joint Fe and Al substitution into MgSiO3 perovskite at approxmiately 50 GPa. Garnet is found to coexist with perovskite in samples containing both Fe and Al to pressures occurring deep into the lower mantel (approximately 1200 km depth). The volume of the perovskite unit cell is V(sub o(Angstrom(exp 3)) = 162.59 + 5.95x(sub FeSiO3) + 10.80x(sub Al2O3) with aluminum causing a significant increase in the distortion from the ideal cubic cell. On the basis of a proposed extension of the MgSiO3-Al2O3 high-pressure phase diagram toward FeSiO3, Fe is shown to partition preferentially into the garnet phase. The stability of garnet deep into the lower mantel may hinder the penetration of subducted slabs below the transition zone.

  15. Density-Pressure Profiles of Fe-Bearing MgSiO3 Liquid: Effects of Valence and Spin States, and Implications for the Chemical Evolution of the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Karki, Bijaya B.; Ghosh, Dipta B.; Maharjan, Charitra; Karato, Shun-ichiro; Park, Jeffrey

    2018-05-01

    Density is a key property controlling the chemical state of Earth's interior. Our knowledge about the density of relevant melt compositions is currently poor at deep-mantle conditions. Here we report results from first-principles molecular-dynamics simulations of Fe-bearing MgSiO3 liquids considering different valence and spin states of iron over the whole mantle pressure conditions. Our simulations predict the high-spin to low-spin transition in both ferrous and ferric iron in the silicate liquid to occur gradually at pressures around 100 GPa. The calculated iron-induced changes in the melt density (about 8% increase for 25% iron content) are primarily due to the difference in atomic mass between Mg and Fe, with smaller contributions (<2%) from the valence and spin states. A comparison of the predicted density of mixtures of (Mg,Fe)(Si,Fe)O3 and (Mg,Fe)O liquids with the mantle density indicates that the density contrast between the melt and residual-solid depends strongly on pressure (depth): in the shallow lower mantle (depths < 1,000 km), the melt is lighter than the solids, whereas in the deep lower mantle (e.g., the D″ layer), the melt density exceeds the mantle density when iron content is relatively high and/or melt is enriched with Fe-rich ferropericlase.

  16. Synthesis, crystal structure and spectroscopy properties of Na 3AZr(PO 4) 3 ( A=Mg, Ni) and Li 2.6Na 0.4NiZr(PO 4) 3 phosphates

    NASA Astrophysics Data System (ADS)

    Chakir, M.; El Jazouli, A.; de Waal, D.

    2006-06-01

    Na 3AZr(PO 4) 3 ( A=Mg, Ni) phosphates were prepared at 750 °C by coprecipitation route. Their crystal structures have been refined at room temperature from X-ray powder diffraction data using Rietveld method. Li 2.6Na 0.4NiZr(PO 4) 3 was synthesized through ion exchange from the sodium analog. These materials belong to the Nasicon-type structure. Raman spectra of Na 3AZr(PO 4) 3 ( A=Mg, Ni) phosphates present broad peaks in favor of the statistical distribution in the sites around PO 4 tetrahedra. Diffuse reflectance spectra indicate the presence of octahedrally coordinated Ni 2+ ions.

  17. NbS2 Nanosheets with M/Se (M = Fe, Co, Ni) Codopants for Li+ and Na+ Storage.

    PubMed

    Zhang, Jianli; Du, Chengfeng; Dai, Zhengfei; Chen, Wei; Zheng, Yun; Li, Bing; Zong, Yun; Wang, Xin; Zhu, Junwu; Yan, Qingyu

    2017-10-24

    Transition metal (M = Fe, Co, Ni) and Se codoped two-dimensional uniform NbS 2 (M x Nb 1-x S 2-y Se y ) nanosheets were synthesized via a facile oil-phase synthetic process. The morphology of M x Nb 1-x S 2-y Se y can be adjusted by tuning the amount of metal and Se introduced into NbS 2 . Among them, the optimized Fe 0.3 Nb 0.7 S 1.6 Se 0.4 nanosheets, with lateral sizes of 1-2 μm and approximately 5 nm thick, achieve the best Li-ion and Na-ion storage properties. For example, the Fe 0.3 Nb 0.7 S 1.6 Se 0.4 nanosheets depict excellent rate capabilities with fifth-cycle specific capacities of 461.3 mAh g -1 at 10 A g -1 for Li storage and 136 mAh g -1 at 5 A g -1 for Na storage. More significantly, ultralong cyclic stabilities were achieved with reversible specific capacities of 444 mAh g -1 at 5 A g -1 during the 3000th cycle for Li storage and 250 mAh g -1 at 1 A g -1 during the 750th cycle for Na storage. Post-treatment high-resolution transmission electron microscopy was studied to prove that the reversible Li-ion storage in NbS 2 was based on a conversion reaction mechanism.

  18. Regulation of the ATPase activity of ABCE1 from Pyrococcus abyssi by Fe-S cluster status and Mg²⁺: implication for ribosomal function.

    PubMed

    Sims, Lynn M; Igarashi, Robert Y

    2012-08-15

    Ribosomal function is dependent on multiple proteins. The ABCE1 ATPase, a unique ABC superfamily member that bears two Fe₄S₄ clusters, is crucial for ribosomal biogenesis and recycling. Here, the ATPase activity of the Pyrococcus abyssi ABCE1 (PabABCE1) was studied using both apo- (without reconstituted Fe-S clusters) and holo- (with full complement of Fe-S clusters reconstituted post-purification) forms, and is shown to be jointly regulated by the status of Fe-S clusters and Mg²⁺. Typically ATPases require Mg²⁺, as is true for PabABCE1, but Mg²⁺ also acts as a negative allosteric effector that modulates ATP affinity of PabABCE1. Physiological [Mg²⁺] inhibits the PabABCE1 ATPase (K(i) of ∼1 μM) for both apo- and holo-PabABCE1. Comparative kinetic analysis of Mg²⁺ inhibition shows differences in degree of allosteric regulation between the apo- and holo-PabABCE1 where the apparent ATP K(m) of apo-PabABCE1 increases >30-fold from ∼30 μM to over 1 mM with M²⁺. This effect would significantly convert the ATPase activity of PabABCE1 from being independent of cellular energy charge (φ) to being dependent on φ with cellular [Mg²⁺]. These findings uncover intricate overlapping effects by both [Mg²⁺] and the status of Fe-S clusters that regulate ABCE1's ATPase activity with implications to ribosomal function. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye

    NASA Astrophysics Data System (ADS)

    Jiang, De Bin; Liu, Xiaoying; Xu, Xuan; Zhang, Yu Xin

    2018-01-01

    In this work we demonstrate the synthesis of novel Fe2O3 nanosheets with double-shell hollow morphology by replica molding from diatomite framework. The nanostructures of Fe2O3 nanosheets were examined by focused-ion-beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET) specific surface area measurements and Fourier transform infrared (FT-IR) spectroscopy. The results reveal that (1) Pure Fe2O3 nanosheets were successfully obtained; (2) The double-shell Fe2O3 hollow structure achieved via the NaOH etching silica method was observed; (3) Fe2O3 nanosheets possessed uniformly distributed porous nanosheets. Such structural features enlarged the specific surface area of Fe2O3 nanosheets and led to more catalytic active sites. In the heterogeneous photo-Fenton reaction, the double-shell Fe2O3 hollow morphology exhibited excellent catalytic capability for the degradation of malachite green (MG) at circumneutral pH condition. Under optimum condition, MG solution was almost completely decolorized in 60 min (99.9%). The Fe2O3 nanosheets also showed good stability and recyclability, demonstrating great potential as a promising photo-Fenton catalyst for the effective degradation of MG dye in wastewater.

  20. A powder neutron diffraction study of the crystal structure of the fluoroperovskite NaMgF3 (neighborite) from 300 to 3.6 K

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Alexander, Malcolm; Cranswick, Lachlan M. D.; Swainson, Ian P.

    2007-12-01

    The cell dimensions and crystal structures of the fluoroperovskite NaMgF3 (neighborite), synthesized by solid state methods, have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 300 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data show that Pbnm NaMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. The cell dimensions and atomic coordinates together with polyhedron volumes and distortion indices are given for Pbnm NaMgF3 at 25 K intervals from 300 to 3.6 K. Decreases in the a and c cell dimensions reach a saturation point at 50 K, whereas the b dimension becomes saturated at 150 K. The distortion of the structure of Pbnm NaMgF3 from the aristotype cubic Pmifmmodeexpandafterbarelseexpandafter\\=fi{3}m structure is described in terms of the tilting of the MgF6 octahedra according to the tilt scheme a - a - c + . With decreasing temperature the antiphase tilt ( a -) increases from 14.24° to 15.39°, whereas the in-phase tilt ( c + ) remains effectively constant at ˜10.7°. Changes in the tilt angles are insufficient to cause changes in the coordination sphere of Na that might induce a low temperature phase transition. The structure of Pbnm NaMgF3 is also described in terms of normal mode analysis and displacements of the condensed normal modes are compared with those of Pbnm KCaF3.

  1. Synthesis, Rietveld refinements, Infrared and Raman spectroscopy studies of the sodium diphosphate NaCryFe1-yP2O7 (0 ≤ y ≤ 1)

    NASA Astrophysics Data System (ADS)

    Bih, H.; Saadoune, I.; Bih, L.; Mansori, M.; ToufiK, H.; Fuess, H.; Ehrenberg, H.

    2016-01-01

    In the present study we report on the synthesis and crystal structure studies of NaCryFe1-yP2O7 sodium diphosphate solid solution (0 ≤ y ≤ 1). The X-ray diffraction shows that these compounds are isostructural with NaFeP2O7 and NaCrP2O7 (space group P21/c (C2h5) Z = 4). The Rietveld refinements based on the XRD patterns show the existence of a continuous solid solution over the whole composition range (0 ≤ y ≤ 1). A continuous evolution of the monoclinic unit cell parameters was obtained. The transition metal ions (Cr3+ and/or Fe3+) connect the diphosphate anions forming a three-dimensional network with cages filled by Na+ cations. IR and Raman spectra have been interpreted using factor group analysis. A small shift of the band frequencies is observed when Fe is substituted by Cr. The POP bridge angles are determined from Lazarev's relation and agree well with those deduced from the crystal structure refinement.

  2. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    PubMed

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Improving the Performance of Layered Oxide Cathode Materials with Football-Like Hierarchical Structure for Na-Ion Batteries by Incorporating Mg2+ into Vacancies in Na-Ion Layers.

    PubMed

    Li, Zheng-Yao; Wang, Huibo; Chen, Dongfeng; Sun, Kai; Yang, Wenyun; Yang, Jinbo; Liu, Xiangfeng; Han, Songbai

    2018-04-09

    The development of advanced cathode materials is still a great interest for sodium-ion batteries. The feasible commercialization of sodium-ion batteries relies on the design and exploitation of suitable electrode materials. This study offers a new insight into material design to exploit high-performance P2-type cathode materials for sodium-ion batteries. The incorporation of Mg 2+ into intrinsic Na + vacancies in Na-ion layers can lead to a high-performance P2-type cathode material for sodium-ion batteries. The materials prepared by the coprecipitation approach show a well-defined morphology of secondary football-like hierarchical structures. Neutron power diffraction and refinement results demonstrate that the incorporation of Mg 2+ into intrinsic vacancies can enlarge the space for Na-ion diffusion, which can increase the d-spacing of the (0 0 2) peak and the size of slabs but reduce the chemical bond length to result in an enhanced rate capability and cycling stability. The incorporation of Mg 2+ into available vacancies and a unique morphology make Na 0.7 Mg 0.05 Mn 0.8 Ni 0.1 Co 0.1 O 2 a promising cathode, which can be charged and discharged at an ultra-high current density of 2000 mA g -1 with an excellent specific capacity of 60 mAh g -1 . This work provides a new insight into the design of electrode materials for sodium-ion batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage.

    PubMed

    Oh, Seung-Min; Myung, Seung-Taek; Yoon, Chong Seung; Lu, Jun; Hassoun, Jusef; Scrosati, Bruno; Amine, Khalil; Sun, Yang-Kook

    2014-03-12

    While much research effort has been devoted to the development of advanced lithium-ion batteries for renewal energy storage applications, the sodium-ion battery is also of considerable interest because sodium is one of the most abundant elements in the Earth's crust. In this work, we report a sodium-ion battery based on a carbon-coated Fe3O4 anode, Na[Ni0.25Fe0.5Mn0.25]O2 layered cathode, and NaClO4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. This unique battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. This performance suggests that our sodium-ion system is potentially promising power sources for promoting the substantial use of low-cost energy storage systems in the near future.

  5. Effects of Oral Administration of CrCl3 on the Contents of Ca, Mg, Mn, Fe, Cu, and Zn in the Liver, Kidney, and Heart of Chicken.

    PubMed

    Liu, Yanhan; Zhao, Xiaona; Zhang, Xiao; Zhao, Xuejun; Liu, Yongxia; Liu, Jianzhu

    2016-06-01

    This study aimed to investigate the effects of oral administration of trivalent chromium on the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney. Different levels of 1/8, 1/4, and 1/2 LD50 (LD50 = 5000 mg/kg body mass) CrCl3 milligrams per kilogram body mass daily were added into the water to establish the chronic poisoning model. Ca, Mg, Mn, Fe, Cu, and Zn were detected with the flame atomic absorption spectrometry in the organs exposed 14, 28, and 42 days to CrCl3, respectively. Results showed that Cr was accumulated in the heart, liver, and kidney significantly (P < 0.05) with extended time and dose. The contents of Ca and Fe increased, whereas those of Mg, Mn, Cu, and Zn decreased in the heart, liver, and kidney of each treated group, which had a dose- and time-dependent relationship, but the contents of Mg and Zn in the heart took on a fluctuated change. These particular observations were different from those in the control group. In conclusion, the oral administration of CrCl3 could change the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney, which may cause disorders in the absorption and metabolism of the metal elements of chickens.

  6. Effects of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in Wistar rats.

    PubMed

    Olatunji, Lawrence A; Usman, Taofeek O; Adebayo, Joseph O; Olatunji, Victoria A

    2012-09-01

    To investigate the effects of oral administration of aqueous extract of Hibiscus sabdariffa on renal Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in rats. The 25 and 50 mg/(kg·d) of aqueous extracts of H. sabdariffa were respectively given to rats in the experimental groups for 28 d, and rats in the control group received an appropriate volume of distilled water as vehicle. Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in the kidney were assayed by spectrophotometric method. Administrations of 25 and 50 mg/(kg·d) of aqueous extract of H. sabdariffa significantly decreased the Ca(2+)-Mg(2+)-ATPase activity in the kidney of rats (P<0.05). However, the renal Na(+)-K(+)-ATPase activity of the experimental rats was not affected by either dose of the extract. And the plasma Na(+), K(+) and Ca(2+) levels of the experimental rats had no significant changes. Administration of either dose of the extract did not result in any significant changes in body and kidney weights, the concentrations of plasma albumin and total protein, and alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase activities. However, concentrations of creatinine and urea were significantly reduced by 50 mg/kg of the extract (P<0.05). The present study indicates that oral administration of aqueous extract of H. sabdariffa may preserve the renal function despite a decreased renal Ca(2+)-Mg(2+)-ATPase activity.

  7. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing.

    PubMed

    Menezes, Eveline A; Oliveira, Aline F; França, Celia J; Souza, Gilberto B; Nogueira, Ana Rita A

    2018-02-01

    The bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein was evaluated after submitting beef, pork, and chicken to five different thermal treatments. The bioaccessibility of crude protein and metals were simulated by using in vitro enzymatic digestion with a gastric fluid solution and dialysability approach. Inductively coupled plasma optical spectrometry was used to quantify the dialyzable fraction and the total mineral content after microwave-assisted digestion. Graphite furnace atomic absorption spectrometry quantified Cu in chicken dialyzable fraction. The increase of temperature and heat exposure period decreased the protein bioaccessibility. Considering the total and dialyzable fraction, beef is an important source of Cu, Fe, Mg, and Zn to the human diet. The results of Fourier-transform infrared spectroscopy indicated physical changes in the treated samples related to protein denaturation, which was probably responsible for the decreased bioaccessibility of minerals and protein, mainly at higher temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Biocompatibility and intradiscal application of a thermoreversible celecoxib-loaded poly-N-isopropylacrylamide MgFe-layered double hydroxide hydrogel in a canine model.

    PubMed

    Willems, Nicole; Yang, Hsiao-Yin; Langelaan, Marloes L P; Tellegen, Anna R; Grinwis, Guy C M; Kranenburg, Hendrik-Jan C; Riemers, Frank M; Plomp, Saskia G M; Craenmehr, Eric G M; Dhert, Wouter J A; Papen-Botterhuis, Nicole E; Meij, Björn P; Creemers, Laura B; Tryfonidou, Marianna A

    2015-08-20

    Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide (pNIPAAM MgFe-LDH) hydrogel was evaluated for intradiscal controlled delivery of the selective cyclooxygenase (COX) 2 inhibitor and anti-inflammatory drug celecoxib (CXB). Degradation, release behavior, and the ability of a CXB-loaded pNIPAAM MgFe-LDH hydrogel to suppress prostaglandin E2 (PGE2) levels in a controlled manner in the presence of a proinflammatory stimulus (TNF-α) were evaluated in vitro. Biocompatibility was evaluated histologically after subcutaneous injection in mice. Safety of intradiscal application of the loaded and unloaded hydrogels was studied in a canine model of spontaneous mild IVD degeneration by histological, biomolecular, and biochemical evaluation. After the hydrogel was shown to be biocompatible and safe, an in vivo dose-response study was performed in order to determine safety and efficacy of the pNIPAAM MgFe-LDH hydrogel for intradiscal controlled delivery of CXB. CXB release correlated to hydrogel degradation in vitro. Furthermore, controlled release from CXB-loaded hydrogels was demonstrated to suppress PGE2 levels in the presence of TNF-α. The hydrogel was shown to exhibit a good biocompatibility upon subcutaneous injection in mice. Upon intradiscal injection in a canine model, the hydrogel exhibited excellent biocompatibility based on histological evaluation of the treated IVDs. Gene expression and biochemical analyses supported the finding that no substantial negative effects of the hydrogel were observed. Safety of application was further confirmed by the absence of clinical symptoms, IVD herniation or progression of degeneration. Controlled release of CXB resulted in a nonsignificant

  9. Electronic and spin dynamics in the insulating iron pnictide NaFe0.5Cu0.5As

    NASA Astrophysics Data System (ADS)

    Zhang, Shunhong; He, Yanjun; Mei, Jia-Wei; Liu, Feng; Liu, Zheng

    2017-12-01

    NaFe0.5Cu0.5As represents a rare exception in the metallic iron pnictide family, in which a small insulating gap is opened. Based on first-principles study, we provide a comprehensive theoretical characterization of this insulating compound. The Fe3 + spin degree of freedom is quantified as a quasi-one-dimensional (1D) S =5/2 Heisenberg model. The itinerant As hole state is downfolded to a px y-orbital hopping model on a square lattice. An orbital-dependent Hund's coupling between the spin and the hole is revealed. Several important material properties are analyzed, including (a) the factors affecting the small p -d charge-transfer gap; (b) the role of extra interchain Fe atoms; and (c) quasi-1D spin excitation in the Fe chains. The experimental manifestations of these properties are discussed.

  10. Raman spectroscopic features of Al- Fe3+- poor magnesiochromite and Fe2+- Fe3+- rich ferrian chromite solid solutions

    NASA Astrophysics Data System (ADS)

    Kharbish, Sherif

    2018-04-01

    Naturally occurring Al- Fe3 +- poor magnesiochromite and Fe2+- Fe3 +- rich ferrian chromite solid solutions have been analyzed by micro-Raman spectroscopy. The results reflect a strong positive correlation between the Fe3 + # [Fe3+/(Fe3 ++Cr + Al)] and the positions of all Raman bands. A positive correlation of the Raman band positions with Mg# [Mg/(Mg + Fe2 +)] is less stringent. Raman spectra of magnesiochromite and ferrian chromite show seven and six bands, respectively, in the spectral region of 800 - 100 cm- 1. The most intense band in both minerals is identified as symmetric stretching vibrational mode, ν 1( A 1 g ). In the intermediate Raman-shift region (400-600 cm- 1), the significant bands are attributed to the ν 3( F 2 g ) > ν 4( F 2 g ) > ν 2( E g ) modes. The bands with the lowest Raman shifts (< 200 cm- 1) are assigned to F 2 g ( trans) translatory lattice modes. Extra bands in magnesiochromite (two bands) and in ferrian chromite (one weak band) are attributed to lowering in local symmetry and order/disorder effects.

  11. Synthesis and characterization of Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a magnetic drug delivery system

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad; Bigham, Ashkan; Hassanzadeh-Tabrizi, S. A.; Abbastabar Ahangar, H.

    2017-10-01

    Mixed spinel ferrite nanoparticles are being applied in biomedical applications due to their biocompatibility, antibacterial activity, particular magnetic and electronic properties with chemical and thermal stabilities. The Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles are synthesized through the thermal treatment method. Polyvinyl alcohol (PVA) is used as the capping agent to stabilize the particles and prevent their agglomeration. The synthesized nanoparticles are characterized through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, field emission scanning electron microscopy (FESEM), and transmission electron microscope (TEM). The magnetic characterization is made on a vibrating sample magnetometer (VSM), which displayed super-paramagnetic behavior of the synthesized sample. Potential application of the Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a drug delivery agent is assessed in vitro by estimating their release properties. The obtained results indicate that the amount of ibuprofen (IBU) adsorbed into the nanocarrier of Cu0.3Zn0.5Mg0.2Fe2O4 is 104 mg/g and the drug release is sustained up to 72 h.

  12. The inverse sandwich complex [(K(18-crown-6))2Cp][CpFe(CO)2]--unpredictable redox reactions of [CpFe(CO)2]I with the silanides Na[SiRtBu2] (R = Me, tBu) and the isoelectronic phosphanyl borohydride K[PtBu2BH3].

    PubMed

    Sänger, Inge; Kückmann, Theresa I; Dornhaus, Franz; Bolte, Michael; Wagner, Matthias; Lerner, Hans-Wolfram

    2012-06-14

    The dimeric iron carbonyl [CpFe(CO)(2)](2) and the iodosilanes tBu(2)RSiI were obtained from the reaction of [CpFe(CO)(2)]I with the silanides Na[SiRtBu(2)] (R = Me, tBu) in THF. By the reactions of [CpFe(CO)(2)]I and Na[SiRtBu(2)] (R = Me, tBu) the disilanes tBu(2)RSiSiRtBu(2) (R = Me, tBu) were additionally formed using more than one equivalent of the silanide. In this context it should be noted that reduction of [CpFe(CO)(2)](2) with Na[SitBu(3)] gives the disilanes tBu(3)SiSitBu(3) along with the sodium ferrate [(Na(18-crown-6))(2)Cp][CpFe(CO)(2)]. The potassium analogue [(K(18-crown-6))(2)Cp][CpFe(CO)(2)] (orthorhombic, space group Pmc2(1)), however, could be isolated as a minor product from the reaction of [CpFe(CO)(2)]I with [K(18-crown-6)][PtBu(2)BH(3)]. The reaction of [CpFe(CO)(2)](2) with the potassium benzophenone ketyl radical and subsequent treatment with 18-crown-6 yielded the ferrate [K(18-crown-6)][CpFe(CO)(2)] in THF at room temperature. The crown ether complex [K(18-crown-6)][CpFe(CO)(2)] was analyzed using X-ray crystallography (orthorhombic, space group Pna2(1)) and its thermal behaviour was investigated.

  13. Predictions of the shear response of (Mg,Fe)SiO3 post-perovskite

    NASA Astrophysics Data System (ADS)

    Metsue, A.; Tsuchiya, T.

    2011-12-01

    Observation of seismic data put in forth evidence of a spatial anisotropy in the seismic wave velocities in the D'' layer, the lowermost part of the mantle. (Mg,Fe)SiO3 post-perovskite (PPv) is thought to be the most abundant phase in this part of the mantle, and this mineral exhibits a strong elastic anisotropy and may contribute significantly to the seismic anisotropy in the D'' layer. However, the seismic anisotropy cannot be expressed at the rock scale if the orientations of the grains are distributed randomly. Consequently, the formation of lattice preferred orientations with an anisotropic mechanism of plasticity, such as dislocation creep, can cause the seismic anisotropy in the D'' layer. Some experiments have been done on the plasticity of pure and Fe-bearing MgSiO3 post-perovskite and lead to textures of deformation dominated by the (100) and (110) slip planes (Merkel et al., 2007) and by the (001) slip plane (Miyagi et al., 2010). On the other hand, theoretical calculations on the dislocations mobility on pure MgSiO3 (Carrez et al., 2007; Metsue et al., 2009) suggested a texture dominated by the (010) slip plane. A first step to understanding the mechanisms of plasticity and, therefore, the shear wave splitting occurring in the deep Earth is to test the response of the PPv phase to a plastic shear in a geophysical relevant composition. In this study, we present new results from first-principles calculations on the shear response of pure and ferrous iron-bearing MgSiO3 PPv. The originality of this work is the use of internally consistent LSDA+U formalism to accurately describe the local interactions between the d-states of iron. About 8% of iron is incorporated in the high spin state as a Mg substitution defect, since several studies suggest that iron is in the high spin in the D'' layer pressure range (Stackhouse et al., 2006; Metsue and Tsuchiya, 2011). We also performed the calculations for incorporated iron in the low spin state if an eventual spin

  14. Raman microspectroscopic study of effects of Na(I) and Mg(II) ions on low pH induced DNA structural changes.

    PubMed

    Muntean, C M; Segers-Nolten, G M J

    2003-01-01

    In this work a confocal Raman microspectrometer is used to investigate the influence of Na(+) and Mg(2+) ions on the DNA structural changes induced by low pH. Measurements are carried out on calf thymus DNA at neutral pH (7) and pH 3 in the presence of low and high concentrations of Na(+) and Mg(2+) ions, respectively. It is found that low concentrations of Na(+) ions do not protect DNA against binding of H(+). High concentrations of monovalent ions can prevent protonation of the DNA double helix. Our Raman spectra show that low concentrations of Mg(2+) ions partly protect DNA against protonation of cytosine (line at 1262 cm(-1)) but do not protect adenine and guanine N(7) against binding of H(+) (characteristic lines at 1304 and 1488 cm(-1), respectively). High concentrations of Mg(2+) can prevent protonation of cytosine and protonation of adenine (disruption of AT pairs). By analyzing the line at 1488 cm(-1), which obtains most of its intensity from a guanine vibration, high magnesium salt protect the N(7) of guanine against protonation. A high salt concentration can prevent protonation of guanine, cytosine, and adenine in DNA. Higher salt concentrations cause less DNA protonation than lower salt concentrations. Magnesium ions are found to be more effective in protecting DNA against binding of H(+) as compared with calcium ions presented in a previous study. Divalent metal cations (Mg(2+), Ca(2+)) are more effective in protecting DNA against protonation than monovalent ions (Na(+)). Copyright 2003 Wiley Periodicals, Inc. Biopolymers (Biospectroscopy) 72: 000-000, 2003

  15. Structure-electrochemical evolution of a Mn-rich P2 Na 2/3Fe 0.2Mn 0.8O 2 Na-ion battery cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dose, Wesley M.; Sharma, Neeraj; Pramudita, James C.

    The structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na 2/3Fe 0.2Mn 0.8O 2 cathode. A single-phase reaction takes place for the majority of the discharge–charge cycle at ~C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither “Z”/OP4 phases in themore » charged state nor significant quantities of the P'2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO 6 octahedral unit. The composition Na ~0.70Fe 0.2Mn 0.8O 2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P'2 phase. Furthermore, this work shows how the Mn-rich Na 2/3Fe 0.2Mn 0.8O 2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state.« less

  16. Structure-electrochemical evolution of a Mn-rich P2 Na 2/3Fe 0.2Mn 0.8O 2 Na-ion battery cathode

    DOE PAGES

    Dose, Wesley M.; Sharma, Neeraj; Pramudita, James C.; ...

    2017-08-04

    The structural evolution of electrode materials directly influences the performance of sodium-ion batteries. In this work, in situ synchrotron X-ray diffraction is used to investigate the evolution of the crystal structure of a Mn-rich P2-phase Na 2/3Fe 0.2Mn 0.8O 2 cathode. A single-phase reaction takes place for the majority of the discharge–charge cycle at ~C/10, with only a short, subtle hexagonal P2 to hexagonal P2 two-phase region early in the first charge. Thus, a higher fraction of Mn compared to previous studies is demonstrated to stabilize the P2 structure at high and low potentials, with neither “Z”/OP4 phases in themore » charged state nor significant quantities of the P'2 phase in the discharged state between 1.5 and 4.2 V. Notably, sodium ions inserted during discharge are located on both available crystallographic sites, albeit with a preference for the site sharing edges with the MO 6 octahedral unit. The composition Na ~0.70Fe 0.2Mn 0.8O 2 prompts a reversible single-phase sodium redistribution between the two sites. Sodium ions vacate the site sharing faces (Naf), favoring the site sharing edges (Nae) to give a Nae/Naf site occupation of 4:1 in the discharged state. This site preference could be an intermediate state prior to the formation of the P'2 phase. Furthermore, this work shows how the Mn-rich Na 2/3Fe 0.2Mn 0.8O 2 composition and its sodium-ion distribution can minimize phase transitions during battery function, especially in the discharged state.« less

  17. Magnetic properties of Mg12O12 nanocage doped with transition metal atoms (Mn, Fe, Co and Ni): DFT study

    NASA Astrophysics Data System (ADS)

    Javan, Masoud Bezi

    2015-07-01

    Binding energy of the Mg12O12 nanocage doped with transition metals (TM=Mn, Fe, Co and Ni) in endohedrally, exohedrally and substitutionally forms were studied using density functional theory with the generalized gradient approximation exchange-correlation functional along 6 different paths inside and outside of the Mg12O12 nanocage. The most stable structures were determined with full geometry optimization near the minimum of the binding energy curves of all the examined paths inside and outside of the Mg12O12 nanocage. The results reveal that for all stable structures, the Ni atom has a larger binding energy than the other TM atoms. It is also found that for all complexes additional peaks contributed by TM-3d, 4s and 4p states appear in the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gap of the host MgO cluster. The mid-gap states are mainly due to the hybridization between TM-3d, 4s and 4p orbitals and the cage π orbitals. The magnetic moment of the endohedrally doped TM atoms in the Mg12O12 are preserved to some extent due to the interaction between the TM and Mg12O12 nanocage, in contrast to the completely quenched magnetic moment of the Fe and Ni atoms in the Mg11(TM)O12 complexes. Furthermore, charge population analysis shows that charge transfer occurs from TM atom to the cage for endohedrally and substitutionally doping.

  18. Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers.

    PubMed

    Das, Raghunath; Bhaumik, Madhumita; Giri, Somnath; Maity, Arjun

    2017-07-01

    Nano-sized magnetic Fe 0 /polyaniline (Fe 0 /PANI) nanofibers were used as an effective material for sonocatalytic degradation of organic anionic Congo red (CR) dye. Fe 0 /PANI , was synthesized via reductive deposition of nano-Fe 0 onto the PANI nanofibers at room temperature. Prepared catalyst was characterized using HR-TEM, FE-SEM, XRD, FTIR instruments. The efficacy of catalyst in removing CR was assessed colorimetrically using UV-visible spectroscopy under different experimental conditions such as % of Fe 0 loading into the composite material, solution pH, initial concentration of dye, catalyst dosage, temperature and ultrasonic power. The optimum conditions for sonocatalytic degradation of CR were obtained at catalyst concentrations=500mg.L -1 , concentration of CR=200ppm, solution pH=neutral (7.0), temperature=30°C, % of Fe 0 loading=30% and 500W ultrasonic power. The experimental results showed that ultrasonic process could remove 98% of Congo red within 30min with higher Q max value (Q max =446.4 at 25°C). The rate of degradation of CR dye was much faster in this ultrasonic technique rather than conventional adsorption process. The degradation efficiency declined with the addition of common inorganic salts (NaCl, Na 2 CO 3 , Na 2 SO 4 and Na 3 PO 4 ). The rate of degradation suppressed more with increasing salt concentration. Kinetic and isotherm studies indicated that the degradation of CR provides pseudo-second order rate kinetic and Langmuir isotherm model compared to all other models tested. The excellent high degradation capacity of Fe 0 /PANI under ultrasonic irradiation can be explained on the basis of the formation of active hydroxyl radicals (OH) and subsequently a series of free radical reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genetic relationship of high-Mg dioritic pluton to iron mineralization: A case study from the Jinling skarn-type iron deposit in the North China Craton

    NASA Astrophysics Data System (ADS)

    Jin, Ziliang; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Han, Liu

    2015-12-01

    The Jinling complex is spatially and temporally associated with the Jinling skarn-type iron deposit. The complex is composed of biotite diorite, hornblende diorite, monzonite and quartz diorite. U-Pb dating of zircons from the biotite diorite and monzonite using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields ages of 126 ± 1.9 Ma and 128 ± 1.4 Ma, respectively. The unaltered rocks in the complex are characterized by variable contents of SiO2 (54.6-65.3 wt.%), MgO (2.7-9.2 wt.%), total FeO (3.5-8.8 wt.%), Na2O + K2O (5.2-8.9 wt.%), high Mg# values (73-88), Cr (103-452 ppm) and Ni (49-212 ppm) contents. The altered monzonite has lower MgO (2.1-3.7 wt.%), total FeO (1.2-2.6 wt.%) and higher Na2O + K2O (8.5-9.9 wt.%) contents. The initial (87Sr/86Sr)t ranges from 0.70450 to 0.70555 and εNd(t) shows a range of -3.0 to -8.0. The geochemical characteristics suggest that the primary magma witnessed the interaction between the partial melts of relatively oxidized delaminated ancient crust and mantle peridotite. Fractional crystallization and crustal contamination during the magmatic ascent and emplacement are also indicated. The Jinling skarn-type Fe deposit is of hydrothermal origin and the Fe enrichment can be ascribed to multiple factors. The delaminated ancient crustal source contributed to the high oxygen fugacity of the primary magma. Two-stage Fe-enrichment process involving fractional crystallization of the primary magma giving rise to high Cl and Fe contents in the magmatic hydrothermal fluid and later Fe-leaching process, accounts for the high-grade ore bodies.

  20. Solvothermal synthesis of Mg-doped Li2FeSiO4/C nanocomposite cathode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Jayakumar, O. D.; Naik, V. M.; Nazri, G. A.; Naik, R.

    Lithium transition metal orthosilicates, such as Li2FeSiO4 and Li2MnSiO4, as cathode material have attracted much attention lately due to their high theoretical capacity ( 330 mAh/g), low cost, and environmental friendliness. However, they suffer from poor electronic conductivity and slow lithium ion diffusion in the solid phase. Several cation-doped orthosilicates have been studied to improve their electrochemical performance. We have synthesized partially Mg-substituted Li2Mgx Fe1-x SiO4-C, (x = 0.0, 0.01, 0.02, and 0.04) nano-composites by solvothermal method followed by annealing at 600oC in argon flow. The structure and morphology of the composites were characterized by XRD, SEM and TEM. The surface area and pore size distribution were measured by using N2 adsorption/desorption curves. The electrochemical performance of the Li2MgxFe1-x SiO4-C composites was evaluated by Galvanostatic cycling against metallic lithium anode, electrochemical impedance spectroscopy, and cyclic voltammetry. Li2Mg0.01Fe0.99SiO4-C sample shows a capacity of 278 mAh/g (at C/30 rate in the 1.5-4.6 V voltage window) with an excellent rate capability and stability, compared to the other samples. We attribute this observation to its higher surface area, enhanced electronic conductivity and higher lithium ion diffusion coefficient.

  1. Microstructure and mechanical properties of Ni and Fe-base boride-dispersion-strengthened microcrystalline alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C.S.; Park, H.G.; Hoagland, R.G.

    This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strengthmore » and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.« less

  2. Optimization of the buffer surface of CoFeB/MgO/CoFeB-based magnetic tunnel junctions by ion beam milling

    NASA Astrophysics Data System (ADS)

    Martins, L.; Ventura, J.; Ferreira, R.; Freitas, P. P.

    2017-12-01

    Due to their high tunnel magnetoresistance (TMR) ratios at room temperature, magnetic tunnel junctions (MTJs) with a crystalline MgO insulating barrier and CoFeB ferromagnetic (FM) layers are the best candidates for novel magnetic memory applications. To overcome impedance matching problems in electronic circuits, the MgO barrier must have an ultra-low thickness (∼1 nm). Therefore, it is mandatory to optimize the MTJ fabrication process, in order to prevent relevant defects in the MgO barrier that could affect the magnetic and electrical MTJ properties. Here, a smoothing process aiming to decrease the roughness of the buffer surface before the deposition of the full MTJ stack is proposed. An ion beam milling process was used to etch the surface of an MTJ buffer structure with a Ru top layer. The morphologic results prove an effective decrease of the Ru surface roughness with the etching time. The electrical and magnetic results obtained for MTJs with smoothed buffer structures show a direct influence of the buffer roughness and coupling field on the improvement of the TMR ratio.

  3. Magnetotransport properties of spin-valve structures with Mg spacer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Boubeta, C., E-mail: cboubeta@gmail.com; Ferrante, Y.; Graduate School of Excellence, Materials Science in Mainz, 55128 Mainz

    2015-01-19

    A theoretical prediction by Wang et al. [Phys. Rev. B 82, 054405 (2010)] suggests the preferential transmission of majority-spin states with Δ{sub 1} symmetry across a magnesium interlayer in Fe/Mg/MgO/Fe based magnetic tunnel junctions. Here, we report experiments to probe this question in CoFe/Mg/CoFe structures. We find that the strength of the interlayer coupling decays exponentially with increasing the spacer thickness, however, a non-monotonic variation of the magnetoresistance as a function of the Mg layer is observed. These data may help revisit the role of the insertion of a Mg interface layer in MgO-based devices.

  4. [Effectiveness of social mobilization and social marketing in promoting NaFeEDTA-fortified soya sauce in adult women].

    PubMed

    Wang, Bo; Chen, Junshi; Zhan, Siyan; Sun, Jing; Li, Liming

    2011-05-01

    To assess the effectiveness of social mobilization and social marketing in promoting NaFeEDTA-fortified soy sauce in an iron deficient population. This study was an uncontrolled, community-based, before-after study, which was implemented in three counties of Shijiazhuang Municipality. The intervention was a social mobilization and social marketing strategy. Adult women older than 20 years of age participated in the evaluation protocol. The main outcomes included KAP relevant to IDA. Cross-sectional samples were used to assess the outcomes at baseline and 1 year later. Knowledge and attitudes of adult women had changed positively, and the percentage of women who had adopted NaFeEDTA-fortified soy sauce increased from 8.9% to 36.6% (P < 0.001). Social mobilization and social marketing had a positive impact on the KAP of adult women in the iron deficient population.

  5. Spin crossover in solid and liquid (Mg,Fe)O at extreme conditions

    NASA Astrophysics Data System (ADS)

    Stixrude, Lars; Holmstrom, Eero

    Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lower mantle (24-136 GPa). Understanding the properties of this component is important not only in the solid state, but also in the molten state, as the planet almost certainly hosted an extensive magma ocean initially. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties. Using first-principles molecular dynamics simulations, thermodynamic integration, and adiabatic switching, we present a phase diagram of the spin crossover. In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasing temperature favors the high spin state, while in the liquid the opposite occurs, due to the higher electronic entropy of the low spin state. Because the physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth. This research was supported by the European Research Council under Advanced Grant No. 291432 ``MoltenEarth'' (FP7/2007-2013).

  6. Hydrogen storage of Mg1-xMxH2 (M = Ti, V, Fe) studied using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bhihi, M.; Lakhal, M.; Labrim, H.; Benyoussef, A.; A. El, Kenz; Mounkachi, O.; K. Hlil, E.

    2012-09-01

    In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg1-x Mx H2 (M = Ti, V, Fe, 0 <= x <= 0.1), are studied using the Korringa—Kohn—Rostoker (KKR) calculation with the coherent potential approximation (CPA). In particular, the nature and concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities.

  7. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    NASA Astrophysics Data System (ADS)

    Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika

    2009-04-01

    Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of

  8. Influence of Na+ and Mg2+ ions on RNA structures studied with molecular dynamics simulations.

    PubMed

    Fischer, Nina M; Polêto, Marcelo D; Steuer, Jakob; van der Spoel, David

    2018-06-01

    The structure of ribonucleic acid (RNA) polymers is strongly dependent on the presence of, in particular Mg2+ cations to stabilize structural features. Only in high-resolution X-ray crystallography structures can ions be identified reliably. Here, we perform molecular dynamics simulations of 24 RNA structures with varying ion concentrations. Twelve of the structures were helical and the others complex folded. The aim of the study is to predict ion positions but also to evaluate the impact of different types of ions (Na+ or Mg2+) and the ionic strength on structural stability and variations of RNA. As a general conclusion Mg2+ is found to conserve the experimental structure better than Na+ and, where experimental ion positions are available, they can be reproduced with reasonable accuracy. If a large surplus of ions is present the added electrostatic screening makes prediction of binding-sites less reproducible. Distinct differences in ion-binding between helical and complex folded structures are found. The strength of binding (ΔG‡ for breaking RNA atom-ion interactions) is found to differ between roughly 10 and 26 kJ/mol for the different RNA atoms. Differences in stability between helical and complex folded structures and of the influence of metal ions on either are discussed.

  9. FeSi4P4: A novel negative electrode with atypical electrochemical mechanism for Li and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Coquil, Gaël; Fullenwarth, Julien; Grinbom, Gal; Sougrati, Moulay Tahar; Stievano, Lorenzo; Zitoun, David; Monconduit, Laure

    2017-12-01

    The electrochemical mechanism and performance of FeSi4P4, vs. Na and Li were studied using a combination of operando X-ray diffraction, 57Fe Mössbauer spectroscopy, and SQUID magnetometry. This silicon- and phosphorous-rich material exhibits a high capacity of 1750 mAh/g, retaining 1120 mAh/g after 40 cycles, and reacts through an original reversible mechanism surprisingly involving only slight changes in the chemical environment of the iron. Magnetic measurements and 57Fe Mössbauer spectroscopy at low temperature reveal the reversible but incomplete change of the magnetic moment upon charge and discharge. Such a mild reversible process without drastic phase transition (with the exception of the crystalline to amorphous transition during the first lithiation) can explain the satisfying capacity retention. The electrochemical mechanism appears thus to be significantly different from the classical conversion or alloying/dealloying mechanisms usually observed in Lithium ion batteries for p-group element based materials. The same iron silicon phosphide electrode shows also interesting but significantly lower performance vs. Na, with a limited capacity retention 350 mAh/g.

  10. Buffer layer dependence of magnetoresistance effects in Co2Fe0.4Mn0.6Si/MgO/Co50Fe50 tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki

    2018-05-01

    Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.

  11. Pressure-induced shift of T c and structural transition in “122” type pnictide superconductor Ca 0.34Na 0.66Fe 2As 2

    DOE PAGES

    Zhang, Sijia; Zhao, Kan; Yu, Xiaohui; ...

    2016-07-11

    Here, the effect of pressure on superconductivity of “122” type Ca 1-xNa xFe 2As 2 (x=0.66 single crystal is investigated through the temperature dependence of resistanc measurement. Optimal Na doped (Ca 0.34Na 0.66)Fe 2As 2 shows a superconductin transition with T c ~ 33 K at ambient pressure. With application of pressure, T decreases nearly linearly with d Tc/d P ~ -1.7K/GPa at pressures lower than 2 GPa and disappears gradually at higher pressure. The disappearance of superconductivit is also companied with the recovery of standard Fermi liquid behaviors of th normal-state transport properties. Moreover, (Ca 0.34Na 0.66)Fe 2As 2more » exhibits a tetragona (T) to collapsed-tetragonal (c T) transition at about 3 GPa. The evolution o non-Fermi liquid behaviors and superconductivity under pressure are both relate to the interband fluctuations.« less

  12. Impact of a long term fire retardant (Fire Trol 931) on the leaching of Na, Al, Fe, Mn, Cu and Si from a Mediterranean forest soil: a short-term, lab-scale study.

    PubMed

    Koufopoulou, Sofia; Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Pappa, Athina

    2014-06-01

    Long term fire retardant (LTR) application for forest fire prevention purposes as well as wildland fires can result in chemical leaching from forest soils. Large quantities of sodium (Na), aluminium (Al), iron (Fe), manganese (Mn), copper (Cu) and silicon (Si) in leachates, mainly due to ammonium (one of the major LTR components) soil deposition, could affect the groundwater quality. The leaching of Na, Al, Fe, Mn, Cu and Si due to nitrogen based LTR application (Fire Trol 931) was studied at laboratory scale. The concentrations of Na(+), Al(3+), Fe(3+)/Fe(2+), Mn(2+), Cu(2+) and Si(4+) were measured in the resulting leachates from pots with forest soil and pine trees alone and in combination with fire. The leaching of Na, Fe and Si from treated pots was significantly greater than that from control pots. The leaching of Al, Mn and Cu was extremely low.

  13. Oxidation Studies of SiAlON/MgAlON Ceramics with Fe2O3 and CaO Impurities, Part I: Kinetics

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Mei; Teng, Lidong; Seetharaman, Seshadri

    2013-02-01

    T he oxidation behaviors of composites SiAlON/MgAlON phases (β-SiAlON, 15R-SiAlON and MgAlON) synthesized from the residue during the leaching treatment of salt cake and corresponding synthetic samples were investigated in air by thermogravimetric measurements. Combined kinetics, viz. linear law + arctan law + parabolic law, are used to describe the kinetics of oxidation in isothermal mode. The oxidation studies reveal the effects of impurities, namely, Fe2O3 and CaO, present in the salt cake residue. The addition of Fe2O3 results in a lower activation energy and more aggressive oxidation. The addition of CaO caused the shrinkage during the synthesis and liquid formation during the oxidation above 1673 K (1400 °C). The impurities of CaO and Fe2O3 in the leaching residue can result in an aggressive oxidation at low temperature and a protective oxidation at temperatures above the eutectic point.

  14. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.

    PubMed

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X S

    2014-01-21

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg(2+) doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg(2+) doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li(+) diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg(2+) doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of "cushion" as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.

  15. Tensile strength of Fe-Ni and Mg-Al nanocomposites: Molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2018-01-01

    In this work, molecular dynamic simulations of the tensile strength of Fe-Ni and Mg-Al nanocomposites in the conditions of high-rate uniaxial tension were carried out. Two different mechanisms of fracture were identified. In the case of nickel inclusion in iron matrix, the fracture begins on the interface between the inclusion and the matrix, a formed void penetrates both into the inclusion and into the matrix; presence of inclusion reduces the tensile strength. In the case of aluminum inclusion in magnesium matrix, fracture takes place into magnesium matrix and does not touch the inclusion; presence of inclusion has practically no effect on the tensile strength. Molecular dynamic simulations were carried out in a wide range of strain rates and temperatures.

  16. Electron doping evolution of the neutron spin resonance in NaFe 1-xCo xAs

    DOE PAGES

    Zhang, Chenglin; Song, Yu; Carr, Scott Victor; ...

    2016-05-31

    Neutron spin resonance, a collective magnetic excitation coupled to superconductivity, is one of the most prominent features shared by a broad family of unconventional superconductors including copper oxides, iron pnictides, and heavy fermions. In this paper, we study the doping evolution of the resonances in NaFe 1–xCo xAs covering the entire superconducting dome. For the underdoped compositions, two resonance modes coexist. As doping increases, the low-energy resonance gradually loses its spectral weight to the high-energy one but remains at the same energy. By contrast, in the overdoped regime we only find one single resonance, which acquires a broader width inmore » both energy and momentum but retains approximately the same peak position even when T c drops by nearly a half compared to optimal doping. Furthermore, these results suggest that the energy of the resonance in electron overdoped NaFe 1–xCo xAs is neither simply proportional to T c nor the superconducting gap but is controlled by the multiorbital character of the system and doped impurity scattering effect.« less

  17. Relaxor-like ferroelectric behaviour favoured by short-range B-site ordering in 10% Ba{sup 2+} substituted MgFe{sub 2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chithra Lekha, P.; Ramesh, G.; Revathi, V.

    2014-05-01

    Graphical abstract: - Highlights: • Mechanism driving polarization in MgFe{sub 2}O{sub 4} is the Maxwell–Wagner polarization. • But Raman studies confirm the existence of local P4{sub 1}22/P4{sub 3}22 symmetry in MgFe{sub 2}O{sub 4}. • Ba{sup 2+} substitution increases ferroelectric ordering, ΔT{sub m} span, and masks electronic contribution. - Abstract: Using the molten salt method, pristine and Ba{sup 2+} substituted MgFe{sub 2}O{sub 4} are prepared. The relaxor-like behaviour observed in the dielectric dispersion indicates the existence of B-site short-range ordering with the local P4{sub 1}22/P4{sub 3}22 symmetry which is confirmed by the Raman spectroscopy. The paper further analyses the origin ofmore » polarization using Maxwell–Wagner fit and Nyquist plot. This work suggests a possible way to increase the relaxor-like ferroelectric ordering, larger span of relaxation temperature (ΔT{sub m}) and the effective masking of electronic contribution by the substitution of Ba{sup 2+} ion.« less

  18. Intralayer doping effects on the high-energy magnetic correlations in NaFeAs

    DOE PAGES

    Pelliciari, Jonathan; Huang, Yaobo; Das, Tanmoy; ...

    2016-04-26

    We used resonant inelastic x-ray scattering (RIXS) and dynamical susceptibility calculations to study the magnetic excitations in NaFe 1$-$xCo xAs ( x=0 , 0.03, and 0.08). Despite a relatively low ordered magnetic moment, collective magnetic modes are observed in parent compounds (x=0) and persist in optimally (x= 0.03) and overdoped (x = 0.08) samples. Their magnetic bandwidths are unaffected by doping within the range investigated. High-energy magnetic excitations in iron pnictides are robust against doping and present irrespectively of the ordered magnetic moment. Nonetheless, Co doping slightly reduces the overall magnetic spectral weight, differently from previous studies on hole-doped BaFemore » 2As 2 , where it was observed constant. Finally, we demonstrate that the doping evolution of magnetic modes is different for the dopants being inside or outside the Fe-As layer.« less

  19. Cooking and Fe fortification have different effects on Fe bioavailability of bread and tortillas.

    PubMed

    Hernández, Miguel; Sousa, Virginia; Villalpando, Salvador; Moreno, Ambar; Montalvo, Irene; López-Alarcón, Mardya

    2006-02-01

    To identify iron sources for wheat- (WF) and corn-flour (CF) fortification taking into account the effect of cooking. Sixty-six Fe-depleted rats were replete with various Fe sources. Fe bioavailability and utilization in wheat bread (WB) and corn tortillas (CT) fortified with various Fe sources was assessed after the depletion and repletion periods. Baking decreased the phytates content of WF by 97%. Improvements in Hb and FeHb were greater in rats fed unfortified WB than in those fed unfortified WF. Fe fortification had no benefit. In contrast, phytates content was unchanged by tortilla preparation, but fortification improved iron availability. Iron bioavailability indicators were best in rats fed CT fortified with ferrous sulfate and NaFe(III)EDTA than in those fed unfortified CT or CT plus reduced Fe. We concluded that baking WF bread improved the bioavailability of native Fe with no further effect of fortification. Pan-cooking of lime-treated CF did not improve Fe bioavailability, but addition of Ferrous sulfate or NaFe(III)EDTA did it, despite the high phytate and calcium content of tortillas.

  20. Nanometric MgFe2O4: Synthesis, characterization and its application towards supercapacitor and electrochemical uric acid sensor

    NASA Astrophysics Data System (ADS)

    Majumder, S.; Kumar, S.; Banerjee, S.

    2017-05-01

    In this paper, we have synthesized nanocrystalline MgFe2O4 (S1) by auto-combustion assisted sol-gel method. The structure and morphology and elemental study of S1 are examined by powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FESEM) and energy dispersive X-ray spectroscopic (EDS) techniques. The FESEM images reveal that the morphology of the sample is rough and average particle size is 50 nm. The PXRD study indicates that the samples are well crystalline and single phase in nature. Moreover, we have performed supercapacitor study by electrochemical galvanostatic charge-discharge (GCD) measurement, which shows pseudo capacitive behavior. S1 contains a high specific capacitance of 428.9 Fg-1 at the current density 0.0625 Ag-1 and can deliver high energy and power density of 18.01 Wh kg-1 and 21468 Wkg-1 respectively. Moreover, uric acid (UA) sensing study has also been performed by cyclic voltmetry (CV) and electrochemical impedance spectroscopy measurement (EIS) of S1. We can use nanocrystalline MgFe2O4 as supercapacitor and UA sensor applications purpose.

  1. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlO{sub x}/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akushichi, T., E-mail: taiju.aku7@isl.titech.ac.jp; Shuto, Y.; Sugahara, S., E-mail: sugahara@isl.titech.ac.jp

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO{sub x}/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO{sub x} barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accuratelymore » fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.« less

  2. Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles as a janus electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Karegeya, Claude; Mahmoud, Abdelfattah; Hatert, Frédéric; Vertruyen, Bénédicte; Cloots, Rudi; Lippens, Pierre-Emmanuel; Boschini, Frédéric

    2018-06-01

    A solvothermal method was used to prepare Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles, a new promising electrode material for lithium-ion batteries. The composition and the crystal structure were determined by 57Fe Mössbauer spectroscopy and powder X-ray diffraction Rietveld refinements and confirmed by magnetic measurements. The structural formula □0.75Na1.25Ni1.25Fe1.75(PO4)3 was obtained showing a significant amount of Na vacancies, which enhances Li diffusion. Na1.25Ni1.25Fe1.75(PO4)3 was used as negative and positive electrode material and shows excellent electrochemical performances. As negative electrode in the voltage range 0.03-3.5 V vs. Li+/Li, the first discharge at current density of 40 mA g-1 delivers a specific capacity of 1186 mAh g-1, which is almost three times its theoretical capacity (428 mAh g-1). Then, reversible capacity of 550 mAh g-1 was obtained at 50 mA g-1 with high rate capability (150 mAh g-1 at 500 mA g-1) and capacity retention of 350 cycles. As positive electrode material, specific capacities of about 145 and 99 mAh g-1 were delivered at current densities of 5 and 50 mA g-1, respectively, in the voltage range of 1.5-4.5 V vs. Li+/Li. In addition, we show that the use of solvothermal synthesis contributes to the synthesis of small sized particles leading to good electrochemical performances.

  3. Electronic conductivity of solid and liquid (Mg, Fe)O computed from first principles

    NASA Astrophysics Data System (ADS)

    Holmström, E.; Stixrude, L.; Scipioni, R.; Foster, A. S.

    2018-05-01

    Ferropericlase (Mg, Fe)O is an abundant mineral of Earth's lower mantle and the liquid phase of the material was an important component of the early magma ocean. Using quantum-mechanical, finite-temperature density-functional theory calculations, we compute the electronic component of the electrical and thermal conductivity of (Mg0.75, Fe0.25)O crystal and liquid over a wide range of planetary conditions: 0-200 GPa, 2000-4000 K for the crystal, and 0-300 GPa, 4000-10,000 K for the liquid. We find that the crystal and liquid are semi-metallic over the entire range studied: the crystal has an electrical conductivity exceeding 103 S/m, whereas that of the liquid exceeds 104 S/m. Our results on the crystal are in reasonable agreement with experimental measurements of the electrical conductivity of ferropericlase once we account for the dependence of conductivity on iron content. We find that a harzburgite-dominated mantle with ferropericlase in combination with Al-free bridgmanite agrees well with electromagnetic sounding observations, while a pyrolitic mantle with a ferric-iron rich bridgmanite composition yields a lower mantle that is too conductive. The electronic component of thermal conductivity of ferropericlase with XFe = 0.19 is negligible (<1 W/m/K). The electrical conductivity of the crystal and liquid at conditions of the core-mantle boundary are similar to each other (3 ×104 S/m). A crystalline or liquid ferropericlase-rich layer of a few km thickness thus accounts for the high conductance that has been proposed to explain anomalies in Earth's nutation. The electrical conductivity of liquid ferropericlase exceeds that of liquid silica by more than an order of magnitude at conditions of a putative basal magma ocean, thus strengthening arguments that the basal magma ocean could have produced an ancient dynamo.

  4. Effect of NaFeEDTA-Fortified Soy Sauce on Anemia Prevalence in China: A Systematic Review and Meta-analysis of Randomized Controlled Trials.

    PubMed

    Huo, Jun Sheng; Yin, Ji Yong; Sun, Jing; Huang, Jian; Lu, Zhen Xin; Regina, Moench-Pfanner; Chen, Jun Shi; Chen, Chun Ming

    2015-11-01

    To assess the effect of sodium iron ethylenediaminetetraacetate (NaFeEDTA)-fortified soy sauce on anemia prevalence in the Chinese population. A systematic review was performed to identify potential studies by searching the electronic databases of PubMed, Cochrane Library, WHO Library, HighWire, CNKI, and other sources. The selection criteria included randomized controlled trials that compared the efficacy of NaFeEDTA-fortified soy sauce with that of non-fortified soy sauce. Anemia rates and hemoglobin levels were the outcomes of interest. Inclusion decisions, quality assessment, and data extraction were performed by two reviewers independently. A total of 16 studies met the inclusion criteria for anemia rate analysis, of which 12 studies met the inclusion criteria for hemoglobin analysis. All included studies assessed the effect of NaFeEDTA-fortified soy sauce on anemia rates and hemoglobin concentrations. After the intervention, the hemoglobin concentration increased and anemia rates decreased significantly as compared with the non-fortified soy sauce groups. For anemia rates, data from 16 studies could be pooled, and the pooled estimate odds ratio was 0.25 (95% CI 0.19-0.35). For hemoglobin concentrations, data from 12 studies could be pooled, and the pooled weighted mean difference was 8.81 g/L (95% CI 5.96-11.67). NaFeEDTA-fortified soy sauce has a positive effect on anemia control and prevention in the at-risk population. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  5. Rational design of Fe3O4@C yolk-shell nanorods constituting a stable anode for high-performance Li/Na-ion batteries.

    PubMed

    Wang, Beibei; Zhang, Xing; Liu, Xiaojie; Wang, Gang; Wang, Hui; Bai, Jintao

    2018-05-24

    In the current research project, we have prepared a novel Fe 3 O 4 @mesoporous carbon nanorod (denoted as Fe 3 O 4 @C) anode with yolk-shell structure for Li/Na-ion batteries via one-pot and surfactant-free synthesis strategy. The yolk-shell structure consists of Fe 3 O 4 nanorod yolk completely protected by a well-conductive mesoporous carbon shell. The substantial void space in the Fe 3 O 4 @C yolk-shell nanorod can not only accommodate the full volume expansion of inner Fe 3 O 4 nanorod, but also preserve the structural integrity of the Fe 3 O 4 @C anode and develop a stable SEI film on the outside mesoporous carbon shell during the repeated Li + /Na + insertion/extraction processes. As for lithium storage, the Fe 3 O 4 @C electrode exhibits a high specific capacity (1247 mAh g -1 ), stable cycling performance (a specific capacity of 954 mAh g -1 after 200 cycles at a current density of 0.5 A g -1 ) and excellent rate capability (specific capabilities of 1122, 958, 783, 577, and 374 mAh g -1 at 0.5, 1, 2, 4, and 8 A g -1 , respectively). As for sodium storage, the Fe 3 O 4 @C yolk-shell nanorods also maintain a reversible capacity of approximate 424 mAh g -1 at 0.1 A g -1 after 100 cycles. Copyright © 2018. Published by Elsevier Inc.

  6. PVA/NaCl/MgO nanocomposites-microstructural analysis by whole pattern fitting method

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Somashekar, R.; Nagabhushana, B. M.

    2018-04-01

    The nanofillers in the macromolecular matrix have displayed noteworthy changes in the structure and reactivity of the polymer nanocomposites. Novel functional materials usually consist of defects and are largely disordered. The intriguing properties of these materials are often attributed to defects. X-ray line profiles from powder diffraction reveal the quantitative information about size distribution and shape of diffracting domains which governs the contribution from small conventional X-ray diffraction (XRD) techniques to enumerate the microstructural information. In this study the MgO nanoparticles were prepared by solution combustion method and PVA/NaCl/MgO nanocomposite films were synthesized by the solvent cast method. Microstructural parameters viz crystal defects like stacking faults and twin faults, compositional inhomogeneity, crystallite size and lattice strain (g in %), were extracted using whole pattern fitting method.

  7. A vibrational spectroscopic study of the phosphate mineral lulzacite Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Belotti, Fernanda M.; Xi, Yunfei; Scholz, Ricardo

    2014-06-01

    The mineral lulzacite from Saint-Aubin des Chateaux mine, France, with theoretical formula Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10 has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Chemical analysis shows a Sr, Fe, Al phosphate with minor amounts of Ga, Ba and Mg. Raman spectroscopy identifies an intense band at 990 cm-1 with an additional band at 1011 cm-1. These bands are attributed to the PO43-ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The Raman bands at 1034, 1051, 1058, 1069 and 1084 together with the Raman bands at 1098, 1116, 1133, 1155 and 1174 cm-1 are assigned to the ν3 antisymmetric stretching vibrations of PO43- and the HOPO32- units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of lulzacite. The series of Raman bands at 567, 582, 601, 644, 661, 673 and 687 cm-1 are assigned to the PO43-ν2 bending modes. The series of Raman bands at 437, 468, 478, 491, 503 cm-1 are attributed to the PO43- and HOPO32-ν4 bending modes. No Raman bands of lulzacite which could be attributed to the hydroxyl stretching unit were observed. Infrared bands at 3511 and 3359 cm-1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm-1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral lulzacite.

  8. Spin-orbit torques in high-resistivity-W/CoFeB/MgO

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yutaro; Zhang, Chaoliang; Okada, Atsushi; Sato, Hideo; Fukami, Shunsuke; Ohno, Hideo

    2018-05-01

    Magnetic heterostructures consisting of high-resistivity (238 ± 5 µΩ cm)-W/CoFeB/MgO are prepared by sputtering and their spin-orbit torques are evaluated as a function of W thickness through an extended harmonic measurement. W thickness dependence of the spin-orbit torque with the Slonczewski-like symmetry is well described by the drift-diffusion model with an efficiency parameter, the so-called effective spin Hall angle, of -0.62 ± 0.03. In contrast, the field-like spin-orbit torque is one order of magnitude smaller than the Slonczewski-like torque and shows no appreciable dependence on the W thickness, suggesting a different origin from the Slonczewski-like torque. The results indicate that high-resistivity W is promising for low-current and reliable spin-orbit torque-controlled devices.

  9. The enhancement in optical and magnetic properties of Na-doped LaFeO3

    NASA Astrophysics Data System (ADS)

    Devi, E.; Kalaiselvi, B. J.

    2018-04-01

    La1-xNaxFeO3(x=0.00 and 0.05) were synthesized by sol-gel auto-combustion method. No evidence of impurity phase and the peak (121) slightly shift towards lower angle is confirmed by X-ray diffraction analysis (XRD). The UV-visible spectra show strong absorption peak centered at approximately 231 nm and the calculated optical band gap are found to be 2.73eV, 2.36eV for x = 0.00 and 0.05, respectively. The M-H loop of pure sample is anti-ferromagnetic, whereas those of the Na doped sample shows enhanced ferromagnetic behavior. The remnant magnetization (Mr), saturation magnetization (Ms) and coercive field (Hc) of Na-doped sample are enhanced to 1.06emu/g, 5.39emu/g and 182.84kOe, respectively.

  10. Electrochemical activity of Fe-MIL-100 as a positive electrode for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Pratt III, Harry D.; Anderson, Travis M.

    2016-01-01

    Here we investigate the electrochemical activity of metal-organic frameworks (MOFs) as positive electrodes for Na-ion batteries in coin cell configurations. The performance of Fe-MIL-100 material is highly dependent on the choice of sodium salt source, and electrolyte system. The overall capacity fades over many cycles, however the high Coulombic efficiency is maintained. This can be correlated with inaccessibility of active sites for Na intercalation, due to the increase of extra carbonaceous material inside the pores. High resolution synchrotron powder X-ray and pair distribution function analyses of the as-made and cycled electrodes reveal the structure maintains the long-range order with progressivemore » cycling. This finding suggests that careful consideration of all variables in battery components, and especially electrolyte selection can lead to greatly improved performances.« less

  11. Influence of ball milling and annealing conditions on the properties of L10 FePt nanoparticles fabricated by a new green chemical synthesis method

    NASA Astrophysics Data System (ADS)

    Hu, X. C.; Capobianchi, A.; Gallagher, R.; Hadjipanayis, G. C.

    2014-05-01

    In this work, a new green chemical strategy for the synthesis of L10 FePt alloy nanoparticles is reported. The precursor is a polycrystalline molecular complex (Fe(H2O)6PtCl6), in which Fe and Pt atoms are arranged on alternating planes and milled with NaCl to form nanocrystals. Then the mixture was annealed under reducing atmosphere (5% H2 and 95% Ar) at temperatures varying from 350 °C to 500 °C for 2 h with a heating rate of 5 °C/min. After the reduction, the mixture was washed with water to remove the NaCl and L10 FePt nanoparticles were obtained. The X-Ray Diffraction pattern showed the presence of the characteristic peaks of the fct phase of FePt nanoparticles. Influence of precursor/NaCl ratio and ball milling time on particle size was investigated. Transmission electron microscopy images revealed that smaller precursor/NaCl ratio (10 mg/20 g) and longer milling time (15 h) lead to smaller particle size and narrower size distribution. Milling time does not influence the coercivity much but the decrease of the amount of precursor leads to a decrease of coercivity from 10.8 kOe to 4.8 kOe.

  12. The 18Ne(α,p)21Na breakout reaction in x-ray bursts: Experimental determination of spin-parities for α resonances in 22Mg via resonant elastic scattering of 21Na+p

    NASA Astrophysics Data System (ADS)

    He, J. J.; Zhang, L. Y.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Kubono, S.; Hu, J.; Ma, P.; Chen, S. Z.; Wakabayashi, Y.; Sun, B. H.; Wang, H. W.; Tian, W. D.; Chen, R. F.; Guo, B.; Hashimoto, T.; Togano, Y.; Hayakawa, S.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.

    2013-07-01

    The 18Ne(α,p)21Na reaction provides a pathway for breakout from the hot CNO cycles to the rp process in type-I x-ray bursts. To better determine this astrophysical reaction rate, the resonance parameters of the compound nucleus 22Mg have been investigated by measuring the resonant elastic scattering of 21Na+p. An 89 MeV 21Na radioactive ion beam was produced at the CNS Radioactive Ion Beam Separator and bombarded an 8.8 mg/cm2 thick polyethylene target. The recoiled protons were measured at scattering angles of θc.m.≈175∘ and 152∘ by three ΔE-E silicon telescopes. The excitation function was obtained with a thick-target method over energies Ex(22Mg) = 5.5-9.2 MeV. The resonance parameters have been determined through an R-matrix analysis. For the first time, the Jπ values for ten states above the α threshold in 22Mg have been experimentally determined in a single consistent measurement. We have made three new Jπ assignments and confirmed seven of the ten tentative assignments in the previous work. The 18Ne(α,p)21Na reaction rate has been recalculated, and the astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the 18Ne(α,p)21Na rate significantly affects the peak nuclear energy generation rate and the onset temperature of this breakout reaction in these phenomena.

  13. Enhancement in the interfacial perpendicular magnetic anisotropy and the voltage-controlled magnetic anisotropy by heavy metal doping at the Fe/MgO interface

    NASA Astrophysics Data System (ADS)

    Nozaki, Takayuki; Yamamoto, Tatsuya; Tamaru, Shingo; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2018-02-01

    We investigated the influence of heavy metal doping at the Fe/MgO interface on the interfacial perpendicular magnetic anisotropy (PMA) and the voltage-controlled magnetic anisotropy (VCMA) in magnetic tunnel junctions prepared by sputtering-based deposition. The interfacial PMA was increased by tungsten doping and a maximum intrinsic interfacial PMA energy, Ki,0 of 2.0 mJ/m2 was obtained. Ir doping led to a large increase in the VCMA coefficient by a factor of 4.7 compared with that for the standard Fe/MgO interface. The developed technique provides an effective approach to enhancing the interfacial PMA and VCMA properties in the development of voltage-controlled spintronic devices.

  14. Comparison of structural and magnetic properties of Zn{sub x}Mg{sub 1.5-x}Mn{sub 0.5}FeO{sub 4} and MgAl{sub x}Cr{sub x}Fe{sub 2-2x}O{sub 4} spinel oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thummer, K. P., E-mail: kpthummer@yahoo.co.in; Tanna, A. R., E-mail: ashish.tanna@rku.ac.in; Joshi, H. H.

    2016-05-23

    The spinel oxides Zn{sub x}Mg{sub 1.5-x}Mn{sub 0.5}FeO{sub 4} (x = 0.0 to 0.6) and MgAl{sub x}Cr{sub x}Fe{sub 2-2x}O{sub 4} (x = 0.0 to 0.6) abbreviated as ZMMFO and MACFO respectively, were synthesized by standard ceramic processing. The compositional purity of all the specimens was checked by EDAX technique. The X-ray diffractometry was employed to determine the lattice constants and distribution of cations in the interstitial voids. The initial decrease of cell edge parameter (a) for ZMMFO up to x = 0.2 and thereafter expected rise in the ‘a’ and the initial slower rate of reduction in the lattice constant formore » MACFO are explained as basic of cation occupancy. The magnetic ordering in both systems is explained by invoking statistical canting models. The compositional variation of magneton number (n{sub B}) for ZMMFO could be very well explained by Localized canting of spin (LCS) model while Random canting of spin (RCS) model was used for MACFO system.« less

  15. Heat capacity jump at T c and pressure derivatives of superconducting transition temperature in the Ba 1 - x Na x Fe 2 As 2 ( 0.1 ≤ x ≤ 0.9 ) series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bud'ko, Sergey L.; Chung, Duck Young; Bugaris, Daniel

    2014-01-16

    We present the evolution of the initial (up to ~ 10 kbar) hydrostatic pressure dependencies of T c and of the ambient pressure, and the jump in the heat capacity associated with the superconducting transition as a function of Na doping in the Ba1-xNaxFe2As2 family of iron-based superconductors. For Na concentrations 0.15 ≤ x ≤ 0.9, the jump in specific heat at T c, ΔC p| Tmore » $$_c$$, follows the ΔC p ∝ to T 3 (the so-called BNC scaling) found for most BaFe 2As 2 based superconductors. This finding suggests that, unlike the related Ba 1-xK xFe 2As 2 series, there is no significant modification of the superconducting state (e. g., change in superconducting gap symmetry) in the Ba 1-xNa xFe 2As 2 series over the whole studied Na concentration range. Pressure dependencies are nonmonotonic for x = 0.2 and 0.24. For other Na concentrations, T c decreases under pressure in an almost linear fashion. The anomalous behavior of the x = 0.2 and 0.24 samples under pressure is possibly due to the crossing of the phase boundaries of the narrow antiferromagnetic tetragonal phase, unique for the Ba 1-xNa xFe 2As 2 series, with the application of pressure. The negative sign of the pressure derivatives of T c across the whole superconducting dome (except for x = 0.2) is a clear indication of the nonequivalence of substitution and pressure for the Ba 1-xNa xFe 2As 2 series.« less

  16. In-Situ and Real-time Monitoring of Mechanochemical Preparation of Li2 Mg(NH2 BH3 )4 and Na2 Mg(NH2 BH3 )4 and Their Thermal Dehydrogenation.

    PubMed

    Biliškov, Nikola; Borgschulte, Andreas; Užarević, Krunoslav; Halasz, Ivan; Lukin, Stipe; Milošević, Sanja; Milanović, Igor; Novaković, Jasmina Grbović

    2017-11-16

    For the first time, in situ monitoring of uninterrupted mechanochemical synthesis of two bimetallic amidoboranes, M 2 Mg(NH 2 BH 3 ) 4 (M=Li, Na), by means of Raman spectroscopy, has been applied. This approach allowed real-time observation of key intermediate phases, and a straightforward follow-up of the reaction course. Detailed analysis of time-dependent spectra revealed a two-step mechanism through MNH 2 BH 3 ⋅NH 3 BH 3 adducts as key intermediate phases which further reacted with MgH 2 , giving M 2 Mg(NH 2 BH 3 ) 4 as final products. The intermediates partially take a competitive pathway toward the oligomeric M(BH 3 NH 2 BH 2 NH 2 BH 3 ) phases. The crystal structure of the novel bimetallic amidoborane Li 2 Mg(NH 2 BH 3 ) 4 was solved from high-resolution powder diffraction data and showed an analogous metal coordination to Na 2 Mg(NH 2 BH 3 ) 4 , but a significantly different crystal packing. Li 2 Mg(NH 2 BH 3 ) 4 thermally dehydrogenates releasing highly pure H 2 in the amount of 7 wt.%, and at a lower temperature then its sodium analogue, making it significantly more viable for practical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, C. H.; Ouyang, Chuenhou, E-mail: wei0208@gmail.com, E-mail: houyang@mx.nthu.edu.tw; Yao, Y. D.

    FePd (001) films, prepared by an electron beam deposition system on MgO(100), exhibit a perpendicular magnetic anisotropy (1.7 × 10{sup 7 }erg/cc) with a high order parameter (0.92). The relation between stacking faults induced by the strain relaxation, which act as strong domain wall pinning sites, and the perpendicular coercivity of (001) oriented L1{sub 0} FePd films prepared at different temperatures have been investigated. Perpendicular coercivity can be apparently enhanced by raising the stacking fault densities, which can be elevated by climbing dissociation of total dislocation. The increased stacking fault densities (1.22 nm{sup −2}) with large perpendicular coercivity (6000 Oe) are obtained for samples preparedmore » at 650 °C. This present work shows through controlling stacking fault density in FePd film, the coercivity can be manipulated, which can be applied in future magnetic devices.« less

  18. Unshocked Equilibrated H Chondrites: A Common Low-Temperature Record from Fe-Mg Ordering in Orthopyroxene

    NASA Astrophysics Data System (ADS)

    Folco, L.; Mellini, M.; Pillinger, C. T.

    1995-09-01

    The study of the thermal metamorphism of ordinary chondrites through geothermometers can provide significant constraints on the parent body thermal models which remain controversial. We report here results from Fe-Mg ordering closure temperatures (Tc) of orthopyroxenes from eight unshocked equilibrated H-chondrites obtained by means of single crystal X-ray diffraction. The method is based on the fact that cation partitioning in orthopyroxene is sensitive to temperature [1], and makes use of the experimental calibration by Molin et al. [2]. The goal of the investigation is to check how petrographic types relate to cation ordering thermal records. Results: The orthopyroxenes show a very similar degree of Fe-Mg ordering (see Table 1.). The Tc's cluster within the 384+/-48 to 480+/-28 degrees C interval, and show no correlation with petrographic type. The lack of a correlation does not mean that the distribution is random, rather, it appears to be controlled in individual samples by the degree of equilibration. In fact, the higher the petrographic type, the more coherent the results of the grains from individual chondrites. The spread of Tc's in the least equilibrated chondrites could be either a memory of heterogeneous pre-metamorphic records related to individual chondrule histories, or an artefact due to crystal defects. Therefore (1) the thermal records, inferred from the Fe-Mg ordering, are nearly the same for all the equilibrated H-chondrites; (2) the most equilibrated chondrites record distinct Tc values within the larger common Tc range; (3) the spread of Tc in H4's maybe indicative of disequilibrium and merits further study. The closure temperature conveys information on the cooling rate close to its value, regardless of the temperature regimes when the ordering process started. Extrapolation to high temperatures can be made only if the cooling path is constrained. Since we have no data to establish the temperature when ordering began and to decide whether the

  19. Static and dynamic properties of Co2FeAl thin films: Effect of MgO and Ta as capping layers

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Barwal, Vineet; Kumar, Ankit; Behera, Nilamani; Akansel, Serkan; Goyat, Ekta; Svedlindh, Peter; Chaudhary, Sujeet

    2017-05-01

    The influence of MgO and Ta capping layers on the static and dynamic magnetic properties of Co2FeAl (CFA) Heusler alloy thin films has been investigated. It is observed that the CFA film deposited with MgO capping layer is preeminent compared to the uncapped or Ta capped CFA film. In particular, the magnetic inhomogeneity contribution to the ferromagnetic resonance line broadening and damping constant are found to be minimal for the MgO capped CFA thin film i.e., 0.12±0.01 Oe and 0.0074±0.00014, respectively. The saturation magnetization was found to be 960±25emu/cc.

  20. Equation of state and spin crossover of (Mg,Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary

    DOE PAGES

    Solomatova, Natalia V.; Jackson, Jennifer M.; Sturhahn, Wolfgang; ...

    2016-05-01

    Iron-bearing periclase is thought to represent a significant fraction of Earth’s lower mantle. However, the concentration of iron in (Mg,Fe)O is not well constrained at all mantle depths. Therefore, understanding the effect of iron on the density and elastic properties of this phase plays a major role in interpreting seismically observed complexity in the deep Earth. Here in this paper, we examine the high-pressure behavior of polycrystalline (Mg,Fe)O containing 48 mol% FeO, loaded hydrostatically with neon as a pressure medium. Using X-ray diffraction and synchrotron Mössbauer spectroscopy, we measure the equation of state to about 83 GPa and hyperfine parametersmore » to 107 GPa at 300 K. A gradual volume drop corresponding to a high-spin (HS) to low-spin (LS) crossover is observed between ~45 and 83 GPa with a volume drop of 1.85% at 68.8(2.7) GPa, the calculated spin transition pressure. Using a newly formulated spin crossover equation of state, the resulting zero-pressure isothermal bulk modulus K 0T,HS for the HS state is 160(2) GPa with a K' 0T,HS of 4.12(14) and a V 0,HS of 77.29(0) Å 3. For the LS state, the K 0T,LS is 173(13) GPa with a K' 0T,LS fixed to 4 and a V 0,LS of 73.64(94) Å 3. To confirm that the observed volume drop is due to a spin crossover, the quadrupole splitting (QS) and isomer shift (IS) are determined as a function of pressure. At low pressures, the Mössbauer spectra are well explained with two Fe 2+-like sites. At pressure between 44 and 84, two additional Fe 2+-like sites with a QS of 0 are required, indicative of low-spin iron. Above 84 GPa, two low-spin Fe 2+-like sites with increasing weight fraction explain the data well, signifying the completion of the spin crossover. To systematically compare the effect of iron on the equation of state parameters for (Mg,Fe)O, a spin crossover equation of state was fitted to the pressure-volume data of previous measurements. Our results show that K 0,HS is insensitive to iron

  1. Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite

    PubMed Central

    Bindi, Luca; Chen, Ming; Xie, Xiande

    2017-01-01

    We report the first natural occurrence of the Fe-analogue of akimotoite, ilmenite-structured MgSiO3, a missing phase among the predicted high-pressure polymorphs of Fe-pyroxene, with the composition (Fe2+0.48Mg0.37Ca0.04Na0.04Mn2+0.03Al0.03Cr3+0.01)Σ=1.00Si1.00O3. The new mineral was approved by the International Mineralogical Association (IMA 2016-085) and named hemleyite in honour of Russell J. Hemley. It was discovered in an unmelted portion of the heavily shocked L6 Suizhou chondrite closely associated to olivine, clinoenstatite and Fe-bearing pyroxene with a composition nearly identical to that of hemleyite. We also report the first single-crystal X-ray diffraction study of a Si-bearing, ilmenite-structured phase. The fact that hemleyite formed in a meteorite exposed to high pressures (<20 GPa) and temperatures (<2000 °C) during impact-induced shocks indicates that it could play a crucial role at the bottom of the Earth’s mantle transition zone and within the uppermost lower mantle. PMID:28198399

  2. Electric field-induced ferromagnetic resonance in a CoFeB/MgO magnetic tunnel junction under dc bias voltages

    NASA Astrophysics Data System (ADS)

    Kanai, Shun; Gajek, Martin; Worledge, D. C.; Matsukura, Fumihiro; Ohno, Hideo

    2014-12-01

    We measure homodyne-detected ferromagnetic resonance (FMR) induced by the electric-field effect in a CoFeB/MgO/CoFeB magnetic tunnel junction (MTJ) with perpendicular magnetic easy axis under dc bias voltages up to 0.1 V. From the bias dependence of the resonant frequency, we find that the first order perpendicular magnetic anisotropy is modulated by the applied electric field, whereas the second order component is virtually independent of the electric field. The lineshapes of the FMR spectra are bias dependent, which are explained by the combination of electric-field effect and reflection of the bias voltage from the MTJ.

  3. Effect of Synthesis Temperature and NaOH Concentration on Microstructural and Magnetic Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Siregar, N.; Indrayana, I. P. T.; Suharyadi, E.; Kato, T.; Iwata, S.

    2017-05-01

    Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully synthesized through coprecipitation method by varying NaOH concentrations from 0.5 M to 6 M and synthesis temperatures from 30 to 120 °C. The X-ray diffraction (XRD) pattern indicates samples consisting of multiphase structures such as spinel of Mn0.5Zn0.5Fe2O4, α-MnO2, ZnO, λ-MnO2, and γ-Fe2O3. The crystallite size of Mn0.5Zn0.5Fe2O4 is in the range of 14.1 to 26.7 nm. The Transmission electron microscope (TEM) image shows that sample was agglomerate. The hysteresis loops confirm that nanoparticles are soft magnetic materials with low coercivity (H c) in the range of 45.9 to 68.5 Oe. Those values increased relatively with increasing particles size. For NaOH concentration variation, the maximum magnetization of the sample increased from 10.4 emu/g to 11.6 emu/g with increasing ferrite content. Meanwhile, the maximum magnetization increased from 7.9 to 15.7 emu/g for samples with various synthesis temperature. The highest coercivity of 68.5 Oe was attained for a sample of 6 M NaOH under 90 °C. The highest magnetization of 15.7 emu/g was achieved for a sample of 1.5 M NaOH under 120 °C caused by the maximum crystallinity of sample.

  4. Insight into Ca-Substitution Effects on O3-Type NaNi1/3 Fe1/3 Mn1/3 O2 Cathode Materials for Sodium-Ion Batteries Application.

    PubMed

    Sun, Liqi; Xie, Yingying; Liao, Xiao-Zhen; Wang, Hong; Tan, Guoqiang; Chen, Zonghai; Ren, Yang; Gim, Jihyeon; Tang, Wan; He, Yu-Shi; Amine, Khalil; Ma, Zi-Feng

    2018-04-18

    O3-type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 (NaNFM) is well investigated as a promising cathode material for sodium-ion batteries (SIBs), but the cycling stability of NaNFM still needs to be improved by using novel electrolytes or optimizing their structure with the substitution of different elements sites. To enlarge the alkali-layer distance inside the layer structure of NaNFM may benefit Na + diffusion. Herein, the effect of Ca-substitution is reported in Na sites on the structural and electrochemical properties of Na 1- x Ca x /2 NFM (x = 0, 0.05, 0.1). X-ray diffraction (XRD) patterns of the prepared Na 1- x Ca x /2 NFM samples show single α-NaFeO 2 type phase with slightly increased alkali-layer distance as Ca content increases. The cycling stabilities of Ca-substituted samples are remarkably improved. The Na 0.9 Ca 0.05 Ni 1/3 Fe 1/3 Mn 1/3 O 2 (Na 0.9 Ca 0.05 NFM) cathode delivers a capacity of 116.3 mAh g -1 with capacity retention of 92% after 200 cycles at 1C rate. In operando XRD indicates a reversible structural evolution through an O3-P3-P3-O3 sequence of Na 0.9 Ca 0.05 NFM cathode during cycling. Compared to NaNMF, the Na 0.9 Ca 0.05 NFM cathode shows a wider voltage range in pure P3 phase state during the charge/discharge process and exhibits better structure recoverability after cycling. The superior cycling stability of Na 0.9 Ca 0.05 NFM makes it a promising material for practical applications in sodium-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Temperature Driven Topological Switch in 1T'-MoTe2 and Strain Induced Nematicity in NaFeAs

    NASA Astrophysics Data System (ADS)

    Berger, Ayelet Denise Notis

    Quasiparticle interference (QPI) is a powerful technique within Scanning Tunneling Microscopy (STM) that is used to probe the electronic bandstructure of materials. This thesis presents two examples using QPI to measure the bandstructure in materials with exotic electronic states that can be tuned via outside parameters (temperature and strain). In Part I of the thesis, we discuss the temperature dependence of Fermi Arcs in 1T'-MoTe 2, and then in Part II, the strain dependent nematic state in NaFeAs. The recent discovery of Weyl semimetals has introduced a new family of materials with topologically protected electronic properties and potential applications due to their anomalous transport effects. Even more useful is a Weyl semimetal that can be turned "on" and "off," switching between a topological and trivial state. One possible material is MoTe2, which undergoes a phase transition at 240K. This thesis consists of experiments using Scanning Tunneling Microscopy (STM) and Spectroscopy (STS) at different temperatures to visualize changes in the electronic bandstructure of MoTe2 across the topological phase transition. We show that a signature of topologically protected Fermi Arcs is present at low temperatures but disappears at room temperature, in the trivial phase. We include an in-depth discussion of how to account for thermal effects when comparing these two types of measurements. In Part II, we discuss strain induced nematicity in NaFeAs, an iron pnictide. Nematic fluctuations and spin correlations play an important role in the phase diagram of the iron pnictides, a family of unconventional superconductors. Illuminating the mechanism behind this symmetry breaking is key to understanding the superconducting state. Previous work has shown that nematicity in the iron pnictides responds strongly to applied strain [1, 2]. In this thesis, I present results from a new experimental technique, elasto-scanning tunneling microscopy (E-STM), which combines in situ strain

  6. Magnetic upconverting fluorescent NaGdF4:Ln3+ and iron-oxide@NaGdF4:Ln3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Shrivastava, Navadeep; Rocha, Uéslen; Muraca, Diego; Jacinto, Carlos; Moreno, Sergio; Vargas, J. M.; Sharma, S. K.

    2018-05-01

    Microwave assisted solvothermal method has been employed to synthesize multifunctional upconverting β-NaGdF4:Ln3+ and magnetic-upconverting Fe3O4/γ-Fe2O3@NaGdF4:Ln3+ (Ln = Yb and Er) nanoparticles. The powder x-ray diffraction data confirms the hexagonal structure of NaGdF4:Ln3+ and high resolution transmission electron microscopy shows the formation of rod shaped NaGdF4:Ln3+ (˜ 20 nm) and ovoid shaped Fe3O4/γ-Fe2O3@NaGdF4:Ln3+ (˜ 15 nm) nanoparticles. The magnetic hysteresis at 300 K for β-NaGdF4:Ln3+ demonstrates paramagnetic features, whereas iron-oxide@β-NaGdF4:Ln3+ exhibits superparamagnetic behavior along with a linear component at large applied field due to paramagnetic NaGdF4 matrix. Both nanoparticle samples provide an excellent green emitting [(2H11/2, 4S3/2)→4I15/2 (˜ 540 nm)] upconversion luminescence emission under excitation at 980 nm. The energy migration between Yb and Er in NaGdF4 matrix has been explored from 300-800 nm. Intensity variation of blue, green and red lines and the observed luminescence quenching due to the presence of Fe3O4/γ-Fe2O3 in the composite has been proposed. These kinds of materials contain magnetic and luminescence characteristics into single nanoparticle open new possibility for bioimaging applications.

  7. Synthesis and characterization of mesoporous and hollow-mesoporous MxFe3-xO4 (M=Mg, Mn, Fe, Co, Ni, Cu, Zn) microspheres for microwave-triggered controllable drug delivery

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Cui, Bin; Bu, Yumei; Yang, Zhenfeng; Wang, Yaoyu

    2017-12-01

    Spinel ferrites can be used in magnetic targeting and microwave heating and can therefore be used for targeted and controllable drug delivery. We used the cetyltrimethylammonium bromide-assisted solvothermal method to synthesize a series of spinel ferrites (MxFe3-xO4, M=Mg, Mn, Fe, Co, Ni, Cu, Zn) with a mesoporous or hollow-mesoporous structure suitable for direct drug loading and the particle diameters ranging from 200 to 350 nm. We investigated the effects of M2+ cation on the morphology and properties of these products by analyzing their transmission electron microscopy images, mesoporous properties, magnetic properties, and microwave responses. We chose hollow-mesoporous MxFe3-xO4 (M=Fe, Co, Zn) nanoparticles, which had better overall properties, for the drug VP16 (etoposide) loading and microwave-controlled release. The CoxFe3-xO4 and Fe3O4 particles trapped 61.5 and 64.8%, respectively, of the VP16, which were higher than that (60.4%) of ZnxFe3-xO4. Controllable drug release by these simple magnetic nanocarriers can be achieved by microwave irradiation, and VP16-loaded CoxFe3-xO4 released the most VP16 molecules (more than 50% after 1 h and 69.1% after 6 h) under microwave irradiation. Our results confirm the favorable drug loading and microwave-controlled delivery by these ferrites, and lay a theoretical foundation to promote clinical application of the targeted controllable drug delivery system. [Figure not available: see fulltext.

  8. Applications of the First-principles LDA+Usc Method to Spin-crossover Minerals: the NAL Phase and (Mg,Fe)CO3 ferromagnesite

    NASA Astrophysics Data System (ADS)

    Hsu, H.

    2016-12-01

    Spin crossover (SCO) in iron-bearing minerals has attracted tremendous attention in recent years, as SCO usually leads to anomalous changes of the elastic, conducting, and thermodynamic properties of these minerals. Possible geophysical effects of SCO have been anticipated as well. With the development of the local density approximation + self-consistent Hubbard U (LDA+Usc) method, first-principles calculations have elucidated SCO in many lower-mantle minerals. The success of LDA+Usc lies in its capability to correctly identify the ground state in a wide pressure range and to accurately determine the mechanism of SCO, including the transition pressure PT. In this talk, two recent LDA+Usc studies of SCO minerals are presented: the "new aluminous (NAL) phase" [1] and (Mg,Fe)CO3 ferromagnesite [2]. The former is considered as a main host of aluminum in the subducted basalt and may be related to the seismic heterogeneities, and the latter is believed to be the major carbon carrier in the Earth's lower mantle and play a key role in the deep carbon cycle. For both minerals, the abrupt change of iron quadrupole splitting and the volume/elastic anomalies accompanying the SCO obtained in our calculations are in great agreement with experiments. Our calculations also suggest that the spin transition pressure PT in the NAL phase is not very sensitive to temperature, due to its nearly degenerate low-spin (LS) states, in contrast with (Mg,Fe)O ferropericlase and (Mg,Fe)CO3 systems, in which PT significantly increases with temperature. By examining the overall performance of the LDA+Usc method in the NAL phase and ferromagnesite, along with our previous calculations for ferropericlase and Fe-bearing MgSiO3 bridgmanite [3-5], we have established LDA+Usc a highly reliable method to study iron-bearing minerals and related materials under high pressure. [1] H. Hsu, in preparation. [2] S.-C. Huang and H. Hsu, Phys. Rev. B (Rapid Comm.), in press. [3] H. Hsu and R. M. Wentzcovitch

  9. Shock and Release Data on Forsterite (Mg2SiO4) Single Crystals

    NASA Astrophysics Data System (ADS)

    Root, S.; Townsend, J. P.; Shulenburger, L.; Davies, E.; Kraus, R. G.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2016-12-01

    The Kepler mission has discovered numerous extra-solar rocky planets with sizes ranging from Earth-size to the super-Earths with masses 40 times larger than Earth. The solid solution series of (Mg, Fe)2SiO4 (olivine) is a major component in the mantle of Earth and likely these extra-solar rocky planets. However, understanding how the (Mg, Fe)2SiO4 system behaves at Earth like and super-Earth like pressures is still unknown. Using Sandia's Z machine facility, we shock compress single crystal forsterite, the Mg end-member of the olivine series. Solid aluminum flyers are accelerated up to 28 km/s to generate steady shock states up to 950 GPa. Release states from the Hugoniot are determined as well. In addition to experiments, we perform density functional theory (DFT) calculations to examine the potential phases along the Mg2SiO4 Hugoniot. We compare our results to other recent shock experiments on forsterite. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Synthèse et étude structrale de lyonsite-type (Na0,4,Li0,6)(Fe,Li2)(MoO4)3

    PubMed Central

    Souilem, Amira; Zid, Mohamed Faouzi; Driss, Ahmed

    2015-01-01

    The new compound (Na0.4,Li0.6)(Fe,Li2)(MoO4)3 was synthesized by cooling from the melt. Its anionic framework is built up from two distinct MO6 octa­hedra, each containing disordered Li+ and Fe3+ ions in 0.6:0.4 and 0.7:0.3 ratios, and two MoO4 tetra­hedra, which link by vertex-sharing of their O atoms. These tetra­meric units are further linked by sharing edges between octa­hedra and by formation of M—O—Mo (M = Fe/Li) bridges, forming ribbons propagating in the [100] direction. The ribbons are cross-linked in both the b- and c-axis directions, giving rise to a three-dimensional framework having [100] tunnels in which the monovalent Na+/Li+ cations (0.4:0.6 ratio) lie. Bond-valence calculations are consistent with the disorder model for the cations. The structure of the title compound, which is isotypic with Li3Fe(MoO4)3 and Li3Ga(MoO4)3, is compared briefly with those of LiFeMo2O8 and Li1.6Mn2.2(MoO4)3. PMID:26090130

  11. Effects of Iron and Pressure on the c11 Elastic Constant of (Mg,Fe)O Using a New GHz-Ultrasonic Diamond Cell With In-Situ X-ray Diffraction to 10 GPa

    NASA Astrophysics Data System (ADS)

    Jacobsen, S.; Spetzler, H.; Reichmann, H.; Mackwell, S.; Smyth, J.

    2002-12-01

    (Mg,Fe)O may be one of the most elastically anisotropic cubic minerals likely to occur in Earth's interior. At ambient P-T, pure MgO exhibits ~10% P-wave and ~13% S-wave anisotropy. The landmark single-crystal ultrasonic experiment of Chen et al. (1998) showed that increasing pressure reduces this anisotropy, leading to either zero anisotropy or a switch in sign of the anisotropy factor (A=2c44+c12)/c11-1) expected at ~20 GPa. They also showed that on increasing temperature (at pressure) the value of A recovers to bench-top values at only 1000 K (at 8 GPa). The effects of pressure and iron in amounts relevant to Earth's interior on the anisotropic elastic properties of (Mg,Fe)O are not yet known. With this and other questions at hand, we are undertaking hydrostatic single-crystal elasticity measurements on (Mg,Fe)O using GHz-ultrasonic interferometry. Thus far, we have determined the pressure derivative of c11 to a maximum hydrostatic pressure of 9 GPa, resulting in linear derivatives (dc11/dP) = 9.4(1), 11.7(4), 9.8(4), and 9.4(2) for MgO, and (Mg,Fe)O with 15, 24, and 56 mol% FeO, respectively. This behavior is consistent with our previous results on the compositional dependence of the bulk modulus, which we observed to increase between MgO and (Mg,Fe)O with 25 mol% FeO, before decreasing towards non-stoichiometric Fe0.95O. Therefore we speculate that the decrease in dc11/dP for the highest Fe-content sample is due at least in part to defects. The experiments were carried out in a new GHz-ultrasonic diamond cell modeled after the classic three-pin Merrill-Bassett design. The cell is capable of pressures >10 GPa and features a 60° opening for in-situ single-crystal X-ray diffraction. The anvil seats contain no glue or epoxy so the entire frame (Vascomax 250) may be heated, as we have done readily up to 300°C for annealing. Perhaps most notably, the ultrasonic measurements were made without the use of a bonding agent (such as glue or gold) between the sample and

  12. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application

    NASA Astrophysics Data System (ADS)

    Akaogi, Masaki; Ito, Eiji; Navrotsky, Alexandra

    1989-11-01

    The olivine(α)-modified spinel(β)-spinel (γ) transitions in the system Mg2SiO4-Fe2SiO4 were studied by high-temperature solution calorimetry. Enthalpies of the β-γ and a α-γ transitions in Mg2SiO4 at 975 K and of the α-γ transition in Fe2SiO4 at 298 K were measured. The γ solid solution showed a positive enthalpy of mixing. Phase relations at high pressures and high temperatures were calculated from these thermochemical data including correction for the effect of nonideality of α, β, and γ solid solutions. The calculated phase diagrams agree well with those determined experimentally by Katsura and Ito very recently. The α - (Mg0.89, Fe0.11)2SiO4 transforms to β through a region of α+β without passing through the α+γ phase field at around 400 km depth in the mantle with an interval of about 18(±5) km. Temperatures at 390 and 650 km depths are estimated to be about 1673 and 1873 K, respectively, assuming an adiabatic geotherm.

  13. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe3O4-Derived Fe3O4@FeS with Superior Full-Cell Performance.

    PubMed

    Hou, Bao-Hua; Wang, Ying-Ying; Guo, Jin-Zhi; Zhang, Yu; Ning, Qiu-Li; Yang, Yang; Li, Wen-Hao; Zhang, Jing-Ping; Wang, Xin-Long; Wu, Xing-Long

    2018-01-31

    A novel core-shell Fe 3 O 4 @FeS composed of Fe 3 O 4 core and FeS shell with the morphology of regular octahedra has been prepared via a facile and scalable strategy via employing commercial Fe 3 O 4 as the precursor. When used as anode material for sodium-ion batteries (SIBs), the prepared Fe 3 O 4 @FeS combines the merits of FeS and Fe 3 O 4 with high Na-storage capacity and superior cycling stability, respectively. The optimized Fe 3 O 4 @FeS electrode shows ultralong cycle life and outstanding rate capability. For instance, it remains a capacity retention of 90.8% with a reversible capacity of 169 mAh g -1 after 750 cycles at 0.2 A g -1 and 151 mAh g -1 at a high current density of 2 A g -1 , which is about 7.5 times in comparison to the Na-storage capacity of commercial Fe 3 O 4 . More importantly, the prepared Fe 3 O 4 @FeS also exhibits excellent full-cell performance. The assembled Fe 3 O 4 @FeS//Na 3 V 2 (PO 4 ) 2 O 2 F sodium-ion full battery gives a reversible capacity of 157 mAh g -1 after 50 cycles at 0.5 A g -1 with a capacity retention of 92.3% and the Coulombic efficiency of around 100%, demonstrating its applicability for sodium-ion full batteries as a promising anode. Furthermore, it is also disclosed that such superior electrochemical properties can be attributed to the pseudocapacitive behavior of FeS shell as demonstrated by the kinetics studies as well as the core-shell structure. In view of the large-scale availability of commercial precursor and ease of preparation, this study provide a scalable strategy to develop advanced anode materials for SIBs.

  15. Treatment of landfill leachate biochemical effluent using the nano-Fe3O4/Na2S2O8 system: Oxidation performance, wastewater spectral analysis, and activator characterization.

    PubMed

    Liu, Zhanmeng; Li, Xian; Rao, Zhiwei; Hu, Fengping

    2018-02-15

    Nano-Fe 3 O 4 was used as heterogeneous catalyst to activate Na 2 S 2 O 8 for the generation of the sulfate radicals (SO 4 - ) to oxidize the residual pollutants in landfill leachate biochemical effluent. The oxidation performance, wastewater spectral analysis and activator characterization were discussed. Oxidation experimental result shows that nano-Fe 3 O 4 has obvious catalytic effect on Na 2 S 2 O 8 and can significantly enhance the oxidation efficiencies of Na 2 S 2 O 8 on landfill leachate biochemical effluent, with COD and color removals above 63% and 95%, respectively. Based on the analyses of three-dimensional excitation emission matrix fluorescence spectrum (3DEEM), ultraviolet-visible spectra (UV-vis), and Fourier Transform infrared spectroscopy (FTIR) of wastewater samples before and after treatment, it can be concluded that the pollution level of dissolved organic matter (DOM) declined and that the humic acid (HA) fractions were efficiently degraded into small molecules of fulvic acid (FA) fractions with less weight and stable structure. Compared to the raw wastewater sample, the aromaticity and substituent groups of the DOM were lessened in the treated wastewater sample. Moreover, the main structure of the organics and functional groups were changed by the Fe 3 O 4 /Na 2 S 2 O 8 system, with substantial decrease of conjugated double bonds. The micro morphology of nano-Fe 3 O 4 was characterized before and after reaction by the methods of scanning electron microscope spectra (SEM), X-ray diffraction pattern (XRD), and X-ray photoelectron spectroscopy (XPS). The XRD pattern analysis showed that nano-Fe 3 O 4 was oxidized into r-Fe 2 O 3 and that the particle size of it also became smaller after reaction. XPS was employed to analyze the content and iron valence on the nano-Fe 3 O 4 surface, and it can be found that the ratio of Fe 3+ /Fe 2+ decreased from 1.8 before reaction to 0.8 after reaction. From the SEM analysis after the treatment, it was

  16. High-strain-rate superplasticity of the Al-Zn-Mg-Cu alloys with Fe and Ni additions

    NASA Astrophysics Data System (ADS)

    Kotov, A. D.; Mikhaylovskaya, A. V.; Borisov, A. A.; Yakovtseva, O. A.; Portnoy, V. K.

    2017-09-01

    During high-strain-rate superplastic deformation, superplasticity indices, and the microstructure of two Al-Zn-Mg-Cu-Zr alloys with additions of nickel and iron, which contain equal volume fractions of eutectic particles of Al3Ni or Al9FeNi, have been compared. It has been shown that the alloys exhibit superplasticity with 300-800% elongations at the strain rates of 1 × 10-2-1 × 10-1 s-1. The differences in the kinetics of alloy recrystallization in the course of heating and deformation at different temperatures and rates of the superplastic deformation, which are related to the various parameters of the particles of the eutectic phases, have been found. At strain rates higher than 4 × 10-2, in the alloy with Fe and Ni, a partially nonrecrystallized structure is retained up to material failure and, in the alloy with Ni, a completely recrystallized structure is formed at rates of up to 1 × 10-1 s-1.

  17. Compression of a multiphase mantle assemblage: Effects of undesirable stress and stress annealing on the iron spin state crossover in ferropericlase: Stresses and HS-LS Crossover in (Mg,Fe)O

    DOE PAGES

    Glazyrin, Konstantin; Miyajima, Nobuyoshi; Smith, Jesse S.; ...

    2016-05-30

    Using synchrotron-based X-ray diffraction, we explore characteristic signatures for nonhydrostaticstresses and their effect on the spin state crossover of ferrous iron in (Mg, Fe)O ferropericlase (Fp) uponcompression in a two-phase mixture which includes an Al- and Fe-bearing bridgmanite (Bm). Here, we observe aninfluence of nonhydrostatic stresses on the spin state crossover starting pressure and width. The undesirablestresses discussed here include uniaxial deviatoric stress evolving in the diamond anvil cell and effects ofintergrain interaction. And while the former leads to a pressure overestimation, the latter one lowers the pressure ofthe onset for the high-spin to low-spin electronic transition in Fe 2+more » in ferropericlase (Mg, Fe)O with respect tohydrostatic conditions.« less

  18. High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte.

    PubMed

    Tian, Jing; Cao, Dunping; Zhou, Xuejun; Hu, Jiulin; Huang, Minsong; Li, Chilin

    2018-04-24

    A magnesium battery is a promising candidate for large-scale transportation and stationary energy storage due to the security, low cost, abundance, and high volumetric energy density of a Mg anode. But there are still some obstacles retarding the wide application of Mg batteries, including poor kinetics of Mg-ion transport in lattices and low theoretical capacity in inorganic frameworks. A Mg-Li dual-salt electrolyte enables kinetic activation by dominant intercalation of Li-ions instead of Mg-ions in cathode lattices without the compromise of a stable Mg anode process. Here we propose a Mg-organic battery based on a renewable rhodizonate salt ( e. g., Na 2 C 6 O 6 ) activated by a Mg-Li dual-salt electrolyte. The nanostructured organic system can achieve a high reversible capacity of 350-400 mAh/g due to the existence of high-density carbonyl groups (C═O) as redox sites. Nanocrystalline Na 2 C 6 O 6 wired by reduced graphene oxide enables a high-rate performance of 200 and 175 mAh/g at 2.5 (5 C) and 5 A/g (10 C), respectively, which also benefits from a high intrinsic diffusion coefficient (10 -12 -10 -11 cm 2 /s) and pesudocapacitance contribution (>60%) of Na 2 C 6 O 6 for Li-Mg co-intercalation. The suppressed exfoliation of C 6 O 6 layers by a firmer non-Li pinning via Na-O-C or Mg-O-C and a dendrite-resistive Mg anode lead to a long-term cycling for at least 600 cycles. Such an extraordinary capacity/rate performance endows the Mg-Na 2 C 6 O 6 system with high energy and power densities up to 525 Wh/kg and 4490 W/kg (based on active cathode material), respectively, exceeding the level of high-voltage insertion cathodes with typical inorganic structures.

  19. Hematite (α-Fe2O3) - A potential Ce4+ carrier in red mud.

    PubMed

    Bolanz, Ralph M; Kiefer, Stefan; Göttlicher, Jörg; Steininger, Ralph

    2018-05-01

    Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce 4+ O 6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe 3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe 2 O 3 ) (34-58wt%), sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) (4-30wt%), gibbsite (Al(OH) 3 ) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO 2 ) (4-8wt%), cancrinite (Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 ) (0-5wt%), nordstrandite (Al(OH) 3 ) (0-5wt%) and quartz (SiO 2 ) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce 2 O 3 ), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce 4+ , which further excludes Ce 3+ minerals as relevant sources. Copyright © 2017. Published by Elsevier B.V.

  20. Core-Shell Fe1- xS@Na2.9PS3.95Se0.05 Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density.

    PubMed

    Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Liu, Xin; Xu, Xiaoxiong; Li, Hong; Hu, Yong-Sheng; Yao, Xiayin

    2018-03-27

    High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na 2.9 PS 3.95 Se 0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10 -4 S cm -1 , which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na 2.9 PS 3.95 Se 0.05 electrolyte uniformly anchored on Fe 1- x S nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core-shell structured Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 nanorods and thus realizing an intimate contact interface. The Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 /Na 2.9 PS 3.95 Se 0.05 /Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g -1 at current densities of 20, 50, 100, 150, and 200 mA g -1 , respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg -1 and 201.6 W kg -1 based on the mass of Fe 1- x S at current densities of 20 and 200 mA g -1 , respectively. Moreover, the reaction mechanism of Fe 1- x S is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe 1- x S electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g -1 after cycling at 100 mA g -1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.

  1. Investigations of mechanical, electronic, and magnetic properties of non-magnetic MgTe and ferro-magnetic Mg0.75 TM 0.25Te (TM = Fe, Co, Ni): An ab-initio calculation

    NASA Astrophysics Data System (ADS)

    Q, Mahmood; S, M. Alay-e.-Abbas; I, Mahmood; Mahmood, Asif; N, A. Noor

    2016-04-01

    The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mg0.75 TM 0.25Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. We use the generalized gradient approximation functional for computing the structural stability, and mechanical properties, while the modified Becke and Johnson local (spin) density approximation (mBJLDA) is utilized for determining the electronic and magnetic properties. By comparing the energies of non-magnetic and FM calculations, we find that the compounds are stable in the FM phase, which is confirmed by their structural stabilities in terms of enthalpy of formation. Detailed descriptions of elastic properties of Mg0.75 TM 0.25Te alloys in the FM phase are also presented. For electronic properties, the spin-polarized electronic band structures and density of states are computed, showing that these compounds are direct bandgap materials with strong hybridizations of TM 3d states and Te p states. Further, the ferromagnetism is discussed in terms of the Zener free electron model, RKKY model and double exchange model. The charge density contours in the (110) plane are calculated to study bonding properties. The spin exchange splitting and crystal field splitting energies are also calculated. The distribution of electron spin density is employed in computing the magnetic moments appearing at the magnetic sites (Fe, Co, Ni), as well as at the non-magnetic sites (Mg, Te). It is found that the p-d hybridization causes not only magnetic moments on the magnetic sites but also induces negligibly small magnetic moments at the non-magnetic sites.

  2. Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability.

    PubMed

    Cai, Yafan; Zhao, Xiaoling; Zhao, Yubin; Wang, Hongliang; Yuan, Xufeng; Zhu, Wanbin; Cui, Zongjun; Wang, Xiaofen

    2018-02-01

    Fe is widely used as an additive in anaerobic digestion, but its bioavailability and the mechanism by which it enhances digestion are unclear. In this study, sequential extraction was used to measure Fe bioavailability, while biochemical parameters, kinetics model and Q-PCR (fluorescence quantitative PCR) were used to explore its mechanism of stimulation. The results showed that sequential extraction is a suitable method to assess the anaerobic system bioavailability of Fe, which is low and fluctuates to a limited extent (1.7 to -3.1wt%), indicating that it would be easy for Fe levels to be insufficient. Methane yield increased when the added Fe 2+ was 10-500mg/L. Appropriate amounts of Fe 2+ accelerated the decomposition of rice straw and facilitated methanogen metabolism, thereby improving reactor performance. The modified Gompertz model better fitted the results than the first-order kinetic model. Feasibility analysis showed that addition of Fe 2+ at ≤50mg/L was suitable. Copyright © 2017. Published by Elsevier Ltd.

  3. Green thermal-assisted synthesis and characterization of novel cellulose-Mg(OH)2 nanocomposite in PEG/NaOH solvent.

    PubMed

    Ponomarev, Nikolai; Repo, Eveliina; Srivastava, Varsha; Sillanpää, Mika

    2017-11-15

    Synthesis of nanocomposites was performed using microcrystalline cellulose (MCC), MgCl 2 in PEG/NaOH solvent by a thermal-assisted method at different temperatures by varying time and the amount of MCC. Results of XRD, FTIR, and EDS mapping showed that the materials consisted of only cellulose (CL) and magnesium hydroxide (MH). According to FTIR and XRD, it was found that crystallinity of MH in cellulose nanocomposites is increased with temperature and heating time and decreased with increasing of cellulose amount. The PEG/NaOH solvent has a significant effect on cellulose and Mg(OH) 2 morphology. BET and BJH results demonstrated the effects of temperature and cellulose amount on the pore size corresponding to mesoporous materials. TG and DTG analyses showed the increased thermal stability of cellulose nanocomposites with increasing temperature. TEM and SEM analyses showed an even distribution of MH nanostructures with various morphology in the cellulose matrix. The cellulose presented as the polymer matrix in the nanocomposites. It was supposed the possible interaction between cellulose and Mg(OH) 2 . The novel synthesis method used in this study is feasible, cost-efficient and environmentally friendly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramaswamy, Rajagopalan; Qiu, Xuepeng; Dutta, Tanmay

    We have studied the spin-orbit torques in perpendicularly magnetized Hf/CoFeB/MgO system, by systematically varying the thickness of Hf underlayer. We have observed a sign change of effective fields between Hf thicknesses of 1.75 and 2 nm, indicating that competing mechanisms, such as the Rashba and spin Hall effects, contribute to spin-orbit torques in our system. For larger Hf thicknesses (>2 nm), both the components of spin-orbit torques arise predominantly from the bulk spin Hall effect. We have also confirmed these results using spin-orbit torque induced magnetization switching measurements. Our results could be helpful in designing Hf based SOT devices.

  5. O2(a1Δg) + Mg, Fe, and Ca: Experimental kinetics and formulation of a weak collision, multiwell master equation with spin-hopping

    NASA Astrophysics Data System (ADS)

    Plane, J. M. C.; Whalley, C. L.; Frances-Soriano, L.; Goddard, A.; Harvey, J. N.; Glowacki, D. R.; Viggiano, A. A.

    2012-07-01

    The first excited electronic state of molecular oxygen, O2(a1Δg), is formed in the upper atmosphere by the photolysis of O3. Its lifetime is over 70 min above 75 km, so that during the day its concentration is about 30 times greater than that of O3. In order to explore its potential reactivity with atmospheric constituents produced by meteoric ablation, the reactions of Mg, Fe, and Ca with O2(a) were studied in a fast flow tube, where the metal atoms were produced either by thermal evaporation (Ca and Mg) or by pulsed laser ablation of a metal target (Fe), and detected by laser induced fluorescence spectroscopy. O2(a) was produced by bubbling a flow of Cl2 through chilled alkaline H2O2, and its absolute concentration determined from its optical emission at 1270 nm (O2(a1Δg - X3Σg-). The following results were obtained at 296 K: k(Mg + O2(a) + N2 → MgO2 + N2) = (1.8 ± 0.2) × 10-30 cm6 molecule-2 s-1; k(Fe + O2(a) → FeO + O) = (1.1 ± 0.1) × 10-13 cm3 molecule-1 s-1; k(Ca + O2(a) + N2 → CaO2 + N2) = (2.9 ± 0.2) × 10-28 cm6 molecule-2 s-1; and k(Ca + O2(a) → CaO + O) = (2.7 ± 1.0) × 10-12 cm3 molecule-1 s-1. The total uncertainty in these rate coefficients, which mostly arises from the systematic uncertainty in the O2(a) concentration, is estimated to be ±40%. Mg + O2(a) occurs exclusively by association on the singlet surface, producing MgO2(1A1), with a pressure dependent rate coefficient. Fe + O2(a), on the other hand, shows pressure independent kinetics. FeO + O is produced with a probability of only ˜0.1%. There is no evidence for an association complex, suggesting that this reaction proceeds mostly by near-resonant electronic energy transfer to Fe(a5F) + O2(X). The reaction of Ca + O2(a) occurs in an intermediate regime with two competing pressure dependent channels: (1) a recombination to produce CaO2(1A1), and (2) a singlet/triplet non-adiabatic hopping channel leading to CaO + O(3P). In order to interpret the Ca + O2(a) results, we

  6. Synthesis and characterization of magnetically hard Fe-Pt alloy nanoparticles and nano-islands

    NASA Astrophysics Data System (ADS)

    Hu, Xiaocao

    In this dissertation, we explored the fabrication of FePt nanoparticles and nano-islands with the face-centered tetragonal (fct, L10) phase prepared by both chemical synthesis routes and physical vapor deposition. Microstructure and magnetic properties characterizations were used to gain a fundamental understanding of the nano-structure formation and atomic ordering behavior and determine the possible applications in the next generation ultra-high density magnetic storage media. FePt nanoparticles prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] have been widely investigated and by tuning the processing procedure monodispersed FePt nanoparticles with good assembly can be obtained. The as-made FePt nanoparticles are usually in the magnetically soft face-centered cubic (fcc) phase. To transformation to the fct phase, post-annealing at above 600°C is needed which, however, introduces undesirable agglomeration and sintering. To address this problem, we used three different fabrication processes which are discussed below. In the first fabrication experiment, the FePt nanoparticles were fabricated by a novel environmental friendly method involving crystalline saline complex hexaaquairon (II) hexachloroplatinate ([Fe(H2O)6]PtCl 6) with a special layered structure. Then the precursor was ball milled with NaCl and annealed at temperatures above 400°C under a reducing atmosphere of forming gas (95% Ar and 5% H2) FePt nanoparticles were obtained after washing away NaCl with deionized water. This method avoids the use of the very poisonous Fe(CO)5 and other organic solvents such as oleylamine and oleic acid. Instead, environmentally friendly NaCl and water were used. The size of FePt nanoparticles was controlled by varying the proportion of precursor and NaCl (from 10mg/20g to 50mg/20g). Particles with size in the range of 6.2--13.2 nm were obtained. All the nanoparticles annealed above 400°C are in the highly ordered fct phase with a coercivity range of 4

  7. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na 3V 2(PO 4) 3 cathode materials for sodium ion batteries

    DOE PAGES

    Li, Hui; Yu, Xiqian; Bai, Ying; ...

    2015-01-01

    Na 3V 2-xMg x(PO 4) 3/C composites with different Mg 2+ doping contents (x=0, 0.01, 0.03, 0.05, 0.07 and 0.1) were prepared by a facile sol-gel method. The doping effects on the crystal structure were investigated by XRD, XPS and EXAFS. The results show that low dose doping Mg 2+ does not alter the structure of the material, and magnesium is successfully substituted for vanadium site. The Mg doped Na 3V 2-xMg x(PO 4) 3/C composites exhibit significant improvements on the electrochemistry performances in terms of the rate capability and cycle performance, especially for the Na 3V 1.95Mg 0.05(PO 4)more » 3/C. For example, when the current density increased from 1 C to 30 C, the specific capacity only decreased from 112.5 mAh g-1 to 94.2 mAh g -1 showing very good rate capability. Moreover, even cycling at a high rate of 20 C, an excellent capacity retention of 81% is maintained from the initial value of 106.4 mAh g-1 to 86.2 mAh g-1 at the 50th cycle. Enhanced rate capability and cycle performance can be attributed to the optimized particle size, structural stability and enhanced ionic and electronic conductivity induced by Mg doping.« less

  8. Investigation of a Structural Phase Transition and Magnetic Structure of Na 2BaFe(VO 4) 2: A Triangular Magnetic Lattice with a Ferromagnetic Ground State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.

    The structural and magnetic properties of a glaserite-type Na 2BaFe(VO 4) 2 compound, featuring a triangular magnetic lattice of Fe 2+ (S = 2), are reported. Temperature dependent X-ray single crystal studies indicate that at room temperature the system adopts a trigonal Pmore » $$\\bar{3}$$ m1 structure and undergoes a structural phase transition to a C2/c monoclinic phase slightly below room temperature (T s = 288 K). This structural transition involves a tilting of Fe–O–V bond angles and strongly influences the magnetic correlation within the Fe triangular lattice. The magnetic susceptibility measurements reveal a ferromagnetic transition near 7 K. Single crystal neutron diffraction confirms the structural distortion and the ferromagnetic spin ordering in Na 2BaFe(VO 4) 2. The magnetic structure of the ordered state is modeled in the magnetic space group C2'/c' that implies a ferromagnetic order of the a and c moment components and antiferromagnetic arrangement for the b components. Altogether, the Fe magnetic moments form ferromagnetic layers that are stacked along the c-axis, where the spins point along one of the (111) facets of the FeO 6 octahedron.« less

  9. Investigation of a Structural Phase Transition and Magnetic Structure of Na 2BaFe(VO 4) 2: A Triangular Magnetic Lattice with a Ferromagnetic Ground State

    DOE PAGES

    Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; ...

    2017-12-07

    The structural and magnetic properties of a glaserite-type Na 2BaFe(VO 4) 2 compound, featuring a triangular magnetic lattice of Fe 2+ (S = 2), are reported. Temperature dependent X-ray single crystal studies indicate that at room temperature the system adopts a trigonal Pmore » $$\\bar{3}$$ m1 structure and undergoes a structural phase transition to a C2/c monoclinic phase slightly below room temperature (T s = 288 K). This structural transition involves a tilting of Fe–O–V bond angles and strongly influences the magnetic correlation within the Fe triangular lattice. The magnetic susceptibility measurements reveal a ferromagnetic transition near 7 K. Single crystal neutron diffraction confirms the structural distortion and the ferromagnetic spin ordering in Na 2BaFe(VO 4) 2. The magnetic structure of the ordered state is modeled in the magnetic space group C2'/c' that implies a ferromagnetic order of the a and c moment components and antiferromagnetic arrangement for the b components. Altogether, the Fe magnetic moments form ferromagnetic layers that are stacked along the c-axis, where the spins point along one of the (111) facets of the FeO 6 octahedron.« less

  10. First Direct Measurement of C 12 ( C 12 , n ) Mg 23 at Stellar Energies

    DOE PAGES

    Bucher, B.; Tang, X. D.; Fang, X.; ...

    2015-06-25

    Neutrons produced by the carbon fusion reaction 12C( 12C,n) 23Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. Here in this paper, we present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction 12C( 12C,p) 23Na . The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate,more » we find that 12C ( 12C,n) 23Mg is crucial to the production of Na and Al in pop-III pair instability supernovae. It also plays a nonnegligible role in the production of weak s -process elements, as well as in the production of the important galactic γ-ray emitter 60Fe.« less

  11. Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport

    PubMed Central

    Wulfmeyer, Vera Christine; Drewell, Hoora; Mutig, Kerim; Hou, Jianghui; Breiderhoff, Tilman; Müller, Dominik; Fromm, Michael; Bleich, Markus; Günzel, Dorothee

    2017-01-01

    The thick ascending limb (TAL) of Henle’s loop drives paracellular Na+, Ca2+, and Mg2+ reabsorption via the tight junction (TJ). The TJ is composed of claudins that consist of four transmembrane segments, two extracellular segments (ECS1 and -2), and one intracellular loop. Claudins interact within the same (cis) and opposing (trans) plasma membranes. The claudins Cldn10b, -16, and -19 facilitate cation reabsorption in the TAL, and their absence leads to a severe disturbance of renal ion homeostasis. We combined electrophysiological measurements on microperfused mouse TAL segments with subsequent analysis of claudin expression by immunostaining and confocal microscopy. Claudin interaction properties were examined using heterologous expression in the TJ-free cell line HEK 293, live-cell imaging, and Förster/FRET. To reveal determinants of interaction properties, a set of TAL claudin protein chimeras was created and analyzed. Our main findings are that (i) TAL TJs show a mosaic expression pattern of either cldn10b or cldn3/cldn16/cldn19 in a complex; (ii) TJs dominated by cldn10b prefer Na+ over Mg2+, whereas TJs dominated by cldn16 favor Mg2+ over Na+; (iii) cldn10b does not interact with other TAL claudins, whereas cldn3 and cldn16 can interact with cldn19 to form joint strands; and (iv) further claudin segments in addition to ECS2 are crucial for trans interaction. We suggest the existence of at least two spatially distinct types of paracellular channels in TAL: a cldn10b-based channel for monovalent cations such as Na+ and a spatially distinct site for reabsorption of divalent cations such as Ca2+ and Mg2+. PMID:28028216

  12. Serum concentration of Na, K, Ca, Mg, P, Zn and Cu in patients with essential arterial hypertension.

    PubMed

    Uza, G; Pavel, O; Kovacs, A; Uza, D; Vlaicu, R

    1984-01-01

    Serum concentration of Na, K, Ca, Mg and inorganic phosphate as well as serum levels of Zn and Cu were determined in control subjects and in patients with essential arterial hypertension (EAH) divided according to the stage of the disease. No significant differences were found between the serum mean levels of Na, K, Ca, Mg, Zn and Cu in controls and in patients with EAH. A significant decrease of the serum Zn was noted in the third stage of EAH. A number of cases with hypomagnesemia and/or hypopotassemia probably caused by a long term uncontrolled therapy was also detected. The concentration of inorganic phosphate was significantly lower in patients with EAH associated with overweight than in hypertensive patients with normal body weight and in controls. It is considered that a sustained study of the complex interrelationship between electrolyte interaction and the functional aspects of the arterial wall could still contribute to a better understanding of pathogenic aspects of EAH and of its complications including those subsequent to modern diuretic therapy.

  13. Novel adsorbent for DNA adsorption: Fe(3+)-attached sporopollenin particles embedded composite cryogels.

    PubMed

    Ceylan, Şeyda; Odabaşı, Mehmet

    2013-12-01

    The aim of this study is to prepare supermacroporous cryogels embedded with Fe(3+)-attached sporopollenin particles (Fe(3++)-ASPs) having large surface area for high DNA adsorption capacity. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic cryogel column embedded with Fe3+(+)-ASPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N´-methylene- bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for DNA adsorption studies. Firstly, Fe3+(+) ions were attached to the sporopollenin particles (SPs), then the supermacroporous PHEMA cryogel with embedded Fe(3++)-ASPs was produced by free radical polymerization using N,N,N´, N´-Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) as initiator/activator pair in an ice bath. Optimum conditions of adsorption experiments were performed at pH 6.0 (0.02 M Tris buffer containing 0.2 M NaCl), with flow rate of 0.5 mL/min, and at 5°C. The maximum amount of DNA adsorption from aqueous solution was very high (109 mg/g SPs) with initial concentration of 3 mg/mL. It was observed that DNA could be repeatedly adsorbed and desorbed with this composite cryogel without significant loss of adsorption capacity. As a result, higher amounts of DNA adsorbed these composite cryogels are expected to be good candidate for achieving higher removal of anti-DNA antibodies from systemic lupus erythematosus (SLE) patients plasma.

  14. Synthesis and magnetic properties of LiFePO4 substitution magnesium

    NASA Astrophysics Data System (ADS)

    Choi, Hyunkyung; Kim, Min Ji; Hahn, Eun Joo; Kim, Sam Jin; Kim, Chul Sung

    2017-06-01

    LiFe0.9Mg0.1PO4 sample was prepared by using a solid-state reaction method, and the temperature-dependent magnetic properties of the sample were studied. The X-ray diffraction (XRD) pattern showed an olivine-type orthorhombic structure with space group Pnma based on Rietveld refinement method. The effect of Mg substitution in antiferromagnetic LiFe0.9Mg0.1PO4 was investigated using a vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. The temperature-dependence of the magnetization curves of LiFe0.9Mg0.1PO4 shows abnormal antiferromagnetic behavior with ordering temperature. Sudden changes in both the magnetic hyperfine field (Hhf) and its slope below 15 K suggest that magnetic phase transition associated to the abrupt occurrence of spin-reorientation. The Néel temperature (TN) and spin-reorientation temperature (TS) of LiFe0.9Mg0.1PO4 are lower than those of pure LiFePO4 (TN = 51 K, TS = 23 K). This is due to the Fe-O-Fe superexchange interaction being larger than that of the Fe-O-Mg link. Also, we have confirmed a change in the electric quadrupole splitting (ΔEQ) by the spin-orbit coupling effect and the shape of Mössbauer spectrum has provided the evidence for TS and a strong crystalline field. We have found that Mg ions in LiFe0.9Mg0.1PO4 induce an asymmetric charge density due to the presence of Mg2+ ions at the FeO6 octahedral sites.

  15. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. X-ray diffraction and infrared spectroscopy studies of Ba(Fe1/2Nb1/2)O3-(Na1/2Bi1/2)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Yadav, Anjana; Prasad, K.

    2018-05-01

    Ceramics (1-x)Ba(Fe1/2Nb1/2)O3-x(Na1/2Bi1/2)TiO3; 0≤x≤1.0 were prepared by conventional ceramic synthesis technique. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba(Fe1/2Nb1/2)O3 has cubic structure with space group Pm 3 ¯ m and Na1/2Bi1/2)TiO3 has rhombohedral structure with space group R3c. Addition of (Na1/2Bi1/2)TiO3 to Ba(Fe1/2Nb1/2)O3 resulted in the change of unit cell structure from cubic to tetragonal (P4/mmm) for x = 0.75 and the X-Ray diffraction peaks slightly shift towards higher Bragg's angle, suggesting slight decrease in unit cell volume. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain shapes with the increase of (Na1/2Bi1/2)TiO3 content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  17. Sc(2)MgGa(2) and Y(2)MgGa(2).

    PubMed

    Sahlberg, Martin; Andersson, Yvonne

    2009-03-01

    Scandium magnesium gallide, Sc(2)MgGa(2), and yttrium magnesium gallide, Y(2)MgGa(2), were synthesized from the corresponding elements by heating under an argon atmosphere in an induction furnace. These intermetallic compounds crystallize in the tetragonal Mo(2)FeB(2)-type structure. All three crystallographically unique atoms occupy special positions and the site symmetries of (Sc/Y, Ga) and Mg are m2m and 4/m, respectively. The coordinations around Sc/Y, Mg and Ga are pentagonal (Sc/Y), tetragonal (Mg) and triangular (Ga) prisms, with four (Mg) or three (Ga) additional capping atoms leading to the coordination numbers [10], [8+4] and [6+3], respectively. The crystal structure of Sc(2)MgGa(2 )was determined from single-crystal diffraction intensities and the isostructural Y(2)MgGa(2) was identified from powder diffraction data.

  18. Unexpected resonant response in [Fe(001)/Cr(001)]10/MgO(001) multilayers in a magnetic field.

    PubMed

    Aliev, F G; Pryadun, V V; Snoeck, E

    2009-01-23

    We observed unexpected resonant response in [Fe/Cr]10 multilayers epitaxially grown on MgO(100) substrates which exists only when both ac current and dc magnetic field are simultaneously applied. The magnitude of the resonances is determined by the multilayer magnetization proving their intrinsic character. The reduction of interface epitaxy leads to nonlinear dependence of the magnitude of resonances on the alternating current density. We speculate that the existence of the interface transition zone could facilitate the subatomic vibrations in thin metallic films and multilayers grown on bulk insulating substrates.

  19. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as

  20. Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO at Different CaO/SiO2 Ratios

    NASA Astrophysics Data System (ADS)

    Jang, Kyoung-oh; Ma, Xiaodong; Zhu, Jinming; Xu, Haifa; Wang, Geoff; Zhao, Baojun

    2017-06-01

    The "FeO"-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system "FeO"-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-"FeO" with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing "FeO" concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.

  1. Tuning Superconductivity in FeSe Thin Films via Magnesium Doping.

    PubMed

    Qiu, Wenbin; Ma, Zongqing; Liu, Yongchang; Shahriar Al Hossain, Mohammed; Wang, Xiaolin; Cai, Chuanbing; Dou, Shi Xue

    2016-03-01

    In contrast to its bulk crystal, the FeSe thin film or layer exhibits better superconductivity performance, which recently attracted much interest in its fundamental research as well as in potential applications around the world. In the present work, tuning superconductivity in FeSe thin films was achieved by magnesium-doping technique. Tc is significantly enhanced from 10.7 K in pure FeSe films to 13.4 K in optimized Mg-doped ones, which is approximately 1.5 times higher than that of bulk crystals. This is the first time achieving the enhancement of superconducting transition temperature in FeSe thin films with practical thickness (120 nm) via a simple Mg-doping process. Moreover, these Mg-doped FeSe films are quite stable in atmosphere with Hc2 up to 32.7 T and Tc(zero) up to 12 K, respectively, implying their outstanding potential for practical applications in high magnetic fields. It was found that Mg enters the matrix of FeSe lattice, and does not react with FeSe forming any other secondary phase. Actually, Mg first occupies Fe-vacancies, and then substitutes for some Fe in the FeSe crystal lattices when Fe-vacancies are fully filled. Simultaneously, external Mg-doping introduces sufficient electron doping and induces the variation of electron carrier concentration according to Hall coefficient measurements. This is responsible for the evolution of superconducting performance in FeSe thin films. Our results provide a new strategy to improve the superconductivity of 11 type Fe-based superconductors and will help us to understand the intrinsic mechanism of this unconventional superconducting system.

  2. Phase equilibria in the NaF-CdO-NaPO3 system at 873 K and crystal structure and physico-chemical characterizations of the new Na2CdPO4F fluorophosphate

    NASA Astrophysics Data System (ADS)

    Aboussatar, Mohamed; Mbarek, Aïcha; Naili, Houcine; El-Ghozzi, Malika; Chadeyron, Geneviève; Avignant, Daniel; Zambon, Daniel

    2017-04-01

    Isothermal sections of the diagram representing phase relationships in the NaF-CdO-NaPO3 system have been investigated by solid state reactions and powder X-ray diffraction. This phase diagram investigation confirms the polymorphism of the NaCdPO4 side component and the structure of the ß high temperature polymorph (orthorhombic, space group Pnma and unit cell parameters a=9.3118(2), b=7.0459(1), c=5.1849(1) Å has been refined. A new fluorophosphate, Na2CdPO4F, has been discovered and its crystal structure determined and refined from powder X-ray diffraction data. It exhibits a new 3D structure with orthorhombic symmetry, space group Pnma and unit cell parameters a=5.3731(1), b=6.8530(1), c=12.2691(2) Å. The structure is closely related to those of the high temperature polymorph of the nacaphite Na2CaPO4F and the fluorosilicate Ca2NaSiO4F but differs essentially in the cationic repartition since the structure is fully ordered with one Na site (8d) and one Cd site (4c). Relationships with other Na2MIIPO4F (MII=Mg, Ca, Mn, Fe, Co, Ni) have been examined and the crystal-chemical and topographical analysis of these fluorophosphates is briefly reviewed. IR, Raman, optical and 19F, 23Na, 31P MAS NMR characterizations of Na2CdPO4F have been investigated.

  3. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  4. Influences of Na2O and K2O Additions on Electrical Conductivity of CaO-MgO-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Zheng, Wei-Wei; Chou, Kuo-Chih

    2017-04-01

    The present study investigated the influences of Na2O and K2O additions on electrical conductivity of blast furnace type CaO-MgO-Al2O3-SiO2 melts by the four-electrode method. Both the single addition of Na2O or K2O and the double additions of Na2O and K2O were studied. It was found that electrical conductivity monotonously increased as the amount of Na2O addition was gradually increased, whereas, when K2O was added, there was a continuous decrease of electrical conductivity. With melts containing both Na2O and K2O, electrical conductivity first decreased but then increased when Na2O was gradually substituted for K2O while keeping the molar fractions of other components constant. In other words, the mixed-alkali effect took place in CaO-Mg-Al2O3-SiO2-ΣR2O melts.

  5. Hydrogen production from steam reforming of ethylene glycol over iron loaded on MgO

    NASA Astrophysics Data System (ADS)

    Chen, Mingqiang; Wang, Yishuang; Liang, Tian; Yang, Jie; Yang, Zhonglian

    2017-01-01

    In this study, a series of Fe-based catalysts loaded on MgO were prepared by a precipitation technique. And they were tested in hydrogen production from steam reforming of ethylene glycol (SRE), which was a representative model compound of fast bio-oil. The catalysts were characterized by XRD, SEM and H2-TPR analysis. The results showed that the crystalline phases of catalysts contained Fe2O3 (Hematite), Fe3O4 (Magnetite), Fe2MgO4 (iron magnesium oxide) and MgO, and morphology of MgO was changed from the rugby-ball like particles to spherical particles with the addition of Fe. In addition, the catalytic test results indicated that the 18%Fe/MgO catalyst exhibited the highest ethylene glycol conversion (˜99.8%) and H2 molar percent (˜77%) during at the following conditions: H2O/C molar ratio is 5˜7, the feeding rate is 14 mL/h and the reaction temperature at 600˜650°C. Furthermore, the 18%Fe/MgO catalyst can keep outstanding stability during SRE for 12 h.

  6. Microstructure, thermal shock resistance and thermal emissivity of plasma sprayed LaMAl11O19 (M = Mg, Fe) coatings for metallic thermal protection systems

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Zhi; Ouyang, Jia-Hu; Liu, Zhan-Guo; Wang, Ya-Ming

    2013-04-01

    LaMAl11O19 (M = Mg, Fe) ceramic coatings were plasma-sprayed on nickel-based superalloy with NiCoCrAlYTa as the bond coat. The microstructure, thermal shock resistance and thermal emissivity of these two ceramic coatings were investigated. LaMAl11O19 coatings exhibit a characteristic of stacked lamellae, and consist mainly of a magnetoplumbite-type hexaaluminate phase and an amorphous phase. During thermal cycling, the amorphous phase disappears and a LaAlO3 phase is formed at temperatures of both 1000 and 1200 °C. The thermal cycling numbers of LaMgAl11O19 coating are 102 at 1000 °C and 42 at 1200 °C; LaFeAl11O19 has a thermal cycling lifetime of 87 at 1000 °C and 30 at 1200 °C, respectively. Normal spectral emissivity of nickel-based superalloy is about 0.2 over the whole wavelength range of 3-14 μm. However, the emissivity of LaFeAl11O19 coating is about 0.7 at short wavelengths and above 0.9 in the wavelength range of 7-14 μm.

  7. Effects of Fragmented Fe Intermetallic Compounds on Ductility in Al-Si-Mg Alloys.

    PubMed

    Kim, JaeHwang; Kim, DaeHwan

    2018-03-01

    Fe is intentionally added in order to form the Fe intermetallic compounds (Fe-IMCs) during casting. Field emission scanning electron microscope with energy dispersive spectrometer (EDS) was conducted to understand microstructural changes and chemical composition analyses. The needlelike Fe-IMCs based on two dimensional observation with hundreds of micro size are modified to fragmented particles with the minimum size of 300 nm through clod rolling with 80% thickness reduction. The ratio of Fe:Si on the fragmented Fe-IMCs after 80% reduction is close to 1:1, representing the β-Al5FeSi. The yield and tensile strengths are increased with increasing reduction rate. On the other hand, the elongation is decreased with the 40% reduction, but slightly increased with the 60% reduction. The elongation is dramatically increased over two times for the specimen of 80% reduction compared with that of the as-cast. Fracture behavior is strongly affected by the morphology and size of Fe-IMCs. The fracture mode is changed from brittle to ductile with the microstructure modification of Fe-IMCs.

  8. Electrochemical synthesis of a surface-porous Mg70.5Al29.5 eutectic alloy in a neutral aqueous NaCl solution

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Li, Yong-gang; Wei, Ying-hui; Wei, Huan; Yan, Ze-ying; Hou, Li-feng

    2018-03-01

    A surface-porous Mg-Al eutectic alloy was fabricated at room temperature via electrochemical dealloying in a neutral, aqueous 0.6 M NaCl solution by controlling the applied potential and processing duration. Selective dissolution occurred on the alloy surface. The surface-porous formation mechanism is governed by the selective dissolution of the α-Mg phase, which leaves the Mg17Al12 phase as the porous layer framework. The pore characteristics (morphology, size, and distribution) of the dealloyed samples are inherited from the α-Mg phases of the precursor Mg70.5Al29.5 (at.%) alloy. Size control in the porous layer can be achieved by regulating the synthesis parameters.

  9. Observation of the magnetic C 4 phase in Ca 1 - x Na x Fe 2 As 2 and its universality in the hole-doped 122 superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddei, K. M.; Allred, J. M.; Bugaris, D. E.

    Since its discovery in 2014, the magnetic tetragonal C 4 phase has been identified in a growing number of hole-doped 122 Fe-based superconducting compounds. Exhibiting a unique double-Q magnetic structure and a strong competition with both superconducting and magnetic order parameters, the C 4 phase and the conditions of its formation are of significant interest to understanding the fundamental mechanisms in these materials. Particularly, separating the importance of direct changes to the relative size of hole and electron pockets at the Fermi surface (achieved via charge doping) from the role of structural changes due to differences of ionic radii ofmore » dopants is useful to determine the underlying parameter which causes the C 4 instability. Here, we report the discovery of the C 4 phase in a fourth member of the hole-doped 122 materials Ca 1-xNa xFe 2As 2(0.20 ≤ x ≤ 0.50) as determined from neutron and x-ray powder diffraction studies. The maximum of the C 4 dome is observed at x = 0.44 with a reentrant temperature T r = 52 K and an extent of Δx ~ 0.07 in composition. It is observed that for a range of compositions within the C 4 dome (0.40 ≤ x ≤ 0.42), there is a second reentrance (Tr 2 < Tr) where the antiferromagnetic C 2 phase is recovered—a feature previously only seen in Ba 1-xK xFe 2As 2. A phase diagram is presented for Ca 1-xNa xFe 2As 2 and compared to the other Na-doped 122's—A 1-xNa xFe 2As 2 with A = Ba, Sr, and Ca. Lastly, the structural parameters for these three systems are compared and the importance of the “chemical pressure” due to changing the A-site ion (A = Ba, Sr, Ca) is discussed.« less

  10. Observation of the magnetic C 4 phase in Ca 1 - x Na x Fe 2 As 2 and its universality in the hole-doped 122 superconductors

    DOE PAGES

    Taddei, K. M.; Allred, J. M.; Bugaris, D. E.; ...

    2017-02-15

    Since its discovery in 2014, the magnetic tetragonal C 4 phase has been identified in a growing number of hole-doped 122 Fe-based superconducting compounds. Exhibiting a unique double-Q magnetic structure and a strong competition with both superconducting and magnetic order parameters, the C 4 phase and the conditions of its formation are of significant interest to understanding the fundamental mechanisms in these materials. Particularly, separating the importance of direct changes to the relative size of hole and electron pockets at the Fermi surface (achieved via charge doping) from the role of structural changes due to differences of ionic radii ofmore » dopants is useful to determine the underlying parameter which causes the C 4 instability. Here, we report the discovery of the C 4 phase in a fourth member of the hole-doped 122 materials Ca 1-xNa xFe 2As 2(0.20 ≤ x ≤ 0.50) as determined from neutron and x-ray powder diffraction studies. The maximum of the C 4 dome is observed at x = 0.44 with a reentrant temperature T r = 52 K and an extent of Δx ~ 0.07 in composition. It is observed that for a range of compositions within the C 4 dome (0.40 ≤ x ≤ 0.42), there is a second reentrance (Tr 2 < Tr) where the antiferromagnetic C 2 phase is recovered—a feature previously only seen in Ba 1-xK xFe 2As 2. A phase diagram is presented for Ca 1-xNa xFe 2As 2 and compared to the other Na-doped 122's—A 1-xNa xFe 2As 2 with A = Ba, Sr, and Ca. Lastly, the structural parameters for these three systems are compared and the importance of the “chemical pressure” due to changing the A-site ion (A = Ba, Sr, Ca) is discussed.« less

  11. Extrinsic pinning of magnetic domain walls in CoFeB-MgO nanowires with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Vila, Laurent; Ravelosona, Dafiné

    2018-05-01

    In this work, we have studied the mechanism of domain wall motion in 0.2-1.5 μm wide nanowires based on Ta/CoFeB/MgO films with perpendicular magnetic anisotropy. We show that domain wall propagation can be completely stopped due to the presence of strong pinning sites along the nanowires. From the analysis of the distribution of the strongest depinning fields as a function of the wire width, we evidence the presence of extrinsic pinning sites in nanowires, probably induced by edge damages, that dominate over the intrinsic pinning of the magnetic films even for these large wire widths.

  12. Improvement of thermal stability of nano-granular TMR films by using a Mg-Al-O insulator matrix

    NASA Astrophysics Data System (ADS)

    Kanie, S.; Koyama, S.

    2018-05-01

    A new metal-insulator nano-granular tunneling magnetoresistance (TMR) film made of (Fe-Co)-(Mg-Al-O) has been investigated. It is confirmed that the film has granular structure in which crystal Fe-Co granules are surrounded by an amorphous Mg-Al-O matrix. A large MR ratio of 11.8 % at room temperature is observed for a 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film annealed at 395 °C. The electrical resistivity increases rapidly by annealing at above the changing point (500 °C). The changing point is about 300 °C higher than that of conventional (Fe-Co)-(Mg-F) nano-granular TMR films. The 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film also exhibits less degradation in the MR ratio at high annealing temperatures such as 600 °C. These results suggest the (Fe-Co)-(Mg-Al-O) film is superior to the (Fe-Co)-(Mg-F) film in thermal stability.

  13. Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes.

    PubMed

    Ebel, H; Hollstein, M; Günther, T

    2004-12-15

    The effect of imipramine on Mg2+ efflux in NaCl medium (Na+/Mg2+ antiport), on Mg2+ efflux in choline.Cl medium (choline/Mg2+ antiport) and on Mg2+ efflux in sucrose medium (Cl- -coupled Mg2+ efflux) was investigated in rat erythrocytes. In non-Mg2+-loaded rat erythrocytes, imipramine stimulated Na+/Mg2+ antiport but inhibited choline/Mg2+ antiport and Cl- -coupled Mg2+ efflux. The same effect could be obtained by several other compounds structurally related to imipramine. These drugs contain a cyclic hydrophobic ring structure to which a four-membered secondary or tertiary amine side chain is attached. At a physiological pH, the amine side chain expresses a cationic choline-like structure. The inhibitory effect on choline/Mg2+ antiport is lost when the amine side chain is modified or abandoned, pointing to competition of the choline-like side chain with choline or another cation at the unspecific choline antiporter or at the Cl- -coupled Mg2+ efflux. Other related drugs either stimulated Na+/Mg2+ antiport and choline/Mg2+ antiport, or they were ineffective. For stimulation of Na+/Mg2+ antiport and choline/Mg2+ antiport, there is no specific common structural motif of the drugs tested. The effects of imipramine on Na+/Mg2+ antiport and choline/Mg2+ antiport are not mediated by PKCalpha but are caused by a direct reaction of imipramine with these transporters. By increasing the intracellular Mg2+ concentration, the stimulation of Na+/Mg2+ antiport at a physiological intracellular Mg2+ concentration changed to an inhibition of Na+/Mg2+ antiport. This effect can be explained by the hypothesis that Mg2+ loading induced an allosteric transition of the Mg2+/Mg2+ exchanger with low Na+/Mg2+ antiport capacity to the Na+/Mg2+ antiporter with high Na+/Mg2+ antiport capacity. Both forms of the Mg2+ exchanger may be differently affected by imipramine.

  14. FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident.

    PubMed

    Chen, Meiqing; Wu, Pingxiao; Yu, Langfeng; Liu, Shuai; Ruan, Bo; Hu, Haihui; Zhu, Nengwu; Lin, Zhang

    2017-05-01

    A FeOOH-loaded MnO 2 nano-composite was developed as an emergency material for Tl(I) pollution incident. Structural characterizations showed that FeOOH successfully loaded onto MnO 2 , the nanosheet-flower structure and high surface area (191 m 2  g -1 ) of material contributed to the excellent performance for Tl(I) removal. FeOOH-loaded MnO 2 with a Fe/Mn molar ratio of 1:2 exhibited a noticeable enhanced capacity for Tl(I) removal compared to that of pure MnO 2 . The outstanding performance for Tl(I) removal involves in extremely high efficiency (achieved equilibrium and drinking water standard within 4 min) and the large maximum adsorption capacity (450 mg g -1 ). Both the control-experiment and XPS characterization proved that the removal mechanism of Tl(I) on FeOOH-loaded MnO 2 included adsorption and oxidation: the oxidation of MnO 2 played an important role for Tl(I) removal, and the adsorption of FeOOH loaded on MnO 2 enhanced Tl(I) purification at the same time. In-depth purification of Tl(I) had reach drinking water standards (0.1 μg L -1 ) at pH above 7, and there wasn't security risk produced from the dissolution of Mn 2+ and Fe 2+ . Moreover, the as-prepared material could be utilized as a recyclable adsorbent regenerated by using NaOH-NaClO binary solution. Therefore, the synthesized FeOOH-loaded MnO 2 in this study has the potential to be applied as an emergency material for thallium pollution incident. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Electrically induced fluorescence Fe3+ sensing behavior of nanostructured Tiron doped polypyrrole.

    PubMed

    Tavoli, Farnaz; Alizadeh, Naader

    2016-11-23

    Nanostructured polypyrrole (PPy) film doped with Tiron was electrodeposited from aqueous solution on the surface of transparent electrode and used for sensitive, selective and rapid electrically controlled fluorescence detection of Fe 3+ in aqueous media. The fluorescence intensity of PPy-Tiron film decreases linearly in the presence of Fe 3+ by applying negative potential over a concentration range from 5.0 × 10 -8 to 1.0 × 10 -6  mol L -1 , with a relatively fast response time of less than 30 s at pH 7.4. The detection is not affected by the coexistence of other competitive metal ions such as Al 3+ , Ce 3+ , Tl 3+ , La 3+ , Bi 3+ , Cr 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Na + , K + , Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ . The proposed electro-fluorescence sensor has a potential application to the determination of Fe 3+ in environmental and biological systems. The fluorescent thin film sensor was also used as a novel probe for Fe 3+ /Fe 2+ speciation in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. AC impedance spectroscopy of NASICON type Na3Fe2(PO4)3 ceramic

    NASA Astrophysics Data System (ADS)

    Mandal, Biswajit; Thakur, A. K.

    2018-05-01

    Super ionic conductors (e.g.; A3M2(XO4)3, A=Li, Na) have received attention in applied research due to their interesting electrochemical property and inherently high ionic conductivity [1]. However, structural and compatibility requirements for fast ion transport is stringent and it plays a crucial role. In A3M2(XO4)3, a suitable cage formation in the crystal framework due to corner sharing arrangement of XO4 tetrahedra and MO6 octahedra creates voids that acts as host/guest site for cation transport. In this work, we report Nasicon structure Na3Fe2(PO4)3 (NFP) prepared via sol-gel route mediated by citric acid. Structural analysis confirmed that NFP sample belongs to monoclinic crystal structure having Cc space group (S. G. No 9) with lattice parameters, a=15.106 Å, b=8.722 Å, c=8.775 Å and β=124.96°. Electrical properties of the prepared sample have been studied by AC impedance spectroscopy technique. The AC conductivity results indicated typical signature of ionically conducting system.

  17. Changes in antioxidant status, protein concentration, acetylcholinesterase, (Na+,K+)-, and Mg2+ -ATPase activities in the brain of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Mourouzis, Iordanis; Varonos, Dennis; Cokkinos, Dennis; Tsakiris, Stylianos

    2005-06-01

    It is a common knowledge that metabolic reactions increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how the metabolic reactions could affect the total antioxidant status (TAS), protein concentration (PC) and the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+ -ATPase in the brain of hyper- and hypothyroid adult male rats. Hyperthyroidism was induced in rats by subcutaneous administration of thyroxine (25 microg/l00 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. TAS, PC, and enzyme activities were evaluated spectrophotometrically in the homogenated brain of each animal. TAS, PC, and Mg2+ -ATPase activity were found unaffected in hyperthyroidism, while AChE and Na+,K+ -ATPase activities were reduced by 25% (p < 0.01). In contrast, TAS, (Na+,K+)-ATPase and Mg2+-ATPase activities were found to be increased (approx. 23-30%, p < 0.001) in the hypothyroid brain, while AChE activity and PC were shown to be inhibited (approx. 23-30%, p < 0.001). These changes on brain enzyme activities may reflect the different metabolic effects of hyper- and hypothyroidism. Such changes of the enzyme activities may differentially modulate the brain intracellular Mg2+, neural excitability, as well as the uptake and release of biogenic amines.

  18. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  19. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    DOEpatents

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  20. Effect of the addition of MgF2 and NaF on the thermal, optical and magnetic properties of fluoride glasses for sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Wang, Shuangbao; Deng, Saifu; Liu, Jianting; Zhang, Jiahui

    2017-10-01

    Optical glass was very important for the development of optical fiber sensor. In this paper, a new type fluoride glass of ZrF4-BaF2-AlF3-NaF-MgF2(ZBANM) was synthesized for sensing application which has low loss and high magneto-optical coefficient, and it was found that the glass system had at least 60% transmittance from 3.5 μm to 7 μm and smallest verdet constant of 4.628E-5/(rad A-1) at 632.8 nm. The relationship among the compositions of sample glass with its thermal property, optical absorptivity and magnetic-optical coefficients was respectively studied with Thermal Gravimetric-Differential Thermal Analyzer, Fourier Transform infrared spectroscopy and a home-made magneto optical bench. The study indicated that transmittance of fluoride glass structure had been obviously improved after moderate content of Mg2+ and Na+ was doped. Simultaneously, with the molar ratio of alkaline-earth ions Mg increased, the Verdet constant of fluoride glass was increased. And the glass structure with composition of 48%ZrF4-24%BaF2-6%AlF3-8%NaF-14%MgF2 exhibited a small molar absorptivity and the largest Verdet constant of 2.853E-4/(rad A-1).