Science.gov

Sample records for na peritonite experimental

  1. Sodium butyrate protects the intestinal barrier function in peritonitic mice

    PubMed Central

    Han, Xiaofeng; Song, Huimin; Wang, Yunlei; Sheng, Yingmo; Chen, Jie

    2015-01-01

    Objective: Peritonitis is a commonly seen disease with high morbidity and mortality. It is prevalently considered that the impaired intestinal barrier during peritonitis is the access point of gut microbes into the blood system, and acts as the engine of the following systemic infection. In our previous study, we found that Sodium Butyrate (NaB) was protective on intestinal barrier function. In this study, we aim to evaluate the effects of NaB on overwhelming infection animal models of peritonitis. Methods: Mouse cecal ligation and puncture (CLP) model was used to study the effects of NaB on the intestinal barrier. Experimental animals were fed of NaB by gavage. Post-CLP mortality, gut permeability and intestinal histological alterations were studied. Results: Gastrointestinal NaB pharmacodynamics profiles after medication were studied. Measurements of NaB concentration in chyme showed significantly higher intestinal concentration of NaB in the NaB treated group than that of the control group. CLP-induced mortality was significantly decreased by oral NaB treatments. Gut permeability was largely increased after CLP, which was partially prevented by NaB feeding. Histological study showed that intestinal, especially ileal injury following peritonitis was substantially alleviated by NaB treatments. Moreover, tissue regeneration was also prompted by NaB. Conclusion: NaB has a potential protective effect on intestinal barrier function in peritonitis. PMID:26064302

  2. Experimental Studies of Interacting Electronic States in NaCs

    NASA Astrophysics Data System (ADS)

    Faust, Carl E.

    This dissertation describes methods and results of spectroscopic studies of the NaCs molecule. NaCs is of particular interest in many labs where experimental studies of ultra-cold molecules are being conducted. Data obtained in the present work will also be useful as benchmarks for various theoretical calculations. Our goals in studying this molecule were to map out high lying electronic states and to understand how these states interact with one another. Sodium and cesium metal were heated in a heat-pipe oven to form a vapor of NaCs molecules. These molecules were excited using narrow band, continuous wave (cw), tunable lasers. We employed the optical-optical double resonance (OODR) technique to obtain Doppler-free spectra of transitions to rotational and vibrational levels of high lying electronic states. One state of particular interest was the 12(0+) electronic state. Rovibrational level energies corresponding to this state were measured and used to generate a potential energy curve using computer programs to implement both the Rydberg-Klein-Rees (RKR) method and the inverted perturbation approach (IPA). By observing fluorescence from the 12(0+) state resolved as a function of wavelength, we determined that this state interacts with the nearby 11(0+) electronic state, which was previously mapped out by Ashman et al. A two-stage coupling model was devised to describe the resolved fluorescence originating from these two interacting states. The electronic states interact via spin-orbit coupling, while the individual rovibrational levels interact via a second mechanism, likely nonadiabatic coupling. This two-stage coupling between the levels of these states causes quantum interference between fluorescence pathways associated with different components of the wavefunctions describing these levels. This interference results in more complicated resolved fluorescence spectra. The model was used to fit parameters describing these interactions so that the resolved

  3. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  4. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells

    PubMed Central

    Vereninov, Igor A.; Yurinskaya, Valentina E.; Model, Michael A.; Vereninov, Alexey A.

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1–10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential. PMID:27159324

  5. Theoretical and experimental studies of the deposition of Na2So4 from seeded combustion gases

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Santoro, G. J.; Stearns, C. A.; Fryburg, G. C.; Rosner, D. E.

    1977-01-01

    Flames in a Mach 0.3 atmospheric pressure laboratory burner rig were doped with sea salt, NaS04, and NaCl, respectively, in an effort to validate theoretical dew point predictions made by a local thermochemical equilibrium (LTCE) method of predicting condensation temperatures of sodium sulfate in flame environments. Deposits were collected on cylindrical platinum targets placed in the combustion products, and the deposition was studied as a function of collector temperature. Experimental deposition onset temperatures checked within experimental error with LTCE-predicted temperatures. A multicomponent mass transfer equation was developed to predict the rate of deposition of Na2SO4(c) via vapor transport at temperatures below the deposition onset temperature. Agreement between maximum deposition rates predicted by this chemically frozen boundary layer (CFBL) theory and those obtained in the seeded laboratory burner experiments is good.

  6. Theoretical and experimental studies of the deposition of Na2SO4 from seeded combustion gases

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Santoro, G. J.; Fryburg, G. C.

    1977-01-01

    A basic point in the hot corrosion of turbine components is the deposition of sodium sulfate from flames containing sodium and sulfur. An experimental study is described which examines a dew point prediction theory based on the local thermochemical equilibrium (LTCE) method, and a means to calculate the deposition rate is suggested. In addition, a convective diffusion theory, based on the assumption of a chemically frozen boundary layer, utilizing the LTCE results, and imposing the additional effects of mass transport, was also successful in predicting dew points for Na2SO4-seeded combustion gases. A multicomponent mass transfer equation was derived to predict NaSO4 deposition rate via vapor transport at temperatures below the deposition onset temperature.

  7. Experimental Studies of the 43 Π Electronic State of NaCs

    NASA Astrophysics Data System (ADS)

    Steely, Andrew; Whipp, Ciara; Faust, Carl; Kortyna, Andrew; Richter, Kara; Huennekens, John

    2016-05-01

    We present results from experimental studies of the 43 Π electronic state of the NaCs molecule. This electronic state is interesting in that its potential energy curve likely exhibits a double minimum. As a result, interference effects are observed in the resolved bound-free fluorescence spectra. The optical-optical double resonance method was used to obtain Doppler-free excitation spectra for the 43 Π state. This dataset of measured level energies was expanded largely by observing fluorescence from levels populated by collisions. Simulations of resolved bound-free fluorescence spectra were calculated using the BCONT program (R. J. Le Roy, University of Waterloo). Spectroscopic constants are presented as a preliminary step toward an experimental potential energy curve. Work supported by NSF and Susquehanna University.

  8. Characteristics of hydrolysis of the complex Na2SnF6 in hydrothermal solutions-An experimental study

    USGS Publications Warehouse

    Wang, Y.; I-Ming, C.

    1987-01-01

    Characteristics of hydrolysis of the complex Na2SnF6, which is used as the starting material, in hydrothermal solutions have been studied at 200-602??C and 1 kbar. Experimental results show that intense hydrolysis of Na2SnF6 occurs at high temperatures and that with the rise of temperature the hydrolysis will become more intense. Under the present experimental conditions the most possible existing form of Sn in the hydrothermal solutions is SnF3(OH) or Na2SnF3(OH). In addition, the hydrolysis constants for Na2SnF6 have also been calculated at 200-602??C, and the relationship between Na2SnF6 hydrolysis and temperature is discussed. ?? 1987 Science Press.

  9. Experimental and theoretical study of the electronic states and spectra of SbNa

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Liebermann, H.-P.; Buenker, R. J.; Alekseyev, A. B.

    2015-12-01

    Gas-phase emission spectra of the hitherto unknown free radical SbNa were measured in the NIR region with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which antimony vapor in argon or neon carrier gas was passed through a microwave discharge and mixed with sodium vapor in an observation tube. Seven transitions from five low-lying excited states A12, A21, A30+, A40-, and B2 to the X10+ and/or X21 components of the X3Σ- ground state have been observed and analyzed. In parallel to the experiments, relativistic configuration interaction calculations of potential energy curves, vibrational constants, bond lengths, transition moments and radiative lifetimes were carried out to aid in the analysis of the experimental data.

  10. Protective effect of experimental mouthrinses containing NaF and TiF4 on dentin erosive loss in vitro

    PubMed Central

    de CASTILHO, Aline Rogéria Freire; SALOMÃO, Priscila Maria Aranda; BUZALAF, Marília Afonso Rabelo; MAGALHÃES, Ana Carolina

    2015-01-01

    Objective This in vitro study assessed the anti-erosive effect of experimental mouthrinses containing TiF4 and NaF on dentin erosive loss. Material and Methods Bovine dentin specimens were randomly allocated into the groups (n=15): 1) SnCl2/NaF/AmF (Erosion Protection®/GABA, pH 4.5, positive control); 2) experimental solution with 0.0815% TiF4 (pH 2.5); 3) 0.105% NaF (pH 4.5); 4) 0.042% NaF+0.049% TiF4 (pH 4.4); 5) 0.063% NaF+0.036% TiF4 (pH 4.5); 6) no treatment (negative control). Each specimen was cyclically demineralized (Sprite Zero, pH 2.6, 4x90 s/day) and exposed to artificial saliva between the erosive challenges for 7 days. The treatment with the fluoride solutions was done 2x60 s/day, immediately after the first and the last erosive challenges of the day. Dentin erosive loss was measured by profilometry (μm). The data were analyzed using Kruskal Wallis/Dunn tests (p<0.05). Results Mouthrinses containing TiF4 or Sn/F were able to show some protective effect against dentin erosive loss compared to negative control. The best anti-erosive effect was found for experimental solution containing 0.0815% TiF4 (100% reduction in dentin loss), followed by 0.042% NaF+0.049% TiF4 (58.3%), SnCl2/NaF/AmF (52%) and 0.063% NaF+0.036% TiF4 (40%). NaF solution (13.3%) did not significantly differ from control. Conclusion The daily application of experimental mouthrinse containing TiF4 and NaF has the ability to reduce dentin erosion, as well as Erosion Protection® and TiF4 alone. PMID:26537719

  11. Antibody Profiling in Naïve and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites

    PubMed Central

    Arévalo-Herrera, Myriam; Lopez-Perez, Mary; Dotsey, Emmanuel; Jain, Aarti; Rubiano, Kelly; Felgner, Philip L.; Davies, D. Huw; Herrera, Sócrates

    2016-01-01

    Background Acquisition of malaria immunity in low transmission areas usually occurs after relatively few exposures to the parasite. A recent Plasmodium vivax experimental challenge trial in malaria naïve and semi-immune volunteers from Colombia showed that all naïve individuals developed malaria symptoms, whereas semi-immune subjects were asymptomatic or displayed attenuated symptoms. Sera from these individuals were analyzed by protein microarray to identify antibodies associated with clinical protection. Methodology/Principal Findings Serum samples from naïve (n = 7) and semi-immune (n = 9) volunteers exposed to P. vivax sporozoite-infected mosquito bites were probed against a custom protein microarray displaying 515 P. vivax antigens. The array revealed higher serological responses in semi-immune individuals before the challenge, although malaria naïve individuals also had pre-existing antibodies, which were higher in Colombians than US adults (control group). In both experimental groups the response to the P. vivax challenge peaked at day 45 and returned to near baseline at day 145. Additional analysis indicated that semi-immune volunteers without fever displayed a lower response to the challenge, but recognized new antigens afterwards. Conclusion Clinical protection against experimental challenge in volunteers with previous P. vivax exposure was associated with elevated pre-existing antibodies, an attenuated serological response to the challenge and reactivity to new antigens. PMID:27014875

  12. Experimental Studies of NaK in a Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Gibons, Marc; Sanzi, James; Ljubanovic, Damir

    2011-01-01

    Space fission power systems are being developed at the National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) with a short term goal of building a full scale, non-nuclear, Technology Demonstration Unit (TDU) test at NASA's Glenn Research Center. Due to the geometric constraints, mass restrictions, and fairly high temperatures associated with space reactors, liquid metals are typically used as the primary coolant. A eutectic mixture of sodium (22 percent) and potassium (78 percent), or NaK, has been chosen as the coolant for the TDU with a total system capacity of approximately 55 L. NaK, like all alkali metals, is very reactive, and warrants certain safety considerations. To adequately examine the risk associated with the personnel, facility, and test hardware during a potential NaK leak in the large scale TDU test, a small scale experiment was performed in which NaK was released in a thermal vacuum chamber under controlled conditions. The study focused on detecting NaK leaks in the vacuum environment as well as the molecular flow of the NaK vapor. This paper reflects the work completed during the NaK experiment and provides results and discussion relative to the findings.

  13. Effect of variable Na/K ratio on CO2 solubility in slab-derived rhyolitic melts - An experimental study

    NASA Astrophysics Data System (ADS)

    Muth, M.; Duncan, M. S.; Dasgupta, R.

    2014-12-01

    Subduction zones are an important part of global carbon cycling and understanding the agent through which carbon is transported from the slab to the mantle wedge is key. Previous work has constrained the role of P, T, and melt-H2O content on CO2 solubility in a model, slab-derived rhyolitic partial melt [1, 2]. However, the effect of composition, i.e., the variation in cation ratios on CO2 solubility remains unknown. In particular, variation in Na/K, which can be highly variable in rhyolitic melts, can have a large effect on CO2 solubility [3, 4]. Here we investigate the effect of variable alkali ratio on the CO2 solubility in rhyolitic melt at sub-arc depths. CO2-saturated experiments were conducted at 3 GPa, 1300 °C on 3 rhyolite compositions, similar to low-degree partial melt of pelitic sediments, with fixed total alkalis (Na2O + K2O ~11.5 wt.%, volatile-free), but molar Na# = Na/(Na+K) varying from 0.15 to 0.88. Experimental run products show glasses with void spaces, suggesting the presence of CO2-rich fluid during experiments. The glasses were analyzed using EPMA and FTIR spectroscopy. All glasses show peaks for H2O at ~3540 cm-1. CO2 is dissolved as molecular CO2 (CO2mol.) at ~2350 cm-1 and carbonate (CO32-). Peaks for CO32- shift in position and shape: high Na# glass peaks are asymmetrical and closely spaced at ~1504 cm-1 and 1439 cm-1, while low Na# glass peaks are symmetrical and separated at ~1425 cm-1 and ~1530 cm-1. Our data show a strong positive correlation between Na# and CO2tot. contents from 1.0 wt.% for Na# = 0.15 to 3.0 wt.% for Na# = 0.88, at a fixed melt NBO/T ≈ 0.07. CO2mol./CO2tot. decreases with increasing Na#, from 0.74 to 0.09. These data suggest that Na has a larger effect than K on carbonate dissolution in rhyolitic melts. This is in agreement with the low P experiments on phonotephrite compositions [3], but in contrast with the observation for synthetic nephelinitic compositions [4], possibly indicating the effect of Na/K on CO2

  14. Naïveté in novel ecological interactions: lessons from theory and experimental evidence.

    PubMed

    Carthey, Alexandra J R; Banks, Peter B

    2014-11-01

    The invasion of alien species into areas beyond their native ranges is having profound effects on ecosystems around the world. In particular, novel alien predators are causing rapid extinctions or declines in many native prey species, and these impacts are generally attributed to ecological naïveté or the failure to recognise a novel enemy and respond appropriately due to a lack of experience. Despite a large body of research concerning the recognition of alien predation risk by native prey, the literature lacks an extensive review of naïveté theory that specifically asks how naïveté between novel pairings of alien predators and native prey disrupts our classical understanding of predator-prey ecological theory. Here we critically review both classic and current theory relating to predator-prey interactions between both predators and prey with shared evolutionary histories, and those that are ecologically 'mismatched' through the outcomes of biological invasions. The review is structured around the multiple levels of naïveté framework of Banks & Dickman (2007), and concepts and examples are discussed as they relate to each stage in the process from failure to recognise a novel predator (Level 1 naïveté), through to appropriate (Level 2) and effective (Level 3) antipredator responses. We discuss the relative contributions of recognition, cue types and the implied risk of cues used by novel alien and familiar native predators, to the probability that prey will recognise a novel predator. We then cover the antipredator response types available to prey and the factors that predict whether these responses will be appropriate or effective against novel alien and familiar native predators. In general, the level of naïveté of native prey can be predicted by the degree of novelty (in terms of appearance, behaviour or habitat use) of the alien predator compared to native predators with which prey are experienced. Appearance in this sense includes cue types

  15. Evaluation of fluoride release from experimental TiF4 and NaF varnishes in vitro

    PubMed Central

    COMAR, Livia Picchi; de SOUZA, Beatriz Martines; GRIZZO, Larissa Tercilia; BUZALAF, Marília Afonso Rabelo; MAGALHÃES, Ana Carolina

    2014-01-01

    Fluoride varnishes play an important role in the prevention of dental caries, promoting the inhibition of demineralization and the increase of remineralization. Objective This study aimed to analyze the amount of fluoride released into water and artificial saliva from experimental TiF4 and NaF varnishes, with different concentrations, for 12 h. Material and Methods Fluoride varnishes were applied on acrylic blocks and then immersed in 10 ml of deionized water and artificial saliva in polystyrene bottles. The acrylic blocks were divided in seven groups (n=10): 1.55% TiF4 varnish (0.95% F, pH 1.0); 3.10% TiF4 varnish (1.90% F, pH 1.0); 3.10% and 4% TiF4 varnish (2.45% F, pH 1.0); 2.10% NaF varnish (0.95% F, pH 5.0); 4.20% NaF varnish (1.90% F, pH 5.0); 5.42% NaF varnish (2.45% F, pH 5.0) and control (no treatment, n=5). The fluoride release was analyzed after 1/2, 1, 3, 6, 9 and 12 h of exposure. The analysis was performed using an ion-specific electrode coupled to a potentiometer. Two-way ANOVA and Bonferroni's test were applied for the statistical analysis (p<0.05). Results TiF4 varnishes released larger amounts of fluoride than NaF varnishes during the first 1/2 h, regardless of their concentration; 4% TiF4 varnish released more fluoride than NaF varnishes for the first 6 h. The peak of fluoride release occurred at 3 h. There was a better dose-response relationship among the varnishes exposed to water than to artificial saliva. Conclusions The 3.10% and 4% TiF4 -based varnishes have greater ability to release fluoride into water and artificial saliva compared to NaF varnish; however, more studies must be conducted to elucidate the mechanism of action of TiF4 varnish on tooth surface. PMID:24676585

  16. Experimentally validated Monte Carlo simulation of an XtRa-NaI(Tl) Compton Suppression System response.

    PubMed

    Savva, Marilia; Anagnostakis, Marios

    2016-03-01

    In this work the response of an XtRa-NaI(Tl) Compton Suppression System is simulated using the Monte Carlo code PENELOPE. The main program PENMAIN is properly modified in order to couple two energy deposition detectors and simulate the coincidence gating. The modified main program takes into account both the active shielding and the True Coincidence phenomenon. The program is evaluated by comparing simulation results with experimental data for both non-cascade and cascade emitters and concluding that no statistically significant biases are observed. PMID:26656618

  17. Experimental and theoretical study of the electronic states and spectra of NaAs

    NASA Astrophysics Data System (ADS)

    Setzer, K. D.; Fink, E. H.; Alekseyev, A. B.; Liebermann, H.-P.; Buenker, R. J.

    2016-02-01

    Gas-phase emission spectra of the hitherto unknown free radical NaAs were measured in the NIR region with a Fourier-transform spectrometer. The emissions were observed from a fast-flow system in which arsenic vapor in argon carrier gas was passed through a microwave discharge and mixed with sodium vapor in an observation tube. Seven transitions from all five Ω components of the low-lying A3Π and a1Δ excited states (A12, A21, A30+, A40-, a2) to the X10+ and/or X21 components of the X3Σ- ground state have been observed and analysed. With the help of parallel relativistic configuration interaction calculations all observed spectral features could be assigned and analyzed.

  18. Experimental and theoretical studies of the electronic structure of Na-doped poly (para-phenylenevinylene)

    NASA Astrophysics Data System (ADS)

    Fahlman, M.; Beljonne, D.; Lögdlund, M.; Friend, R. H.; Holmes, A. B.; Brédas, J. L.; Salaneck, W. R.

    1993-11-01

    The electronic structure of sodium-doped poly ( p-phenylenevinylene), or PPV, has been studied using photoelectron spectroscopy, UPS and XPS. Upon doping, two new states are created in the previously forbidden electronic bandgap. No finite density- of-states is observed at the Fermi energy. The UPS spectra are analysed with the help of VEH-level quantum chemical calculations. It is determined that the Na-doping of PPV results in the formation of bipolaron bands in the otherwise forbidden energy gap at saturation doping. These results are in contrast with the case of poly-hexyl-thiophene doped from NOPF 6, where the existence of a finite density-of-states at EF and a stable polaron lattice was observed at saturation doping at room temperature. This work represents the first direct measure of multiple, resolved gap states in a doped conjugated polymer.

  19. Experimental optimum design and luminescence properties of NaY(Gd)(MoO4)2:Er3+ phosphors

    NASA Astrophysics Data System (ADS)

    Jia-Shi, Sun; Sai, Xu; Shu-Wei, Li; Lin-Lin, Shi; Zi-Hui, Zhai; Bao-Jiu, Chen

    2016-06-01

    Three-factor orthogonal design (OD) of Er3+/Gd3+/T (calcination temperature) is used to optimize the luminescent intensity of NaY(Gd)(MoO4)2:Er3+ phosphor. Firstly, the uniform design (UD) is introduced to explore the doping concentration range of Er3+/Gd3+. Then OD and range analysis are performed based on the results of UD to obtain the primary and secondary sequence and the best combination of Er3+, Gd3+, and T within the experimental range. The optimum sample is prepared by the high temperature solid state method. Photoluminescence excitation and emission spectra of the optimum sample are detected. The intense green emissions (530 nm and 550 nm) are observed which originate from Er3+ 2H11/2→ 4I15/2 and 4S3/2→4I15/2, respectively. Thermal effect is investigated in the optimum NaY(Gd3+)(MoO4)2:Er3+ phosphors, and the green emission intensity decreases as temperature increases. Project supported by Education Reform Fund of Dalian Maritime University, China (Grant No. 2015Y37), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2015020190 and 2014025010), the Open Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2015KF27), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3132016121).

  20. Variations in K{sup +}-Na{sup +} ion exchange depth in commercial and experimental float glass compositions

    SciTech Connect

    Sinton, C.W.; LaCourse, W.C.; O'Connell, M.J.

    1999-12-01

    The authors report the results of ion-exchange experiments conducted on 17 commercial soda-lime-silicate (SLS) float glass and 8 experimental SLS glass compositions. A significant variation in the depth of K{sup +} penetration with relatively small changes in composition was observed. The data were fit to a multiple regression model in which the major oxides are the independent variables and depth of K{sup +} is the dependent variable. The model indicates that increased depth of exchange (increased interdiffusion coefficient) correlates predominantly with increased K{sub 2}O and/or Na{sub 2}O content of the glass, with a decreased total alkaline earth content and with the ratio of CaO/MgO.

  1. Experimental response function of NaI(Tl) scintillation detector for gamma photons and tomographic measurements for defect detection

    NASA Astrophysics Data System (ADS)

    Sharma, Amandeep; Singh, Karamjit; Singh, Bhajan; Sandhu, B. S.

    2011-02-01

    The response function of gamma detector is an important factor for spectrum analysis because some photons and secondary electrons may escape the detector volume before fully depositing their energy, of course destroys the ideal delta function response. An inverse matrix approach, for unfolding of observed pulse-height distribution to a true photon spectrum, is used for construction of experimental response function by formulating a 40 × 40 matrix with bin mesh ( E1/2) of 0.025 (MeV) 1/2 for the present measurements. A tomographic scanner system, operating in a non-destructive and non-invasive way, is also presented for inspection of density variation in any object. The incoherent scattered intensity of 662 keV gamma photons, obtained by unfolding (deconvolution) the experimental pulse-height distribution of NaI(Tl) scintillation detector, provides the desired information. The method is quite sensitive, for showing inclusion of medium Z (atomic number) material (iron) in low Z material (aluminium) and detecting a void of ˜2 mm in size for iron block, to investigate the inhomogeneities in the object. Also, the grey scale images (using "MATLAB") are shown to visualise the presence of defects/inclusion in metal samples.

  2. The LuNa project: experimental didactic modules exploiting portable setups to teach optics in primary and secondary schools

    NASA Astrophysics Data System (ADS)

    Bondani, Maria; Allevi, Alessia; Nardo, Luca; Favale, Fabrizio

    2014-07-01

    The "LuNa" (La natura della Luce nella luce della Natura - The nature of Light in the light of Nature) Project is devoted to the experimental teaching of optics in the different school grades. The basic idea of the Project is that the history of optics and the debate about the nature of light are a meaningful example of how science proceeds in the development of a physical model. Moreover optical phenomena can be presented at different levels of complexity in order to be accessible to students of different age. At the core of the Project are several portable setups that support experimental and partially interactive lectures covering all the aspects of optical phenomena, from geometrical optics to single-photon interference passing through atmospheric optics, spectroscopy, holography and theory of perception. When possible, the setups are realized with simple and easy to find materials so as to be reproducible by teachers and students. Of course, for the most complicated setups (interferometers and holography) research materials are used. Each module is calibrated to fit teachers' requirements either to be included in the curricula of their classes or to be used as an expansion of the optics program.

  3. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  4. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings

    PubMed Central

    Zhu, Yi; La, Jun-Ho; Wills, Zachary P.; Gebhart, G. F.

    2015-01-01

    Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron. PMID:25652923

  5. Experimental and first-principles study of photoluminescent and optical properties of Na-doped CuAlO2: the role of the NaAl-2Na i complex

    NASA Astrophysics Data System (ADS)

    Liu, Ruijian; Li, Yongfeng; Yao, Bin; Ding, Zhanhui; Deng, Rui; Zhang, Ligong; Zhao, Haifeng; Liu, Lei

    2015-08-01

    We report that a band-tail emission at 3.08 eV, lower than near-band-edge energy, is observed in photoluminescence measurements of bulk Na-doped CuAlO2. The band-tail emission is attributed to Na-related defects. Electronic structure calculations based on the first-principles method demonstrate that the donor-acceptor compensated complex of NaAl-2Na i in Na-doped CuAlO2 plays a key role in leading to the band-tail emission and bandgap narrowing. Furthermore, Hall effect measurements indicates that the hole concentration in CuAlO2 is independent on Na doping, which is well understood by the donor-acceptor compensation effect of NaAl-2Na i complex.

  6. Experimental determination of the H2O + 15 wt% NaCl and H2O + 25 wt% NaCl liquidi to 1.4 GPa

    NASA Astrophysics Data System (ADS)

    Valenti, P.; Schmidt, C.

    2009-12-01

    The binary H2O+NaCl is one of the most important model systems for chloridic fluids in many geologic environments such as the Earth’s crust, upper mantle, and subducting slabs, and is also applicable to extraterrestrial icy planetary bodies (e.g., Manning 2004, Zolensky et al., 1999). The knowledge on phase equilibria and PVTx properties of this system is still fragmentary at high pressures, e.g., very little has been reported on liquidi at compositions <30 wt% NaCl (Manning and Daniel 2008). In this study, we investigated the liquidus of 15 and 25 wt% NaCl solutions at pressures up to 1.4 GPa. The experiments were performed using a hydrothermal diamond-anvil cell (Bassett et al. 1993) modified for Raman spectroscopy and accurate temperature measurements. A quartz chip, halite, and water were loaded into the sample chamber, which also contained a small trapped air bubble (10 vol%) when it was sealed. The actual salinity was then determined from measurement of the vapor-saturated liquidus temperature. The sample chamber was then compressed until the bubble disappeared. After freezing, phase transitions occurring with increasing temperature were observed optically, and the pressure was determined from the frequency shift of the 464 cm-1 Raman line of quartz (Schmidt and Ziemann 2000). The sample chamber was then compressed further, and the experiment was repeated at various bulk densities until a pressure of ~1.4 GPa was attained. At some conditions, Raman spectra were acquired for identification of the phase assemblage. The solution always crystallized to a single phase upon cooling above ~0.15 GPa at 25 wt% NaCl and above ~1 GPa at 15 wt% NaCl. Raman spectra in the OH stretching region indicate that this phase contains or is a NaCl hydrate other than hydrohalite, probably in solid solution with ice. Melting of this phase produced liquid and hydrohalite and/or ice VI. Ice VI was the last solid that dissolved upon heating, between 1100 MPa, 3 °C and 1370 MPa, 17

  7. Experimental Study on Steel Tank Model Using Shaking Table/ Badania Eksperymentalne Modelu Zbiornika Stalowego Na Stole Sejsmicznym

    NASA Astrophysics Data System (ADS)

    Burkacki, Daniel; Jankowski, Robert

    2014-09-01

    Cylindrical steel tanks are very popular structures used for storage of products of chemical and petroleum industries. Earthquakes are the most dangerous and also the most unpredictable dynamic loads acting on such structures. On the other hand, mining tremors are usually considered to be less severe due to lower acceleration levels observed. The aim of the present paper is to show the results of the experimental study which has been conducted on a scaled model of a real tank located in Poland. The investigation has been carried out under different dynamic excitations (earthquakes and mining tremors) using the shaking table. The results of the study indicate that stored product may significantly influence the values of dynamic parameters and confirm that the level of liquid filling is really essential in the structural analysis. The comparison of the response under moderate earthquakes and mining tremors indicate that the second excitation may be more severe in some cases. Stalowe zbiorniki walcowe są bardzo popularnymi konstrukcjami używanymi do magazynowania produktów przemysłu chemicznego i naftowego. Ich bezpieczeństwo i niezawodność są kluczowe, ponieważ każde uszkodzenie może nieść za sobą bardzo poważne konsekwencje. Trzęsienia ziemi są najbardziej niebezpiecznymi, a zarazem najbardziej nieprzewidywalnymi obciążeniami dynamicznymi, które mogą oddziaływać na tego typu konstrukcje. Z drugiej strony ruchy podłoża związane ze wstrząsami górniczymi są uważane za mniej groźne z powodu osiągania niższych poziomów wartości przyspieszeń. Celem niniejszego artykułu jest przedstawienie wyników badań eksperymentalnych, które przeprowadzono na wykonanym w skali modelu rzeczywistego zbiornika zlokalizowanego na terenie Polski. Badania wykonano przy użyciu stołu sejsmicznego. Zakres badań obejmował testy harmoniczne właściwości dynamicznych oraz zachowanie się stalowego zbiornika walcowego podczas trzęsień ziemi oraz wstrz

  8. Experimental transmission of avian‐like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs

    PubMed Central

    Lloyd, Lucy E.; Jonczyk, Magdalena; Jervis, Carley M.; Flack, Deborah J.; Lyall, John; Foote, Alasdair; Mumford, Jennifer A.; Brown, Ian H.; Wood, James L.; Elton, Debra M.

    2011-01-01

    Please cite this paper as: Lloyd et al. (2011) Experimental transmission of avian‐like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs. Influenza and Other Respiratory Viruses 5(5), 357–364. Background  Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. Objectives  To investigate the transmission of a recent ‘avian‐like’ swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. Methods  Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co‐housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co‐housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. Results and conclusions  Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection. PMID:21668691

  9. Effects of Cd2+ on the epithelial Na+ channel (ENaC) investigated by experimental and modeling studies.

    PubMed

    Mernea, Maria; Ulăreanu, Roxana; Călborean, Octavian; Chira, Sergiu; Popescu, Octavian; Mihailescu, Dan F; Cucu, Dana

    2016-07-01

    The function of the epithelial Na+ channel from the apical membrane of many Na+ transporting epithelia is modulated by various chemical compounds from the extracellular space, such as heavy metals, protons or chloride ions. We have studied the effect of extracellular Cd2+ on the function of the epithelial Na+ channel (ENaC) in heterologously expressed Xenopus laevis oocytes and Na+-transporting epithelia. We assayed channel function as the amiloride-sensitive sodium current (INa). Cd2+ rapidly and voltage-independently inhibited INa in oocytes expressing αβγ Xenopus ENaC (xENaC). The extracellular Cd2+ inhibited Na+ transport and showed no influence on ENaC trafficking, as revealed by concomitant measurements of the transepithelial current, conductance and capacitance in Na+-transporting epithelia. Instead, amiloride inhibition was noticeably diminished in the presence of Cd2+ on the apical membrane. Using molecular modeling approaches, we describe the amiloride binding sites in rat and xENaC structures, and we present four putative binding sites for Cd2+. These results indicate that ENaC functions as a sensor for external Cd2+. PMID:27045669

  10. Competitive binding of mg(2+), ca(2+), na(+), and K(+) ions to DNA in oriented DNA fibers: experimental and monte carlo simulation results

    PubMed Central

    Korolev, N; Lyubartsev, AP; Rupprecht, A; Nordenskiold, L

    1999-01-01

    Competitive binding of the most common cations of the cytoplasm (K(+), Na(+), Ca(2+), and Mg(2+)) with DNA was studied by equilibrating oriented DNA fibers with ethanol/water solutions (65 and 52% v/v EtOH) containing different combinations and concentrations of the counterions. The affinity of DNA for the cations decreases in the order Ca > Mg >> Na approximately K. The degree of Ca(2+) and/or Mg(2+) binding to DNA displays maximum changes just at physiological concentrations of salts (60-200 mM) and does not depend significantly on the ethanol concentration or on the kind of univalent cation (Na(+) or K(+)). Ca(2+) is more tightly bound to DNA and is replaced by the monovalent cations to a lesser extent than is Mg(2+). Similarly, Ca(2+) is a better competitor for binding to DNA than Mg(2+): the ion exchange equilibrium constant for a 1:1 mixture of Ca(2+) and Mg(2+) ions, K(c)(Ca)(Mg), changes from K(c)(Ca)(Mg) approximately 2 in 65% EtOH (in 3-30 mM NaCl and/or KCl) to K(c)(Ca)(Mg) approximately 1.2-1.4 in 52% EtOH (in 300 mM NaCl and/or KCl). DNA does not exhibit selectivity for Na(+) or K(+) in ethanol/water solutions either in the absence or in the presence of Ca(2+) and/or Mg(2+). The ion exchange experimental data are compared with results of grand canonical Monte Carlo (GCMC) simulations of systems of parallel and hexagonally ordered, uniformly and discretely charged polyions with the density and spatial distribution of the charged groups modeling B DNA. A quantitative agreement with experimental data on divalent-monovalent competition has been obtained for discretely charged models of the DNA polyion (for the uniformly charged cylinder model, coincidence with experiment is qualitative). The GCMC method gives also a qualitative description of experimental results for DNA binding competitions of counterions of the same charge (Ca(2+) with Mg(2+) or K(+) with Na(+)). PMID:10545373

  11. The 18Ne(α,p)21Na breakout reaction in x-ray bursts: Experimental determination of spin-parities for α resonances in 22Mg via resonant elastic scattering of 21Na+p

    NASA Astrophysics Data System (ADS)

    He, J. J.; Zhang, L. Y.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Kubono, S.; Hu, J.; Ma, P.; Chen, S. Z.; Wakabayashi, Y.; Sun, B. H.; Wang, H. W.; Tian, W. D.; Chen, R. F.; Guo, B.; Hashimoto, T.; Togano, Y.; Hayakawa, S.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.

    2013-07-01

    The 18Ne(α,p)21Na reaction provides a pathway for breakout from the hot CNO cycles to the rp process in type-I x-ray bursts. To better determine this astrophysical reaction rate, the resonance parameters of the compound nucleus 22Mg have been investigated by measuring the resonant elastic scattering of 21Na+p. An 89 MeV 21Na radioactive ion beam was produced at the CNS Radioactive Ion Beam Separator and bombarded an 8.8 mg/cm2 thick polyethylene target. The recoiled protons were measured at scattering angles of θc.m.≈175∘ and 152∘ by three ΔE-E silicon telescopes. The excitation function was obtained with a thick-target method over energies Ex(22Mg) = 5.5-9.2 MeV. The resonance parameters have been determined through an R-matrix analysis. For the first time, the Jπ values for ten states above the α threshold in 22Mg have been experimentally determined in a single consistent measurement. We have made three new Jπ assignments and confirmed seven of the ten tentative assignments in the previous work. The 18Ne(α,p)21Na reaction rate has been recalculated, and the astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the 18Ne(α,p)21Na rate significantly affects the peak nuclear energy generation rate and the onset temperature of this breakout reaction in these phenomena.

  12. Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O-NaCl-FeCl2

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, Pilar; Steele-MacInnis, Matthew; Bodnar, Robert J.

    2015-01-01

    Magmatic-hydrothermal fluids associated with felsic to intermediate composition magmas are generally dominated by (Na ± K)Cl, but often the fluids also contain significant concentrations of FeCl2. Previously, fluid inclusions containing such fluids were interpreted using the properties of H2O-NaCl because the effect of FeCl2 on the phase equilibrium and volumetric (PVTx) properties of aqueous fluids was essentially unknown. In this study, synthetic fluid inclusion experiments have been conducted to determine the vapor-saturated liquidus phase relations of the system H2O-NaCl-FeCl2. Microthermometric and microanalytical measurements on synthetic fluid inclusions have been combined with the limited existing data, as well as with predictions based on Pitzer's formalism, to determine the ternary cotectic and peritectic phase boundaries and liquidus fields. The liquidus is qualitatively similar to those of other ternary systems of H2O-NaCl plus divalent-cation chlorides (MgCl2 and CaCl2) and has been characterized through empirical equations that represent the liquid salinity on the ice- and halite-liquidus surfaces. The ice and halite liquidi intersect at a metastable cotectic curve, which can be used to determine fluid compositions in this system if metastable behavior is observed. Furthermore, based on the experimentally determined liquidus, bulk salinities of natural fluid inclusions can be determined from the last dissolution temperatures of ice and/or halite using the new empirical equations.

  13. Experimental determination of the {sup 26}Al(n,{alpha}){sup 23}Na reaction cross section and calculation of the Maxwellian averaged cross section at stellar temperatures

    SciTech Connect

    Smet, L. de; Wagemans, C.; Wagemans, J.; Heyse, J.; Gils, J. van

    2007-10-15

    The {sup 26}Al(n,{alpha}){sup 23}Na reaction cross section has been studied at the linear accelerator GELINA of the Institute for Reference Materials and Measurements in Geel, Belgium, and has been determined up to a neutron energy of about 100 keV using the time-of-flight technique. Six resonances could be observed in this energy region, whereas before only one had been identified experimentally. For four of them, resonance parameters such as resonance energy, total width, area, and spin of the state could be determined. From the obtained {sup 26}Al(n,{alpha}){sup 23}Na cross section data, Maxwellian averaged cross section (MACS) values were calculated by numerical integration. Since neutron induced reactions are among the major destruction mechanisms of {sup 26}Al in our Galaxy, these new MACS values contribute to a better understanding of the observed {sup 26}Al abundance.

  14. Inhibition of Na(+),K(+)-ATPase in the hypothalamus, pons and cerebellum of the offspring rat due to experimentally-induced maternal hypothyroidism.

    PubMed

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Tsela, Smaragda; Zissis, Konstantinos M; Kalafatakis, Konstantinos; Skandali, Nikolina; Voumvourakis, Konstantinos; Carageorgiou, Haris; Tsakiris, Stylianos

    2015-08-01

    Neurodevelopment is known to be particularly susceptible to thyroid hormone insufficiency and can result in extensive structural and functional deficits within the central nervous system (CNS), subsequently leading to the establishment of cognitive impairment and neuropsychiatric symptomatology. The current study evaluated the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism (as a suggestive multilevel experimental approach to the study of hypothyroidism-induced changes that has been developed and characterized by the authors) on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a CNS region-specific manner. The activities of acetylcholinesterase (AChE), Na(+),K(+)-ATPase and Mg(2+)-ATPase in the offspring hypothalamus, cerebellum and pons were assessed. The study demonstrated that maternal exposure to PTU (0.05% w/v in the drinking water) during the critical periods of neurodevelopment can result in an inhibition of hypothalamic, pontine and cerebellar Na(+),K(+)-ATPase; a major marker of neuronal excitability and metabolic energy production as well as an important regulator of important systems of neurotransmission. On the other hand, no significant changes in the activities of the herein offspring CNS regions' AChE and Mg(2+)-ATPase were recorded. The observed Na(+),K(+)-ATPase inhibition: (i) is region-specific (and non-detectable in whole brain homogenetes), (ii) could constitute a central event in the pathophysiology of clinically-relevant hypothyroidism-associated developmental neurotoxicity, (iii) occurs under all examined experimental schemes, and (iv) certainly deserves further clarification at a molecular and histopathological level. As these findings are analyzed and compared to the available literature, they also underline the need for the adoption and further study of Na(+),K(+)-ATPase activity as a consistent neurochemical marker within the context of a systematic

  15. The experimental determination of the solubility product for NpO{sub 2}OH in NaCl solutions

    SciTech Connect

    Roberts, K.E.; Torretto, P.C.; Prussin, T.

    1995-09-01

    The solubility of Np(V) was measured in NaCl solutions ranging from 0.30 to 5.6 molal at room temperature ({approximately}21 {plus_minus} 2{degrees}C). Experiments were conducted from undersaturation and allowed to equilibrate in a CO{sub 2}-free environment for 37 days. The apparent solubility products varied with NaCl concentration and were between 10{sup -9} and 10{sup -8} mol{sup 2}{sm_bullet}L{sup -2}. Using the specific ion interaction theory (SIT), the log of the solubility product of NpO{sub 2}OH(am) at infinite dilution was found to be - 8.79 {plus_minus} 0.12. The interaction coefficient, {epsilon}(NpO{sub 2}{sup +} - Cl{sup -}), was found to be (0.08 {plus_minus} 0.05).

  16. Mathematical modelling in Matlab of the experimental results shows the electrochemical potential difference - temperature of the WC coatings immersed in a NaCl solution

    NASA Astrophysics Data System (ADS)

    Benea, M. L.; Benea, O. D.

    2016-02-01

    The method used for purchasing the corrosion behaviour the WC coatings deposited by plasma spraying, on a martensitic stainless steel substrate consists in measuring the electrochemical potential of the coating, respectively that of the substrate, immersed in a NaCl solution as corrosive agent. The mathematical processing of the obtained experimental results in Matlab allowed us to make some correlations between the electrochemical potential of the coating and the solution temperature is very well described by some curves having equations obtained by interpolation order 4.

  17. Mechanism of reaction in NaAlCl4 molten salt batteries with nickel felt cathodes and aluminum anodes. 2: Experimental results and comparison with model calculations

    NASA Astrophysics Data System (ADS)

    Knutz, B. C.; Berg, R. W.; Hjuler, H. A.; Bjerrum, N. J.

    1993-12-01

    The battery systems: Al/NaCl-AlCl3-Al2 X3/Ni-felt (X = S, Se, Te) and the corresponding system without chalcogen have been studied experimentally at 175 C. Charge/discharge experiments, performed on cells with NaCl saturated melts, show that advantages with regard to rate capability and cyclability can be obtained with systems containing dissolved chalcogen compared with the chalcogen-free system. Exchange of chalcogen between cathode and electrolyte during cycling was confirmed by performing gravimetric analysis and Raman spectroscopy of the electrolytes. Cathode reactions were studied by coulometric titrations (performed on cells with slightly acidic NaCl-AlCl3 melts and small amounts of chalcogen) and compared with model calculations. Cells containing chalcogen revealed at least three voltage plateaus during cycling. The lowest plateau is associated with formation/decomposition of essentially Ni(y)S(z) an d Ni(y)Se(z) in the sulfide and selenide system, respectively. Cells containing selenide revealed extra capacity below the Ni(y) Se(z)-plateau, most probably associated with a Al(v)Ni(y)Se(z) compound. On the second plateau of sulfide systems NiCl2 or a Ni(y)S(z) Cl(2y - 2z) compound with y greater than (4.4 +/- 0.2), z is formed during charging. Reduction of the formed compound to Ni takes place via consumption of sodium chloride.

  18. An experimental design approach for hydrothermal synthesis of NaYF4: Yb3+, Tm3+ upconversion microcrystal: UV emission optimization

    NASA Astrophysics Data System (ADS)

    Kaviani Darani, Masoume; Bastani, Saeed; Ghahari, Mehdi; Kardar, Pooneh

    2015-11-01

    Ultraviolet (UV) emissions of hydrothermally synthesized NaYF4: Yb3+, Tm3+ upconversion crystals were optimized using the response surface methodology experimental design. In these experimental designs, 9 runs, two factors namely (1) Tm3+ ion concentration, and (2) pH value were investigated using 3 different ligands. Introducing UV upconversion emissions as responses, their intensity were separately maximized. Analytical methods such as XRD, SEM, and FTIR could be used to study crystal structure, morphology, and fluorescent spectroscopy in order to obtain luminescence properties. From the photo-luminescence spectra, emissions centered at 347, 364, 452, 478, 648 and 803 nm were observed. Some results show that increasing each DOE factor up to an optimum value resulted in an increase in emission intensity, followed by reduction. To optimize UV emission, as a final result to the UV emission optimization, each design had a suggestion.

  19. Gamma spectrum unfolding for a NaI monitor of radioactivity in aquatic systems: experimental evaluations of the minimal detectable activity.

    PubMed

    Baré, J; Tondeur, F

    2011-08-01

    This paper deals with the experimental evaluation of the minimal detectable activity achievable by unfolding the gamma spectra of a NaI monitor. An aquatic monitor initially developed by the Institut des Radio-Eléments (IRE) is used for the application. Unfolding of the spectra is performed with GRAVEL, a UMG package code, on the basis of a response matrix obtained with MCNP5.1.40. Experimental data have been measured at IRE, in a 20m(3) seawater tank, for known activities of (137)Cs mixed with other gamma emitters ((40)K, (133)Ba, (113)Sn and (139)Ce). Deconvolution allows one to reduce the MDA of (137)Cs by an order of magnitude. PMID:21146415

  20. Na2CO3-bearing fluids: Experimental study at 700°C and under 1, 2, and 3 kbar pressure using synthetic fluid inclusions in quartz

    NASA Astrophysics Data System (ADS)

    Kotel'Nikova, Z. A.; Kotel'Nikov, A. R.

    2011-04-01

    Heterogeneous fluid equilibria in the second-type H2O-Na2CO3 system in the presence of SiO2 or SiO2 + NaAlSi3O8 were studied experimentally. Phase diagrams of the second-type systems are briefly described. Fluid inclusions in quartz were synthesized by healing of fractures in 1 M Na2CO3 solution at 700°C and under 1, 2, and 3 kbar pressure. Some runs were carried out in the presence of albite gel. The microthermomemtric study of the synthesized inclusions showed that under experimental conditions the fluid was heterogeneous and did not remain inert with respect to quartz and albite. Some inclusions contained a glass-like phase, and liquid released from this phase by heating. Having been heated, some inclusions revealed liquid immiscibility. Comparison of the water-silicate-sodium carbonate system with similar systems containing sodium sulfate and fluoride (Kotel'nikova and Kotel'nikov, 2008, 2010) shows that they have much in common. In all cases, the aqueous salt-bearing fluid did not remain inert relative to the quartz under relatively low PT conditions. The inclusions entrapped in the upper heterogeneous region revealed immiscibility in the presence of vapor within a temperature range of 200 to 400°C. The solutions of various concentrations, including oversaturated solutions in the presence of solid phase, underwent recurrent heterogenization. Near 400°C, vapor is either dissolved in one of immiscible liquids or absorbs this liquid. When heating progresses to higher temperature, inclusions commonly become unsealed.

  1. Experimental verification of PSM polarimetry: monitoring polarization at 193nm high-NA with phase shift masks

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory; Neureuther, Andrew; Slonaker, Steve; Vellanki, Venu; Reynolds, Patrick

    2006-03-01

    The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.

  2. Experimental design optimization for the ICP-AES determination of Li, Na, K, Al, Fe, Mn and Zn in human serum.

    PubMed

    Bianchi, F; Maffini, M; Mangia, A; Marengo, E; Mucchino, C

    2007-01-17

    A chemometric approach based on experimental design and desirability functions was used to develop and validated a method for the determination of some metals of biological concern by a fast sequential ICP-AES. The elements considered are Al, Fe, Mn, Zn, Li, Na and K. The experimental design was used to investigate the effects of three instrumental most crucial parameters, such as sheath gas flow rate, pump speed and auxiliary gas flow rate. In order to improve the multielemental analysis speed, although a sequential instrument allows the use of a separate parameter set for each wavelength, regression models and desirability functions were applied to find the experimental conditions providing the highest global sensitivity. Validation was performed in terms of limits of detection (LOD), limits of quantitation (LOQ), linearity, precision and recovery. By using the 167.02 nm wavelength, aluminium LOD was 0.5 microg L(-1) while the highest LOD was found for K (65 microg L(-1)). A linear range of at least three orders of magnitude was statistically demonstrated for each element. Precision was evaluated by testing two concentration levels, and good results in terms of intra-day repeatability were obtained, with R.S.D. values lower than 4.1% at the lowest concentration level. Lacking a suitable certified reference material, trueness was estimated using the recovery rate on fortified samples. The validated method was then used in the quantification of the elements considered in a serum sample. PMID:17079109

  3. Experimental Testing of Innovative Cold-Formed "GEB" Section / Badania Eksperymentalne Innowacyjnego Kształtownika Giętego Na Zimno Typu "Geb"

    NASA Astrophysics Data System (ADS)

    Łukowicz, Agnieszka; Urbańska-Galewska, Elżbieta; Gordziej-Zagórowska, Małgorzata

    2015-03-01

    One of the major advantages of light gauge steel structures made of cold-formed steel sections is their low weight so the production of typical single-storey steel structures of this kind of profiles is still rising. The well known profiles, e.o. Z-sections, C-sections and the so called hat-sections studied and described in the literature, are used mainly as purlins or truss components. A new profile GEB was patented for the use for primary load-bearing member in fabricated steel frames. According to the code [1] every novel cross section should be tested to assign the deformation shape and bearing capacity. The paper deals with the numerical and experimental research of bearing capacity of cold formed GEB profiles. The deformation shape and limit load was obtained from bending tests. The GEB cross section bearing capacity was also determined according to codes [1, 2]. Jedną z najważniejszych zalet lekkich konstrukcji metalowych, wytwarzanych z kształtowników giętych na zimno, jest ich mała masa, dlatego też, producenci coraz częściej wykorzystują możliwości profili giętych do wytwarzania typowych konstrukcji halowych w budownictwie systemowym. Proces gięcia na zimno, pozwala na formowanie różnego rodzaju przekrojów poprzecznych, które mogą być wykorzystywane jako elementy konstrukcji. Typowe kształty elementów. tzn. Z, C oraz tzw. przekroje kapeluszowe, które zostały przebadane i opisane w literaturze, wykorzystuje się głównie jako płatwie lub części składowe wiązarów kratowych. Nowo opatentowany przekrój typu GEB ma być wykorzystany jako element nośny konstrukcji ramowych. W związku z tym innowacyjny kształt oraz parametry geometryczne przekroju takiego kształtownika, związane z możliwością jego wyprodukowania oraz z warunkami nośności, stateczności oraz sztywności, muszą być optymalne. Według normy PN-EN 1993-1-3, każdy nowo uformowany przekrój powinien być przebadany pod kątem nośności elementu i formy

  4. Experimental Testing of Innovative Cold-Formed 'GEB' Section / Badania Eksperymentalne Innowacyjnego Kształtownika Giętego Na Zimno Typu "Geb"

    NASA Astrophysics Data System (ADS)

    Łukowicz, Agnieszka; Urbańska-Galewska, Elżbieta; Gordziej-Zagórowska, Małgorzata

    2015-03-01

    One of the major advantages of light gauge steel structures made of cold-formed steel sections is their low weight so the production of typical single-storey steel structures of this kind of profiles is still rising. The well known profiles, e.o. Z-sections, C-sections and the so called hat-sections studied and described in the literature, are used mainly as purlins or truss components. A new profile GEB was patented for the use for primary load-bearing member in fabricated steel frames. According to the code [1] every novel cross section should be tested to assign the deformation shape and bearing capacity. The paper deals with the numerical and experimental research of bearing capacity of cold formed GEB profiles. The deformation shape and limit load was obtained from bending tests. The GEB cross section bearing capacity was also determined according to codes [1, 2]. Jedną z najważniejszych zalet lekkich konstrukcji metalowych, wytwarzanych z kształtowników giętych na zimno, jest ich mała masa, dlatego też, producenci coraz częściej wykorzystują możliwości profili giętych do wytwarzania typowych konstrukcji halowych w budownictwie systemowym. Proces gięcia na zimno, pozwala na formowanie różnego rodzaju przekrojów poprzecznych, które mogą być wykorzystywane jako elementy konstrukcji. Typowe kształty elementów. tzn. Z, C oraz tzw. przekroje kapeluszowe, które zostały przebadane i opisane w literaturze, wykorzystuje się głównie jako płatwie lub części składowe wiązarów kratowych. Nowo opatentowany przekrój typu GEB ma być wykorzystany jako element nośny konstrukcji ramowych. W związku z tym innowacyjny kształt oraz parametry geometryczne przekroju takiego kształtownika, związane z możliwością jego wyprodukowania oraz z warunkami nośności, stateczności oraz sztywności, muszą być optymalne. Według normy PN-EN 1993-1-3, każdy nowo uformowany przekrój powinien być przebadany pod kątem nośności elementu i formy

  5. Fe isotope fractionation during phase separation in the NaCl-H2O system: An experimental study with implications for seafloor hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Syverson, Drew D.; Pester, Nicholas J.; Craddock, Paul R.; Seyfried, William E.

    2014-11-01

    Phase separation has been proposed as a possible mechanism contributing to the Fe isotope composition of hydrothermal fluids at mid-ocean ridges. The uncertainty results largely from the emphasis on field data that can involve competing processes that obscure cause and effect of any one process. To better understand the potential significance of phase separation in the NaCl-Fe-H2O system on Fe isotope fractionation, temperature and pressure of a Fe-bearing NaCl fluid in a titanium flow reactor were carefully adjusted to produce vapor ± liquid ± halite, while the Fe isotope composition between coexisting phases was monitored. Two different P-T regions were emphasized: (1) 424-420 °C, 35.2-31.5 MPa; and (2) 464-466 °C, 29.8-24.7 MPa. Both regions were chosen to simulate the range of physical conditions that are experienced by hydrothermal fluids at mid-ocean ridges (MORs). Decompression induced phase separation in both P-T regions results in the vapor phase becoming enriched in the heavier isotopes of Fe, as the Fe/Cl ratio decreases. The coexisting NaCl-rich liquid phase remains essentially constant with respect to Fe/Cl ratio and Fe isotope composition. Coinciding with the lowest vapor chlorinity in the vapor-liquid stability field, the Fe/Cl ratio of the vapor abruptly increases, while the Fe isotope fractionation between the vapor and liquid (103ln ⁡αV/L56/54) reached a maximum value of +0.145±0.048‰ . Subsequently, Fe isotope fractionation decreased upon transition into the vapor-halite stability field (P-T region 2). We infer that the observed Fe isotope fractionation between vapor ± liquid ± halite is caused by differences in Fe speciation among coexisting chloride-bearing phases. The experimental study confirms for the first time that measurable Fe isotope variability can result from phase separation in high temperature hydrothermal systems. The species-dependent Fe isotope fractionation reported here is small relative to predicted mineral

  6. Influence of NaCl Concentrations on Coagulation, Temperature, and Electrical Conductivity Using a Perfusion Radiofrequency Ablation System: An Ex Vivo Experimental Study

    SciTech Connect

    Aube, Christophe Schmidt, Diethard; Brieger, Jens; Schenk, Martin; Kroeber, Stefan; Vielle, Bruno; Claussen, Claus D.; Goldberg, S. Nahum; Pereira, Philippe L.

    2007-02-15

    Purpose. To determine, by means of an ex vivo study, the effect of different NaCl concentrations on the extent of coagulation obtained during radiofrequency (RF) ablation performed using a digitally controlled perfusion device. Method. Twenty-eight RF ablations were performed with 40 W for 10 min using continuous NaCl infusion in fresh excised bovine liver. For perfusion, NaCl concentrations ranging from 0 (demineralized water) to 25% were used. Temperature, the amount of energy, and the dimensions of thermal-induced white coagulation were assessed for each ablation. These parameters were compared using the nonparametric Mann-Whitney test. Correlations were calculated according to the Spearman test. Results. RF ablation performed with 0.9% to 25% concentrations of NaCl produced a mean volume of coagulation of 30.7 {+-} 3.8 cm{sup 3}, with a mean short-axis diameter of 3.6 {+-} 0.2 cm. The mean amount of energy was 21,895 {+-} 1,674 W and the mean temperature was 85.4 {+-} 12.8 deg. C. Volume of coagulation, short-axis diameter, and amount of energy did not differ significantly among NaCl concentrations (p > 0.5). A correlation was found between the NaCl concentration and the short-axis diameter of coagulation (r = 0.64) and between the NaCl concentration and the mean temperature (r = 0.67), but not between the NaCl concentration and volume of coagulation. Conclusion. In an ex vivo model, continuous perfusion with high NaCl concentrations does not significantly improve the volume of thermal-induced coagulation. This may be because the use of a low-power generator cannot sufficiently exploit the potential advantage of better tissue conductivity provided by NaCl perfusion.

  7. Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Ma, Zhaohui; Wang, Yuesheng; Sun, Chunwen; Alonso, J. A.; Fernández-Díaz, M. T.; Chen, Liquan

    2014-11-01

    Sodium-ion batteries have attracted considerable interest as an alternative to lithium-ion batteries for electric storage applications because of the low cost and natural abundance of sodium resources. The materials with an open framework are highly desired for Na-ion insertion/extraction. Here we report on the first visualization of the sodium-ion diffusion path in Na3[Ti2P2O10F] through high-temperature neutron powder diffraction experiments. The evolution of the Na-ion displacements of Na3[Ti2P2O10F] was investigated with high-temperature neutron diffraction (HTND) from room temperature to 600°C difference Fourier maps were utilized to estimate the Na nuclear-density distribution. Temperature-driven Na displacements indicates that sodium-ion diffusion paths are established within the ab plane. As an anode for sodium-ion batteries, Na3[Ti2P2O10F] exhibits a reversible capacity of ~100 mAh g-1 with lower intercalation voltage. It also shows good cycling stability and rate capability, making it promising applications in sodium-ion batteries.

  8. Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery.

    PubMed

    Ma, Zhaohui; Wang, Yuesheng; Sun, Chunwen; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2014-01-01

    Sodium-ion batteries have attracted considerable interest as an alternative to lithium-ion batteries for electric storage applications because of the low cost and natural abundance of sodium resources. The materials with an open framework are highly desired for Na-ion insertion/extraction. Here we report on the first visualization of the sodium-ion diffusion path in Na3[Ti2P2O10F] through high-temperature neutron powder diffraction experiments. The evolution of the Na-ion displacements of Na3[Ti2P2O10F] was investigated with high-temperature neutron diffraction (HTND) from room temperature to 600°C; difference Fourier maps were utilized to estimate the Na nuclear-density distribution. Temperature-driven Na displacements indicates that sodium-ion diffusion paths are established within the ab plane. As an anode for sodium-ion batteries, Na3[Ti2P2O10F] exhibits a reversible capacity of ~100 mAh g(-1) with lower intercalation voltage. It also shows good cycling stability and rate capability, making it promising applications in sodium-ion batteries. PMID:25427677

  9. An experimental study on K and Na incorporation in dravitic tourmaline and insight into the origin of diamondiferous tourmaline from the Kokchetav Massif, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Wirth, Richard; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2015-03-01

    Tourmaline was synthesized in the system MgO-Al2O3-B2O3-SiO2-KCl-NaCl-H2O from an oxide mixture and excess fluid at 500-700 °C and 0.2-4.0 GPa to investigate the effect of pressure, temperature, and fluid composition on the relative incorporation of Na and K in dravitic tourmaline. Incorporation of K at the X-site increases with pressure, temperature, and KCl concentration; a maximum of 0.71 K pfu (leaving 0.29 X-vacant sites pfu) was incorporated into K-dravite synthesized at 4.0 GPa, 700 °C from a 4.78 m KCl, Na-free fluid. In contrast, Na incorporation depends predominately on fluid composition, rather than pressure or temperature; dravite with the highest Na content of 1.00 Na pfu was synthesized at 0.4 GPa and 700 °C from a 3.87 m NaCl and 1.08 m KCl fluid. All synthesized crystals are zoned, and the dominant solid solution in the Na- and K-bearing system is between magnesio-foitite [□(Mg2Al)Al6Si6O18(BO3)3(OH)3OH] and dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], with the dravitic component increasing with the concentration of Na in the fluid. In the K-bearing, Na-free system, the dominant solid solution is between magnesio-foitite and K-dravite [KMg3Al6Si6O18(BO3)3(OH)3(OH)], with the K-dravitic component increasing with pressure, temperature, and the concentration of K in the fluid. The unit-cell volume of tourmaline increases with K incorporation from 1555.1(3) to 1588.1(2) Å3, reflecting the incorporation of the relatively large K+ ion. Comparison of our results to the compositional data for maruyamaite (K-dominant tourmaline) from the ultrahigh-pressure rocks of the Kokchetav Massif in Kazakhstan suggests that the latter was formed in a K-rich, Na-poor environment at ultrahigh-pressure conditions near the diamond-stability field.

  10. Experimental Determinations of the Activity-Composition Relations and Phase Equilibria of H{sub 2}O-CO{sub 2}-NaCl Fluids

    SciTech Connect

    Anovitz, L.M.; Labotka, T.C.; Blencoe, J.G.; Singh, J.; Horita, J.

    1999-09-12

    An understanding of activity-composition (a/X) relations and phase equilibria for halite-bearing, mixed-species supercritical fluids is critically important in many geological and industrial applications. The authors have performed experiments on the a/X relations and phase equilibria of H{sub 2}O-CO{sub 2}-NaCl fluids at 5OO C, 500 bars, to obtain highly accurate and precise data for this ternary system. H{sub 2}O-CO{sub 2}-NaCl samples were reacted at a (H{sub 2}O) = 0.350, 0.425, 0.437, 0.448, 0.560, 0.606, 0.678, 0.798, and 0.841. Results indicate that fluids with these activities lie in the vapor-NaCl two-phase region, and that a fluid with the last value has a composition close to the three-phase (vapor + brine + halite) field. Data from these experiments and NaCl solubility runs also suggest that the vapor comer of the three-phase field lies near X(H{sub 2}O) = 0.760, X(NaCl) = 0.065, which is a significantly more water-rich composition than suggested by the model of [1].

  11. On the principle of ion selectivity in Na+/H+-coupled membrane proteins: Experimental and theoretical studies of an ATP synthase rotor

    PubMed Central

    Leone, Vanessa; Pogoryelov, Denys; Meier, Thomas; Faraldo-Gómez, José D.

    2015-01-01

    Numerous membrane transporters and enzymes couple their mechanisms to the permeation of Na+ or H+, thereby harnessing the energy stored in the form of transmembrane electrochemical potential gradients to sustain their activities. The molecular and environmental factors that control and modulate the ion specificity of most of these systems are, however, poorly understood. Here, we use isothermal titration calorimetry to determine the Na+/H+ selectivity of the ion-driven membrane rotor of an F-type ATP synthase. Consistent with earlier theoretical predictions, we find that this rotor is significantly H+ selective, although not sufficiently to be functionally coupled to H+, owing to the large excess of Na+ in physiological settings. The functional Na+ specificity of this ATP synthase thus results from two opposing factors, namely its inherent chemical selectivity and the relative availability of the coupling ion. Further theoretical studies of this membrane rotor, and of two others with a much stronger and a slightly weaker H+ selectivity, indicate that, although the inherent selectivity of their ion-binding sites is largely set by the balance of polar and hydrophobic groups flanking a conserved carboxylic side chain, subtle variations in their structure and conformational dynamics, for a similar chemical makeup, can also have a significant contribution. We propose that the principle of ion selectivity outlined here may provide a rationale for the differentiation of Na+- and H+-coupled systems in other families of membrane transporters and enzymes. PMID:25713346

  12. On the principle of ion selectivity in Na+/H+-coupled membrane proteins: experimental and theoretical studies of an ATP synthase rotor.

    PubMed

    Leone, Vanessa; Pogoryelov, Denys; Meier, Thomas; Faraldo-Gómez, José D

    2015-03-10

    Numerous membrane transporters and enzymes couple their mechanisms to the permeation of Na(+) or H(+), thereby harnessing the energy stored in the form of transmembrane electrochemical potential gradients to sustain their activities. The molecular and environmental factors that control and modulate the ion specificity of most of these systems are, however, poorly understood. Here, we use isothermal titration calorimetry to determine the Na(+)/H(+) selectivity of the ion-driven membrane rotor of an F-type ATP synthase. Consistent with earlier theoretical predictions, we find that this rotor is significantly H(+) selective, although not sufficiently to be functionally coupled to H(+), owing to the large excess of Na(+) in physiological settings. The functional Na(+) specificity of this ATP synthase thus results from two opposing factors, namely its inherent chemical selectivity and the relative availability of the coupling ion. Further theoretical studies of this membrane rotor, and of two others with a much stronger and a slightly weaker H(+) selectivity, indicate that, although the inherent selectivity of their ion-binding sites is largely set by the balance of polar and hydrophobic groups flanking a conserved carboxylic side chain, subtle variations in their structure and conformational dynamics, for a similar chemical makeup, can also have a significant contribution. We propose that the principle of ion selectivity outlined here may provide a rationale for the differentiation of Na(+)- and H(+)-coupled systems in other families of membrane transporters and enzymes. PMID:25713346

  13. Experimental Determination of Thermodynamic Properties of Ion-Exchange in Heulandite: Binary Ion-Exchange Experiments at 55 and 85 oC Involving Ca2+, Sr2+, Na+, and K+

    SciTech Connect

    Fridriksson, T; Neuhoff, P S; Viani, B E; Bird, D K

    2004-04-26

    Heulandite is a common rock-forming zeolite that exhibits wide solid solution of extra framework cations, presumably due to ready ion exchange with aqueous solutions. In order to provide a quantitative basis for interpreting and predicting the distribution of aqueous species between heulandite and aqueous solutions, ion exchange equilibrium between heulandite and aqueous solutions with respect to the binary cation pairs Ca{sup 2+} - K{sup +}, Ca{sup 2+} - Na{sup +}, K{sup +} - Na{sup +}, K{sup +} - Sr{sup 2+}, Na{sup +} - Sr{sup 2+}, and Ca{sup 2+} - Sr{sup 2+} was investigated. Homoionic Ca-, K-, and Na-heulandites prepared from natural heulandite were equilibrated with 0.1 N Cl{sup -} solutions containing various proportions of the cations in a given binary pair at 55 and 85 C to define isotherms describing partitioning of the cations over a wide range of heulandite and solution composition with respect to the cations in each pair. In general, the experiments equilibrated rapidly, within 11-15 weeks at 55 C and 3-4 weeks at 85 C. The exception was the Ca{sup 2+} - Sr{sup 2+} binary exchange, which did not equilibrate even after 3 months at 55 C and 4 weeks at 85 C. Slow exchange of Sr{sup 2+} for Ca{sup 2+} also prohibited preparation of homoionic Sr-heulandite from the natural (Ca-rich) heulandite within 10 weeks in 2N SrCl{sub 2} solution at 90 C, although near homoionic Sr-heulandite was produced by exchange of K- and Na-heulandite. Experimentally determined isotherms were used to derive equilibrium constants for the ion exchange reactions and asymmetric Margules models describing the extent of non-ideality in extra framework solid solutions in heulandite. Regressed equilibrium constants for Ca{sup 2+}-Na{sup +}, Ca{sup 2+}-K{sup +}, and K{sup +}-Na{sup +} binary cation pairs at 55 C are internally consistent among each other (complying with the triangle rule), indicating good accuracy of these data. The maximum departure from internal Heulandite ion exchange

  14. Synthetic fluid inclusions: XII. The system H[sub 2]O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution

    SciTech Connect

    Bodnar, R.J. )

    1994-02-01

    The slopes of the liquidus and lines of constant liquid-vapor homogenization temperature (iso-Th) in P-T space for a 40 wt% NaCl bulk composition in the H[sub 2]O-NaCl system were determined using synthetic fluid inclusions. Inclusions were synthesized in the one-phase field at 350-800[degrees]C and 1-6 kbar, and the temperatures of liquid-vapor homogenization and halite dissolution were determined on a heating/cooling stage. The pressure along the liquidus corresponding to a measured halite dissolution temperature [Tm (halite)] was determined from the intersection of the inclusion iso-Th line in the one-phase field with the measured liquid-vapor homogenization temperature [Th [L-V

  15. Peak shifted properties of the "low background NaI(Tl) detectors": An experimental study of response function behavior in different temperature and acquisition time

    NASA Astrophysics Data System (ADS)

    Rezaei Moghaddam, Y.; Rafat Motavalli, L.; Miri Hakimabadi, H.

    2016-09-01

    Due to the necessity of using low background NaI detector in sensitive and accurate measurements, study on the response function variations in different conditions is very important. These types of detectors have different responses in various measurement conditions, including time, temperature and high voltage. In this study, the response function of 76 B 76 LB NaI (SCIONIX) in different conditions is discussed. According to the channel shifting in these detectors and its direct effect on degrading the resolution, the most convenient measurement condition for these detectors, is proposed. Finally, it is recommended that before long-time measurements a "waiting time" is needed to avoid the channel shifting effects.

  16. Experimental investigation of the alluaudite + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite phosphates

    NASA Astrophysics Data System (ADS)

    Hatert, Frederic; Ottolini, Luisa; Schmid-Beurmann, Peter

    2011-04-01

    In order to assess the stability of the primary alluaudite + triphylite assemblage, we performed hydrothermal experiments between 400 and 800°C, starting from the LiNa2Mn x Fe{3-/x 2+}Fe3+(PO4)4 compositions ( x = 1.054, 1.502, 1.745) that represent the ideal compositions of the alluaudite + triphylite assemblages from the Kibingo (Rwanda), Hagendorf-Süd (Germany), and Buranga (Rwanda) pegmatites, respectively. The pressure was maintained at 1 kbar, and the oxygen fugacity was controlled by the Ni-NiO buffer. The results of these experiments show that the alluaudite + triphylite assemblage crystallizes at 400 and 500°C, while the association alluaudite + triphylite + marićite appears at 600 and 700°C. The limit between these two domains, at ca. 550°C, corresponds to the maximum temperature that can be reached by the alluaudite + triphylite assemblages in granitic pegmatites, because marićite has never been observed in such geological environments. At 800°C, the formation of the X-phase + triphylite assemblage indicates a strong reduction of the bulk composition, according to the reaction 0.5LiM2+PO4 (triphylite) + 3Na2M2 2+Fe3+(PO4)3 (alluaudite) + 1.5H2O = 4.5NaM2+PO4 (marićite) + Li0.5Na1.5M5 2+(PO4)4 (X-phase) + H3PO4 + 0.75O2 (M2+ = Fe2+, Mn). Secondary ion mass spectrometry (SIMS) was used at our knowledge for the first time to measure Li in all the Li-bearing phosphates. A specific methodological procedure was developed with the ion microprobe to get accurate Li2O data over a wide concentration range spanning from few ppm Li up to ~11 wt%. Li2O. Our SIMS analyses of the synthesized phosphates indicate that the Li contents of alluaudites, marićites, and X-phase increase progressively with temperature, while the Li content of triphylite-type phosphates decreases due to the Li → Na substitution. The Na-exchange equilibrium between triphylite-type phosphates and alluaudite is correlated with the temperature according to the equation: ln( x {Na/Tri}/ x

  17. A new experimental procedure for determination of photoelectric efficiency of a NaI(Tl) detector used for nuclear medicine liquid waste monitoring with traceability to a reference standard radionuclide calibrator.

    PubMed

    Ceccatelli, A; Campanella, F; Ciofetta, G; Marracino, F M; Cannatà, V

    2010-02-01

    To determine photopeak efficiency for (99m)Tc of the NaI(Tl) detector used for liquid waste monitoring at the Nuclear Medicine Unit of IRCCS Paediatric Hospital Bambino Gesù in Rome, a specific experimental procedure, with traceability to primary standards, was developed. Working with the Italian National Institute for Occupational Prevention and Safety, two different calibration source geometries were employed and the detector response dependence on geometry was investigated. The large percentage difference (almost 40%) between the two efficiency values obtained showed that geometrical effects cannot be neglected. PMID:19914080

  18. Experimental and theoretical studies on the corrosion inhibition of copper by two indazole derivatives in 3.0% NaCl solution.

    PubMed

    Qiang, Yujie; Zhang, Shengtao; Xu, Shenying; Li, Wenpo

    2016-06-15

    Corrosion experiments and theoretical calculations were performed to investigate the inhibition mechanism of indazole (IA) and 5-aminoindazole (AIA) for copper in NaCl solution. The results obtained from weight loss and electrochemical experiments are in good agreement, and reveal that these compounds are high-efficiency inhibitors with inhibition efficiency order: AIA>IA, which was further confirmed by field emission scanning electronic microscope (FESEM) observation. Besides, the quantum chemical calculations and molecular dynamics (MD) simulation showed that both studied inhibitors are adsorbed strongly on the copper surface in parallel mode. The adsorption of these molecules on copper substrate was found to obey Langmuir isotherm. PMID:27003499

  19. Water activities of NaClO4, Ca(ClO4)2, and Mg(ClO4)2 brines from experimental heat capacities: Water activity >0.6 below 200 K

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.

    2016-05-01

    Perchlorate salts found on Mars are extremely hygroscopic and form low eutectic temperature aqueous solutions, which could allow liquid water to exist on Mars despite cold and dry conditions. The formation, dynamics, and potential habitability of perchlorate salt solutions can be broadly understood in terms of water activity. Water activity controls condensation and evaporation of water vapor in brines, deliquescence and efflorescence of crystalline salts, and ice formation during freezing. Furthermore, water activity is a basic parameter defining the habitability of aqueous solutions. Despite the importance of water activity, its value in perchlorate solutions has only been measured at 298.15 K and at the freezing point of water. To address this lack of data, we have determined water activities in NaClO4, Ca(ClO4)2, and Mg(ClO4)2 solutions using experimental heat capacities measured by Differential Scanning Calorimetry. Our results include concentrations up to near-saturation and temperatures ranging from 298.15 to 178 K. We find that water activities in NaClO4 solutions increase with decreasing temperature, by as much as 0.25 aw from 298.15 to 178 K. Consequently, aw reaches ∼0.6-0.7 even for concentrations up to 15 molal NaClO4 below 200 K. In contrast, water activities in Ca(ClO4)2 and Mg(ClO4)2 solutions generally decrease with decreasing temperature. The temperature dependence of water activity indicates that low-temperature NaClO4 solutions will evaporate and deliquesce at higher relative humidity, crystallize ice at higher temperature, and potentially be more habitable for life (at least in terms of water activity) compared to solutions at 298.15 K. The opposite effects occur in Ca(ClO4)2 and Mg(ClO4)2 solutions.

  20. An experimental evaluation of the reaction of granite with streamwater, seawater and NaCl solutions at 200°C

    NASA Astrophysics Data System (ADS)

    Savage, David; Bateman, Keith; Milodowski, Antoni E.; Hughes, Colin R.

    1993-10-01

    Experiments reacting granite with streamwater, seawater, and NaCl solutions have been conducted at 200°C, 50 MPa under batch conditions using direct-sampling autoclaves for durations up to 80 days. Granite-streamwater experiments at 10:1 and 2:1 water/rock ratios produced fluids of low TDS (<600 mg/l), alkaline pH (=9.2), with the solute load dominated by dissolved silica. Solid products of these experiments were a Ca-zeolite and a clay which ranged in composition from aluminous smectite to illite in the 2:1 water/rock ratio experiment. Clay in the 10:1 water/rock ratio experiment was an aluminous smectite. The difference in water/rock ratio of the experiments manifested itself in the rate of change of concentration with time (higher in the lower water/rock ratio experiment), and in the type and amount of solid products: more clay of a homogeneous composition was produced in the higher water/rock ratio experiment, and less zeolite. The amount of clay precipitated was directly related to the amount of Mg present in the initial system. The reaction of granite with seawater produced a fluid of low pH (≈ 3.5), and principal changes in the fluid chemistry as follows: a gain of SiO 2; and losses of sulphate, magnesium, and calcium. Appreciable mobilisation of heavy metals into the fluid phase such as Fe (up to 15 mg/l) and Mn (up to 2 mg/l) were noted. Solid precipitates consisted of anhydrite, caminite (magnesium hydroxide sulphate hydrate) and a mixed-layer smectite-chlorite clay. The low pH of the evolved fluid is attributed to the precipitation of the hydroxyl-consuming mineral phases, caminite and the smectite-chlorite clay. The reaction of granite with NaCl solutions (0.008 and 0.028 M) produced fluids which were similar to those of the streamwater experiments. However, pH was lower in the NaCl experiments (=7.4-7.8), so that the steady-state concentrations of a number of the cationic constituents of the fluids were slightly greater in these experiments compared

  1. Experimental constraints on the monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote phase relations as a function of pressure, temperature, and Ca vs. Na activity in the fluid

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Harlov, Daniel E.; Majka, Jarosław; Kozub, Gabriela A.

    2014-05-01

    Stability relations of monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote are strongly dependent on pressure, temperature and fluid composition. The increased Ca bulk content expands stability field of allanite relative to monazite towards higher temperatures (Spear, 2010, Chem Geol 279, 55-62). It was also reported from amphibolite facies Alpine metapelites, that both temperature and bulk CaO/Na2O ratio control relative stabilities of allanite, monazite and xenotime (Janots et al., 2008, J Metam Geol 26, 5, 509-526). This study experimentally defines influence of pressure, temperature, high activity of Ca vs. Na in the fluid, and high vs. moderate bulk CaO/Na2O ratio on the relative stabilities of monazite-fluorapatite-allanite/REE-rich epidote and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote. This work expands previous experimental study on monazite (Budzyń et al., 2011, Am Min 96, 1547-1567) to wide pressure-temperature range of 2-10 kbar and 450-750°C, utilizing most reactive fluids used in previous experiments. Experiments were performed using cold-seal autoclaves on a hydrothermal line (2-4 kbar runs) and piston-cylinder apparatus (6-10 kbar runs) over 4-16 days. Four sets of experiments, two for monazite and two for xenotime, were performed with 2M Ca(OH)2 and Na2Si2O5 + H2O fluids. The starting materials included inclusion-free crystals of monazite (pegmatite, Burnet County, TX, USA) or xenotime (pegmatite, Northwest Frontier Province, Pakistan) mixed with (1) labradorite (Ab37An60Kfs3) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + 2M Ca(OH)2 or (2) albite (Ab100) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + Na2Si2O5 + H2O. 20-35 mg of solids and 5 mg of fluid were loaded into 3x15 mm Au capsules and arc welded shut. The monazite alteration is observed in all runs. Newly formed REE-rich fluorapatite and/or britholite are stable in all experimental P-T range in the

  2. Combined Experimental and Computational Studies of a Na2 Ni1-x Cux Fe(CN)6 Cathode with Tunable Potential for Aqueous Rechargeable Sodium-Ion Batteries.

    PubMed

    Hung, Tai-Feng; Chou, Hung-Lung; Yeh, Yu-Wen; Chang, Wen-Sheng; Yang, Chang-Chung

    2015-10-26

    Herein, potential-tunable Na2 Ni1-x Cux Fe(CN)6 nanoparticles with three-dimensional frameworks and large interstitial spaces were synthesized as alternative cathode materials for aqueous sodium-ion batteries by controlling the molar ratio of Ni(II) to Cu(II) at ambient temperature. The influence of the value of x on the crystalline structure, lattice parameters, electrochemical properties, and charge transfer of the resultant compound was explored by using powder X-ray diffractometry, density functional theory, cyclic voltammetry, galvanostatic charge-discharge techniques, and Bader charge analysis. Of the various formulations investigated, that with x=0.25 delivered the highest reversible capacity, superior rate capability, and outstanding cycling performance. These attributes are ascribed to its unique face-centered cubic structure for facile sodium-ion insertion/extraction and the strong interactions between Cu and N atoms, which promote structural stability. PMID:26350587

  3. Experimental evidence for glasslike behavior in a KMnF3: Na+ crystal from x-ray diffraction and Raman scattering

    NASA Astrophysics Data System (ADS)

    Ratuszna, Alicja; Daniel, Philippe; Kapusta, Joanna; Rousseau, Michel

    1998-05-01

    Investigation of the structural and vibrational properties of a KMnF3:14% Na-doped perovskite crystal was performed using x-ray diffraction and Raman scattering. While the x-ray results give evidence of the usual sequence of structural phase transition, classically described for the pure KMnF3 compound with only slight differences, the Raman technique suggests the existence of a large structural disorder. In particular, the existence of an intense low-frequency broad band in the Raman spectra is discussed in terms of overdamped soft modes, indicating a relaxation process or glasslike behavior. From lattice-dynamics calculations it is suggested that this peak could be associated with a ``Boson line'' as occurs in glasses. An interpretation is proposed.

  4. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  5. Experimental study of the reactive processes in the gas phase K{sup +}+i-C{sub 3}H{sub 7}Cl collisions: A comparison with Li and Na ions

    SciTech Connect

    Aguilar, J.; Lucas, J. M.; Andres, J. de; Alberti, M.; Aguilar, A.; Bassi, D.

    2013-05-14

    Reactive collisions between alkali ions (Li{sup +}, Na{sup +}, and K{sup +}) and halogenated hydrocarbon molecules have been studied recently in our research group. In this paper, we have reported on the K{sup +}+i-C{sub 3}H{sub 7}Cl system in the 0.20-14.00 eV center-of-mass energy range using a radio frequency guided-ion beam apparatus developed in our laboratory. Aiming at increasing our knowledge about this kind of reactions, we compare our latest results for K{sup +} with those obtained previously for Li{sup +} and Na{sup +}. While the reaction channels are the same in all three cases, their energy profiles, reactivity, measured reactive cross-section energy dependences, and even their reaction mechanisms, differ widely. By comparing experimentally measured reactive cross-sections as a function of the collision energy with the ab initio calculations for the different potential energy surfaces, a qualitative interpretation of the dynamics of the three reactive systems is presented in the present work.

  6. Experimental response function of a 3 in×3 in NaI(Tl) detector by inverse matrix method and effective atomic number of composite materials by gamma backscattering technique.

    PubMed

    Kiran, K U; Ravindraswami, K; Eshwarappa, K M; Somashekarappa, H M

    2016-05-01

    Response function of a widely used 3in×3in NaI(Tl) detector is constructed to correct the observed pulse height distribution. A 10×10 inverse matrix is constructed using 7 mono-energetic gamma sources ((57)Co, (203)Hg, (133)Ba, (22)Na, (137)Cs, (54)Mn and (65)Zn) which are evenly spaced in energy scale to unscramble the observed pulse height distribution. Bin widths (E)(1/2) of 0.01 (MeV)(1/2) are used to construct the matrix. Backscattered photons for an angle of 110° are obtained from a well-collimated 0.2146GBq (5.8mCi) (137)Cs gamma source for carbon, aluminium, iron, copper, granite and Portland cement. For each observed spectrum, single scattered spectrum is constructed analytically using detector parameters like FWHM, photo-peak efficiency and peak counts. Response corrected multiple scattered photons are extracted from the observed pulse height distribution by dividing the spectrum into a 10 ×1 matrix. Saturation thicknesses of carbon, aluminium, iron, copper, granite and Portland cement are found out. Variation of multiple scattered photons as a function of target thickness are simulated using MCNP code. A relationship between experimental and simulated saturation thicknesses of carbon, aluminium, iron and copper is obtained as a function of atomic number. Using this relation, effective atomic numbers of granite and Portland cement are obtained from interpolation method. Effective atomic numbers of granite and Portland cement are also obtained by theoretical equation using their elemental composition and comparing with the experimental and simulated results. PMID:26926377

  7. Drugs preventing Na+ and Ca2+ overload.

    PubMed

    Ravens, U; Himmel, H M

    1999-03-01

    Cardiac intracellular Na+and Ca2+homeostasis is regulated by the concerted action of ion channels, pumps and exchangers. The Na+, K+-ATPase produces the electrochemical concentration gradient for Na+, which is the driving force for Ca2+removal from the cytosol via the Na+/Ca2+exchange. Reduction of this gradient by increased intracellular Na+concentration leads to cellular Ca2+overload resulting in arrhythmias and contractile dysfunction. Na+and Ca2+overload-associated arrhythmias can be produced experimentally by inhibition of Na+efflux (digitalis-induced intoxication) and by abnormal Na+influx via modulated Na+channels (veratridine, DPI 201-106; hypoxia) or via the Na+, H+exchanger. Theoretically, blockers of Na+and Ca2+channels, inhibitors of abnormal oscillatory release of Ca2+from internal stores or modulators of the Na+, Ca2+and Na+, H+exchanger activities could protect against cellular Na+and Ca2+overload. Three exemplary drugs that prevent Na+and Ca2+overload, i.e. the benzothiazolamine R56865, the methylenephenoxydioxy-derivative CP-060S, and the benzoyl-guanidine Hoe 642, a Na+, H+exchange blocker, are briefly reviewed with respect to their efficacy on digitalis-, veratridine- and ischaemia/reperfusion-induced arrhythmias. PMID:10094840

  8. PVTx properties of the CO2-H2O and CO2-H2O-NaCl systems below 647 K: assessment of experimental data and thermodynamic models

    USGS Publications Warehouse

    Hu, Jiawen; Duan, Zhenhao; Zhu, Chen; Chou, I.-Ming

    2007-01-01

    Evaluation of CO2 sequestration in formation brine or in seawater needs highly accurate experimental data or models of pressure–volume–temperature-composition (PVTx) properties for the CO2–H2O and CO2–H2O–NaCl systems. This paper presents a comprehensive review of the experimental PVTx properties and the thermodynamic models of these two systems. The following conclusions are drawn from the review: (1) About two-thirds of experimental data are consistent with each other, where the uncertainty in liquid volumes is within 0.5%, and that in gas volumes within 2%. However, this accuracy is not sufficient for assessing CO2 sequestration. Among the data sets for liquids, only a few are available for accurate modeling of CO2 sequestration. These data have an error of about 0.1% on average, roughly covering from 273 to 642 K and from 1 to 35 MPa; (2) There is a shortage of volumetric data of saturated vapor phase. (3) There are only a few data sets for the ternary liquids, and they are inconsistent with each other, where only a couple of data sets can be used to test a predictive density model for CO2 sequestration; (4) Although there are a few models with accuracy close to that of experiments, none of them is accurate enough for CO2 sequestration modeling, which normally needs an accuracy of density better than 0.1%. Some calculations are made available on www.geochem-model.org.

  9. Albite-Paragonite-Quartz Solubility: Experimental Constraints on the Thermodynamic Behavior of Si, Al, and Na in Aqueous Fluids at 0.5-1.0 GPa from 350-500C

    NASA Astrophysics Data System (ADS)

    Lin, H. A.; Manning, C. E.

    2001-12-01

    The solubility silica, sodium, and aluminum was measured under subduction zone conditions through experiments in pure H2O and S-bearing solutions in equilibrium with albite-paragonite-quartz at 350-500C, 0.5-1.0 GPa in a piston-cylinder apparatus (sulfur was included for another study, and has no impact on measured solubilities). Starting materials were natural Amelia albite, Brazillian quartz, and microcrystalline paragonite synthesized from finely ground Amelia albite, Al2O3 and H2O at 0.5GPa and 400C for 138 hours. Solutions were extracted in 5% HNO3 and analyzed by ICP-AES. Silica is the most soluble element ( 30 to 217 milli-molal), followed by sodium (9 to 108 milli-molal), and then aluminum ( 3-40 milli-molal). The results agree well with experimental trends of Woodland and Walther (1987, GCA, v. 51, p.365) and with the predicted values at 0.5 GPa calculated using SUPCRT92. Na-Al complexing were not required by the measured concentrations. Comparison with the results of Manning (1994, GCA v.58, p. 4831) and Woodland and Walther (1987) indicate that the solubilities of Si, Na, and Al increase sharply with increasing pressures and more moderately at higher pressures. These results provide the first measurements of alkali-silica-aluminum solubilities under high pressure conditions. The solubilities measured demonstrate that sodium, and by inference other alkalis, are very soluble at high pressures. Aluminum is also extremely soluble. Pressure enhances the solubilities of major rock-forming elements in pure H2O. This indicates that metamorphic and subduction zone fluids can profoundly metasomatize the rocks they interact with as they migrate toward the surface.

  10. Deliquescence of NaCl-NaNO3 and KNO3-NaNO3 Salt Mixtures at 90C

    SciTech Connect

    Carroll, S; Craig, L; Wolery, T

    2003-12-29

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO3-H2O and KNO{sub 3}-NaNO{sub 3}-H{sub 2}O systems at 90 C to determine relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Model predictions agree with experimental results for the NaCl-NaNO{sub 3}-H{sub 2}O system, but underestimate relative humidity by as much as 8% and solution composition by as much as 50% in the KNO{sub 3}-NaNO{sub 3}-H{sub 2}O system.

  11. An Experimental Study of Magnetite Solubility as a Function of Pressure Along the Dewpoint Curve in the NaCl-, KCl-, HCl-H2O-Melt System.

    NASA Astrophysics Data System (ADS)

    Simon, A. C.

    2001-12-01

    Magnetite (Mt) is a ubiquitous phase in magmatic-hydrothermal ore deposits and, thus, any model which aims to predict the evolving physical chemistry of porphyry-ore deposit environments must incorporate data on the equilibria that control the precipitation of Mt in such systems. Extant experimental data indicate that Mt solubility is controlled via the equilibrium Fe3O4Mt + 6HClV + H2V = 3FeCl2V + 4H2OV (Chou and Eugster, 1977, AJS, p 1296); however their experiments were performed at T=500-650° C by equilibrating Mt with a HCl-bearing supercritical aqueous fluid (NaCl-, KCl-free). Conversely, data from some natural Fe-bearing fluid inclusions have evinced that initial temperatures of magmatic volatile phases (MVP) in magmatic-hydrothermal environments may exceed 800° C, possibly even approaching 900° C, in the presence of melt (Clark and Arancibia, 1995, Giant Ore Deposits-II Conference, p. 511). Thus, there currently are no data constraining Mt solubility in the high-temperature regime obtained in natural magmatic systems. Additionally, there are no data on Mt solubility as a function of changes in the chemistry of the MVP. In the system NaCl-H2O, the composition and, thus, the density of brine-saturated vapor change significantly as a function of pressure along a given isotherm and the components KCl and HCl act to shift the limbs of the solvii (Bodnar et al., 1985, GCA, p 1861; Anderko and Pitzer, 1993, GCA, p 1657; Shinohara and Fujimoto, 1994, GCA, p 4857). The absence of data constraining Mt solubility as a function of pressure along a given isotherm, the resultant change in composition and density, as well as deviations in the Na:K:H ratio of the MVP hinder the development of forward models of magmatic-hydrothermal systems. In order to provide these critical data constraining Mt solubility in geologically reasonable magmatic systems we have performed a set of experiments as a function of pressure in the vapor-only field near the 800° C isotherm in the

  12. Interactions of external and internal H+ and Na+ with Na+/Na+ and Na+/H+ exchange of rabbit red cells: evidence for a common pathway.

    PubMed

    Morgan, K; Canessa, M

    1990-12-01

    We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Nai and Hi were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Nao-stimulated Na+ efflux and Na+/H+ EXC as Nao-stimulated H+ efflux and delta pHo-stimulated Na+ influx into acid-loaded cells. The activation of Na+/Na+ EXC by Nao at pHi 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (Km 2.2 mM) and low affinity (Km 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Nao (pHi 6.6, Nai less than 1 mM) also showed high (Km 11 mM) and low (Km 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Nao site (KH 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Nai and allosteric activators (pK 7.0) at high Nai. Na+/H+ EXC was also inhibited by acid pHo and allosterically activated by Hi (pK 6.4). We also established the presence of a Nai regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Nao of both pathways. At low Nai, Na+/Na+ EXC was inhibited by acid pHi and Na+/H+ stimulated but at high Nai, Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Nao sites, cis-inhibited by external Ho, allosterically modified by the binding of H+ to a Hi regulatory site and regulated by Nai. These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger. Na+/H+ EXC was partially inhibited (80-100%) by dimethyl-amiloride (DMA) but basal or

  13. Experimental investigation of the hydrothermal geochemistry of platinum and palladium: I. Solubility of platinum and palladium sulfide minerals in NaCl/H 2SO 4 solutions at 300°C

    NASA Astrophysics Data System (ADS)

    Gammons, C. H.; Bloom, M. S.; Yu, Y.

    1992-11-01

    Approximately 150 silica tube experiments were used to determine the solubility of Pt and Pd sulfides in NaCl/H 2SO 4 solutions at 300°C. Oxidation state was controlled by equilibrium between aqueous sulfate and coexisting solids. Buffering assemblages included Pd + Pd4S, Pd4S + Pd16S7, Pd16S7 + PdS, Pt + PtS, and PtS + PtS2. Solution pH was controlled by the dissociation of H 2SO 4 (0.1 or 1.0 m), adjusted for ion pairing. Salinities ranged from 0.01 to 3.0 m NaCl. Under these conditions, measured Pt and Pd solubilities varied over a wide range (<0.1 ppb to >1000 ppm), indicating dissolution as chloride complexes of high ligand number. Detailed interpretation of the results gives equilibrium constants for the following reactions: Pd(s) + 2H + + 4Cl - + 1/2O2(g) = PdCl 42- + H 2O (a1) Pt(s) + 2H + + 3Cl - + 1/2O2(g) = PtCl 3- + H 2O , (a2) logK(300° C, Psat) = +12.65 ± 0.5 (reaction al) and +14.84 ± 0.3 (reaction a2). Our experimentally derived constants are in fair (Pt) to excellent (Pd) agreement with previously published estimates based on extrapolation of low-temperature data. The temperature dependence of reaction (a1) is described by the following polynomial (valid between 25 and 300°C): logKal = 22.53 - 7.398 e - 02 T + 1.433 e-04 T2 - 1.034 e - 08 T3 ( T = ° C). Our study indicates that chloride complexes may contribute significant solubilities (> 1 ppb) of Pt and Pd at low to moderate temperature, but only under conditions which are highly oxidized (hematite stable), highly saline (>3 m NaCl eq), and/or unusually acidic ( pH < 4). In the presence of aqueous sulfide, Pt-group element (PGE) solubilities as chloride complexes are extremely low (<1 ppt) and are probably less than the total contribution from other aqueous species (e.g., bisulfide, hydroxy, or ammonia complexes). However, the very strong temperature dependence of reaction (a1) suggests that much higher PGE mobility may be expected at supercritical temperatures. PGEs dissolved as chloride

  14. Experimental and Theoretical Comparison of the O K-Edge Non-Resonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO4

    SciTech Connect

    Bradley, Joseph A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Seidler, Gerald T.; Scott, Brian L.; Shuh, David K.; Tyliszczak, T.; Wilkerson, Marianne P.; Wolfsberg, Laura E.

    2010-09-14

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g. O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation effects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO41- and provide methodology for obtaining trustworthy and quantitative data on non-conducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by non-resonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO41-, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Time dependent density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t2 molecular orbitals that result from Re 5d and O 2p covalent mixing in Td symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time-dependent density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO4 may serve as a well-defined O K-edge energy and intensity standard for future O K edge XAS studies.

  15. Experimental and Theoretical Comparison of the O K-Edge Nonresonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO[subscript 4

    SciTech Connect

    Bradley, Joseph A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Seidler, Gerald T.; Scott, Brian L.; Shuh, David K.; Tyliszczak, Tolek; Wilkerson, Marianne P.; Wolfsberg, Laura E.

    2010-12-07

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO{sub 4}{sup 1-} and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO{sub 4}{sup 1-}, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t{sub 2} molecular orbitals that result from Re 5d and O 2p covalent mixing in T{sub d} symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO{sub 4} may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

  16. Na and K Dependence of the Na/K Pump in Cystic Fibrosis Fibroblasts

    NASA Astrophysics Data System (ADS)

    Reznik, Vivian M.; Schneider, Jerry A.; Mendoza, Stanley A.

    1981-11-01

    The Na and K dependence of the Na/K pump was measured in skin fibroblasts from patients with cystic fibrosis and age/sex-matched controls. Under basal conditions, there was no difference between control and cystic fibrosis cells in protein per cell, intracellular Na and K content, or Na/K pump activity (measured as ouabain-sensitive 86Rb uptake). There was no difference in the Na dependence of the Na/K pump between cystic fibrosis cells and control cells. In cells from patients with cystic fibrosis, the Na/K pump had a significantly lower affinity for K (Km = 1.6 mM) when compared to normals (Km = 0.9 mM). This difference was demonstrated by using two independent experimental designs.

  17. The effect of NA vapor on the NA content of chondrules

    NASA Astrophysics Data System (ADS)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-12-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the PNa for these experimental conditions to be in the 10-6 atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable of producing

  18. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  19. Inelastic processes in Na+-Ne, Na+-Ar, Ne+-Na, and Ar+-Na collisions in the energy range 0.5-14 keV

    NASA Astrophysics Data System (ADS)

    Lomsadze, R. A.; Gochitashvili, M. R.; Kezerashvili, R. Ya.

    2015-12-01

    Absolute cross sections for charge-exchange, ionization, and excitation in Na+-Ne and Na+-Ar collisions were measured in the ion energy range 0.5 -10 keV using a refined version of a capacitor method and collision and optical spectroscopy methods simultaneously in the same experimental setup. Ionization cross sections for Ne+-Na and Ar+-Na collisions are measured at energies of 2 -14 keV using a crossed-beam spectroscopy method. The experimental data and the schematic correlation diagrams are used to analyze and determine the mechanisms for these processes. For the charge-exchange process in Na+-Ar collisions two nonadiabatic regions are revealed and mechanisms responsible for these regions are explained. Structural peculiarity on the excitation function for the resonance lines of argon atoms in Na+-Ar collisions are observed and the possible mechanisms of this phenomenon are explored. The measured ionization cross sections for Na+-Ne and Ne+-Na collisions in conjunction with the Landau-Zener formula are used to determine the coupling matrix element and transition probability in a region of pseudocrossing of the potential curves.

  20. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H 2O-NaX (X = Cl, F) system at 770°C, 2 kbar

    NASA Astrophysics Data System (ADS)

    Peiffert, Chantal; nguyen-Trung, Chinh; Cuney, Michel

    1996-05-01

    The solubility of uranium oxide was investigated in both aqueous halide (Cl, F) fluid and granitic melt in equilibrium in the system uranium oxide-haplogranite-H 2O-NaCl (0.1-5.0 molal), NaF (0.1-0.5 molal) at 770°C, 2 kbar, and fO 2 conditions controlled by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O- CuO buffers. Three distinct uranium oxides UO (2+ x) with x = 0.01 ± 0.01; 0.12 ± 0.02; and 0.28 ± 0.02, respec- tively, were obtained in both chloride and fluoride systems, under the three fO 2 conditions cited above. Changes in the composition of aqueous solutions and silicate melt were observed after the runs. These changes were more pronounced for the fluoride-bearing experiments. Quench pH decreased from 5.9 to 2.1 with increasing chloride molality from 0.085-4.38 molal. For fluoride solutions, the decrease of pH from 5.4 to 3.4 corresponded to the increase of fluoride molality from 0.02-0.23 molal. The U solubility in chloride solutions was in the range 10-967 ppm. For the same molality, fluoride solutions appeared to dissolve up to twenty times more uranium than chloride solutions. The increase of halide molality and oxidation led to increase the U solubility. The U solubility in silicate glasses was in the range 10-1.8 × 10 4 ppm and increased with increasing oxidation and halide concentration. In addition, increasing agpaicity also increased U solubility in the chloride system. This effect was not observed in the fluoride system. The chloride concentration in the silicate melt increased from 100-790 ppm with increasing initial aqueous chloride concentration from 0.1-5.0 m. The fluoride concentration in the silicate melt increased from 2.8 × 10 3 to 1.1 × 10 4 ppm with increasing initial fluoride concentra- tion from 0.1-0.5 m. In the chloride system, the partition coefficient of U (log D)(U) fluid/melt) increased from -1.2-0 with increasing agpaicity from 0.92-1.36, for increasing chloride concentration from 0.085-4.38 molal and for increasing fO 2 from 10 -15

  1. An enhancement to the NA4 gear vibration diagnostic parameter

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.

    1994-01-01

    A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.

  2. Homocoordination preference in NaCs and LiNa liquid alloys by first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Costa Cabral, B. J.; Martins, J. L.

    1999-09-01

    We present structural and dynamics results based on Hellman-Feynman molecular dynamics for the liquid phase of the NaCs alloy at two Na concentrations (cNa=0.6 and 0.8) and for the Li0.61Na0.39 zero alloy at two temperatures (T=590 K and 690 K). For NaCs the calculated structure factor S(k) is in very good agreement with data from neutron scattering experiments and the partial structure factors are compared to semiexperimental, theoretical and classical molecular dynamics predictions. We predict similar values for the self-diffusion coefficients of Na and Cs atoms in the Na0.6Cs0.4 alloy. For LiNa the concentration-concentration structure factor is in good agreement with experimental data and our results for the dynamics are compared with data from classical molecular dynamics simulations.

  3. Dependence of Na-K pump current on internal Na+ in mammalian cardiac myocytes.

    PubMed

    Mogul, D J; Singer, D H; Ten Eick, R E

    1990-08-01

    Na-K pump current (Ipump) is a function of the intracellular Na+ concentration [( Na+]i). We examined the quantitative relationship between Ipump and [Na+]i in isolated guinea pig ventricular myocytes under steady-state conditions. [Na+]i was controlled and "clamped" at several selected concentrations using wide-tipped pipette microelectrodes, and membrane current was measured using the whole cell patch voltage-clamp technique. Ipump generated at a holding potential of -40 mV was determined by measuring the change in steady-state holding current before and during exposure to dihydroouabain (1 mM); Ipump was measured at 11 levels of [Na+]i ranging from 0 to 80 mM (n = 63) with only one measurement per cell and normalized to cell capacitance to account for differences between myocytes in sarcolemmal surface area. Ipump exhibited a nonlinear dependence on [Na+]i; a Hill analysis of the relationship yielded a half-maximal [Na+]i for pump stimulation of 43.2 mM and a Hill coefficient of 1.53. An alternative analysis of the experimental data was performed assuming that occupation of three internal binding sites by Na+ is required for enzyme turnover. Regression analysis gave the best fit when only two different binding affinities (KD) are postulated. The values are KD1 = 1 mM, KD2 = KD3 = 29 mM. From the analysis using the latter model, the level of [Na+]i at which Ipump saturated closely approximated the theoretical saturation level calculated from published estimates of pump turnover rate and density. The maximal sensitivity of the Na-K pump to changes in [Na+]i occurs when internal [Na+] is within the range for the normal resting physiological level. PMID:2167023

  4. Experimental investigation of the EPR parameters and molecular orbital bonding coefficients for VO2+ ion in NaH2PO4·2H2O single crystals

    NASA Astrophysics Data System (ADS)

    Kalfaoğlu, Emel; Karabulut, Bünyamin

    2016-09-01

    Electron paramagnetic resonance (EPR) spectra of VO2+ ions in NaH2PO4·2H2O single crystal have been studied. The spin-Hamiltonian parameters and molecular orbital bonding coefficients were calculated. The angular variation of the EPR spectra shows two different VO2+ complexes. These are located in different chemical environment and each environment contains four magnetically inequivalent VO2+ sites. The crystal field around VO2+ ion is approximately axially symmetric since a strong V=O bond distorts the crystal lattice. Spin Hamiltonian parameters and molecular orbital bonding coefficients were calculated from the EPR data and the nature of bonding in the complex was discussed together.

  5. Experimental demonstration of intracavity solid-state laser cooling of Yb{sup 3+}:ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF glass

    SciTech Connect

    Heeg, B.; Stone, M.D.; Khizhnyak, A.; DeBarber, P.A.; Rumbles, G.; Mills, G.

    2004-08-01

    We report an approach to bulk optical cooling of solid-state materials by placing the cooling medium inside a laser cavity. The laser system is a diode-pumped Yb{sup 3+}:KY(WO{sub 4}){sub 2} (KYW) laser, while the cooling medium is an uncoated sample of 2%-doped Yb{sup 3+}:ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF (ZBLAN) glass. A typical drop of 6 K from ambient temperature was obtained from a noncontact temperature measurement based on the anti-Stokes luminescence profile, using diode pump power at the gain medium of 6 W, a laser wavelength of 1027 nm, and an absorbed power of 1.25 W.

  6. Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Tabacchi, G.; Fois, E.; Lee, Y.

    2016-03-01

    The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch-Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made.

  7. The NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Krivda, M.; NA62 Collaboration

    2013-08-01

    The main aim of the NA62 experiment (NA62 Technical Design Report, na62.web.cern.ch/NA62/Documents/TD_Full_doc_v1.pdf> [1]) is to study ultra-rare Kaon decays. In order to select rare events over the overwhelming background, central systems with high-performance, high bandwidth, flexibility and configurability are necessary, that minimize dead time while maximizing data collection reliability. The NA62 experiment consists of 12 sub-detector systems and several trigger and control systems, for a total channel count of less than 100,000. The GigaTracKer (GTK) has the largest number of channels (54,000), and the Liquid Krypton (LKr) calorimeter shares with it the largest raw data rate (19 GB/s). The NA62 trigger system works with 3 trigger levels. The first trigger level is based on a hardware central trigger unit, so-called L0 Trigger Processor (L0TP), and Local Trigger Units (LTU), which are all located in the experimental cavern. Other two trigger levels are based on software, and done with a computer farm located on surface. The L0TP receives information from triggering sub-detectors asynchronously via Ethernet; it processes the information, and then transmits a final trigger decision synchronously to each sub-detector through the Trigger and Timing Control (TTC) system. The interface between L0TP and the TTC system, which is used for trigger and clock distribution, is provided by the Local Trigger Unit board (LTU). The LTU can work in two modes: global and stand-alone. In the global mode, the LTU provides an interface between L0TP and TTC system. In the stand-alone mode, the LTU can fully emulate L0TP and so provides an independent way for each sub-detector for testing or calibration purposes. In addition to the emulation functionality, a further functionality is implemented that allows to synchronize the clock of the LTU with the L0TP and the TTC system. For testing and debugging purposes, a Snap Shot Memory (SSM) interface is implemented, that can work

  8. Feb 2008 - Feb 2009 Progress Report and Final Report for NA26215: Experimental Studies of High-Energy Processing of Proto-Planetary and Planetary Materials in the Early Solar System

    SciTech Connect

    Jacobsen, Stein B.

    2009-05-28

    The results of this project are the first experimental data on the behavior of metal-silicate mixtures under very high pressures and temperatures comparable to those of the putative Moon-forming impact experienced by Earth in its early history. Probably the most important outcome of this project was the discovery that metal-silicate interaction and equilibration during highly energetic transient events like impacts may be extremely fast and effective on relatively large scale that was not appreciated before. During the course of this project we have developed a technique for trapping supercritical melts produced in our experiments that allows studying chemical phenomena taking place on a nanosecond timescales. Our results shed new light on the processes and conditions existed in the early Earth history, a subject of perennial interest of the humankind. The results of this project also provide important experimental constraints essential for development of the strategy and technology to mitigate imminent asteroid hazard.

  9. Two-step melting of Na41+

    NASA Astrophysics Data System (ADS)

    Zamith, Sébastien; Labastie, Pierre; Chirot, Fabien; L'Hermite, Jean-Marc

    2010-10-01

    The heat capacity of the mass selected Na41+ cluster has been measured using a differential nanocalorimetry method. A two-peak structure appears in the heat capacity curve of Na41+, whereas Schmidt and co-workers [M. Schmidt, J. Donges, Th. Hippler, and H. Haberland, Phys. Rev. Lett. 90, 103401 (2003)] observed, within their experimental accuracy, a smooth caloric curve. They concluded from the absence of any structure that there is a second order melting transition in Na41+ with no particular feature such as premelting. The observed difference with the latter results is attributed to the better accuracy of our method owing to its differential character. The two structures in the heat capacity are ascribed to melting and premelting of Na41+. The peak at lower temperature is likely due to an anti-Mackay to Mackay solid-solid transition.

  10. Two-step melting of Na(41)(+).

    PubMed

    Zamith, Sébastien; Labastie, Pierre; Chirot, Fabien; L'hermite, Jean-Marc

    2010-10-21

    The heat capacity of the mass selected Na(41) (+) cluster has been measured using a differential nanocalorimetry method. A two-peak structure appears in the heat capacity curve of Na(41) (+), whereas Schmidt and co-workers [M. Schmidt, J. Donges, Th. Hippler, and H. Haberland, Phys. Rev. Lett. 90, 103401 (2003)] observed, within their experimental accuracy, a smooth caloric curve. They concluded from the absence of any structure that there is a second order melting transition in Na(41) (+) with no particular feature such as premelting. The observed difference with the latter results is attributed to the better accuracy of our method owing to its differential character. The two structures in the heat capacity are ascribed to melting and premelting of Na(41) (+). The peak at lower temperature is likely due to an anti-Mackay to Mackay solid-solid transition. PMID:20969397

  11. Experimental and theoretical studies of structural phase transition in a novel polar perovskite-like [C2H5NH3][Na0.5Fe0.5(HCOO)3] formate.

    PubMed

    Ptak, Maciej; Mączka, Mirosław; Gągor, Anna; Sieradzki, Adam; Stroppa, Alessandro; Di Sante, Domenico; Perez-Mato, Juan Manuel; Macalik, Lucyna

    2016-02-14

    We report the synthesis, single crystal X-ray diffraction, and thermal, dielectric, Raman and infrared studies of a novel heterometallic formate [C2H5NH3][Na0.5Fe0.5(HCOO)3] (EtANaFe). The thermal studies show that EtANaFe undergoes a second-order phase transition at about 360 K. X-ray diffraction data revealed that the high-temperature structure is monoclinic, space group P2(1)/n, with dynamically disordered ethylammonium (EtA(+)) cations. EtANaFe possesses a polar low-temperature structure with the space group Pn and, in principle, is ferroelectric below 360 K. Dielectric data show that the reciprocal of the real part of dielectric permittivity above and below the phase transition temperature follows the Curie-Weiss, as expected for a ferroelectric phase transition. Based on theoretical calculations, we estimated the polarization as (0.2, 0, 0.8) μC cm(-2), i.e., lying within the ac plane. The obtained data also indicate that the driving force of the phase transition is ordering of EtA(+) cations. However, this ordering is accompanied by significant distortion of the metal formate framework. PMID:26725595

  12. Experimental cross-sections of deuteron-induced reaction on 89Y up to 20 MeV; comparison of natTi(d,x)48V and 27Al(d,x)24Na monitor reactions

    NASA Astrophysics Data System (ADS)

    Lebeda, Ondřej; Štursa, Jan; Ráliš, Jan

    2015-10-01

    We measured cross-sections of the deuteron-induced reactions on 89Y in the energy range of 3.9-19.5 MeV. Excitation functions for formation of 88Zr, 89mZr, 89Zr, 88Y, 90mY and 87mSr were determined and compared with previously published data and prediction of the TALYS code. Thick target yields for production of 88Zr, 89Zrcum, 88Y, 90mY and 87mSr were calculated from the measured cross-sections. Achievable activity versus radionuclidic purity of medically relevant 89Zr is discussed and compared with the production via the 89Y(p,n) reaction. Parallel use of titanium and aluminium beam monitors revealed systematic difference between the recommended cross-sections of both monitoring reactions and provided new cross-section data for formation of 24Na, 27Mg, 43Sc, 44mSc, 44Sc, 46Sc, 47Sc and 48Sc. The cross-sections for the natTi(d,x)46Sc reactions agree very well with recently proposed recommended values.

  13. A new low-voltage plateau of Na3V2(PO4)(3) as an anode for Na-ion batteries

    SciTech Connect

    Jian, ZL; Sun, Y; Ji, XL

    2015-01-01

    A low-voltage plateau at similar to 0.3 V is discovered for the deep sodiation of Na3V2(PO4)(3) by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na3V2(PO4)(3), thus turning it into a promising anode for Na-ion batteries.

  14. Interaction of NaCl(g) and HCl(g) with condensed NA2SO4

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The interaction of Na2SO4(l) with NaCl(g), HCl(g) and H2O(g) was studied in atmospheric pressure flowing air and oxygen at Na2SO4(l) temperatures of 900 and 1000 C. Thermomicrogravimetric and high pressure mass spectrometric sampling techniques were used. Experimental results establish that previously reported enhanced rates of weight loss of Na2SO4(l) in the presence of NaCl(g) are due to the reaction: Na2SO4(c) + 2HCl(g) = 2NaCl(g) + SO2(g) + H2O(g) + 1/2O2(g) being driven to the right in flowing gas systems. The HCl(g) is the product of hydrolysis of NaCl caused by small but significant amounts of H2O(g) present in the system. Thermochemical calculations are used to show that even with sub-ppm levels of H2O(g) present, significant quantities of HCl(g) are produced.

  15. Deliquescence of NaCl-NaNO3, KNO3-NaNO3, and NaCl-KNO3 Salt Mixtures From 90 to 120?C

    SciTech Connect

    Carroll, S A; Craig, L; Wolery, T J

    2004-10-20

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO{sub 3}-H{sub 2}O, KNO{sub 3}-NaNO{sub 3}-H{sub 2}O, and NaCl-KNO{sub 3}-H{sub 2}O systems from 90 to 120 C as a function of relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Discrepancy between model prediction and experimental code can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25 C models for Cl-NO{sub 3} and K-NO{sub 3} ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the non-ideal behavior of these highly concentrated solutions.

  16. Transepithelial Na+ transport and the intracellular fluids: a computer study.

    PubMed

    Civan, M M; Bookman, R J

    1982-01-01

    Computer simulations of tight epithelia under three experimental conditions have been carried out, using the rheogenic nonlinear model of Lew, Ferreira and Moura (Proc. Roy. Soc. London. B 206:53-83, 1979) based largely on the formulation of Koefoed-Johnsen and Ussing (Acta Physiol. Scand. 42: 298-308. 1958). First, analysis of the transition between the short-circuited and open-circuited states has indicated that (i) apical Cl- permeability is a critical parameter requiring experimental definition in order to analyze cell volume regulation, and (ii) contrary to certain experimental reports, intracellular Na+ concentration (ccNa) is expected to be a strong function of transepithelial clamping voltage. Second, analysis of the effects of lowering serosal K+ concentration (csK) indicates that the basic model cannot simulate several well-documented observations; these defects can be overcome, at least qualitatively, by modifying the model to take account of the negative feedback interaction likely to exist between the apical Na+ permeability and ccNa. Third, analysis of the strongly supports the concept that osmotically induced permeability changes in the apical intercellular junctions play a physiological role in conserving the body's stores of NaCl. The analyses also demonstrate that the importance of Na+ entry across the basolateral membrane is strongly dependent upon transepithelial potential, cmNa and csK; under certain conditions, net Na+ entry could be appreciably greater across the basolateral than across the apical membrane. PMID:7057462

  17. Production of Secondary Radioactive 21Na Beam for the Study of 21Na(α,p)24Mg Stellar Reaction

    NASA Astrophysics Data System (ADS)

    Binh, Dam Nguyen; Khiem, Le Hong; Kubono, S.; Yamaguchi, H.; Wakabayashi, Y.; Hayakawa, S.; Kim, A.

    2008-04-01

    The availability of radioactive beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar explosions such as novae, X-ray burst and supernovae. By using an in-flight low-energy radioisotope beam separator (CRIB) at Center for Nuclear Study (CNS), University of Tokyo, we have successfully produced the 21Na proton-rich beam for the study of 21Na(α,p)24Mg reaction which is related to the astrophysically important production of 22Na in the stellar explosive environments. Since it is the first time when this reaction is studied experimentally, we have performed a test experiment to produce the 21Na beam and to estimate the feasibility of the experimental study of 21Na(α,p)24Mg reaction.

  18. Electrical Resistivity of Liquid Alkali Na-based Binary Alloys

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2007-11-01

    The study of the electrical resistivity rL of alkali Na-based binary alloys Na1-xLix, Na1-xKx, Na1-xRbx and Na1-xCsx have been made by well-recognized model potential of Gajjar et al. The most recent exchange and correlation functions due to Farid et al (F) and Sarkar et al (S) are used for the first time in the study of electrical resistivity of liquid binary mixtures and found suitable for such study. The results, due to the inclusion of Sarkar et al's local field correction function, are found superior to those obtained due to Farid et al's local field correction function. Electrical resistivity of Na-based binary alloys compare well with the experimental data available in the literature.

  19. Diffuse sorption modeling: apparent H/Na, or the same, Al/Na exchange on clays.

    PubMed

    Pivovarov, Sergey

    2009-08-15

    Clay minerals are specified by permanent negative surface charge. In solutions of sodium salts, the surface of clay is covered by exchangeable sodium ions. In an acidic field (pH<4-6), sodium ions are displaced from the surface. This apparent H/Na exchange is conditioned by dissolution of alumina, followed by Al/Na exchange. Two kinds of published experimental data were considered in order to follow Al/Na exchange: the first is direct measurement of exchangeable sodium and aluminum in clay, and the second is exchange sorption of trace metal. Because of the equivalency of ionic exchange, trace metal acts as a probe, indicating the sodium content in clay. These experimental data were successfully modeled with use of the Poisson-Boltzmann equation, with the assumption that all exchange cations are located in the diffuse layer. PMID:19464695

  20. Na/sup +/-H/sup +/ exchange and Na/sup +/-dependent transport systems in streptozotocin diabetic rat kidneys

    SciTech Connect

    El-Seifi, S.; Freiberg, J.M.; Kinsella, F.J.; Cheng, L.; Sacktor, B.

    1987-01-01

    The streptozotocin-induced diabetic rat was used to test the hypothesis that Na/sup +/-H/sup +/ exchange activity in the proximal tubule luminal membrane would be increased in association with renal hypertrophy, altered glomerular hemodynamics, enhanced filtered load and tubular reabsorption of /sup 22/Na/sup +/, and stimulated /sup 22/Na= pump activity in the basolateral membrane, previously reported characteristics of this experimental animal model. Amiloride-sensitive H/sup +/ gradient-dependent Na/sup +/ uptake and Na/sup +/ gradient-dependent H/sup +/ flux were increased in brush-border membrane vesicles from the streptozotocin-treated animals. Na/sup +/ gradient-dependent uptakes of phosphate, D-glucose, L-proline, and myoinositol were decreased in the drug-induced diabetic animals. These membrane transport alterations were not found when the streptozotocin-diabetic animals were treated with insulin.

  1. Minimizing Load Effects on NA4 Gear Vibration Diagnostic Parameter

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Zakrajsek, James J.

    2001-01-01

    NA4 is a vibration diagnostic parameter, developed by researchers at NASA Glenn Research Center, for health monitoring of gears in helicopter transmissions. The NA4 reacts to the onset of gear pitting damage and continues to react to the damage as it spreads. This research also indicates NA4 reacts similarly to load variations. The sensitivity of NA4 to load changes will substantially affect its performance on a helicopter gearbox that experiences continuously changing load throughout its flight regimes. The parameter NA4 has been used to monitor gear fatigue tests at constant load. At constant load, NA4 effectively detects the onset of pitting damage and tracks damage severity. Previous research also shows that NA4 reacts to changes in load applied to the gears in the same way it reacts to the onset of pitting damage. The method used to calculate NA4 was modified to minimize these load effects. The modified NA4 parameter was applied to four sets of experimental data. Results indicate the modified NA4 is no longer sensitive to load changes, but remains sensitive to pitting damage.

  2. Interaction of NaCl/g/ and HCl/g/ with condensed Na2SO4. [in hot corrosion processes

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    Na2SO4(l)-NaCl(g) interactions were studied at a total pressure of one atmosphere of air or oxygen for various temperatures of Na2SO4(l) and for various partial pressures of NaCl(g) and H2O(g). Mass spectrometric sampling techniques were used to identify and monitor gas phase species. Continuous recording thermomicrogravimetric measurements were conducted to determine condensed phase weight change rates. Experimental measurements were supplemented with thermodynamic calculations. Numerous experiments were performed at sample temperatures of 900 and 1000 C with 300 ppm NaCl(g). In these experiments, the reproducibility of the Na2SO4 vaporization weight loss rate and initial weight gain upon addition of NaCl(g) were found to be satisfactory. It was found that the addition of NaCl(g) to air flowing over Na2SO4(l) at 900 and 1000 C enhances the rate of weight loss of the Na2SO4(l). This enhancement increases when H2O(g) is also added to the air flow.

  3. Experimental Pi.

    ERIC Educational Resources Information Center

    Corris, G.

    1990-01-01

    Discusses the calculation of pi by means of experimental methods. Polygon circle ratios, Archimedes' method, Buffon's needles, a Monte Carlo method, and prime number approaches are used. Presents three BASIC programs for the calculations. (YP)

  4. Hybrid thermoelastic properties of NaCl

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, R. M.; Marcondes, M. L.; Shukla, G.

    2015-12-01

    Despite the importance of thermoelastic properties of minerals in geophysics, their measurements at high pressures and temperatures are limited. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy and to approximations used in calculations of vibrational effects, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a hybrid scheme to reconcile calculated and measured elastic coefficients and apply it to rock-salt-type NaCl, a challenging material to describe by ab initio and an important mineral in the context of oil/gas exploration. The approach is predictive within the temperature range of validity of the quasiharmonic approximation and results are used to generate velocities of NaCl at desirable geological conditions. [1] Marcondes, M. L. & Wentzcovitch, R.M. (2015). Hybrid ab-initio/experimental thermal equations of state: application to the NaCl pressure scale, J. Appl. Phys. 117:215902.

  5. Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    NASA Astrophysics Data System (ADS)

    Cherng, Jing-Yih; Bennion, Douglas N.

    1987-09-01

    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.

  6. Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    NASA Technical Reports Server (NTRS)

    Cherng, Jing-Yih; Bennion, Douglas N.

    1987-01-01

    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.

  7. Experimental philosophy.

    PubMed

    Knobe, Joshua; Buckwalter, Wesley; Nichols, Shaun; Robbins, Philip; Sarkissian, Hagop; Sommers, Tamler

    2012-01-01

    Experimental philosophy is a new interdisciplinary field that uses methods normally associated with psychology to investigate questions normally associated with philosophy. The present review focuses on research in experimental philosophy on four central questions. First, why is it that people's moral judgments appear to influence their intuitions about seemingly nonmoral questions? Second, do people think that moral questions have objective answers, or do they see morality as fundamentally relative? Third, do people believe in free will, and do they see free will as compatible with determinism? Fourth, how do people determine whether an entity is conscious? PMID:21801019

  8. Electrogenicity of Na(+)-coupled bile acid transporters.

    PubMed Central

    Weinman, S. A.

    1997-01-01

    The Na(+)-bile acid cotransporters NTCP and ASBT are largely responsible for the Na(+)-dependent bile acid uptake in hepatocytes and intestinal epithelial cells, respectively. This review discusses the experimental methods available for demonstrating electrogenicity and examines the accumulating evidence that coupled transport by each of these bile acid transporters is electrogenic. The evidence includes measurements of transport-associated currents by patch clamp electrophysiological techniques, as well as direct measurement of fluorescent bile acid transport rates in whole cell patch clamped, voltage clamped cells. The results support a Na+:bile acid coupling stoichiometry of 2:1. PMID:9626753

  9. Animal experimentation.

    PubMed

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation. PMID:16501652

  10. Photofragmentation of Na

    SciTech Connect

    Assion, A.; Baumert, T.; Weichmann, U.; Gerber, G.

    2001-06-18

    Photofragmentation of Na{sup +}{sub 2} molecules in well prepared vibrational levels has been studied employing intense (10{sup 11}{endash}10{sup 14} W/cm{sup 2} ) and ultrashort (80fs) 790nm laser fields. Four fragmentation channels with different released kinetic energies are observed. Depending on the applied laser intensity, the fragmentation of Na{sup +}{sub 2} is governed by photodissociation on light-induced potentials and field ionization followed by Coulomb explosion. Below 1{times}10{sup 12} W /cm{sup 2} , only photodissociation on light-induced potentials is seen. For intermediate laser intensities, field ionization at large internuclear distances competes with photodissociation, thus preventing the observation of above threshold dissociation. Field ionization at small internuclear distances dominates for the highest laser intensities used.

  11. Experimental macroevolution†

    PubMed Central

    Bell, Graham

    2016-01-01

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  12. Experimental macroevolution.

    PubMed

    Bell, Graham

    2016-01-13

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  13. Zero-gravity growth of NaF-NaCl eutectics in the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Allen, F. G.; Yu, J. G.

    1976-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, were produced in space and on earth. The production of continuous fibers in a eutectic mixture is attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It is shown that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis. A new concept is advanced to explain the phenomenon of transmittance versus far infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelengths is known. Experimental data are in agreement with the theoretical prediction.

  14. RESPONSES OF EXPERIMENTAL ESTUARINE COMMUNITIES TO CONTINUOUS CHLORINATION

    EPA Science Inventory

    The effects of continuous chlorination (as NaOCl) on estuarine benthic organisms were investigated with plankton-derived experimental communities. Twelve consecutive studies were conducted, each of which consisted of approximately 60 days colonization periods from flowing estuari...

  15. Experimental determination of quartz solubility and melting in the system SiO2-H2O-NaCl at 15-20 kbar and 900-1100 °C: implications for silica polymerization and the formation of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel F.; Manning, Craig E.

    2015-10-01

    We investigated quartz solubility and melting in the system SiO2-NaCl-H2O at 15-20 kbar and 900-1100 °C using hydrothermal piston-cylinder methods. The solubility of natural, high-purity quartz was determined by weight loss. Quartz solubility decreases with increasing NaCl mole fraction ( X NaCl) at fixed pressure and temperature. The decline is greatest at low X NaCl. The solubility patterns can be explained by changes in the concentration and identity of silica oligomers. Modeling of results at 1000 °C, 15 kbar, reveals that silica monomers and dimers predominate at low Si concentration (high X NaCl), that higher oligomers assumed to be trimers become detectable at X NaCl = 0.23, and that the trimers contain >50 % of dissolved Si at X NaCl = 0. The modeling further implies a hydration number for the silica monomer of 1.6, significantly lower than is observed in previous studies. Results at 15 kbar and 1100 °C provide evidence of two coexisting fluid phases. Although solubility could not be determined directly in these cases, the presence or absence of phases over a range of bulk compositions permitted mapping of the topology of the phase diagram. At 1100 °C, 15 kbar, addition of only a small amount of NaCl ( X NaCl = 0.05) leads to separation of two fluid phases, one rich in H2O and SiO2, the other rich in NaCl with lower SiO2. Textural identification of two fluids is supported by very low quench pH due to preferential partitioning of Na into the fluid that is rich in SiO2 and H2O, confirmed by electron microprobe analyses. The addition of NaCl causes the upper critical end point on the SiO2-H2O melting curve to migrate to significantly higher pressure. Correspondence between depolymerization and phase separation of SiO2-H2O-NaCl fluids indicates that polymerization plays a fundamental role in producing critical mixing behavior in silicate-fluid systems.

  16. Experimental tectonophysics

    SciTech Connect

    Handin, J.; Logan, J.M.

    1981-07-01

    Because virtually all tectonophysical processes are marked by the overburden, or occur to slowly for adequate observation in anthropocentric time, or both, they must be studied in carefully controlled laboratory experiments that simulate the natural environment as realistically as is practicable. Extrapolations of laboratory data in space and time are invalid unless the experimental and natural phenomenologies are essentially the same. The size of conventional specimens is of the order of 10 cm, whereas the discontinuities (defects in a continuum) in real rock-masses are often much larger, of the order of 1 m or more. Furthermore, such discontinuities as macrofractures (joints) may well dominate the mechanical and fluid-transport properties in nature. Adequate sampling of rock-mass properties will probably always require in-situ testing, but testing machines much larger than any now available could provide useful data at least at intermediate scale.

  17. Measurement and Modeling of Mean Activity Coefficients of NaCl in an Aqueous Mixed Electrolyte Solution Containing Glycine

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Paniz; Dehghani, M. R.; Safahieh, Tina

    2016-08-01

    An electrochemical cell with two ion-selective electrodes (Na+ glass) and (Cl- solid state) was used to measure the mean ionic activity coefficient of NaCl in an aqueous mixture containing NaCl, glycine, and NaNO3 at 308.15 K. The experiments were conducted at fixed molality of NaNO3 (0.1 m) and various molalities of glycine (0-1 m) and NaCl (up to 0.8 m). The experimental data were modeled using a modified version of the Pitzer equation. Finally the activity coefficient ratio of glycine was determined based on the Maxwell equation.

  18. Preparation of Al-La Master Alloy by Thermite Reaction in NaF-NaCl-KCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Jang, Poknam; Li, Hyonmo; Kim, Wenjae; Wang, Zhaowen; Liu, Fengguo

    2015-05-01

    A NaF-NaCl-KCl ternary system containing La2O3 was investigated for the preparation of Al-La master alloy by the thermite reaction method. The solubility of La2O3 in NaF-NaCl-KCl molten salt was determined by the method of isothermal solution saturation. Inductively coupled plasma-optical emission spectroscopy and x-ray diffraction (XRD) analyses were used to consider the content of La2O3 in molten salt and the supernatant composition of molten salt after dissolution of La2O3, respectively. The results showed that the content of NaF had a positive influence on the solubility of La2O3 in NaF-NaCl-KCl molten salts, and the solubility of La2O3 could reach 8.71 wt.% in molten salts of 50 wt.%NaF-50 wt.% (44 wt.%NaCl + 56 wt.%KCl). The XRD pattern of cooling molten salt indicated the formation of LaOF in molten salt, which was probably obtained by the reaction between NaF and La2O3. The kinetic study showed that the thermite reaction was in accord with a first-order reaction model. The main influence factors on La content in the Al-La master alloy product, including molten salt composition, amount of Al, concentration of La2O3, stirring, reduction time and temperature, were investigated by single-factor experimentation. The content of La in the Al-La master alloy could be reached to 10.1 wt.%.

  19. Experimental Tachyons

    NASA Astrophysics Data System (ADS)

    Soli, George

    2008-05-01

    In the physics of potential superluminal information transfer, causality is preserved by the experimental identification of the CMB (Cosmic Microwave Background) rest frame, as the preferred inertial frame in which potential superluminal information transfer is isotropic [Rembielinski] (http://arxiv.org/PScache/quant-ph/pdf/0010/0010026v2.pdf). Potential superluminal information transfer is engineered by tunneling through two successive barriers [Olkhovsky] (http://arxiv.org/PScache/quant-ph/pdf/0002/0002022v5.pdf). In our experiment we use two meter wavelength photons tunneling through two water-tank barriers, separated by an air-gap length [Soli] (http://www.siderealdilaton.com/). The data presented in this talk demonstrates that if the air-gap length is adjusted for subluminal information transfer, then the democracy of inertial frames is recovered, and no preferred frame is measured. The one-way subluminal tunneling group velocity of light is shown to be isotropic to accuracy below the CMB rest frame velocity. It has already been argued in the literature that Einstein's special relativity with tachyons predicts the existence of antimatter [Recami] (http://arxiv.org/PScache/arxiv/pdf/0709/0709.2453v1.pdf). We conjecture that the dilaton scalar particle is discovered by any sidereal data producible by this instrument.

  20. Status of the NA62 Experiment

    NASA Astrophysics Data System (ADS)

    Palladino, Vito

    2016-04-01

    The rare decays {{{K}}^ + } to {π ^ + }{{ν bar ν }} are excellent processes to make tests of new physics at the highest scale complementary to LHC thanks to their theoretically cleaness. The NA62 experiment at CERN SPS aims to collect of the order of 100 events in two years of data taking, keeping the background at the level of 10%. Part of the experimental apparatus has been commissioned during a technical run in 2012. The physics prospects and the status of the experiment will be reviewed after the commissioning run of 2014 and the data taking in 2015.

  1. Preparation of zeolite NaA for CO2 capture from nickel laterite residue

    NASA Astrophysics Data System (ADS)

    Du, Tao; Liu, Li-ying; Xiao, Penny; Che, Shuai; Wang, He-ming

    2014-08-01

    Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.

  2. A Complete Basis Set Estimate of Cation-p Bond Strengths: Na+(ethylene) and Na+(benzene)

    SciTech Connect

    Feller, David F.

    2000-06-02

    Large scale second order perturbation theory and couple cluster theory calculations were performed on the Na+(ethylene) and Na+(benzene) complexes in an effort to estimate binding enthalpies in the complete basis set limit. The resulting best estimates are DH0[Na+(ethylene)] = -13.7 ? 0.2 kcal/mol and DH0[Na+(benzene)] = -23.9 ? 0.3 kcal/mol, which include small corrections for core/valence correlation effects. The former value can be compared to a measurement of -10.3 ? 1.0 kcal/mol obtained from collision induced dissociation, while the latter value is approximately midway between the two existing experimental values which differed by 6.5 kcal/mol. For the basis sets considered in this study, the counterpoise-corrected binding energies were found to be in much worse agreement with the complete basis set limit than the raw values.

  3. Test of the interaction potential energy for Na+-H2 by gaseous ion transport data

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.; Buchachenko, Alexei A.

    2014-09-01

    Transport properties of Na+ ions in gaseous hydrogen are calculated using the recently developed "beyond Monchick-Mason" (BMM) approximation and an ab initio Na+-H2 potential energy surface. Good agreement with the experimental data on the reduced mobility and longitudinal diffusion coefficient proves the accuracy of the surface and the adequacy of the BMM method, allowing for its optimal parameterization.

  4. Effect of ADP on Na+-Na+ Exchange Reaction Kinetics of Na,K-ATPase

    PubMed Central

    Peluffo, R. Daniel

    2004-01-01

    The whole-cell voltage-clamp technique was used in rat cardiac myocytes to investigate the kinetics of ADP binding to phosphorylated states of Na,K-ATPase and its effects on presteady-state Na+-dependent charge movements by this enzyme. Ouabain-sensitive transient currents generated by Na,K-ATPase functioning in electroneutral Na+-Na+ exchange mode were measured at 23°C with pipette ADP concentrations ([ADP]) of up to 4.3 mM and extracellular Na+ concentrations ([Na]o) between 36 and 145 mM at membrane potentials (VM) from −160 to +80 mV. Analysis of charge-VM curves showed that the midpoint potential of charge distribution was shifted toward more positive VM both by increasing [ADP] at constant Na+o and by increasing [Na]o at constant ADP. The total quantity of mobile charge, on the other hand, was found to be independent of changes in [ADP] or [Na]o. The presence of ADP increased the apparent rate constant for current relaxation at hyperpolarizing VM but decreased it at depolarizing VM as compared to control (no added ADP), an indication that ADP binding facilitates backward reaction steps during Na+-Na+ exchange while slowing forward reactions. Data analysis using a pseudo three-state model yielded an apparent Kd of ∼6 mM for ADP binding to and release from the Na,K-ATPase phosphoenzyme; a value of 130 s−1 for k2, a rate constant that groups Na+ deocclusion/release and the enzyme conformational transition E1∼P → E2-P; a value of 162 s−1M−1 for k−2, a lumped second-order VM-independent rate constant describing the reverse reactions; and a Hill coefficient of ∼1 for Na+o binding to E2-P. The results are consistent with electroneutral release of ADP before Na+ is deoccluded and released through an ion well. The same approach can be used to study additional charge-moving reactions and associated electrically silent steps of the Na,K-pump and other transporters. PMID:15298896

  5. Thermodynamics of NaCl in steam

    SciTech Connect

    Pitzer, K.S.; Pabalan, R.T.

    1986-07-01

    On the basis of the statistical mechanics of a two-component imperfect gas, a successive hydration model is developed for the NaCl ion-pair molecule in steam which fits satisfactorily an extensive array of experimental solubility data including the measurements of Bischoff et al. at the three-phase pressure from 300/sup 0/ to 503/sup 0/C and other concordant measurements extending to 600/sup 0/C at 290 bars. Some published experimental results depart substantially from the concordant set here selected. The theoretical basis of this model should make it useful for estimates at higher temperatures provided the mean hydration number and the total fluid density remain within the range corresponding to the fitted data. The measurements of Bodnar et al. at 500 bars and 800/sup 0/ and 825/sup 0/C provide a test and the agreement with model predictions is good.

  6. Theoretical calculation of low-lying states of NaAr and NaXe

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Langhoff, S. R.; Stallcop, J. R.

    1981-01-01

    Potential curves as well as dipole moments and linking transition moments are calculated for the ground X 2 Sigma + and low lying excited A 2 Pi, B 2 Sigma +, C 2 Sigma +, (4) 2 Sigma +, (2) 2 Pi and (1) 2 Delta states of NaAr and NaXe. Calculations are performed using a self-consistent field plus configuration-interaction procedure with the core electrons replaced by an ab initio effective core potential. The potential curves obtained are found to be considerably less repulsive than the semiempirical curves of Pascale and Vandeplanque (1974) and to agree well with existing experimental data, although the binding energies of those states having potential minima due to van der Waals interactions are underestimated. Emission bands are also calculated for the X 2 Sigma + - C 2 Sigma + excimer transitions of NaAr and NaXe using the calculated transition moments and potential curves, and shown to agree well with experiment on the short-wavelength side of the maximum.

  7. Na Cauda do Cometa

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    2009-01-01

    Quando viam um cometa, os antigos gregos imaginavam uma estrela com uma vasta cabeleira. Não à toa, a palavra deriva do termo koma, que significa cabelo. Constituídos por fragmentos de gelo e gases, os cometas possuem um núcleo sólido, que pode ter vários quilômetros de diâmetro, e uma cauda que sempre aponta na direção contrária ao Sol, devido aos ventos solares. Graças à aparência de pontos luminosos em movimento (ao contrário de outros astros, que parecem estáticos), esses corpos celestes foram interpretados por diferentes povos com muito misticismo, inspirando mitos tanto de boas-novas como de maus presságios. Conheça algumas dessas histórias:

  8. Preparation and XRD analyses of Na-doped ZnO nanorod arrays based on experiment and theory

    NASA Astrophysics Data System (ADS)

    Yang, X. P.; Lu, J. G.; Zhang, H. H.; Chen, Y.; Kan, B. T.; Zhang, J.; Huang, J.; Lu, B.; Zhang, Y. Z.; Ye, Z. Z.

    2012-03-01

    ZnO nanorod arrays (NRAs) with different Na contents were prepared by thermal evaporation. Sodium pyrophosphate was adopted as the Na source. The Na contents in NRAs were determined by X-ray photoelectron spectra to be 0, 6.1, and 9.4 at.%. X-ray diffraction (XRD) analyses of Na-doped ZnO NRAs were performed in experiment and by first-principle calculation with the assumption of Na substitutions. A couple of typical changes were found in XRD patterns of Na-doped ZnO. The simulation results well agreed with the experimental data, which revealed that Na mainly located at the substitutional sites in Na-doped ZnO NRAs.

  9. Toward Triplet Ground State LiNa Molecules

    NASA Astrophysics Data System (ADS)

    Jamison, Alan; Rvachov, Timur; Jing, Li; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2015-05-01

    We present progress toward creation of ultracold ground-state triplet LiNa molecules. This molecule is expected to have a long lifetime in the triplet ground state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. Our progress includes the first observation of triplet excited states in this molecule, achieved through photoassociation of ultracold mixtures of 6-Li and Na. We compare experimental results to a variety of near-dissociation expansions as well as ab initio potentials.

  10. Discharge Reaction Mechanisms in Na/FeS2 Batteries: First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Kitajou, Ayuko; Okada, Shigeto; Yamashita, Tomoki; Oguchi, Tamio

    2015-12-01

    We have studied microscopic discharge reaction mechanisms in Na/FeS2 batteries by first-principles calculations. The calculated Na-Fe-S phase diagram shows that the discharge reactions can proceed by converting 4Na and FeS2 into 2Na2S and Fe as a fully discharged state. As an intermediate discharge reaction, we find that NaxFeS2 (x ˜ 1.5) intermediate products can be generated in the cathode, giving two major plateaus in voltage-capacity curves. The calculated voltage-capacity characteristics and X-ray absorption spectra at S and Fe K-edges of Na-discharged FeS2 cathode materials are compared with experimental results, showing that theoretically determined reaction formulas can account for the experimental discharge reactions.

  11. The molecular environment of intracellular sodium: 23Na NMR relaxation.

    PubMed

    Rooney, W D; Springer, C S

    1991-10-01

    The comprehensive approach described in the accompanying paper is illustrated here with the 23Na signal of a concentrated solution of bovine serum albumin (BSA) in saline and the intracellular (Nai) 23Na resonance of a dense suspension of Na(+)-loaded yeast cells. We use frequency shift reagents to discriminate the latter from the extracellular resonance. We find that the Nai signal corresponds to that of an effective single population of Na+ ions exhibiting a single type c spectrum. This is true despite the fact that the yeast protoplasm is too large and too compartmentalized for a given Na+ ion to sample its entirety on the relevant NMR timescale. Our results show clearly that, in addition to the decay of transverse magnetization, the recovery of longitudinal magnetization is biexponential. This is required for a type c spectrum but has not often been detected. The temperature dependence of the relaxation rate constants of the Nai resonance is not consistent with either a simple Debye process or a discrete exchange mechanism connecting two sites in the fast limit. We have fitted the data using an asymmetric continuous distribution of correlation times for the fluctuations of electric field gradients sensed by the Nai nuclei. The analogous distribution function for the Na+ in a 44% (w/w) BSA solution is quite similar to that of the Nai at the same temperature. This suggests that while the macromolecular environment of the Nai ions is quite congested, it is also isotropic on quite a small spatial scale. Also, one can use the correlation time distribution function, obtained from fitting the relaxation data, to calculate a relaxometry curve. This is useful because experimental 23Na relaxometry is difficult. The calculated curve may be a reasonable model for the mostly extracellular 23Na resonance encountered in vivo. PMID:1751346

  12. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  13. Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Kim, H.; Park, G.; Li, X.; Eom, H.-J.; Ro, C.-U.

    2015-03-01

    NaCl in fresh sea-salt aerosol (SSA) particles can partially or fully react with atmospheric NOx/HNO3, so internally mixed NaCl and NaNO3 aerosol particles can co-exist over a wide range of mixing ratios. Laboratory-generated, micrometer-sized NaCl and NaNO3 mixture particles at 10 mixing ratios (mole fractions of NaCl (XNaCl) = 0.1 to 0.9) were examined systematically to observe their hygroscopic behavior, derive experimental phase diagrams for deliquescence and efflorescence, and understand the efflorescence mechanism. During the humidifying process, aerosol particles with the eutonic composition (XNaCl = 0.38) showed only one phase transition at their mutual deliquescence relative humidity (MDRH) of 67.9 (±0.5)% On the other hand, particles with other mixing ratios showed two distinct deliquescence transitions; i.e., the eutonic component dissolved at MDRH, and the remainder in the solid phase dissolved completely at their DRHs depending on the mixing ratios, resulting in a phase diagram composed of four different phases, as predicted thermodynamically. During the dehydration process, NaCl-rich particles (XNaCl > 0.38) showed a two stage efflorescence transition: the first stage was purely driven by the homogeneous nucleation of NaCl and the second stage at the mutual efflorescence RH (MERH) of the eutonic components, with values in the range of 30.0-35.5%. Interestingly, aerosol particles with the eutonic composition (XNaCl = 0.38) also showed two-stage efflorescence, with NaCl crystallizing first followed by heterogeneous nucleation of the remaining NaNO3 on the NaCl seeds. NaNO3-rich particles (XNaCl ≤ 0.3) underwent single-stage efflorescence transitions at ERHs progressively lower than the MERH because of the homogeneous nucleation of NaCl and the almost simultaneous heterogeneous nucleation of NaNO3 on the NaCl seeds. SEM/EDX elemental mapping indicated that the effloresced NaCl-NaNO3 particles at all mixing ratios were composed of a homogeneously

  14. Crystal and electronic structures of nitridophosphate compounds as cathode materials for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Debbichi, M.; Lebègue, S.

    2015-08-01

    Using density-functional theory, we have studied the electronic and magnetic properties of two promising compounds that can be used as cathode materials, namely, Na2Fe2P3O9N and Na3TiP3O9N . When Na is extracted, we found the volume change to be quite small, with values of ˜-0.6 % for Na3TiP3O9N and -5 % for Na2Fe2P3O9N . Our calculated voltages with the Hubbard-type correction (GGA+U) approximation are 2.93 V for Na3TiP3O9N /Na2TiP3O9N and 2.68 V for Na2Fe2P3O9N /NaFe2P3O9N , in good agreement with the experimental data. Our results confirm that these compounds are very promising for rechargeable Na-ion batteries.

  15. NA Nonlinear Equation-of-state Inversion

    NASA Astrophysics Data System (ADS)

    Jackson, I.; Kennett, B. L.

    2008-12-01

    A fully non-linear inversion scheme is introduced for the determination of the parameters controlling the equation-of-state and elasticity of mineral phases using the thermodynamically consistent finite-strain formulation introduced by Stixrude & Lithgow-Bertelloni (2005). This inversion exploits a directed search in an eight-dimensional parameter space using the Neighbourhood Algorithm (NA) of Sambridge (1999) to search for the minimum of an objective function representing the misfit to multiple data sets that constrain different aspects of the mineral behaviour. No derivatives are employed and the progress towards the minimum builds on the accumulated information on the character of the parameter space acquired as the inversion progresses. When only a limited range of experimental information is available there is a strong possibility of multiple minima in the objective function, which can pose problems for conventional iterative least-squares or other gradient methods. The addition of many different styles of data tends to produce a better defined minimum. The influence of different data types can be readily assessed by allowing differential weighting. The new procedure is illustrated by application to MgO, for which extensive experimental data are available. These include the variation of relative volume V with temperature T and pressure P from both static and shock-compression experiments, acoustic measurements of compressional and shear (and hence bulk) moduli, and calorimetric determinations of entropy as a function of temperature at atmospheric pressure. Preliminary NA modeling highlighted tensions between marginally incompatible subsets of data. We therefore excluded one-atmosphere V(T) data for T ≥ 1800 K for which the quasi-harmonic approximation is inadequate (Wu et al., 2008) along with elastic moduli derived from Brillouin spectroscopy under conditions (P ≥ 14 GPa) where significant departures from hydrostatic conditions are expected. With these

  16. Sodium Chloride, NaCl/ϵ: New Force Field.

    PubMed

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C

    2016-03-10

    A new computational model for sodium chloride, the NaCl/ϵ, is proposed. The force field employed for the description of the NaCl is based on a set of radial particle-particle pair potentials involving Lennard-Jones (LJ) and Coulombic forces. The parametrization is obtained by fitting the density of the crystal and the density and the dielectric constant of the mixture of the salt with water at a diluted solution. Our model shows good agreement with the experimental values for the density and for the surface tension of the pure system, and for the density, the viscosity, the diffusion, and the dielectric constant for the mixture with water at various molal concentrations. The NaCl/ϵ together with the water TIP4P/ϵ models provide a good approximation for studying electrolyte solutions. PMID:26890321

  17. Electronic Structure, Phonon Dynamical Properties, and CO2 Capture Capability of Na2-xMxZrO3 ( M=Li ,K): Density-Functional Calculations and Experimental Validations

    SciTech Connect

    Duan, Yuhua; Lekse, Jonathan; Wang, Xianfeng; Li, Bingyun; Alcántar-Vázquez, Brenda; Pfeiffer, Heriberto; Halley, J. W.

    2015-04-22

    The electronic structural and phonon properties of Na2-αMαZrO3 (M ¼ Li,K, α = ¼ 0.0,0.5,1.0,1.5,2.0) are investigated by first-principles density-functional theory and phonon dynamics. The thermodynamic properties of CO2 absorption and desorption in these materials are also analyzed. With increasing doping level α, the binding energies of Na2-αLiαZrO3 are increased while the binding energies of Na2-α KαZrO3 are decreased to destabilize the structures. The calculated band structures and density of states also show that, at the same doping level, the doping sites play a significant role in the electronic properties. The phonon dispersion results show that few soft modes are found in several doped configurations, which indicates that these structures are less stable than other configurations with different doping levels. From the calculated relationships among the chemical-potential change, the CO2 pressure, and the temperature of the CO2 capture reactions by Na2-αMαZrO3, and from thermogravimetric-analysis experimental measurements, the Li- and K-doped mixtures Na2-αMαZrO3 have lower turnover temperatures (Tt) and higher CO2 capture capacities, compared to pure Na2ZrO3. The Li-doped systems have a larger Tt decrease than the K-doped systems. When increasing the Li-doping level α, the Tt of the corresponding mixture Na2-αLiαZrO3 decreases further to a low-temperature range. However, in the case of K-doped systems Na2-αKαZrO3, although doping K into Na2ZrO3 initially shifts its Tt to lower temperatures, further increases of the K-doping level α causes Tt to increase. Therefore

  18. Molecular dynamics investigation of Na{sup +} in Na{sub 2}Ni{sub 2}TeO{sub 6}

    SciTech Connect

    Sau, Kartik Kumar, P. Padma

    2014-04-24

    An inter-atomic potential for Na{sub 2}Ni{sub 2}TeO{sub 6} in the Parrinello- Rahman-Vashishta (PRV) model is parameterized empirically. The potential reproduces variety of structural and transport properties of that material in good agreement with recent experimental results. The study provides fresh insights on the migration channels and mechanism of Na{sup +} in the system.

  19. Study of resonant scattering of 21Na+p relevant to astrophysical 18Ne(α,p)21Na reaction

    NASA Astrophysics Data System (ADS)

    He, J. J.; Zhang, L. Y.; Xu, S. W.; Chen, S. Z.; Hu, J.; Ma, P.; Chen, R. F.; Yamaguchi, H.; Kubono, S.; Hashimoto, T.; Kahl, D.; Hayakawa, S.; Wakabayashi, Y.; Togano, Y.; Wang, H. W.; Tian, W. D.; Guo, B.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.

    2012-11-01

    Astrophysical 18Ne(α,p)21Na reaction is one of the most probable breakout routes, which lead to the rp-process from the hot-CNO cycle, converting the initial CNO elements into heavier elements in Type I x-ray bursters. Presently, there is no much experimental cross-section data reported at the energy of astrophysical interest, and resonant spectroscopic information in compound 22Mg is scarce as well. The experiment has been carried out by using the CNS radioactive ion beam separator (CRIB). Resonant properties in 22Mg have been studied via the resonant elastic scattering of 21Na+p, and cross section of the time-reversal reaction of 21Na(p,α)18Ne been measured simultaneously. A wide excitation energy region up to Ex ~ 9.5 MeV in 22Mg has been scanned with a thick-target method. Some preliminary results will be reported.

  20. Identification of the First Sodium Binding Site of the Phosphate Cotransporter NaPi-IIa (SLC34A1)

    PubMed Central

    Fenollar-Ferrer, Cristina; Forster, Ian C.; Patti, Monica; Knoepfel, Thomas; Werner, Andreas; Forrest, Lucy R.

    2015-01-01

    Transporters of the SLC34 family (NaPi-IIa,b,c) catalyze uptake of inorganic phosphate (Pi) in renal and intestinal epithelia. The transport cycle requires three Na+ ions and one divalent Pi to bind before a conformational change enables translocation, intracellular release of the substrates, and reorientation of the empty carrier. The electrogenic interaction of the first Na+ ion with NaPi-IIa/b at a postulated Na1 site is accompanied by charge displacement, and Na1 occupancy subsequently facilitates binding of a second Na+ ion at Na2. The voltage dependence of cotransport and presteady-state charge displacements (in the absence of a complete transport cycle) are directly related to the molecular architecture of the Na1 site. The fact that Li+ ions substitute for Na+ at Na1, but not at the other sites (Na2 and Na3), provides an additional tool for investigating Na1 site-specific events. We recently proposed a three-dimensional model of human SLC34a1 (NaPi-IIa) including the binding sites Na2, Na3, and Pi based on the crystal structure of the dicarboxylate transporter VcINDY. Here, we propose nine residues in transmembrane helices (TM2, TM3, and TM5) that potentially contribute to Na1. To verify their roles experimentally, we made single alanine substitutions in the human NaPi-IIa isoform and investigated the kinetic properties of the mutants by voltage clamp and 32P uptake. Substitutions at five positions in TM2 and one in TM5 resulted in relatively small changes in the substrate apparent affinities, yet at several of these positions, we observed significant hyperpolarizing shifts in the voltage dependence. Importantly, the ability of Li+ ions to substitute for Na+ ions was increased compared with the wild-type. Based on these findings, we adjusted the regions containing Na1 and Na3, resulting in a refined NaPi-IIa model in which five positions (T200, Q206, D209, N227, and S447) contribute directly to cation coordination at Na1. PMID:25992725

  1. Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1).

    PubMed

    Fenollar-Ferrer, Cristina; Forster, Ian C; Patti, Monica; Knoepfel, Thomas; Werner, Andreas; Forrest, Lucy R

    2015-05-19

    Transporters of the SLC34 family (NaPi-IIa,b,c) catalyze uptake of inorganic phosphate (Pi) in renal and intestinal epithelia. The transport cycle requires three Na(+) ions and one divalent Pi to bind before a conformational change enables translocation, intracellular release of the substrates, and reorientation of the empty carrier. The electrogenic interaction of the first Na(+) ion with NaPi-IIa/b at a postulated Na1 site is accompanied by charge displacement, and Na1 occupancy subsequently facilitates binding of a second Na(+) ion at Na2. The voltage dependence of cotransport and presteady-state charge displacements (in the absence of a complete transport cycle) are directly related to the molecular architecture of the Na1 site. The fact that Li(+) ions substitute for Na(+) at Na1, but not at the other sites (Na2 and Na3), provides an additional tool for investigating Na1 site-specific events. We recently proposed a three-dimensional model of human SLC34a1 (NaPi-IIa) including the binding sites Na2, Na3, and Pi based on the crystal structure of the dicarboxylate transporter VcINDY. Here, we propose nine residues in transmembrane helices (TM2, TM3, and TM5) that potentially contribute to Na1. To verify their roles experimentally, we made single alanine substitutions in the human NaPi-IIa isoform and investigated the kinetic properties of the mutants by voltage clamp and (32)P uptake. Substitutions at five positions in TM2 and one in TM5 resulted in relatively small changes in the substrate apparent affinities, yet at several of these positions, we observed significant hyperpolarizing shifts in the voltage dependence. Importantly, the ability of Li(+) ions to substitute for Na(+) ions was increased compared with the wild-type. Based on these findings, we adjusted the regions containing Na1 and Na3, resulting in a refined NaPi-IIa model in which five positions (T200, Q206, D209, N227, and S447) contribute directly to cation coordination at Na1. PMID:25992725

  2. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    SciTech Connect

    Bunkin, N F; Shkirin, A V; Burkhanov, I S; Chaikov, L L; Lomkova, A K

    2014-11-30

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  3. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Bunkin, N. F.; Shkirin, A. V.; Burkhanov, I. S.; Chaikov, L. L.; Lomkova, A. K.

    2014-11-01

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ~10 - 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions.

  4. NaI detector neutron activation spectra for PGNAA applications

    PubMed

    Gardner; El; Zheng; Hayden; Mayo

    2000-10-01

    When NaI detectors are used in prompt gamma-ray neutron activation analysis devices, they are activated by neutrons that penetrate the detector. While thermal neutron filters like boron or lithium can be used to reduce this activation, it can never be completely eliminated by this approach since high energy neutrons can penetrate the detector and thermalize inside it. This activation results in the emission of prompt gamma rays from both the I and Na and the production of the radioisotopes 128I and 24Na that subsequently decay and emit their characteristic beta particles and gamma rays. The resulting three spectra represent a background for this measurement. An experimental method for obtaining these three spectra is described and results are reported for 2" x 2", 5" x 5", 6" x 6", and 1" x 6" NaI detectors using the thermal neutron beam of the NCSU PULSTAR nuclear reactor. In addition, Monte Carlo simulation programs have been developed and used for simulating these spectra. Good results have been obtained by the Monte Carlo method for the two radioisotope spectra, and it is anticipated that good results will also be obtained for the prompt gamma-ray spectrum when the I and Na coincidence schemes are known. PMID:11003483

  5. Adenosine, type 1 receptors: role in proximal tubule Na+ reabsorption.

    PubMed

    Welch, W J

    2015-01-01

    Adenosine type 1 receptor (A1 -AR) antagonists induce diuresis and natriuresis in experimental animals and humans. Much of this effect is due to inhibition of A1 -ARs in the proximal tubule, which is responsible for 60-70% of the reabsorption of filtered Na(+) and fluid. Intratubular application of receptor antagonists indicates that A1 -AR mediates a portion of Na(+) uptake in PT and PT cells, via multiple transport systems, including Na(+) /H(+) exchanger-3 (NHE3), Na(+) /PO4(-) co-transporter and Na(+) -dependent glucose transporter, SGLT. Renal microperfusion and recollection studies have shown that fluid reabsorption is reduced by A1 -AR antagonists and is lower in A1 -AR KO mice, compared to WT mice. Absolute proximal reabsorption (APR) measured by free-flow micropuncture is equivocal, with studies that show either lower APR or similar APR in A1 -AR KO mice, compared to WT mice. Inhibition of A1 -ARs lowers elevated blood pressure in models of salt-sensitive hypertension, partially due to their effects in the proximal tubule. PMID:25345761

  6. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  7. Experimental Summary and Outlook

    SciTech Connect

    Peter Bosted

    2005-02-01

    A brief experimental overview of the workshop is given, with emphasis on polarized targets from the experimental equipment perspective, and kinematic coverage, precision, and newly investigated channels from the experimental results perspective.

  8. Time-dependent MOS breakdown. [of Na contaminated capacitors

    NASA Technical Reports Server (NTRS)

    Li, S. P.; Bates, E. T.; Maserjian, J.

    1976-01-01

    A general model for time-dependent breakdown in metal-oxide-silicon (MOS) structures is developed and related to experimental measurements on samples deliberately contaminated with Na. A statistical method is used for measuring the breakdown probability as a function of log time and applied field. It is shown that three time regions of breakdown can be explained respectively in terms of silicon surface defects, ion emission from the metal interface, and lateral ion diffusion at the silicon interface.

  9. Prospects for observation at CERN in NA62

    NASA Astrophysics Data System (ADS)

    Hahn, F.; the NA62 Collaboration; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Bendotti, J.; Biagioni, A.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brook, N.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Carassiti, V.; Cartiglia, N.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Chikilev, O.; Ciaranfi, R.; Collazuol, G.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Dixon, N.; Doble, N.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Falaleev, V.; Fantechi, R.; Federici, L.; Fiorini, M.; Fry, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Gatignon, L.; Gianoli, A.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Hutchcroft, D.; Iacopini, E.; Jamet, O.; Jarron, P.; Kampf, K.; Kaplon, J.; Karjavin, V.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khudyakov, A.; Kiryushin, Yu; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Lazzeroni, C.; Leitner, R.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lomidze, D.; Lonardo, A.; Lurkin, N.; Madigozhin, D.; Maire, G.; Makarov, A.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Massarotti, P.; Massri, K.; Matak, P.; Mazza, G.; Menichetti, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Obraztsov, V.; Padolski, S.; Page, R.; Palladino, V.; Pardons, A.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Pivanti, M.; Polenkevich, I.; Popov, I.; Potrebenikov, Yu; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santovetti, E.; Saracino, G.; Sargeni, F.; Schifano, S.; Semenov, V.; Sergi, A.; Serra, M.; Shkarovskiy, S.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Statera, M.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, V.; Velghe, B.; Veltri, M.; Venditti, S.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.

    2015-07-01

    The rare decays are excellent processes to probe the Standard Model and indirectly search for new physics complementary to the direct LHC searches. The NA62 experiment at CERN SPS aims to collect and analyse O(1013) kaon decays before the CERN long-shutdown 2 (in 2018). This will allow to measure the branching ratio to a level of 10% accuracy. The experimental apparatus has been commissioned during a first run in autumn 2014.

  10. An Experimental MHD Dynamo

    SciTech Connect

    Forest, C. B.

    2002-11-15

    The project is designed to understand current and magnetic field generation in plasmas and other magnetohydrodynamic systems. The experiments will investigate the generation of a dynamo using liquid Na.

  11. Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosterone action.

    PubMed

    Fischer, H; Clauss, W

    1990-04-01

    Sodium transport across isolated lung tissue of the frog Xenopus laevis was measured in Ussing chambers under voltage-clamp conditions. Perfusing the lungs with NaCl-Ringer's solutions on both sides, a basal distinct amiloride-blockable Na+ current was present. Incubating the lungs with 1 mumol/l aldosterone from the pleural side raised the short circuit current after a 1-h latent period. Maximal values were reached after 4-5 h of aldosterone treatment, at which time the transepithelial Na+ current was more than doubled compared to the control. The stimulatory effect was totally inhibited when the aldosterone treatment was preceded by incubation of the lung tissues with spironolactone in 2000-fold excess. In the presence of amiloride (0.5-8 mumol/l) in the alveolar compartment, a Lorentzian noise component appeared in the power spectrum of the fluctuations in the short circuit current. This enabled the calculation of single Na+ channel current and Na+ channel density under both experimental conditions. Aldosterone stimulation did not change single Na+ channel current. On the other hand, the number of conducting Na+ channels increased in parallel with the transepithelial Na+ transport. This suggests that the alveolar epithelium may be a physiological target tissue for aldosterone. Since fluid absorption in the lung is secondary to active Na+ transport, aldosterone may be a potent regulator for maintaining the relatively fluid-free state of the lumen of the lung in some cases of fluid accumulation. PMID:2162035

  12. Photoionization of the excited Na 4d state: Possible confirmation of a zero in the l. -->. l-1 channel

    SciTech Connect

    Msezane, A.Z.; Lahiri, J.; Manson, S.T.

    1986-06-01

    Hartree-Fock calculations of the photoionization cross section of the excited Na 4d state have been performed and compared with experiment. The results indicate an experimental confirmation of a zero in an l..-->..l-1 photoionizing transition.

  13. Slow inactivation of Na(+) channels.

    PubMed

    Silva, Jonathan

    2014-01-01

    Prolonged depolarizing pulses that last seconds to minutes cause slow inactivation of Na(+) channels, which regulates neuron and myocyte excitability by reducing availability of inward current. In neurons, slow inactivation has been linked to memory of previous excitation and in skeletal muscle it ensures myocytes are able to contract when K(+) is elevated. The molecular mechanisms underlying slow inactivation are unclear even though it has been studied for 50+ years. This chapter reviews what is known to date regarding the definition, measurement, and mechanisms of voltage-gated Na(+) channel slow inactivation. PMID:24737231

  14. Experimental nuclear physics

    NASA Astrophysics Data System (ADS)

    An earlier study of unusual electromagnetic decays in (sup 86)Zr was extended in order to make comparisons with its isotone (sup 84)Sr and with (sup 84)Zr. The K=14 (t(sub 1/2) = 70 ns) high-spin isomer in (sup 176)W was found to have a 13 percent branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for (sup 14)O+(alpha) and (sup 17)F+p reactions was completed and a coincidence experiment measuring the (sup 19)F ((sup 3)He,t) (sup 19)Ne(alpha) (sup 15)O and (sup 19)F ((sup 3)He,t) (sup 19)Ne(p) (sup 18)F reactions in order to determine the rates of the (sup 18)F(p,(alpha)) (sup 15)O and (sup 18)F(p,(gamma)) (sup 19)Ne reactions was begun. Experimental measurements of (beta)n(alpha) coincidences from the (sup 15)N(d,p) (sup 16)N((beta)- (nu)) (sup 16)O((alpha)) (sup 12)C reaction have also been completed and are currently being analyzed to determine the rate of the (sup 12)C((alpha),(gamma)) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e(sup +) triggers by detecting their back-to-back annihilation quanta were completed. The HI@AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed.

  15. [Experimental nuclear physics

    SciTech Connect

    Not Available

    1992-12-01

    An earlier study of unusual electromagnetic decays in {sup 86}Zr was extended in order to make comparisons with its isotone {sup 84}Sr and with {sup 84}Zr. The K=14 (t {sub {1/2}} = 70 ns) high-spin isomer in {sup 176}W was found to have a 13% branch directly to the K=O ground-state band, one of the strongest violations of K-selection rules known. A new program to search for a predicted region of oblate deformation involving neutron deficient isotopes in the Rn/Fr/Ra region was begun. In the area of nuclear astrophysics, as part of a study of the onset of the rp-Process, a set of measurements searching for possible new resonances for {sup 14}O+{alpha} and {sup 17}F+p reactions was completed and a coincidence experiment measuring the {sup 19}F({sup 3}He,t){sup 19}Ne({alpha}){sup 15}O and {sup 19}F({sup 3}He,t){sup 19}Ne(p){sup 18}F reactions in order to determine the rates of the {sup 18}F(p,{alpha}){sup 15}O and {sup 18}F(p,{gamma}){sup 19}Ne reactions was begun. Experimental measurements of {beta}n{alpha} coincidences from the {sup 15}N(d,p){sup 16}N({beta}{sup {minus}}{nu}){sup 16}O({alpha}){sup 12}C reaction have also been completed and are currently being analyzed to determine the rate of the {sup 12}C({alpha},{gamma}) reaction. In the APEX collaboration, we have completed the assembly and testing of two position-sensitive Na barrels which surround the axial silicon detector arrays and serve as the e{sup +} triggers by detecting their back-to-back annihilation quanta were completed. The HI@AGS and RHIC collaborations, construction and implementation activities associated with the space-time-tracker detector and in the design of the central detector for the PHENIX experiment were carried out. Operation of the ESTU tandem accelerator has been reliable, delivering beam on target at terminal voltages as high as 19.3 MV and running for as long as 143 days between tank openings. Fabrication and bench testing of a new negative ion source system have been completed.

  16. Experimental and Quasi-Experimental Design.

    ERIC Educational Resources Information Center

    Cottrell, Edward B.

    With an emphasis on the problems of control of extraneous variables and threats to internal and external validity, the arrangement or design of experiments is discussed. The purpose of experimentation in an educational institution, and the principles governing true experimentation (randomization, replication, and control) are presented, as are…

  17. Dysregulation of epithelial Na+ absorption induced by inhibition of the kinases TORC1 and TORC2

    PubMed Central

    Mansley, Morag K; Wilson, Stuart M

    2010-01-01

    BACKGROUND AND PURPOSE Although the serum and glucocorticoid-inducible protein kinase 1 (SGK1) appears to be involved in controlling epithelial Na+ absorption, its role in this physiologically important ion transport process is undefined. As SGK1 activity is dependent upon target of rapamycin complex 2 (TORC2)-catalysed phosphorylation of SGK1-Ser422, we have explored the effects of inhibiting TORC2 and/or TORC1 upon the hormonal control of Na+ absorption. EXPERIMENTAL APPROACH Na+ absorption was quantified electrometrically in mouse cortical collecting duct cells (mpkCCD) grown to confluence on permeable membranes. Kinase activities were assessed by monitoring endogenous protein phosphorylation, with or without TORC1/2 inhibitors (TORIN1 and PP242) and the TORC1 inhibitor: rapamycin. KEY RESULTS Inhibition of TORC1/2 (TORIN1, PP242) suppressed basal SGK1 activity, prevented insulin- and dexamethasone-induced SGK1 activation, and caused modest (10–20%) inhibition of basal Na+ absorption and substantial (∼80%) inhibition of insulin/dexamethasone-induced Na+ transport. Inhibition of TORC1 did not impair SGK1 activation or insulin-induced Na+ transport, but did inhibit (∼80%) dexamethasone-induced Na+ absorption. Arginine vasopressin stimulated Na+ absorption via a TORC1/2-independent mechanism. CONCLUSION AND IMPLICATIONS Target of rapamycin complex 2, but not TORC1, is important to SGK1 activation. Signalling via phosphoinositide-3-kinase/TORC2/SGK1 can explain insulin-induced Na+ absorption. TORC2, but not TORC1, is also involved in glucocorticoid-induced SGK1 activation but its role is permissive. Glucocorticoid-induced Na+ transport displayed a requirement for TORC1 activity. Therefore, TORC1 and TORC2 contribute to the regulation of Na+ absorption. Pharmacological manipulation of TORC1/2 signalling may provide novel therapies for Na+-sensitive hypertension. PMID:20735411

  18. Astrocytes generate Na+-mediated metabolic waves

    NASA Astrophysics Data System (ADS)

    Bernardinelli, Yann; Magistretti, Pierre J.; Chatton, Jean-Yves

    2004-10-01

    Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.

  19. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGESBeta

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  20. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  1. Single crystal growth of type I Na-Si clathrate by using Na-Sn flux

    NASA Astrophysics Data System (ADS)

    Morito, Haruhiko; Shimoda, Masashi; Yamane, Hisanori

    2016-09-01

    Single crystals of type I Na-Si clathrate, Na8Si46, were synthesized by heating Na, Na4Si4, and Na15Sn4 at 723 K under an Ar gas pressure of 104 Pa for 12 h. The single crystals having {110} habit planes grew up to 1.5 mm in size due to Na evaporation from a Na-Si-Sn melt with a starting compositional molar ratio of Na/Si/Sn=5.75:2:1.

  2. Europlanet NA2 Science Networking

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri

    2013-04-01

    Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG

  3. The stability of sodalite in the system NaAlSiO sub 4 -NaCl

    SciTech Connect

    Sharp, Z.D. ); Helffrich, G.R. ); Bohlen, S.R. ); Essene, E.J. )

    1989-08-01

    The reaction sodalite = {beta}-nepheline + NaCl (s) was reversed in solid-medium apparatus and the reaction sodalite = carnegieite + NaCl (l) was reversed at 1 bar (1,649-1,652 K). The experimental reversals between 923 K and 973 K can be fit with a dP/dT of {minus}11 bar/K, suggesting that the excess entropy for sodalite is present only above 923 K. A phase diagram for the NaAlSiO{sub 4}-NaCl system that is consistent with the measured thermochemical data and the experiments between 973 and 1,650 K can be generated if the 61.7 J/mol{center dot}K entropy contribution is included in the S{sup 0}{sub 298} of sodalite. This entropy contribution must be removed below 973 K for the experiments to fit with calculations. Previously unreported thermodynamic data estimated in this study are {Delta}G{sup 0}{sub 298} for sodalite ({minus}12,697 kJ/mol) and carnegieite (NaAlSiO{sub 4}) ({minus}1,958 kJ/mol), S{sup 0}{sub 298} of carnegieite (129.6 J/mol{center dot}K) and compressibility of NaCl{sub liquid} (V{sup P}{sub 298} (cm{sup 3}) = 31.6{center dot}(1 - 24.7{center dot}10{sup {minus}3}{center dot}P + 800{center dot}10{sup {minus}6}{center dot}P{sup 2}))(T in K; P in kbar). Sodalite is a high-temperature, low-pressure phase, stable well above the solidus in sodic silica-undersaturated magmas enriched in NaCl, and its presence constrains NaCl activities in magmas. Estimates of minimum NaCl (l) activities in the Mont St-Hilaire sodalite syenites are 0.05 at 1,073 K and 0.13 at 1,273 K. Density calculations are consistent with the field observations that sodalite phenocrysts will float in a nepheline syenite liquid. This explains the enrichment of sodalite in the upper levels of the sodalite syenites at Mont St.Hilaire and elsewhere.

  4. NaF-mediated controlled-synthesis of multicolor Na(x)ScF(3+x):Yb/Er upconversion nanocrystals.

    PubMed

    Pei, Wen-Bo; Chen, Bo; Wang, Lili; Wu, Jiansheng; Teng, Xue; Lau, Raymond; Huang, Ling; Huang, Wei

    2015-03-01

    Synthesis of lanthanide-doped upconversion nanocrystals (LDUNs) with controlled morphology and luminescence has long been desired in order to fulfill various application requirements. In this work, we have investigated the effect of the NaF : Ln(3+) molar ratio, in the range of 1 to 20, on the morphology, crystal structure, and upconversion properties of NaxScF(3+x):Yb/Er nanocrystals that are reported to possess different upconversion properties from those of NaYF4:Yb/Er nanocrystals. The experimental results prove that the NaF : Ln(3+) molar ratio influences significantly the growth process of the nanocrystals, i.e. a low NaF : Ln(3+) molar ratio results in hexagonal NaScF4 nanocrystals, while a high NaF : Ln(3+) molar ratio favors monoclinic Na3ScF6 nanocrystals. When the NaF : Ln(3+) molar ratio is as high as 6 or above, phase separation is found and hexagonal NaYbF4 nanocrystals showed up for the first time. Simply by adjusting the NaF : Ln(3+) molar ratio, we have successfully achieved the simultaneous control of the shape, size, as well as the crystallographic phase of the NaxScF(3+x):Yb/Er nanocrystals, which give different red to green (R/G) ratios (integral area), leading to a multicolor upconversion luminescence from orange-red to green. This study provides a vivid example to track and interpret the formation mechanisms and growth processes of NaxScF(3+x):Yb/Er nanocrystals, which shall be instructive for guiding the controlled synthesis of other LDUNs and extending their according applications in optical communication, color display, anti-counterfeiting, bioimaging, and so on. PMID:25657098

  5. Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism

    PubMed Central

    2010-01-01

    Background When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions. Results The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent Km values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent Km values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m - chlorophenylhydrazone (CCCP) but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes. Conclusion The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na+ pump which transports only

  6. Sequence of subunit c of the Na(+)-translocating F1F0 ATPase of Acetobacterium woodii: proposal for determinants of Na+ specificity as revealed by sequence comparisons.

    PubMed

    Rahlfs, S; Müller, V

    1997-03-10

    A 3.2 kb EcoRI fragment carrying genes for Na(+)-F1F0 ATPase was cloned from chromosomal DNA of Acetobacterium woodii. DNA sequence analysis revealed the presence of an open reading frame which was identified by data base searches and comparison with the experimentally derived N-terminal amino acid sequence to code for subunit c of Na(+)-F1F0 ATPase. A comparison of the primary sequences of the two well established Na(+)-translocating F1F0 ATPases from Acetobacterium woodii and Propionigenium modestum with H(+)-translocating enzymes indicates the length of the C-terminus as well as specific residues located in the cytoplasmic membrane to be important for Na+ transport. PMID:9119076

  7. Experimental investigations of thermal interaction between corium and coolants

    NASA Astrophysics Data System (ADS)

    Zagorul'ko, Yu. I.; Zhmurin, V. G.; Volov, A. N.; Kovalev, Yu. P.

    2008-03-01

    We present a generalized analysis of the experimental results from investigations of thermal interaction in corium simulators (melts of thermite mixtures U + Mo3 and Zr + Fe2O3)-coolant (Na and H2O) systems. We also present the results from experimental assessments of the kinematic characteristics pertinent to the displacement of materials during the thermal interaction process and the coefficients for conversion of the corium thermal energy into mechanical work.

  8. Luminescence and radiation resistance of undoped NaI crystals

    SciTech Connect

    Shiran, N. Boiaryntseva, I.; Gektin, A.; Gridin, S.; Shlyakhturov, V.; Vasuykov, S.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found that defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.

  9. An investigation on NO removal by wet scrubbing using NaClO2 seawater solution.

    PubMed

    Han, Zhitao; Yang, Shaolong; Zheng, Dekang; Pan, Xinxiang; Yan, Zhijun

    2016-01-01

    The experiments were conducted to investigate the NO removal by wet scrubbing using NaClO2 seawater solution in a cyclic scrubbing mode. Results show that, when the concentration of NaClO2 in scrubbing solution is higher than 10 mM, a complete removal of NO can be achieved during the cyclic scrubbing process. The breakthrough time for seawater with 15 mM NaClO2 is enhanced by 34.3 % compared with that for NaClO2 freshwater. The extension of the breakthrough time for NaClO2 seawater is mainly ascribed to the improved utilization of NaClO2 in the solution. The good buffering ability of seawater could suppress the acidic decomposition of NaClO2 into ClO2 effectively. The analysis of reaction products indicates that the main anions in the spent liquor are chloride ions and nitrate ions. The calculation of NaClO2 utilization according to the ion chromatography also agrees well with the experimental results of breakthrough times. PMID:27386234

  10. The effects of Na/K additives and flyash on NO reduction in a SNCR process.

    PubMed

    Hao, Jiangtao; Yu, Wei; Lu, Ping; Zhang, Yufei; Zhu, Xiuming

    2015-03-01

    An experimental study of Na/K additives and flyash on NO reduction during the selective non-catalytic reduction (SNCR) process were carried out in an entrained flow reactor (EFR). The effects of reaction temperature (Tr), water vapor, Na/K additives (NaCl, KCl, Na2CO3) and flyash characteristics on NO reduction were analyzed. The results indicated that NO removal efficiency shows a pattern of increasing first and decreasing later with the increase of the temperature at Tr=850-1150°C. Water vapor can improve the performance of NO reduction, and the NO reduction of 70.5% was obtained while the flue gas containing 4% water vapor at 950°C. Na/K additives have a significant promoting effect on NO reduction and widen the SNCR temperature window, the promoting effect of the test additives is ordered as Na2CO3>KCl>NaCl. NO removal efficiency with 125ppm Na2CO3 and 4% water vapor can reach up to 84.9% at the optimal reaction temperature. The additive concentration has no significant effects on NO reduction while its concentration is above 50ppm. Addition of circulating fluidized combustion (CFB) flyash deteriorates NO reduction significantly. However, CFB flyash and Na/K additives will get a coupling effect on NO reduction during the SNCR process, and the best NO reduction can reach 72.3% while feeding Na2CO3-impregnated CFB flyash at 125ppm Na2CO3 and Tr=950°C. PMID:25532766

  11. Definition of "experimental procedures".

    PubMed

    2009-11-01

    This Practice Committee Opinion provides a revised definition of "experimental procedures." This version replaces the document "Definition of Experimental" that was published most recently in November 2008. PMID:19836733

  12. Uranium in granitic magmas: Part 1. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H 2O-Na 2CO 3 system at 720-770°C, 2 kbar

    NASA Astrophysics Data System (ADS)

    Peiffert, Chantal; Cuney, Michel; Nguyen-Trung, Chinh

    1994-06-01

    The solubility of uranium was investigated in both carbonated aqueous fluid and granitic melt in equilibrium in the system haplogranite-uranium oxide-H 2O-Na 2CO 3 (0.5-1 molal) at 720-770°C, 2 kbar, andƒo 2 fixed by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O-CuO buffers. As complete solid solution exists between UO 2.00 and UO 2.25 (i.e., 75 mol% UO 2 + 25 mol% UO 3), three distinct uranium oxides: UO (2.01 ± 0.01), UO (2.1.0 ± 0.02), and UO (2.25 ± 0.02) were, respectively, obtained at equilibrium, under the three ƒo 2 conditions cited above. Thus, the percentage of U (VI) in uranium oxide increased with increasing log ƒo 2. The thermal decomposition of Na 2CO 3 to CO 2 and Na 2O led to the decrease of the sodium carbonate concentration from 0.5-1 molal to ~10 -2 molal in all aqueous fluids and to the dissolution of Na in the silicate melts. Crystal-free silicate glasses with four agpaitic coefficients, α = ( (Na+K)/Al) = 1.1, 1.3, 1.5, and 1.7 were obtained. The uranium solubility in 10 -2 m aqueous carbonated fluid ((8.1 ± 0.1) ≤ quench pH ≤ (8.9 ± 0.1)) was in the range 1-17 ppm and increased linearly with increasing ƒo 2 according to the expression: log (U) (ppm) = 0.09 ·log ƒo 2 (bar) + 1.47 . This equation is valid for the temperature range 720-770°C and 2 kbar. U(IV) carbonate possibly were major species in aqueous solutions under reducing conditions (Ni-NiO buffer) whereas U(VI) carbonate complexes dominated under higher oxidation conditions (Fe 3O 4-Fe 2O 3, Cu 2O-CuO buffers). The uranium content in silicate glasses varied in a large range (10 2-2 × 10 5 ppm) and log (U) (ppm) increases linearly with both ƒo 2, and α in the range 1.1-1.5 according to the equation log (U) (ppm) = 0.04 log ƒo 2 (bar) + 3.80α -1.34 . This equation is valid for (1)ƒ o 2 ranging from Ni-NiO to Cu 2O-CuO, and (2) the temperature range 720-770°C at 2 kbar. The effect of ƒo 2 on the uranium solubility in silicate melt slightly decreased with increasing α from

  13. Microexperiencia Educativa (Microeducational Experimentation).

    ERIC Educational Resources Information Center

    Burton Meis, Roberto

    1970-01-01

    Experimentation for educational reform in Argentina is limited to specifically designated schools which are to be in a permanent state of experimentation. This article presents the official statements designating the experimental schools and includes remarks covering administration, evaluation, and supervision. (VM)

  14. Study of Na substitution in La0.67Ba0.33MnO3 perovskites

    NASA Astrophysics Data System (ADS)

    Hcini, S.; Boudard, M.; Zemni, S.

    2014-06-01

    The effect of Na substitution on nominal La0.67Ba0.33- x Na x MnO3 (0≤ x≤0.33) manganites is studied in this work. Detailed chemical and structural analyses on ceramic samples obtained at 1200 ∘C show that a significantly lower Na rate than the nominal one is obtained due to important Na losses during the synthesis. The losses of Na result in the appearance of impurity phases for high nominal Na rates in addition to the manganite phase with a rhombohedral structure. Structural and physical properties of the samples can be properly interpreted according to the variation of the Mn3+/Mn4+ ratio and the average ionic radius of A-site when the experimental composition of the manganite is considered.

  15. Thermodynamics of dissolution of lead oxide in NaOH-Na2CO3 melts

    NASA Astrophysics Data System (ADS)

    Barbin, N. M.; Barbina, T. M.

    2016-08-01

    The solubility of lead oxide in NaOH + (20%)Na2CO3 and NaOH + (40%)Na2CO3 melts was studied by the isothermal saturation method. The model mechanisms of dissolution were considered. The thermodynamic parameters were calculated.

  16. Experimental and modeling studies of caesium sorption on illite

    SciTech Connect

    Poinssot, C.; Baeyens, B.; Bradbury, M.H.

    1999-10-01

    A natural illite (illite du Puy) was purified and converted to the homo-ionic Na form. The conditioned Na-illite was characterized in terms of its mineralogy, chemical inventory, and surface properties. The structural formula was determined from EDS analyses (SEM/TEM) and bulk chemistry. A cation exchange capacity of 127 mEq/kg was determined by the Na isotope dilution method at neutral pH. The sorption of Cs was measured as a function of NaClO{sub 4} background electrolyte concentration (1.0, 0.1 and 0.01 M), Cs concentration and pH in the range {approx}3 to {approx}10. Before obtaining these measurements the kinetics of Cs uptake were determined at initial concentrations of 2 x 10{sup {minus}8} M and 7 x 10{sup {minus}5} M, representing the extremes of the range investigated, and was found to be concentration dependent. The supernatant solutions after centrifugation were analyzed for major cations in all of the sorption tests. A two-site cation exchange model was developed to describe the sorption of Cs over the whole range of experimental conditions. The two-site types were termed frayed edge sites, FES (high affinity/low capacity) and type 2 sites (low affinity/high capacity). At low NaClO{sub 4} concentrations, Cs sorption decreased at pH values less than neutral. This was interpreted in terms of competitive effects from H, and K released by the partial dissolution of illite, which cannot be avoided at low and high pH values. Selectivity coefficient values for Cs-Na, Cs-K, K-Na, and H-Na exchange equilibria on the FES sites, and Cs-Na exchange on the type 2 sites are given for illite together with the corresponding site capacities.

  17. Theoretical and experimental study of metal capture during incineration process

    SciTech Connect

    Chen, J.C.; Wey, M.Y.; Yan, M.H.

    1997-11-01

    Experimental studies and thermodynamic equilibrium analysis were carried out to investigate the effects of operating conditions and input waste compositions on the adsorption of heavy metals (Cr, Pb, Zn, and Cd) on silica sand during incineration processes. The experiments were performed with a pilot-scale fluidized bed incinerator, and the evaluated parameters include (1) sand bed temperature (500, 700, and 900 C); and (2) the addition of organic chloride (PVC), inorganic chlorides (NaCl and CaCl{sub 2}), and sulfide (Na{sub 2}S). The experimental and simulating results indicated that the addition of organic chloride (PVC) would increase the formation of volatile metallic chlorides, and decrease the adsorption efficiency of silica sand. On the other hand, the addition of inorganic chlorides (NaCl and CaCl{sub 2}) worked differently, which increased the adsorption efficiency of silica sand. The addition of sulfide (Na{sub 2}S) would increase the adsorption efficiencies of the four metals in silica sand because sulfide inhibited the formation of metallic chlorides. The hexavalent chromium content in the sand bed decreased for the addition of organic chloride (PVC), and increased for the addition of inorganic chlorides (NaCl and CaCl{sub 2}).

  18. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 degrees C

    SciTech Connect

    Armstrong, Christopher R.; Felmy, Andrew R.; Clark, Sue B.

    2010-11-01

    In this report we present experimental solubility data for well-characterized triuranyl diphosphate tetrahydrate (TDT: (UO2)(3)(PO4)(2)center dot 4H(2)O) and Na autunite (Na[UO2PO4]center dot xH(2)O) at 23 and 50 degrees C in NaClO4-HClO4 solutions at pC(H+) = 2. Duplicate samples of TDT in 0.1, 0.5, 1.0, 2.0 and 5.0 in solutions were equilibrated at 23 and 50 degrees C. TDT solid was synthesized and characterized with ICP-OES, ATR-IR and powder XRD before and after solubility experiments. The pH of the suspensions were monitored throughout the experiments. Equilibrium was achieved from undersaturation with respect to TDT and oversaturation for Na autunite. Steady-state conditions were achieved in all cases within 82 d. TDT was unstable at ionic strengths above 0.1 m, where its complete conversion to Na autunite was observed. The ion-interaction model was used to interpret the experimental solubility data. The solubility product, log K-sp, for TDT was determined to be -49.7 and -51.3 at 23 and 50 degrees C respectively. log K for Na autunite was determined to be -24.4 (23 degrees C) and -24.1 +/- 0.2 (50 degrees C).

  19. Experimentation in software engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Selby, R. W.; Hutchens, D. H.

    1986-01-01

    Experimentation in software engineering supports the advancement of the field through an iterative learning process. In this paper, a framework for analyzing most of the experimental work performed in software engineering over the past several years is presented. A variety of experiments in the framework is described and their contribution to the software engineering discipline is discussed. Some useful recommendations for the application of the experimental process in software engineering are included.

  20. Thermodynamics of ion exchange between clinoptilolite and aqueous solutions of Na{sup +}/K{sup +} and Na{sup +}/Ca{sup 2+}

    SciTech Connect

    Pabalan, R.T.

    1994-11-01

    Because of their ion-exchange, adsorption, and molecular sieve properties, zeolite minerals have generated worldwide interest for use in a broad range of applications such as nuclear and municipal waste water treatment, stack-gas cleanup, natural gas purification, petroleum production, and in agriculture and aquaculture. To provide a thermodynamic basis for understanding zeolite-water interactions in geologic systems, ion-exchange experiments were conducted at 25{degrees}C between clinoptilolite, which is the predominant zeolite mineral in altered pyroclastic and volcaniclastic rocks, and aqueous mixtures of Na{sup +}/K{sup +} and Na{sup +}/Ca{sup 2+}. Isotherm points were obtained by equilibrating Na-clinoptilolite, which was prepared from clinoptilolite-rich tuff from Death Valley Junction, California, USA, and Na{sup +}/K{sup +} and Na{sup +}/Ca{sup 2+} chloride solutions having different ionic concentration ratios, but constant total normalities of 0.5, 0.05, or 0.005 N. The experimental data were interpreted using a Margules thermodynamic formulation for zeolite solid solutions, coupled with the Pitzer model for aqueous activity coefficients. The isotherm data for 0.5 N Na{sup +}/K{sup +} and Na{sup +}/Ca{sup 2+} solutions were used to derive equilibrium constants and Gibbs free energies for the ion-exchange reactions, as well as parameters for the Margules model. Using the same parameters derived from the 0.5 N data, isotherms were calculated for the 0.05 and 0.005 N solutions. The predicted values agree very well with experimental data. The results of this study indicate that a Margules solid solution model for zeolites, coupled with an activity coefficient model for aqueous solutions (e.g., Pitzer model), can successfully describe and predict binary ion-exchange equilibria between aqueous solutions and the zeolite mineral clinoptilolite over a wide range of solution composition and concentration.

  1. Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution

    NASA Astrophysics Data System (ADS)

    Lv, Damei; Ou, Junfei; Xue, Mingshan; Wang, Fajun

    2015-04-01

    Superhydrophobic surface (SHS) was fabricated on aluminum via surface roughening by NaClO and surface passivation by hexadecyltrimethoxysilane. The long-term durability for storing the sample in air and the chemical stability for contacting the sample with NaCl solution were investigated. The short-term corrosion resistance for immersing the sample in NaCl solution for 1 h was investigated by potentiodynamic polarization, and the long-term corrosion resistance for immersing the sample in NaCl solution for 7 days was investigated by variation analyses on surface wettability, surface morphology, and surface chemistry. All experimental results suggested that the so-obtained SHS possessed good stability and good corrosion resistance under the testing conditions.

  2. Effect of colchicine on sensitivity of duck salt gland Na,K-ATPase to Na+.

    PubMed

    Yakushev, S S; Kumskova, E M; Rubtsov, A M; Lopina, O D

    2008-09-01

    Low molecular mass proteins of the FXYD family that affect the sensitivity of Na,K-ATPase to Na+ and K+ are known to be present in Na,K-ATPases in various tissues. In particular, in Na,K-ATPase from kidney a gamma-subunit (with electrophoretic mobility corresponding to molecular mass of about 10 kD) is present, and Na,K-ATPase preparations from heart contain phospholemman (electrophoretic mobility of this protein corresponds to molecular mass of 13-14 kD), which provides for the interaction of heart Na,K-ATPase with cytoskeletal microtubules. Disruption of microtubules by colchicine removes phospholemman from heart Na,K-ATPase preparations. The goal of the present study was to reveal a low molecular mass protein (probably a member of FXYD family) in preparation of Na,K-ATPase from duck salt glands. Immunoprecipitation of solubilized duck salt gland Na,K-ATPase using antibodies against alpha1-subunit results in the coprecipitation of a 13 kD protein with the Na,K-ATPase complex. Treatment of homogenate from duck salt glands with colchicine removes this protein from the purified preparation of Na,K-ATPase. Simultaneously, we observed a decrease in the sensitivity of Na,K-ATPase to Na+ at pH 6.5. However, colchicine treatment of homogenate from rabbit kidney does not affect either the sensitivity of Na,K-ATPase obtained from this homogenate to Na+ or the content of 10 kD protein (presumably gamma-subunit). The data suggest that phospholemman (or a similar member of the FXYD family) tightly interacts with Na,K-ATPase from duck salt glands and binds it to microtubules, simultaneously participating in the regulation of the sensitivity of Na,K-ATPase to Na+. PMID:18976215

  3. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wang, Qingfei; Liu, Zhenpu; Zhou, Zhengyang; Li, Shuai; Zhu, Jinlong; Zou, Ruqiang; Wang, Yingxia; Lin, Jianhua; Zhao, Yusheng

    2015-10-01

    High-performance solid electrolytes are critical for realizing all-solid-state batteries with enhanced safety and cycling efficiency. However, currently available candidates (sulfides and the NASICON-type ceramics) still suffer from drawbacks such as inflammability, high-cost and unfavorable machinability. Here we present the structural manipulation approaches to improve the sodium ionic conductivity in a series of affordable Na-rich antiperovskites. Experimentally, the whole solid solutions of Na3OX (X = Cl, Br, I) are synthesized via a facile and timesaving route from the cheapest raw materials (Na, NaOH and NaX). The materials are nonflammable, suitable for thermoplastic processing due to low melting temperatures (<300 °C) without decomposing. Notably, owing to the flexibility of perovskite-type structure, it's feasible to control the local structure features by means of size-mismatch substitution and unequivalent-doping for a favorable sodium ionic diffusion pathway. Enhancement of sodium ionic conductivity by 2 magnitudes is demonstrated by these chemical tuning methods. The optimized sodium ionic conductivity in Na2.9Sr0.05OBr0.6I0.4 bulk samples reaches 1.9 × 10-3 S/cm at 200 °C and even higher at elevated temperature. We believe further chemical tuning efforts on Na-rich antiperovskites will promote their performance greatly for practical all-solid state battery applications.

  4. NA61/SHINE facility at the CERN SPS: beams and detector system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  5. Electrical conductivity of NaCl-H2O fluid in the crust

    NASA Astrophysics Data System (ADS)

    Sakuma, Hiroshi; Ichiki, Masahiro

    2016-02-01

    Ionic electrical conductivity of NaCl-H2O fluid as a function of pressure (0.2-2.0 GPa), temperature (673-2000 K), and NaCl concentration (0.6-9.6 wt %) was investigated using molecular dynamics (MD) simulations. Conductivity versus NaCl concentration has a nonlinear relationship due to the presence of electrically neutral ion pairs in concentrated solutions. The calculated conductivity at 0.6 wt % NaCl is consistent with the available experimental data, and the calculated conductivity at higher temperatures shows a greater degree of pressure dependence. The major factors controlling the conductivity are the density of the NaCl-H2O fluid and the permittivity of solvent H2O. A purely empirical equation for deriving the conductivity was proposed. Highly conductive zones below a depth of 35 km in the middle portion of the continental crust can be interpreted by the presence of NaCl-H2O fluid with the salinity ranging from 0.2 to 7.0 wt %. A highly conductive zone observed at a depth of 20 to 40 km above the subducting oceanic crust in Cascadia can be explained by the presence of low-salinity (0.5 wt %) NaCl-H2O fluid possibly generated by the dehydration of basalt.

  6. Inhibition of Na -P/sub i/ cotransporter in small gut brush border by phosphonocarboxylic acids

    SciTech Connect

    Loghman-Adham, M.; Szczepsanska-Konkel, M.; Yusufi, A.N.K.; Van Scoy, M.; Dousa, T.P.

    1987-02-01

    The authors examined the effect of phosphonoformic acid (PFA) and phosphonoacetic acid (PAA) upon Na -P/sub i/ cotransport in brush-border membrane (BBM) from small gut of rat. Both PFA and PAA inhibited the Na gradient-dependent uptake of TSP/sub i/ by BBM vesicles (BBMV) prepared from intestinal mucosa but had no effect on Na -dependent uptakes of D-(TH)glucose, L-(TH)proline, or ( UC)succinate. The uptake in the absence of Na gradient, or uptake at equilibrium period (180 min), was not affected by PFA or by PAA. A chemical analogue of PFA and PAA, phosphonopropionic acid, had only a minor inhibitory effect and phenylphosphonic acid was inactive. Neither PFA nor PAA influenced the activity of rat intestinal BBM alkaline phosphatase. The BBMV from rat jejunum had a much higher capacity for Na gradient-dependent uptake of TSP/sub i/ than BBMV from duodenum or ileum. The inhibition of BBMV TSP/sub i/ transport across rat jejunum by PFA is competitive. They suggest that PFA and PAA are specific inhibitors of Na gradient-dependent uptake of P/sub i/ by BBMV from small intestinal mucosa and that they could serve as useful experimental tools for the studies of intestinal Na -P/sub i/ cotransport.

  7. Benchmark data for gamma-rays emitted by an Na-24 source penetrating stratified shielding slabs

    NASA Astrophysics Data System (ADS)

    Bakos, G. C.

    1995-04-01

    Experimentally determined scalar flux density spectra are presented for 1.37 and 2.75 MeV photons emitted by an Na-24 uniform disc source penetrating shields of six two-layer combinations. Also, the experimental facility is described. The benchmark data for photon energy 1.37 and 2.75 MeV fill a gap in the energy range of practical interest and provide useful reference values for computational method evaluation.

  8. Benchmark data for {gamma}-rays emitted by an Na-24 source penetrating stratified shielding slabs

    SciTech Connect

    Bakos, G.C.

    1995-04-01

    Experimentally determined scalar flux density spectra are presented for 1.37 and 2.75 MeV photons emitted by an Na-24 uniform disc source penetrating shields of six two-layer combinations. Also, the experimental facility is described. The benchmark data for photon energy 1.37 and 2.75 MeV fill a gap in the energy range of practical interest and provide useful reference values for computational method evaluation.

  9. Cytoplasmic Na+-dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+–Ca2+ exchange

    PubMed Central

    Kim, Bongju; Matsuoka, Satoshi

    2008-01-01

    To clarify the role of mitochondrial Na+–Ca2+ exchange (NCXmito) in regulating mitochondrial Ca2+ (Ca2+mito) concentration at intact and depolarized mitochondrial membrane potential (ΔΨmito), we measured Ca2+mito and ΔΨmito using fluorescence probes Rhod-2 and TMRE, respectively, in the permeabilized rat ventricular cells. Applying 300 nm cytoplasmic Ca2+ (Ca2+c) increased Ca2+mito and this increase was attenuated by cytoplasmic Na+ (Na+c) with an IC50 of 2.4 mm. To the contrary, when ΔΨmito was depolarized by FCCP, a mitochondrial uncoupler, Na+c enhanced the Ca2+c-induced increase in Ca2+mito with an EC50 of about 4 mm. This increase was not significantly affected by ruthenium red or cyclosporin A. The inhibition of NCXmito by CGP-37157 further increased Ca2+mito when ΔΨmito was intact, while it suppressed the Ca2+mito increase when ΔΨmito was depolarized, suggesting that ΔΨmito depolarization changed the exchange mode from forward to reverse. Furthermore, ΔΨmito depolarization significantly reduced the Ca2+mito decrease via forward mode, and augmented the Ca2+mito increase via reverse mode. When the respiratory chain was attenuated, the induction of the reverse mode of NCXmito hyperpolarized ΔΨmito, while ΔΨmito depolarized upon inducing the forward mode of NCXmito. Both changes in ΔΨmito were remarkably inhibited by CGP-37157. The above experimental data indicated that NCXmito is voltage dependent and electrogenic. This notion was supported theoretically by computer simulation studies with an NCXmito model constructed based on present and previous studies, presuming a consecutive and electrogenic Na+–Ca2+ exchange and a depolarization-induced increase in Na+ flux. It is concluded that Ca2+mito concentration is dynamically modulated by Na+c and ΔΨmito via electrogenic NCXmito. PMID:18218682

  10. Growth of binary organic NLO crystals: m.NA-p.NA and m.NA-CNA system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.

    1993-01-01

    Experiments were carried out to grow 3.Nitroaniline (m.NA) crystals doped with 4.Nitroaniline (p.NA) and 2.chloro 4.Nitroaniline (CNA). The measured undercooling for m.NA, p.NA, and CNA were 0.21 tm K, 0.23 tm K, and 0.35 tm K respectively, where tm represents the melting temperature of the pure component. Because of the crystals' large heat of fusion and large undercooling, it was not possible to grow good quality crystals with low thermal gradients. In the conventional two-zone Bridgman furnace we had to raise the temperature of the hot zone above the decomposition temperature of CNA, p.NA, and m.NA to achieve the desired thermal gradient. To avoid decomposition, we used an unconventional Bridgman furnace. Two immiscible liquids, silicone oil and ethylene glycol, were used to build a special two-zone Bridgman furnace. A temperature gradient of 18 K/cm was achieved without exceeding the decomposition temperature of the crystal. The binary crystals, m.NA-p.NA and m.NA-CNA, were grown in centimeter size in this furnace. X-ray and optical characterization showed good optical quality.

  11. NaNet-10: a 10GbE network interface card for the GPU-based low-level trigger of the NA62 RICH detector.

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Fiorini, M.; Frezza, O.; Lonardo, A.; Lamanna, G.; Lo Cicero, F.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.

    2016-03-01

    A GPU-based low level (L0) trigger is currently integrated in the experimental setup of the RICH detector of the NA62 experiment to assess the feasibility of building more refined physics-related trigger primitives and thus improve the trigger discriminating power. To ensure the real-time operation of the system, a dedicated data transport mechanism has been implemented: an FPGA-based Network Interface Card (NaNet-10) receives data from detectors and forwards them with low, predictable latency to the memory of the GPU performing the trigger algorithms. Results of the ring-shaped hit patterns reconstruction will be reported and discussed.

  12. Questioning and Experimentation

    ERIC Educational Resources Information Center

    Mutanen, Arto

    2014-01-01

    The paper is a philosophical analysis of experimentation. The philosophical framework of the analysis is the interrogative model of inquiry developed by Hintikka. The basis of the model is explicit and well-formed logic of questions and answers. The framework allows us to formulate a flexible logic of experimentation. In particular, the formulated…

  13. Inner Shell Photodetachment Of Na- Using The Multi-Configuration Tamm-Dancoff Approximation

    NASA Astrophysics Data System (ADS)

    Jose, J.; Pradhan, G. B.; Radojevic, V.; Manson, S. T.; Deshmukh, P. C.

    2010-07-01

    The multi-configuration Tamm-Dancoff approximation (MCTD) is used to calculate the inner shell photodetachment of the Na anion. The results reproduce a resonance peak in agreement with existing experimental and theoretical data. The current work emphasizes the importance of doing configuration interaction (CI) type calculations, and proves MCTD is an apt tool to investigate the photoionization/photodetachment process.

  14. Prospects for K+↦ π+_{} ν bar{ν} observation at CERN in NA62

    NASA Astrophysics Data System (ADS)

    Duk, Viacheslav; NA62 Collaboration

    2016-07-01

    The primary goal of the NA62 experiment at CERN SPS is to measure the branching ratio (BR) of the decay K+↦ π+_{} ν bar{ν} with ˜ 10% precision. The experimental method and detectors are described in the present paper. Selected results of the pilot run in 2014 are shown.

  15. 7. VIEW WEST, FERNOW EXPERIMENTAL FOREST WELL HOUSE, FERNOW EXPERIMENTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST, FERNOW EXPERIMENTAL FOREST WELL HOUSE, FERNOW EXPERIMENTAL FOREST BUNKHOUSE, FERNOW EXPERIMENTAL FOREST GARAGE, AND FERNOW EXPERIMENTAL FOREST RESIDENCE. - Parsons Nursery, South side of U.S. Route 219, Parsons, Tucker County, WV

  16. The Experimental Hydrology Wiki

    NASA Astrophysics Data System (ADS)

    Blume, Theresa; van Meerveld, Ilja; Graeff, Thomas

    2013-04-01

    The "Experimental Hydrology Wiki" is a forum for hydrologists to learn about, recommend, question and discuss new and established, basic and advanced methods and equipment for hydrological research. As a database of "lessons learned" it does not only contain short descriptions of specific experimental equipment but also information on encountered errors and problems and recommendations on how to deal with them. This makes valuable personal field experience accessible to a wider audience. The Wiki allows experimentalists to share and find solutions for common problems and thus helps us in not making the same mistakes others have made before us. At the same time modellers can use this platform to find information on sources of error and uncertainty in the data they use for model validation and calibration. The general idea and layout of the Experimental Hydrology Wiki is presented here along with an invitation to all experimental hydrologists to contribute their knowledge and experiences! http://www.experimental- hydrology.net/

  17. Maintaining the NA atmosphere of Mercury

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Morgan, T. H.

    1993-02-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  18. Maintaining the Na atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.; Morgan, Thomas H.

    1993-01-01

    The possible sources of the Na atmosphere of Mercury are calculatively studied. The likely structure, composition, and temperature of the planet's upper crust is examined along with the probable flux of Na from depth by grain boundary diffusion and by Knudsen flow. The creation of fresh regolith is considered along with mechanisms for supplying Na from the surface to the exosphere. The implications of the calculations for the probable abundances in the regolith are discussed.

  19. First-principles study on structure stabilities of α-S and Na-S battery systems

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  20. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. |; Rosener, B.

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host ``na-net.ornl.gov`` at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message ``send index`` to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user`s perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  1. NA-NET numerical analysis net

    SciTech Connect

    Dongarra, J. . Dept. of Computer Science Oak Ridge National Lab., TN ); Rosener, B. . Dept. of Computer Science)

    1991-12-01

    This report describes a facility called NA-NET created to allow numerical analysts (na) an easy method of communicating with one another. The main advantage of the NA-NET is uniformity of addressing. All mail is addressed to the Internet host na-net.ornl.gov'' at Oak Ridge National Laboratory. Hence, members of the NA-NET do not need to remember complicated addresses or even where a member is currently located. As long as moving members change their e-mail address in the NA-NET everything works smoothly. The NA-NET system is currently located at Oak Ridge National Laboratory. It is running on the same machine that serves netlib. Netlib is a separate facility that distributes mathematical software via electronic mail. For more information on netlib consult, or send the one-line message send index'' to netlib{at}ornl.gov. The following report describes the current NA-NET system from both a user's perspective and from an implementation perspective. Currently, there are over 2100 members in the NA-NET. An average of 110 mail messages pass through this facility daily.

  2. MoNA and Two-Neutron Decay Analysis

    NASA Astrophysics Data System (ADS)

    Grovom, Amanda; Aulie, Alegra; Rogers, Warren F.

    2010-11-01

    The Modular Neutron Array (MoNA) is a large, high-efficiency position-sensitive neutron detector array housed at the National Superconducting Cyclotron Laboratory at Michigan State University, consisting of 144 2-meter long scintillator bars with a PMT positioned at each end, designed to detect the energy and trajectory of fast neutrons emitted in the breakup of exotic neutron-rich nuclei. Because a single neutron can scatter multiple times within MoNA, (including a large presence of dark-scattering from Carbon), the experimental challenge to distinguish between single and multiple neutron decay events is significant. We've developed special data-sorting routines that selectively filter on a combination of factors such as neutron velocity and scattering angle, hit-pattern distribution, neutron-fragment opening angle, and decay energy in order to reduce the Carbon scattering background and enhance correlations between pairs of neutrons. We've applied this analysis to the 2-neutron decays of ^24O and ^13Li from data sets from previous MoNA experiments. Results will be presented.

  3. Siegel[JMMM 7,312(`78)] FIRST EXPERIMENTAL DISCOVERY of Giant-Magnetoresistance Decade Pre ``Fert'' and ``Gruenberg'' ['88 - `78] = 10-Years = One-Decade Sounds, for Nuclear-Power Naïve ``Panacea'' for Global-Warming/Climate-Chan

    NASA Astrophysics Data System (ADS)

    Hoffmann, Masterace; Siegel, Edward

    Siegel[JMMM 7,312(`78); Monju (12/'95) LMFBR PREDICTION!!!] following: Wigner[JAP 17,857(`46)]-(Alvin)Weinberg(ANL/ORNL/ANS)-(Sidney)Siegel(ANL/ORNL/ANS)-Seitz-Overhauser-Rollnick-Pollard-Lofaro-Markey-Pringle[Nuclear-PowerFrom Physics to Politics(`79)] FIRST EXPERIMENTAL DISCOVERY [Siegel<<<''Fert''-''Gruenberg'':2007-Physics-Nobel/2006:-Wolf/Japan-prizes:[`88 -`78] =10-years =1-decade precedence!!!] of granular giant-magnetoresistance(GMR) [Google: ``EDWARD SIEGEL GIANT-MAGNETORESISTANCE ICMAO 1977 FLICKER''] [Google: ``Ana Mayo If LEAKS`Could' KILL''] in austenitic/FCC Ni/Fe-based (so MIScalled)''super''alloy-182/82 transition-welds GENERIC ENDEMIC EXTANT detrimental (SYNONYMS): Wigner's-disease/Ostwald-ripening/spinodal-decompositio/OVERageing-EMBRITTLEMENT/THERMAL-leading-to-mechanical (TLTM)-INstability/``sensitization'' in: nuclear-reactors/spent-fuel dry-casks/refineries/jet/missile/rocket-engines/...SOUNDS A DIRE WARNING FOR NAIVE Hansen-Sommerville-Holdren-DOE-NRC-OSTP-WNA-NEI-AIP-APS-...calls/media-hype/P.R./spin-doctoring for carbon-``free'' nuclear-power as a SUPPOSED ``panacea'' for climate-change/global-warming: ``TRUST BUT VERIFY!!!'' ; a VERY LOUD CAVEAT EMPTOR!!!

  4. Magnetohydrodynamic generator experimental studies

    NASA Technical Reports Server (NTRS)

    Pierson, E. S.

    1972-01-01

    The results for an experimental study of a one wavelength MHD induction generator operating on a liquid flow are presented. First the design philosophy and the experimental generator design are summarized, including a description of the flow loop and instrumentation. Next a Fourier series method of treating the fact that the magnetic flux density produced by the stator is not a pure traveling sinusoid is described and some results summarized. This approach appears to be of interest after revisions are made, but the initial results are not accurate. Finally, some of the experimental data is summarized for various methods of excitation.

  5. Experimental Semiotics: A Review

    PubMed Central

    Galantucci, Bruno; Garrod, Simon

    2010-01-01

    In the last few years a new line of research has appeared in the literature. This line of research, which may be referred to as experimental semiotics (ES; Galantucci, 2009; Galantucci and Garrod, 2010), focuses on the experimental investigation of novel forms of human communication. In this review we will (a) situate ES in its conceptual context, (b) illustrate the main varieties of studies thus far conducted by experimental semioticians, (c) illustrate three main themes of investigation which have emerged within this line of research, and (d) consider implications of this work for cognitive neuroscience. PMID:21369364

  6. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart

    PubMed Central

    Shattock, Michael J; Ottolia, Michela; Bers, Donald M; Blaustein, Mordecai P; Boguslavskyi, Andrii; Bossuyt, Julie; Bridge, John H B; Chen-Izu, Ye; Clancy, Colleen E; Edwards, Andrew; Goldhaber, Joshua; Kaplan, Jack; Lingrel, Jerry B; Pavlovic, Davor; Philipson, Kenneth; Sipido, Karin R; Xie, Zi-Jian

    2015-01-01

    This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field. PMID:25772291

  7. Discovery of Influenza A virus neuraminidase inhibitors using support vector machine and Naïve Bayesian models.

    PubMed

    Lian, Wenwen; Fang, Jiansong; Li, Chao; Pang, Xiaocong; Liu, Ai-Lin; Du, Guan-Hua

    2016-05-01

    Neuraminidase (NA) is a critical enzyme in the life cycle of influenza virus, which is known as a successful paradigm in the design of anti-influenza agents. However, to date there are no classification models for the virtual screening of NA inhibitors. In this work, we built support vector machine and Naïve Bayesian models of NA inhibitors and non-inhibitors, with different ratios of active-to-inactive compounds in the training set and different molecular descriptors. Four models with sensitivity or Matthews correlation coefficients greater than 0.9 were chosen to predict the NA inhibitory activities of 15,600 compounds in our in-house database. We combined the results of four optimal models and selected 60 representative compounds to assess their NA inhibitory profiles in vitro. Nine NA inhibitors were identified, five of which were oseltamivir derivatives with large C-5 substituents exhibiting potent inhibition against H1N1 NA with [Formula: see text] values in the range of 12.9-185.0 nM, and against H3N2 NA with [Formula: see text] values between 18.9 and 366.1 nM. The other four active compounds belonged to novel scaffolds, with [Formula: see text] values ranging 39.5-63.8 [Formula: see text]M against H1N1 NA and 44.5-114.1 [Formula: see text]M against H3N2 NA. This is the first time that classification models of NA inhibitors and non-inhibitors are built and their prediction results validated experimentally using in vitro assays. PMID:26689205

  8. Spectrophotometric Investigation of U(VI) Chloride Complexation in the NaCl/NaClO{sub 4} System

    SciTech Connect

    Paviet-Hartmann, P.; Lin, M.R.; Runde, W.H.

    1998-11-30

    Post closure radioactive release scenarios from geologic salt formation, such as the WIPP (Waste Isolation Pilot Plant)(USA) include hydrologic transport of radionuclides through a chloride saturated aquifer. Consequently, the understanding of actinide solution chemistry in brines is essential for modeling requiring accurate knowledge of the interaction between AnO{sub 2}{sup 2+} and chloride ions. Complexation constants of two U(VI) chloride species, UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}, have been intensively studied for about 40 years using different methods. However, large uncertainties reflect the general difficulty in determining accurate stability constants of weak complexes. In order to model the behavior of U(VI) in brines, we studied the formation of its chloride complexes by UV-Vis spectroscopy as a function of the NaCl concentration at 25 C. The experiments were performed at constant ionic strength by varying the concentration ratio of NaCl and NaClO{sub 4}. Deconvolution resulted in single component absorption spectra for UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}. The apparent stability constants of UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0} are at different ionic strengths and the experimental data are used to parameterize using the SIT approach.

  9. Epithelial Na(+) channels are regulated by flow.

    PubMed

    Satlin, L M; Sheng, S; Woda, C B; Kleyman, T R

    2001-06-01

    Na(+) absorption in the renal cortical collecting duct (CCD) is mediated by apical epithelial Na(+) channels (ENaCs). The CCD is subject to continuous variations in intraluminal flow rate that we speculate alters hydrostatic pressure, membrane stretch, and shear stress. Although ENaCs share limited sequence homology with putative mechanosensitive ion channels in Caenorhabditis elegans, controversy exists as to whether ENaCs are regulated by biomechanical forces. We examined the effect of varying the rate of fluid flow on whole cell Na(+) currents (I(Na)) in oocytes expressing mouse alpha,beta,gamma-ENaC (mENaC) and on net Na(+) absorption in microperfused rabbit CCDs. Oocytes injected with mENaC but not water responded to the initiation of superfusate flow (to 4-6 ml/min) with a reversible threefold stimulation of I(Na) without a change in reversal potential. The increase in I(Na) was variable among oocytes. CCDs responded to a threefold increase in rate of luminal flow with a twofold increase in the rate of net Na(+) absorption. An increase in luminal viscosity achieved by addition of 5% dextran to the luminal perfusate did not alter the rate of net Na(+) absorption, suggesting that shear stress does not influence Na(+) transport in the CCD. In sum, our data suggest that flow stimulation of ENaC activity and Na(+) absorption is mediated by an increase in hydrostatic pressure and/or membrane stretch. We propose that intraluminal flow rate may be an important regulator of channel activity in the CCD. PMID:11352841

  10. Heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(s)

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Timonen, Raimo S.; Keyser, Leon F.; Yung, Yuk L.

    1995-01-01

    The heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) (eq 1) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(S) (eq 2) were investigated over the temperature range 223-296 K in a flow-tube reactor coupled to a quadrupole mass spectrometer. Either a chemical ionization mass spectrometer (CIMS) or an electron-impact ionization mass spectrometer (EIMS) was used to provide suitable detection sensitivity and selectivity. In order to mimic atmospheric conditions, partial pressures of HNO3 and N2O5 in the range 6 x 10(exp -8) - 2 x 10(exp -6) Torr were used. Granule sizes and surface roughness of the solid NaCl substrates were determined by using a scanning electron microscope. For dry NaCl substrates, decay rates of HNO3 were used to obtain gamma(1) = 0.013 +/- 0.004 (1sigma) at 296 K and > 0.008 at 223 K, respectively. The error quoted is the statistical error. After all corrections were made, the overall error, including systematic error, was estimated to be about a factor of 2. HCl was found to be the sole gas-phase product of reaction 1. The mechanism changed from heterogeneous reaction to predominantly physical adsorption when the reactor was cooled from 296 to 223 K. For reaction 2 using dry salts, gamma(2) was found to be less than 1.0 x 10(exp -4) at both 223 and 296 K. The gas-phase reaction product was identified as ClNO2 in previous studies using an infrared spectrometer. An enhancement in reaction probability was observed if water was not completely removed from salt surfaces, probably due to the reaction of N2O5(g) + H2O(s) yields 2HNO3(g). Our results are compared with previous literature values obtained using different experimental techniques and conditions. The implications of the present results for the enhancement of the hydrogen chloride column density in the lower stratosphere after the El Chichon volcanic eruption and for the chemistry of HCl and HNO3 in the marine troposphere are discussed.

  11. Reduced Na+ uptake in the NaCl-hypersensitive sos1 mutant of Arabidopsis thaliana.

    PubMed Central

    Ding, L; Zhu, J K

    1997-01-01

    Sos1 is an Arabidopsis thaliana mutant with > 20 times higher sensitivity toward Na+ inhibition due to a defective high-affinity potassium-uptake system. We report here that sos1 accumulates less Na+ than the wild type in response to NaCl stress. The Na+ contents in sos1 seedlings exposed to 25 mM NaCl for 2 or more d are about 43% lower than those in the wild type. When assayed at 20 mM external NaCl, sos1 seedlings pretreated with low potassium have 32% lower Na+ uptake than the wild type. However, little difference in Na+ uptake could be measured when the seedlings were not pretreated with low potassium. Low-potassium treatment was shown to induce high-affinity potassium-uptake activity in Arabidopsis seedlings. No substantial difference in Na+ efflux between sos1 and the wild type was detected. The results show that the reduced Na+ accumulation in sos1 is due to a lower Na+ influx rate. Therefore, the sos1 mutation appears to disrupt low-affinity Na+ uptake in addition to its impairment of high-affinity K+ uptake. PMID:9085573

  12. Formation, stability and mobility of self-trapped excitations in NaI and NaI1-xTIx from first principles

    SciTech Connect

    Prange, Micah P.; Van Ginhoven, Renee M.; Govind, Niranjan; Gao, Fei

    2013-03-04

    We present ab initio calculations studying the formation, mobility, and stability of self trapped excitons (STE) and self trapped holes (STH) and electrons in NaI and NaI(Tl). While previously proposed models assumed a highly mobile STE and a slower STH, we find that both carriers in pure NaI have similar mobilities, with an activation energy of about 0.2 eV. We propose an alternate interpretation of experimental record including a new migration mechanism for the STE. In the Tl-doped material excitons preferentially trap at dopants, inducing off center distortions that have a structure unlike an STE providing a mechanism for light emission at multiple wavelengths. The calculated results are generally in excellent agreement with available data.

  13. Designing an Experimental "Accident"

    ERIC Educational Resources Information Center

    Picker, Lester

    1974-01-01

    Describes an experimental "accident" that resulted in much student learning, seeks help in the identification of nematodes, and suggests biology teachers introduce similar accidents into their teaching to stimulate student interest. (PEB)

  14. Nuclear test experimental science

    SciTech Connect

    Struble, G.L.; Middleton, C.; Bucciarelli, G.; Carter, J.; Cherniak, J.; Donohue, M.L.; Kirvel, R.D.; MacGregor, P.; Reid, S.

    1989-01-01

    This report discusses research being conducted at Lawrence Livermore Laboratory under the following topics: prompt diagnostics; experimental modeling, design, and analysis; detector development; streak-camera data systems; weapons supporting research.

  15. Phase relations in the system NaCl-KCl-H2O II: Differential thermal analysis of the halite liquidus in the NaCl-H2O binary above 450°c

    USGS Publications Warehouse

    Gunter, W.D.; Chou, I.-Ming; Girsperger, Sven

    1983-01-01

    The solubility of halite can be expressed as a function of the mole-fractional-based activity of NaCl in the liquid phase (L) in temperature (T, °K) and pressure (P, bars) In  Our liquidus data (based on 10 compositions) above 500 bars for these brines were combined with this equation to generate activity coefficients of NaCl which were fit within their experimental uncertainties to the following one parameter Margules equation In . Concentrated solutions of NaCl show negative deviations from ideality which rapidly increase in magnitude with decreasing XNaCl.

  16. Na3DyCl6

    PubMed Central

    Schurz, Christian M.; Meyer, Gerd; Schleid, Thomas

    2011-01-01

    Single crystals of the title compound, tris­odium hexa­chloridodysprosate, Na3DyCl6, were obtained as a by-product of synthesis using dysprosium(III) chloride and sodium chloride among others. The monoclinic structure with its typical β angle close to 90° [90.823 (4)°] is isotypic with the mineral cryolite (Na3AlF6) and the high-temperature structure of the Na3 MCl6 series, with M = Eu–Lu, Y and Sc. The isolated, almost perfect [DyCl6]3− octa­hedra are inter­connected via two crystallographically different Na+ cations: while one Na+ resides on centres of symmetry (as well as Dy3+) and also builds almost perfect, isolated [NaCl6]5− octa­hedra, the other Na+ is surrounded by seven chloride anions forming a distorted [NaCl7]6− trigonal prism with just one cap as close secondary contact. PMID:21754259

  17. Na(3)DyCl(6).

    PubMed

    Schurz, Christian M; Meyer, Gerd; Schleid, Thomas

    2011-05-01

    Single crystals of the title compound, tris-odium hexa-chloridodysprosate, Na(3)DyCl(6), were obtained as a by-product of synthesis using dysprosium(III) chloride and sodium chloride among others. The monoclinic structure with its typical β angle close to 90° [90.823 (4)°] is isotypic with the mineral cryolite (Na(3)AlF(6)) and the high-temperature structure of the Na(3)MCl(6) series, with M = Eu-Lu, Y and Sc. The isolated, almost perfect [DyCl(6)](3-) octa-hedra are inter-connected via two crystallographically different Na(+) cations: while one Na(+) resides on centres of symmetry (as well as Dy(3+)) and also builds almost perfect, isolated [NaCl(6)](5-) octa-hedra, the other Na(+) is surrounded by seven chloride anions forming a distorted [NaCl(7)](6-) trigonal prism with just one cap as close secondary contact. PMID:21754259

  18. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis

    PubMed Central

    Augé, Robert M.; Toler, Heather D.; Saxton, Arnold M.

    2014-01-01

    Arbuscular mycorrhizal (AM) symbiosis can enhance plant resistance to NaCl stress in several ways. Two fundamental roles involve osmotic and ionic adjustment. By stimulating accumulation of solutes, the symbiosis can help plants sustain optimal water balance and diminish Na+ toxicity. The size of the AM effect on osmolytes has varied widely and is unpredictable. We conducted a meta-analysis to determine the size of the AM effect on 22 plant solute characteristics after exposure to NaCl and to examine how experimental conditions have influenced the AM effect. Viewed across studies, AM symbioses have had marked effects on plant K+, increasing root and shoot K+ concentrations by an average of 47 and 42%, respectively, and root and shoot K+/Na+ ratios by 47 and 58%, respectively. Among organic solutes, soluble carbohydrates have been most impacted, with AM-induced increases of 28 and 19% in shoots and roots. The symbiosis has had no consistent effect on several characteristics, including root glycine betaine concentration, root or shoot Cl− concentrations, leaf Ψπ, or shoot proline or polyamine concentrations. The AM effect has been very small for shoot Ca++ concentration and root concentrations of Na+, Mg++ and proline. Interpretations about AM-conferred benefits regarding these compounds may be best gauged within the context of the individual studies. Shoot and root K+/Na+ ratios and root proline concentration showed significant between-study heterogeneity, and we examined nine moderator variables to explore what might explain the differences in mycorrhizal effects on these parameters. Moderators with significant impacts included AM taxa, host type, presence or absence of AM growth promotion, stress severity, and whether NaCl constituted part or all of the experimental saline stress treatment. Meta-regression of shoot K+/Na+ ratio showed a positive response to root colonization, and root K+/Na+ ratio a negative response to time of exposure to NaCl. PMID:25368626

  19. High NA Nicrostepper Final Optical Design Report

    SciTech Connect

    Hudyma, R

    1999-09-24

    The development of a new EUV high NA small-field exposure tool has been proposed for obtaining mask defect printability data in a timeframe several years before beta-tools are available. The imaging system for this new Micro-Exposure Tool (MET), would have a numerical aperture (NA) of about 0.3, similar to the NA for a beta-tool, but substantially larger than the 0.10 NA for the Engineering Test Stand (ETS) and 0.088 NA for the existing 10x Microstepper. This memorandum discusses the development and summarizes the performance of the camera for the MET and includes a listing of the design prescription, detailed analysis of the distortion, and analysis demonstrating the capability to resolution 30 nm features under the conditions of partially coherent illumination.

  20. [The lack of the effect of a strong constant magnetic field on isolated membrane preparations of Na,K-dependent ATPase].

    PubMed

    Savich, M L; Nazarova, N M; Raĭkhman, L M; Kuznetsov, A N

    1985-01-01

    Effect of constant magnetic field (CMF) with induction 10 T on membrane preparations of Na,K-dependent ATPase of bovine brain (lipoproteid vesicules with 300-500 A diameter) were studied. No CMF effect on the activity of Na,K-dependent ATPase was observed under different experimental conditions (three temperature points 15, 20 and 37 degrees C and great variation of Na+,K+ concentrations ratio). CMF also produced no effect on the preparations of Na,K-dependent ATPase immobilized by adsorption on millipore filters. PMID:2983778

  1. Extracellular Na+ levels regulate formation and activity of the NaX/alpha1-Na+/K+-ATPase complex in neuronal cells

    PubMed Central

    Berret, Emmanuelle; Smith, Pascal Y.; Henry, Mélaine; Soulet, Denis; Hébert, Sébastien S.; Toth, Katalin; Mouginot, Didier; Drolet, Guy

    2014-01-01

    MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na+]out). The mechanism underlying Na+-sensing involves Na+-flow through the NaX channel, directly regulated by the Na+/K+-ATPase α1-isoform which controls Na+-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na+]in). Here we aim to determine whether environmental changes in Na+ could actively modulate the NaX/Na+/K+-ATPase complex activity. We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na+] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na+] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na+/K+-ATPase remained unaltered. This unbalance between NaX and Na+/K+-ATPase pump proportion would induce a bigger portion of Na+/K+-ATPase-control-free NaX channel. Thus, we suggest that hypernatremic environment increases NaX/Na+/K+-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump. PMID:25538563

  2. Modeling of Na airglow emission and first results on the nocturnal variation at midlatitude

    NASA Astrophysics Data System (ADS)

    Bag, T.; Sunil Krishna, M. V.; Singh, Vir

    2015-12-01

    A model for sodium airglow emission is developed by incorporating all the known reaction mechanisms. The neutral, ionic, and photochemical mechanisms are successfully implemented into this model. The values of reaction rate coefficients are based upon the theoretical calculations as well as from experimental observations. The densities of major species are calculated using the continuity equations, whereas for the minor, intermediating, and short-lived species steady state approximation method is used. The modeled results are validated with the rocket, lidar, and photometer observations for a branching ratio of 0.04 for the production of Na(2P) in the reaction NaO + O → Na(2P, 2S). The inputs have been obtained from other physics-based models and ground- and satellite-based observations to give the combined volume emission rate (VER) of Na airglow between 80 and 110 km altitude. In the present study, the model is used to understand the nocturnal variation of Na VER during the solstice conditions. The model results suggest a variation of peak emission layer between 85 and 90 km during summer solstice condition, indicating a lower value of peak emission rate during summer solstice. The emission rates bear a strong correlation with the O3 density during summer solstice, whereas the magnitude of VER follows the Na density during winter solstice. The altitude of peak VER shows an upward shift of 5 km during winter solstice.

  3. Investigating Single-Particle Structure in 26Na Using the New SHARC Array

    NASA Astrophysics Data System (ADS)

    Wilson, G. L.; Catford, W. N.; Diget, C. Aa.; Orr, N. A.; Matta, A.; Hackman, G.; Williams, S. J.; Simpson, E. C.; Celik, I. C.; Achouri, N. L.; Adsley, P.; Al-Falou, H.; Ashley, R.; Austin, R. A. E.; Ball, G. C.; Blackmon, J. C.; Boston, A. J.; Boston, H. C.; Brown, S. M.; Cross, D. S.; Djongolov, M.; Drake, T. E.; Hager, U.; Fox, S. P.; Fulton, B. R.; Galinski, N.; Garnsworthy, A. B.; Jamieson, D.; Kanungo, R.; Leach, K.; Orce, J. N.; Pearson, C. J.; Porter-Peden, M.; Sarazin, F.; Sjue, S.; Smalley, D.; Sumithrarachchi, C.; Triambak, S.; Unsworth, C.; Wadsworth, R.

    The changing of the nuclear shells for light, neutron-rich nuclei, and the single-particle nature of 26Na, has been explored by studying 25Na(d, p)26Na in inverse kinematics, using a beam of 25Na ions at 5 MeV per nucleon, provided by the ISAC-II facility at TRIUMF, Vancouver. Charged particles were detected with a highly-segmented silicon array that surrounded the 0.5 mg/cm2 (CD2)n target. Gamma rays from the recoiling 26Na nucleus were detected using eight Compton-suppressed HPGe clover detectors. Recoil tagging was provided by an in-beam scintillation foil, downstream of the germanium array. A novel technique of utilising pγ- and pγγ-gating to extract proton angular distributions from states populated close in energy was employed with success. New states in 26Na that are populated directly have been identified, using γ-decay patterns. Shell model calculations for comparison to experimental results are ongoing, using different model bases.

  4. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  5. A Combined Theoretical and Experimental Study for Silver Electroplating

    PubMed Central

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  6. Experimental conditions can obscure the second high-affinity site in LeuT.

    PubMed

    Quick, Matthias; Shi, Lei; Zehnpfennig, Britta; Weinstein, Harel; Javitch, Jonathan A

    2012-02-01

    Neurotransmitter:Na(+) symporters (NSSs), the targets of antidepressants and psychostimulants, recapture neurotransmitters from the synapse in a Na(+)-dependent symport mechanism. The crystal structure of the NSS homolog LeuT from Aquifex aeolicus revealed one leucine substrate in an occluded, centrally located (S1) binding site next to two Na(+) ions. Computational studies combined with binding and flux experiments identified a second substrate (S2) site and a molecular mechanism of Na(+)-substrate symport that depends upon the allosteric interaction of substrate molecules in the two high-affinity sites. Here we show that the S2 site, which has not yet been identified by crystallographic approaches, can be blocked during preparation of detergent-solubilized LeuT, thereby obscuring its crucial role in Na(+)-coupled symport. This finding points to the need for caution in selecting experimental environments in which the properties and mechanistic features of membrane proteins can be delineated. PMID:22245968

  7. Linear and nonlinear optical properties of 3-nitroaniline (m-NA) and 4-nitroaniline (p-NA) crystals: A DFT/TDDFT study

    NASA Astrophysics Data System (ADS)

    Dadsetani, M.; Omidi, A. R.

    2015-10-01

    We have studied the electronic structure and optical responses of 3-nitroaniline and 4-nitroaniline crystals within the framework of density functional theory (DFT). In addition, the excitonic effects are investigated by using the recently published bootstrap exchange-correlation kernel within the time dependent density functional theory (TDDFT) framework. Our calculations based on mBJ approximation yield the indirect band gap for both crystals, but the larger one for m-NA. Due to the excitonic effects, the TDDFT calculations gives rise to the enhanced and red-shifted spectra (compared to RPA). Due to the weak intermolecular interactions, band-structure calculations yield bands with low dispersion for both crystals. This study shows that the substituent groups play an important role in the top of valence band and the bottom of conduction band. Due to the linear structure of p-NA molecule, the highest peaks are located in the optical spectra of p-NA crystal, while m-NA has more sharp peaks, especially at lower energies. Both DFT and TDDFT calculations for the energy loss spectra show plasmon peaks around 27 and 28 eV for p-NA and m-NA, respectively. Due to the non-centrosymmetric structure of m-NA crystal, we also have reported its nonlinear spectra and the 2ω/ω intra-band and inter-band contributions to the dominant susceptibilities. Findings indicate the opposite signs for these contributions, especially at higher energies. The comparison between nonlinear spectra and the linear spectra (as a function of both ω and 2ω) reveals the significant resemblance between linear and nonlinear patterns. In addition to the reasonable agreement between our results with experimental data, this study reveals the spectral similarities between crystalline susceptibility and molecular polarizability.

  8. Na-site substitution effects on the thermoelectric properties of NaCo2O4

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Iguchi, Y.; Itoh, T.; Takahata, K.; Terasaki, I.

    1999-10-01

    The resistivity and thermopower of Na1+xCo2O4 and Na1.1-xCaxCo2O4 are measured and analyzed. In Na1+xCo2O4, whereas the resistivity increases with x, the thermopower is nearly independent of x. This suggests that the excess Na is unlikely to supply carriers, and decreases effective conduction paths in the sample. In Na1.1-xCaxCo2O4, the resistivity and the thermopower increase with x, and the Ca2+ substitution for Na+ reduces the majority carriers in NaCo2O4. This means that they are holes, which is consistent with the positive sign of the thermopower. Strong correlation in this compound is evidenced by the peculiar temperature dependence of the resistivity.

  9. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping

    NASA Astrophysics Data System (ADS)

    Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi

    2016-08-01

    A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.

  10. Intracellular Na+ kinetically interferes with the rotation of the Na(+)-driven flagellar motors of Vibrio alginolyticus.

    PubMed

    Yoshida, S; Sugiyama, S; Hojo, Y; Tokuda, H; Imae, Y

    1990-11-25

    To understand the mechanism of Na+ movement through the force-generating units of the Na(+)-driven flagellar motors of Vibrio alginolyticus, the effect of intracellular Na+ concentration on motor rotation was investigated. Control cells containing about 50 mM Na+ showed good motility even at 10 mM Na+ in the medium, i.e. in the absence of an inwardly directed Na+ gradient. In contrast, Na(+)-loaded cells containing about 400 mM Na+ showed very poor motility at 500 mM Na+ in the medium, i.e. even in the presence of an inwardly directed Na+ gradient. The membrane potential of the cells, which is a major driving force for the motor under these conditions, was not detectably altered, and consistently with this, Na(+)-coupled sucrose transport was only partly reduced in the Na(+)-loaded cells. Motility of the Na(+)-loaded cells was restored by decreasing the intracellular Na+ concentration, and the rate of restoration of motility correlated with the rate of the Na+ decrease. These results indicate that the absolute concentration of the intracellular Na+ is a determinant of the rotation rate of the Na(+)-driven flagellar motors of V. alginolyticus. A simple explanation for this phenomenon is that the force-generating unit of the motor has an intracellular Na(+)-binding site, at which the intracellular Na+ kinetically interferes with the rate of Na+ influx for motor rotation. PMID:2243095

  11. Variational calculations of rotationally resolved infrared properties of Li 2Na +, LiNa 2+ and KLiNa +

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Searles, Debra J.; von Nagy-Felsobuki, Ellak I.

    1992-10-01

    Ab initio variational rovibrational calculations have been performed for the ground electronic states of Li 2Na +, LiNa +2 and KLiNa +. Discrete potential and electric dipole moment surfaces were used to calculate rovibrational transition frequencies, absolute vibrational bands and line intensities. The variational rovibration calculations take into account a full description of the mechanical and electrical anharmonicity as well as vibration—rotation coupling effects. Absolute line intensities and square dipole matrix elements are given for some intense transitions within the P-, Q- and R-branches between the vibrational ground state and the lowest lying excited states.

  12. Valence photodetachment of Li- and Na- using relativistic many-body techniques

    NASA Astrophysics Data System (ADS)

    Jose, J.; Pradhan, G. B.; Radojević, V.; Manson, S. T.; Deshmukh, P. C.

    2011-05-01

    The multiconfiguration Tamm-Dancoff technique (MCTD) is applied to study photodetachment of negative ions of lithium and sodium. A cusplike structure is found in the photodetachment cross section just below the first detachment-plus-excitation threshold of Li- (Li 2p), and of Na- (Na 3p), in qualitative agreement with existing theoretical and experimental results. The current work emphasizes the importance of correlation in the form of configuration interaction in the photodetachment process and demonstrates the utility of MCTD in dealing with highly correlated systems.

  13. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-07-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  14. Crevice corrosion -- NaCl concentration map for Alloy 625 at elevated temperature

    SciTech Connect

    Amano, Toshiaki; Kojima, Yoichi; Tsujikawa, Shigeo

    1995-12-31

    The repassivation potentials, Er, for metal/metal-crevice of Alloy 625 were determined in 0.3--10% NaCl solutions for temperatures up to 250 C. The ER were found to be the least noble at temperatures around 100 and 125 C. The Er became more noble as temperature increased; this tendency was particularly strong in diluted solutions. Based on the experimental data, a crevice corrosion map showing the critical condition in terms of temperature and NaCl concentration was presented. As for the map, a wide repassivation region was found in elevated temperatures, similar to that of commercially pure titanium, C.P.Ti.

  15. Molecular line lists: The ro-vibrational spectra of NaF and KF

    NASA Astrophysics Data System (ADS)

    Frohman, Daniel J.; Bernath, Peter F.; Brooke, James S. A.

    2016-01-01

    Rotation-vibration line lists for 23Na19F, 39K19F, and 41K19F in their ground electronic states are presented. Experimental data previously collected for infrared transitions up to v=8 and v=9 for KF [1] and NaF [2], respectively, and for pure rotational transitions have been used to construct potential energy curves to yield ro-vibrational energy levels. Dipole moment functions were generated from ab initio calculations using the SA-CASSCF and ACPF methods. Full line lists and partition functions are made available as supplementary data.

  16. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  17. Experimental scattershot boson sampling

    PubMed Central

    Bentivegna, Marco; Spagnolo, Nicolò; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J.; Galvão, Ernesto F.; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio

    2015-01-01

    Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy. PMID:26601164

  18. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  19. NaCl reflection coefficients in proximal tubule apical and basolateral membrane vesicles. Measurement by induced osmosis and solvent drag.

    PubMed

    Pearce, D; Verkman, A S

    1989-06-01

    Two independent methods, induced osmosis and solvent drag, were used to determine the reflection coefficients for NaCl (sigma NaCl) in brush border and basolateral membrane vesicles isolated from rabbit proximal tubule. In the induced osmosis method, vesicles loaded with sucrose were subjected to varying inward NaCl gradients in a stopped-flow apparatus. sigma NaCl was determined from the osmolality of the NaCl solution required to cause no initial osmotic water flux as measured by light scattering (null point). By this method sigma NaCl was greater than 0.92 for both apical and basolateral membranes with best estimates of 1.0. sigma NaCl was determined by the solvent drag method using the Cl-sensitive fluorescent indicator, 6-methoxy-N-[3-sulfopropyl]quinolinium (SPQ), to detect the drag of Cl into vesicles by inward osmotic water movement caused by an outward osmotic gradient. sigma NaCl was determined by comparing experimental data with theoretical curves generated using the coupled flux equations of Kedem and Katchalsky. By this method we found that sigma NaCl was greater than 0.96 for apical and greater than 0.98 for basolateral membrane vesicles, with best estimates of 1.0 for both membranes. These results demonstrate that sigma NaCl for proximal tubule apical and basolateral membranes are near unity. Taken together with previous results, these data suggest that proximal tubule water channels are long narrow pores that exclude NaCl. PMID:2765660

  20. K+ Block Is the Mechanism of Functional Asymmetry in Bacterial Na(v) Channels.

    PubMed

    Ngo, Van; Wang, Yibo; Haas, Stephan; Noskov, Sergei Y; Farley, Robert A

    2016-01-01

    Crystal structures of several bacterial Na(v) channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Na(v) channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial Na(v)Ab channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Na(v) channels. The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of Na(v)Ab in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be 'locked' in place by modest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose "knock-on" mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Na(v) channels to induce inward currents of K+ ions. These results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free

  1. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    PubMed

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores. PMID:26460827

  2. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation

    PubMed Central

    Finnerty, Justin John

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores. PMID:26460827

  3. Experimental probes of axions

    SciTech Connect

    Chou, Aaron S.; /Fermilab

    2009-10-01

    Experimental searches for axions or axion-like particles rely on semiclassical phenomena resulting from the postulated coupling of the axion to two photons. Sensitive probes of the extremely small coupling constant can be made by exploiting familiar, coherent electromagnetic laboratory techniques, including resonant enhancement of transitions using microwave and optical cavities, Bragg scattering, and coherent photon-axion oscillations. The axion beam may either be astrophysical in origin as in the case of dark matter axion searches and solar axion searches, or created in the laboratory from laser interactions with magnetic fields. This note is meant to be a sampling of recent experimental results.

  4. SPHINX experimenters information package

    SciTech Connect

    Zarick, T.A.

    1996-08-01

    This information package was prepared for both new and experienced users of the SPHINX (Short Pulse High Intensity Nanosecond X-radiator) flash X-Ray facility. It was compiled to help facilitate experiment design and preparation for both the experimenter(s) and the SPHINX operational staff. The major areas covered include: Recording Systems Capabilities,Recording System Cable Plant, Physical Dimensions of SPHINX and the SPHINX Test cell, SPHINX Operating Parameters and Modes, Dose Rate Map, Experiment Safety Approval Form, and a Feedback Questionnaire. This package will be updated as the SPHINX facilities and capabilities are enhanced.

  5. Questioning and Experimentation

    NASA Astrophysics Data System (ADS)

    Mutanen, Arto

    2014-08-01

    The paper is a philosophical analysis of experimentation. The philosophical framework of the analysis is the interrogative model of inquiry developed by Hintikka. The basis of the model is explicit and well-formed logic of questions and answers. The framework allows us to formulate a flexible logic of experimentation. In particular, the formulated model can be interpreted realistically. Moreover, the model demonstrates an explicit logic of knowledge acquisition. So, the natural extension of the model is to apply it to an analysis of the learning process.

  6. Effects of Experimental Negative Affect Manipulations on Ad Lib Smoking: A Meta-Analysis

    PubMed Central

    Heckman, Bryan W.; Carpenter, Mathew J.; Correa, John B.; Wray, Jennifer M.; Saladin, Michael E.; Froeliger, Brett; Drobes, David J.; Brandon, Thomas H.

    2015-01-01

    Aims To quantify the effect of negative affect (NA), when manipulated experimentally, upon smoking as measured within laboratory paradigms. Quantitative meta-analyses tested the effects of NA vs. neutral conditions on 1) latency to smoke and 2) number of puffs taken. Methods Twelve experimental studies tested the influence of NA induction, relative to a neutral control condition (N = 1,190; range = 24–235). Those providing relevant data contributed to separate random effects meta-analyses to examine the effects of NA on two primary smoking measures: 1) latency to smoke (nine studies) and 2) number of puffs taken during ad lib smoking (eleven studies). Hedge’s g was calculated for all studies through the use of post-NA cue responses relative to post-neutral cue responses. This effect size estimate is similar to Cohen’s d, but corrects for small sample size bias. Results NA reliably decreased latency to smoke (g = −.14; CI = −.23 to −.04; p = .007) and increased number of puffs taken (g = .14; CI = .02 to .25; p = .02). There was considerable variability across studies for both outcomes (I2 = 51% and 65% for latency and consumption, respectively). Potential publication bias was indicated for both outcomes, and adjusted effect sizes were smaller and no longer statistically significant. Conclusions In experimental laboratory studies of smokers, negative affect appears to reduce latency to smoking and increase number of puffs taken but this could be due to publication bias. PMID:25641624

  7. The Marble experimental plan

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Gilbertson, R. D.; Grim, G. P.; Haines, B. M.; Hamilton, C. E.; Oertel, J. A.; Olson, R. E.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2014-10-01

    The Marble campaign will quantify the effects of heterogeneous mix on fusion burn in ICF capsules using deuterated foam and tritium gas filled capsules. The heterogeneousness of the mix will be controlled by varying the porosity of the foam. Platform development efforts are underway, and experiments will be performed in FY2015 on Omega using direct-drive capsule implosions and on NIF using near-vacuum hohlraum capsule implosions to provide initial data on the performance of foam-filled capsule implosions. Capsules filled with a mixture of deuterated propane and tritium will be used as controls, providing data from uniformly mixed reactants. Capsules filled with engineered foams of specified porosity are currently being developed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under Contract DE-AC52-06NA25396.

  8. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase.

    PubMed

    Mahmmoud, Yasser A

    2008-02-01

    Capsazepine (CPZ), a synthetic capsaicin analogue, inhibits ATP hydrolysis by Na,K-ATPase in the presence but not in the absence of K(+). Studies with purified membranes revealed that CPZ reduced Na(+)-dependent phosphorylation by interference with Na(+) binding from the intracellular side of the membrane. Kinetic analyses showed that CPZ stabilized an enzyme species that constitutively occluded K(+). Low-affinity ATP interaction with the enzyme was strongly reduced after CPZ treatment; in contrast, indirectly measured interaction with ADP was much increased, which suggests that composite regulatory communication with nucleotides takes place during turnover. Studies with lipid vesicles revealed that CPZ reduced ATP-dependent digitoxigenin-sensitive (22)Na(+) influx into K(+)-loaded vesicles only at saturating ATP concentrations. The drug apparently abolishes the regulatory effect of ATP on the pump. Drawing on previous homology modeling studies of Na,K-ATPase to atomic models of sarcoplasmic reticulum Ca-ATPase and on kinetic data, we propose that CPZ uncouples an Na(+) cycle from an Na(+)/K(+) cycle in the pump. The Na(+) cycle possibly involves transport through the recently characterized Na(+)-specific site. A shift to such an uncoupled mode is believed to produce pumps mediating uncoupled Na(+) efflux by modifying the transport stoichiometry of single pump units. PMID:18230728

  9. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion.

    PubMed

    Garcia, Alvaro; Liu, Chia-Chi; Cornelius, Flemming; Clarke, Ronald J; Rasmussen, Helge H

    2016-03-01

    The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect

  10. Communicating Uncertain Experimental Evidence

    ERIC Educational Resources Information Center

    Davis, Alexander L.; Fischhoff, Baruch

    2014-01-01

    Four experiments examined when laypeople attribute unexpected experimental outcomes to error, in foresight and in hindsight, along with their judgments of whether the data should be published. Participants read vignettes describing hypothetical experiments, along with the result of the initial observation, considered as either a possibility…

  11. EXPERIMENTAL ANIMAL MAINTENANCE

    DOEpatents

    Finkel, M.P.

    1962-01-22

    A method of housing experimental animals such as mice in individual tube- like plastic enclosures is described. Contrary to experience, when this was tried with metal the mice did not become panicky. Group housing, with its attendant difficulties, may thus be dispensed with. (AEC)

  12. Experimental fluvial geomorphology

    SciTech Connect

    Schumm, S.A.; Mosley, M.P.; Weaver, W.

    1987-01-01

    The authors bring together the results of several years of experimental work in drainage basin evolution, hydrology, river-channel morphology, and sedimentology. These investigations are related to real-world applications, particularly geological exploration and mapping. This text shows how awareness of natural phenomena can improve management of the natural environment, such as the control of rivers and eroding gullies.

  13. Thermodynamic Model for the Solubility of Cr(OH)(3)(am) in Concentrated NaOH and NaOH-NaNO3 Solutions

    SciTech Connect

    Rai, Dhanpat ); Hess, Nancy J. ); Rao, Linfeng; Zhang, Zhicheng; Felmy, Andrew R. ); Moore, Dean A. ); Clark, Sue B.; Lumetta, Gregg J. )

    2001-12-01

    The objectives of this study were to develop a reliable thermodynamic model for predicting Cr(III) behavior in concentrated NaOH and in mixed NaOH-NaNO3 solutions for application to effective caustic leaching strategies for high-level tank sludges. To meet these objectives, the solubility of Cr(OH)3(am) was measured in 0.003 to 10.5 m NaOH, 3.0 m es in NaOH concentration...

  14. Partial reactions of the Na,K-ATPase: determination of rate constants

    PubMed Central

    1994-01-01

    Experiments were designed to characterize several partial reactions of the Na,K-ATPase and to demonstrate that a model can be defined that reproduces most of the transport features of the pump with a single set of kientic parameters. We used the fluorescence label 5- iodoacetamidofluorescein, which is thought to be sensitive to conformational changes, and the styryl dye RH 421, which can be applied to detect ion-binding and -release reactions. In addition transient electric currents were measured, which are associated mainly with the E1-->E2 conformational transition. Numerical simulations were performed on the basis of a reaction model, that has been developed from the Post- Albers cycle. Analysis of the experimental data allows the determination of several rate constants of the pump cycle. Our conclusions may be summarized as follows: (a) binding of one Na+ ion at the cytoplasmic face is electrogenic. This Na+ ion is specifically bound to a neutral binding site with an affinity of 8 mM in the presence of 10 mM Mg2+. In the absence of divalent cations, the intrinsic binding affinity was found to be 0.7 mM. (b) The analysis of fluorescence experiments with the cardiotonic steroid strophanthidin indicates that the 5-iodoacetamidofluorescein label monitors the conformational transition (Na3)E1-P-->P-E2(Na2), which is accompanied by the release of one Na+ ion. 5-IAF does not respond to the release of the subsequent two Na+ ions, which can be monitored by the RH 421 dye. These experiments indicate further that the conformational transition E1P-->P-E2 is the rate limiting process of the Na+ translocation. The corresponding rate constant was determined to be 22 s-1 at 20 degrees C. From competition experiments with cardiotonic steroids, we estimated that the remaining 2 Na+ ions are released subsequently with a rate constant of at least 5,000 s-1 from their negatively charged binding sites. (c) Comparing the fluorescence experiments with electric current transients

  15. Administrative Aspects of Human Experimentation.

    ERIC Educational Resources Information Center

    Irvine, George W.

    1992-01-01

    The following administrative aspects of scientific experimentation with human subjects are discussed: the definition of human experimentation; the distinction between experimentation and treatment; investigator responsibility; documentation; the elements and principles of informed consent; and the administrator's role in establishing and…

  16. Teaching experimental design.

    PubMed

    Fry, Derek J

    2014-01-01

    Awareness of poor design and published concerns over study quality stimulated the development of courses on experimental design intended to improve matters. This article describes some of the thinking behind these courses and how the topics can be presented in a variety of formats. The premises are that education in experimental design should be undertaken with an awareness of educational principles, of how adults learn, and of the particular topics in the subject that need emphasis. For those using laboratory animals, it should include ethical considerations, particularly severity issues, and accommodate learners not confident with mathematics. Basic principles, explanation of fully randomized, randomized block, and factorial designs, and discussion of how to size an experiment form the minimum set of topics. A problem-solving approach can help develop the skills of deciding what are correct experimental units and suitable controls in different experimental scenarios, identifying when an experiment has not been properly randomized or blinded, and selecting the most efficient design for particular experimental situations. Content, pace, and presentation should suit the audience and time available, and variety both within a presentation and in ways of interacting with those being taught is likely to be effective. Details are given of a three-day course based on these ideas, which has been rated informative, educational, and enjoyable, and can form a postgraduate module. It has oral presentations reinforced by group exercises and discussions based on realistic problems, and computer exercises which include some analysis. Other case studies consider a half-day format and a module for animal technicians. PMID:25541547

  17. Experimental determination of chlorite dissolution rates

    SciTech Connect

    Rochelle, C.A.; Bateman, K.; MacGregor, R.; Pearce, J.M.; Wetton, P.D.; Savage, D.

    1995-12-31

    Current concepts of the geological disposal of low- and intermediate-level radioactive wastes in the UK envisage the construction of a mined facility (incorporating cementitious engineered barriers) in chlorite-bearing rocks. To model accurately the fluid-rock reactions within the disturbed zone surrounding a repository requires functions that describe mineral dissolution kinetics under pH conditions that vary from near neutral to highly alkaline. Therefore, an experimental study to determine the dissolution rates of Fe-rich chlorite has been undertaken as part of the Nirex Safety Assessment Research Program. Four experiments have been carried out at 25 C and four at 70 C, both sets using a range of NaCl/NaOH solutions of differing pH (of nominal pH 9.0, 10.3, 11.6 and 13.0 [at 25 C]). Dissolution rates have been calculated and were found to increase with increasing pH and temperature. However, increased pH resulted in non-stoichiometric dissolution possibly due to preferential dissolution of part of the chlorite structure relative to another, or reprecipitation of some elements as thin hydroxide or oxyhydroxide surface coatings on the chlorite. These results also show that chlorite dissolution is appreciably slower than that of albite and quartz at both 25 and 70 C, but slightly faster than that of muscovite at 70 C.

  18. Thermodynamic Model of the Na-Al-Si-O-F Melts

    NASA Astrophysics Data System (ADS)

    Dolejs, D.; Baker, D. R.

    2004-05-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids which links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals or fluoride-silicate immiscibility in natural felsic melts. Configurational properties of the liquid are defined by mixing of alkali fluoride, polyhedral aluminofluoride and silicofluoride species and non-bridging terminations of the silicate network. Abundances of individual structural species are described by a homogeneous equilibrium, representing melt depolymerization: F- (free) + O0 (bridging) = F0 (terminal) + O- (non-bridging), which is a replacement of one oxygen bridge, Si-O-Si, by two terminations, Si-F | Na-O-Si. In cryolite-bearing systems, the self-dissociation of octahedral aluminofluoride complexes: Na3[AlF6] = Na[AlF4] + 2 NaF, and the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F, represent two additional interaction mechanisms. Portrayal of these equilibria in ternary Thompson reaction space allows to decrease the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the interaction parameters are incorporated directly in configurational properties, thus the complete melt speciation can be calculated, and the activities of any macroscopic species are readily derived. The model has been applied to subsystems of the Na2O-NaAlO2-SiO2-F2O-1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra in fluoride solvent. Phase-equilibria in cryolite-nepheline and cryolite-albite systems illustrate an overall increase of Na3AlF6 self

  19. A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII.

    PubMed

    Morotti, S; Edwards, A G; McCulloch, A D; Bers, D M; Grandi, E

    2014-03-15

    Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) hyperactivity in heart failure causes intracellular Na(+) ([Na(+)]i) loading (at least in part by enhancing the late Na(+) current). This [Na(+)]i gain promotes intracellular Ca(2+) ([Ca(2+)]i) overload by altering the equilibrium of the Na(+)-Ca(2+) exchanger to impair forward-mode (Ca(2+) extrusion), and favour reverse-mode (Ca(2+) influx) exchange. In turn, this Ca(2+) overload would be expected to further activate CaMKII and thereby form a pathological positive feedback loop of ever-increasing CaMKII activity, [Na(+)]i, and [Ca(2+)]i. We developed an ionic model of the mouse ventricular myocyte to interrogate this potentially arrhythmogenic positive feedback in both control conditions and when CaMKIIδC is overexpressed as in genetically engineered mice. In control conditions, simulation of increased [Na(+)]i causes the expected increases in [Ca(2+)]i, CaMKII activity, and target phosphorylation, which degenerate into unstable Ca(2+) handling and electrophysiology at high [Na(+)]i gain. Notably, clamping CaMKII activity to basal levels ameliorates but does not completely offset this outcome, suggesting that the increase in [Ca(2+)]i per se plays an important role. The effect of this CaMKII-Na(+)-Ca(2+)-CaMKII feedback is more striking in CaMKIIδC overexpression, where high [Na(+)]i causes delayed afterdepolarizations, which can be prevented by imposing low [Na(+)]i, or clamping CaMKII phosphorylation of L-type Ca(2+) channels, ryanodine receptors and phospholamban to basal levels. In this setting, Na(+) loading fuels a vicious loop whereby increased CaMKII activation perturbs Ca(2+) and membrane potential homeostasis. High [Na(+)]i is also required to produce instability when CaMKII is further activated by increased Ca(2+) loading due to β-adrenergic activation. Our results support recent experimental findings of a synergistic interaction between perturbed Na(+) fluxes and CaMKII, and suggest that

  20. A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII

    PubMed Central

    Morotti, S; Edwards, A G; McCulloch, A D; Bers, D M; Grandi, E

    2014-01-01

    Ca2+–calmodulin-dependent protein kinase II (CaMKII) hyperactivity in heart failure causes intracellular Na+ ([Na+]i) loading (at least in part by enhancing the late Na+ current). This [Na+]i gain promotes intracellular Ca2+ ([Ca2+]i) overload by altering the equilibrium of the Na+–Ca2+ exchanger to impair forward-mode (Ca2+ extrusion), and favour reverse-mode (Ca2+ influx) exchange. In turn, this Ca2+ overload would be expected to further activate CaMKII and thereby form a pathological positive feedback loop of ever-increasing CaMKII activity, [Na+]i, and [Ca2+]i. We developed an ionic model of the mouse ventricular myocyte to interrogate this potentially arrhythmogenic positive feedback in both control conditions and when CaMKIIδC is overexpressed as in genetically engineered mice. In control conditions, simulation of increased [Na+]i causes the expected increases in [Ca2+]i, CaMKII activity, and target phosphorylation, which degenerate into unstable Ca2+ handling and electrophysiology at high [Na+]i gain. Notably, clamping CaMKII activity to basal levels ameliorates but does not completely offset this outcome, suggesting that the increase in [Ca2+]i per se plays an important role. The effect of this CaMKII–Na+–Ca2+–CaMKII feedback is more striking in CaMKIIδC overexpression, where high [Na+]i causes delayed afterdepolarizations, which can be prevented by imposing low [Na+]i, or clamping CaMKII phosphorylation of L-type Ca2+ channels, ryanodine receptors and phospholamban to basal levels. In this setting, Na+ loading fuels a vicious loop whereby increased CaMKII activation perturbs Ca2+ and membrane potential homeostasis. High [Na+]i is also required to produce instability when CaMKII is further activated by increased Ca2+ loading due to β-adrenergic activation. Our results support recent experimental findings of a synergistic interaction between perturbed Na+ fluxes and CaMKII, and suggest that pharmacological inhibition of intracellular Na+ loading

  1. Nanosegregation in Na2C60

    SciTech Connect

    Klupp, G.; Kamaras, K.; Matus, P.; Kiss, L.F.; Kovats, E.; Pekker, S.; Nemes, N.M.; Quintavalle, D.; Janossy, A.

    2005-09-27

    There is continuous interest in the nature of alkali metal fullerides containing C{sub 60}{sup 4-} and C{sub 60}{sup 2-}, because these compounds are believed to be nonmagnetic Mott-Jahn-Teller insulators. This idea could be verified in the case of A4C60, but Na2C60 is more controversial. By comparing the results of infrared spectroscopy and X-ray diffraction, we found that Na2C60 is segregated into 3-10 nm large regions. The two main phases of the material are insulating C60 and metallic Na3C60. We found by neutron scattering that the diffusion of sodium ions becomes faster on heating. Above 470 K Na2C60 is homogeneous and we show IR spectroscopic evidence of a Jahn-Teller distorted C{sub 60}{sup 2-} anion.

  2. Triplet state photoassociation of LiNa

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2015-05-01

    Ultracold molecules have promise to become a useful tool for studies in quantum simulation and ultracold chemistry. We aim to produce ultracold fermionic 6Li23Na molecules in the triplet ground state. Due to the small mass, small spin-orbit coupling, and fermionic character of LiNa, the triplet ground state is expected to be long lived. We report on photoassociation spectra of LiNa to its triplet excited states from an ultracold mixture. This is the first observation of these excited triplet potentials, which have been previously difficult to observe in heat-pipe experiments due to the small spin-orbit coupling in the system. Determining the excited state potentials is a key milestone towards forming triplet ground state LiNa via two-photon STIRAP. Work supported by the NSF, AFOSR-MURI, ARO-MURI, and NSERC.

  3. Metal-insulator transition in Na{sub x}WO{sub 3}: Photoemission spectromicroscopy study

    SciTech Connect

    Paul, Sanhita Ghosh, Anirudha Raj, Satyabrata

    2014-04-24

    We have investigated the validity of percolation model, which is quite often invoked to explain the metal-insulator transition in sodium tungsten bronzes, Na{sub x}WO{sub 3} by photoelectron spectromicroscopy. The spatially resolved direct spectromicroscopic probing on both the insulating and metallic phases of high quality single crystals of Na{sub x}WO{sub 3} reveals the absence of any microscopic inhomogeneities embedded in the system within the experimental limit. Neither any metallic domains in the insulating host nor any insulating domains in the metallic host have been found to support the validity of percolation model to explain the metal-insulator transition in Na{sub x}WO{sub 3}.

  4. Kinetics of hydrogen production from illuminated CdS/Pt/Na/sub 2/S dispersions

    SciTech Connect

    Furlong, D.N.; Grieser, F.; Hayes, D.; Hayes, R.; Sasse, W.; Wells, D.

    1986-05-22

    The production of hydrogen (H/sub 2/) upon illumination of transparent CdS/Pt/Na/sub 2/S dispersions has been studied over the complete life of the catalyst and as a function of the initial concentration of Na/sub 2/S. Our results indicate that the observed decline in, and eventual cessation of, H/sub 2/ production results from the depletion of the electron donor (Na/sub 2/S) and the deactivation of the catalyst (poisoning). Donor depletion dominates when low initial concentrations of donor are used (less than ca. 4 x 10/sup -3/ mol dm/sup -3/), whereas with higher concentrations catalyst poisoning is the main deactivation pathway. Evidence is presented which suggests that polysulfides are responsible for the deactivation of the catalyst. A model reaction scheme is developed which accounts for the experimental observations and provides a detailed description of the Lebenslauf of the catalytic system.

  5. Ab initio cross sections for low-energy inelastic H+Na collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, A. K.; Grosser, J.; Hahne, J.; Menzel, T.

    1999-09-01

    We report ab initio results for the integral cross section of the process H+Na(3s)-->H+Na(3p) for collision energies from the threshold (2.1 eV) to 600 eV. We achieve a reasonable agreement with the experimental data, which are available for energies above 10 eV. The main contributions to the cross section come from a rotational coupling mechanism in the NaH triplet molecular system and from a curve-crossing mechanism in the singlet system. At very low energy (2.1-2.4 eV), the process is governed by a centrifugal barrier in the exit channel leading to orbital resonances. The Landau-Zener model provides a reasonable qualitative description of the radial coupling mechanism at high energies, but fails below 10 eV.

  6. Topological Metal of NaBi with Ultralow Lattice Thermal Conductivity and Electron-phonon Superconductivity

    PubMed Central

    Li, Ronghan; Cheng, Xiyue; Xie, Qing; Sun, Yan; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2015-01-01

    By means of first-principles and ab initio tight-binding calculations, we found that the compound of NaBi is a three-dimensional non-trivial topological metal. Its topological feature can be confirmed by the presence of band inversion, the derived effective Z2 invariant and the non-trivial surface states with the presence of Dirac cones. Interestingly, our calculations further demonstrated that NaBi exhibits the uniquely combined properties between the electron-phonon coupling superconductivity in nice agreement with recent experimental measurements and the obviously anisotropic but extremely low thermal conductivity. The spin-orbit coupling effects greatly affect those properties. NaBi may provide a rich platform to study the relationship among metal, topology, superconductivity and thermal conductivity. PMID:25676863

  7. Na and K distribution in agpaitic pegmatites

    NASA Astrophysics Data System (ADS)

    Müller-Lorch, Daniel; Marks, Michael A. W.; Markl, Gregor

    2007-05-01

    Composition and zoning of amphibole in agpaitic pegmatites of the 1.16 Ga Ilímaussaq complex, South Greenland record the chemical evolution of the final stages of an already extremely fractionated melt. Our results show that the general differentiation trends found in the earlier rocks of the complex are continued in the pegmatites, albeit with some significant modifications: the dominating exchange mechanism of Na + Si ⇔ Ca + Al in the amphiboles of the magmatic stage changes to K + Si ⇔ Ca + Al and K ⇔ Na in some pegmatitic samples. Na/K ratios in amphiboles, which generally increase in the course of the Ilímaussaq fractionation, partly display a reversal during the crystallization of the most differentiated amphiboles. The alkali trends are probably related to the buffering of Na +and K +activity by the co-crystallization of albite and microcline. This buffering favors Na +in cooling fluids. This mechanism is lost when analcime replaces feldspar as a stable phase in the late stages of crystallization, e.g. due to locally elevated H 2O activity. Analcime does not incorporate significant amounts of K and accordingly, amphibole incorporates more K in analcime-bearing assemblages. The Na-K variation in amphiboles in the Ilímaussaq pegmatites allow a detailed view into the late-stage evolutionary trends of a textbook agpaitic complex. The transition from silicate melt to aqueous fluid is recorded by the change of the dominant alkali ion in the pegmatitic amphiboles from Na to K. Only in the very latest stage, virtually K-free mineral assemblages in analcime-aegirine veins support the existence of a Na-dominated aqueous fluid.

  8. Na+ reabsorption in cultured rat epididymal epithelium via the Na+/nucleoside cotransporter.

    PubMed

    Leung, G P; Cheung, K H; Tse, C M; Wong, P Y

    2001-03-01

    The effect of nucleoside on Na+ reabsorption via Na+/nucleoside cotransporter in cultured rat epididymal epithelia was studied by short-circuit current (Isc) technique. Guanosine added apically stimulated Isc in a dose-dependent manner, with a median effective concentration (EC50) of 7 +/- 2 microM (mean +/- SEM). Removal of Na+ from the apical bathing solution or pretreatment with a nonspecific Na+/nucleoside cotransporter inhibitor, phloridzin, completely blocked the Isc response to guanosine. Moreover, the guanosine response was abolished by pretreatment of the tissue with ouabain, a Na+/K+-ATPase inhibitor, suggesting the involvement of Na+/nucleoside cotransporter on the apical side and Na+/K+-ATPase on the basolateral side in Na+ reabsorption. In contrast, the Isc response to guanosine was not affected after desensitization of purinoceptors by ATP. Addition of the Na+/K+/2Cl- symport inhibitor bumetanide to the basolateral side or the nonspecific Cl- channel blocker diphenylamine-2-carboxylate to the apical side showed no effect on the Isc response to guanosine, excluding stimulation of Cl- secretion by guanosine as the cause of the guanosine-induced Isc. The Isc response to purine nucleoside (guanosine and inosine) was much higher than that to pyrimidine nucleoside (thymidine and cytidine). Consistent with substrate specificity, results of reverse transcription-polymerase chain reaction revealed mRNA for concentrative nucleoside transporter (CNT2), which is a purine nucleoside-selective Na+/nucleoside cotransporter in the epididymis, but not for CNT1. It is suggested that the Na+/nucleoside cotransporter (i.e., CNT2) may be one of the elements involved in Na+ and fluid reabsorption in the epididymis, thereby providing an optimal microenvironment for the maturation and storage of spermatozoa. PMID:11207189

  9. Geoengineering as Collective Experimentation.

    PubMed

    Stilgoe, Jack

    2016-06-01

    Geoengineering is defined as the 'deliberate and large-scale intervention in the Earth's climatic system with the aim of reducing global warming'. The technological proposals for doing this are highly speculative. Research is at an early stage, but there is a strong consensus that technologies would, if realisable, have profound and surprising ramifications. Geoengineering would seem to be an archetype of technology as social experiment, blurring lines that separate research from deployment and scientific knowledge from technological artefacts. Looking into the experimental systems of geoengineering, we can see the negotiation of what is known and unknown. The paper argues that, in renegotiating such systems, we can approach a new mode of governance-collective experimentation. This has important ramifications not just for how we imagine future geoengineering technologies, but also for how we govern geoengineering experiments currently under discussion. PMID:25862639

  10. Determination of Na acceptor level in Na+ ion-implanted ZnO single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Liu, Huibin; He, Haiping; Huang, Jingyun; Chen, Lingxiang; Ye, Zhizhen

    2015-03-01

    Ion implantation was used to dope Na acceptor into ZnO single crystals. With three mixed implantation energies, uniform depth distribution of Na ion in the surface region (~300 nm) of ZnO bulk crystals is achieved. Via post-implantation annealing, a donor-acceptor pair recombination band is identified in the low-temperature photoluminescence spectra, from which the energy level of Na-related acceptor in single crystalline ZnO is estimated to be 300 meV. A p-n junction based on this ZnO-Na layer shows rectifying characteristics, confirming the p-type conductivity.

  11. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  12. Experimental Neutrino Physics

    ScienceCinema

    Walter, Chris [Duke University, Durham, North Carolina, United States

    2010-01-08

    In this talk, I will review how a set of experiments in the last decade has given us our current understanding of neutrino properties.  I will show how experiments in the last year or two have clarified this picture, and will discuss how new experiments about to start will address remaining questions.  I will particularly emphasize the relationship between various experimental techniques.

  13. Blois V: Experimental summary

    SciTech Connect

    Albrow, M.G.

    1993-09-01

    The author gives a summary talk of the best experimental data given at the Vth Blois Workshop on Elastic and Diffractive Scattering. He addresses the following eight areas in his talk: total and elastic cross sections; single diffractive excitation; electron-proton scattering; di-jets and rapidity gaps; areas of future study; spins and asymmetries; high-transverse momentum and masses at the Tevatron; and disoriented chiral condensates and cosmic radiation.

  14. MSFC Skylab experimenter's reference

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The methods and techniques for experiment development and integration that evolved during the Skylab Program are described to facilitate transferring this experience to experimenters in future manned space programs. Management responsibilities and the sequential process of experiment evolution from initial concept through definition, development, integration, operation and postflight analysis are outlined in the main text and amplified, as appropriate, in appendixes. Emphasis is placed on specific lessons learned on Skylab that are worthy of consideration by future programs.

  15. Structural femtochemistry: experimental methodology.

    PubMed Central

    Williamson, J C; Zewail, A H

    1991-01-01

    The experimental methodology for structural femtochemistry of reactions is considered. With the extension of femtosecond transition-state spectroscopy to the diffraction regime, it is possible to obtain in a general way the trajectories of chemical reactions (change of internuclear separations with time) on the femtosecond time scale. This method, considered here for simple alkali halide dissociation, promises many applications to more complex reactions and to conformational changes. Alignment on the time scale of the experiments is also discussed. Images PMID:11607189

  16. Accurate thermoelastic tensor and acoustic velocities of NaCl

    NASA Astrophysics Data System (ADS)

    Marcondes, Michel L.; Shukla, Gaurav; da Silveira, Pedro; Wentzcovitch, Renata M.

    2015-12-01

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  17. Accurate thermoelastic tensor and acoustic velocities of NaCl

    SciTech Connect

    Marcondes, Michel L.; Shukla, Gaurav; Silveira, Pedro da; Wentzcovitch, Renata M.

    2015-12-15

    Despite the importance of thermoelastic properties of minerals in geology and geophysics, their measurement at high pressures and temperatures are still challenging. Thus, ab initio calculations are an essential tool for predicting these properties at extreme conditions. Owing to the approximate description of the exchange-correlation energy, approximations used in calculations of vibrational effects, and numerical/methodological approximations, these methods produce systematic deviations. Hybrid schemes combining experimental data and theoretical results have emerged as a way to reconcile available information and offer more reliable predictions at experimentally inaccessible thermodynamics conditions. Here we introduce a method to improve the calculated thermoelastic tensor by using highly accurate thermal equation of state (EoS). The corrective scheme is general, applicable to crystalline solids with any symmetry, and can produce accurate results at conditions where experimental data may not exist. We apply it to rock-salt-type NaCl, a material whose structural properties have been challenging to describe accurately by standard ab initio methods and whose acoustic/seismic properties are important for the gas and oil industry.

  18. Ab initio cluster study of crystalline NaF

    SciTech Connect

    Temple, D.K.

    1992-01-01

    A highly-accurate ab initio cluster model of crystalline NaF has been constructed to explore the limits of cluster methods in the treatment of ionic solids. The focus of this model was the characterization of the lattice environment and its influence on the easily-polarizable fluorine anion. The model consisted of a central all-electron fluorine anion coordinated by pseudopotentials, to represent the nearest-neighbor sodium cations, and a finite array of point charges chosen to generate the correct crystal field from the surrounding infinite ionic lattice. The wavefunction and properties of the anion were calculated using the restricted Hartree-Fock and configuration interaction techniques from quantum chemistry. An extensive analysis of basis set incompleteness errors in the anion wavefunction was performed. Important features were identified in the embedded anion, such as its distortion under the influence of the lattice compressions, its stabilization from the Madelung potential, and its changes in size due to electron correlations. Bulk properties of the rocksalt-structure (B1) NaF crystal were derived from the total mode energies, calculated as a function of the crystal volume. The properties included the zero-pressure lattice constant, cohesive energy, and bulk modulus, and the pressure-volume equation-of-state. A series of test calculations explored the relationships, and their underlying physical mechanisms, between the features of the embedded anion and the bulk properties of the crystal. These features often produced opposing changes in the properties, demonstrating the importance of a thorough and systematic treatment of the embedded anion. The most thorough test calculation gave bulk properties that were within 1% of experiment. Using an embedded anion model for the high-pressure cesium-chloride (B2) phase of NaF, the B1-to-B2 structural transition was correctly predicted at 25 GPa, in excellent agreement with the experimental values of 23 to 27 GPa.

  19. SAA drift: Experimental results

    NASA Astrophysics Data System (ADS)

    Grigoryan, O. R.; Romashova, V. V.; Petrov, A. N.

    According to the paleomagnetic analysis there are variations of Earth’s magnetic field connected with magnetic moment changing. These variations affect on the South Atlantic Anomaly (SAA) location. Indeed different observations approved the existence of the SAA westward drift rate (0.1 1.0 deg/year) and northward drift rate (approximately 0.1 deg/year). In this work, we present the analysis of experimental results obtained in Scobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) onboard different Earth’s artificial satellites (1972 2003). The fluxes of protons with energy >50 MeV, gamma quanta with energy >500 keV and neutrons with energy 0.1 1.0 MeV in the SAA region have been analyzed. The mentioned above experimental data were obtained onboard the orbital stations Salut-6 (1979), MIR (1991, 1998) and ISS (2003) by the similar experimental equipment. The comparison of the data obtained during these two decades of investigations confirms the fact that the SAA drifts westward. Moreover the analysis of fluxes of electrons with energy about hundreds keV (Cosmos-484 (1972) and Active (Interkosmos-24, 1991) satellites) verified not only the SAA westward drift but northward drift also.

  20. Deglycosylation to obtain stable and homogeneous Pichia pastoris-expressed N-A1 domains of carcinoembryonic antigen.

    PubMed

    Sainz-Pastor, Noelia; Tolner, Berend; Huhalov, Alexandra; Kogelberg, Heide; Lee, Yie Chia; Zhu, Delin; Begent, Richard Henry John; Chester, Kerry Ann

    2006-08-15

    Carcinoembryonic antigen (CEA) is a seven domain membrane glycoprotein widely used as a tumour marker for adenocarcinomas and as a target for antibody-directed therapies. Structural models have proposed that the first two domains of CEA (the N terminal and adjoining A1 domains) bind MFE-23, a single chain Fv antibody in experimental clinical use. We aimed to produce recombinant N-A1 to test this hypothesis. The N-A1 domains were expressed as soluble protein with a C-terminal hexahistidine tag (His6-tag) in the yeast Pichia pastoris. His6-tagged N-A1 was captured from the supernatant by batch purification with copper-loaded Streamline Chelating, an immobilised metal affinity chromatography (IMAC) matrix usually utilised in expanded bed techniques. Purified N-A1 was heterogeneous with a molecular weight range from 38 to 188 kDa. Deglycosylation with endoglycosidase H (Endo H) resulted in three discrete molecular weight forms of N-A1, one partially mannosylated, one fully Endo H-digested and one fully Endo H-digested but lacking the His6-tag. These were separated by concanavalin A chromatography followed by HiTrap IMAC. The procedure resulted in single-band-purity, mannose-free N-A1. The binding interaction of MFE-23 to N-A1 was analysed by surface plasmon resonance. The affinity constants retrieved were KD = 4.49 x 10(-9)M for the P. pastoris expressed, native N-A1, and 5.33 x 10(-9) M for the Endo H-treated N-A1. To our knowledge this is the first time that two consecutive domains of CEA have been stably expressed and purified from P. pastoris. This work confirms that the CEA epitope recognised by MFE-23 resides in N-A1. PMID:16678252

  1. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  2. MINOS Calibration and NA49 Hadronic Production Studies

    SciTech Connect

    Morse, Robert James

    2003-08-01

    An overview of the current status of the Main Injector Neutrino Oscillation Search (MINOS) is presented. MINOS is a long-baseline experiment with two detectors situated in North America. The near detector is based at the emission point of the NuMI beam at Fermilab, Chicago, the far detector is 735 km downstream in a disused iron mine in Soudan, Minnesota. A third detector, the calibration detector, is used to cross-calibrate these detectors by sampling different particle beams at CERN. A detailed description of the design and construction of the light-injection calibration system is included. Also presented are experimental investigations into proton-carbon collisions at 158 GeV/c carried out with the NA49 experiment at CERN. The NA49 experiment is a Time Projection Chamber (TPC) based experiment situated at CERN's North Area. It is a well established experiment with well known characteristics. The data gained from this investigation are to be used to parameterize various hadronic production processes in accelerator and atmospheric neutrino production. These hadronic production parameters will be used to improve the neutrino generation models used in calculating the neutrino oscillation parameters in MINOS.

  3. First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb

    NASA Astrophysics Data System (ADS)

    Gu, Jian-Bing; Wang, Chen-Ju; Zhang, Lin; Cheng, Yan; Yang, Xiang-Dong

    2015-08-01

    The structural, mechanical, electronic, and bonding properties and phase transition of NaZnSb are explored using the generalized gradient approximation based on ab initio plane-wave pseudopotential density functional theory.With the help of the quasi-harmonic Debye model, we probe the Grüneisen parameter, thermal expansivity, heat capacity, Debye temperature, and entropy of NaZnSb in the tetragonal phase. The results indicate that the lattice constants and the bulk modulus and its first pressure derivative agree well with the available theoretical and experimental data. NaZnSb in its ground state structure exhibits a distinct energy gap of about 0.41 eV, which increases with increasing pressure. Our conclusions are consistent with the theoretical predictions obtained by the ABINIT package, but are different from those obtained through the tight-binding linear muffin-tin orbital method. As a result, further experimental and theoretical researches need to be carried out. For the purpose of providing a comparative and complementary study for future research, we first investigate the thermodynamic properties of NaZnSb.

  4. Measurement of (23)Na(n,2n) cross section in well-defined reactor spectra.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Milčák, Ján; Mareček, Martin; Uhlíř, Jan

    2016-05-01

    The present paper aims to compare the calculated and experimental reaction rates of (23)Na(n,2n)(22)Na in a well-defined reactor spectra of a special core assembled in the LR-0 reactor. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination. The resulting value averaged in spectra is 0.91±0.02µb. This cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Generally the best C/E agreement, within 2%, was found using the ROSFOND-2010 data set, whereas the worst, as high as 40%, was found using the ENDF/B-VII.0. PMID:26894323

  5. A thermo-mechanical stress prediction model for contemporary planar sodium sulfur (NaS) cells

    NASA Astrophysics Data System (ADS)

    Jung, Keeyoung; Colker, Jeffrey P.; Cao, Yuzhe; Kim, Goun; Park, Yoon-Cheol; Kim, Chang-Soo

    2016-08-01

    We introduce a comprehensive finite-element analysis (FEA) computational model to accurately predict the thermo-mechanical stresses at heterogeneous joints and components of large-size sodium sulfur (NaS) cells during thermal cycling. Quantification of the thermo-mechanical stress is important because the accumulation of stress during cell assembly and/or operation is one of the critical issues in developing practical planar NaS cells. The computational model is developed based on relevant experimental assembly and operation conditions to predict the detailed stress field of a state-of-the-art planar NaS cell. Prior to the freeze-and-thaw thermal cycle simulation, residual stresses generated from the actual high temperature cell assembly procedures are calculated and implemented into the subsequent model. The calculation results show that large stresses are developed on the outer surface of the insulating header and the solid electrolyte, where component fracture is frequently observed in the experimental cell fabrication process. The impacts of the coefficients of thermal expansion (CTE) of glass materials and the thicknesses of cell container on the stress accumulation are also evaluated to improve the cell manufacturing procedure and to guide the material choices for enhanced thermo-mechanical stability of large-size NaS cells.

  6. Design and response function of NaI detectors of Aragats complex installation

    NASA Astrophysics Data System (ADS)

    Arakelyan, K.; Daryan, A.; Kozliner, L.; Hovsepyan, G.; Reimers, A.

    2014-11-01

    In 2011, a network of five thallium-doped sodium iodide (Nal(Tl)) detectors was installed on Aragats Space Environmental Center (ASEC) and was included into ASEC detectors system. Along with monitoring of different species of secondary cosmic rays, ASEC detectors register several thunderstorm ground enhancements (TGEs). NaI(Tl) detector integration in the ASEC detector system is of great importance for the study of thunderstorm phenomena for the reason that NaI(Tl) detectors have a higher efficiency of gamma rays detection compared with plastic ones. In this article, the design and characteristics of NaI(Tl) detectors are described. Simulations of detector response are performed. Comparison of simulation results with experimental data showed good agreement between simulations and experimentally observed distributions for analog-to-digital converter (ADC) channels (codes) of NaI(Tl) detectors at two depths of the atmosphere, thus, indicating the correctness of the detector's response determination. A procedure for reconstruction of gamma energy spectrum was developed and approximation of the energy spectrum of recorded TGE event was carried out by a power function under the assumption that the recorded fluxes consist mainly of gamma quanta.

  7. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    SciTech Connect

    McDaniel, Anthony H.; Ihlefeld, Jon F.; Bartelt, Norman Charles

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  8. EDITORIAL: TaCoNa-Photonics 2008 TaCoNa-Photonics 2008

    NASA Astrophysics Data System (ADS)

    Chigrin, Dmitry N.; Busch, Kurt; Lavrinenko, Andrei V.

    2009-11-01

    intensify theoretical discussions and to put them on `solid' ground it was decided to invite world-leading experts in experimental photonics for plenary talks. Over three days, the workshop has brought together more than 70 specialists in theoretical and computational nano-photonics. The workshop took place in the historical `Physikzentrum Bad Honnef', whose unique atmosphere supported a multitude of highly interesting debates and discussions that often lasted until midnight and beyond. Different theoretical and numerical aspects of light generation, control and detection in general inhomogeneous media, photonic crystals, plasmonic structures, metamaterials and integrated optical systems were covered in 15 invited talks and 52 contributed oral and posters presentations. The plenary talks were given by Professor M Wegener (metamaterials) and Professor W Barnes (plasmonics). This special section is a cross-sectional selection of papers which were submitted by the authors of invited and contributed oral presentations. It also includes two papers of the winners of the Best Poster Awards. We hope that these papers will enhance the interest of the scientific community regarding nano-photonics in general and regarding the TaCoNa-Photonics workshop series in particular. It is our distinct pleasure to acknowledge the generous financial support of our sponsors: Karlsruhe School of Optics & Photonics (KSOP) (Germany), U.S. Army International Technology Center-Atlantic, Research Division (USA), and the Office of Naval Research Global (USA). Without the organizational assistance from the International Department of the Universität Karlsruhe GmbH (Germany) this event would simply have been impossible.

  9. [Electrophysiology principles of Na(+)/HCO3(-) cotransporters].

    PubMed

    Chen, Li-Ming; Liu, Mei; Liu, Ying

    2016-06-25

    Ion channels and transporters represent two major types of pathways of transmembrane transport for ions. Distinct from ion channels which conduct passive ionic diffusion, ion transporters mediate active transport of ions. In the perspective of biochemistry, ion transporters are enzymes that catalyze the movement of ions across the plasma membrane. In the present review, we selected the Na(+)/HCO3(-) cotransporter (NBC) as an example to analyze the key biochemical and biophysical properties of ion transporters, including stoichiometry, turnover number and transport capacity. Moreover, we provided an analysis of the electrophysiological principles of NBC based on the laws of thermodynamics. Based on the thermodynamical analysis, we showed how the stoichiometry of an NBC determines the direction of its ion transport. Finally, we reviewed the methodology for experimental determination of the stoichiometry of NBC, as well as the physiological significance of the stoichiometry of NBCs in specific tissues. PMID:27350205

  10. Theoretical assessment on mixing properties of liquid Tl-Na alloys

    NASA Astrophysics Data System (ADS)

    Jha, I. S.; Khadka, R.; Koirala, R. P.; Singh, B. P.; Adhikari, D.

    2016-06-01

    Thermodynamic and structural properties of mixing of molten Tl-Na alloys at 673 K have been investigated using quasi-chemical model. To understand the mixing behaviour in more detail, emphasis is placed on the role of interaction energy term, and viscosity and surface tension of the alloys have also been analysed under statistical considerations. Our study shows negative deviation from the Raoultian behaviour in the properties of Tl-Na alloy thereby indicating hetero-coordination in the Tl-Na melt at 673 K in the full range of concentration. Theoretically, computed thermodynamic data at 673 K agree very well with the corresponding experimental data. The viscosities of the alloys computed from Kaptay equation show small negative deviation and those computed from Singh and Sommer's formulation show small positive deviation from ideal values while the Budai-Benko-Kaptay equation predicts noticeable negative deviation in Na-rich end and positive deviation in Tl-rich end of the composition. The calculations of surface tension reveal that results obtained from layered structure approach and compound formation model are in good agreement in the Na-rich side and in reasonable agreement in Tl-rich side of the composition, while those computed from Butler equation show noticeable deviations in the intermediate compositions. Both the viscosity and surface tension of liquid Tl-Na alloys increase with addition of Tl-component, viscosity having approximately linear variation with concentration. The study shows that there is non-linear variation in surface composition with bulk concentration and for most of the compositions the surface of the alloy is enriched with Na-atoms which segregate to the surface.

  11. Effect of NaFeEDTA-fortified soy sauce on zinc absorption in children.

    PubMed

    Li, Min; Wu, Jinghuan; Ren, Tongxiang; Wang, Rui; Li, Weidong; Piao, Jianhua; Wang, Jun; Yang, Xiaoguang

    2015-03-01

    NaFeEDTA has been applied in many foods as an iron fortificant and is used to prevent iron deficiency in Fe-depleted populations. In China, soy sauce is fortified with NaFeEDTA to control iron deficiency. However, it is unclear whether Fe-fortified soy sauce affects zinc absorption. To investigate whether NaFeEDTA-fortified soy sauce affects zinc absorption in children, sixty children were enrolled in this study and randomly assigned to three groups (10 male children and 10 female children in each group). All children received daily 3 mg of (67)Zn and 1.2 mg of dysprosium orally, while the children in the three groups were supplemented with NaFeEDTA-fortified soy sauce (6 mg Fe, NaFeEDTA group), FeSO₄-fortified soy sauce (6 mg Fe, FeSO₄ group), and no iron-fortified soy sauce (control group), respectively. Fecal samples were collected during the experimental period and analyzed for the Zn content, (67)Zn isotope ratio and dysprosium content. The Fe intake from NaFeEDTA-fortified and FeSO₄-fortified groups was significantly higher than that in the control group (P < 0.0001). The daily total Zn intake was not significantly different among the three groups. There were no significant differences in fractional Zn absorption (FZA) (P = 0.3895), dysprosium recovery (P = 0.7498) and Zn absorption (P = 0.5940) among the three groups. Therefore, NaFeEDTA-fortified soy sauce does not affect Zn bioavailability in children. PMID:25582850

  12. Plasmodium vivax Sporozoite Challenge in Malaria-Naïve and Semi-Immune Colombian Volunteers

    PubMed Central

    Arévalo-Herrera, Myriam; Forero-Peña, David A.; Rubiano, Kelly; Gómez-Hincapie, José; Martínez, Nora L.; Lopez-Perez, Mary; Castellanos, Angélica; Céspedes, Nora; Palacios, Ricardo; Oñate, José Millán; Herrera, Sócrates

    2014-01-01

    Background Significant progress has been recently achieved in the development of Plasmodium vivax challenge infections in humans, which are essential for vaccine and drug testing. With the goal of accelerating clinical development of malaria vaccines, the outcome of infections experimentally induced in naïve and semi-immune volunteers by infected mosquito bites was compared. Methods Seven malaria-naïve and nine semi-immune Colombian adults (n = 16) were subjected to the bites of 2–4 P. vivax sporozoite-infected Anopheles mosquitoes. Parasitemia levels, malaria clinical manifestations, and immune responses were assessed and compared. Results All volunteers developed infections as confirmed by microscopy and RT-qPCR. No significant difference in the pre-patent period (mean 12.5 and 12.8 days for malaria-naïve and malaria-exposed, respectively) was observed but naïve volunteers developed classical malaria signs and symptoms, while semi-immune volunteers displayed minor or no symptoms at the day of diagnosis. A malaria-naïve volunteer developed a transient low submicroscopic parasitemia that cured spontaneously. Infection induced an increase in specific antibody levels in both groups. Conclusion Sporozoite infectious challenge was safe and reproducible in semi-immune and naïve volunteers. This model will provide information for simultaneous comparison of the protective efficacy of P. vivax vaccines in naïve and semi-immune volunteers under controlled conditions and would accelerate P. vivax vaccine development. Trial Registration clinicaltrials.gov NCT01585077 PMID:24963662

  13. Production and relevance of cosmogenic radionuclides in NaI(Tl) crystals

    NASA Astrophysics Data System (ADS)

    Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; de Solórzano, A. Ortiz; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2015-08-01

    The cosmogenic production of long-lived radioactive isotopes in materials is an hazard for experiments demanding ultra-low background conditions. Although NaI(Tl) scintillators have been used in this context for a long time, very few activation data were available. We present results from two 12.5 kg NaI(Tl) detectors, developed within the ANAIS project and installed at the Canfranc Underground Laboratory. The prompt data taking starting made possible a reliable quantification of production of some I, Te and Na isotopes with half-lives larger than ten days. Tnitial activities underground were measured and then production rates at sea level were estimated following the history of detectors; a comparison of these rates with calculations using typical cosmic neutron flux at sea level and a selected description of excitation functions was also carried out. After including the contribution from the identified cosmogenic products in the detector background model, we found that the presence of 3H in the crystal bulk would help to fit much better our background model and experimental data. We have analyzed the cosmogenic production of 3H in NaI, and although precise quantification has not been attempted, we can conclude that it could imply a very relevant contribution to the total background below 15 ke in NaI detectors.

  14. Production and relevance of cosmogenic radionuclides in NaI(Tl) crystals

    SciTech Connect

    Amaré, J.; Cebrián, S.; Cuesta, C.; García, E.; Ginestra, C.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Pobes, C.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2015-08-17

    The cosmogenic production of long-lived radioactive isotopes in materials is an hazard for experiments demanding ultra-low background conditions. Although NaI(Tl) scintillators have been used in this context for a long time, very few activation data were available. We present results from two 12.5 kg NaI(Tl) detectors, developed within the ANAIS project and installed at the Canfranc Underground Laboratory. The prompt data taking starting made possible a reliable quantification of production of some I, Te and Na isotopes with half-lives larger than ten days. Tnitial activities underground were measured and then production rates at sea level were estimated following the history of detectors; a comparison of these rates with calculations using typical cosmic neutron flux at sea level and a selected description of excitation functions was also carried out. After including the contribution from the identified cosmogenic products in the detector background model, we found that the presence of {sup 3}H in the crystal bulk would help to fit much better our background model and experimental data. We have analyzed the cosmogenic production of {sup 3}H in NaI, and although precise quantification has not been attempted, we can conclude that it could imply a very relevant contribution to the total background below 15 ke in NaI detectors.

  15. Inhibition of Na{sup +} channel currents in rat myoblasts by 4-aminopyridine

    SciTech Connect

    Lu Boxun; Liu Linyun; Liao Lei; Zhang Zhihong; Mei Yanai . E-mail: yamei@fudan.edu.cn

    2005-09-15

    Our previous study revealed that 4-aminopyridine (4-AP), a specific blocker of A-type current, could also inhibit inward Na{sup +} currents (I {sub Na}) with a state-independent mechanism in rat cerebellar granule cells. In the present study, we report an inhibitory effect of 4-AP on voltage-gated and tetrodotoxin (TTX)-sensitive I {sub Na} recorded from cultured rat myoblasts. 4-AP inhibited I {sub Na} amplitude in a dose-dependent manner between the concentrations of 0.5 and 10 mM without significant alteration in the activation or inactivation kinetics of the channel. By comparison to the 4-AP-induced inhibitory effect on cerebellum neurons, the inhibitory effect on myoblasts was enhanced through repetitive pulse and inflected by changing frequency. Specifically, the lower the frequency of pulse, the higher the inhibition observed, suggesting that block manner is inversely use-dependent. Moreover, experiments adding 4-AP to the intracellular solution indicate that the inhibitory effects are localized inside the cell. Additionally, 4-AP significantly modifies the properties of steady-state activation and inactivation kinetics of the channel. Our data suggest that the K{sup +} channel blocker 4-AP inhibits both neuron and myoblast Na{sup +} channels via different mechanisms. These findings may also provide information regarding 4-AP-induced pharmacological and toxicological effects in clinical use and experimental research.

  16. The behavior of NaOH at the air-water interface, a computational study

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.

    2010-07-14

    Molecular dynamics simulations with a polarizable multi-state empirical valence bond model were carried out to investigate NaOH dissociation and pairing in water bulk and at the air-water interface. It was found that NaOH readily dissociates in the bulk, and the effect of the air-water interface on NaOH dissociation is fairly minor. Also, NaOH complexes were found to be strongly repelled from the air-water interface, which is consistent with surface tension measurements. At the same time, a very strong preference for the hydroxide anion to be oriented towards the air was found that persisted a few angstroms towards the liquid from the Gibbs dividing surface of the air-water interface. This was due to a preference for the hydroxide anion to have its hydrogen pointing towards the air, and the fact that the sodium ion was more likely to be found near the hydroxide oxygen than hydrogen. As a consequence, the simulation results show that surfaces of NaOH solutions should be negatively charged, in agreement with experimental observations, but also that the hydroxide has little surface affinity. This provides the possibility that the surface of water can be devoid of hydroxide anions, but still have a strong negative charge. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  17. Solvation of Na^+ in water from first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    White, J. A.; Schwegler, E.; Galli, G.; Gygi, F.

    2000-03-01

    We have carried out ab initio molecular dynamics (MD) simulations of the Na^+ ion in water with an MD cell containing a single alkali ion and 53 water molecules. The electron-electron and electron-ion interactions were modeled by density functional theory with a generalized gradient approximation for the exchange-correlation functional. The computed radial distribution functions, coordination numbers, and angular distributions are consistent with available experimental data. The first solvation shell contains 5.2±0.6 water molecules, with some waters occasionally exchanging with those of the second shell. The computed Na^+ hydration number is larger than that from calculations for water clusters surrounding an Na^+ ion, but is consistent with that derived from x-ray measurements. Our results also indicate that the first hydration shell is better defined for Na^+ than for K^+ [1], as indicated by the first minimum in the Na-O pair distribution function. [1] L.M. Ramaniah, M. Bernasconi, and M. Parrinello, J. Chem. Phys. 111, 1587 (1999). This work was performed for DOE under contract W-7405-ENG-48.

  18. The influence of uniaxial compressive stress on the phase transitions and dielectric properties of NaNO2

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Bulut, Nebahat; Salehli, Ferid

    2016-06-01

    The effect of uniaxial stress on dielectric properties of sodium nitrite (NaNO2) ferroelectric has been investigated. The real part of the dielectric susceptibility was measured at the frequency of 1 kHz without and on applying compressive uniaxial stress along different crystallographic directions using a uniaxial compress meter. Extraordinary changes in the dielectric constant of NaNO2 under the influence of applied uniaxial stresses were observed for the first time. The shifts of the phase transition points Ti and Tc under the uniaxial stresses σyy and σzz were investigated. The "uniaxial pressure-temperature" phase diagram of NaNO2 was obtained from these results. The observed phenomena were interpreted on the base of the phenomenological Landau theory of phase transitions in NaNO2 by taking into account the uniaxial compressive stress effect. A best agreement between the theoretical predictions and experimental results has been revealed.

  19. Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling

    PubMed Central

    Liu, Jiang; Kennedy, David J.; Yan, Yanling; Shapiro, Joseph I.

    2012-01-01

    The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxygen species (ROS) are an important modulator of nephron ion transport. As there is limited knowledge regarding the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption. PMID:22518311

  20. Immunomodulation of experimental allergic encephalomyelitis by cinnamon metabolite sodium benzoate

    PubMed Central

    Pahan, Kalipada

    2011-01-01

    Experimental allergic encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), the most common human demyelinating disease of the central nervous system. Sodium benzoate (NaB), a metabolite of cinnamon and a FDA-approved drug against urea cycle disorders in children, is a widely used food additive, which is long known for its microbicidal effect. However, recent studies reveal that apart from its microbicidal effects, NaB can also regulate many immune signaling pathways responsible for inflammation, glial cell activation, switching of T-helper cells, modulation of regulatory T cells, cell-to-cell contact, and migration. As a result, NaB alters the neuroimmunology of EAE and ameliorates the disease process of EAE. In this review, we have made an honest attempt to analyze these newly-discovered immunomodulatory activities of NaB and associated mechanisms that may help in considering this drug for various inflammatory human disorders including MS as primary or adjunct therapy. PMID:21425926

  1. Direct Measurement of ^21Na+α Stellar Reaction

    NASA Astrophysics Data System (ADS)

    Binh Dam, Nguyen; Yamaguchi, H.; Wakabayashi, Y.; Hayakawa, S.; Hashimoto, T.; Kahl, D.; Kubono, S.; Le, H. K.; Nguyen, T. T.; Iwasa, N.; Kume, N.; Kato, S.; Teranishi, T.

    2009-10-01

    Nucleosynthesis of ^22Na is an interesting subject because of possible γ-ray observation and isotopic anomalies in presolar grain. ^22Na would have been mainly produced in the NeNa cycle. At high temperature conditions, ^21Na(α,p)^24Mg reaction could play a significant role to make flow from the NeNa cycle to the next MgAl cycle and beyond. Clearly, the ^21Na(α,p)^24Mg stellar reaction would bypass ^22Na, resulting in reduction of ^22Na production, therefore, it is strongly coupled to the Ne-E problem. It could be also important to understand the early stage of the rp-process. Experiment was performed using a 39 MeV ^21Na radioactive beam obtained by the CNS Radio Isotope Beam separator CRIB of the University of Tokyo. Both protons and alphas were measured from α+^21Na scattering with a thick ^4He gas target.

  2. Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes.

    PubMed

    Minzanova, S T; Mironov, V F; Vyshtakalyuk, A B; Tsepaeva, O V; Mironova, L G; Mindubaev, A Z; Nizameev, I R; Kholin, K V; Milyukov, V A

    2015-12-10

    New water-soluble pectin complexes with Ca(2+), Mg(2+), Co(2+), Cu(2+), Fe(2+), Mn(2+), Zn(2+) on the basis of pectin biopolymer have been synthesized and successfully tested on white rats. For a starting, we have obtained a sodium pectate to enhance solubility of target complexes as a whole. Shortly afterwards, running the reaction of ligand exchange of Nа(+) ions with corresponding s-, d- metal cations we were able to synthesize new pectin complexes. The ranges of s-, d-metals salts concentrations were detected experimentally, in which the selective formation of water-soluble complexes occurred. Antianemic effect of new pectin complexes with Na, Fe and Na, Ca, Fe was investigated on white rats with posthemorrhagic anemia. Under the effect of complexes, the improvement of animals and prevention of erythropoiesis disorders were observed. Antianemic effect of the complexes manifested itself in the doses equivalent to 25% or 50% of the iron daily rate, recommended in the treatment of iron-deficiency anemia with the drugs based on iron sulphate. PMID:26428154

  3. Electrodeless Experimental Thruster

    SciTech Connect

    Brainerd, Jerome J.; Reisz, Al

    2009-03-16

    An electrodeless experimental electric thruster has been built and tested at the NASA Marshall Space Flight Center (MSFC). The plasma is formed by Electron-Cyclotron Resonance (ECR) absorption of RF waves (microwaves). The RF source operates in the 1 to 2 kW range. The plasma is overdense and is confined radially by an applied axial dc magnetic field. The field is shaped by a strong magnetic mirror on the upstream end and a magnetic nozzle on the downstream end. Argon is used as the propellant. The velocity profile in the exhaust plume has been measured with Laser Induced Fluorescence (LIF). An unusual bimodal velocity profile has been measured.

  4. Electric propulsion: Experimental research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1992-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed laser induced fluorescence (LIF) technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes from electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  5. Electric Propulsion: Experimental Research

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.; Friedly, V. J.; Keefer, D.

    1995-01-01

    This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed LIF technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes form electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.

  6. EXPERIMENTAL ANIMAL WATERING DEVICE

    DOEpatents

    Finkel, M.P.

    1964-04-01

    A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

  7. Experimental turbine VT-400

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Milčák, Petr; Noga, Tomáš

    2016-03-01

    The experimental air turbine VT400 is located in hall laboratories of the Department of Power System Engineering. It is a single-stage air turbine located in the suction of the compressor. It is able to solve various problems concerning the construction solution of turbine stages. The content of the article will deal mainly with the description of measurements on this turbine. The up-to-now research on this test rig will be briefly mentioned, too, as well as the description of the ongoing reconstruction.

  8. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  9. Performance studies of the hodoscope prototype for the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Duk, V.; Kholodenko, S.; Fedotov, S.; Giorgi, M.; Gushchin, E.; Khudyakov, A.; Kleymenova, A.; Kudenko, Y.; Kurshetsov, V.; Mannelli, I.; Obraztsov, V.; Ostankov, A.; Semenov, V.; Sugonyaev, V.

    2016-06-01

    A hodoscope prototype to detect charged particles in the NA62 experiment at CERN SPS has been installed within the experimental setup in 2014 and exposed to the beam during the data taking period. Efficiency and time resolution for hodoscope tiles are measured. The average signal amplitude (proportional to the light yield) is estimated from the efficiency curves. The results of the tests have lead to several improvements in the final design of the hodoscope.

  10. Experimental studies on the interaction of groundwater with bentonite

    SciTech Connect

    Sasaki, Y.; Shibata, M.; Yui, M.; Ishikawa, H.

    1995-12-31

    Interactions of sodium bentonite with distilled water and two types of synthetic groundwater were studied by batch experiments. In the experiments, clay and pure minerals were reacted at room temperature under aerobic and anaerobic condition as a function of time and liquid/solid ratio. The clay and pure minerals used in the experiments were Kunigel-V1 (crude Na-bentonite), Kunipia F (purified Na-bentonite), purified Na-smectite (purified from Kunipia F), calcite and pyrite as accessory minerals. The chemical composition in the liquid phase was analyzed through centrifugation and ultrafiltration. Alteration of the distribution of exchangeable cation in the bentonite was analyzed by NH{sub 4}Ac and XRD. The results indicated that the interaction between bentonite (Kunigel-V1) and groundwater under aerobic condition was described by ion exchange reaction of smectite, dissolution of calcite and oxidation of pyrite. From these experimental studies, the model of the interaction of groundwater with bentonite proposed by Wanner was modified. The comparison between calculation and experimental results showed good agreement and indicated that this model could be adopted to predict porewater chemistry of bentonite for performance assessment of geological isolation system of high level waste.

  11. Energetic stability, oxidation states, and electronic structure of Bi-doped NaTaO3: a first-principles hybrid functional study.

    PubMed

    Joo, Paul H; Behtash, Maziar; Yang, Kesong

    2016-01-14

    We studied the defect formation energies, oxidation states of the dopants, and electronic structures of Bi-doped NaTaO3 using first-principles hybrid density functional theory calculations. Three possible structural models, including Bi-doped NaTaO3 with Bi at the Na site (Bi@Na), with Bi at the Ta site (Bi@Ta), and with Bi at both Na and Ta sites [Bi@(Na,Ta)], are constructed. Our results show that the preferred doping sites of Bi are strongly related to the preparation conditions of NaTaO3. It is energetically more favorable to form a Bi@Na structure under Na-poor conditions, to form a Bi@Ta structure under Na-rich conditions, and to form a Bi@(Na,Ta) structure under mildly Na-rich conditions. The Bi@Na doped model shows an n-type conducting character along with an expected blueshift of the optical absorption edge, in which the Bi atoms exist as Bi(3+) (6s(2)6p(0)). The Bi@Ta doped model has empty gap states consisting of Bi 6s states in its band gap, which can lead to visible-light absorption via the electron transition among the valence band, the conduction band, and the gap states. The Bi dopant is present as a Bi(5+) ion in this model, consistent with the experimental results. In contrast, the Bi@(Na,Ta) doped model has occupied gap states consisting of Bi 6s states in its band gap, and thus visible-light absorption is also expected in this system due to electron excitation from these occupied states to the conduction band, in which the Bi dopants exist as Bi(3+) ions. Our first-principles electronic structure calculations revealed the relationship between the Bi doping sites and the material preparation conditions, and clarified the oxidation states of Bi dopants in NaTaO3 as well as the origin of different visible-light photocatalytic hydrogen evolution behaviors in Bi@Ta and Bi@(Na,Ta) doped NaTaO3. This work can provide a useful reference for preparing a Bi-doped NaTaO3 photocatalyst with desired doping sites. PMID:26646215

  12. Effect of Experimental Parameters on the Hydrothermal Synthesis of Bi2WO6 Nanostructures.

    PubMed

    Cui, Ziming; Yang, Hua; Wang, Bin; Li, Ruishan; Wang, Xiangxian

    2016-12-01

    Bi2WO6 nanostructures were synthesized by a hydrothermal route, where the effect of various experimental parameters on the products was investigated. It is demonstrated that the sample morphology and size is highly dependent on the NaOH content (or pH value). At C NaOH = 0-0.0175 mol (pH range of 1-4), the prepared samples present flower-like hierarchical microspheres which are constructed from thin nanosheets via the self-assembly process. The size of the hierarchical microspheres exhibits a decreasing trend with increasing the NaOH content, from 7 μm at C NaOH = 0 mol to 1.5 μm at C NaOH = 0.0175 mol. At C NaOH = 0.03-0.0545 mol (pH: 5-9), the prepared samples exhibit irregular flake-like structures, and their size increases with the increase in NaOH content. At C NaOH = 0.055-0.05525 mol (pH: 10-11), the prepared samples are composed of uniform sphere-like particles with an average size of 85 nm. Compared to the NaOH content, the reaction temperature and time has a relatively small effect on the product morphology and size. The photocatalytic activity of the samples was evaluated by degrading rhodamine B (RhB) under irradiation of simulated sunlight. Among these samples, the samples composed of flower-like hierarchical microspheres have relatively high photocatalytic activity. In particular, the microspheres prepared at C NaOH = 0.01 mol exhibit the highest photocatalytic activity, and the degradation percentage reaches 99 % after 2 h of irradiation. PMID:27067738

  13. Effect of Experimental Parameters on the Hydrothermal Synthesis of Bi2WO6 Nanostructures

    NASA Astrophysics Data System (ADS)

    Cui, Ziming; Yang, Hua; Wang, Bin; Li, Ruishan; Wang, Xiangxian

    2016-04-01

    Bi2WO6 nanostructures were synthesized by a hydrothermal route, where the effect of various experimental parameters on the products was investigated. It is demonstrated that the sample morphology and size is highly dependent on the NaOH content (or pH value). At C NaOH = 0-0.0175 mol (pH range of 1-4), the prepared samples present flower-like hierarchical microspheres which are constructed from thin nanosheets via the self-assembly process. The size of the hierarchical microspheres exhibits a decreasing trend with increasing the NaOH content, from 7 μm at C NaOH = 0 mol to 1.5 μm at C NaOH = 0.0175 mol. At C NaOH = 0.03-0.0545 mol (pH: 5-9), the prepared samples exhibit irregular flake-like structures, and their size increases with the increase in NaOH content. At C NaOH = 0.055-0.05525 mol (pH: 10-11), the prepared samples are composed of uniform sphere-like particles with an average size of 85 nm. Compared to the NaOH content, the reaction temperature and time has a relatively small effect on the product morphology and size. The photocatalytic activity of the samples was evaluated by degrading rhodamine B (RhB) under irradiation of simulated sunlight. Among these samples, the samples composed of flower-like hierarchical microspheres have relatively high photocatalytic activity. In particular, the microspheres prepared at C NaOH = 0.01 mol exhibit the highest photocatalytic activity, and the degradation percentage reaches 99 % after 2 h of irradiation.

  14. Na-ion dynamics in Quasi-1D compound NaV2O4

    NASA Astrophysics Data System (ADS)

    Månsson, M.; Umegaki, I.; Nozaki, H.; Higuchi, Y.; Kawasaki, I.; Watanabe, I.; Sakurai, H.; Sugiyama, J.

    2014-12-01

    We have used the pulsed muon source at ISIS to study high-temperature Na-ion dynamics in the quasi-one-dimensional (Q1D) metallic antiferromagnet NaV2O4. By performing systematic zero-field and longitudinal-field measurements as a function of temperature we clearly distinguish that the hopping rate increases exponentially above Tdiff ≈ 250 K. The data is well fitted to an Arrhenius type equation typical for a diffusion process, showing that the Na-ions starts to be mobile above Tdiff. Such results make this compound very interesting for the tuning of Q1D magnetism using atomic-scale ion-texturing through the periodic potential from ordered Na-vacancies. Further, it also opens the door to possible use of NaV2O4 and related compounds in energy related applications.

  15. Changes in salivary [K+], [Na+] and [K+]/[Na+] with varied test demands.

    PubMed

    Richter, P; Hinton, J W; Meissner, D; Scheller, P

    1995-02-01

    It was hypothesised that choice reaction-time (CRT) testing would cause salivary [K+]/[Na+] to increase. Relative contributions of [K+] and [Na+] to ratio changes were investigated in 23 hypertensives and ten hospital staff. Changes in post-rest and post-test ionic concentrations and [K+]/[Na+], replicated earlier studies. Phasic [K+]/[Na+] changes were mainly due to [K+] changes. Significant increases in [K+] and decreases in [Na+] from a relaxed session, the day before CRT testing, to the testing session per se indicated test anticipation effects. In both groups, changes from pre-test "rest" to "on test" were significant only for [K+]. [K+] discriminated well between conditions in hypertensives. This was interpreted in terms of adaptive changes in sympathetic activation. Results show the robustness of salivary ion indices (especially of [K+]) as indicators of within-subject response to mental task demands. PMID:7537542

  16. [Animal experimentation in Israel].

    PubMed

    Epstein, Yoram; Leshem, Micah

    2002-04-01

    In 1994 the Israeli parliament (Knesset) amended the Cruelty to Animals Act to regulate the use of experimental animals. Accordingly, animal experiments can only be carried out for the purposes of promoting health and medical science, reducing suffering, advancing scientific research, testing or production of materials and products (excluding cosmetics and cleaning products) and education. Animal experiments are only permitted if alternative methods are not possible. The National Board for Animal Experimentation was established to implement the law. Its members are drawn from government ministries, representatives of doctors, veterinarians, and industry organizations, animal rights groups, and academia. In order to carry out an animal experiment, the institution, researchers involved, and the specific experiment, all require approval by the Board. To date the Board has approved some 35 institutions, about half are public institutions (universities, hospitals and colleges) and the rest industrial firms in biotechnology and pharmaceutics. In 2000, 250,000 animals were used in research, 85% were rodents, 11% fowls, 1,000 other farm animals, 350 dogs and cats, and 39 monkeys. Academic institutions used 74% of the animals and industry the remainder. We also present summarized data on the use of animals in research in other countries. PMID:12017891

  17. Experimentation in machine discovery

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Simon, Herbert A.

    1990-01-01

    KEKADA, a system that is capable of carrying out a complex series of experiments on problems from the history of science, is described. The system incorporates a set of experimentation strategies that were extracted from the traces of the scientists' behavior. It focuses on surprises to constrain its search, and uses its strategies to generate hypotheses and to carry out experiments. Some strategies are domain independent, whereas others incorporate knowledge of a specific domain. The domain independent strategies include magnification, determining scope, divide and conquer, factor analysis, and relating different anomalous phenomena. KEKADA represents an experiment as a set of independent and dependent entities, with apparatus variables and a goal. It represents a theory either as a sequence of processes or as abstract hypotheses. KEKADA's response is described to a particular problem in biochemistry. On this and other problems, the system is capable of carrying out a complex series of experiments to refine domain theories. Analysis of the system and its behavior on a number of different problems has established its generality, but it has also revealed the reasons why the system would not be a good experimental scientist.

  18. Experimental myocardial infarction

    PubMed Central

    Kumar, Raj; Joison, Julio; Gilmour, David P.; Molokhia, Farouk A.; Pegg, C. A. S.; Hood, William B.

    1971-01-01

    The hemodynamic effects of tachycardia induced by atrial pacing were investigated in left ventricular failure of acute and healing experimental myocardial infarction in 20 intact, conscious dogs. Myocardial infarction was produced by gradual inflation of a balloon cuff device implanted around the left anterior descending coronary artery 10-15 days prior to the study. 1 hr after acute myocardial infarction, atrial pacing at a rate of 180 beats/min decreased left ventricular end-diastolic pressure from 19 to 8 mm Hg and left atrial pressure from 17 to 12 mm Hg, without change in cardiac output. In the healing phase of myocardial infarction 1 wk later, atrial pacing decreased left ventricular end-diastolic pressure from 17 to 9 mm Hg and increased the cardiac output by 37%. This was accompanied by evidence of peripheral vasodilation. In two dogs with healing anterior wall myocardial infarction, left ventricular failure was enhanced by partial occlusion of the circumflex coronary artery. Both the dogs developed pulmonary edema. Pacing improved left ventricular performance and relieved pulmonary edema in both animals. In six animals propranolol was given after acute infarction, and left ventricular function deteriorated further. However the pacing-induced augmentation of cardiac function was unaltered and, hence, is not mediated by sympathetics. The results show that the spontaneous heart rate in left ventricular failure of experimental canine myocardial infarction may be less than optimal and that maximal cardiac function may be achieved at higher heart rates. Images PMID:4395910

  19. Experimental immunogenic rubeosis iridis.

    PubMed

    Shabo, A L; Maxwell, D S; Shintaku, P; Kreiger, A E; Straatsma, B R

    1977-04-01

    We have developed a primate model of rubeosis iridis in monkeys systemically sensitized to crystalline beef insulin. After intravitreal insulin injection, the dose-related immunogenic inflammation includes cells, flare, fibrin, and blood in the anterior chamber. With more severe inflammation, posterior synechiae, iris bombé, and cataracts occur. Of particular importance, new blood vessels develop within the stroma and on the anterior surface of the iris. Following injection of small amounts of insulin, the anterior surface vessels may regress over time, and the iris regains its normal appearance and coloration. However, the new stromal vessels persist and are cuffed by inflammatory cells including plasma cells. After injection of large amounts of insulin, more extensive structural alterations develop as noted above in conjunction with persistent iris anterior surface and stromal neovascularization. The relationship of rubeosis iridis to clinical inflammatory syndromes and to previous laboratory studies is discussed. Stromal neovascularization was a consistent finding in this experimental model even when anterior surface vessels regressed. On the basis of these experimental data and a review of publications describing human pathology, we believe that a broadening of the classic definition of rubeosis iridis is waranted to include a recognition of the stromal component of the clinical and pathologic findings. PMID:403154

  20. Experimental melioidosis in hens.

    PubMed

    Vesselinova, A; Najdenski, H; Nikolova, S; Kussovski, V

    1996-08-01

    Experimental intramuscular infection of hens with Pseudomonas pseudomallei, strain 2796 (1 x 10(9) CFU from a 24-h culture) was reproduced. Clinical, paraclinical and pathomorphological findings were followed from 1 to 30 days after challenge. Haemagglutinin titre, bacterial dissemination in the viscera, number of leucocytes, alveolar (aMa) and peritoneal (pMa) macrophages and their phagocytic activity in vitro were studied. During the course of infection a leucocytosis as well as an increased haemagglutinin titre (1:256) were established. The number of bacteria per gram tissue in the spleen and liver was highest at 1 day post-infection (p.i.). Melioidose bacteria from egg yolk were isolated at 15 and 30 days p.i. Leucocyte and pMa phagocytic activity was maximal at 3 days p.i. unlike the activity of aMa which increased gradually until the end of the study. Inflammatory-necrotic changes were found in the viscera and brain at 3 and 15 days p.i. The investigation of experimental melioidosis infection in hens showed that they are susceptible to P. pseudomallei and this disease takes a generalized subacute course. PMID:8794700

  1. First results from experiment NA49 at the CERN SPS with 158 GeV/nucleon Pb on Pb collisions

    SciTech Connect

    Rudolph, H.; NA49 Collaboration

    1995-03-01

    CERN experiment NA49 had its first beam time in November/December 1994 with a {sup 208}Pb beam of 158 GeV/nucleon. The experimental setup to study Pb+Pb collisions is described and first results on two particle correlations and transverse energy production are discussed.

  2. A new low-voltage plateau of Na₃V₂(PO₄)₃ as an anode for Na-ion batteries

    DOE PAGESBeta

    Jian, Zelang; Sun, Yang; Ji, Xiulei

    2015-04-04

    A low-voltage plateau at ~0.3 V is discovered during the deep sodiation of Na₃V₂(PO₄)₃ by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na₃V₂(PO₄)₃, turning it into a promising anode for Na-ion batteries.

  3. Measurement of xenon distribution statistics in Na-A zeolite cavities

    SciTech Connect

    Chmelka, B.F.; Raftery, D.; McCormick, A.V.; de Menorval, L.C.; Levine, R.D.; Pines, A. . Materials Sciences Division University of California, Berkeley, CA . Department of Chemistry)

    1991-02-04

    {sup 129}Xe NMR spectroscopy has been used to probe directly the distribution of xenon atoms confined in atomic-size Na-A zeolite cavities. For mean xenon occupancies less than about three Xe atoms per {alpha}-cage, the guest populations are well described by binomial statistics. At higher guest loadings the finite volumes of the xenon atoms become significant, as reflected by a fit of the experimental populations with a hypergeometric distribution. The data and hypergeometric analysis indicate a maximum occupancy of seven Xe atoms/cage. At the highest xenon loadings the experimental distribution is narrower than hypergeometric.

  4. Concentration dependence of Li+/Na+ diffusion in manganese hexacyanoferrates

    NASA Astrophysics Data System (ADS)

    Takachi, Masamitsu; Fukuzumi, Yuya; Moritomo, Yutaka

    2016-06-01

    Manganese hexacyanoferrates (Mn-HCFs) with a jungle-gym-type structure are promising cathode materials for Li+/Na+ secondary batteries (LIBs/SIBs). Here, we investigated the diffusion constants D Li/D Na of Li+/Na+ against the Li+/Na+ concentration x Na/x Li and temperature (T) of A 1.32Mn[Fe(CN)6]0.833.6H2O (A = Li and Na). We evaluated the activation energy E\\text{a}\\text{Li}/E\\text{a}\\text{Na} of D Li/D Na against x Na/x Li. We found that E\\text{a}\\text{Na} steeply increases with x Na from 0.41 eV at x Na = 0.69 to 0.7 eV at 1.1. The increase in E\\text{a}\\text{Na} is ascribed to the occupancy effect of the Na+ site. The increase in E\\text{a}\\text{Li} is suppressed, probably because the number of Li+ sites is three times that of Na+ sites.

  5. Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice

    PubMed Central

    Vitzthum, Helga; Seniuk, Anika; Schulte, Laura Helene; Müller, Maxie Luise; Hetz, Hannah; Ehmke, Heimo

    2014-01-01

    A network of kinases, including WNKs, SPAK and Sgk1, is critical for the independent regulation of K+ and Na+ transport in the distal nephron. Angiotensin II is thought to act as a key hormone in orchestrating these kinases to switch from K+ secretion during hyperkalaemia to Na+ reabsorption during intravascular volume depletion, thus keeping disturbances in electrolyte and blood pressure homeostasis at a minimum. It remains unclear, however, how K+ and Na+ transport are regulated during a high Na+ intake, which is associated with suppressed angiotensin II levels and a high distal tubular Na+ load. We therefore investigated the integrated blood pressure, renal, hormonal and gene and protein expression responses to large changes of K+ intake in Na+ replete mice. Both low and high K+ intake increased blood pressure and caused Na+ retention. Low K+ intake was accompanied by an upregulation of the sodium-chloride cotransporter (NCC) and its activating kinase SPAK, and inhibition of NCC normalized blood pressure. Renal responses were unaffected by angiotensin AT1 receptor antagonism, indicating that low K+ intake activates the distal nephron by an angiotensin-independent mode of action. High K+ intake was associated with elevated plasma aldosterone concentrations and an upregulation of the epithelial sodium channel (ENaC) and its activating kinase Sgk1. Surprisingly, high K+ intake increased blood pressure even during ENaC or mineralocorticoid receptor antagonism, suggesting the contribution of aldosterone-independent mechanisms. These findings show that in a Na+ replete state, changes in K+ intake induce specific molecular and functional adaptations in the distal nephron that cause a functional coupling of renal K+ and Na+ handling, resulting in Na+ retention and high blood pressure when K+ intake is either restricted or excessively increased. PMID:24396058

  6. Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries.

    PubMed

    Chen, Juner; Huang, Zhenguo; Wang, Caiyun; Porter, Spencer; Wang, Baofeng; Lie, Wilford; Liu, Hua Kun

    2015-06-18

    A new electrolyte salt, sodium-difluoro(oxalato)borate (NaDFOB), was synthesized and studied, which enables excellent reversible capacity and high rate capability when used in Na/Na0.44MnO2 half cells. NaDFOB has excellent compatibility with various common solvents used in Na-ion batteries, in strong contrast to the solvent dependent performances of NaClO4 and NaPF6. In addition, NaDFOB possesses good stability and generates no toxic or dangerous products when exposed to air and water. All these properties demonstrate that NaDFOB could be used to prepare high performance electrolytes for emerging Na-ion batteries. PMID:25987231

  7. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state.

    PubMed

    Kanai, Ryuta; Ogawa, Haruo; Vilsen, Bente; Cornelius, Flemming; Toyoshima, Chikashi

    2013-10-10

    Na(+),K(+)-ATPase pumps three Na(+) ions out of cells in exchange for two K(+) taken up from the extracellular medium per ATP molecule hydrolysed, thereby establishing Na(+) and K(+) gradients across the membrane in all animal cells. These ion gradients are used in many fundamental processes, notably excitation of nerve cells. Here we describe 2.8 Å-resolution crystal structures of this ATPase from pig kidney with bound Na(+), ADP and aluminium fluoride, a stable phosphate analogue, with and without oligomycin that promotes Na(+) occlusion. These crystal structures represent a transition state preceding the phosphorylated intermediate (E1P) in which three Na(+) ions are occluded. Details of the Na(+)-binding sites show how this ATPase functions as a Na(+)-specific pump, rejecting K(+) and Ca(2+), even though its affinity for Na(+) is low (millimolar dissociation constant). A mechanism for sequential, cooperative Na(+) binding can now be formulated in atomic detail. PMID:24089211

  8. K2Sn2ZnSe6, Na2Ge2ZnSe6, and Na2In2GeSe6: a new series of quaternary selenides with intriguing structural diversity and nonlinear optical properties.

    PubMed

    Zhou, Molin; Li, Chao; Li, Xiaoshuang; Yao, Jiyong; Wu, Yicheng

    2016-05-01

    Three new compounds (i.e., K2Sn2ZnSe6, Na2Ge2ZnSe6, and Na2In2GeSe6) with intriguing structural diversity and nonlinear optical properties were discovered for the first time. They crystallize in space groups P4/ncc, I4/mcm and Cc, respectively. In K2Sn2ZnSe6 and Na2Ge2ZnSe6, the [Sn(Ge)Se4] tetrahedra and [ZnSe4] tetrahedra are linked via edge-sharing to build up a 1D [Sn2ZnSe6] infinite chain separated by K(+)(Na(+)) cations along the c direction, while the structure of Na2In2GeSe6 is an interesting three-dimensional framework composed of [InSe4] and [GeSe4] tetrahedra via corner-sharing with Na(+) cations in the cavities. The experimental optical band gaps of these compounds were determined as 1.71(2) eV, 2.36(4) eV and 2.47(2) eV, respectively, according to UV-vis-NIR diffuse reflectance spectroscopy. Interestingly, in addition to the large band gap (1.80 eV for AgGaSe2, as a comparison), Na2In2GeSe6 exhibits phase-matchable nonlinear optical (NLO) properties with a powder second harmonic generation signal about 0.8 times that of AgGaS2. Moreover, Na2In2GeSe6 melts congruently at a rather low temperature of 671 °C, which suggests that bulk crystals can be easily obtained by the Bridgman-Stockbarger method. Our preliminary results indicate that Na2In2GeSe6 has promising applications in IR nonlinear optics. PMID:27049006

  9. NaF-mediated controlled-synthesis of multicolor NaxScF3+x:Yb/Er upconversion nanocrystals

    NASA Astrophysics Data System (ADS)

    Pei, Wen-Bo; Chen, Bo; Wang, Lili; Wu, Jiansheng; Teng, Xue; Lau, Raymond; Huang, Ling; Huang, Wei

    2015-02-01

    Synthesis of lanthanide-doped upconversion nanocrystals (LDUNs) with controlled morphology and luminescence has long been desired in order to fulfill various application requirements. In this work, we have investigated the effect of the NaF : Ln3+ molar ratio, in the range of 1 to 20, on the morphology, crystal structure, and upconversion properties of NaxScF3+x:Yb/Er nanocrystals that are reported to possess different upconversion properties from those of NaYF4:Yb/Er nanocrystals. The experimental results prove that the NaF : Ln3+ molar ratio influences significantly the growth process of the nanocrystals, i.e. a low NaF : Ln3+ molar ratio results in hexagonal NaScF4 nanocrystals, while a high NaF : Ln3+ molar ratio favors monoclinic Na3ScF6 nanocrystals. When the NaF : Ln3+ molar ratio is as high as 6 or above, phase separation is found and hexagonal NaYbF4 nanocrystals showed up for the first time. Simply by adjusting the NaF : Ln3+ molar ratio, we have successfully achieved the simultaneous control of the shape, size, as well as the crystallographic phase of the NaxScF3+x:Yb/Er nanocrystals, which give different red to green (R/G) ratios (integral area), leading to a multicolor upconversion luminescence from orange-red to green. This study provides a vivid example to track and interpret the formation mechanisms and growth processes of NaxScF3+x:Yb/Er nanocrystals, which shall be instructive for guiding the controlled synthesis of other LDUNs and extending their according applications in optical communication, color display, anti-counterfeiting, bioimaging, and so on.Synthesis of lanthanide-doped upconversion nanocrystals (LDUNs) with controlled morphology and luminescence has long been desired in order to fulfill various application requirements. In this work, we have investigated the effect of the NaF : Ln3+ molar ratio, in the range of 1 to 20, on the morphology, crystal structure, and upconversion properties of NaxScF3+x:Yb/Er nanocrystals that are reported

  10. Experimental Quantum Coin Tossing

    NASA Astrophysics Data System (ADS)

    Molina-Terriza, G.; Vaziri, A.; Ursin, R.; Zeilinger, A.

    2005-01-01

    In this Letter we present the first implementation of a quantum coin-tossing protocol. This protocol belongs to a class of “two-party” cryptographic problems, where the communication partners distrust each other. As with a number of such two-party protocols, the best implementation of the quantum coin tossing requires qutrits, resulting in a higher security than using qubits. In this way, we have also performed the first complete quantum communication protocol with qutrits. In our experiment the two partners succeeded to remotely toss a row of coins using photons entangled in the orbital angular momentum. We also show the experimental bounds of a possible cheater and the ways of detecting him.

  11. Experimental Quantum Error Detection

    PubMed Central

    Jin, Xian-Min; Yi, Zhen-Huan; Yang, Bin; Zhou, Fei; Yang, Tao; Peng, Cheng-Zhi

    2012-01-01

    Faithful transmission of quantum information is a crucial ingredient in quantum communication networks. To overcome the unavoidable decoherence in a noisy channel, to date, many efforts have been made to transmit one state by consuming large numbers of time-synchronized ancilla states. However, such huge demands of quantum resources are hard to meet with current technology and this restricts practical applications. Here we experimentally demonstrate quantum error detection, an economical approach to reliably protecting a qubit against bit-flip errors. Arbitrary unknown polarization states of single photons and entangled photons are converted into time bins deterministically via a modified Franson interferometer. Noise arising in both 10 m and 0.8 km fiber, which induces associated errors on the reference frame of time bins, is filtered when photons are detected. The demonstrated resource efficiency and state independence make this protocol a promising candidate for implementing a real-world quantum communication network. PMID:22953047

  12. Planetary impact experimentation

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Schultz, Peter H.; Hoerz, Friedrich

    1987-01-01

    An understanding of impact processes in low- and microgravity environments would be advanced significantly by the construction and use of an impact facility on the Space Station. It is proposed that initial studies begin as soon as possible in ground-based impact laboratories, on the NASA KC-135 Reduced-Gravity Aircraft, and in existing drop towers. The resulting experience and information base could then be applied toward an experiment package designed for use on Shuttle orbiters to support pilot studies in orbital environments. These experiments, as well as the first efforts made on the IOC Space Station, should involve the impact of various free-floating targets; such studies would yield a substantial scientific return while providing valuable experience and engineering information for use in refining the design of the dedicated Space Station Impact Facility. The dedicated facility should be designed to support impact experimentation, including but not limited to cratering, asteroid and ring-particle dynamics, and accretional processes.

  13. Experimental evolution gone wild.

    PubMed

    Scheinin, M; Riebesell, U; Rynearson, T A; Lohbeck, K T; Collins, S

    2015-05-01

    Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change. PMID:25833241

  14. Characterization of experimental dynamos

    NASA Astrophysics Data System (ADS)

    Peffley, Nicholas L.; Goumilevski, Alexei G.; Cawthrone, A. B.; Lathrop, Daniel P.

    2000-07-01

    Laboratory models of geophysical magnetic field production require new experi-mental characterization methods. Self-generating liquid metal magnetic dynamos are explored using two new experiments. Kinematic dynamo studies lead us to charac-terize the magnetic field dynamics in terms of eigenvalues and eigenfrequencies of the induction equation. Observing the decay of magnetic field pulses indicates the real part of the leading eigenvalue of the induction equation, while a chirp magnetic field diagnoses the imaginary part of the eigenvalue. Finally, a single-frequency applied magnetic field characterizes the structure of the velocity field. These measurements provide a new means to characterize and measure the approach to self-generation. We present data from numerical simulations and laboratory experiments using these techniques.

  15. Experimental evolution gone wild

    PubMed Central

    Scheinin, M.; Riebesell, U.; Rynearson, T. A.; Lohbeck, K. T.; Collins, S.

    2015-01-01

    Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change. PMID:25833241

  16. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  17. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae.

    PubMed

    Vorburger, Thomas; Nedielkov, Ruslan; Brosig, Alexander; Bok, Eva; Schunke, Emina; Steffen, Wojtek; Mayer, Sonja; Götz, Friedrich; Möller, Heiko M; Steuber, Julia

    2016-04-01

    For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration. PMID:26721205

  18. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    PubMed

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data. PMID:25921499

  19. Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study.

    PubMed

    Martínez-Jerónimo, Fernando; Martínez-Jerónimo, Laura

    2007-07-01

    Daphnia magna is mainly recognized as a freshwater cladoceran, but there are some strains that grow in brackish waters. The tolerance to salinity of a freshwater strain was assessed at NaCl concentrations of 0, 2, 4, 6, and 7 g L(-1). The green microalga Ankistrodesmus falcatus was fed at optimal concentration (4 x 10(5)cells mL(-1)). Reproduction and survival were recorded in two experimental series: in the first one, 20 female neonates were individually studied for each treatment. In the second, cohorts of 10 female neonates were distributed in each of five replicates per treatment. In both cases, experiments were conducted over a full life-cycle. The determined 48-h LC(50) for NaCl was 5.48 g L(-1), but we recorded reproduction at up to 7 g NaCl L(-1). The average clutch size, total progeny, number of clutches, and longevity were significantly reduced by the NaCl concentration (P<0.01); total progeny ranged from 467 to 25 neonates as edge values for NaCl concentrations of 0-7 g L(-1). Inter-brood time was significantly higher for females grown at 7 g NaCl L(-1) (3.9 days). The Life Table analysis demonstrates that average lifespan, life expectancy at birth, net reproductive rate and intrinsic rate of growth were also significantly reduced according to NaCl concentration. Based on the results for the two highest NaCl concentrations (6 and 7 g L(-1)), we conclude that the used D. magna strain was acclimated to develop satisfactorily under concentrations of up to 6 g NaCl L(-1); however, the established salinity conditions reduced significantly reproduction and survival in this strain. PMID:17055052

  20. Na+ Inhibits the Epithelial Na+ Channel by Binding to a Site in an Extracellular Acidic Cleft*

    PubMed Central

    Kashlan, Ossama B.; Blobner, Brandon M.; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R.

    2015-01-01

    The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl−, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  1. Extracellular allosteric Na(+) binding to the Na(+),K(+)-ATPase in cardiac myocytes.

    PubMed

    Garcia, Alvaro; Fry, Natasha A S; Karimi, Keyvan; Liu, Chia-chi; Apell, Hans-Jürgen; Rasmussen, Helge H; Clarke, Ronald J

    2013-12-17

    Whole-cell patch-clamp measurements of the current, Ip, produced by the Na(+),K(+)-ATPase across the plasma membrane of rabbit cardiac myocytes show an increase in Ip over the extracellular Na(+) concentration range 0-50 mM. This is not predicted by the classical Albers-Post scheme of the Na(+),K(+)-ATPase mechanism, where extracellular Na(+) should act as a competitive inhibitor of extracellular K(+) binding, which is necessary for the stimulation of enzyme dephosphorylation and the pumping of K(+) ions into the cytoplasm. The increase in Ip is consistent with Na(+) binding to an extracellular allosteric site, independent of the ion transport sites, and an increase in turnover via an acceleration of the rate-determining release of K(+) to the cytoplasm, E2(K(+))2 → E1 + 2K(+). At normal physiological concentrations of extracellular Na(+) of 140 mM, it is to be expected that binding of Na(+) to the allosteric site would be nearly saturated. Its purpose would seem to be simply to optimize the enzyme's ion pumping rate under its normal physiological conditions. Based on published crystal structures, a possible location of the allosteric site is within a cleft between the α- and β-subunits of the enzyme. PMID:24359741

  2. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  3. The role of Na/+/ in transport processes of bacterial membranes

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1979-01-01

    Until recently it was generally held that transport in bacteria was linked exclusively to proton circulation, in contrast to most eucaryotic systems, which depended on Na(+) circulation. The present review is intended to trace recent developments which have led to the discarding of this idea. The discussion covers transport of Na(+) and other cations, effects of Na(+) and Na(+) gradients on metabolite transport, properties of Na(+)-dependent transport carriers, and evolutionary considerations of Na(+) transport. It is now apparent that the transport of Na(+) is an important part of energy metabolism in bacteria, and that Na(+) gradients as well as H(+) gradients are used in these systems for the conservation and transmission of energy. Two hypotheses are proposed to explain the evolution of Na/K systems, and it is presently difficult to decide between them.

  4. Clustered voltage-gated Na+ channels in Aplysia axons.

    PubMed

    Johnston, W L; Dyer, J R; Castellucci, V F; Dunn, R J

    1996-03-01

    Clustering of voltage-gated Na+ channels is critical for the fast saltatory conduction of action potentials in vertebrate myelinated axons. However, the mechanisms responsible for the generation and maintenance of Na+ channel clustering are not well understood. In this study we have raised an antibody against the cloned SCAP-1 voltage-gated Na+ channel of the marine invertebrate Aplysia californica and used it to examine Na+ channel localization in Aplysia ganglia and in cultured Aplysia sensory neurons. Our results show that there is a large cytoplasmic pool of Na+ channels in the soma of Aplysia neurons. Furthermore, we show that Na+ channels in Aplysia axons are not homogeneously distributed but, rather, are present in distinct clusters. Theoretical considerations indicate that Na+ channel clustering may enhance action potential conduction. We propose that clustered Na+ channels may be a fundamental property of many axons, and perhaps of many membranes that conduct Na(+)-dependent action potentials. PMID:8774441

  5. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational

  6. Experimenter bias and subliminal perception

    ERIC Educational Resources Information Center

    Barber, Paul J.; Rushton, J. Philippe

    1975-01-01

    It has been suggested that subliminal perception phenomena may be in part due to experimenter bias effects. Two studies that obtained positive evidence of subliminal perception were therefore replicated with experimenters tested under blind and not blind conditions. (Editor)

  7. Ionic mechanisms of cardiac cell swelling induced by blocking Na+/K+ pump as revealed by experiments and simulation.

    PubMed

    Takeuchi, Ayako; Tatsumi, Shuji; Sarai, Nobuaki; Terashima, Keisuke; Matsuoka, Satoshi; Noma, Akinori

    2006-11-01

    Although the Na(+)/K(+) pump is one of the key mechanisms responsible for maintaining cell volume, we have observed experimentally that cell volume remained almost constant during 90 min exposure of guinea pig ventricular myocytes to ouabain. Simulation of this finding using a comprehensive cardiac cell model (Kyoto model incorporating Cl(-) and water fluxes) predicted roles for the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, in addition to low membrane permeabilities for Na(+) and Cl(-), in maintaining cell volume. PMCA might help maintain the [Ca(2+)] gradient across the membrane though compromised, and thereby promote reverse Na(+)/Ca(2+) exchange stimulated by the increased [Na(+)](i) as well as the membrane depolarization. Na(+) extrusion via Na(+)/Ca(2+) exchange delayed cell swelling during Na(+)/K(+) pump block. Supporting these model predictions, we observed ventricular cell swelling after blocking Na(+)/Ca(2+) exchange with KB-R7943 or SEA0400 in the presence of ouabain. When Cl(-) conductance via the cystic fibrosis transmembrane conductance regulator (CFTR) was activated with isoproterenol during the ouabain treatment, cells showed an initial shrinkage to 94.2 +/- 0.5%, followed by a marked swelling 52.0 +/- 4.9 min after drug application. Concomitantly with the onset of swelling, a rapid jump of membrane potential was observed. These experimental observations could be reproduced well by the model simulations. Namely, the Cl(-) efflux via CFTR accompanied by a concomitant cation efflux caused the initial volume decrease. Then, the gradual membrane depolarization induced by the Na(+)/K(+) pump block activated the window current of the L-type Ca(2+) current, which increased [Ca(2+)](i). Finally, the activation of Ca(2+)-dependent cation conductance induced the jump of membrane potential, and the rapid accumulation of intracellular Na(+) accompanied by the Cl(-) influx via CFTR, resulting in the cell swelling. The pivotal role of L

  8. Experimental verification of vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1985-01-01

    The main objective has been the experimental verification of the corrosive vapor deposition theory in high-temperature, high-velocity environments. Towards this end a Mach 0.3 burner-rig appartus was built to measure deposition rates from salt-seeded (mostly Na salts) combustion gases on the internally cooled cylindrical collector. Deposition experiments are underway.

  9. Effect of Na+ Flow on Cd2+ Block of Tetrodotoxin-resistant Na+ Channels

    PubMed Central

    Kuo, Chung-Chin; Lin, Ting-Jiun; Hsieh, Chi-Pan

    2002-01-01

    Tetrodotoxin-resistant (TTX-R) Na+ channels are 1,000-fold less sensitive to TTX than TTX-sensitive (TTX-S) Na+ channels. On the other hand, TTX-R channels are much more susceptible to external Cd2+ block than TTX-S channels. A cysteine (or serine) residue situated just next to the aspartate residue of the presumable selectivity filter “DEKA” ring of the TTX-R channel has been identified as the key ligand determining the binding affinity of both TTX and Cd2+. In this study we demonstrate that the binding affinity of Cd2+ to the TTX-R channels in neurons from dorsal root ganglia has little intrinsic voltage dependence, but is significantly influenced by the direction of Na+ current flow. In the presence of inward Na+ current, the apparent dissociation constant of Cd2+ (∼200 μM) is ∼9 times smaller than that in the presence of outward Na+ current. The Na+ flow–dependent binding affinity change of Cd2+ block is true no matter whether the direction of Na+ current is secured by asymmetrical chemical gradient (e.g., 150 mM Na+ vs. 150 mM Cs+ on different sides of the membrane, 0 mV) or by asymmetrical electrical gradient (e.g., 150 mM Na+ on both sides of the membrane, −20 mV vs. 20 mV). These findings suggest that Cd2+ is a pore blocker of TTX-R channels with its binding site located in a multiion, single-file region near the external pore mouth. Quantitative analysis of the flow dependence with the flux-coupling equation reveals that at least two Na+ ions coexist with the blocking Cd2+ ion in this pore region in the presence of 150 mM ambient Na+. Thus, the selectivity filter of the TTX-R Na+ channels in dorsal root ganglion neurons might be located in or close to a multiion single-file pore segment connected externally to a wide vestibule, a molecular feature probably shared by other voltage-gated cationic channels, such as some Ca2+ and K+ channels. PMID:12149278

  10. Translational and rotational mobility of methanol-d4 molecules in NaX and NaY zeolite cages: a deuteron NMR investigation.

    PubMed

    Lalowicz, Z T; Stoch, G; Birczyński, A; Punkkinen, M; Ylinen, E E; Krzystyniak, M; Góra-Marek, K; Datka, J

    2012-01-01

    Nuclear magnetic resonance (NMR) provides means to investigate molecular dynamics at every state of matter. Features characteristic for the gas phase, liquid-like layers and immobilized methanol-d(4) molecules in NaX and NaY zeolites were observed in the temperature range from 300 K down to 20K. The NMR spectra at low temperature are consistent with the model in which molecules are bonded at two positions: horizontal (methanol oxygen bonded to sodium cation) and vertical (hydrogen bonding of hydroxyl deuteron to zeolite framework oxygen). Narrow lines were observed at high temperature indicating an isotropic reorientation of a fraction of molecules. Deuteron spin-lattice relaxation gives evidence for the formation of trimers, based on observation of different relaxation rates for methyl and hydroxyl deuterons undergoing isotropic reorientation. Internal rotation of methyl groups and fixed positions of hydrogen bonded hydroxyl deuterons in methyl trimers provide relaxation rates observed experimentally. A change in the slope of the temperature dependence of both relaxation rates indicates a transition from the relaxation dominated by translational motion to prevailing contribution of reorientation. Trimers undergoing isotropic reorientation disintegrate and separate molecules become localized on adsorption centers at 166.7 K and 153.8K for NaX and NaY, respectively, as indicated by extreme broadening of deuteron NMR spectra. Molecules at vertical position remain localized up to high temperatures. That indicates the dominating role of the hydrogen bonding. Mobility of single molecules was observed for lower loading (86 molecules/uc) in NaX. A direct transition from translation to localization was observed at 190 K. PMID:22819978

  11. Experimental Particle Physics

    SciTech Connect

    Rosenfeld, Carl; Mishra, Sanjib R.; Petti, Roberto; Purohit, Milind V.

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the BaBar experiment

  12. Experimental impact crater morphology

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile

  13. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.

    PubMed

    Xu, Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu, Lin; Mai, Liqiang

    2015-06-10

    In the past decades, Li ion batteries are widely considered to be the most promising rechargeable batteries for the rapid development of mobile devices and electric vehicles. There arouses great interest in Na ion batteries, especially in the field of static grid storage due to their much lower production cost compared with Li ion batteries. However, the fundamental mechanism of Li and Na ion transport in nanoscale electrodes of batteries has been rarely experimentally explored. This insight can guide the development and optimization of high-performance electrode materials. In this work, single nanowire devices with multicontacts are designed to obtain detailed information during the electrochemical reactions. This unique platform is employed to in situ investigate and compare the transport properties of Li and Na ions at a single nanowire level. To give different confinement for ions and electrons during the electrochemical processes, two different configurations of nanowire electrode are proposed; one is to fully immerse the nanowire in the electrolyte, and the other is by using photoresist to cover the nanowire with only one end exposed. For both configurations, the conductivity of nanowire decreases after intercalation/deintercalation for both Li and Na ions, indicating that they share the similar electrochemical reaction mechanisms in layered electrodes. However, the conductivity degradation and structure destruction for Na ions is more severe than those of Li ions during the electrochemical processes, which mainly results from the much larger volume of Na ions and greater energy barrier encountered by the limited layered spaces. Moreover, the battery performances of coin cells are compared to further confirm this conclusion. The present work provides a unique platform for in situ electrochemical and electrical probing, which will push the fundamental and practical research of nanowire electrode materials for energy storage applications. PMID:25989463

  14. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    NASA Astrophysics Data System (ADS)

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-01

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO 2 and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 °C for 2-6 h by changing the SiO 2/Al 2O 3, H 2O/Na 2O and Na 2O/SiO 2 molar ratios of precursors in the two-step process. The surface area and NH 4+-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m 2/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m 2/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of ˜3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously.

  15. Ultrafast Bulk Diffusion of AlHxin High-Entropy Dehydrogenation Intermediates of NaAlH4

    SciTech Connect

    Zhang, Feng; Wood, Brandon C; Wang, Yan; Wang, Cai-Zhuang; Ho, Kai-Ming; Chou, Mei-Yin

    2014-08-14

    Using first-principles molecular dynamics (FPMD) and total-energy calculations, we demonstrate low-barrier bulk diffusion of Al-bearing species in γ-NaAlH4, a recently proposed high-entropy polymorph of NaAlH4. For charged AlH4– and neutral AlH3 vacancies, the computed barriers for diffusion are <0.1 eV, and we directly observe the predicted diffusive pathways in FPMD simulations at picosecond time scales. In contrast, such diffusion in the α phase is inaccessible to FPMD, consistent with much higher barriers. The transport behavior of γ-NaAlH4, in addition to key dynamical and structural signatures, is consistent with experimental observations of high-mobility species, strongly supporting the idea that an intermediate transition from the α phase to a high-entropy polymorph facilitates the hydrogen-releasing decomposition of NaAlH4. Our results provide an answer to longstanding questions regarding the responsible agent for the experimentally observed efficient Al transport during dehydrogenation and suggest that mass transport and phase transformation kinetics are coupled. Implications for understanding the (de)hydrogenation of undoped and catalyzed NaAlH4 are discussed.

  16. The solubility of Cr(OH){sub 3}(am) in concentrated NaOH and NaOH-NaNO{sub 3} solutions

    SciTech Connect

    Felmy, A.R.; Rai, D.; Fulton, R.W.

    1994-08-01

    Chromium is a major component of the Hanford waste tank sludges, and the presence of Cr in the sludges is a significant concern in the disposal of these sludges because Cr can interfere with the formation of waste glasses. One of the current pretreatment strategies for removing constituents that can interfere with glass formation, such as P and Cr, is to wash/dissolve the sludges in basic NaOH solutions. The solubility of Cr(OH){sub 3}(am) was measured in concentrated NaOH ranging in concentration from 0.1M to 6.0M and in NaOH-NaNO{sub 3} solutions with fixed NaOH concentration and variable NaNO{sub 3} concentration at room temperature (22--23 C). Equilibrium between solids and solutions was approached relatively slowly and required approximately 60--70 days before steady-state concentrations were reached. A thermodynamic model, based upon the Pitzer equations, was developed from the solubility data in NaOH, which includes only two aqueous Cr species (Cr(OH){sub 4}{sup {minus}} and NaCr(OH){sub 4}(aq)) and ion-interaction parameters for Na{sup +} with Cr(OH){sub 4}{sup {minus}}. This model was then tested in the mixed NaOH-NaNO{sub 3} solutions and found to be reliable.

  17. Experimental Harmonic Motion

    NASA Astrophysics Data System (ADS)

    Searle, G. F. C.

    2014-05-01

    1. Elementary theory of harmonic motion; 2. Experimental work in harmonic motion; Experiment 1. Determination of g by a simple pendulum; Experiment 2. Harmonic motion of a body suspended by a spring; Experiment 3. Harmonic motion of a rigid body suspended by a torsion wire; Experiment 4. Study of a system with variable moment of inertia; Experiment 5. Dynamical determination of ratio of couple to twist for a torsion wire; Experiment 6. Comparison of the moments of inertia of two bodies; Experiment 7. Experiment with a pair of inertia bars; Experiment 8. Determination of the moment of inertia of a rigid pendulum; Experiment 9. Experiment on a pendulum with variable moment of inertia; Experiment 10. Determination of g by a rigid pendulum; Experiment 11. Pendulum on a yielding support; Experiment 12. Determination of the radius of curvature of a concave mirror by the oscillations of a sphere rolling in it; Experiment 13. Determination of g by the oscillations of a rod rolling on a cylinder; Experiment 14. Study of a vibrating system with two degrees of freedom; Note 1. On the vibration of a body suspended from a light spring; Note 2. Periodic time of a pendulum vibrating through a finite arc; Note 3. Periodic time for finite motion; Note 4. Periodic times of a pendulum with two degrees of freedom.

  18. Experimental Autoimmune Breast Failure

    PubMed Central

    Kesaraju, Pavani; Jaini, Ritika; Johnson, Justin M.; Altuntas, Cengiz Z.; Gruden, Jessica J.; Sakalar, Cagri; Tuohy, Vincent K.

    2013-01-01

    Mastitis is a substantial clinical problem in lactating women that may result in severe pain and abrupt termination of breastfeeding, thereby predisposing infants to long-term health risks. Many cases of mastitis involve no known infectious agent and may fundamentally be due to autoimmune-mediated inflammation of the breast. Herein, we develop a murine model of autoimmune mastitis and provide a detailed characterization of its resulting phenotype of breast failure and lactation insufficiency. To generate breast-specific autoimmunity, we immunized SWXJ mice with recombinant mouse α-lactalbumin, a lactation-dependent, breast-specific differentiation protein critical for production of lactose. Mice immunized with α-lactalbumin showed extensive T-cell–mediated inflammation in lactating normal breast parenchyma but none in nonlactating normal breast parenchyma. This targeted autoimmune attack resulted in breast failure characterized by lactation insufficiency and decreased ability to nurture offspring. Although immunization with α-lactalbumin had no effect on fertility and birth numbers, pups nursed by α-lactalbumin–immunized mice showed significantly disrupted growth often accompanied by kwashiorkor-like nutritional abnormalities, including alopecia, liver toxicity, and runting. This experimental model of autoimmune breast failure has useful applications for prophylactic breast cancer vaccination and for addressing inflammatory complications during breastfeeding. In addition, this model is suited for investigating nutritionally based “failure-to-thrive” issues, particularly regarding the long-term implications of postnatal nutritional deprivation. PMID:22901749

  19. Experimental chloroquine retinopathy.

    PubMed

    Matsumura, M; Ohkuma, M; Tsukahara, I

    1986-01-01

    Chloroquine retinopathy was produced experimentally in the eye of the albino corydoras (one of the tropical fish) by daily administration of chloroquine (0.1 mg per os). The enucleated eyes were examined from the 14th day to 3 months after the beginning of drug administration under light and electron microscopy. The first change of retina was the appearance of membraneous cytoplasmic body (MCB) in the cytoplasm of ganglion, amacrine, bipolar and horizontal cells. MCB might be degenerated lysosome. They showed lamellar figures or crystalline lattice-like structures. Secondarily, these MCB appeared in the inner segments of photoreceptor cells. The outer segments of rod cells disappeared, and then those of cone cells. Although photoreceptor cells were diminished in number in advanced degeneration, the cells of inner nuclear layer and ganglion cells were maintained in number. The presence of MCB dose not mean death of cells. The retinal pigment epithelial cells contained MCB in its cytoplasm only in severe degenerative cases, and did not show other remarkable changes. MCB also appeared in the cytoplasm of pericytes of retinal vessels. Chloroquine is considered to damage directly photoreceptor cells most severely. PMID:3018650

  20. Experimental quantum data locking

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Cao, Zhu; Wu, Cheng; Fukuda, Daiji; You, Lixing; Zhong, Jiaqiang; Numata, Takayuki; Chen, Sijing; Zhang, Weijun; Shi, Sheng-Cai; Lu, Chao-Yang; Wang, Zhen; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2016-08-01

    Classical correlation can be locked via quantum means: quantum data locking. With a short secret key, one can lock an exponentially large amount of information in order to make it inaccessible to unauthorized users without the key. Quantum data locking presents a resource-efficient alternative to one-time pad encryption which requires a key no shorter than the message. We report experimental demonstrations of a quantum data locking scheme originally proposed by D. P. DiVincenzo et al. [Phys. Rev. Lett. 92, 067902 (2004), 10.1103/PhysRevLett.92.067902] and a loss-tolerant scheme developed by O. Fawzi et al. [J. ACM 60, 44 (2013), 10.1145/2518131]. We observe that the unlocked amount of information is larger than the key size in both experiments, exhibiting strong violation of the incremental proportionality property of classical information theory. As an application example, we show the successful transmission of a photo over a lossy channel with quantum data (un)locking and error correction.

  1. Particle physics---Experimental

    SciTech Connect

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-08-21

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

  2. On the growth mechanism of Li- and Na-doped Zn chalcogenides on GaAs(001) by means of molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ohishi, M.; Yoneta, M.; Ishii, S.; Ohura, M.; Hiroe, Y.; Saito, H.

    1996-02-01

    Sharp and semicircular patterns were observed in RHEED during the MBE growth of Li- or Na-acceptor doped ZnSe and ZnS on GaAs(001). The radius and the separation between the diffraction circles vary with the change of the azimuth of the incident electron beam. Calculated diffraction patterns assuming that Li or Na atoms are arrayed one-dimensionally along the [110] direction of the crystal axis are in good agreement with the experimental results. We conclude that Li or Na atoms are incorporated at the [110] terrace steps, which prevents the further growth from the step edge.

  3. Laser trapping of {sup 21}Na atoms

    SciTech Connect

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  4. (19)F(alpha,n)(22)Na, (22)Ne(p,n)(22)Na, and the Role of their Inverses in the Destruction of (22)Na

    NASA Astrophysics Data System (ADS)

    Wrean, Patricia Rose

    The inverses of the 19F(α,n)22Na and 22Ne(p,n)22Na reactions may be important destruction mechanisms for 22Na in neutron-rich, high-temperature or explosive nucleosynthesis. I have measured the cross sections for the 19F(α,n)22Na and 22Ne(p,n)22Na reactions from threshold to 3.1 and 5.4 MeV, respectively. The absolute efficiency of the 4π neutron detector was determined by Monte Carlo calculations and calibrated using two standard sources and two nuclear reactions. Cross sections for the inverse reactions have been calculated using the principle of detailed balance, and reaction rates for both the reactions and their inverses determined for temperatures between 0.01 and 10 GK for 19F(α,n)22Na and between 0.1 and 10 GK for 22Ne(p,n)22Na.

  5. Solid-liquid equilibria in the NaCl-SrCl2-H2O system at 288.15 K

    NASA Astrophysics Data System (ADS)

    Li, Dan; Meng, Qing-fen; Meng, Ling-zong; Fan, Xiu-xiu

    2016-02-01

    The phase equilibria in the ternary system NaCl-SrCl2-H2O at 288.15 K were studied with the isothermal equilibrium solution method. The phase diagram and refractive index diagram were plotted for this system at 288.15 K. The phase diagram contains one invariant solubility point, two univariant solubility curves, and two crystallization fields of NaCl and SrCl2 · 6H2O. The refractive indices of the equilibrium solution change regularly with w(NaCl) increase. The calculated refractive index data are in good agreement with the experimental data. Combining the experimental solubility data of the ternary system, the Pitzer binary parameters for NaCl at 288.15 K and SrCl2 at 298.15 K, the Pitzer mixing parameters θNa, Sr, ΨNa, Sr, Cl and the solubility equilibrium constants Ksp of solid phases existing in the ternary system at 288.15 K were fitted using the Pitzer and Harvie-Weare (HW) models. The mean activity coefficients of sodium chloride and strontium chloride, and the solubilities for the ternary system at 288.15 K were presented. A comparison between the calculated and measured solubilities shows that the predicted data agree well with the experimental results.

  6. A study of the effect of Al2O3 reflector on response function of NaI(Tl) detector

    NASA Astrophysics Data System (ADS)

    Tam, Hoang Duc; Chuong, Huynh Dinh; Thanh, Tran Thien; Van Tao, Chau

    2016-08-01

    This study aims to assess the effect of Al2O3 reflector surrounding the NaI(Tl) crystal on the detector response function, based on Monte Carlo simulation, which can verify the precise model of the NaI(Tl) detector. The method used in determining the suitable thickness of Al2O3 reflector is to compare the calculated and experimental values of full-energy peak efficiency. The results show that the Al2O3 reflector should have a thickness of 0.8-1.2 mm for the maximum deviation between the experimental and simulated efficiency of 3.2% at all concerning energies. In addition, the obtained results are in good agreement with the response function of simulation and experimental spectra.

  7. Critical Evaluation and Thermodynamic Optimization of the Na2O-FeO-Fe2O3 System

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-02-01

    A complete literature review, critical evaluation, and thermodynamic optimization of experimental phase diagrams and thermodynamic properties of the Na2O-FeO-Fe2O3 system were performed at 1 bar total pressure. A set of optimized model parameters obtained for all phases present in this system reproduces available and reliable thermodynamic properties and phase equilibria within experimental error limits from 298 K (25 °C) to above liquidus temperatures for all compositions and oxygen partial pressures from metallic saturation to 1 atm. The liquid phase was modeled based on the Modified Quasichemical Model by considering the possible formation of NaFeO2 associate in the liquid state. Complicated subsolidus phase relations depending on the oxygen partial pressure and temperature were elucidated, and discrepancies among experimental data were resolved.

  8. A Selective Na(+) Aptamer Dissected by Sensitized Tb(3+) Luminescence.

    PubMed

    Zhou, Wenhu; Ding, Jinsong; Liu, Juewen

    2016-08-17

    A previous study of two RNA-cleaving DNAzymes, NaA43 and Ce13d, revealed the possibility of a common Na(+) aptamer motif. Because Na(+) binding to DNA is a fundamental biochemical problem, the interaction between Ce13d and Na(+) was studied in detail by using sensitized Tb(3+) luminescence spectroscopy. Na(+) displaces Tb(3+) from the DNAzyme, and thus quenches the emission from Tb(3+) . The overall requirement for Na(+) binding includes the hairpin and the highly conserved 16-nucleotide loop in the enzyme strand, along with a few unpaired nucleotides in the substrate. Mutation studies indicate good correlation between Na(+) binding and cleavage activity, thus suggesting a critical role of Na(+) binding for the enzyme activity. Ce13d displayed a Kd of ∼20 mm with Na(+) (other monovalent cations: 40-60 mm). The Kd values for other metal ions are mainly due to non-specific competition. With a single nucleotide mutation, the specific Na(+) binding was lost. Another mutant improved Kd to 8 mm with Na(+) . This study has demonstrated a Na(+) aptamer with important biological implications and analytical applications. It has also defined the structural requirements for Na(+) binding and produced an improved mutant. PMID:27238890

  9. Nonmagnetic Insulator State in Na1CoO2 and Phase Separation of Na Vacancies

    NASA Astrophysics Data System (ADS)

    de Vaulx, C.; Julien, M.-H.; Berthier, C.; Horvatić, M.; Bordet, P.; Simonet, V.; Chen, D. P.; Lin, C. T.

    2005-10-01

    Crystallographic, magnetic, and NMR properties of a NaxCoO2 single crystal with x≃1 are presented. We identify the stoichiometric Na1CoO2 phase, which is shown to be a nonmagnetic insulator, as expected for homogeneous planes of Co3+ ions with S=0. In addition, we present evidence that, because of slight average Na deficiency, chemical and electronic phase separation leads to a segregation of Na vacancies into the well-defined, magnetic, Na0.8CoO2 phase. The importance of phase separation is discussed in the context of magnetic order for x≃0.8 and the occurrence of a metal-insulator transition for x→1.

  10. 24Mg( p, α)21Na reaction study for spectroscopy of 21Na

    NASA Astrophysics Data System (ADS)

    Cha, S. M.; Chae, K. Y.; Kim, A.; Lee, E. J.; Ahn, S.; Bardayan, D. W.; Chipps, K. A.; Cizewski, J. A.; Howard, M. E.; Manning, B.; O'Malley, P. D.; Ratkiewicz, A.; Strauss, S.; Kozub, R. L.; Matos, M.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Peters, W. A.

    2015-10-01

    The 24Mg( p, α)21Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain the spins and parities of the energy levels in 21Na for the astrophysically important 17F( α, p)20Ne reaction rate calculation. 31-MeV proton beams from the 25-MV tandem accelerator and enriched 24Mg solid targets were used. Recoiling 4He particles from the 24Mg( p, α)21Na reaction were detected by a highly segmented silicon detector array which measured the yields of 4He particles over a range of angles simultaneously. A new level at 6661 ± 5 keV was observed in the present work. The extracted angular distributions for the first four levels of 21Na and the results from distorted wave Born approximation (DWBA) calculations were compared to verify and extract the angular momentum transfer.

  11. In vitro correction of impaired Na+-K+-ATPase in diabetic nerve by protein kinase C agonists.

    PubMed

    Lattimer, S A; Sima, A A; Greene, D A

    1989-02-01

    Diminished Na+-K+-ATPase activity in diabetic peripheral nerve plays a central role in the early electrophysiological, metabolic, and morphological abnormalities of experimental diabetic neuropathy. The defect in Na+-K+-adenosinetriphosphatase (ATPase) regulation in diabetic nerve is linked experimentally to glucose- and sorbitol-induced depletion of nerve myo-inositol but is not fully understood at a molecular level. Therefore, regulation of nerve Na+-K+-ATPase activity by phosphoinositide-derived diacylglycerol was explored as the putative link between myo-inositol depletion and the Na+-K+-ATPase impairment responsible for slowed saltatory conduction in diabetic animal models. In vitro exposure of endoneurial preparations from alloxan-diabetic rabbits to two protein kinase C agonists, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and 1,2-(but not 1,3-) dioctanoyl-sn-glycerol, for as little as 1 min completely and specifically corrected the 40% decreased enzymatically measured ouabain-sensitive ATPase activity. Neither of these agonists affected ouabain-sensitive ATPase activity in endoneurial preparations derived from nondiabetic controls. These observations are compatible with the hypothesis that metabolites of electrically stimulated phosphoinositide turnover such as diacylglycerol acutely regulate nerve Na+-K+-ATPase activity, probably via protein kinase C, thereby tightly coupling energy-dependent Na+-K+-antiport with impulse conduction in peripheral nerve. Glucose-induced depletion of myo-inositol presumably limits phosphoinositide turnover and diacylglycerol production, thereby disrupting this putative regulatory mechanism for Na+-K+-ATPase in diabetic peripheral nerve. PMID:2537578

  12. Na+/H+ exchanger 1 inhibition reverses manifestation of peripheral diabetic neuropathy in type 1 diabetic rats

    PubMed Central

    Lupachyk, Sergey; Watcho, Pierre; Shevalye, Hanna; Vareniuk, Igor; Obrosov, Alexander; Obrosova, Irina G.

    2013-01-01

    Evidence for an important role for Na+/H+ exchangers in diabetic complications is emerging. The aim of this study was to evaluate whether Na+/H+ exchanger 1 inhibition reverses experimental peripheral diabetic neuropathy. Control and streptozotocin-diabetic rats were treated with the specific Na+/H+ exchanger 1 inhibitor cariporide for 4 wk after 12 wk without treatment. Neuropathy end points included sciatic motor and sensory nerve conduction velocities, endoneurial nutritive blood flow, vascular reactivity of epineurial arterioles, thermal nociception, tactile allodynia, and intraepidermal nerve fiber density. Advanced glycation end product and markers of oxidative stress, including nitrated protein levels in sciatic nerve, were evaluated by Western blot. Rats with 12-wk duration of diabetes developed motor and sensory nerve conduction deficits, thermal hypoalgesia, tactile allodynia, and intraepidermal nerve fiber loss. All these changes, including impairment of nerve blood flow and vascular reactivity of epineurial arterioles, were partially reversed by 4 wk of cariporide treatment. Na+/H+ exchanger 1 inhibition was also associated with reduction of diabetes-induced accumulation of advanced glycation endproduct, oxidative stress, and nitrated proteins in sciatic nerve. In conclusion, these findings support an important role for Na+/H+ exchanger 1 in functional, structural, and biochemical manifestations of peripheral diabetic neuropathy and provide the rationale for development of Na+/H+ exchanger 1 inhibitors for treatment of diabetic vascular and neural complications. PMID:23736542

  13. Prediction of production of 22Na in a gas-cell target irradiated by protons using Monte Carlo tracking

    NASA Astrophysics Data System (ADS)

    Eslami, M.; Kakavand, T.; Mirzaii, M.; Rajabifar, S.

    2015-01-01

    The 22Ne(p,n)22Na is an optimal reaction for the cyclotron production of 22Na. This work tends to monitor the proton induced production of 22Na in a gas-cell target, containing natural and enriched neon gas, using Monte Carlo method. The excitation functions of reactions are calculated by both TALYS-1.6 and ALICE/ASH codes and then the optimum energy range of projectile for the high yield production is selected. A free gaseous environment of neon at a particular pressure and temperature is prearranged and the proton beam is transported within it using Monte Carlo codes MCNPX and SRIM. The beam monitoring performed by each of these codes indicates that the gas-cell has to be designed as conical frustum to reach desired interactions. The MCNPX is also employed to calculate the energy distribution of proton in the designed target and estimation of the residual nuclei during irradiation. The production yield of 22Na in 22Ne(p,n)22Na and natNe(p,x)22Na reactions are estimated and it shows a good agreement with the experimental results. The results demonstrate that Monte Carlo makes available a beneficial manner to design and optimize the gas targets as well as calibration of detectors, which can be used for the radionuclide production purposes.

  14. The effect of NaCl on the rheological properties of suspension containing spray dried starch nanoparticles.

    PubMed

    Shi, Ai-min; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2012-11-01

    The effect of NaCl on the rheological properties of suspensions containing spray dried starch nanoparticles produced through high pressure homogenization and emulsion cross-linking technique was studied. Rheological properties such as continuous shear viscosity, viscoelasticity and creep-recovery were measured. NaCl (5-20%, w/w) was found to lower viscosity quite significantly (p<0.05), enhance the heat stability and weaken their gelling behavior compared to starch-only suspension. NaCl reduced both the storage and loss moduli of suspension within the frequency range (0.1-10 rads/s) studied. However, NaCl brought higher speed of reduction on the storage modulus than on the loss modulus, which resulted into large increase in loss angle. The creep-recovery behavior of suspension was affected by NaCl and the recovery rate was highest (86%) at 15% NaCl. The Cross, the Power law and the Burger's models followed the experimental viscosity, storage and loss moduli, and creep-recovery data well with R(2)>0.97. PMID:22944412

  15. Na+/H+ exchanger 1 inhibition reverses manifestation of peripheral diabetic neuropathy in type 1 diabetic rats.

    PubMed

    Lupachyk, Sergey; Watcho, Pierre; Shevalye, Hanna; Vareniuk, Igor; Obrosov, Alexander; Obrosova, Irina G; Yorek, Mark A

    2013-08-01

    Evidence for an important role for Na(+)/H(+) exchangers in diabetic complications is emerging. The aim of this study was to evaluate whether Na(+)/H(+) exchanger 1 inhibition reverses experimental peripheral diabetic neuropathy. Control and streptozotocin-diabetic rats were treated with the specific Na(+)/H(+) exchanger 1 inhibitor cariporide for 4 wk after 12 wk without treatment. Neuropathy end points included sciatic motor and sensory nerve conduction velocities, endoneurial nutritive blood flow, vascular reactivity of epineurial arterioles, thermal nociception, tactile allodynia, and intraepidermal nerve fiber density. Advanced glycation end product and markers of oxidative stress, including nitrated protein levels in sciatic nerve, were evaluated by Western blot. Rats with 12-wk duration of diabetes developed motor and sensory nerve conduction deficits, thermal hypoalgesia, tactile allodynia, and intraepidermal nerve fiber loss. All these changes, including impairment of nerve blood flow and vascular reactivity of epineurial arterioles, were partially reversed by 4 wk of cariporide treatment. Na(+)/H(+) exchanger 1 inhibition was also associated with reduction of diabetes-induced accumulation of advanced glycation endproduct, oxidative stress, and nitrated proteins in sciatic nerve. In conclusion, these findings support an important role for Na(+)/H(+) exchanger 1 in functional, structural, and biochemical manifestations of peripheral diabetic neuropathy and provide the rationale for development of Na(+)/H(+) exchanger 1 inhibitors for treatment of diabetic vascular and neural complications. PMID:23736542

  16. X-38 Experimental Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Fitzgerald, Steve M.

    2000-01-01

    The X-38 program seeks to demonstrate an autonomously returned orbital test flight vehicle to support the development of an operational Crew Return Vehicle for the International Space Station. The test flight, anticipated in 2002, is intended to demonstrate the entire mission profile of returning Space Station crew members safely back to earth in the event of medical or mechanical emergency. Integral to the formulation of the X-38 flight data book and the design of the thermal protection system, the aerothermodynamic environment is being defined through a synergistic combination of ground based testing and computational fluid dynamics. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at the NASA Langley Research Center in support of the X-38 development. Global and discrete surface heat transfer force and moment, surface streamline patterns, and shock shapes were measured on scaled models of the proposed X-38 configuration in different test gases at Mach 6, 10 and 20. The test parametrics include angle of attack from 0 to 50 degs, unit Reynolds numbers from 0.3 x 10 (exp 6) to 16 x 10 (exp 6)/ ft, rudder deflections of 0, 2, and 5 deg. and body flap deflections from 0 to 30 deg. Results from hypersonic aerodynamic screening studies that were conducted as the configuration evolved to the present shape at, presented. Heavy gas simulation tests have indicated that the primary real gas effects on X-38 aerodynamics at trim conditions are expected to favorably influence flap effectiveness. Comparisons of the experimental heating and force and moment data to prediction and the current aerodynamic data book are highlighted. The effects of discrete roughness elements on boundary layer transition were investigated at Mach 6 and the development of a transition correlation for the X-38 vehicle is described. Extrapolation of ground based heating measurements to flight radiation equilibrium wall temperatures at Mach 6 and 10 were

  17. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  18. Solubility in K+-Na+-Mg{4/2-} aqueous solution at T = 298.15 K

    NASA Astrophysics Data System (ADS)

    Popović, D. Ž.; Miladinović, J. M.; Todorović, M. D.; Miladinović, Z. P.

    2013-12-01

    In the salt solubility predictions for K+-Na+-Mg{4/2-} aqueous solution the treatment of thermodynamic data of three-component systems at T = 298.15 K involved the application of the Extended Pitzer's ion-interaction model for the pure and mixed electrolyte solutions and criteria of phase equilibrium. Osmotic coefficients data of three-component systems were revised according to recently published parameters of the solutions NaCl(aq) and KCl(aq) that served as reference standards in isopiestic measurements. Parameters of the extended ion-interaction model of K2SO4(aq) are determined by treatment of experimental and predicted values of osmotic coefficient in supersaturated region obtained by the Zdanovskii-Stokes-Robinson rule. Results of salt solubility prediction were compared to experimental solubility data from literature. The agreement between calculated and experimental solubility data in the systems K2SO4 + MgSO4 + H2O, Na2SO4 + MgSO4 + H2O, and Na2SO4 + K2SO4 + H2O at T = 298.15 K, was excellent.

  19. Melting curve of NaCl determined using synchrotron x-ray radiography

    NASA Astrophysics Data System (ADS)

    Chen, J.; Yu, T.; Long, H.; Wang, L.; Garai, J.

    2009-12-01

    NaCl has been widely used as a pressure calibrant in in-situ high pressure synchrotron x-ray study. The applicable pressure and temperature range of this calibrant is from ambient condition up to B1-B2 transition in pressure and to melting in temperature. Melting data of NaCl at high pressures are still very limited. We have conducted comparative experiments to study melting of NaCl using energy dispersive x-ray diffraction and radiographic imaging at high pressure up to 8.8GPa. The experiments were carried out using the cubic-type multi-anvil pressure (SAM85) at the X17B2 beamline of the National Synchrotron Light Source (NSLS). In the x-ray diffraction experiments, melting is inferred when disappearance of diffraction peak of NaCl from a mixture of NaCl+BN (to reduce possible grain growth) is observed. In the x-ray radiography experiment, a WC sphere is place in the top portion of pure NaCl sample; melting is inferred when the WC sphere start to drop in the sample. The experimental result indicates that the melting temperatures determined from the two types of observations may differ by 60°C at 5 GPa. Due to unavoidable grain growth near melting, x-ray diffraction signals may disappear from the point solid state detector even though the melting is not achieved. Therefore the radiography method may reflect more accurate measurement of melting temperature. Melting curve of NaCl was measured up to 1.8 GPa by Clark et al (1), and between 2 and 4 GPa by Pistorius (2). The new melting data are consistent with the previous results. All the experimental are in good agreement with theoretical prediction using Simon fusion equation (2) and the relation between melting temperature and Debye temperature (3). References: (1) Clark, Jr. Effect of Pressure on the Melting Points of Eight Alkali Halides, Journal of Chemical Physics 31 (6) 1526-1531 (1959). (2) Kraut and Kennedy, New Melting Law at High Pressures, Physical Review 151 (2) 668-675 (1966) (3) J. Garai, and J. Chen

  20. Recent Experimental Progress on Surrogate Reactions

    NASA Astrophysics Data System (ADS)

    Beausang, Cornelius

    2014-09-01

    -process rp- and p-processes etc.), for nuclear energy generation and for national security applications. Many such reactions occur on short-lived unstable nuclei. Even with the present generation of radioactive beam facilities, many such reactions are difficult, if not impossible, to measure directly. For these reactions, often the surrogate reaction technique provides the only option to provide some experimental guidance for the calculations. The experimental and theoretical techniques required are described in some detail in the recent review article by Escher et al.. Originally introduced in the 1970's the last decade has seen a resurgence of interest in the surrogate technique. Various ratio techniques, external, internal and hybrid, have been developed to minimize the effect of target contamination. In the actinide region, a large number of surrogate (n,f) cross sections have been measured. In general, these show agreement to within 5--10%, with directly measured (n,f) data where these data exist (benchmarking), for equivalent neutron energies ranging from ~100 keV up to tens of MeV. For (n, γ) reactions, measurements have been attempted for select nuclei in various mass regions (A ~ 90, 150 and 235) and for these the agreement with directly measured data is less good. The various experimental techniques employed will be described as well as the current state of the experimental data. Some future directions will be described. This work was partly supported by the US Department of Energy under Grant Numbers DE-FG52-06NA26206 and DE-FG02-05ER41379.

  1. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  2. On the Natural and Unnatural History of the Voltage-Gated Na(+) Channel.

    PubMed

    Moczydlowski, E G

    2016-01-01

    This review glances at the voltage-gated sodium (Na(+)) channel (NaV) from the skewed perspective of natural history and the history of ideas. Beginning with the earliest natural philosophers, the objective of biological science and physiology was to understand the basis of life and discover its intimate secrets. The idea that the living state of matter differs from inanimate matter by an incorporeal spirit or mystical force was central to vitalism, a doctrine based on ancient beliefs that persisted until the last century. Experimental electrophysiology played a major role in the abandonment of vitalism by elucidating physiochemical mechanisms that explained the electrical excitability of muscle and nerve. Indeed, as a principal biomolecule underlying membrane excitability, the NaV channel may be considered as the physical analog or surrogate for the vital spirit once presumed to animate higher forms of life. NaV also epitomizes the "other secret of life" and functions as a quantal transistor element of biological intelligence. Subplots of this incredible but true story run the gamut from electric fish to electromagnetism, invention of the battery, venomous animals, neurotoxins, channelopathies, arrhythmia, anesthesia, astrobiology, etc. PMID:27586279

  3. Use of Na clinoptilolite for concentrating silver and nickel ions from wastes

    SciTech Connect

    Rustamov, S.M.; Makhmudov, F.T.

    1988-06-20

    The authors report experimental results obtained by concentrating silver ions (Ag/sup +/) and complex nickel ions (Ni(NH/sub 3/)/sub 6/)/sup 2 +/ from actual industrial wastes on Na clinoptilolite. Silver and nickel were concentrated from liquid wastes of photographic processing after electrolytic treatment, and from wastes of multiproduct conversion of serpentine rock after production of magnesium sulfate. The Ag/sup +/ and (Ni(NH/sub 3/)/sub 6/)/sup 2 +/ ions were concentrated from the liquid wastes as follows: the liquid wastes with initial Ag/sup +/ and (Ni(NH/sub 3/)/sub 6/)/sup 2 +/ ion contents c/sub 0/ = 1.14 x 10/sup -4/ and 6.14 x 10/sup -3/ meq/ml respectively were passed at linear velocities v = 0.70 and 0.50 cm/sec through Na clinoptilolite beds in columns (50 g of sorbent in each column) until sorbent was saturated with the ions. The Ag/sup +/ and (Ni(NH/sub 3/)/sub 6/)/sup 2 +/ ions were then desorbed by passing NaNO/sub 3/ and NaCl solutions respectively through the columns at 0.05 cm/sec until these ions were removed completely from the columns. On the average, 14-fold concentrations of Ag/sup +/ and (Ni(NH/sub 3/)/sub 6/)/sup 2 +/ ions from these liquids has been achieved.

  4. Towards a study of 22Ne(pγ)23Na at LUNA

    NASA Astrophysics Data System (ADS)

    Depalo, R.; LUNA Collaboration

    2016-01-01

    The 22Ne(p,γ)23Na reaction is involved in the NeNa cycle of hydrogen burning. This cycle plays an important role for nucleosynthesis in the Red Giant Branch and Asymptotic Giant Branch phases of stellar evolution, as well as in classical novae and type Ia supernovae explosions. The 22Ne(p,γ)23Na reaction rate is highly uncertain because of a large number of resonances lying in the energy region of the Gamow peak. Several of these resonances have never been studied in either direct or indirect experiments, and only upper limits exist for their strengths. A measurement of the 2Ne(p,γ)23Na cross section is on-going at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso. With the LUNA setup, it will be possible to study the 22Ne+p reaction inside the Gamow window. The results of a feasibility test, as well as the measurement strategy and the setup for the first experimental campaign are discussed

  5. Testing refined shell-model interactions in the s d shell: Coulomb excitation of 26Na

    NASA Astrophysics Data System (ADS)

    Siebeck, B.; Seidlitz, M.; Blazhev, A.; Reiter, P.; Altenkirch, R.; Bauer, C.; Butler, P. A.; de Witte, H.; Elseviers, J.; Gaffney, L. P.; Hess, H.; Huyse, M.; Kröll, T.; Lutter, R.; Pakarinen, J.; Pietralla, N.; Radeck, F.; Scheck, M.; Schneiders, D.; Sotty, C.; van Duppen, P.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Miniball Collaboration; Rex-Isolde Collaboration

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal s d interaction (USD) describing nuclei within the s d shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus 26Na with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with 26Na (T1 /2=1 ,07 s ) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections of the beam have been obtained by normalization to the well known Coulomb excitation cross sections of the 104Pd target. Results: The observation of three γ -ray transitions in 26Na together with available spectroscopic data allows us to determine E 2 - and M 1 -transitional matrix elements. Results are compared to theoretical predictions. Conclusion: The improved theoretical description of 26Na could be validated. Remaining discrepancies between experimental data and theoretical predictions indicate the need for future experiments and possibly further theoretical improvements.

  6. Rescue of Na+ Affinity in Aspartate 928 Mutants of Na+,K+-ATPase by Secondary Mutation of Glutamate 314*

    PubMed Central

    Holm, Rikke; Einholm, Anja P.; Andersen, Jens P.; Vilsen, Bente

    2015-01-01

    The Na+,K+-ATPase binds Na+ at three transport sites denoted I, II, and III, of which site III is Na+-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na+ affinity in the α1-, α2-, and α3-isoforms of Na+,K+-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na+-coordinating residues in site III. Remarkably, the Na+ affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na+ binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na+ affinity is likely intrinsic to the Na+ binding pocket, and the underlying mechanism could be a tightening of Na+ binding at Na+ site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na+,K+ pump function in intact cells. Rescue of Na+ affinity and Na+ and K+ transport by second-site mutation is unique in the history of Na+,K+-ATPase and points to new possibilities for treatment of neurological patients carrying Na+,K+-ATPase mutations. PMID:25713066

  7. Solid-liquid phase equilibria at 50 and 75°C in the NaCl + MgCl2 + H2O system and the pitzer model representations

    NASA Astrophysics Data System (ADS)

    Yang, Ji-min; Zhang, Rui-zhi; Liu, Hong; Ma, Si-hong

    2013-12-01

    The solubilities in the NaCl-MgCl2-H2O system were determined at 50 and 75°C and the phase diagrams were constructed on the base of experimental data. One invariant point, two univariant curves, and two crystallization zones, corresponding to sodium chloride and dihydrate (MgCl2 · 6H2O) showed up in the phase diagrams of the ternary system, The mixing parameters θNa,Mg and ΨNa,Mg, Cl and equilibrium constant K sp were evaluated in NaCl-MgCl2-H2O system by least-squares optimization procedure, in which the single-salt Pitzer parameters of NaCl and MgCl2β(0), β(1), and C φ were directly calculated from the literature. The results obtained were in good agreement with the experimental data.

  8. Final-state symmetry of Na 1s core-shell excitons in NaCl and NaF

    SciTech Connect

    Nagle, K.P.; Seidler, G.T.; Shirley, E.L.; Fister, T.T.; Bradley, J.A.; Brown, F.C.

    2009-08-13

    We report measurements of the Na 1s contribution to the nonresonant inelastic x-ray scattering (NRIXS) from NaCl and NaF. Prior x-ray absorption studies have observed two pre-edge excitons in both materials. The momentum-transfer dependence (q dependence) of the measured NRIXS cross section and of real-space full multiple scattering and Bethe-Salpeter calculations determine that the higher-energy core excitons are s type for each material. The lower-energy core excitons contribute at most weakly to the NRIXS signal and we propose that these may be surface core excitons, as have been observed in several other alkali halides. The analysis of the orbital angular momentum of these features leads to a discussion of the limited sensitivity of NRIXS measurements to d-type final states when investigating 1s initial states. In this case the s- and p-type final density of states can be characterized by measurements at a small number of momentum transfers. This is in contrast to the case of more complex initial states for which measurements at a large number of momentum transfers are needed to separate the rich admixture of accessible and contributing final-state symmetries.

  9. Theoretical investigation on local structure and transport properties of NaFsbnd AlF3 molten salts under electric field environment

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-08-01

    The effect of electric field and molecular ratio CR (NaF/AlF3) on basic structure and transport properties of NaFsbnd AlF3 molten salts were investigated by molecular dynamics simulations with the Buckingham potential model. The [AlF6]3- groups are the dominant specie in NaFsbnd AlF3 molten salts at CR ≥ 2.6, and followed by the [AlF5]2- groups, while CR ≤ 2.4, [AlF5]2- groups are the protagonists up to 40%. In NaFsbnd AlF3 system, with the increase of CR, the proportion of Fb decreases slightly and the percentage of Ff increases dramatically. The Alsbnd F bonds have ionic characters as well as partial covalently characters due to the hybridization of F-2p and Al-3s, 3p orbitals. The order of ion diffusion ability follows as Na+ > F- > Al3+. Adding more NaF can break some F bridges of structure networks and decrease the polymerization degree of NaFsbnd AlF3 molten salts, the viscosity reduces and ionic conductivity increases as a consequence. The calculated results of ionic conductivity are in agreement with the experimental results. Electric field has no significant impact on the local structure characters, while transport properties are not. The change of CR (NaF/AlF3) can significantly affect these characters of both the structure and transport.

  10. Crystal and electronic structure changes during the charge-discharge process of Na4Co3(PO4)2P2O7

    NASA Astrophysics Data System (ADS)

    Moriwake, Hiroki; Kuwabara, Akihide; Fisher, Craig A. J.; Nose, Masafumi; Nakayama, Hideki; Nakanishi, Shinji; Iba, Hideki; Ikuhara, Yuichi

    2016-09-01

    Sodium-ion batteries offer a potential solution to the problem of limited lithium resources, and the newly developed positive electrode material Na4Co3(PO4)2P2O7 is attracting significant attention due to its high rate, high capacity, and high voltage compared to other sodium-ion battery materials. However, details of its electronic structure and its charge/discharge behavior are still uncertain. Here we report detailed first-principles calculations of the desodiation behavior of Na4Co3(PO4)2P2O7 using the GGA + U formalism of density functional theory. Assuming a stepwise desodiation process, removal of Na down to NaCo3(PO4)2P2O7 is found to be accompanied by oxidation of Co2+ to Co3+. Further removal of Na to give Co3(PO4)2P2O7 requires oxidation of oxygen 2p orbitals in the P2O7 polyhedra instead of Co3+ being oxidized to Co4+. The holes thus formed are expected to be strongly self-trapped, rendering them immobile at room temperature. At the same time, a large volume shrinkage is observed during this last desodiation step, constricting the Na migration channels. These two factors may explain the difficulty encountered experimentally in removing all Na from Na4Co3(PO4)2P2O7.

  11. Igneous origin for the NA in the cloud of Io

    NASA Astrophysics Data System (ADS)

    Johnson, M. L.; Burnett, D. S.

    1990-06-01

    Mixtures of sulfur and Na-bearing silicates were heated in evacuated silica glass capsules to temperatures between 600 C and 950 C. At or above 850 C, Na-silicate glass reacts with elemental S to form a (Na, K) sulfide. Mobilization of this phase may account for the presence of Na and K on the surface of Io, and hence in the material sputtered onto the Jovian magnetosphere.

  12. Electrical properties of Na{sub 2}US{sub 3}, NaGdS{sub 2} and NaLaS{sub 2}

    SciTech Connect

    Masuda, Hidetoshi; Fujino, Takeo; Sato, Nobuaki; Yamada, Kohta

    1999-06-01

    The electrical properties of ternary mixed sulfides Na{sub 2}US{sub 3}, NaGdS{sub 2}, and NaLaS{sub 2} were studied by measuring the electrical conductivity and Hall coefficient by the van der Pauw method in a temperature range of 17--300 K. These compounds have closely related crystal structures with nearly the same atom separations, but uranium is in a U{sup 4+} state in Na{sub 2}US{sub 3} in contrast to Ln{sup 3+} ions in NaGdS{sub 2} and NaLaS{sub 2}. The electrical conductivity was the highest for NaGdS{sub 2} (7.75 x 10{sup 2} and 11.2 x 10{sup 2} Sm{sup {minus}1} at 17 and 300 K, respectively) and the lowest for Na{sub 2}US{sub 3} (0.98 x 10{sup 2} and 1.14 x 10{sup 2} Sm{sup {minus}1} at 17 and 300 K, respectively). They showed semiconductive behavior from the temperature dependence of the electrical conductivity. The Hall coefficient showed the dominant carriers to be electrons for NaGdS{sub 2} and holes for NaLaS{sub 2} and Na{sub 2}US{sub 3}. The carrier densities were not so apart in these compounds, i.e., 0.2--0.3 x 10{sup 25} m{sup {minus}3} for NaGdS{sub 2} and {approximately}0.1 x 10{sup 25} m{sup {minus}3} for Na{sub 2}Us{sub 3}. The activation energies of conduction were very low for all three compounds, especially at low temperatures below 200 K.

  13. Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters*

    PubMed Central

    Stolzenberg, Sebastian; Quick, Matthias; Zhao, Chunfeng; Gotfryd, Kamil; Khelashvili, George; Gether, Ulrik; Loland, Claus J.; Javitch, Jonathan A.; Noskov, Sergei; Weinstein, Harel; Shi, Lei

    2015-01-01

    Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Thus, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function. PMID:25869126

  14. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  15. Discrimination of intra- and extracellular 23Na + signals in yeast cell suspensions using longitudinal magnetic resonance relaxography

    NASA Astrophysics Data System (ADS)

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2010-07-01

    This study tested the ability of MR relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+)23Na + signals using their longitudinal relaxation time constant ( T1) values. Na +-loaded yeast cell ( Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na +T1 differences were examined: a selective Nae+T1 decrease induced by an extracellular relaxation reagent (RR e), GdDOTP 5-; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SR e), TmDOTP 5-, were used to validate the MRR measurements. With 12.8 mM RR e, the 23Nae+T1 was 2.4 ms and the 23Nai+T1 was 9.5 ms (9.4T, 24 °C). The Na + amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RR e or by MRS/SR e. Without RR e, the Na +-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (±0.3) ms and 32.7 (±2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (±0.06); while Nae+ was higher, 1.43 (±0.12) compared with MRS/SR e measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na + flux measurements; with RR e for animal studies and without RR e for humans.

  16. POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION

    SciTech Connect

    Sherman, S.; Knight, C.

    2011-03-08

    At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a

  17. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697. PMID:27458821

  18. Experimental and simulated validation of the energy dependence of saturation thickness of multiple scattered gamma rays

    NASA Astrophysics Data System (ADS)

    Eshwarappa, Kunabevu Mallikarjunappa; Kiran, Kiggal Udayashankar; Ravindraswami, Kalladka; Somashekarappa, Hiriyur Mallaiah

    2014-11-01

    Saturation thickness for multiple scattering gamma rays from multiple sources has been measured experimentally and simulated using the Monte Carlo N-Particle (MCNP) Code. Experimental measurements were performed using a collimated beam of gamma-rays from 57Co, 203Hg, 133Ba, 22Na, 137Cs, 65Zn and 60Co sources. The gamma rays were directed at rectangular aluminium targets of varying thickness. A NaI (Tl) scintillation detector placed at a backscattering angle of 180° was used to detect the scattered photons. The measured and calculated saturation thickness increases with increasing energy of incident gamma-rays. Experimental and simulated values are compared and are in good agreement.

  19. Cardiac Na Channels: Structure to Function.

    PubMed

    DeMarco, K R; Clancy, C E

    2016-01-01

    Heart rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. Opening of the primary cardiac voltage-gated sodium (NaV1.5) channel initiates cellular depolarization and the propagation of an electrical action potential that promotes coordinated contraction of the heart. The regularity of these contractile waves is critically important since it drives the primary function of the heart: to act as a pump that delivers blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. Perturbations to NaV1.5 may alter the structure, and hence the function, of the ion channel and are associated downstream with a wide variety of cardiac conduction pathologies, such as arrhythmias. PMID:27586288

  20. Optically pumped Na/sub 2/ laser

    SciTech Connect

    Kanorskii, S.I.; Kaslin, V.M.; Yakushev, O.F.

    1980-10-01

    A pulsed copper vapor laser emitting the 578.2 nm line was used as the pump source in achieving stimulated emission as a result of the electronic A/sup 1/..sigma../sup +//sub u/ to X/sup 1/..sigma../sup +//sub g/ transitions in the Na/sub 2/ molecule in the spectral range 0.765 to 0.804 ..mu... The average power of all the emission lines was 10 mW when the pulsed pump power was 150 W and the efficiency of conversion of the optical pump energy was about 3%. The pulse repetition frequency was 3.3 kHz. Violet diffuse radiation of the Na/sub 2/ molecules, generated by pumping with the copper vapor laser, was observed. The superradiance regime was found for some of the lines.

  1. Species-dependent adaptation of the cardiac Na+/K+ pump kinetics to the intracellular Na+ concentration

    PubMed Central

    Lewalle, Alexandre; Niederer, Steven A; Smith, Nicolas P

    2014-01-01

    The Na+/K+ ATPase (NKA) plays a critical role in maintaining ionic homeostasis and dynamic function in cardiac myocytes, within both the in vivo cell and in silico models. Physiological conditions differ significantly between mammalian species. However, most existing formulations of NKA used to simulate cardiac function in computational models are derived from a broad range of experimental sources spanning many animal species. The resultant inability of these models to discern species-specific features is a significant obstacle to achieving a detailed quantitative and comparative understanding of physiological behaviour in different biological contexts. Here we present a framework for characterising the steady-state NKA current using a biophysical mechanistic model specifically designed to provide a mechanistic explanation of the NKA flux supported by self-consistent species-specific data. We thus compared NKA kinetics specific to guinea- pig and rat ventricular myocytes. We observe that the apparent binding affinity for sodium in the rat is significantly lower, whereas the overall pump cycle rate is doubled, in comparison to the guinea pig. This sensitivity of NKA to its regulatory substrates compensates for the differences in Na+ concentrations between the cell types. NKA is thereby maintained within its dynamic range over a wide range of pacing frequencies in these two species, despite significant disparities in sodium concentration. Hence, by replacing a conventional generic NKA model with our rat-specific NKA formula into a whole-cell simulation, we have, for the first time, been able to accurately reproduce the action potential duration and the steady-state sodium concentration as functions of pacing frequency. PMID:25362154

  2. The complex lightcurve of 1992 NA

    NASA Technical Reports Server (NTRS)

    Wisniewski, Wieslaw Z.; Harris, A. W.

    1994-01-01

    Amor asteroid 1992 NA was monitored during three nights at a large phase angle of -65 deg. The lightcurves obtained did not reveal a repeatable curve with two maxima and two minima. However, some features suggested a periodicity with three maxima and three minima. A satisfactory composite lightcurve of this form was obtained by means of an 'eyeball' fit and by Fourier analysis. Individual and composite lightcurves are presented. The observed colors are consistent with the C class.

  3. Kinetic Monte Carlo simulations of scintillation processes in NaI(Tl)

    SciTech Connect

    Kerisit, Sebastien N.; Wang, Zhiguo; Williams, Richard; Grim, Joel; Gao, Fei

    2014-04-26

    Developing a comprehensive understanding of the processes that govern the scintillation behavior of inorganic scintillators provides a pathway to optimize current scintillators and allows for the science-driven search for new scintillator materials. Recent experimental data on the excitation density dependence of the light yield of inorganic scintillators presents an opportunity to incorporate parameterized interactions between excitations in scintillation models and thus enable more realistic simulations of the nonproportionality of inorganic scintillators. Therefore, a kinetic Monte Carlo (KMC) model of elementary scintillation processes in NaI(Tl) is developed in this work to simulate the kinetics of scintillation for a range of temperatures and Tl concentrations as well as the scintillation efficiency as a function of excitation density. The ability of the KMC model to reproduce available experimental data allows for elucidating the elementary processes that give rise to the kinetics and efficiency of scintillation observed experimentally for a range of conditions.

  4. Unseeded Supersolubility of Lithium Carbonate: Experimental Measurement and Simulation with Mathematical Models

    NASA Astrophysics Data System (ADS)

    Sun, Yuzhu; Song, Xingfu; Wang, Jin; Luo, Yan; Yu, Jianguo

    2009-12-01

    A laser aparatus was employed to investigate the unseeded supersolubility values of Li 2CO 3 in aqueous solution. It shows the supersolubility of Li 2CO 3 decreases with the raise of temperature and stirring speed, and with a reduction of feeding rate of Na 2CO 3. The introduce of ultrasound field leads to obvious reduction on supersolubility, whereas magnetic field causes little effect. The involving factors of impurities and additives on the supersolubility were also studied. It is found that the supersolubility value decreases with the addition of NaCl, KCl, NaNO 3 and NaBr, while increases at the presence of Na 2SO 4, CH 4N 2O, NH 4Cl, (NH 4) 2SO 4 and EDTA disodium. Meanwhile, two mathematical models, empirical correlation and BP neural network, were used to simulate the supersolubility value as a function of temperature and feeding rate of Na 2CO 3. Compared with empirical correlation method, BP neural network simulation has better consistence with the experimental data.

  5. Validation of a novel, physiologic model of experimental acute pancreatitis in the mouse

    PubMed Central

    Ziegler, Kathryn M; Wade, Terence E; Wang, Sue; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2011-01-01

    Background: Many experimental models of acute pancreatitis suffer from lack of clinical relevance. We sought to validate a recently reported murine model of acute pancreatitis that more closely represents the physiology of human biliary pancreatitis. Methods: Mice (C57BL/6J n=6 and CF-1 n=8) underwent infusion of 50μl of 5% sodium taurocholate (NaT) or 50μl of normal saline (NaCl) directly into the pancreatic duct. Twenty-four hours later, pancreatitis severity was graded histologically by three independent observers, and pancreatic tissue concentration of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) were determined by ELISA. Results: Twenty four hours after retrograde injection, the total pancreatitis score was significantly greater in mice infused with NaT than in those infused with NaCl (6.3 ± 1.2 vs. 1.2 ± 0.4, p<0.05). In addition, the inflammatory mediators IL-6 and MCP-1 were increased in the NaT group relative to the NaCl group. Discussion: Retrograde pancreatic duct infusion of sodium taurocholate induces acute pancreatitis in the mouse. This model is likely representative of human biliary pancreatitis pathophysiology, and therefore provides a powerful tool with which to elucidate basic mechanisms underlying the pathogenesis of acute pancreatitis. PMID:21416058

  6. TRP-Na(+)/Ca(2+) Exchanger Coupling.

    PubMed

    Harper, Alan G S; Sage, Stewart O

    2016-01-01

    Na(+)/Ca(2+) exchangers (NCXs) have traditionally been viewed principally as a means of Ca(2+) removal from non-excitable cells. However there has recently been increasing interest in the operation of NCXs in reverse mode acting as a means of eliciting Ca(2+) entry into these cells. Reverse mode exchange requires a significant change in the normal resting transmembrane ion gradients and membrane potential, which has been suggested to occur principally via the coupling of NCXs to localised Na(+) entry through non-selective cation channels such as canonical transient receptor potential (TRPC) channels. Here we review evidence for functional or physical coupling of NCXs to non-selective cation channels, and how this affects NCX activity in non-excitable cells. In particular we focus on the potential role of nanojunctions, where the close apposition of plasma and intracellular membranes may help create the conditions needed for the generation of localised rises in Na(+) concentration that would be required to trigger reverse mode exchange. PMID:27161225

  7. DoRiNA 2.0--upgrading the doRiNA database of RNA interactions in post-transcriptional regulation.

    PubMed

    Blin, Kai; Dieterich, Christoph; Wurmus, Ricardo; Rajewsky, Nikolaus; Landthaler, Markus; Akalin, Altuna

    2015-01-01

    The expression of almost all genes in animals is subject to post-transcriptional regulation by RNA binding proteins (RBPs) and microRNAs (miRNAs). The interactions between both RBPs and miRNAs with mRNA can be mapped on a whole-transcriptome level using experimental and computational techniques established in the past years. The combined action of RBPs and miRNAs is thought to form a post-transcriptional regulatory code. Here we present doRiNA 2.0, available at http://dorina.mdc-berlin.de. In this highly improved new version, we have completely reworked the user interface and expanded the database to improve the usability of the website. Taking into account user feedback over the past years, the input forms for both the simple and the combinatorial search function have been streamlined and combined into a single web page that will also display the search results. Especially, custom uploads is one of the key new features in doRiNA 2.0. To enable the inclusion of doRiNA into third-party analysis pipelines, all operations are accessible via a REST API. Alternatively, local installations can be queried using a Python API. Both the web application and the APIs are available under an OSI-approved Open Source license that allows research and commercial access and re-use. PMID:25416797

  8. DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation

    PubMed Central

    Blin, Kai; Dieterich, Christoph; Wurmus, Ricardo; Rajewsky, Nikolaus; Landthaler, Markus; Akalin, Altuna

    2015-01-01

    The expression of almost all genes in animals is subject to post-transcriptional regulation by RNA binding proteins (RBPs) and microRNAs (miRNAs). The interactions between both RBPs and miRNAs with mRNA can be mapped on a whole-transcriptome level using experimental and computational techniques established in the past years. The combined action of RBPs and miRNAs is thought to form a post-transcriptional regulatory code. Here we present doRiNA 2.0, available at http://dorina.mdc-berlin.de. In this highly improved new version, we have completely reworked the user interface and expanded the database to improve the usability of the website. Taking into account user feedback over the past years, the input forms for both the simple and the combinatorial search function have been streamlined and combined into a single web page that will also display the search results. Especially, custom uploads is one of the key new features in doRiNA 2.0. To enable the inclusion of doRiNA into third-party analysis pipelines, all operations are accessible via a REST API. Alternatively, local installations can be queried using a Python API. Both the web application and the APIs are available under an OSI-approved Open Source license that allows research and commercial access and re-use. PMID:25416797

  9. Thermochemistry of binary Na-NaH and ternary Na-O-H systems and the kinetics of reaction of hydrogen/water with liquid sodium - a review

    NASA Astrophysics Data System (ADS)

    Gnanasekaran, T.

    A review of the literature data on the binary Na-H and ternary Na-O-H systems has been carried out. Influence of dissolved oxygen on Sieverts' constant for hydrogen in sodium is analysed and an expression for the variation of Sieverts' constant with oxygen concentration is derived. Data on equilibrium hydrogen partial pressures over Na(l)-NaH(s) phase mixtures are assessed and an expression for variation of Gibbs energy of formation of NaH(s) with temperature is obtained. Analysis of the phase diagram and thermochemical information on the ternary Na-O-H system has been carried out. Kinetics of the reaction of water/steam and gaseous hydrogen with liquid sodium are also presented and the need to resolve the disagreement among the literature data is brought out.

  10. A computational study of Na behavior on graphene

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn; Kulish, Vadym V.; Tan, Teck L.; Manzhos, Sergei; Persson, Clas

    2015-04-01

    We present the first ab initio and molecular dynamics study of Na adsorption and diffusion on ideal graphene that considers Na-Na interaction and dispersion forces. From density functional theory (DFT) calculations using the generalized gradient approximation (GGA), the binding energy (vs. the vacuum reference state) of -0.75 eV is higher than the cohesive energy of Na metal (ENa metal cohesive energy (EcohDFT - D = - 1.21 eV) when dispersion correction is included (DFT-D), with Eb = -1.14 eV. Both DFT and DFT-D predict that the increase of Na concentration on graphene results in formation of Na complexes. This is evidenced by smaller Bader charge on Na atoms of Na dimer, 0.55e (0.48e for DFT) compared to 0.86e (for both DFT and DFT-D) for the single atom adsorption as well as by the formation of a Nasbnd Na bond identified by analysis of the electron density. These results suggest that ideal graphene is not a promising anode material for Na-ion batteries. Analysis of diffusion pathways for a Na dimer shows that the dimer remains stable during the diffusion, and computed migration barriers are significantly lower for the dimer than that for the single atom diffusion. This indicates that Na-Na interaction should be taken into account during the analysis of Na transport on graphene. Finally, we show that the typical defects (vacancy and divacancy) induce significant strengthening of the Nasbnd C interaction. In particular, the largest change to the interaction is computed for vacancy-defected graphene, where the found lowest binding energy (vs. the metal reference state) is about 1.15 eV (1.21 eV for DFT) lower than that for ideal graphene.

  11. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi.

    PubMed

    Dracatos, Peter M; Payne, Jennifer; Di Pietro, Antonio; Anderson, Marilyn A; Plummer, Kim M

    2016-01-01

    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2. PMID:27598152

  12. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Santoro, G. J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  13. 23Na (α,p )26Mg Reaction Rate at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Munch, M.; Fynbo, H. O. U.; Kirsebom, O. S.; Laursen, K. L.; Diget, C. Aa.; Hubbard, N. J.

    2015-07-01

    The production of 26Al in massive stars is sensitive to the 23Na (α,p )26Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of ˜40 . We present here differential cross sections for the 23Na (α,p )26Mg reaction measured in the energy range Ec .m .=1.7 - 2.5 MeV . Concurrent measurements of Rutherford scattering provide absolute normalizations that are independent of variations in target properties. Angular distributions are measured for both p0 and p1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates by a factor of 40, impacting the 26Al yield from massive stars by more than a factor of 3.

  14. Frozen State and Spin Liquid Physics in Na4 Ir3 O8 : An NMR Study

    NASA Astrophysics Data System (ADS)

    Shockley, A. C.; Bert, F.; Orain, J.-C.; Okamoto, Y.; Mendels, P.

    2015-07-01

    Na4Ir3 O8 is a unique case of a hyperkagome 3D corner sharing triangular lattice that can be decorated with quantum spins. It has spurred a lot of theoretical interest as a spin liquid candidate. We present a comprehensive set of NMR data taken on both the 23Na and 17O sites. We show that disordered magnetic freezing of all Ir sites sets in below Tf˜7 K , well below J =300 K , with a drastic slowing down of fluctuations to a static state revealed by our T1 measurements. Above typically 2 Tf, physical properties are relevant to the spin liquid state induced by this exotic geometry. While the shift data show that the susceptibility levels off below 80 K, 1 /T1 has little variation from 300 K to 2 Tf. We discuss the implication of our results in the context of published experimental and theoretical work.

  15. FXYD5: Na+/K+-ATPase Regulator in Health and Disease

    PubMed Central

    Lubarski Gotliv, Irina

    2016-01-01

    FXYD5 (Dysadherin, RIC) is a single span type I membrane protein that plays multiple roles in regulation of cellular functions. It is expressed in a variety of epithelial tissues and acts as an auxiliary subunit of the Na+/K+-ATPase. During the past decade, a correlation between enhanced expression of FXYD5 and tumor progression has been established for various tumor types. In this review, current knowledge on FXYD5 is discussed, including experimental data on the functional effects of FXYD5 on the Na+/K+-ATPase. FXYD5 modulates cellular junctions, influences chemokine production, and affects cell adhesion. The accumulated data may provide a basis for understanding the molecular mechanisms underlying FXYD5 mediated phenotypes. PMID:27066483

  16. Electronic binding energy and thermal relaxation of Li and LiNa atomic alloying clusters.

    PubMed

    Bo, Maolin; Guo, Yongling; Wang, Yan; Liu, Yonghui; Peng, Cheng; Sun, Chang Q; Huang, Yongli

    2016-05-11

    We examined the effects of atomic hetero- and under-coordination on the relaxation of the interatomic bonding and electronic binding energy of Li and LiNa cluster alloying using a combination of the bond-order-length-strength correlation and density functional theory calculations. We found that bond nature alteration by heterocoordination, bond relaxation by thermal excitation and atomic coordination contribute intrinsically to the core-level energy shifts with resolution of the binding energy at the atomic sites of terrace edges, facets, and bulk of the LiNa alloy nanoclusters. Our strategies may simplify the complexity of core electron binding energies in analyzing the experimental data of the irregularly coordinating atoms. PMID:27117008

  17. Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol

    PubMed Central

    2012-01-01

    Adsorption of methylene blue (MB) on agar was investigated as a function of temperature (308-328 K), different concentrations of NaCl and HCl and various weight percentages of binary mixtures of ethanol with water. It was observed that the maximum experimental adsorption capacity, qm, exp, in water is up to 50 mg g-1 and decreases with increase in weight percentage of ethanol and NaCl and HCl concentration compared to that of water. Analysis of data using ARIAN model showed that MB adsorbs as monomer and dimer on the surface of agar. Binding constants of MB to agar were calculated using the Temkin isotherm. The process is exothermic in water and other solutions. The mean adsorption energy (E) value indicated binding of MB to agar is chemical adsorption. Kinetics of this interaction obeys from the pseudo-second-order model and diffusion of the MB molecules into the agar is the main rate-controlling step. PMID:22339759

  18. NA1, NA1, NA1-trimethylinsulin--an insulin analogue with a quaternary amino group at the A1 terminus.

    PubMed

    Drewes, S E; Magojo, H E; Gliemann, J

    1981-06-01

    By utilizing the differing reactivity of the amino groups in aqueous organic solvents, des-GlyA1-NB1,N epsilon B29-(Msc)2-insulin was prepared. Its reaction with the phenyl ester of N,N,N-trimethylglycine in the presence of N-hydroxysuccinimide afforded the crystalline NA1,NA1,NA1-trimethylinsulin analogue. In the fat cell assay this analogue has an activity of 49% and, in the mouse convulsion assay, it is 70%. PMID:7024089

  19. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times. PMID:24096887

  20. Effect of Na+ on surface fractal dimension of compacted bentonite

    NASA Astrophysics Data System (ADS)

    Xiang, G. S.; Xu, Y. F.; Jiang, H.

    2015-05-01

    Compacted Tsukinuno bentonite was immersed into NaCl solutions of different concentrations in oedometers, and the surface fractal dimension of bentonite-saline association was measured by nitrogen adsorption isotherms. The application of the Frenkel-Halsey-Hill equation and the Neimark thermodynamic method to nitrogen adsorption isotherms indicated that the surface roughness was greater for the bentonite-saline association. The surface fractal dimension of bentonite increased in the NaCl solution with low Na+ concentration, but decreased at high Na+ concentration. This process was accompanied by the same tendency in specific surface area and microporosity with the presence of Na+ coating in the clay particles.

  1. Na+ channel function, regulation, structure, trafficking and sequestration

    PubMed Central

    Chen-Izu, Ye; Shaw, Robin M; Pitt, Geoffrey S; Yarov-Yarovoy, Vladimir; Sack, Jon T; Abriel, Hugues; Aldrich, Richard W; Belardinelli, Luiz; Cannell, Mark B; Catterall, William A; Chazin, Walter J; Chiamvimonvat, Nipavan; Deschenes, Isabelle; Grandi, Eleonora; Hund, Thomas J; Izu, Leighton T; Maier, Lars S; Maltsev, Victor A; Marionneau, Celine; Mohler, Peter J; Rajamani, Sridharan; Rasmusson, Randall L; Sobie, Eric A; Clancy, Colleen E; Bers, Donald M

    2015-01-01

    This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na+ channel function and regulation, Na+ channel structure and function, and Na+ channel trafficking, sequestration and complexing. PMID:25772290

  2. The unoccupied electronic structure of Na/Cu(110)

    NASA Astrophysics Data System (ADS)

    Tang, D.; Su, C.; Heskett, D.

    1993-10-01

    Using the technique of inverse photoemission spectroscopy (IPES), we have measured the unoccupied electronic states of sodium on Cu(110) as a function of Na dose on the Cu(110) surface at room temperature. An Na-induced state appears for Na coverages above 0.08 ML for normal incidence, which we assign as the Na unoccupied 3p level. A second peak appears for coverages greater than 1 ML near the overlineY point. The adsorption of Na also causes shifts and attenuation of Cu(110) surface states. We compare our results with studies of related systems.

  3. Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5-2.79 GPa and 250-650 °C

    NASA Astrophysics Data System (ADS)

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; Chow, Paul; Xiao, Yuming; Hanchar, John M.; Tschauner, Oliver; Shen, Guoyin

    2016-03-01

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nb and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 °C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at ∼300 °C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 °C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log DZr ∼10-25 m2/s at 650 °C and ∼10-30 m2/s at 250 °C) with diffusion length-scales of <0.2 μm in rutile for our run durations (<10 h). Hence, the Zr/Ti ratio of the starting rutile, which was quantified, does not change

  4. Pr3+/Yb3+ co-doped beta-phase NaYF4 microprisms: controlled synthesis and upconversion luminescence.

    PubMed

    Gao, Wei; Zheng, Hairong; Gao, Dangli; He, Enjie; Li, Jiao; Tu, Yinxun

    2014-06-01

    Pr3+/Yb3+ co-doped hexagonal NaYF4(beta-NaYF4) microprisms were synthesized by the hydrothermal method, and ethylenediaminetetraacetic acid (EDTA) was introduced to control the size of the microcrystal samples. Bright upconverted fluorescence emission was observed when the samples were excited with an infrared (IR) laser at 976.4 nm. The emission was found to originate from the transitions of 3P0-3F2, 3P0-3H6 or 1G4-3H4, 3P1-3H6, 3P0-3H5, 3P1-3H5, and 3P0-3H4 of Pr3+ ions. Possible mechanisms for upconversion fluorescence and concentration dependence as well as the crystal structure and its formation of NaYF4:Yb3+/Pr3+ microprisms were explored and discussed based on the experimental observations. PMID:24738388

  5. Single crystal growth and characterization of Na3Bi and Bi2Te2Se topological materials

    NASA Astrophysics Data System (ADS)

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J.

    2015-03-01

    In recent years, the discoveries of topological insulators (TI) and three-dimensional (3D) Dirac semimetals (TDS) have been of significant interest in condensed matter science. To study these materials experimentally, it is of great importance to grow them in the form of high quality single crystals. Na3Bi is recently discovered TDS and Bi2Te2Se3 (BTS) is one of the interesting TI materials. Na3Bi is extremely air sensitive and shows nontrivial crystallization behavior. BTS crystals usually grow with various point defects and typically exhibit metallic behavior. Here we will report the crystal growth of high quality Na3Bi and insulating BTS single crystals. The characterization of their electronic properties by our collaborators in physics at Princeton and Brookhaven National Laboratory will be briefly described. The growth of single crystals of TIs and TDS is supported at Princeton by grants from the ARO MURI and DARPA.

  6. The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations

    PubMed Central

    Morth, J. Preben; Poulsen, Hanne; Toustrup-Jensen, Mads S.; Schack, Vivien Rodacker; Egebjerg, Jan; Andersen, Jens Peter; Vilsen, Bente; Nissen, Poul

    2008-01-01

    The Na+,K+-ATPase transforms the energy of ATP to the maintenance of steep electrochemical gradients for sodium and potassium across the plasma membrane. This activity is tissue specific, in particular due to variations in the expressions of the alpha subunit isoforms one through four. Several mutations in alpha2 and 3 have been identified that link the specific function of the Na+,K+-ATPase to the pathophysiology of neurological diseases such as rapid-onset dystonia parkinsonism and familial hemiplegic migraine type 2. We show a mapping of the isoform differences and the disease-related mutations on the recently determined crystal structure of the pig renal Na+,K+-ATPase and a structural comparison to Ca2+-ATPase. Furthermore, we present new experimental data that address the role of a stretch of three conserved arginines near the C-terminus of the alpha subunit (Arg1003–Arg1005). PMID:18957371

  7. Big Sisters: An Experimental Evaluation.

    ERIC Educational Resources Information Center

    Seidl, Fredrick W.

    1982-01-01

    Assessed the effects of participation in a Big Sisters' Program. The first part consisted of interviews (N=20) with pairs of Big Sisters-Little Sisters. The second part evaluated program effectiveness experimentally. Findings indicated positive relationships between pairs, and improved behavior of experimental girls versus controls. (RC)

  8. Experimental Mathematics and Computational Statistics

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  9. Assessing Pupils' Skills in Experimentation

    ERIC Educational Resources Information Center

    Hammann, Marcus; Phan, Thi Thanh Hoi; Ehmer, Maike; Grimm, Tobias

    2008-01-01

    This study is concerned with different forms of assessment of pupils' skills in experimentation. The findings of three studies are reported. Study 1 investigates whether it is possible to develop reliable multiple-choice tests for the skills of forming hypotheses, designing experiments and analysing experimental data. Study 2 compares scores from…

  10. Majorana Thermosyphon Prototype Experimental Setup

    SciTech Connect

    Reid, Douglas J.; Guzman, Anthony D.; Munley, John T.

    2011-08-01

    This report presents the experimental setup of Pacific Northwest National Laboratory’s MAJORANA DEMONSTRATOR thermosyphon prototype cooling system. A nitrogen thermosyphon prototype of such a system has been built and tested at PNNL. This document presents the experimental setup of the prototype that successfully demonstrated the heat transfer performance of the system.

  11. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  12. Experimental Laboratory Research in Counseling.

    ERIC Educational Resources Information Center

    Strong, Stanley R.

    In spite of the potential which experimental research methods affords counselors in the development of effective counseling services, such methods are seldom used. After briefly reviewing the arguments against experimental research and their underlying beliefs, the author sets out: (1) to explore the implications of using the laboratory to conduct…

  13. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    SciTech Connect

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-15

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO{sub 2} and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 deg. C for 2-6 h by changing the SiO{sub 2}/Al{sub 2}O{sub 3}, H{sub 2}O/Na{sub 2}O and Na{sub 2}O/SiO{sub 2} molar ratios of precursors in the two-step process. The surface area and NH{sub 4}{sup +}-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m{sup 2}/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m{sup 2}/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of {approx}3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously. - Graphical Abstract: Novel Na-X zeolite/porous carbon composite.

  14. Experimental study of chlorine behavior in hydrous silicic melts

    SciTech Connect

    Metrich, N. ); Rutherford, M.J. )

    1992-02-01

    Chlorine solubility in silicate melts has been investigated at 830-850 {plus minus} 5C and at pressures ranging from 50 to 200 MPa, using both natural (pantellerite, rhyolite, phonolite) and synthetic (SiO{sub 2}-Al{sub 2}O{sub 3}-K{sub 2}O-Na{sub 2}O) compositions and a stated H{sub 2}O-NaCl-KCl fluid phase near 4 molal. At 100 MPa, Cl contents in pantelleritic melts reach a solubility plateau at initial aqueous phase molality near 2. This plateau coincides with a large immiscibility gap between aqueous and chloride-rich fluids. With the coexisting Cl-saturated aqueous phase, Cl ranges from 2,720 {plus minus} 120 ppm in rhyolite to 8,960 {plus minus} 85 ppm in pantellerite and reaches 6,270 {plus minus} 170 ppm in phonolite, at 100 MPa. Between 50 and 200 MPa, the Cl content in pantelleritic melt decreases from 9,640 {plus minus} 200 ppm to 5,040 {plus minus} 150 ppm. Although Cl solubility increases with increasing FeO{sup *} in high SiO{sub 2} melts, it is mainly controlled by the Al/Si and (Na + K)/Al molar ratios of the melt with a minimum at Na + K/Al = 1 in a series of synthetic rhyolitic to pantelleritic melts. The experimental results suggest that chlorine occurs as alkali-chloride complexes in high SiO{sub 2} melts. They also indicate that Cl is concentrated in the aqueous fluids in equilibrium with SiO{sub 2}-rich melts, the exact value of D depending on melt composition and melt chlorine concentration. Volcanic degassing will create chlorine-rich hydrothermal fluids and decrease chlorine melt content.

  15. Singular manifestation of square-planar coordination of a iridate Na4IrO4

    NASA Astrophysics Data System (ADS)

    Kanungo, Sudipta; Yan, Binghai; Merz, Patrick; Felser, Claudia; Jansen, Martin

    Local environments and valence electron counts primarily determine the electronic states and physical properties of transition metal complexes. For example, square-planar surroundings found in transition oxometalates such as Curprates, Nickaltes are usually associated with the d8 or d9 electron configuration. In this work, we address an experimentally observed exotic square-planar mono-oxoanion [IrO4]4- in Na4IrO4 with Ir(IV) in d5 (S=3/2 state) configuration, using ab-initio calculations. On contrary, in its 3d counterpart, Na4CoO4, Co(IV) is in tetrahedral coordination with S=5/2 high spin state. Our ab-initio calculations reveal that the on-site Coulomb interaction U is the essential factor for determining the stability of the local coordination as well as spin state. We find that due to weak Coulomb repulsion of Ir-5d electrons, Na4IrO4 form in a square-planar coordination whereas for Na4CoO4, Co(IV) is in tetrahedral coordination, due to strong electron correlation at 3d Co site. Following the trend from 5d to 3d, we predict that the intermediate 4d material Na4RhO4, if synthesized, may favor tetrahedral coordination but with an S=1/2 low spin state. Sudipta Kanungo, Binghai Yan, Patrick Merz, Claudia Felser and Martin Jansen. Angew. Chem. Int. Ed. 54, 5417 (2015).

  16. Controls on 22Na+ Influx in Corn Roots 1

    PubMed Central

    Jacoby, Benjamin; Hanson, John B.

    1985-01-01

    We have investigated the effects of hyperpolarization and depolarization, and the presence of K+ and/or Ca2+, on 22Na+ influx into corn (Zea mays L.) root segments. In freshly excised root tissue which is injured, Na+ influx is unaffected by hyperpolarization with fusicoccin, or depolarization with uncoupler (protonophore), or by addition of K+. However, added Ca2+ suppresses Na+ influx by 60%. In washed tissue which has recovered, Na+ influx is doubled over that of freshly excised tissue, and the influx is increased by fusicoccin and suppressed by uncoupler. This energy-linked component of Na+ influx is completely eliminated by low concentrations of K+, leaving the same level and kind of Na+ influx seen in freshly excised roots. The K+-sensitive energy linkage appears to be by the carrier for active K+ influx. Calcium is equally inhibitory to Na+ influx in washed as in fresh tissue. Other divalent cations are only slightly less effective. Net Na+ uptake was about 25% of 22Na+ influx, but proportionately the response to K+ and Ca2+ was about the same. The constancy of K+-insensitive Na+ influx under conditions known to hyperpolarize and depolarize suggests that if Na+ transport is by means of a voltage-sensitive channel, the rise or fall of channel resistance must be proportional to the rise or fall in potential difference. The alternative is a passive electroneutral exchange of 22Na+ for endogenous Na+. The data suggest that an inwardly directed Na+ current is largely offset by an efflux current, giving both a small net uptake and isotopic exchange. PMID:16664165

  17. Deformation and Transformation Textures in the NaMgF3 Perovskite→Post-Perovskite System

    NASA Astrophysics Data System (ADS)

    Miyagi, L. M.; Jugle, M.

    2014-12-01

    MgSiO3 post-perovskite (pPv) is believed to be a major mineral component in the lowermost mantle. However MgSiO3 pPv is only stable above 125 GPa making deformation experiments on this phase particularly challenging. Thus it is of interest to determine suitable analogs for MgSiO3 pPv. NaMgF3 is isostructural with MgSiO3 perovskite (Pv) at ambient conditions and transforms to the pPv structure at 30 GPa, making this system a potentially useful analog. Here we report on deformation and texture development in the NaMgF3Pv-pPv system. During room temperature compression in the diamond anvil cell, NaMgF3 Pv rapidly develops a 100 texture. Simulations using the visco plastic self-consistent code (VPSC) indicate that a 100 texture in Pv is due to (100) slip or twinning on {110}<1-10>. After inducing the transformation to pPv by laser heating at 30 GPa, NaMgF3 pPv exhibits a texture maximum near {110} indicating that {100}Pv → {110}pPv. This is consistent with transformation mechanisms proposed by theoretical work (Tsuchiya et al 2004; Oganov et al 2005) and with experimental work on MgGeO3 (Miyagi et al 2011) and NaNiF3(Dobson et al 2013). Upon further compression to 66 GPa the 110 textures disperses and develops a maximum toward 001 with a minimum near 100. VPSC modeling was performed using the 110 transformation texture as a starting texture for the simulations. (010)<101> slip generates a strong maximum at 010 and a minimum at 001. Slip on (001)<100> results in a maxima near 110 with a shoulder close to 001, similar to the experimental deformation texture. Thus it is most likely that at room temperature, NaMgF3 pPv slips predominantly on the (001) plane, consistent with MgSiO3 pPv (Miyagi et al 2010) and MgGeO3 (Miyagi et al 2011).Dobson, D. P., et al., Nature Geoscience, 6(7), 575-578 (2013) Miyagi, L., et al., Science, 329(5999), 1639 -1641 (2010). Miyagi, L., et al., Physics and Chemistry of Minerals, 38(9), 665-678 (2011) Oganov, A. R., et al., Nature, 438

  18. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system.

    PubMed

    Hao, Jie; Lu, Jiaojiao; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2016-08-01

    Oxidized starch, one of the most important starch derivatives, has many different properties and applications. Currently, there are two ways to produce oxidized starch, through specific and nonspecific oxidation. Specific oxidation using the stable nitroxyl radical, 2,2,6,6-tetramethyl preparidinloxy (TEMPO), with NaBr and NaClO can produce oxidized starches with different properties under good quality control. In the current study, we examine the products of specifically oxidized starch. As the amount of oxidant and the temperature, two critical factors impacting the oxidation of starch were thoroughly investigated. Analysis of the molecular weight (MW), degree of oxidization (DO) and the detailed structures of corresponding products was accomplished using gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and quadrapole time-of-flight mass spectrometry (Q/TOF-MS). According to the analytical results, the oxidation patterns of starch treated with specific oxidant TEMPO-NaBr-NaClO were established. When high amounts of oxidant was applied, more glucose residues within starch were oxidized to glucuronic acids (higher DO) and substantial degradation to starch oligosaccharides was observed. By selecting a reaction temperature of 25°C a high DO could be obtained for a given amount of oxidant. The reducing end sugar residue within oxidized starch was itself oxidized and ring opened in all TEMPO-NaBr-NaClO reactions. Furthermore, extra oxidant generated additional novel structures in the reducing end residues of some products, particularly in low temperature reactions. PMID:27112871

  19. Testing Monte Carlo Simulations for Neutron Scattering in MoNA

    NASA Astrophysics Data System (ADS)

    Hamann, A.; Garrett, S.; Seagren, T.; Taylor, N. E.; Rogers, W. F.; MoNA Collaboration

    2015-10-01

    Monte Carlo simulations provide an important tool for nuclear physics research, both in preparing for experiments, and in interpreting experimental data. The Modular Neutron Array (MoNA) and the Large area multi-Institutional Scintillator Array (LISA) are used in conjunction with the Sweeper Magnet and charged particle detector chamber at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University to study the properties of exotic, neutron-rich nuclei. We use simulations to model our BC408 scintillator detectors and extract physics results from experimental data. We have developed specific simulations in preparation for an experiment we will conduct at the Los Alamos Neutron Science Center (LANSCE), where we will direct a well-defined neutron beam onto a cluster of 16 MoNA detector bars and observe the scattering patterns of single neutrons. Simulations enable us to study the predicted light output generated by individual neutron scattering channels from Carbon and Hydrogen. The data we will generate in the LANSCE experiment will provide a large experimental database with which to test the reliability of our simulations. This is important since our understanding of nuclei far from stability is becoming increasingly reliant on simulations. this work supported by NSF Grants PHY-1101745 and PHY-1506402.

  20. AMP-activated protein kinase (AMPK)–dependent and –independent pathways regulate hypoxic inhibition of transepithelial Na+ transport across human airway epithelial cells

    PubMed Central

    Tan, CD; Smolenski, RT; Harhun, MI; Patel, HK; Ahmed, SG; Wanisch, K; Yáñez-Muñoz, RJ; Baines, DL

    2012-01-01

    BACKGROUND AND PURPOSE Pulmonary transepithelial Na+ transport is reduced by hypoxia, but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMPK and ROS in the hypoxic regulation of apical amiloride-sensitive Na+ channels and basolateral Na+K+ ATPase activity. EXPERIMENTAL APPROACH H441 human airway epithelial cells were used to examine the effects of hypoxia on Na+ transport, AMP : ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS. KEY RESULTS AMPK was activated by exposure to 3% or 0.2% O2 for 60 min in cells grown in submerged culture or when fluid (0.1 mL·cm−2) was added to the apical surface of cells grown at the air–liquid interface. Only 0.2% O2 activated AMPK in cells grown at the air–liquid interface. AMPK activation was associated with elevation of cellular AMP : ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive Isc (Iouabain) and apical amiloride-sensitive Na+ conductance (GNa+). Modification of AMPK activity prevented the effect of hypoxia on Iouabain (Na+K+ ATPase) but not apical GNa+. Scavenging of superoxide and inhibition of NADPH oxidase prevented the effect of hypoxia on apical GNa+ (epithelial Na+ channels). CONCLUSIONS AND IMPLICATIONS Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na+ channels and basolateral Na+K+ ATPase activity to decrease transepithelial Na+ transport. Luminal fluid potentiated the effect of hypoxia and activated AMPK, which could have important consequences in lung disease conditions. PMID:22509822

  1. Photoionization of the alkali dimer cations Li+2, Na+2 and LiNa+

    NASA Astrophysics Data System (ADS)

    Dumitriu, Irina; Vanne, Yulian V.; Awasthi, Manohar; Saenz, Alejandro

    2007-05-01

    Photoionization cross sections for the three alkali dimer cations (Li+2, Na+2 and LiNa+) were calculated at the equilibrium internuclear distance for parallel, perpendicular and isotropic orientations of the molecular axis with respect to the field. A model-potential method was used for the description of the cores. The influence of the model-potential parameters on the photoionization spectra was investigated. Two different methods, a time-independent and a time-dependent one, were implemented and used for computing the cross sections.

  2. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase.

    PubMed

    Reinhard, Linda; Tidow, Henning; Clausen, Michael J; Nissen, Poul

    2013-01-01

    The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme. PMID:22695678

  3. Characterization of sodium transport in Acholeplasma laidlawii B cells and in lipid vesicles containing purified A. laidlawii (Na+-Mg2+)-ATPase by using nuclear magnetic resonance spectroscopy and 22Na tracer techniques.

    PubMed Central

    Mahajan, S; Lewis, R N; George, R; Sykes, B D; McElhaney, R N

    1988-01-01

    The active transport of sodium ions in live Acholeplasma laidlawii B cells and in lipid vesicles containing the (Na+-Mg2+)-ATPase from the plasma membrane of this microorganism was studied by 23Na nuclear magnetic resonance spectroscopic and 22Na tracer techniques, respectively. In live A. laidlawii B cells, the transport of sodium was an active process in which metabolic energy was harnessed for the extrusion of sodium ions against a concentration gradient. The process was inhibited by low temperatures and by the formation of gel state lipid in the plasma membrane of this organism. In reconstituted proteoliposomes containing the purified (Na+-Mg2+)-ATPase, the hydrolysis of ATP was accompanied by the transport of sodium ions into the lipid vesicles, and the transport process was impaired by reagents known to inhibit ATPase activity. At the normal growth temperature (37 degrees C), this transport process required a maximum of 1 mol of ATP per mol of sodium ion transported. Together, these results provide direct experimental evidence that the (Na+-Mg2+)-ATPase of the Acholeplasma laidlawii B membrane is the cation pump which maintains the low levels of intracellular sodium characteristic of this microorganism. PMID:2973459

  4. Direct Reactions with MoNA-LISA

    NASA Astrophysics Data System (ADS)

    Kuchera, Anthony

    2016-03-01

    Nuclear reactions can be used to probe the structure of nuclei. Direct reactions, which take place on short time scales, are well-suited for experiments with beams of short-lived nuclei. One such reaction is nucleon knockout where a proton or neutron is removed from the incoming beam from the interaction with a target. Single nucleon knockout reactions have been used to study the single-particle nature of nuclear wave functions. A recent experiment at the National Superconducting Cyclotron Laboratory was performed to measure cross sections from single nucleon knockout reactions for several p-shell nuclei. Detection of the residual nucleus in coincidence with any gamma rays emitted from the target allowed cross sections to ground and excited states to be measured. Together with input from reaction theory, ab initio structure theories can be tested. Simultaneously the accuracy of knockout reaction models can be validated by detecting the knocked out neutron with the Modular Neutron Array and Large multi-Institutional Scintillator Array (MoNA-LISA). Preliminary results from this experiment will be shown. Knockout reactions can also be used to populate nuclei which are neutron unbound, thus emit neutrons nearly instantaneously. The structure of these nuclei, therefore, cannot be probed with gamma ray spectroscopy. However, with large neutron detectors like MoNA-LISA the properties of these short-lived nuclei are able to be measured. Recent results using MoNA-LISA to study the structure of neutron-rich nuclei will be presented. The author would like to acknowledge support from the NNSA and NSF.

  5. Na+ Transport by the A1AO-ATP Synthase Purified from Thermococcus onnurineus and Reconstituted into Liposomes*

    PubMed Central

    Mayer, Florian; Lim, Jae Kyu; Langer, Julian D.; Kang, Sung Gyun; Müller, Volker

    2015-01-01

    The ATP synthase of many archaea has the conserved sodium ion binding motif in its rotor subunit, implying that these A1AO-ATP synthases use Na+ as coupling ion. However, this has never been experimentally verified with a purified system. To experimentally address the nature of the coupling ion, we have purified the A1AO-ATP synthase from T. onnurineus. It contains nine subunits that are functionally coupled. The enzyme hydrolyzed ATP, CTP, GTP, UTP, and ITP with nearly identical activities of around 40 units/mg of protein and was active over a wide pH range with maximal activity at pH 7. Noteworthy was the temperature profile. ATP hydrolysis was maximal at 80 °C and still retained an activity of 2.5 units/mg of protein at 45 °C. The high activity of the enzyme at 45 °C opened, for the first time, a way to directly measure ion transport in an A1AO-ATP synthase. Therefore, the enzyme was reconstituted into liposomes generated from Escherichia coli lipids. These proteoliposomes were still active at 45 °C and coupled ATP hydrolysis to primary and electrogenic Na+ transport. This is the first proof of Na+ transport by an A1AO-ATP synthase and these findings are discussed in light of the distribution of the sodium ion binding motif in archaea and the role of Na+ in the bioenergetics of archaea. PMID:25593316

  6. The NA62 spectrometer acquisition system

    NASA Astrophysics Data System (ADS)

    Azorskiy, N.; Ceccucci, A.; Bendotti, J.; Danielsson, H.; Degrange, J.; Dixon, N.; Elsha, V.; Enik, T.; Glonti, L.; Gusakov, Y.; Kakurin, S.; Kekelidze, V.; Kislov, E.; Kolesnikov, A.; Koval, M.; Lichard, P.; Madigozhin, D.; Morant, J.; Movchan, S.; Perez Gomez, F.; Palladino, V.; Polenkevich, I.; Potrebenikov, Y.; Ruggiero, G.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, A.

    2016-02-01

    The NA62 low mass spectrometer consists of 7000 straw tubes operating in vacuum. The front-end electronics is directly mounted on the detector and connected by a flexible PCB. The front-end board provides the amplification, shaping, discrimination and time measurements of the analogue signals from 16 channels. After digitisation the data is sent to a VME 9U read-out board. The data, once matched with the trigger, is sent to the next step and used by the trigger level 1 algorithm. The front-end and read-out systems of the detector will be presented along with the first results of the detector performances.

  7. Down-regulated Na+/K+-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing

    2015-01-01

    This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460

  8. Molecular beam study of the a 3Σ+ state of NaK up to the dissociation limit

    NASA Astrophysics Data System (ADS)

    Temelkov, I.; Knöckel, H.; Pashov, A.; Tiemann, E.

    2015-03-01

    We provide spectroscopic data for the a 3Σ+ state of the 23Na39K molecule. The experiment is done in an ultrasonic beam apparatus, starting from the ground state X 1Σ+and driving the population to the a 3Σ+ state, using a Λ scheme with fixed pump and scanning dump laser. The signals are observed as dips of the total fluorescence. The intermediate level is chosen to be strongly perturbed by the B 1Π/c 3Σ+ states mixing to overcome the singlet-triplet transfer prohibition. We observed highly resolved hyperfine spectra of various rovibrational levels of the a 3Σ+state from va=2 up to the highest vibrational levels for rotational quantum numbers Na=4 ,6 ,8 . By the typical experimental linewidth of 17 MHz, the vibrational dependence of the hyperfine splitting is clearly revealed for NaK. The absolute frequency measurements of the vibrational levels are used for improvement of the a 3Σ+ potential curve and of the derived scattering length of all natural isotope combinations. Applying the Λ scheme in the reverse direction can provide a pathway for efficient transfer of ultracold 23Na39K molecules from the Na(3 s )+K(4 s ) asymptote to the lowest levels of the ground state. We show spectra that couple the absolute ground state vX=0 ,J =0 with an appropriate intermediate state for direct realization of the reverse path. The refined theoretical model of the coupled excited states of the Na(3 s )+K(4 p ) asymptote allows predictions of efficient paths for 23Na40K ; one example is calculated.

  9. A c Subunit with Four Transmembrane Helices and One Ion (Na+)-binding Site in an Archaeal ATP Synthase

    PubMed Central

    Mayer, Florian; Leone, Vanessa; Langer, Julian D.; Faraldo-Gómez, José D.; Müller, Volker

    2012-01-01

    The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na+-DCCD competition experiments revealed only one binding site for DCCD and Na+, indicating that the mature c subunit of this A1AO ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na+-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na+-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na+-specific under in vivo conditions, comparable with the Na+-dependent V1VO ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na+-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A1AO ATP synthases. PMID:23007388

  10. Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated Na+ channels.

    PubMed

    Valente, Pierluigi; Lignani, Gabriele; Medrihan, Lucian; Bosco, Federica; Contestabile, Andrea; Lippiello, Pellegrino; Ferrea, Enrico; Schachner, Melitta; Benfenati, Fabio; Giovedì, Silvia; Baldelli, Pietro

    2016-05-01

    L1 (also known as L1CAM) is a trans-membrane glycoprotein mediating neuron-neuron adhesion through homophilic and heterophilic interactions. Although experimental evidence has implicated L1 in axonal outgrowth, fasciculation and pathfinding, its contribution to voltage-gated Na(+) channel function and membrane excitability has remained unknown. Here, we show that firing rate, single cell spiking frequency and Na(+) current density are all reduced in hippocampal excitatory neurons from L1-deficient mice both in culture and in slices owing to an overall reduced membrane expression of Na(+) channels. Remarkably, normal firing activity was restored when L1 was reintroduced into L1-deficient excitatory neurons, indicating that abnormal firing patterns are not related to developmental abnormalities, but are a direct consequence of L1 deletion. Moreover, L1 deficiency leads to impairment of action potential initiation, most likely due to the loss of the interaction of L1 with ankyrin G that produces the delocalization of Na(+) channels at the axonal initial segment. We conclude that L1 contributes to functional expression and localization of Na(+) channels to the neuronal plasma membrane, ensuring correct initiation of action potential and normal firing activity. PMID:26985064

  11. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    SciTech Connect

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.

  12. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    PubMed Central

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  13. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements.

    PubMed

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L(-1)·d(-1) of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%-62.2% higher than with NaOH-pretreatment alone and 22.2%-56.3% higher than with untreated corn stover. The best combination was obtained 5-9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  14. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    PubMed

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density. PMID:27502997

  15. Apical Na+ permeability of frog skin during serosal Cl- replacement.

    PubMed

    Leibowich, S; DeLong, J; Civan, M M

    1988-05-01

    Gluconate substitution for serosal Cl- reduces the transepithelial short-circuit current (Isc) and depolarizes short-circuited frog skins. These effects could result either from inhibition of basolateral K+ conductance, or from two actions to inhibit both apical Na+ permeability (PapNa) and basolateral pump activity. We have addressed this question by studying whole-and split-thickness frog skins. Intracellular Na+ concentration (CcNa) and PapNa have been monitored by measuring the current-voltage relationship for apical Na+ entry. This analysis was conducted by applying trains of voltage pulses, with pulse durations of 16 to 32 msec. Estimates of PapNa and CcNa were not detectably dependent on pulse duration over the range 16 to 80 msec. Serosal Cl- replacement uniformly depolarized short-circuited tissues. The depolarization was associated with inhibition of Isc across each split skin, but only occasionally across the whole-thickness preparations. This difference may reflect the better ionic exchange between the bulk medium and the extracellular fluid in contact with the basolateral membranes, following removal of the underlying dermis in the split-skin preparations. PapNa was either unchanged or increased, and CcNa either unchanged or reduced after the anionic replacement. These data are incompatible with the concept that serosal Cl- replacement inhibits PapNa and Na,K-pump activity. Gluconate substitution likely reduces cell volume, triggering inhibition of the basolateral K+ channels, consistent with the data and conclusions of S.A. Lewis, A.G. Butt, M.J. Bowler, J.P. Leader and A.D.C. Macknight (J. Membrane Biol. 83:119-137, 1985) for toad bladder. The resulting depolarization reduces the electrical force favoring apical Na+ entry. The volume-conductance coupling serves to conserve volume by reducing K+ solute loss. Its molecular basis remains to be identified. PMID:2458472

  16. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Shan, Shuangming; Wu, Xiaoping

    2016-02-01

    Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst-Einstein equation is compared with previous experimental data.

  17. Corrosion Behavior of Ti60 Alloy under a Solid NaCl Deposit in Wet Oxygen Flow at 600 °C

    PubMed Central

    Fan, Lei; Liu, Li; Yu, Zhongfen; Cao, Min; Li, Ying; Wang, Fuhui

    2016-01-01

    The corrosion behavior of Ti60 alloy covered with a solid NaCl deposit in wet oxygen flow at 600 °C has been studied further by SEM, EDX, XPS, XRD, TEM and EPMA analysis. The results show that solid NaCl and H2O react with Ti oxides, which destroyed the Ti oxide scale to yield the non-protective Na4Ti5O12 and other volatile species. The resulting corrosion product scale was multilayered and contained abundant rapid diffusion channels leading to the fast diffusion which improved the corrosion rate. A possible mechanism has been proposed for the NaCl-covered Ti60 alloy, based on the experimental results. PMID:27357732

  18. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory.

    SciTech Connect

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-02-03

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides.

  19. Research on micro-blog character analysis based on Naïve Bayes

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Liu, Tong; Wang, Yanbo J.

    2015-07-01

    With the development of Information Technology, people have entered the era of Big Data, and the demand for intelligent information is more intense. How to make computer provide more personalized and efficient service for all walks of life, is something worth exploring. In this paper, we aim to predict user's character by analyzing the textual content of his/her micro-blog, which is the foundation of Personalized Service. Our study describes the method of creating a prediction model about user's character by using Bayesian algorithms. Experimental results show that the Naïve Bayes approach is a valid and promoted analytic method in micro-blog character analysis.

  20. Nuclear magnetic resonance study of sulfate reorientations in LiNaSO4.

    PubMed

    Shakhovoy, R A; Rakhmatullin, A; Deschamps, M; Sarou-Kanian, V; Bessada, C

    2016-05-01

    A nuclear magnetic resonance study of the sulfate ion reorientations in β-LiNaSO4 has been carried out. The influence of the SO4 reorientational jumps on the quadrupolar interactions of (7)Li nuclei was investigated by a jump reorientational model, which has not previously been applied to sulfates. The activation energy required for the SO4 reorientations was found to be 0.19 eV. It was also revealed that the SO4 reorientational disorder should be associated with a small anomaly of a heat capacity at around 600 K, which was previously observed experimentally. PMID:27028697

  1. Nuclear magnetic resonance study of sulfate reorientations in LiNaSO4

    NASA Astrophysics Data System (ADS)

    Shakhovoy, R. A.; Rakhmatullin, A.; Deschamps, M.; Sarou-Kanian, V.; Bessada, C.

    2016-05-01

    A nuclear magnetic resonance study of the sulfate ion reorientations in β-LiNaSO4 has been carried out. The influence of the SO4 reorientational jumps on the quadrupolar interactions of 7Li nuclei was investigated by a jump reorientational model, which has not previously been applied to sulfates. The activation energy required for the SO4 reorientations was found to be 0.19 eV. It was also revealed that the SO4 reorientational disorder should be associated with a small anomaly of a heat capacity at around 600 K, which was previously observed experimentally.

  2. Thermonuclear reaction rate of 18Ne(α ,p ) 21Na from Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Mohr, P.; Longland, R.; Iliadis, C.

    2014-12-01

    The 18Ne(α ,p ) 21Na reaction impacts the break-out from the hot CNO cycles to the r p process in type-I x-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.

  3. Dissipative soliton operation of a diode pumped Yb:NaY(WO₄)₂ laser.

    PubMed

    Ma, Jie; Wang, Jun; Shen, Deyuan; Yu, Haohai; Zhang, Huaijin; Tang, Dingyuan

    2015-12-14

    We report on the dissipative soliton operation of a diode pumped Yb:NaY(WO₄)₂ (Yb:NYW) solid-state laser. The dissipative solitons and their features as the net cavity group velocity dispersion is changed from the normal to the anomalous dispersion regime are experimentally investigated. Taking advantage of the dissipative soliton shaping of the mode-locked pulses we have generated stable near transform-limited pulses as short as 54 fs. To our knowledge, this is so far the shortest pulse directly obtained from the mode-locked Yb:NYW oscillator. PMID:26699021

  4. Geometric Hall Effect of ^{23}Na Condensate in a Time- and Space-Dependent Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Yang, Ling-Ling; Chang, Gao-Zhan; Wu, Zhe

    2016-04-01

    We simulate numerically the dynamics of ^{23}Na condensate in a time- and space-dependent magnetic field with a variational approach. It is shown to be an efficient method to describe the complex dynamics of the system, which may excite the breather mode, the scissor mode, and the dipole mode simultaneously. Our results agree with the experimental observations of Choi et al. (Phys Rev Lett 111:245301, 2013). We reproduce qualitatively the geometric Hall effect and resonance behavior. We also find that the condensate shows a scissor-mode-like motion, which may play the shearing force to deform the condensate and consequently leads to the dynamical nucleation of quantized vortices.

  5. Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries.

    PubMed

    Eguía-Barrio, Aitor; Castillo-Martínez, Elizabeth; Zarrabeitia, Maider; Muñoz-Márquez, Miguel A; Casas-Cabanas, Montse; Rojo, Teófilo

    2015-03-14

    H2Ti3O7 was prepared as a single phase material by ionic exchange from Na2Ti3O7. The complete ionic exchange was confirmed by (1)H and (23)Na solid state Nuclear Magnetic Resonance (NMR). The atomic positions of H2Ti3O7 were obtained from the Rietveld refinement of powder X-ray diffraction (PXRD) and neutron diffraction experimental data, the latter collected at two different wavelengths to precisely determine the hydrogen atomic positions in the structure. All H(+) cations are hydrogen bonded to two adjacent [Ti3O7](2-) layers leading to the gliding of the layers and lattice centring with respect to the parent Na2Ti3O7. In contrast with a previous report where protons were located in two different positions of H2Ti3O7, 3 types of proton positions were found. Two of the three types of proton are bonded to the only oxygen linked to a single titanium atom forming an H-O-H angle close to that of the water molecule. H2Ti3O7 is able to electrochemically insert Na(+). The electrochemical insertion of sodium into H2Ti3O7 starts with a solid solution regime of the C-centred phase. Then, between 0.6 and 1.2 inserted Na(+) the reaction proceeds through a two phase reaction and a plateau at 1.3 V vs. Na(+)/Na is observed in the voltage-composition curve. The second phase resembles the primitive Na2Ti3O7 cell as detected by in situ PXRD. Upon oxidation, from 0.9 to 2.2 V, the PXRD pattern remains mostly unchanged probably due to H(+) removal instead of Na(+), with the capacity quickly fading upon cycling. Conditioning H2Ti3O7 for two cycles at 0.9-2.2 V before cycling in the 0.05-1.6 V range yields similar specific capacity and better retention than the original Na2Ti3O7 in the same voltage range. PMID:25683725

  6. Animal Experimentation in High Schools

    ERIC Educational Resources Information Center

    Ansevin, Kystyna D.

    1970-01-01

    Recommends that teacher and student be provided with the broadest possible spectrum of meaningful and feasible experiments in which the comfort of the experimental animal is protected by the design of the experiment. (BR)

  7. An Experimental Text-Commentary

    ERIC Educational Resources Information Center

    O'Brien, Joan

    1976-01-01

    An experimental text-commentary of selected passages from Sophocles'"Antigone" is described. The commentary is intended for students seeking more than a conventional translation who do not know enough Greek to use a standard commentary. (RM)

  8. The Beginnings of Experimental Petrology

    ERIC Educational Resources Information Center

    Eugster, Hans P.

    1971-01-01

    An account of Van't Hoff's change from theoretical chemistry to petrology provides data on the European intellectual climate of the early 1900's and shows how his work laid the foundation for experimental petrology of hard rocks." (AL)

  9. Decomposition Kinetics of Titania Slag in Eutectic NaOH-NaNO3 System

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Zhi; Qi, Tao; Wang, Lina; Xue, Tianyan

    2016-02-01

    The decomposition kinetics and mechanism of titania slag in eutectic NaOH-NaNO3 system were studied in the temperature range 623 K to 723 K (350 °C to 450 °C). Decomposed products were examined using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. It has been identified that the main product is Na2TiO3 and the decomposition kinetics of titania slag followed a shrinking unreacted core model. It is proposed that the chemical reaction process was the rate determining step with apparent activation energy of 62.4 kJ/mol. NaNO3 was mainly acted as oxygen carrier and mass transport agent to lower the viscosity of the system. The purity of TiO2 obtained in the product was up to 99.3 pct. A flow diagram to produce TiO2 and to recycle the media was proposed.

  10. The experimental status of |Vub|

    NASA Astrophysics Data System (ADS)

    Won, Eunil

    2009-12-01

    In this presentation, we review the current experimental status in the measurements of |Vcb| from semileptonic B??? decays to DX ℓv???. Over 10 years of impressive progress in both theoretical and experimental approaches, now less than 2% precision is achieved. In order to further improve these measurements to test standard model, one expects to have better understanding of theoretical uncertainties and to have much more data from future higher luminosity B-factories and LHCb experiment.

  11. First-Principles Study of the Li-Na-Ca-N-H System: Compound Structures and Hydrogen-Storage Properties

    NASA Astrophysics Data System (ADS)

    Teeratchanan, Pattanasak; Zhou, Fei; Michel, Kyle; Ozolins, Vidvuds

    2012-02-01

    Mixed-metal amides and imides are being widely investigated as potential hydrogen storage materials. Using a combination of first-principle DFT calculations, grand-canonical linear programming, and prototype electrostatic ground state (PEGS) approaches, we predict hydrogen storage reactions in the Li-Na-Ca-N-H system. The enthalpies, entropies, static, zero-point, and T0K vibrational energies of known compounds together with our predictions of some incomplete experimental crystal structures are presented.

  12. Changes in oxidant and antioxidant status of females with experimental gestosis under the effect of GABA derivatives.

    PubMed

    Tyurenkov, I N; Perfilova, V N; Popova, T A; Ivanova, L B; Prokofiev, I I; Gulyaeva, O V; Stepa, L I

    2013-07-01

    Experimental gestosis, modeled by replacement of drinking water with 1.8% NaCl solution, induced oxidative stress, which was seen from accumulation of MDA (secondary LPO product) and inhibition of SOD and glutathione peroxidase in the brain, liver, and uterus of animals with gestosis. Citrocard and saliphene (GABA derivatives) inhibited LPO (reduced MDA concentrations in the studied organs) and activated antioxidant enzymes in experimental gestosis. PMID:24137604

  13. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds

    NASA Astrophysics Data System (ADS)

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds.

  14. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    PubMed

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. PMID:22721859

  15. Pyrophosphate-Fueled Na+ and H+ Transport in Prokaryotes

    PubMed Central

    Malinen, Anssi M.; Luoto, Heidi H.

    2013-01-01

    SUMMARY In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H+ transport across biological membranes (H+-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na+ (Na+-pyrophosphatase) or both Na+ and H+ (Na+,H+-pyrophosphatase). Both these transporters require Na+ for pyrophosphate hydrolysis and are further activated by K+. The determination of the three-dimensional structures of H+- and Na+-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms. PMID:23699258

  16. Regulation of persistent Na current by interactions between beta subunits of voltage-gated Na channels.

    PubMed

    Aman, Teresa K; Grieco-Calub, Tina M; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A; Isom, Lori L; Raman, Indira M

    2009-02-18

    The beta subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming alpha subunits, as well as their trafficking and localization. In heterologous expression systems, beta1, beta2, and beta3 subunits influence inactivation and persistent current in different ways. To test how the beta4 protein regulates Na channel gating, we transfected beta4 into HEK (human embryonic kidney) cells stably expressing Na(V)1.1. Unlike a free peptide with a sequence from the beta4 cytoplasmic domain, the full-length beta4 protein did not block open channels. Instead, beta4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of noninactivating current. Consequently, persistent current tripled in amplitude. Expression of beta1 or chimeric subunits including the beta1 extracellular domain, however, favored inactivation. Coexpressing Na(V)1.1 and beta4 with beta1 produced tiny persistent currents, indicating that beta1 overcomes the effects of beta4 in heterotrimeric channels. In contrast, beta1(C121W), which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by beta4 and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with beta4, persistent current was slightly but significantly increased. Moreover, in beta4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that beta1 and beta4 have antagonistic roles, the former favoring inactivation, and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted beta1 subunits. PMID:19228957

  17. Regulation of persistent Na current by interactions between β subunits of voltage-gated Na channels

    PubMed Central

    Aman, Teresa K.; Grieco-Calub, Tina M.; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A.; Isom, Lori L.; Raman, Indira M.

    2009-01-01

    The β subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming α subunits, as well as their trafficking and localization. In heterologous expression systems, β1, β2, and β3 subunits influence inactivation and persistent current in different ways. To test how the β4 protein regulates Na channel gating, we transfected β4 into HEK cells stably expressing NaV1.1. Unlike a free peptide with a sequence from the β4 cytoplasmic domain, the full-length β4 protein did not block open channels. Instead, β4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of non-inactivating current. Consequently, persistent current tripled in amplitude. Expression of β1 or chimeric subunits including the β1 extracellular domain, however, favored inactivation. Co-expressing NaV1.1 and β4 with β1 produced tiny persistent currents, indicating that β1 overcomes the effects of β4 in heterotrimeric channels. In contrast, β1C121W, which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by β4, and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with β4, persistent current was slightly but significantly increased. Moreover, in β4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that β1 and β4 have antagonistic roles, the former favoring inactivation and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted β1 subunits. PMID:19228957

  18. Experimental

    NASA Astrophysics Data System (ADS)

    Gütlich, Philipp; Bill, Eckhard; Trautwein, Alfred X.

    In this chapter, we present the principles of conventional Mössbauer spectrometers with radioactive isotopes as the light source; Mössbauer experiments with synchrotron radiation are discussed in Chap. 9 including technical principles. Since complete spectrometers, suitable for virtually all the common isotopes, have been commercially available for many years, we refrain from presenting technical details like electronic circuits. We are concerned here with the functional components of a spectrometer, their interaction and synchronization, the different operation modes and proper tuning of the instrument. We discuss the properties of radioactive γ-sources to understand the requirements of an efficient γ-counting system, and finally we deal with sample preparation and the optimization of Mössbauer absorbers. For further reading on spectrometers and their technical details, we refer to the review articles [1-3].

  19. Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3

    NASA Astrophysics Data System (ADS)

    Yahia, H. Ben; Essehli, R.; Avdeev, M.; Park, J.-B.; Sun, Y.-K.; Al-Maadeed, M. A.; Belharouak, I.

    2016-06-01

    The new compounds NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 were synthesized by sol-gel method and their crystal structures were determined by using neutron powder diffraction data. These compounds were characterized by galvanometric cycling and cyclic voltammetry. NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 crystallize with a stuffed α-CrPO4-type structure. The structure consists of a 3D-framework made of octahedra and tetrahedra that are sharing corners and/or edges generating channels along [100] and [010], in which the sodium atoms are located. Of significance, in the structures of NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 a statistical disorder Ni2+/Cr3+ was observed on both the 8g and 4a atomic positions, whereas in NaCoCr2(PO4)3 the statistical disorder Co2+/Cr3+ was only observed on the 8g atomic position. When tested as negative electrode materials, NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3 delivered specific capacities of 352, 385, and 368 mA h g-1, respectively, which attests to the electrochemical activity of sodium in these compounds.

  20. Magnesium correction to the NaKCa chemical geothermometer

    USGS Publications Warehouse

    Fournier, R.O.; Potter, R.W., II

    1979-01-01

    Equations and graphs have been devised to correct for the adverse effects of magnesium upon the Na-K-Ca chemical geothermometer. Either the equations or graphs can be used to determine appropriate temperature corrections for given waters with calculated NaKCa temperatures > 70??C and R 50 are probably derived from relatively cool aquifers with temperatures approximately equal to the measured spring temperature, irrespective of much higher calculated Na-K-Ca temperatures. ?? 1979.

  1. Na+ Interactions with the Neutral Amino Acid Transporter ASCT1*

    PubMed Central

    Scopelliti, Amanda J.; Heinzelmann, Germano; Kuyucak, Serdar; Ryan, Renae M.; Vandenberg, Robert J.

    2014-01-01

    The alanine, serine, cysteine transporters (ASCTs) belong to the solute carrier family 1A (SLC1A), which also includes the excitatory amino acid transporters (EAATs) and the prokaryotic aspartate transporter GltPh. Acidic amino acid transport by the EAATs is coupled to the co-transport of three Na+ ions and one proton, and the counter-transport of one K+ ion. In contrast, neutral amino acid exchange by the ASCTs does not require protons or the counter-transport of K+ ions and the number of Na+ ions required is not well established. One property common to SLC1A family members is a substrate-activated anion conductance. We have investigated the number and location of Na+ ions required by ASCT1 by mutating residues in ASCT1 that correspond to residues in the EAATs and GltPh that are involved in Na+ binding. Mutations to all three proposed Na+ sites influence the binding of substrate and/or Na+, or the rate of substrate exchange. A G422S mutation near the Na2 site reduced Na+ affinity, without affecting the rate of exchange. D467T and D467A mutations in the Na1 site reduce Na+ and substrate affinity and also the rate of substrate exchange. T124A and D380A mutations in the Na3 site selectively reduce the affinity for Na+ and the rate of substrate exchange without affecting substrate affinity. In many of the mutants that reduce the rate of substrate transport the amplitudes of the substrate-activated anion conductances are not substantially affected indicating altered ion dependence for channel activation compared with substrate exchange. PMID:24808181

  2. Simulation of Na D emission near Europa during eclipse

    USGS Publications Warehouse

    Cassidy, T.A.; Johnson, R.E.; Geissler, P.E.; Leblanc, F.

    2008-01-01

    The Cassini imaging science subsystem observed Europa in eclipse during Cassini's Jupiter flyby. The disk-resolved observations revealed a spatially nonuniform emission in the wavelength range of 200-1050 nm (clear filters). By building on observations and simulations of Europa's Na atmosphere and torus we find that electron-excited Na in Europa's tenuous atmosphere can account for the observed emission if the Na is ejected preferentially from Europa's dark terrain. Copyright 2008 by the American Geophysical Union.

  3. Regulation of hamster sperm hyperactivation by extracellular Na.

    PubMed

    Takei, Gen L; Fujinoki, Masakatsu

    2016-06-01

    Mammalian sperm motility has to be hyperactivated to be fertilization-competent. Hyperactivation is regulated by extracellular environment. Osmolality of mammalian semen is higher than that in female reproductive tract; however, the effect of them on hyperactivation has not been investigated. So we investigated the effect of osmotic environment on hyperactivation using hamster spermatozoa at first. Increase in the osmolality of the media (∼370 mOsm) by increasing the concentration of NaCl (∼150 mmol/L) caused the delay of the expression of hyperactivation. When NaCl concentration varied in the same range (75-150 mmol/L) whereas the osmolality was fixed at 370 mOsm by adding mannitol, the delay of hyperactivation occurred dependent on NaCl concentration. Increase in NaCl concentration also caused suppression of curvilinear velocity, bend angle, and sliding velocity of the flagellum at the onset of incubation, suggesting that NaCl concentration affect both activation and hyperactivation in hamster spermatozoa. Hamster sperm intracellular Ca(2+) concentration decreased as extracellular NaCl concentration increased, whereas membrane potential and intracellular pH were unaffected by extracellular NaCl concentration. SN-6 and SEA0400, inhibitors of Na(+)-Ca(2+) exchanger (NCX), increased intracellular Ca(2+) and accelerated hyperactivation in the presence of 150 mmol/L NaCl. Tyrosine phosphorylation on fibrous sheath proteins was unaffected by extracellular NaCl concentration. These results suggest that extracellular Na(+) suppresses hamster sperm hyperactivation by reducing intracellular Ca(2+) via an action of NCX in a tyrosine phosphorylation-independent manner. It seems that the removal of suppression by extracellular Na(+) leads to the expression of hyperactivated motility. PMID:26952096

  4. Advanced Intermediate-Temperature Na-S Battery

    SciTech Connect

    Lu, Xiaochuan; Kirby, Brent W.; Xu, Wu; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-11-12

    In this study, we reported an intermediate-temperature (~150°C) sodium-sulfur (Na-S) battery. With a reduced operating temperature, this novel battery can potentially reduce the cost and safety issues associated with the conventional high-temperature (300~350°C) Na-S battery. A dense β"-Al2O3 solid membrane and tetraglyme were utilized as the electrolyte separator and catholyte solvent in this battery. Solubility tests indicated that cathode mixture of Na2S4 and S exhibited extremely high solubility in tetraglyme (e.g., > 4.1 M for Na2S4 + 4 S). CV scans of Na2S4 in tetraglyme revealed two pairs of redox couples with peaks at around 2.22 and 1.75 V, corresponding to the redox reactions of polysulfide species. The discharge/charge profiles of the Na-S battery showed a slope region and a plateau, indicating multiple steps and cell reactions. In-situ Raman measurements during battery operation suggested that polysulfide species were formed in the sequence of Na2S5 + S → Na2S5 + Na2S4Na2S4 + Na2S2 during discharge and in a reverse order during charge. This battery showed dramatic improvement in rate capacity and cycling stability over room-temperature Na-S batteries, which makes it attractive for renewable energy integration and other grid related applications.

  5. Early Immune Markers Associated with Experimental Mycobacterium avium subsp. paratuberculosis (MAP) Infection in a Neonatal Calf Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to observe early markers of cell-mediated immunity in naïve calves infected with Mycobacterium avium subsp. paratuberculosis (MAP) and how expression of these markers evolved over the 12-month period of infection. Methods of experimental infection included: Control (n...

  6. Influence of exogenous melatonin on horizontal transfer of Escherichia coli O157:H7 in experimentally infected sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the current research was to determine if exogenous melatonin would exert a “protective” effect on the gastrointestinal tract of sheep and prevent or reduce the horizontal transfer of E. coli O157:H7 from experimentally-infected to non-infected or “naïve” sheep. Sixteen crossbred ewe...

  7. Treatment of experimental mesangioproliferative glomerulonephritis with non-anticoagulant heparin: therapeutic efficacy and safety.

    PubMed

    Burg, M; Ostendorf, T; Mooney, A; Koch, K M; Floege, J

    1997-04-01

    Treatment with conventional heparin is effective in experimental mesangioproliferative glomerulonephritis. However, the long-term effects and safety of this therapy, in particular in the presence of mesangiolysis, have not been assessed. In addition, this therapy has been hampered by bleeding complications. In the present study, therefore, we investigated the long-term effects of a short course of non-anticoagulant (NA) heparin treatment in the anti-Thy 1.1 mesangioproliferative glomerulonephritis, in which early immune-mediated mesangiolysis subsequently leads to mesangial hyperproliferation. Rats received continuous ip NA-heparin or vehicle during the active mesangioproliferative phase (Days 2 to 9; early treatment) or during the early resolution phase (Days 10 to 17; late treatment). Whereas NA-heparin in the early treatment group did not affect the glomerular macrophage, lymphocyte, or platelet influx, it did lead to significantly decreased glomerular cellularity, mesangial cell proliferation, alpha-smooth muscle actin, desmin expression (ie, markers of activated mesangial cells), and matrix accumulation as well as to persistent mesangiolytic lesions including microaneurysms. Despite this latter finding, at Day 120, NA-heparin-treated rats of the early treatment group showed significantly better renal function and less proteinuria and glomerulosclerosis than vehicle-infused rats. In contrast, late therapy with NA-heparin neither accelerated resolution of the nephritis or otherwise affected the course of the disease. We conclude that transient NA-heparin therapy is effective in mesangioproliferative glomerulonephritis, both acutely and long term, when it is initiated during the active phase of the disease. Also, NA-heparin therapy is safe even in glomerular diseases accompanied by mesangiolysis. PMID:9111513

  8. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  9. Study of OSL in NaF: Ca,Cu

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Wankhede, S. P.; Moharil, S. V.

    2013-06-01

    Sodium Fluoride containing Cu+ ions was prepared by R.A.P. followed by melt-quenching technique. Results on photo, thermo and optically stimulated luminescence in NaF:Ca,Cu are reported. OSL sensitivity of NaF:Ca,Cu is approximately 2 times than that of standard phosphor LMP. The rate of OSL depletion for 90% decay for NaF:Ca,Cu is 0.3 times as that of OSL phosphor LMP. NaF:Ca,Cu thus deserves much more attention than it has received up till now.

  10. Influenza virus neuraminidase (NA): a target for antivirals and vaccines.

    PubMed

    Jagadesh, Anitha; Salam, Abdul Ajees Abdul; Mudgal, Piya Paul; Arunkumar, Govindakarnavar

    2016-08-01

    Influenza, the most common infectious disease, poses a great threat to human health because of its highly contagious nature and fast transmissibility, often leading to high morbidity and mortality. Effective vaccination strategies may aid in the prevention and control of recurring epidemics and pandemics associated with this infectious disease. However, antigenic shifts and drifts are major concerns with influenza virus, requiring effective global monitoring and updating of vaccines. Current vaccines are standardized primarily based on the amount of hemagglutinin, a major surface antigen, which chiefly constitutes these preparations along with the varying amounts of neuraminidase (NA). Anti-influenza drugs targeting the active site of NA have been in use for more than a decade now. However, NA has not been approved as an effective antigenic component of the influenza vaccine because of standardization issues. Although some studies have suggested that NA antibodies are able to reduce the severity of the disease and induce a long-term and cross-protective immunity, a few major scientific issues need to be addressed prior to launching NA-based vaccines. Interestingly, an increasing number of studies have shown NA to be a promising target for future influenza vaccines. This review is an attempt to consolidate studies that reflect the strength of NA as a suitable vaccine target. The studies discussed in this article highlight NA as a potential influenza vaccine candidate and support taking the process of developing NA vaccines to the next stage. PMID:27255748

  11. The Physiological Relevance of Na+-Coupled K+-Transport.

    PubMed

    Maathuis, FJM.; Verlin, D.; Smith, F. A.; Sanders, D.; Fernandez, J. A.; Walker, N. A.

    1996-12-01

    Plant roots utilize at least two distinct pathways with high and low affinities to accumulate K+. The system for high-affinity K+ uptake, which takes place against the electrochemical K+ gradient, requires direct energization. Energization of K+ uptake via Na+ coupling has been observed in algae and was recently proposed as a mechanism for K+ uptake in wheat (Triticum aestivum L.). To investigate whether Na+ coupling has general physiological relevance in energizing K+ transport, we screened a number of species, including Arabidopsis thaliana L. Heynh. ecotype Columbia, wheat, and barley (Hordeum vulgare L.), for the presence of Na+-coupled K+ uptake. Rb+-flux analysis and electrophysiological K+-transport assays were performed in the presence and absence of Na+ and provided evidence for a coupling between K+ and Na+ transport in several aquatic species. However, all investigated terrestrial species were able to sustain growth and K+ uptake in the absence of Na+. Furthermore, the addition of Na+ was either without effect or inhibited K+ absorption. The latter characteristic was independent of growth conditions with respect to Na+ status and pH. Our results suggest that in terrestrial species Na+-coupled K+ transport has no or limited physiological relevance, whereas in certain aquatic angiosperms and algae this type of secondary transport energization plays a significant role. PMID:12226467

  12. Kaolin-based geopolymers with various NaOH concentrations

    NASA Astrophysics Data System (ADS)

    Heah, C. Y.; Kamarudin, H.; Mustafa Al Bakri, A. M.; Bnhussain, M.; Luqman, M.; Khairul Nizar, I.; Ruzaidi, C. M.; Liew, Y. M.

    2013-03-01

    Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80°C for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na2O decreased. The increased Na2O content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.

  13. Integrated Control of Na Transport along the Nephron

    PubMed Central

    Schnermann, Jürgen

    2015-01-01

    The kidney filters vast quantities of Na at the glomerulus but excretes a very small fraction of this Na in the final urine. Although almost every nephron segment participates in the reabsorption of Na in the normal kidney, the proximal segments (from the glomerulus to the macula densa) and the distal segments (past the macula densa) play different roles. The proximal tubule and the thick ascending limb of the loop of Henle interact with the filtration apparatus to deliver Na to the distal nephron at a rather constant rate. This involves regulation of both filtration and reabsorption through the processes of glomerulotubular balance and tubuloglomerular feedback. The more distal segments, including the distal convoluted tubule (DCT), connecting tubule, and collecting duct, regulate Na reabsorption to match the excretion with dietary intake. The relative amounts of Na reabsorbed in the DCT, which mainly reabsorbs NaCl, and by more downstream segments that exchange Na for K are variable, allowing the simultaneous regulation of both Na and K excretion. PMID:25098598

  14. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat.

    PubMed Central

    Butzner, J D; Parmar, R; Bell, C J; Dalal, V

    1996-01-01

    BACKGROUND--The short chain fatty acid (SCFA) butyrate provides energy for colonocytes, stimulates colonic fluid and electrolyte absorption and is recognised as an effective treatment for multiple types of colitis. AIM--To examine the impact of butyrate enema therapy on the clinical course, severity of inflammation, and SCFA stimulated Na+ absorption in a chronic experimental colitis. METHODS--Distal colitis was induced in rats with a trinitrobenzenesulphonic acid (TNBS) enema. Five days after induction, rats were divided into groups to receive: no treatment, saline enemas, or 100 mM Na-butyrate enemas daily. On day 24, colonic damage score and tissue myeloperoxidase (MPO) activity were evaluated. Colon was mounted in Ussing chambers and Na+ transport and electrical activities were measured during a basal period and after stimulation with 25 mM butyrate. RESULTS--In the untreated and the saline enema treated TNBS groups, diarrhoea and extensive colonic damage were seen, associated with increased tissue MPO activities and absent butyrate stimulated Na+ absorption. In contrast, in the butyrate enema treated TNBS group, diarrhoea ceased, colonic damage score improved, and tissue MPO activity as well as butyrate stimulated Na+ absorption recovered to control values. CONCLUSION--Butyrate enema therapy stimulated colonic repair, as evidenced by clinical recovery, decreased inflammation, and restoration of SCFA stimulated electrolyte absorption. PMID:8707089

  15. First-principles investigations of ionic conduction in Li and Na borohydrides

    NASA Astrophysics Data System (ADS)

    Varley, Joel; Heo, Tae-Wook; Ray, Keith; Bonev, Stanimir; Wood, Brandon

    Recent experimental studies have identified a family of alkali borohydride materials that exhibit superionic transition temperatures approaching room temperature and ionic conductivities exceeding 0.1 S/cm-1, making them highly promising solid electrolytes for next-generation batteries. Despite the rapid advances in improving the superionic conductivity in these materials, an understanding of the exact mechanisms driving the transport remains unknown. Here we use ab initio molecular dynamics calculations to address this issue by characterizing the diffusivity of the Li and Na species in a representative set of closoborane ionic conductors. We investigate both the Na and Li-containing borohydrides with icosahedral (B12H12) and double-capped square antiprism (B10H10) anion species and discuss the trends in ionic conductivity as a function of stoichiometry and the incorporation of various dopants. Our results support the borohydrides as a subset of a larger family of very promising solid electrolytes and identify strategies to improving the conductivity in these materials. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Ab-initio crystal structure prediction. A case study: NaBH{sub 4}

    SciTech Connect

    Caputo, Riccarda; Tekin, Adem

    2011-07-15

    Crystal structure prediction from first principles is still one of the most challenging and interesting issue in condensed matter science. we explored the potential energy surface of NaBH{sub 4} by a combined ab-initio approach, based on global structure optimizations and quantum chemistry. In particular, we used simulated annealing (SA) and density functional theory (DFT) calculations. The methodology enabled the identification of several local minima, of which the global minimum corresponded to the tetragonal ground-state structure (P4{sub 2}/nmc), and the prediction of higher energy stable structures, among them a monoclinic (Pm) one was identified to be 22.75 kJ/mol above the ground-state at T=298 K. In between, orthorhombic and cubic structures were recovered, in particular those with Pnma and F4-bar 3m symmetries. - Graphical abstract: The total electron energy difference of the calculated stable structures. Here, the tetragonal (IT 137) and the monoclinic (IT 6) symmetry groups corresponded to the lowest and the highest energy structures, respectively. Highlights: > Potential energy surface of NaBH{sub 4} is investigated. > This is done a combination of global structure optimizations based on simulated annealing and density functional calculations. > We successfully reproduced experimentally found tetragonal and orthorhombic structures of NaBH{sub 4}. > Furthermore, we found a new stable high energy structure.

  17. Recent results on central Pb+Pb collisions from experiment NA49

    NASA Astrophysics Data System (ADS)

    Appelshäuser, H.; Bächler, J.; Bailey, S. J.; Barnby, L. S.; Bartke, J.; Barton, R. A.; Biał Kowska, H.; Billmeier, A.; Blyth, C. O.; Bock, R.; Bormann, C.; Brady, F. P.; Brockmann, R.; Brun, R.; Bunč Ić , P.; Caines, H. L.; Cebra, D.; Cooper, G. E.; Cramer, J. G.; Csato, P.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Ferguson, M. I.; Fischer, H. G.; Flierl, D.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Fuchs, M.; Gabler, F.; Gal, J.; Gaź Dzicki, M.; Gł Adysz, E.; Grebieszkow, J.; Günther, J.; Harris, J. W.; Hegyi, S.; Henkel, T.; Hill, L. A.; Huang, I.; Hümmler, H.; Igo, G.; Irmscher, D.; Jacobs, P.; Jones, P. G.; Kadija, K.; Kolesnikov, V. I.; Kowalski, M.; Lasiuk, B.; Lévai, P.; Malakhov, A. I.; Margetis, S.; Markert, C.; Melkumov, G. L.; Mock, A.; Molnár, J.; Nelson, J. M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A. D.; Petridis, A.; Piper, A.; Porter, R. J.; Poskanzer, A. M.; Poziombka, S.; Prindle, D. J.; Pühlhofer, F.; Rauch, W.; Reid, J. G.; Renfordt, R.; Retyk, W.; Ritter, H. G.; Röhrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sandoval, A.; Sann, H.; Semenov, A. Yu.; Schäfer, E.; Schmischke, D.; Schmitz, N.; Schönfelder, S.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Skrzypczak, E.; Squier, G. T. A.; Stock, R.; Ströbele, H.; Szentpetery, I.; Sziklai, J.; Szymanski, P.; Toy, M.; Trainor, T. A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Vesztergombi, G.; Vranić , D.; Wang, F.; Weerasundara, D. D.; Wenig, S.; Whitten, C.; Wienold, T.; Wood, L.; Yates, T. A.; Zimanyi, J.; Zhu, X.-Z.; Zybert, R.

    1998-08-01

    In this paper we present recent results from experiment NA49 on single- and multiparticle distributions obtained for Pb+Pb collisions at 158GeV/nucleon at the CERN SPS. NA49 aims at a complete description of the hadronic final state of nuclear collisions, which will eventually allow us to establish whether an equilibrated, deconfined state of partonic matter, the quark gluon plasma (QGP), is created in the early stages of these collisions. New experimental results regarding the evolution of the hadron source through transverse expansion to chemical and thermal freeze-out are presented. We find that the available data can be understood in terms of simple physical pictures, indicating that sufficient energy densities for QGP creation are indeed reached in the early stage of the collision. The NA49 results on particle abundances are discussed in comparison with nuclear collisions at lower energy and elementary collisions at various energies. This comparison demonstrates that simple extrapolation from these systems fails to describe the results for Pb+Pb collisions at the CERN SPS.

  18. Quantum control of ultracold NaK polar molecules in optical traps

    NASA Astrophysics Data System (ADS)

    Li, Ming; Petrov, Alexander; Makrides, Constantinos; Kotochigova, Svetlana

    2016-05-01

    Selection of trapping conditions with ultracold molecules, where internal states experience identical trapping potentials, brings substantial benefits for the ultimate control of their internal degrees of freedom. Here we present our work on the control of NaK molecules, when they are subjected to both trapping laser light and external electric and magnetic fields. First, we calculated parallel and perpendicular polarizabilities using a coupled-cluster method at the CCSD level. This enables us to determine the differential Stark shifts of rotational levels of NaK as a function of orientation of external fields. The hyperfine and Zeeman structure of these rotational states was obtained using an effective spin Hamiltonian. We find that under the experimental conditions with NaK, the hyperfine sublevels of the J = 1 rotational state are significantly mixed by the trapping laser light so that the simplified model of Ref. for ``magic'' conditions can not be applied. Adding a modest static electric field, however, can minimize the mixing of magnetic sublevels and make it easier to find ``magic'' conditions. This work is supported by the ARO-MURI Grant No. W911NF-12-1-0476 and the NSF Grant No. PHY-1308573.

  19. Population pharmacodynamic modeling of exenatide after 2-week treatment in STZ/NA diabetic rats.

    PubMed

    Chen, Ting; Kagan, Leonid; Mager, Donald E

    2013-10-01

    The purpose of this study is to investigate the effect of exenatide on glycemic control following two administration routes in a streptozotocin/nicotinamide (STZ/NA)-induced diabetic rat model, and to develop a pharmacodynamic model to better understand the disease progression and the action of exenatide in this experimental system. Two groups of STZ/NA-induced diabetic rats were treated for 2 weeks with 20 (μg/kg/day) of exenatide, either by continuous subcutaneous (SC) infusion or two SC injections daily. Disease progression was associated with slower glucose utilization. Fasting blood glucose was significantly reduced by 30 mg/dL in both treatment groups at the end of 2 weeks. A subsequent intravenous glucose tolerance test (IVGTT) confirmed an improved glucose tolerance in both treatment groups; however, overall glycemic control was similar between groups, likely due to the relatively low and short-term drug exposure. A population indirect response model was successfully developed to simultaneously describe the STZ/NA-induced disease progression, responses to an IVGTT, and exenatide effects on these systemic challenges. The unified model includes a single set of parameters, and the cumulative area under the drug-receptor concentration curve was used as a unique driving force to account for systemic effects long after drug elimination. PMID:23897494

  20. Localized versus itinerant magnetic moments in Na0.7CoO2

    NASA Astrophysics Data System (ADS)

    Gavilano, J. L.; Pedrini, B.; Magishi, K.; Hinderer, J.; Weller, M.; Ott, H. R.; Kazakov, S. M.; Karpinski, J.

    2006-08-01

    Based on experimental Co59 -NMR data in the temperature range between 0.1 and 300K , we address the problem of the character of the Co 3d -electron based magnetism in Na0.7CoO2 . Temperature-dependent Co59 -NMR spectra reveal different Co environments below 300K and their differentiation increases with decreasing temperature. We show that the Na23 - and Co59 -NMR data may consistently be interpreted by assuming that below room temperature the Co 3d electrons are itinerant. We also argue that the Co59 -NMR response is inconsistent with well-defined local magnetic moments on the Co sites. We identify a substantial orbital contribution χorb to the d -electron susceptibility. At low temperatures χorb seems to acquire some temperature dependence, suggesting an increasing influence of spin-orbit coupling. The temperature dependence of the spin-lattice relaxation rate T1-1(T) confirms significant variations in the dynamics of this electronic subsystem between 250 and 300K , as previously suggested. Below 100K , Na0.7CoO2 may be viewed as a weak antiferromagnet with TN below 1K , but this scenario still leaves a number of open questions.