Science.gov

Sample records for na2o cao k2o

  1. Effects of Substitution of K2O for Na2O on the Bioactivity of CaO-Na2O-SiO2-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Kim, Taehee; Hwang, Chawon; Gwoo, Donggun; Park, Hoyyul; Ryu, Bong-Ki

    2012-10-01

    The compositional dependences of bioactivity, thermal properties, atomic structure, and surface morphology have been investigated in the CaO-Na2O-SiO2-P2O5 system; this system is known as a bioglass. 45S5 Bioglass® is known to be a general and highly bioactive material. However, the bioactivity of this glassy material is expected to be improved by modifying the alkali-metal composition. Thermal properties, density, and molar volume were measured to investigate the structural packing. FT-IR spectra and X-ray diffraction were used to confirm the structures of these glasses. The morphology was examined using field emission electron microscopy, and the formation of a Ca-P layer was studied using an energy-dispersive system. This study shows that the tendency to form a calcium phosphate layer is increased with the substitution of K2O for Na2O.

  2. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Sitarz, Maciej; Leśniak, Magdalena; Gasek, Katarzyna; Jeleń, Piotr

    2015-01-01

    Ceramic glazes are commonly used to covering of the facing surface of ceramics ware. A well-chosen oxide composition and firing conditions of glazes causes significant improvement of technical parameters of ceramic products. Modern glazes are classified as glass-ceramic composites with different crystalline phases arising during firing. The presence of crystals in the glass matrix is influenced by many factors, especially by oxides molar composition. A crucial role is played by the molar ratio of SiO2/Al2O3. In this work the six composition of glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system were examined. The only variable is the ratio of the silicon oxideto alumina at a constant content of other components: MgO, CaO, K2O, Na2O, ZnO. In order to determine the real phase composition of the obtained glazes research on fluorescence spectrometer (XRF) were done. For structural studies X-ray diffraction (XRD) and spectroscopic in the middle infrared (MIR) were performed. In order to determine the state of the surface (microstructure) research on the scanning electron microscope (SEM) with EDX. The research allowed to determine the influence of SiO2/Al2O3 ratio on the structure and phase composition of glazes and the nature, and type of formed crystalline phases.

  3. Mixed Alkali Effect in (40-x)K2O-xLi2O-10Na2O-50B2O3 Glasses - Physical and Optical Absorption Studies

    NASA Astrophysics Data System (ADS)

    Samee, M. A.; Ahmmad, Shaikh Kareem; Taqiullah, Sair. Md.; Edukondalu, A.; Bale, Shashidhar; Rahman, Syed

    So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x) K2O-x Li2O -10Na2O-50B2O3.(0≤x≤40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. We report the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the various values of optical band gap (Eo) and Urbach energy (ΔE) have been evaluated. The values of Eo and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The band gap energy based average electronic polarizability of oxide ions αO2-(Eo), optical basicity A(Eo), and Yamashita-Kurosawa’s interaction parameter A(Eo) have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present K2O- Li2O-Na2O-B2O3 glasses are classified as normal ionic (basic) oxides.

  4. Effect of nitridation on the aqueous dissolution of Na2O-K2O-CaO-P2O5 metaphosphate glasses.

    PubMed

    Riguidel, Quentin; Muñoz, Francisco

    2011-06-01

    The use of oxynitride glasses is presented as an alternative for the preparation of bioresorbable phosphate glasses with a controlled dissolution rate. This work describes the design of oxynitride phosphate glasses within the systems of composition (50-x)Na(2)O·xCaO·50P(2)O(5) and (25-(x/2))Na(2)O·(25-(x/2))K(2)O·xCaO·50P(2)O(5) (x=5, 10, 15, 20 mol.%) throughout the processing parameters of the ammonolysis reaction and the glass composition. Mixed-alkali sodium-potassium phosphate glasses with low CaO contents present the best characteristics for nitridation. The dissolution rate has been determined by immersion of glass samples in water, at constant temperature of 37 °C, and has been discussed as a function of both modifiers composition and nitrogen content incorporated in the glasses through ammonolysis. All oxynitride glass compositions dissolve congruently and their dissolution rate decreases by more than three orders of magnitude for the highest nitrogen contents. However, it has been demonstrated that nitrogen contents as low as 2-3 wt.% (i.e. a 0.2N/P ratio) are sufficient to decrease the dissolution rate by one order of magnitude with respect to the pure oxide glasses. Novel oxynitride phosphate glasses with a controlled and congruent dissolution are proposed for future applications in biodegradable composite materials, tissue engineering or host matrices for the controlled release of drugs. PMID:21440095

  5. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  6. Orange Peel Oxidative Gasification on Ni Catalysts Promoted with CaO, CeO2 or K2O.

    PubMed

    Vargas, G; Zapata, B; Valenzuela, M A; Alfaro, S

    2015-09-01

    Orange peel can be considered as an attractive raw material to be gasified for hydrogen or syngas production. In this work, the catalytic evaluation of several silica-supported nickel catalysts in the oxidative degradation of waste orange peel is reported. It was found that the catalytic gasification with the K2O-Ni/silica catalyst produces more hydrogen than the non-catalytic route at 600 degrees C. Surprisingly, a significant amount of ethene was obtained with the CeO2-Ni/silica catalyst, which was explained in terms of an oxidative dehydrogenation reaction of ethane formed during biomass or tar decomposition. PMID:26716225

  7. A Structural Molar Volume Model for Oxide Melts Part II: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Ternary and Multicomponent Systems

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model based on the silicate tetrahedral Q-species has been developed to accurately predict the molar volume of molten oxides. In this study, the molar volumes of ternary and multicomponent melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system are reviewed and compared with the predicted molar volumes from the newly developed structural model. The model can accurately predict the molar volumes using binary model parameters without any ternary or multicomponent parameters. The nonlinear behavior in the molar volume of silicate melts is well predicted by the present model.

  8. Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Leśniak, Magdalena

    2016-01-01

    This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed.

  9. Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3.

    PubMed

    Partyka, Janusz; Leśniak, Magdalena

    2016-01-01

    This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed. PMID:26196934

  10. A Structural Molar Volume Model for Oxide Melts Part I: Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 Melts—Binary Systems

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    A structural molar volume model was developed to accurately reproduce the molar volume of molten oxides. As the non-linearity of molar volume is related to the change in structure of molten oxides, the silicate tetrahedral Q-species, calculated from the modified quasichemical model with an optimized thermodynamic database, were used as basic structural units in the present model. Experimental molar volume data for unary and binary melts in the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-Al2O3-SiO2 system were critically evaluated. The molar volumes of unary oxide components and binary Q-species, which are model parameters of the present structural model, were determined to accurately reproduce the experimental data across the entire binary composition in a wide range of temperatures. The non-linear behavior of molar volume and thermal expansivity of binary melt depending on SiO2 content are well reproduced by the present model.

  11. Sol-gel synthesis of quaternary (P2O5)55-(CaO)25-(Na2O)(20-x)-(TiO2) x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15).

    PubMed

    Foroutan, Farzad; Walters, Nick J; Owens, Gareth J; Mordan, Nicola J; Kim, Hae-Won; de Leeuw, Nora H; Knowles, Jonathan C

    2015-08-01

    In the present study, we report a new and facile sol-gel synthesis of phosphate-based glasses with the general formula of (P2O5)55-(CaO)25-(Na2O)(20-x)-(TiO2) x , where x = 0, 5, 10 or 15, for bone tissue engineering applications. The sol-gel synthesis method allows greater control over glass morphology at relatively low processing temperature (200 °C) in comparison with phosphate-based melt-derived glasses (~1000 °C). The glasses were analyzed using several characterization techniques, including x-ray diffraction (XRD), (31)P magic angle spinning nuclear magnetic resonance ((31)P MAS-NMR), Fourier transform infrared (FTIR) spectroscopy and energy-dispersive x-ray (EDX) spectroscopy, which confirmed the amorphous and glassy nature of the prepared samples. Degradation was assessed by measuring the ion release and pH change of the storage medium. Cytocompatibility was also confirmed by culturing osteoblast-like osteosarcoma cell line MG-63 on the glass microparticles over a seven-day period. Cell attachment to the particles was imaged using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results revealed the potential of phosphate-based sol-gel derived glasses containing 5 or 10 mol% TiO2, with high surface area, ideal dissolution rate for cell attachment and easily metabolized dissolution products, for bone tissue engineering applications. PMID:26306553

  12. Development and bioactivity evaluation of bioglasses with low Na2O content based on the system Na 2O-CaO-MgO-P 2O 5-SiO 2.

    PubMed

    El-Meliegy, Emad; Hamzawy, Esmat M A; El-Kady, Abeer M; Salama, Aida; El-Rashedi, Ahalam

    2012-09-01

    Osteoconductive bioglasses, free of K(2)O and Al(2)O(3) and with content of Na(2)O lower than 10 mol%, were designed based on the ratio (SiO(2) + MgO)/(P(2)O(5) + CaO + Na(2)O) in the system Na(2)O-CaO-MgO-P(2)O(5)-SiO(2). The developed glasses have shown a strong potential for the formation of hydroxycarbonated apatite (HCA) in vitro. The particles of HCA aggregates tend to be of finer size with increasing the ratio of (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) in the glass chemical composition indicating significant bioactivity. Critical size bone defects created in the femurs of albino adult female rats, and grafted with the glass particles for 12 weeks post implantation, were completely healed by filling with mineralized bone matrix without infection showing a strong potential for new bone formation in vivo. Osteoblasts and osteocytes were observed close to the surface of the granular implants with active areas of bone deposition, resorption and remodelling. The bioglass with lowest (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) ratio has shown the highest bioactivity while the bioglass with the highest (SiO(2) + MgO)/(CaO + P(2)O(5) + Na(2)O) has shown the lowest bioactivity. The newly formed bone in vivo has shown a similar structure to that of the original bone as indicated by the histology and microstructural results. In addition, Ca/P molar ratio of the newly formed bone was found to be (~1.67), which is similar to that of the original bone. PMID:22648420

  13. Sol-gel synthesis and electrospraying of biodegradable (P2O5)55-(CaO)30-(Na2O)15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging.

    PubMed

    Foroutan, Farzad; Jokerst, Jesse V; Gambhir, Sanjiv S; Vermesh, Ophir; Kim, Hae-Won; Knowles, Jonathan C

    2015-02-24

    Ultrasound imaging is a powerful tool in medicine because of the millisecond temporal resolution and submillimeter spatial resolution of acoustic imaging. However, the current generation of acoustic contrast agents is primarily limited to vascular targets due to their large size. Nanosize particles have the potential to be used as a contrast agent for ultrasound molecular imaging. Silica-based nanoparticles have shown promise here; however, their slow degradation rate may limit their applications as a contrast agent. Phosphate-based glasses are an attractive alternative with controllable degradation rate and easily metabolized degradation components in the body. In this study, biodegradable P2O5-CaO-Na2O phosphate-based glass nanospheres (PGNs) were synthesized and characterized as contrast agents for ultrasound imaging. The structure of the PGNs was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), (31)P magic angle spinning nuclear magnetic resonance ((31)P MAS NMR), and Fourier transform infrared (FTIR) spectroscopy. The SEM images indicated a spherical shape with a diameter size range of 200-500 nm. The XRD, (31)P NMR, and FTIR results revealed the amorphous and glassy nature of PGNs that consisted of mainly Q(1) and Q(2) phosphate units. We used this contrast to label mesenchymal stem cells and determined in vitro and in vivo detection limits of 5 and 9 μg/mL, respectively. Cell counts down to 4000 could be measured with ultrasound imaging with no cytoxicity at doses needed for imaging. Importantly, ion-release studies confirmed these PGNs biodegrade into aqueous media with degradation products that can be easily metabolized in the body. PMID:25625373

  14. Sol-gel Synthesis and Electrospraying of Biodegradable (P2O5)55-(CaO)30-(Na2O)15 Glass Nanospheres as a Transient Contrast Agent for Ultrasound Stem Cell Imaging

    PubMed Central

    Gambhir, Sanjiv S.; Vermesh, Ophir; Kim, Hae-Won; Knowles, Jonathan C.

    2015-01-01

    Ultrasound imaging is a powerful tool in medicine because of the millisecond temporal resolution and sub-millimeter spatial resolution of acoustic imaging. However, the current generation of acoustic contrast agents is primarily limited to vascular targets due to their large size. Nano-size particles have the potential to be used as a contrast agent for ultrasound molecular imaging. Silica-based nanoparticles have shown promise here, however their slow degradation rate may limit their applications as a contrast agent. Phosphate-based glasses are an attractive alternative with controllable degradation rate and easily metabolized degradation components in the body. In this study, biodegradable P2O5-CaO-Na2O phosphate-based glass nanospheres (PGNs) were synthesized and characterized as contrast agents for ultrasound imaging. The structure of the PGNs was characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 31P nuclear magnetic resonance (31P MAS-NMR), and Fourier transform infrared (FTIR) spectroscopy. The SEM images indicated a spherical shape with a diameter size range of 200-500 nm. The XRD, 31P NMR and FTIR results revealed the amorphous and glassy nature of PGNs that consisted of mainly Q1 and Q2 phosphate units. We used this contrast to label mesenchymal stem cells and determined in vitro and in vivo detection limits of 5 and 9 μg/mL, respectively. Cell counts down to 4000 could be measured with ultrasound imaging with no cytoxicity at doses needed for imaging. Importantly, ion release studies confirmed these PGNs biodegrade into aqueous media with degradation products that can be easily metabolized in the body. PMID:25625373

  15. The Meaning of High K2O Volcanism In the U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Putirka, K. D.; Busby, C.

    2010-12-01

    K2O contents provide a highly effective discriminant between volcanic rocks erupted in the Cascades and Basin-and Range-provinces, with Cascades volcanics having lower K2O contents at a given SiO2. To differentiate these suites, we use a K-index, where K-index = K2Oobserved - 0.12[SiO2] + 5.1 (oxides in wt. %). In the Sierra Nevada, regional K2O contents are not controlled by wall-rock assimilation. In addition, none are candidates for K-metasomatism, and none are likely to be derived by partial melting of a K-metasomatized source. As to the latter issue, even volcanic rocks with the highest K2O in the Sierra Nevada have K2O/Na2O <5, and most such ratios are <3. In contrast, K-metasomatized rocks have K2O/Na2O >5, and as high as 30-40 (Brooks and Snee (1996). Also, Sierra-wide K2O variations are not connected to indices of subduction-related mantle enrichments (such as La/Nb, Ba/Nb or Sr/P2O5), and so K2O is unconnected to regional variations in source composition. K2O contents are instead controlled by the degree of partial melting (F) in the mantle source and fractional crystallization. Putirka and Busby (2007) show that maximum K2O in the Sierra increases with increasing crust thickness, and this relationship also holds across the U.S. the Cordillera (at 39oN latitude). This relationship implies that low F magmas more easily transit thick, low-density upper crust (Putirka and Busby, 2007), which is a consequence of the fact that low F melts are enriched not just in K2O, but also in H2O, which greatly lowers magma density (Ochs and Lange, 1999). This model can explain the contrast in Cascade and Basin-and-Range K2O contents: the modern Cascades are built on the thinner crust of accreted terranes, while typical Basin-and-Range volcanics are erupted on older, and thicker, cratonized crust. Mean crust density, however, cannot be the only explanation of high K2O. In the central Sierra Nevada, the Colorado River Extensional Corridor, and at the Lunar Crater

  16. Effects of sodium and potassium ions on a novel SeO2-B2O3-SiO2-P2O5-CaO bioactive system

    NASA Astrophysics Data System (ADS)

    Trandafir, D. L.; Ponta, O.; Ciceo-Lucacel, R.; Simon, V.

    2015-01-01

    The study is focused on Na2O and/or K2O influence on a new sol-gel derived SeO2-B2O3-SiO2-P2O5-CaO bioactive system. The structural changes induced by Na2O and/or K2O addition were correlated with the samples behavior in simulated biological media. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the structure and the type of the chemical bonds. The morphology of the samples was characterized through scanning electron microscopy (SEM). XRD results pointed out a prevalent vitreous structure with an incipient hydroxyapatite (HA) crystalline phase. FTIR results revealed a complex network consisting of silicate, phosphate and borate units, as well as the development of both A- and B-type of carbonate-substituted HA. The bioactivity of the samples was tested in vitro following the evolution of the apatite layers self-assembled on the samples surface in simulated body fluid. Their biocompatibility was investigated after samples surface functionalization with protein. The results indicate that sodium and potassium addition improves the biocompatibility by enhancement of protein adherence on samples surface and without to prevent the samples bioactivity.

  17. Distribution of anomalously high K2O volcanic rocks in Arizona: Metasomatism at the Picacho Peak detachment fault

    NASA Astrophysics Data System (ADS)

    Brooks, William E.

    1986-04-01

    Metasomatized Tertiary lavas with anomalously high K2O and low Na2O content are distributed within the northwest-trending Miocene extensional terrane of southwestern Arizona. These rocks are common near core-complex related detachment faults at Picacho Peak and the Harcuvar Mountains and in listric-faulted terrane at the Vulture Mountains. In addition to systematic changes in K2O and Na2O, the rocks have been enriched in Zr and depleted in MgO. Secondary, introduced minerals include orthoclase, quartz, and calcite. Fine-grained, euhedral orthoclase (var. adularia), from 2 to 10 μm, is the dominant potassium mineral. Metasomatic changes at Picacho Peak are spatially associated with a major detachment fault. Thus, it is interpreted that detachment provided a conduit for hydrothermal fluids that altered the initial chemical composition of the Tertiary volcanics by potassium metasomatism and charged the upper-plate rocks with mineralizing fluids that carried Zr and Ba, along with Au, Ag, and Cu, during detachment 17 18 Ma.

  18. Distribution of anomalously high K2O volcanic rocks in Arizona: metasomatism at the Picacho Peak detachment fault.

    USGS Publications Warehouse

    Brooks, W.E.

    1986-01-01

    Metasomatized Tertiary lavas with anomalously high K2O and lower Na2O content are distributed within the NW-trending extensional terrain of SW Arizona. These rocks are common near core-complex-related detachment faults at Picacho Peak and the Harcuvar Mountains and in listric-faulted terrain at the Vulture Mountains. These rocks are also enriched in Zr but depleted in MgO. Fine-grained, euhedral orthoclase (adularia) is the dominant K-mineral; other secondary introduced minerals are quartz and calcite. Spatial association of metasomatism with the detachment faults suggests that detachment provided a conduit for hydrothermal fluids that altered the initial chemistry of the Tertiary volcanics and charged the upper plate rocks with mineralizing fluids that carried Zr and Ba, along with Au, Ag and Cu during detachment 17-18 m.y. ago.-L.C.H.

  19. Structure, dielectric and bioactivity of P2O5-CaO-Na2O-B2O3 bioactive glass

    NASA Astrophysics Data System (ADS)

    Maheswaran, A.; Hirankumar, G.; Heller, Nithya; Karthickprabhu, S.; Kawamura, Junichi

    2014-06-01

    Bioactive phosphate glasses have been widely investigated for bone repair. Phosphate glass system of 47P2O5-30.5CaO-(22.5-x)Na2O-xB2O3 has been prepared by melt quenching technique. From the Raman analysis, it is confirmed that phosphate network form metaphosphate structure. Bioactivity of the glass is studied by immersing the prepared glass in simulated body fluid (SBF). All the glasses exhibited bioactivity after soaking in SBF. Addition of B2O3 to the glass by replacing the Na2O produces considerable effect on the dielectric and bioactivity of the glass. Ion dynamics are also analyzed through imaginary modulus and imaginary dielectric permittivity.

  20. CaO--P2O5--Na2O-based sintering additives for hydroxyapatite (HAp) ceramics.

    PubMed

    Kalita, S J; Bose, S; Hosick, H L; Bandyopadhyay, A

    2004-05-01

    We have assessed the effect of CaO--P2O5--Na2O-based sintering additives on mechanical and biological properties of hydroxyapatite (HAp) ceramics. Five different compositions of sintering additives were selected and prepared by mixing of CaO, P2O5, and Na2CO3 powders. 2.5 wt% of each additive was combined with commercial HAp powder, separately, followed by ball milling, and sintering at 1250 degrees C and 1300 degrees C in a muffle furnace. Green and sintered densities of the compacts were analyzed for the influence of additives on densification of HAp. Phase analyses were carried out using an X-ray diffractometer. Vickers microhardness testing was used to evaluate hardness of sintered compacts of different compositions. A maximum microhardness of 4.6 (+/- 0.28) GPa was attained for a composition with 2.5 wt% addition of CaO:P2O5:Na2O in the ratio of 3:3:4. Results from mechanical property evaluation showed that some of these sintering additives improved failure strength of HAp under compressive loading. Maximum compressive strength was observed for samples with 2.5 wt% addition of CaO. Average failure strength for this set of samples was calculated to be 220 (+/- 50) MPa. Cytotoxicity, and cell attachment studies were carried out using a modified human osteoblast cell line called OPC-1. In vitro results showed that these compositions were non-toxic. Some sintering aids enhanced cell attachment and proliferation, which was revealed from SEM examination of the scaffolds seeded with OPC-1 cells. PMID:14741598

  1. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-07-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  2. In vitro evaluation of bioactivity of CaO-SiO 2-P 2O 5-Na 2O-Fe 2O 3 glasses

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra Kumar; Kothiyal, G. P.; Srinivasan, A.

    2009-05-01

    Glasses with compositions 41CaO(52 - x)SiO 24P 2O 5· xFe 2O 33Na 2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.

  3. Flower-like Na2O nanotip synthesis via femtosecond laser ablation of glass

    PubMed Central

    2012-01-01

    The current state-of-the-art in nanotip synthesis relies on techniques that utilize elaborate precursor chemicals, catalysts, or vacuum conditions, and any combination thereof. To realize their ultimate potential, synthesized nanotips require simpler fabrication techniques that allow for control over their final nano-morphology. We present a unique, dry, catalyst-free, and ambient condition method for creating densely clustered, flower-like, sodium oxide (Na2O) nanotips with controllable tip widths. Femtosecond laser ablation of a soda-lime glass substrate at a megahertz repetition rate, with nitrogen flow, was employed to generate nanotips with base and head widths as small as 100 and 20 nm respectively, and lengths as long as 10 μm. Control of the nanotip widths was demonstrated via laser dwell time with longer dwell times producing denser clusters of thinner nanotips. Energy dispersive X-ray analysis reveals that nanotip composition is Na2O. A new formation mechanism is proposed, involving an electrostatic effect between ionized nitrogen and polar Na2O. The synthesized nanotips may potentially be used in antibacterial and hydrogen storage applications. PMID:22809176

  4. Crystallization Behavior and Heat Transfer of Fluorine-Free Mold Fluxes with Different Na2O Concentration

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    2016-08-01

    In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.

  5. Crystallization Behavior and Heat Transfer of Fluorine-Free Mold Fluxes with Different Na2O Concentration

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    2016-06-01

    In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.

  6. The dependence of the oxidation state of vanadium on the oxygen pressure in melts of VOx, Na2O-VOx, and CaO-SiO2-VOx

    NASA Astrophysics Data System (ADS)

    Mittelstadt, Rainer; Schwerdtfeger, Klaus

    1990-02-01

    The oxidation state of vanadium has been determined as a function of oxygen pressure in pure VOx melts at 808 °C to 1000 °C, in Na2O-VOx melts with the initial molar ratios Na2O/V2O5 = 0.2, 0.5, and 1.0 at 1000 °C, and in CaO-SiO2-VOx melts with the molar ratios CaO/SiO2 = 0.71, 1.00, and 1.36 at 1600 °C. In the VOx melts, x is close to 2.5 in the range of oxygen pressure from P O 2 to 0.94 atm. The deviation, δ, from stoichiometric V2O5 (δ = 2.5- x) varies approximately proportionally to P O 2 -1/4, indicating an equilibrium between V4+ and V5+ ions. In the Na2O-VOx melts, and in the CaO-SiO2-VOx melts, x varies with log P O 2 according to an S-shaped function, with x approaching 1.5 at low and 2.5 at high oxygen pressures. At given oxygen pressures, x increases with Na2O or CaO content, respectively. Hence, these oxides stabilize the higher valent vanadium ions. For the CaO-SiO2-VOx system, the determined x- P O 2 dependence can be interpreted quantitatively in terms of V4+/V5+ and V3+/V4+ equilibria.

  7. Dielectric Properties of Niobate Glass Ceramics of PbO-SrO-Na2O-Nb2O5-SiO2 System with Partial Substitution of K+ for Na+

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Zhang, Qingmeng; Tang, Qun; Cui, Hang; Xu, Yaohua; Lin, Chenguang; Du, Jun

    2016-06-01

    Substitution of K2O for Na2O content was performed for ferroelectric glass ceramics in the PbO-SrO-Na2O-Nb2O5-SiO2 system, in which a conventional melt quenching method was adopted for the parent glass production in order to investigate its effect on the crystallization process and associated dielectric properties. Phase identification combined with differential thermal analysis results show that the crystalline phase was compressed by the substitution of potassium ions. The hysteresis loop results demonstrate that by increasing the substitution of K+ for Na+, the maximal polarization was decreased while both the remanent polarization and coercive electric field increase. It is also noted that increasing the content of K+ could also reduce the dielectric constant of the glass ceramic system; the dielectric constant demonstrated a decrease from 775 to 299, meanwhile, the dielectric loss increased from 0.013 to 0.021 when 50 mol.% Na+ was replaced by K+. Additionally, leakage current results show that as more sodium ions are replaced by potassium ions, the leakage current increased and the resistivity decreased.

  8. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.

    PubMed

    Sola, A; Bellucci, D; Raucci, M G; Zeppetelli, S; Ambrosio, L; Cannillo, V

    2012-02-01

    Because of their excellent bioactivity, bioactive glasses are increasingly diffused to produce biomedical devices for bone prostheses, to face the dysfunctions that may be caused by traumatic events, diseases, or even natural aging. However, several processing routes, such as the production of scaffolds or the deposition of coatings, include a thermal treatment to apply or sinter the glass. The exposure to high temperature may induce a devetrification phenomenon, altering the properties and, in particular, the bioactivity of the glass. The present contribution offers an overview of the thermal behavior and properties of two glasses belonging to the Na2O-CaO-P2O5-SiO2 system, to be compared to the standard 45S5 Bioglass(®). The basic goal is to understand the effect of both the original composition and the thermal treatment on the performance of the sintered glasses. The new glasses, the one (BG_Na) with a high content of Na2O, the other (BG_Ca) with a high content of CaO, were fully characterized and sintering tests were performed to define the most interesting firing cycles. The sintered samples, treated at 880°C and 800°C respectively, were investigated from a microstructural point of view and their mechanical properties were compared to those of the bulk (not sintered) glass counterparts. The effect of sintering was especially striking on the BG_Ca material, whose Vickers hardness increased from 598.9 ± 46.7 HV to 1053.4 ± 35.0 HV. The in vitro tests confirmed the ability of the glasses, both in bulk and sintered form, of generating a hydroxyapatite surface layer when immersed in a simulated body fluid. More accurate biological tests performed on the sintered glasses proved the high bioactivity of the CaO-rich composition even after a heat treatment. PMID:22052581

  9. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  10. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  11. Phase Equilibria Studies in the SiO2-K2O-CaO System

    NASA Astrophysics Data System (ADS)

    Chen, Mao; Hou, Xinmei; Chen, Junhong; Zhao, Baojun

    2016-06-01

    Phase equilibria in the SiO2-K2O-CaO system have been experimentally investigated in the SiO2-rich area. High-temperature equilibration, rapid quenching, and electron probe X-ray microanalysis (EPMA) techniques have been used in this study. K2O may vaporize during EPMA measurements causing significant uncertainties. In the present study, optimum EPMA operating conditions have been determined in order to accurately measure K2O concentrations in the quenched samples. The compositions of all phases present in the quenched sample were measured using EPMA with optimum operating parameters. The following primary phase fields were identified in the composition range investigated: SiO2, CaO·SiO2, 2CaO·SiO2, K2O·2CaO·2SiO2, and K2O·6CaO·4SiO2. The isotherms between 1273 K and 1473 K (1000 °C and 1200 °C) in these primary phase fields have been determined. The presence of the compounds K2O·2CaO·2SiO2 and K2O·6CaO·4SiO2 has been confirmed.

  12. Hydrothermal transformation of magadiite into ferrierite in Al 2O 3-Na 2O-ethylenediamine-H 2O system

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yang, Yang; Cui, Miao; Sun, Jiangbo; Qi, Lin; Ji, Shouhua; Meng, Changgong

    2011-12-01

    This study investigated the transformation of magadiite into ferrierite in Al 2O 3-Na 2O-ethylenediamine (EDA)-H 2O system. The influence of various parameters such as reaction temperature, time, alkalinity, the reactant Na 2O/SiO 2 ratio and EDA/SiO 2 ratio were examined. Thermal and acid stability of the synthetic ferrierite are presented. Highly crystallized and pure ferrierite could be obtained from dispersion with the molar composition: 0.01 Na 2O: 0.005 Al 2O 3: SiO 2: 30 H 2O: 20 EDA by heating at 433 K for 48 h. The structure of ferrierite was destroyed when the temperature rose above 873 K and the framework of the sample, stirred in 5 mol/L HCl for 3 h, is consistent with the untreated ferrierite.

  13. Boron Removal from Silicon by CaO-Na2O-SiO2 Ternary Slag

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Tranell, Gabriella; Tangstad, Merete

    2015-06-01

    Boron removal from silicon is an important issue for solar-grade silicon feedstock production. In the present study, the removal of B from liquid silicon by a CaO-Na2O-SiO2 slag is studied and it is shown that B can be rapidly removed from silicon within short refining times. Based on mass balance and chemical analysis of the reacted silicon and slag, it is indicated that the kinetics of B removal is dependent on the Na2O in the slag, the main reactive agent for B removal from the system. The transported B into the slag is gasified at the slag-gas interface through sodium metaborate evaporation, which is a rate controlling reaction for B transport to the gas phase. It is indicated that B removal rate by CaO-Na2O-SiO2 slag is considerably higher than that by CaO-SiO2 slags. It is proposed that boron oxide (B2O3) is better embedded in the structure of CaO-SiO2 slags than Na2O-containing slags.

  14. Investigation of SiO2:Na2O ratio as a corrosion inhibitor for metal alloys

    NASA Astrophysics Data System (ADS)

    Mohamad, N.; Othman, N. K.; Jalar, A.

    2013-11-01

    The silicate is one of the potential compounds used as a corrosion inhibitor for metal alloys. The mixture between silica and sodium hydroxide (NaOH) succeeded to produce the silicate product. The formulation of a silicate product normally variable depended by the different ratio of SiO2:Na2O. This research utilized the agriculture waste product of paddy using its rice husk. In this study, the amorphous silica content in rice husk ash was used after rice husk burnt in a muffle furnace at a certain temperature. The X-ray diffraction (XRD) analysis was done to determine the existence of amorphous phase of silica in the rice husk ash. There are several studies that recognized rice husk as an alternative source that obtained high silica content. The X-ray fluorescence (XRF) analysis was carried out to clarify the percentage amount of Si and O elements, which referred the silica compound in rice husk ash. The preparation of sodium silicate formulation were differ based on the SiO2:Na2O ratio (SiO2:Na2O ratio = 1.00, 2.00 and 3.00). These silicate based corrosion inhibitors were tested on several testing samples, which were copper (99.9%), aluminum alloy (AA 6061) and carbon steel (SAE 1045). The purpose of this study is to determine the appropriate SiO2:Na2O ratio and understand how this SiO2:Na2O ratio can affect the corrosion rate of each metal alloys immersed in acidic medium. In order to investigate this study, weight loss test was conducted in 0.5 M hydrochloric acid (HCl) for 24 hours at room temperature.

  15. Evaluation of CaO-SiO2-P2O5-Na2O-Fe2O3 bioglass-ceramics for hyperthermia application.

    PubMed

    Singh, Rajendra Kumar; Srinivasan, A; Kothiyal, G P

    2009-12-01

    Magnetic bioglass ceramics (MBC) are being considered for use as thermoseeds in hyperthermia treatment of cancer. While the bioactivity in MBCs is attributed to the formation of the bone minerals such as crystalline apatite, wollastonite, etc. in a physiological environment, the magnetic property arises from the magnetite [Fe3O4] present in these implant materials. A new set of bioglasses with compositions 41CaO x (52-x)SiO2 x 4P2O5 x xFe2O3 x 3Na2O (2 < or = x < or = 10 mol% Fe2O3) have been prepared by melt quenching method. The as-quenched glasses were then heat treated at 1050 degrees C for 3 h to obtain the glass-ceramics. The structure and microstructure of the samples were characterized using X-ray diffraction and microscopy techniques. X-ray diffraction data revealed the presence of magnetite in the heat treated samples with x > or = 2 mol% Fe2O3. Room temperature magnetic property of the heat treated samples was investigated using a Vibrating Sample Magnetometer. Field scans up to 20 kOe revealed that the glass ceramic samples had a high saturation magnetization and low coercivity. Room temperature hysteresis cycles were also recorded at 500 Oe to ascertain the magnetic properties at clinically amenable field strengths. The area under the magnetic hysteresis loop is a measure of the heat generated by the MBC. The coercivity of the samples is another important factor for hyperthermia applications. The area under the loop increases with an increase in Fe2O3 molar concentration and the. coercivity decreases with an increase in Fe2O3 molar concentration The evolution of magnetic properties in these MBCs as a function of Fe2O3 molar concentration is discussed and correlated with the amount of magnetite present in them. PMID:18560766

  16. Ab-initio Density Functional Theory (DFT) Studies of Electronic, Transport, and Bulk Properties of Sodium Oxide (Na2O)

    NASA Astrophysics Data System (ADS)

    Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola

    We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  17. Optical band gap studies on (55- x)Na 2O- xPbO-45P 2O 5 (SLP) glass system

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, K.; Salagram, M.

    2000-12-01

    Sodium lead phosphate (SLP) glasses in the series (55- x)Na 2O- xPbO-45P 2O 5 with x varying from 55 to 0 were prepared by the single step melt quenching process with Na2CO3 ( sodium carbonate ), PbO (lead monoxide) and NH 4H 2PO 4 (ammonium dihydrogen phosphate - ADP) as starting materials. The 12 samples prepared were grouped into two batches with batch A having 55⩽ x⩽30 for increasing Na 2O and batch B having 0⩽ x⩽25 for increasing PbO to understand the roles of Na 2O and PbO in phosphate network. The optical absorption spectra of these glasses were recorded in the range 240-300 nm. The fundamental optical absorption edges were observed for all glasses except for Na 2O-P 2O 5 glass with x=0. From these absorption edge studies the optical band gap ( Eopt) and the Urbach energy ( ΔE) values have been evaluated by following the available semi-empirical theories. The Eopt values were found to vary from 4.33 to 4.49 eV for batch A with increasing Na 2O content and from 4.55 to 4.40 eV for batch B with increasing PbO content. The Eopt behavior with increasing Na 2O was found to be complementary to increasing PbO in the glass network. The role of Na 2O is found to increase the Eopt value by causing decrease in the number of bridging oxygens affected.

  18. Thermal and fragility studies on microwave synthesized K2O-B2O3-V2O5 glasses

    NASA Astrophysics Data System (ADS)

    Harikamalasree, Reddy, M. Sudhakara; Viswanatha, R.; Reddy, C. Narayana

    2016-05-01

    Glasses with composition xK2O-60B2O3-(40-x) V2O5 (15 ≤ x ≤ 39 mol %) was prepared by an energy efficient microwave method. The heat capacity change (ΔCp) at glass transition (Tg), width of glass transition (ΔTg), heat capacities in the glassy (Cpg) and liquid (Cpl) state for the investigated glasses were extracted from Modulated Differential Scanning Calorimetry (MDSC) thermograms. The width of glass transition is less than 30°C, indicating that these glasses belongs to fragile category. Fragility functions [NBO]/(Vm3Tg) and (ΔCp/Cpl)increases with increasing modifier oxide concentration. Increase in fragility is attributed to the increasing coordination of boron. Further, addition of K2O creates NBOs and the flow mechanism involves bond switching between BOs and NBOs. Physical properties exhibit compositional dependence and these properties increase with increasing K2O concentration. The observed variations are qualitatively analyzed.

  19. FT-IR and thermoluminescence investigation of P2O5-BaO-K2O glass system

    NASA Astrophysics Data System (ADS)

    Ivascu, C.; Timar-Gabor, A.; Cozar, O.

    2013-11-01

    The 0.5P2O5ṡxBaOṡ(0.5-x)K2O glass system (0≤x≤0.5mol%) is investigated by FT-IR and thermoluminescence as a possible dosimetic material. FT-IR spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption bands are characterized by two broad peaks near 500 cm-1, two weak peaks around 740 cm-1 and three peaks in the 900-1270 cm-1 region. The shift in the position of the band assigned to asymmetric stretching of PO2- group, υas(PO2-) modes from ˜1100 cm-1 to 1085 cm-1 and the decrease in its relative intensity with the increasing of K2O content shows a network modifier role of this oxide.. Luminescence investigations show that by adding modifier oxides in the phosphate glass a dose dependent TL signals result upon irradiation. Thus P2O5-BaO-K2O glass system is a possible candidate material for dosimetry in the dose 0 - 50 Gy range.

  20. The Influence of Na2O on the Solidification and Crystallization Behavior of CaO-SiO2-Al2O3-Based Mold Flux

    NASA Astrophysics Data System (ADS)

    Gao, Jinxing; Wen, Guanghua; Sun, Qihao; Tang, Ping; Liu, Qiang

    2015-08-01

    The reaction between [Al] and SiO2 sharply increased the Al2O3 and decreased SiO2 contents in mold flux during the continuous casting of high-Al steels. These changes converted original CaO-SiO2-based flux into CaO-SiO2-Al2O3-based flux, promoting the crystallization and deteriorating the mold lubrication. Therefore, study on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux, with the applicable fluidizers, is of importance. The effect of Na2O, predominantly used as the fluidizer in mold flux, on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux needs to be investigated. In this study, a CaO-SiO2-Al2O3-based mold flux containing 6.5 wt pct Li2O was designed; the effect of Na2O on the solidification and crystallization behavior of these mold fluxes was investigated using the single hot thermocouple technique (SHTT) and the double hot thermocouple technique (DHTT). Moreover, the slag film obtained by a heat flux simulator was analyzed using X-ray diffraction (XRD). The results indicate that the solid fraction of molten slag (Fs) and the crystalline fraction of solid slag (Fc) in the mold slag films decrease with increasing Na2O content from 0 to 2 wt pct. However, Fs and Fc increased when the Na2O content increased from 2 to 6 wt pct. The critical cooling rates initially decreases and then increases with increasing Na2O content. The XRD analysis results show that LiAlO2 and CaF2 were the basic crystals for all the mold fluxes. Increasing the Na2O content both inhibits the Ca2Al2SiO7 formation and promotes the production of Ca12Al14O33, indicating that the mold lubrication deteriorated because of the high melting-point phase formation of Ca2Al2SiO7 in the CaO-SiO2-Al2O3-based mold flux containing 6.5 wt pct Li2O, without Na2O. The strong crystallization tendency also deteriorated the mold lubrication for the mold flux with a higher Na2O content. Therefore, the addition of Na2O was less than 2 wt pct in

  1. Critical Evaluation and Thermodynamic Optimization of the Na2O-FeO-Fe2O3 System

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-02-01

    A complete literature review, critical evaluation, and thermodynamic optimization of experimental phase diagrams and thermodynamic properties of the Na2O-FeO-Fe2O3 system were performed at 1 bar total pressure. A set of optimized model parameters obtained for all phases present in this system reproduces available and reliable thermodynamic properties and phase equilibria within experimental error limits from 298 K (25 °C) to above liquidus temperatures for all compositions and oxygen partial pressures from metallic saturation to 1 atm. The liquid phase was modeled based on the Modified Quasichemical Model by considering the possible formation of NaFeO2 associate in the liquid state. Complicated subsolidus phase relations depending on the oxygen partial pressure and temperature were elucidated, and discrepancies among experimental data were resolved.

  2. Understanding the magnetic behavior of heat treated CaO-P2O5-Na2O-Fe2O3-SiO2 bioactive glass using electron paramagnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.

    2014-09-01

    Bioactive glass of composition 41CaO-44SiO2-4P2O5-8Fe2O3-3Na2O has been heat treated in the temperature (TA) range of 750-1150 °C for time periods (tA) ranging from 1 h to 3 h to yield magnetic bioactive glass ceramics (MBCs). X-ray diffraction studies indicate the presence of bone mineral (hydroxyapatite and wollastonite) and magnetic (magnetite and α-hematite) phases in nanocrystalline form in the MBCs. Electron paramagnetic resonance (EPR) study was carried out to understand the variation in saturation magnetization and coercivity of the MBCs with TA and tA. These studies reveal the nature and amount of iron ions present in the MBCs and their interaction in the glassy oxide matrix as a function of annealing parameters. The deterioration in the magnetic properties of the glass heat treated above 1050 °C is attributed to the crystallization of the non-magnetic α-hematite phase. These results are expected to be useful in the application of these MBCs as thermoseeds in hyperthermia treatment of cancer.

  3. Studies on influence of aluminium ions on the bioactivity of B2O3-SiO2-P2O5-Na2O-CaO glass system by means of spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Mohini, G. Jagan; Krishnamacharyulu, N.; Sahaya Baskaran, G.; Rao, P. Venkateswara; Veeraiah, N.

    2013-12-01

    Bioactive multi component glasses of the composition of 27.4 B2O3-6.4 SiO2-2.5 P2O5-25.5 Na2O-(38.2 - x) CaO: x Al2O3 (x between 0 and 3.2) were synthesized, by melt quenching technique and their bioactivity was investigated as a function of Al2O3 concentration. Initially, optical absorption and infrared spectra were recorded and analyzed in order to have some pre-understanding over structural aspects of the glasses. For understanding the bioactivity, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (∼30 days) and the weight loss measurements were carried out. The spectroscopic studies were repeated on the post immersed samples. From the comparison of the analysis of the spectroscopic data of both pre-immersed and post-immersed samples together with the information on variation of pH value of residual solution as a function of immersion time, it is concluded that the participation of aluminium ions in tetrahedral positions is hindrance for the formation of HA layer and for the bioactivity of the samples.

  4. Lateral variation of H2O/K2O ratios in Quaternary Magma of the Northeastern Japan arc

    NASA Astrophysics Data System (ADS)

    Miyagi, I.

    2012-12-01

    Water plays a fundamental role in the magma genesis beneath subduction zones. In order to estimate a spatial distribution of the density of water flux in the wedge mantle of the Northeastern Japan arc, this study examines a lateral variation of pre-eruptive bulk rock H2O/K2O contents among volcanoes located both in the frontal and in back arc settings. The analytical targets are the frontal volcanoes Nigorikawa (N42.12 E140.45), Zenikame (N41.74 E140.85), Adachi (N38.22 E140.65), and Nanashigure (N40.07 E141.11), and the back arc ones Hijiori (N38.61 E140.17) and Kanpu (N39.93 E139.88). The bulk magmatic H2O content (TH2O) is calculated from a mass balance of hydrogen isotopic ratios among three phases in a batch of magma; dissolved water in melt, excess H2O vapor, and hydrous phenocrysts such as amphiboles (Miyagi and Matsubaya, 2003). Since the amount of H2O in hydrous phenocryst is negligible, the bulk magmatic H2O content can be written as TH2O = (30 XD CD) / (15 - dT + dMW), where dMW is the measured hydrogen isotopic ratio of hydrous phenocrysts, XD is a melt fraction of magma, CD is a water concentration of the melt, and dT is hydrogen isotopic ratios of a bulk magma (assumed to be -50 per-mil). Both XD and CD are estimated from bulk rock chemistry of the sample using the MELTS program (Ghiorso and Sack, 1995). Hydrogen isotopic fractionation factors are assumed to be -15 and -30 per-mil for vapor and hydrous mineral, and vapor and silicate melt, respectively. There observed a clear difference among the H2O/K2O ratios of bulk magmas from the frontal and back arc volcanoes. For instance higher H2O/K2O wt ratios was observed in the frontal volcanoes (Nigorikawa 5.3, Zenikame 11-12, Adachi 8-10, and Nanashigure 4-18), while lower H2O/K2O wt ratios was observed in the back arc ones (Kanpu 0-2.5 and Hijiori 1.4). The lateral variation of H2O/K2O ratios infer the higher water flux through the frontal side of wedge mantle, which can be a potential cause of the

  5. Modification of the Structure of Ti-Bearing Mold Flux by the Simultaneous Addition of B2O3 and Na2O

    NASA Astrophysics Data System (ADS)

    Li, Zhongmin; Sun, Yongqi; Liu, Lili; Zhang, Zuotai

    2016-03-01

    The present paper mainly focused on how B2O3 and Na2O additions influenced the structure of the Ti-bearing fluoride-free mold flux and investigated how the boron-related units were affected by Na2O. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, 11B magic angle spinning-nuclear magnetic resonance (MAS-NMR), and X-ray photoelectron spectroscopy (XPS) were utilized to identify different structural units and to analyze the overall modification of the network by additives. It was found that BO3 was more abundant than BO4 in the flux. In addition, the addition of B2O3 and Na2O was proved to promote conversion from non-ring BO3 to tetrahedral BO4, and this was confirmed by FTIR and 11B MAS NMR analysis. BO3 was a two-dimensional structure unit and contributed to construct a less stable network. With increasing B2O3 content, degree of polymerization of the flux was increased as confirmed by increased fraction of Q 3 in Raman spectra and non-bridging oxygen in XPS. By contrast, the addition of Na2O, which is a strong network breaker, brought about more non-bridging oxygen by breaking the Si-O-Si linkage which was verified by XPS results. Consequently, a less polymerized network was observed by decreasing content of Q 3 from Raman spectra.

  6. Metamorphic evolution of eclogites at Qinglongshan: modeling in system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3

    NASA Astrophysics Data System (ADS)

    Yan, R.; Yang, J.; Zhang, Z.

    2011-12-01

    Eclogite at Qinglongshan in NE Jiangsu province is one of the research objects which are investigated frequently and products are remarkable in ultra-high pressure (UHP) metamorphic petrology and geochemistry nearly twenty years. Though scholars in China and abroad have made abundant petrological work, there are opposite perspectives to some important petrological questions such as peak assemblage, crystalization time and condition of epidote porphyroblasts which contain coesite, peak assemblage contains talc or not, lawsonite has occurred in the rock or not. This paper choose eclogites in Qinglongshan. Besides traditional petrological work, we applied phase diagram modeling to mineral assemblage and chemical composition, quantitatively investigating the change with temperature and pressure. With the help of petrographic observation the petrological questiones can be solved. Eclogites in Qinglongshan can be divided into three categories: porphyroblastic foliated eclogites, granular massive eclogites and banded eclogites. The peak assemblage in three kinds of eclogites is garnet + omphacite + phengite + kyanite +rutile + coesite. The minerals in the peak assemblage show shape preferred orientation defining the rock foliation in porphyroblastic eclogites. The peak assemblage defined by garnet compositional isopleths in the calculated phase diagram is garnet +omphacite + phengite + kyanite + rutile + coesite + lawsonite + talc in porphyroblastic eclogites, and is garnet + omphacite + phengite + kyanite + rutile +coesite + lawsonite in banded eclogites, both inconsistent with the petrographic observation. This discrepancy probably resulted from the assumption of pure water as the ultrahigh-pressure (UHP) fluid phase. Three stages of metamorphism are established for Qinglongshan eclogites. Prograde inclusions such as amphibole, epidote, plagioclase, chlorite, muscovite, paragonite and albite coexist in the area of < 0.8GPa and < 575. It can infer from mineral assemblage that peak temperature and pressure are higher than 710 and 2.9GPa in porphyroblastic eclogites and >620 and 2.9GPa in banded eclogites. Both petrography and phase diagram modelling demonstrate a crystallization sequence of kyanite-epidote-talc, with the first two having begun to crystallize at UHP condition and hence including coesite. The mode of epidote increases dramatically at < 2 GPa resulting in the formation of large porphyroblasts. The randomly oriented porphyroblasts overprint the rock foliation, implying that they crystallized later than the peak assemblage under a weak shear stress field. Kyanite begun to crystallize at early retrogression in banded eclogites. Epidote begun to develop at low pressure, so there is no coesite in banded eclogites. Symplectite is the product of late retrograde metamorphism. The P-T paths of porphyroblastic eclogites and banded eclogites defined by the mineral assemblages are both typically the hair-pin type. The amounts of hydrous minerals increased during retrogression, implying continuous ingress of fluids into the rock.

  7. Ionic conductivity of alkaline (Li 2O, Na 2O) and alkaline-earth (BaO) borates in crystallization (vitrification) region

    NASA Astrophysics Data System (ADS)

    Solntsev, V. P.; Davydov, A. V.

    2011-11-01

    In this paper we report the existence of abnormal behavior of electric properties of alkaline (Li 2O,Na 2O) and alkaline-earth (BaO) borate in the melt—a crystal (glass) transition region. Results of measurement of conductivity in the mentioned interval evidence the existence of a strong variation of electric properties depending on the concentration of alkaline and alkaline-earth ions. The reasons of such behavior are discussed.

  8. NEAR-Solidus Phase Relationships in Metapelites to 1.0 GPa: Influence of K2O Content

    NASA Astrophysics Data System (ADS)

    Ferri, F.

    2003-04-01

    The transition from amphibolite to granulite facies conditions in metasediments at intermediate pressure is still poorly defined and contradictions persist in currently available petrogenetic grids. Phase relationships in metapelites are investigated on four synthetic compositions (M-P-H-L) in the model system K2O-CaO-FeO-MgO-Al2O3-SiO2-H2O. Experiments were carried out in a piston cylinder apparatus at pressures and temperatures up to 1.0 GPa and to 730^o, and in an internally heated pressure vessel at 0.8 GPa at temperatures up to 730^o. In order to monitor the effect of H2O saturation and fluid speciation, three different charges were loaded for each bulk composition, two at fluid saturated conditions and fO2 buffered by graphite, Ni-NiO and hematite-magnetite respectively. Experiments were characterized by XRD, BSE images and EMPA. All assemblages contain quartz and anorthite. Garnet + biotite ± staurolite + muscovite are stable in compositions M and P while orthoamphibole replaces muscovite in compositions H and L, where the K2O content is lower. Orthoamphibole is of gedrite type containing 2.0 a.p.f.u. (23 O) of Al at 650^o and 2.5 a.p.f.u. at 700^o . At 700^o and 1.0 GPa and 680^o and 0.8 GPa cordierite is also present in composition L. Garnet has grossular and pyrope fractions of 0.1 and 0.2 respectively all over the pressure-temperature range. In agreement with phase relations experimentally determined by Poli and Schmidt (2002), our results revealed that the stability field of staurolite + biotite and orthoamphibole + staurolite pairs extend to higher pressures and temperatures if compared with calculated equilibria in analogous systems (Worley and Powell, 1998; Gouwei et al., 1994). At near-solidus conditions a variety of hydrous phases may be directly involved in the production of melt through fluid present or fluid absent melting reactions. X. Gowei, T. M. Will and R. Powell, J. Metamorphic Geol., 12: 99-119, 1994 S. Poli &M. W. Schmidt, Annu. Rev

  9. Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Shao, Ning-ning; Huang, Tian-yong; Qin, Jun-feng; Wang, Dong-min; Yang, Yu

    2014-06-01

    Geopolymers are three-dimensional aluminosilicates formed in a short time at low temperature by geopolymerization. In this paper, alkali-activated foam geopolymers were fabricated from circulating fluidized bed fly ash (CFA), and the effect of SiO2/Na2O mole ratio (0.91-1.68) on their properties was studied. Geopolymerization products were characterized by mechanical testing, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The results show that SiO2/Na2O mole ratio plays an important role in the mechanical and morphological characteristics of geopolymers. Foam samples prepared in 28 d with a SiO2/Na2O mole ratio of 1.42 exhibit the greatest compressive strength of 2.52 MPa. Morphological analysis reveals that these foam geopolymers appear the relatively optimized pore structure and distribution, which are beneficial to the structure stability. Moreover, a combination of the Si/Al atomic ratio ranging between 1.47 and 1.94 with the Na/Al atomic ratio of about 1 produces the samples with high strength.

  10. Phase equilibria in the oxide system Nd 2O 3-K 2O-P 2O 5

    NASA Astrophysics Data System (ADS)

    Szczygieł, Irena; Znamierowska, Teresa; Mizer, Dagmara

    2010-07-01

    A phase equilibria diagram of the partial system NdPO 4-K 3PO 4-KPO 3 has been developed as part of the research aimed at determining the phase equilibrium relationships in the oxide system Nd 2O 3-K 2O-P 2O 5. The investigations were conducted using thermoanalytical techniques, X-ray powder diffraction analysis and reflected-light microscopy. Three isopleths existing between: K 3Nd(PO 4) 2-K 4P 2O 7, NdPO 4-K 5P 3O 10 and NdPO 4-K 4P 2O 7 have been identified in the partial NdPO 4-K 3PO 4-KPO 3 system. Previously unknown potassium-neodymium phosphate "K 4Nd 2P 4O 15" has been discovered in the latter isopleth section. This phosphate exists in the solid phase up to a temperature of 890 °C at which it decomposes into the parent phosphates NdPO 4 and K 4P 2O 7. Four invariant points: two quasi-ternary eutectics, E 1 (1057 °C) and E 2 (580 °C) and two quasi-ternary peritectics, P 1 (1078 °C) and P 2 (610 °C), occur in the NdPO 4-K 3PO 4-KPO 3 region.

  11. Physical, optical and structural properties of xNa2O-(50-x)Bi2O3-10ZnO-40B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, Sajjan; Maan, A. S.; Punia, R.; Kundu, R. S.; Murugavel, S.

    2013-02-01

    Glasses with composition xNa2O-(50-x)Bi2O3-10ZnO-40B2O3 with 0 ≤ x≤ 20 have been synthesized by conventional melt quench method. Density and molar volume decreases with increase in Na2O content. The optical absorption studies revealed that the cutoff wavelength decreases and optical band gap (Eopt) increases with increase in Na2O content and the present glass system shows indirect allowed transitions. The IR studies indicate that these glasses are made up of [BiO3] [BiO6], [BO3] and [BO4] basic structural units. Na2O acts a network modifier and modify the glass structure.

  12. Phase Equilibria Study in the TeO2-Na2O-SiO2 System in Air Between 723 K (500 °C) and 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Santoso, Imam; Taskinen, Pekka

    2016-06-01

    Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.

  13. Phase Equilibria Study in the TeO2-Na2O-SiO2 System in Air Between 723 K (500 °C) and 1473 K (1200 °C)

    NASA Astrophysics Data System (ADS)

    Santoso, Imam; Taskinen, Pekka

    2016-08-01

    Knowledge of phase equilibria in the TeO2-Na2O-SiO2 system at elevated temperatures is important for ceramic and glass industries and for improving the operation of the smelting process of tellurium-containing materials. A review of previous investigations has indicated, however, that there are omissions in the available datasets on the liquidus temperatures of the molten TeO2-Na2O-SiO2 mixtures. The employed experimental method included equilibration of mixtures made from high purity oxides, rapid quenching of the equilibrated samples in water and followed by compositional analysis of the phases using an electron probe X-ray microanalyzer. The liquidus and phase equilibria in the TeO2-SiO2, TeO2-Na2O, and SiO2-TeO2-Na2O systems have been studied for a wide range of compositions between 723 K (500 °C) and 1473 K (1200 °C) at TeO2, SiO2, and Na2SiO3 saturations. New data have been generated in the SiO2-TeO2-Na2O system at SiO2 saturation. The liquidus compositions in the TeO2-Na2O system at TeO2 saturation have been compared with the previous data and an assessed phase diagram.

  14. Critical Evaluation and Thermodynamic Optimization of the Na2O-FeO-Fe2O3-SiO2 System

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-02-01

    A complete literature review, critical evaluation, and thermodynamic optimization of phase diagrams and thermodynamic properties of the Na2O-FeO-Fe2O3-SiO2 system were performed at 1 atm total pressure. A set of optimized model parameters obtained for all phases present in this system reproduces available and reliable thermodynamic properties and phase equilibria within experimental error limits from 298 K (25 °C) to above liquidus temperatures for all compositions and oxygen partial pressures from metallic Fe saturation to 1 atm. The liquid phase was modeled based on the Modified Quasichemical Model considering the possible formation of NaFeO2 associate in the liquid state. The NaFeO2 metaoxide solid solutions containing the excess SiO2 were described within the framework of Compound Energy Formalism. Based on the thermodynamic models and model parameters, unexplored thermodynamic properties and phase diagrams of the Na2O-FeO-Fe2O3-SiO2 system were predicted.

  15. Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity

    USGS Publications Warehouse

    Roedder, E.

    1978-01-01

    The concept of silicate liquid immiscibility was invoked early in the history of petrology to explain certain pairs of compositionally divergent rocks, but. as a result of papers by Greig (Am. J. Sci. 13, 1-44, 133-154) and Bowen (The Evolution of the Igneous Rocks), it fell into disfavor for many years. The discovery of immiscibility in geologically reasonable temperature ranges and compositions in experimental work on the system K2O-FeO-Al2O3-SiO2, and of evidence for immiscibility in a variety of lunar and terrestrial rocks, has reinstated the process. Phase equilibria in the high-silica corner of the tetrahedron representing the system K2O- FeO-Al2O3-SiO2 are presented, in the form of constant FeO sections through the tetrahedron, at 10% increments. Those sections, showing the tentative relationships of the primary phase volumes, are based on 5631 quenching runs on 519 compositions, made in metallic iron containers in pure nitrogen. Thirteen crystalline compounds are involved, of which at least six show two or more crystal modifica-tions. Two separate phase volumes, in each of which two immiscible liquids, one iron-rich and the other iron-poor, are present at the liquidus. One of these volumes is entirely within the quaternary system, astride the 1:1 K2O:Al2O3 plane. No quaternary compounds as such have been found, but evidence does point toward at least partial quaternary solid solution, with rapidly lowering liquidus temperatures, from K2O??Al2O3?? 2SiO2 ('potash nepheline', kalsilite. kaliophilite) to the isostructural compound K2O??FeO??3SiO2, and from K2O??Al2O3??4SiO2 (leucite) to the isostructural compound K2O??FeO??5SiO2, Both of these series apparently involve substitution, in tetrahedral coordination. of a ferrous iron and a silicon ion for two aluminum ions. Some of the 'impurities' found in analyses of the natural phases may reflect these substitutions. As a result of the geometry of the immiscibility volume located entirely within the quaternary

  16. Coded Access Optical Sensor (CAOS) Imager

    NASA Astrophysics Data System (ADS)

    Riza, N. A.; Amin, M. J.; La Torre, J. P.

    2015-04-01

    High spatial resolution, low inter-pixel crosstalk, high signal-to-noise ratio (SNR), adequate application dependent speed, economical and energy efficient design are common goals sought after for optical image sensors. In optical microscopy, overcoming the diffraction limit in spatial resolution has been achieved using materials chemistry, optimal wavelengths, precision optics and nanomotion-mechanics for pixel-by-pixel scanning. Imagers based on pixelated imaging devices such as CCD/CMOS sensors avoid pixel-by-pixel scanning as all sensor pixels operate in parallel, but these imagers are fundamentally limited by inter-pixel crosstalk, in particular with interspersed bright and dim light zones. In this paper, we propose an agile pixel imager sensor design platform called Coded Access Optical Sensor (CAOS) that can greatly alleviate the mentioned fundamental limitations, empowering smart optical imaging for particular environments. Specifically, this novel CAOS imager engages an application dependent electronically programmable agile pixel platform using hybrid space-time-frequency coded multiple-access of the sampled optical irradiance map. We demonstrate the foundational working principles of the first experimental electronically programmable CAOS imager using hybrid time-frequency multiple access sampling of a known high contrast laser beam irradiance test map, with the CAOS instrument based on a Texas Instruments (TI) Digital Micromirror Device (DMD). This CAOS instrument provides imaging data that exhibits 77 dB electrical SNR and the measured laser beam image irradiance specifications closely match (i.e., within 0.75% error) the laser manufacturer provided beam image irradiance radius numbers. The proposed CAOS imager can be deployed in many scientific and non-scientific applications where pixel agility via electronic programmability can pull out desired features in an irradiance map subject to the CAOS imaging operation.

  17. Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1982-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.

  18. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  19. Effects of caustic sodium concentration and molecular ratio of Na2O to Al2O3 on agglomeration in the precipitation process

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Chen, Wenmi; Li, Wangxing

    2010-11-01

    The supersaturation of sodium aluminate solution (liquor) is a prerequisite for agglomeration and the key factors that determine supersaturation of liquor are caustic sodium concentration (Nk) and molecular ratio of Na2O to Al2O3 (αk). In this paper, the effects of Nk and αk on the agglomeration process of seeded precipitation were studied. The results show that the Nk plays an important role in the agglomeration process. The supersaturation of liquor decreases with the increasing of Nk and so not only does the precipitation ratio of liquor decrease but also the particle size of agglomerate decreases. The supersaturation of liquor decreases with the increasing of αk and so the precipitation rate and depth of liquor decrease and thus the agglomeration of fine particles is weakened.

  20. On the existence of a high-temperature polymorph of Na2Ca6Si4O15—implications for the phase equilibria in the system Na2O-CaO-SiO2

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Maier, Matthias

    2016-06-01

    previously unknown compound our results will also help to improve the interpretation of the phase relationships between the compounds in the ternary system Na2O-CaO-SiO2 which are of interest for several applications related to the field of applied mineralogy and materials science.

  1. Investigating the solubility and cytocompatibility of CaO-Na2 O-SiO2 /TiO2 bioactive glasses.

    PubMed

    Wren, Anthony W; Coughlan, Aisling; Smith, Courtney M; Hudson, Sarah P; Laffir, Fathima R; Towler, Mark R

    2015-02-01

    This study aims to investigate the solubility of a series of titanium (TiO2 )-containing bioactive glasses and their subsequent effect on cell viability. Five glasses were synthesized in the composition range SiO2 -Na2 O-CaO with 5 mol % of increments TiO2 substituted for SiO2 . Glass solubility was investigated with respect to (1) exposed surface area, (2) particle size, (3) incubation time, and (4) compositional effects. Ion release profiles showed that sodium (Na(+) ) presented high release rates after 1 day and were unchanged between 7 and 14 days. Calcium (Ca(2+) ) release presented a significant change at each time period and was also composition dependent, where a reduction in Ca(2+) release is observed with an increase in TiO2 concentration. Silica (Si(4+) ) release did not present any clear trends while no titanium (Ti(4+) ) was released. Cell numbers were found to increase up to 44%, compared to the growing control population, with a reduction in particle size and with the inclusion of TiO2 in the glass composition. PMID:24825479

  2. Basic network structure of SiO2–B2O3–Na2O glasses from diffraction and reverse Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Fábián, M.; Araczki, Cs

    2016-05-01

    Neutron- and high-energy synchrotron x-ray diffraction experiments have been performed on the (75‑x)SiO2–xB2O3–25Na2O x = 5, 10, 15 and 20 mol% glasses. The structure factor has been measured over a broad momentum transfer range, between 0.4 and 22 Å‑1. For data analyses and modelling the Fourier transformation and the reverse Monte Carlo simulation techniques have been applied. The partial atomic pair correlation functions, the nearest neighbour distances, coordination number distributions and average coordination number values and three-particle bond angle distributions have been revealed. The Si–O network proved to be highly stable consisting of SiO4 tetrahedral units with characteristic distances at r Si–O = 1.60 Å and r Si–Si = 3.0(5) Å. The behaviour of network forming boron atoms proved to be more complex. The first neighbour B–O distances show two distinct values at 1.30 Å and a characteristic peak at 1.5(5) Å and, both trigonal BO3 and tetrahedral BO4 units are present. The relative abundance of BO4 and BO3 units depend on the boron content, and with increasing boron content the number of BO4 is decreasing, while BO3 is increasing.

  3. Role of B2O3 on the Viscosity and Structure in the CaO-Al2O3-Na2O-Based System

    NASA Astrophysics Data System (ADS)

    Kim, Gi Hyun; Sohn, Il

    2013-10-01

    The effect of B2O3 on the viscosity and structure in the calcium-aluminate melt flux system containing Na2O was studied. An increase in the B2O3 content at fixed CaO/Al2O3 ratio lowered the viscosity. Higher CaO/Al2O3 ratio at fixed B2O3 content also decreased the viscosity. The alumino-borate structures were confirmed through Fourier transformed infrared (FTIR) and Raman spectroscopy and consisted of [AlO4]-tetrahedral structural units, [BO3]-triangular structural units, and [BO4]-tetrahedral structural units, which could be correlated to the viscosity. At fixed CaO/Al2O3 ratio, B2O3 additions decreased the [AlO4]-tetrahedral structural units and transformed the 3-D network structures such as pentaborate and tetraborate into 2-D network structures of boroxol and boroxyl rings by breaking the bridged oxygen atoms (O0) to produce non-bridged oxygen atoms (O-) leading to a decrease in the molten flux viscosity. At fixed B2O3 contents and higher CaO/Al2O3 ratio, 3-D complex network structures become 3-D simple and 2-D isolated network structures, resulting in lower viscosities. The apparent activation energy for viscous flow varied from 132 to 249 kJ/mol according to the composition of B2O3 and CaO/Al2O3 ratio.

  4. Bioactivity of SiO 2-CaO-P 2O 5-Na 2O glasses containing zinc-iron oxide

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2010-01-01

    Glasses with composition x(ZnO,Fe 2O 3)(65 - x)SiO 220(CaO,P 2O 5)15Na 2O (6 ≤ x ≤ 21 mol%) were prepared by melt-quenching technique. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations nearly equal to those in human blood plasma. Formation of bioactive apatite layer on the samples treated in SBF was confirmed by using Fourier transform infrared reflection (FTIR) spectroscopy, grazing incidence X-ray diffraction (GI-XRD) and scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer. Development of an apatite structure on the surface of the SBF treated glass samples as functions of composition and time could be established using the GI-XRD data. FTIR spectra of the glasses treated in SBF show features at characteristic vibration frequencies of apatite after 1-day of immersion in SBF. SEM observations revealed that the spherical particles formed on the glass surface were made of calcium and phosphorus with the Ca/P molar ratio being close to 1.67, corresponding to the value in crystalline apatite. Increase in bioactivity with increasing zinc-iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of glass composition and immersion time in SBF.

  5. State-selective energy transfer from Er3+ to Eu3+ in Bi2O3-GeO2-Ga2O3-Na2O glasses.

    PubMed

    Wang, Jun; Zhou, Yaxun; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua

    2009-02-01

    The Eu(3+) ion was introduced into Er(3+) doped Bi(2)O(3)-GeO(2)-Ga(2)O(3)-Na(2)O (BGGN) glasses to improve the 1.5 microm band emission. As a function of Eu(2)O(3) doped content, we observed the increase in non-radiative decay rate of Er(3+) not only (4)I(11/2) energy level but also (4)I(13/2) energy level, while the lifetime of Er(3+):(4)I(11/2) and (4)I(13/2) levels were shortened from 607 to 241 micros and from 3.37 to 1.88 ms, respectively. Accordingly, the upconversion fluorescence (green and red) was quenched. The total quantum efficiency of the Er(3+):(4)I(13/2) increased with the Eu(2)O(3) content increasing up to 0.2 mol% due to the state-selective energy transfer from Er(3+) to Eu(3+). PMID:19010716

  6. Structural properties of Bi2O3-B2O3-SiO2-Na2O glasses for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas

    2016-03-01

    Glass samples of the xBi2O3-(0.70-x)B2O3-0.15SiO2-0.15Na2O (where x=0 up to 0.5 mol fraction) have been prepared in the laboratory by using melt quenching technique. 137Cs source has been used for experimental measurements of mass attenuation coefficient of γ-rays at 662 keV. Mass attenuation coefficient of our glass samples has been compared with standard nuclear radiation shield "barite concrete". It has been concluded that bismuth containing glass samples can be potential candidates for γ-ray shielding applications. Glasses must have appreciable elastic moduli values for their practical utility as γ-ray shields which are related to coordination number and non-bridging oxygens. Structural properties including coordination number and non-bridging oxygens of the structural units of the glass system have been estimated from the detailed analysis of Optical, Raman and FTIR spectra. Reported investigations can contribute to the development of transparent gamma ray shields.

  7. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-01

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications. PMID:26911317

  8. Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes.

    PubMed

    Vitale-Brovarone, C; Vernè, E; Bosetti, M; Appendino, P; Cannas, M

    2005-10-01

    In the present research work, the preparation and characterization of bioactive glass-ceramic scaffolds for bone substitutes are described. The scaffolds were prepared by starch consolidation of bioactive glass powders belonging to the SiO2-Na2O-CaO-MgO system using three different organic starches (corn, potatoes and rice) as reported in a previous screening process. The scaffolds, characterized by scanning electron microscopy, showed a porous structure with highly interconnected pores. The pores sizes assessed by mercury intrusion porosimetry put in evidence the presence of pores of 50-100 microm. The structure of the scaffolds was investigated by X-ray diffraction and revealed the glass-ceramic nature of the obtained material. The mechanical properties of the scaffolds were evaluated by means of compressive tests on cubic samples and the obtained results demonstrated their good mechanical strength. The in vitro bioactivity of the scaffolds was tested by soaking them in a simulated body fluid (SBF) and by subsequently characterizing the soaked surfaces by SEM, EDS and X-ray diffraction. Good in vitro bioactivity was found for the starting glass and for the obtained scaffolds. Moreover, the scaffold bioresorption, tested by measuring the samples weight loss in SBF at different periods of time, showed a partial resorption of the scaffolds. Cell culture testing of the three different scaffolds indicated no differences in cell number and in alkaline phosphatase activity; the morphology of the osteoblasts showed good spreading, comparable to bulk material which was used as the control. PMID:16167099

  9. In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Abo-Naf, Sherief M.; Khalil, El-Sayed M.; El-Sayed, El-Sayed M.; Zayed, Hamdia A.; Youness, Rasha A.

    2015-06-01

    Na2O-CaO-B2O3-P2O5 glasses have been prepared by the melt-quenching method. B2O3 content was systematically increased from 5 to 30 mol%, at the expense of P2O5, in the chemical composition of these glasses. Density, Vickers microhardness and fracture toughness of the prepared glasses were measured. In vitro bioactivity of the glasses was assessed by soaking in the simulated body fluid (SBF) at 37 ± 0.5 °C for 3, 7, 14 and 30 days. The glasses were tested in the form of glass grains as well as bulk slabs. The structure and composition of the solid reaction products were analyzed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The kinetics of degradation of the glass particles were monitored by measuring the weight loss of the particles and the ionic concentration of Ca, P and B in the SBF solution using inductive coupled plasma-atomic emission spectroscopy (ICP-AES). The obtained results revealed the formation of a bioactive hydroxyapatite (HA) layer, composed of nano-crystallites, on the surface of glass grains after the in vitro assays. The results have been used to understand the formation of HA as a function of glass composition and soaking time in the SBF. It can be pointed out that increasing B2O3 content in glass composition enhances the bioactivity of glasses. The nanometric particle size of the formed HA and in vitro bioactivity of the studied glasses make them possible candidates for tissue engineering application.

  10. Influence of fluoride additions on biological and mechanical properties of Na2O-CaO-SiO2-P2O5 glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2014-02-01

    Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants. PMID:24411365

  11. Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding.

    PubMed

    Zhao, C Q; Wu, S Q; Lu, Y J; Gan, Y L; Guo, S; Lin, J J; Huang, T T; Lin, J X

    2016-10-01

    Low-fusing bonding agents have been widely applied in Ti-ceramics restorations. As an important category, borate bonding agents have great potentials in increasing Ti-porcelain bonding. The purpose of this study is to evaluate the effect of borate bonding agent with addition of Na2O and Al2O3 on Ti6Al4V-porcelain bonding. The thermal properties of borate bonding agent, such as glass transition temperature (Tg) and crystallization peak temperature (Tp), were investigated to establish the sintering process. And the coefficient of thermal expansion (CTE) was to evaluate the matching effect of porcelain to Ti6Al4V. The bond strength was analyzed by the three point bending test. The microscopic morphology of the borate bonding agent surface after sintering, the interface of Ti-borate bonding agent-porcelain, and the fracture mode after porcelains fracture, were studied to assess the influence of borate bonding agent on Ti6Al4V-ceramics. With the addition of Na2O and Al2O3, the porcelain residues were observed increased indication on the Ti6Al4V surface after porcelain fracture and the bond strength was acquired the maximum (49.45MPa) in the bonding agent composition of 75.70B2O3-5.92La2O3-11.84SrO-4.67Na2O-1.87Al2O3. Those results suggest that borate bonding agent is an effective way to improve the Ti6Al4V-ceramics bond strength. And the addition of Na2O and Al2O3 strengthen this effect. PMID:27344231

  12. 27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy of glasses in the system K2O-Al2O3-SiO2.

    PubMed

    Mundus, C; Müller-Warmuth, W

    1995-10-01

    27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy at 78 MHz has been applied to determine (true) chemical shift and quadrupole coupling parameters of glasses in the system K2O-Al2O3-SiO2 with 60-80 mol% SiO2 and K2O concentrations between 0 and 24 mol%. The powdered crystalline aluminosilicates andalusite and sillimanite have also been examined. In the glasses, all Al appears to be tetrahedrally bound in the aluminosilicate network unless x = mol% K2O:mol% Al2O3 becomes extremely small. Upon decreasing x the distortion of the tetrahedral Al(OSi)4 units increases in steps, and possible explanations are discussed. Six-coordinated aluminum observed for x < 0.2 is connected with the occurrence of interstitial Al3+ ions which charge-compensate the AlO4 units in addition to K+. PMID:8748646

  13. Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O glass-ceramics.

    PubMed

    Placek, L M; Keenan, T J; Wren, A W

    2016-08-01

    The bioactivity of yttrium and cerium are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-xNa2O-xMO glass-ceramics (where x = 0.08 and MO = Y2O3 or CeO2). Bioactivity is monitored through pH and inductively coupled plasma-optical emission spectrometry where pH of simulated body fluid ranged from 7.5 to 7.6 and increased between 8.2 and 10.0 after 14-day incubation with the glass-ceramic disks. Calcium (Ca) and phosphorus (P) levels in simulated body fluid after incubation with yttrium and cerium containing disks show a continual decline over the 14-day period. In contrast, Con disks (not containing yttrium or cerium) caused the elimination of Ca in solution after 1 day and throughout the incubation period, and initially showed a decline in P levels followed by an increase at 14 days. Scanning electron microscopy and energy dispersive spectroscopy confirmed the presence of Ca and P on the surface of the simulated body fluid-incubated disks and showed precipitates on Con and HCe (8 mol% cerium) samples. Cell viability of MC3T3 osteoblasts was not significantly affected at a 9% extract concentration. Optical microscopy after 24 h cell incubation with disks showed that Con samples do not support osteoblast or Schwann cell growth, while all yttrium and cerium containing disks have direct contact with osteoblasts spread across the wells. Schwann cells attached in all wells, but only showed spreading with the HY-S (8 mol% yttrium, heated to sintering temperature) and YCe (4 mol% yttrium and cerium) disks. Scanning electron microscopy of the compatible disks shows osteoblast and sNF96.2 Schwann cells attachment and spreading directly on the disk surfaces. PMID:27231265

  14. SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications.

    PubMed

    Vitale-Brovarone, C; Verné, E

    2005-09-01

    Alumina and Ti6Al4V alloys are widely used for orthopedics and dental applications due to their good mechanical properties and biocompatibility. Unfortunately they can not provide a satisfactory osteointegration when implanted. In fact, both alumina and Ti6Al4V are not bioactive and thus they can only guarantee a morphological fixation with the surrounding tissues without a suitable chemical anchorage. Aiming to impart bioactive properties to these materials a coating can be proposed. At this purpose, a bioactive glass belonging to the SiO2-CaO-K2O system was selected and prepared. This glass, named SCK, possess a thermal expansion coefficient matching with the alumina (8.5x 10(- 6)/ degrees C) and Ti6Al4V (9 x 10(- 6)/ degrees C) ones and thus is a good candidate to produce coatings on both of them. Simple and low-cost enameling and glazing techniques were used to realize the coatings. Structural, morphological and compositional characterizations of the coatings were carried out by means of X-ray diffraction, optical and scanning microscopy and compositional analyses. The in vitro properties of the coatings were investigated by soaking them in a simulated body fluid (SBF) in order to study the precipitation, on their surfaces, of a biologically active layer of hydroxylapatite (HAp). PMID:16167116

  15. Impact of neocrystallisations on the SiO2-K2O-CaO glass degradation due to atmospheric dry depositions

    NASA Astrophysics Data System (ADS)

    Gentaz, L.; Lombardo, T.; Chabas, A.; Loisel, C.; Verney-Carron, A.

    2012-08-01

    The medieval SiO2-CaO-K2O stained glasses are particularly vulnerable to the impact of their environment. In the urban atmosphere, they will tend to rapidly deteriorate either by loss of matter or by addition of atmospheric material, that tend to form a crust on the surface of the glass. If the glass surface is protected from the rain run-off, this second phenomenon will be favoured. In the early stage of crust formation, it was shown that primary constituents were salts, called neocrystallisations. However, it is still not clear, if their presence induce further deterioration of the glass matrix. In order to answer this question both field exposure and laboratory experiments were carried out. Model glasses, chosen with compositions similar to those of ancient stained glasses, were exposed to the urban atmosphere in sheltered conditions. Samples exposed were analysed in order to identify the neocrystallisations and further tests were undertaken in order to observe their impact on the glass itself. The analyses of the weathering products on the glasses showed the presence of three principal minerals: syngenite, gypsum, and potassium carbonate. The observed mineral phases were then artificially deposited on model glass surfaces submitted to cycles of relative humidity. It was found that the presence of salts increased the glass degradation by extending the time of wetness of the glass surface and forming saline solutions in the case of deliquescent salts. Evidence of strong leaching could be observed on the glass surface and even more so when considering glass samples in contact with multiple salts. Finally, the impact of potassium carbonate (K2CO3) on the glass was dramatic, since it induced a loss of matter caused by the dissolution of the lattice in contact with the alkaline solution.

  16. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    properties. Thermodynamic expressions for the activity-composition relationships are simplified if all entities are expressed using symbolic molecular notation (e.g., SiO 2, SiF 4, [NaAl]O 2, [NaAl]F 4, NaF etc.) with corresponding nonfractional site multiplicities (1, 2 or 4). The model has been applied to three subsystems of the Na 2O-NaAlO 2-SiO 2-F 2O -1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra and only negligible interaction between fluoride species and silicate polymer. Phase equilibria in the cryolite-albite system with a large depression of albite liquidus are interpreted via complete substitution of O 0 by O - and F 0 in the silicate framework. With increasing fluorine content, initial Al-F and Si-O short-range order evolves into the partial O-F disorder. The present model provides a useful relationship between experimental equilibria, macroscopic thermodynamics and melt speciation, thus it facilitates comparisons with, and interpretations of, spectroscopic and molecular simulation data.

  17. Acoustic velocity measurements on Na 2O-TiO 2-SiO 2 liquids: Evidence for a highly compressible TiO 2 component related to five-coordinated Ti

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Lange, Rebecca A.; Ai, Yuhui

    2007-09-01

    Longitudinal acoustic velocities were measured at 1 bar in 10 Na 2O-TiO 2-SiO 2 (NTS) liquids for which previous density and thermal expansion data are reported in the literature. Data were collected with a frequency-sweep acoustic interferometer at centered frequencies of 4.5, 5, and 6 MHz between 1233 and 1896 K; in all cases, the sound speeds decrease with increasing temperature. Six of the liquids have a similar TiO 2 concentration (˜25 mol %), so that the effect of varying Na/Si ratio on the partial molar compressibility of the TiO 2 component can be evaluated. Theoretically based models for βT and (∂ V/∂ P) T as a function of composition and temperature are presented. As found previously for the partial molar volume of TiO 2(V) in sodium silicate melts, values of β (13.7-18.8 × 10 -2/GPa) vary systematically with the Na/Si and Na/(Si + Ti) ratio in the liquid. In contrast values of β for the SiO 2 and Na 2O components (6.6 and 8.0 × 10 -2/GPa, respectively, at 1573 K) are independent of composition. Na 2O is the only component that contributes to the temperature dependence of the compressibility of NTS liquids (1.13 ± 0.04 × 10 -4/GPa K). The results further indicate that the TiO 2 component is twice as compressible as the Na 2O and SiO 2 components. The enhanced compressibility of TiO 2 appears to be related to the abundance of five-coordinated Ti ( [5]Ti) in these liquids, but not with a change in Ti coordination. Instead, it is proposed that the asymmetric geometry of [5]Ti in a square pyramidal site promotes different topological rearrangements in alkali titanosilicate liquids, which lead to the enhanced compressibility of TiO 2.

  18. Structural and optical properties of 60B2O3-(20-x)Na2O-10PbO-10Al2O3:xTiO2:yNd2O3 glasses

    NASA Astrophysics Data System (ADS)

    de Souza, N. C. A.; Santos, C. C.; Guedes, I.; Dantas, N. O.; Vermelho, M. V. D.

    2013-10-01

    In this work we investigate the effect of replacing Na2O by TiO2 on the structural and spectroscopic characteristics of the Nd2O3-doped 60B2O3-(20-x)Na2O-10PbO-10Al2O3:xTiO2:yNd2O3 borate glass matrix. Measurements of X-ray patterns, glass temperatures (Tg), vibrational (Raman and infrared (IR)) and optical (absorption and emission) spectra were carried out. The trend of Tg, the Judd-Ofelt parameters and Nephelauxetic ratio as the TiO2 and Nd2O3 concentration increases was interpreted quantitatively and qualitatively in terms of the network bonds and coordination numbers. Measurements of Tg across the Nd-doped glass series for different levels of Ti suggests changes in the rigidity of the matrix due to change of coordination of boron oxide resulting from the BO4-BO3 back conversion effect. The changes observed in the Raman and IR spectra are related to the BO3 → BO4 conversion effect. The variation of the Judd-Ofelt parameters Ω and Ω indicates that the average rare earth-ligand radius decreases establishing an electronic density distribution when Nd3+ concentration increases. This effect is interpreted in terms of Judd-Ofelt parameters and by the bonding parameter b due to Nephelauxetic effect.

  19. Improving transesterification acitvity of CaO with hydration technique.

    PubMed

    Yoosuk, Boonyawan; Udomsap, Parncheewa; Puttasawat, Buppa; Krasae, Pawnprapa

    2010-05-01

    An efficient technique for increasing the transesterification activity of CaO obtained from calcination of CaCO(3) was proposed in order to make them highly suitable for use as heterogeneous catalysts for biodiesel production. CaO was refluxed in water followed by the synthesis of the oxide from hydroxide species. The characterization results indicate that this procedure substantially increases both the specific surface area and the amount of basic site. Hydration and subsequent calcination also generates a new calcium oxide with less crystalline. Transesterification of palm olein was used to determine the activity of catalysts to show that the decomposed-hydrated CaO exhibits higher catalytic activity than CaO generated from calcination of CaCO(3). The methyl ester content was enhanced 18.4 wt.%. PMID:20089395

  20. Interfacial tension between immiscible melts in the system K2O - FeO - Fe2O3 - Al2O3 - SiO2

    NASA Astrophysics Data System (ADS)

    Kaehn, J.; Veksler, I. V.; Franz, G.; Dingwell, D. B.

    2009-12-01

    Interfacial tension is a very important parameter of the kinetics of phase nucleation, dissolution and growth. Excess surface energy contributes to the energy barrier for phase nucleation, and works as the main driving force for minimization of phase contact surfaces in heterogeneous systems. Immiscible silicate melts have been found to form in a broad range of basaltic, dacitic and rhyolitic magmas (Philpotts, 1982). However, liquid-liquid interfaces remain poorly studied in comparison with crystal-melt and vapor-melt interfaces. Here we present first experimental measurements of interfacial tension between synthetic Fe-rich and silica-rich immiscible melts composed of Fe oxides, K2O, alumina and silica. According to Naslund (1983), the miscibility gap in the 5-oxide system expands with increasing fO2 and becomes widest in air (fO2 = 0.2). Our goal was to estimate the maximal liquid-liquid interfacial tension for the immiscible liquids composed of silica and Fe oxides. Therefore, we have chosen the most contrasting liquid compositions that coexist in air at and above 1465 °C. Silica-rich and Fe-rich conjugate liquids at these conditions contain 73 and 17 wt. % SiO2, and 14 and 80 wt. % FeOt, respectively. These starting compositions were synthesized by fusion of reagent-grade oxides and K2CO3 at 1600 °C. In addition to interfacial tension, we have measured density and surface tension of individual coexisting liquids. All the measurements were done at 1500, 1527 and 1550 °C. Density was measured by the Archimedean method; surface and interfacial tensions were calculated from the maximal pool on a vertical cylinder (a 3-mm Pt rod attached to a high precision balance). We found interfacial tension between the immiscible liquids to decrease with increasing temperature from 16.4±2 mN/m at 1500 °C to 8.2±0.8 mN/m at 1550 °C. These values are approximately 2 orders of magnitude lower than typical interfacial tensions between silicate melts and crystals (Wanamaker

  1. Dielectric and Energy Storage Properties of BaO-SrO-Na2O-Nb2O5-SiO2 Glass-Ceramics with Different Crystallization Times

    NASA Astrophysics Data System (ADS)

    Li, Chang; Zhang, Qingmeng; Tang, Qun; Zhou, Hao; Tan, Feihu; Du, Jun

    2016-06-01

    A series of BaO-SrO-Na2O-Nb2O5-SiO2 (BSNNS) glass-ceramics have been prepared via controlled crystallization by varying the crystallization times from 1 min to 1000 min, and grain sizes of crystallized ceramic phases from dozens to hundreds of nanometers were obtained. Dielectric properties of BSNNS glass-ceramics were investigated. The permittivity and the temperature and electric field dependence of the permittivity are all related to crystallization time strongly. In addition, the energy density increases gradually, while the energy efficiency decreases with the increasing crystallization time. The maximum energy efficiency of 96.7% is obtained in the sample with crystallization time of 1 min, which is mainly attributed to low interfacial polarization.

  2. INVESTIGATION OF PRODUCT-LAYER DIFFUSIVITY FOR CAO SULFATION

    EPA Science Inventory

    The paper gives results of comparisons of the sulfation rates of CaO prepared from Ca(OH)2 and CaCO3, using six types of each precursor derived from the same natural limestones. The particles were small enough to eliminate all transport resistances except diffusion through the Ca...

  3. The CAOS problem-solving environment: last news

    NASA Astrophysics Data System (ADS)

    Carbillet, M.; Desiderà, G.; Augier, É.; La Camera, A.; Riccardi, A.; Boccaletti, A.; Jolissaint, L.; Ab Kadir, D.

    2010-12-01

    We present recent developments of the CAOS problem-solving environment (PSE), an IDL-based software tool complete of a global graphical interface, a general utilities library, and different specialized scientific packages going from end-to-end and analytical simulations to image simulation/reconstruction, with specialization to given instruments.

  4. Na2O and Trace Elements Behavior in Trachytes and Phonolites at Suswa Volcano, Kenya: the Result of Combined Magma Mixing and Volatile-rich Na-Trace Element Fluids

    NASA Astrophysics Data System (ADS)

    Espejel-Garcia, V. V.; Anthony, E. Y.; Ren, M.; MacDonald, R.; Skilling, I. P.; White, J. C.

    2008-12-01

    The evolution of Suswa, a Quaternary volcano in the Kenya Rift, was dominated by the eruption of two rock suites, separated by a caldera event. Suswa is part of the Central Kenya Peralkaline Province (CKPP), which includes the Greater Olkaria Volcanic Complex (GOVC) and inter-center mafic fields, e.g. Tandamara and Elmenteita, whose compositions range from basalt to basaltic trachy-andesite (BTA). Both suites at Suswa range from trachyte to phonolite, but are distinguished by the amount of SiO2: pre- and syn-caldera rocks have 60-62%, and post-caldera rocks 57-59%. Trachyte to phonolite trends within each suite result from increasing Na2O, which is accompanied by increases in a number of trace elements (Be, Hf, Nb, Rb, Th, Y, Zn, Zr, and REE, except Eu). Magmatic processes included magma mixing, in which BTA magma similar to those of Tandamara and Elmenteita intruded the pre-caldera Suswa trachytic chamber, and fluid complexing, which was responsible for the enrichment in Na2O and trace elements. The importance of magma mixing in the CKPP has been recently documented at the GOVC by Macdonald et al. (2008, J Pet 49, 1515-1547), for which mafic-intermediate magmatic inclusions within comendites and disequilibrium phenocryst assemblages are part of the evidence. Evidence for mixing at Suswa includes: 1) mixed feldspar assemblages, e.g. syn-caldera ignimbrite samples contain both alkali feldspar (An2Ab62Or36), and xenocrystic plagioclase (An45Ab52Or3), and 2) heterogeneous matrix glass compositions. Glass in pre-caldera rocks is trachytic, similar to whole-rock compositions. Syn-caldera rocks have glass compositions both trachytic and intermediate between trachyte and BTA, while Tandamara BTA rocks contain trachytic glass. Glass in post-caldera rocks is mostly phonolitic. Glass inclusions in plagioclase xenocrysts are basaltic, similar to flows in the area. X-Y elemental plots do not show linear trends, as would be predicted from a mixing process. We attribute this to

  5. Nanocomposite dielectrics in PbO-BaO-Na2O-Nb2O5-SiO2 system with high breakdown strength for high voltage capacitor applications.

    PubMed

    Zhang, Qingmeng; Luo, Jun; Tang, Qun; Han, Dongfang; Zhou, Yi; Du, Jun

    2012-11-01

    Nanocomposite dielectrics in 6PbO-4BaO-20Na2O-40Nb2O5-30SiO2 system were prepared via melt-quenching followed by controlled crystallization. X-ray diffraction studies reveal that Pb2Nb2O7, Ba,NaNb5O15, NaNbO3 and PbNb2O6 phases are formed from the as-quenched glass annealed in temperature range from 700 degrees C to 850 degrees C. Ba2NaNb5O15, Pb2Nb2O7 crystallizes at 700 degrees C and then Pb2Nb2O7 disappears at 850 degrees C, while PbNb2O6 and NaNbO3 are formed at 850 degrees C. Microstructural observation shows that the crystallized particles are nanometer-sized and randomly distributed with glass matrix being often found at grain boundaries. The dielectric constant of the nanocomposites formed at different crystallization temperatures shows good frequency and electric field stability. The breakdown strength is slightly decreased when the glass-ceramics thickness is varied from 1 mm to 4 mm. The corresponding energy density could reach 2.96 J/cm3 with a breakdown strength of 58 kV/mm for thickness of 1 mm. PMID:23421296

  6. Production and properties of high purity TeO 2-ZnO-Na 2O-Bi 2O 3 and TeO 2-WO 3-La 2O 3-MoO 3 glasses

    NASA Astrophysics Data System (ADS)

    Moiseev, A. N.; Dorofeev, V. V.; Chilyasov, A. V.; Kraev, I. A.; Churbanov, M. F.; Kotereva, T. V.; Pimenov, V. G.; Snopatin, G. E.; Pushkin, A. A.; Gerasimenko, V. V.; Kosolapov, A. F.; Plotnichenko, V. G.; Dianov, E. M.

    2011-10-01

    High-purity TeO 2-ZnO-Na 2O-Bi 2O 3 and TeO 2-WO 3-La 2O 3-MoO 3 glasses were produced by melting the high-purity oxides mixtures in platinum or gold crucible at 800 °C in hermetic chamber in the purified oxygen atmosphere. The content of limiting impurities in the produced initial oxides and glasses, the optical properties as well as the stability to crystallization were investigated. The optical fibers were produced from high-purity tellurite glasses with losses at the level of several hundreds of dB/km. The total content of 3d-transition metals in the glasses was not more than 1 ppm wt and content of hydroxyl groups corresponded to the absorption level of 0.001-0.002 cm -1 at ˜3 μm. The absorption band, monotonically increasing with the increase in MoO 3 content, was observed in dry TeO 2-WO 3-La 2O 3-MoO 3 glasses with the maximum at about 3.7 μm.

  7. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    PubMed

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface. PMID:25644099

  8. In vitro evaluation of bioactivity of SiO2-CaO-P2O5-Na2O-CaF2-ZnO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Bashir, Farooq; Hossain, Tousif; Kayani, Zohra

    2014-09-01

    Zinc is an essential trace element that stimulates bone formation but it is also known as an inhibitor of apatite crystal growth. In this work addition of ZnO to SiO2-CaO-P2O5-Na2O-CaF2 glass-ceramic system was made by conventional melt-quenching technique. DSC curves showed that the addition of ZnO moved the endothermic and exothermic peaks to lower temperatures. X-ray diffraction analysis did not reveal any additional phase caused by ZnO addition and showed the presence of wollastonite and hydroxyapatite crystalline phases only in all the glass-ceramic samples. As bio-implant apatite forming ability is an essential condition, the surface reactivity of the prepared glass-ceramic specimens was studied in vitro in Kokubo's simulated body fluid (SBF) [1] with ion concentration nearly equal to human blood plasma for 30 days at 37 °C under static condition. Atomic absorption spectroscopy (AAS) was used to study the changes in element concentrations in soaking solutions and XRD, FT-IR and SEM were used to elucidate surface properties of prepared glass-ceramics, which confirmed the formation of HCAp on the surface of all glass-ceramics. It was found that the addition of ZnO had a positive effect on bioactivity of glass-ceramics and made it a potential candidate for restoration of damaged bones.

  9. Structural and magnetic properties of SiO2-CaO-Na2O-P2O5 containing BaO-Fe2O3 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Leenakul, W.; Kantha, P.; Pisitpipathsin, N.; Rujijanagul, G.; Eitssayeam, S.; Pengpat, K.

    2013-01-01

    The incorporation method was employed to produce bioactive glass-ceramics from the BaFe12O19-SiO2-CaO-Na2O-P2O5 glass system. The ferrimagnetic BaFe12O19 was first prepared using a simple mixed oxide method, where the oxide precursors of 45S5 bioglass were initially mixed and then melted to form glass. The devitrification of Na3Ca6(PO4)5 and Fe3O4 was observed in all of the quenched glass samples. The glass samples were then subjected to a heat treatment schedule for further crystallization. It was found that the small traces of BaFe12O19 phases started to crystallize in high BF content samples of 20 and 40 wt%. These samples also exhibited good magnetic properties comparable to that of other magnetic glass-ceramics. The bioactivity of the BF glass-ceramics improved with increasing BF content as was evident by the formation of bone-like apatite layers on the surface of all of the glass-ceramics after soaking in SBF for 14 days. The results support the use of these bioactive glass-ceramics for hyperthermia treatment within the human body.

  10. Investigating the effect of SiO2-TiO 2-CaO-Na 2O-ZnO bioactive glass doped hydroxyapatite: characterisation and structural evaluation.

    PubMed

    Yatongchai, Chokchai; Wren, Anthony W; Curran, Declan J; Hampshire, Stuart; Towler, Mark R

    2014-07-01

    The effects of increasing bioactive glass additions, SiO2-TiO2-CaO-Na2O-ZnO up to 25 wt% in increments of 5 wt%, on the physical and mechanical properties of hydroxyapatite (HA) sintered at 900, 1000, 1100 and 1200 °C for 2 h was investigated. Increasing both the glass content and the temperature resulted in increased HA decomposition. This resulted in the formation of a number of bioactive phases. However the presence of the liquidus glass phase did not result in increased densification levels. At 1000 and 1100 °C the additions of 5 wt% glass resulted in a decrease in density which never recovered with increasing glass content. At 1200 °C a cyclic pattern resulted from increasing glass content. There was no direct relationship between strength and density with all samples experiencing no change or a decrease in strength with increasing glass content. Weibull statistics displayed no pattern with increasing glass content. PMID:24748516

  11. Thermal Stability and Infrared-To Upconversion Emissions of Er3+/Yb3+ Co-Doped 70GeO2-20PbO-10K2O Glasses

    NASA Astrophysics Data System (ADS)

    Ahmed, Samah M.; Shaltout, I.; Badr, Y.

    2011-06-01

    Er3+/Yb3+ co-doped potassium-lead-germanate (70GeO2-20PbO-10K2O) glasses with a fixed concentration of Er3+ ions (0.5 mol. %) and different concentrations of Yb3+ ions (0, 0.5, 1.5, and 2.5 mol. %), have been synthesized by the conventional melting and quenching method. The structure and vibrational modes of the glass network were investigated by the infrared absorption and Raman spectroscopy. The thermal behavior of all glass samples was investigated by the differential thermal analysis. Infrared-to-visible frequency upconversion process was investigated in all glasses. Intense green and red upconversion emission bands centered at around 532, 546, and 655 nm were observed, underallglasses.Intense excitation at 980 nm of diode laser at room temperature. The dependence of these emissions on the excitation power was investigated.

  12. Physical and spectroscopic properties of multi-component Na2O-PbO-Bi2O3-SiO2 glass ceramics with Cr2O3 as nucleating agent

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, M. V.; Rajyasree, Ch.; Narendrudu, T.; Suresh, S.; Suneel Kumar, A.; Veeraiah, N.; Krishna Rao, D.

    2015-09-01

    Transparent glass ceramics, synthesized from melt quenching followed by heat treatment, of the composition 10Na2O-30PbO-10Bi2O3-(50 - x)SiO2:xCr2O3 (mol%), where 0 ⩽ x ⩽ 0.5, were characterized with XRD, DTA, SEM and EDS. Physical and spectroscopic studies, viz., optical absorption, electron paramagnetic resonance (EPR), FTIR and Raman were investigated. The characterization of the host glass ceramic has revealed that the formation of a major phase of sodium silicate along with two minor phases such as lead silicate and bismuth oxide. By integrating Cr2O3 to the host glass additional crystal phases viz., NaCrO2, Na2Cr2O7 and Pb(CrO4) which are the complexes of Cr3+ and Cr6+ ions were also developed. As the concentration of nucleating agent is increased, a part of the Cr6+ ions is found to reduce in to Cr3+ ions. Spectroscopic studies have revealed that with an increase in the concentration of Cr2O3 from 0.1 to 0.5 mol%, there is a gradual increase in the intensity of vibrational modes of various asymmetric structural units of silicate, bismuthate and chromate in the glass ceramic network at the expense of symmetrical structural units. The analysis of the results of these studies has indicated that in the samples containing higher concentration of Cr2O3, chromium ions exists predominantly in Cr3+ state and occupy the octahedral positions in glass ceramic matrix and such glass ceramic samples are suitable for lasing action.

  13. caos software for use in character-based DNA barcoding.

    PubMed

    Sarkar, Indra Neil; Planet, Paul J; Desalle, Rob

    2008-11-01

    The success of character-based DNA barcoding depends on the efficient identification of diagnostic character states from molecular sequences that have been organized hierarchically (e.g. according to phylogenetic methods). Similarly, the reliability of these identified diagnostic character states must be assessed according to their ability to diagnose new sequences. Here, a set of software tools is presented that implement the previously described Characteristic Attribute Organization System for both diagnostic identification and diagnostic-based classification. The software is publicly available from http://sarkarlab.mbl.edu/CAOS. PMID:21586014

  14. Development of electrically insulating CaO coatings

    SciTech Connect

    Natesan, K.; Reed, C.B.; Uz, M.; Rink, D.L.

    1998-09-01

    A systematic study has been initiated to develop electrically insulating CaO coatings by vapor phase transport and by in-situ formation in a liquid Li environment. Several experiments were conducted in vapor transport studies with variations in process temperature, time, specimen location, specimen surface preparation, and pretreatment. Several of the coatings obtained by the method exhibited Ca concentration in the range of 60--95 wt.% on the surface. However, coating thickness has not been very uniform among several samples exposed in the same run or even within the same sample. The coatings developed in these early tests degraded after 24 h exposure to Li at 500 C. Additional experiments are underway to develop better-adhering and more dense coatings by this method. A program to develop in-situ CaO coatings in Li has been initiated, and the first set of capsule tests at 800 C in three different Li-Ca mixtures will be completed in early July. Specimens included in the run are bare V-4Cr-4Ti alloy, specimens with a grit-blasted surface and O-precharged in 99.999% Ar, polished specimens precharged in a 99.999% Ar and 5000 ppm O{sub 2}-N{sub 2} mixture, and prealuminized V-5Cr-5Ti alloy preoxidized in a 5000 ppm O{sub 2}-N{sub 2} mixture. Additional experiments at lower temperatures are planned.

  15. Optical and fluorescence spectroscopy of Eu2O3-doped P2O5-K2O-KF-MO-Al2O3 (M = Mg, Sr and Ba) glasses

    NASA Astrophysics Data System (ADS)

    Kumar, K. Upendra; Babu, S. Surendra; Rao, Ch. Srinivasa; Jayasankar, C. K.

    2011-06-01

    Fluorophosphate glasses of composition, P2O5 + K2O + KF + MO + Al2O3 + xEu2O3 (M = Mg, Sr and Ba; x = 0.01, 0.05, 0.1, 1.0, 2.0, 4.0 and 6.0 mol%) were prepared and characterized their optical properties. Crystal-field (CF) analysis revealed a relatively weak CF strength around Eu3+ ions in the Ba based fluorophosphate glasses. The Judd-Ofelt parameters have been estimated from the oscillator strengths of 7F0 → 5D2, 7F0 → 5D4 and 7F0 → 5L6 absorption transitions of Eu3+ ions and were used to evaluate the radiative properties of the 5D0 → 7FJ (J = 0-4) transitions. Considerable variation has been observed in the relative intensity ratio of 5D0 → 7F2 to 5D0 → 7F1 transitions of Eu3+ ions due to change in the alkaline earth metal ions. The decay of the 5D0 level shows single exponential and less sensitive to Eu3+ ions concentration as well as MgO/SrO/BaO modifiers.

  16. Understanding Structural Properties of Carbonate-Silicate Melts: An EXAFS Study on Y and Sr in the System Na2O-CaO-Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Pohlenz, J.; Pascarelli, S.; Mathon, O.; Belin, S.; Shiryaev, A.; Safonov, O.; Murzin, V.; Shablinskaya, K.; Irifune, T.; Wilke, M.

    2014-12-01

    Carbonatite volcanism generally occurs in intra-plate settings associated with continental rifting. The only active carbonatitic volcano is the Oldoinyo Lengai, Tanzania, which generates sodium-rich carbonatites in close association with phonolites and nephelinites1. The processes of carbonatite genesis are still unresolved, however carbonate-bearing melts evidently play a crucial role during mantle melting, in diamond formation and as metasomatic agents. Carbonate melts show extraordinary properties, especially in regard to their low melt viscosities and densities, high surface tensions and electrical conductivities as well as distinct geochemical affinities to a wide range of trace elements2. Understanding the structural properties of carbonate-bearing melts is fundamental to explaining their chemical and physical behaviour as well as modeling processes operating in the deep Earth. Extended X-ray absorption fine structure (EXAFS) spectroscopy is a versatile tool for element specific investigation of the short to medium range structure of melts and glasses. This study focuses on unraveling the influence of carbonate concentration on the structural incorporation of the geochemically important trace elements Y and Sr in silicate and carbonate melts in the system Na2O-CaO-Al2O3-SiO2-CO2. First, we present structural data of silicate glasses with up to 10 wt% CO2, quenched from melts under high temperature and pressure, which indicate that the local structure of Y and Sr is not or only slightly affected by CO2. Melts with higher CO2 contents could not be quenched to glass, so far. Second, we show results of high pressure, high temperature experiments conducted in the Paris Edinburgh-Press, which provides in-situ insight into carbonate-silicate melts. All EXAFS measurements were performed at the synchrotron facility beamlines SAMBA (SOLEIL) and BM23 (ESRF). Information derived from the trace elements' local structure is used to develop a structural model for carbonate

  17. In-situ measurements of D/H fractionation between melt and coexisting aqueous fluids in the Na2O-Al2O3-SiO2-H2O system

    NASA Astrophysics Data System (ADS)

    Dalou, C.; Le Losq, C.; Mysen, B. O.

    2014-12-01

    Hydrogen isotope partitioning (as H2O and D2O) between water-saturated silicate melts and coexisting silicate-saturated aqueous fluids with several different initial D/H ratios in the Na2O-Al2O3-SiO2-H2O system has been determined. In-situ measurements in a hydrothermal diamond anvil cell (HDAC) with the fluid and melt at the desired temperatures (≤800˚C) and pressures (≤1115 MPa) were carried out with microRaman and FTIR spectroscopy techniques. For bulk D/H ratios were used: 0.05 ±0.02, 0.13 ±0.05, 0.53 ±0.01 and 2.35 ±0.04. Three experimental series (D/H: 0.05, 0.13, 0.53) with coexisting fluid and melt have comparable pressure/temperature trajectories (350-650 ºC/322-626, 313-741 and MPa; 248-648 MPa, respectively), whereas the experimental series with D/H=2.35 had a lower pressure/temperature trajectory (400-680 ºC/192-496 MPa). In these pressure/temperature ranges, the D/H ratios of fluids barely change with temperature, with an average small negative ΔHfluid -1.2 ±0.5 kJ/mol. In contrast, the D/H ratios of coexisting melts display strong temperature dependence. The ΔHmelt decreases from 14.6 ±2.2 to -3.7 ±1.1 kJ/mol with the D/H ratio increasing from 0.05 ±0.02 to 2.35 ±0.04. Consequently, the (D,H) exchange equilibrium between melt and fluid is temperature dependent, and varies so that its ΔH increases from -15.9 ±2.7 to 0.3 ±0.4 kJ/mol with increasing D/H ratios. Hydrogen isotope fractionation between silicate melts and low density phases (aqueous fluids or gases) may affect the δD values during, for example degassing of mantle derived-magmatic liquids. Moreover, D/H fractionation between silicate minerals and melts in the Earth's interior can be affected by the significant temperature and composition-dependent D/H fractionation in silicate melts at high temperatures and pressures.

  18. Ionic conductivity of mixed glass former 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)] glasses.

    PubMed

    Christensen, Randilynn; Olson, Garrett; Martin, Steve W

    2013-12-27

    The mixed glass former effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass forming compositions. In this study, mixed glass former (MGF) sodium borophosphate glasses, 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5], 0 ≤ x ≤ 1, have been prepared, and their sodium ionic conductivity has been studied. The ionic conductivity exhibits a strong, positive MGFE that is caused by a corresponding strongly negative nonlinear, nonadditive change in the conductivity activation energy with changing glass former content, x. We describe a successful model of the MGFE in the conductivity activation energy terms of the underlying short-range order (SRO) phosphate and borate glass former structures present in these glasses. To do this, we have developed a modified Anderson-Stuart (A-S) model to explain the decrease in the activation energy in terms of the atomic level composition dependence (x) of the borate and phosphate SRO structural groups, the Na(+) ion concentration, and the Na(+) mobility. In our revision of the A-S model, we carefully improve the treatment of the cation jump distance and incorporate an effective Madelung constant to account for many body coulomb potential effects. Using our model, we are able to accurately reproduce the composition dependence of the activation energy with a single adjustable parameter, the effective Madelung constant, that changes systematically with composition, x, and varies by no more than 10% from values typical of oxide ceramics. Our model suggests that the decreasing columbic binding energies that govern the concentration of the mobile cations are sufficiently strong in these glasses to overcome the increasing volumetric strain energies (mobility) caused by strongly increasing glass-transition temperatures combined with strongly decreasing molar volumes of these glasses. The dependence of the columbic binding

  19. 12Cao-7Al2o3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Rand, Lauren P. (Inventor); Williams, John D. (Inventor); Martinez, Rafael A. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  20. Electronic Energy Transfer on CaO Surfaces

    SciTech Connect

    Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2008-09-28

    We excite low-coordinated surface sites of nanostructured CaO samples using tunable UV laser pulses and observe hyperthermal O-atom emission indicative of an electronic excited-state desorption mechanism. The O-atom yield increases dramatically with photon energy, between 3.75 and 5.4 eV, below the bulk absorption threshold. The peak of the kinetic energy distribution does not increase with photon energy in the range 3.9 to 5.15 eV. These results are analyzed in the context of a laser desorption model developed previously for nanostructured MgO samples. The data are consistent with desorption induced by exciton localization at corner-hole trapped surface sites following either direct corner excitation or diffusion and localization of excitons from higher coordinated surface sites.

  1. CaO as Drop-In Colloidal Catalysts for the Synthesis of Higher Polyglycerols

    PubMed Central

    Kirby, Fiona; Nieuwelink, Anne-Eva; Kuipers, Bonny W M; Kaiser, Anton; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2015-01-01

    Glycerol is an attractive renewable building block for the synthesis of polyglycerols, which find application in the cosmetic and pharmaceutical industries. The selective etherification of glycerol to higher oligomers was studied in the presence of CaO colloids and the data are compared with those obtained from NaOH and CaO. The materials were prepared by dispersing CaO, CaCO3, or Ca(OH)2 onto a carbon nanofiber (CNF) support. Colloidal nanoparticles were subsequently dispensed from the CNF into the reaction mixture to give CaO colloids that have a higher activity than equimolar amounts of bulk CaO and NaOH. Optimization of the reaction conditions allowed us to obtain a product with Gardner color number <2, containing no acrolein and minimal cyclic byproducts. The differences in the CaO colloids originating from CNF and bulk CaO were probed using light scattering and conductivity measurements. The results confirmed that the higher activity of the colloids originating from CaO/CNF was due to their more rapid formation and smaller size compared with colloids from bulk CaO. We thus have developed a practical method for the synthesis of polyglycerols containing low amounts of Ca. PMID:25684403

  2. [TG-FTIR study on pyrolysis of wheat-straw with abundant CaO additives].

    PubMed

    Han, Long; Wang, Qin-Hui; Yang, Yu-Kun; Yu, Chun-Jiang; Fang, Meng-Xiang; Luo, Zhong-Yang

    2011-04-01

    Biomass pyrolysis in presence of abundant CaO additives is a fundamental process prior to CaO sorption enhanced gasification in biomass-based zero emission system. In the present study, thermogravimetric Fourier transform infrared (TG-FTIR) analysis was adopted to examine the effects of CaO additives on the mass loss process and volatiles evolution of wheat-straw pyrolysis. Observations from TG and FTIR analyses simultaneously demonstrated a two-stage process for CaO catalyzed wheat-straw pyrolysis, different from the single stage process for pure wheat-straw pyrolysis. CaO additives could not only absorb the released CO2 but also reduce the yields of tar species such as toluene, phenol, and formic acid in the first stage, resulting in decreased mass loss and maximum mass loss rate in this stage with an increase in CaO addition. The second stage was attributed to the CaCO3 decomposition and the mass loss and maximum mass loss rate increased with increasing amount of CaO additives. The results of the present study demonstrated the great potential of CaO additives to capture CO2 and reduce tars yields in biomass-based zero emission system. The gasification temperature in the system should be lowered down to avoid CaCO3 decomposition. PMID:21714234

  3. COMPARATIVE SO2 REACTIVITY OF CAO DERIVED FROM CACO3 AND CA(OH)2

    EPA Science Inventory

    Experimental data on sulfation rates of CaO particles derived from CaCO3 are compared to those derived from Ca(OH)2 using a product layer diffusion control model differing only in the shape of the CaO grain. Both the model and the experimental data indicate slightly higher reacti...

  4. COMPARATIVE SO2 REATIVITY OF CAO DERIVED FROM CACO3 AND CA(OH)2

    EPA Science Inventory

    The paper gives results of a Comparison of experimental data on sulfation rates of CaO particles derived from CaC03 with those derived from Ca(OH)2 using a product layer diffusion control model differing only in the shape of the Cao grain. Both the model and the experimental data...

  5. Kinetic Study on Desulfurization of Hot Metal Using CaO and CaC2

    NASA Astrophysics Data System (ADS)

    Lindström, David; Sichen, Du

    2015-02-01

    The kinetics and reaction mechanisms of hot metal desulfurization using CaO and CaC2 were studied in a well-controlled atmosphere with a lab scale high temperature furnace. The growths of CaS around CaO and CaC2 were measured and compared at 1773 K (1500 °C). The parabolic rate constant was evaluated to be 5 × 10-7 (cm s-1) on CaO particles, and 2.4 × 10-7 (cm s-1) on CaC2. The bigger parabolic constant of CaO resulted in more efficient desulfurization. Agglomerates and big CaO particles led to 2CaO·SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO·SiO2 formation was favoured by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles.

  6. Kinetic Study on Desulfurization of Hot Metal Using CaO and CaC2

    NASA Astrophysics Data System (ADS)

    Lindström, David; Sichen, Du

    2014-09-01

    The kinetics and reaction mechanisms of hot metal desulfurization using CaO and CaC2 were studied in a well-controlled atmosphere with a lab scale high temperature furnace. The growths of CaS around CaO and CaC2 were measured and compared at 1773 K (1500 °C). The parabolic rate constant was evaluated to be 5 × 10-7 (cm s-1) on CaO particles, and 2.4 × 10-7 (cm s-1) on CaC2. The bigger parabolic constant of CaO resulted in more efficient desulfurization. Agglomerates and big CaO particles led to 2CaO·SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO·SiO2 formation was favoured by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles.

  7. Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Sobczyk, Marcin

    2013-04-01

    Telluride glasses of the composition xNd2O3-(7-x)La2O3-3Na2O-25ZnO-65TeO2, where (0≤x≤7) were prepared by the melt quench technique. Some physical and optical properties of the glasses were evaluated. The thermal behavior i.e. glass transition and crystallization temperatures were studied by using TGA-DTA technique. Optical properties of Nd3+-doped telluride glasses were investigated between 298 and 700 K. Basing on the obtained values of J-O parameter values (×10-20 cm2: Ω2=4.49±0.84, Ω4=5.03±0.61, Ω6=4.31±0.73), the radiative transition probabilities (AT), radiative lifetimes (τR), fluorescence branching ratios (β) and emission cross-sections (σem) were calculated for the 4F3/2→4IJ/2 (where J=9, 11 and 13) transitions of Nd3+ ions. The τR value of the 4F3/2 level amount to 164 μs and is slightly higher than the measured decay time of 162 μs. With the increasing of Nd2O3 concentration from 0.5 to 7.0 mol% the experimental lifetime of the fluorescent level decreases from 162 to 5.6 μs. The estimated quantum efficiency amount to 100%, based on a comparison of τR and the experimental decay time of a slightly doped Nd3+ telluride glass. An analysis of the non-radiative decay was based on the cross-relaxation mechanisms. The 4F3/2→4I9/2 and 4F5/2→4I9/2 transitions were analyzed with respect to the fluorescence intensity ratio (FIR) and were found to be temperature dependent. Infrared-to-visible up-conversion emissions with a maximum at 603.0 and 635.3 nm were observed at high temperatures using the 804 nm excitation and are due to the 4G5/2→4I9/2 and 4G5/2→4I11/2 transitions of Nd3+ ions, respectively. The near quadratic dependence of fluorescence on excitation laser power confirms that two photons contribute to up-conversion of the orange emissions. The temperature-stimulated up-conversion excitation processes have been analyzed in detail. The optical results indicate that the investigated glasses are potentially applicable as a 1063 nm

  8. Fabrication of high-efficiency diffraction gratings in glass

    NASA Astrophysics Data System (ADS)

    Takeshima, Nobuhito; Narita, Yoshihiro; Tanaka, Shuhei; Kuroiwa, Yutaka; Hirao, Kazuyuki

    2005-02-01

    We investigated a microfabrication process for optical gratings with periods of micrometer order that use ultrafast laser pulses in semiconductor-doped glass. ZnS- or PbS-doped SiO2 - Al2O3 - B2O3 - CaO - ZnO - Na2O - K2O glass was prepared by a melting method. Glass transmission diffraction gratings with a high refractive-index difference were fabricated with femtosecond laser pulses. The first-order diffraction efficiencies of these gratings were approximately 80%, and the first-order diffraction angles of these gratings were 8° at telecommunication wavelengths.

  9. Mechanism of CaO sulfation in boiler limestone injection

    SciTech Connect

    Stouffer, M.R.; Yoon, H.; Burke, F.P.

    1987-01-01

    Pilot and industrial-scale tests of boiler limestone injection (BLI) have demonstrated flue gas SO/sub 2/ reductions of around 50% at sorbent utilization efficiencies of 15-20%. The objective of the laboratory research program described in this paper was to improve BLI sorbent utilization through an understanding of the limestone calcination and CaO sulfation reaction mechanisms. This paper describes the laboratory sulfation studies. The laboratory work used a differential reactor operated at 700-1000/degree/C and lab-produced calcines from limestones, dolomites, and hydrated limes, having particle sizes in a range applicable to BLI. The lab work determined the intrinsic sulfation reaction rate and rate-controlling steps over this temperature range. The intrinsic rate increased with the square of calcine surface area and was rate controlling only at temperatures below 800/degree/C. At the higher temperatures more applicable to BLI, the sulfation rate was limited by pore diffusion of SO/sub 2/ and pore plugging by the sulfate product. Therefore, the reaction rate and the saturated sorbent efficiency depended strongly on particle size and calcine pore structure. The lab data indicate that an optimum calcine pore structure can be obtained by appropriately evaluating sorbents, controlling calcination conditions and incorporating alkali additives in the sorbent.

  10. Cao Gío (coin rubbing). Vietnamese attitudes toward health care.

    PubMed

    Yeatman, G W; Dang, V V

    1980-12-19

    Cao gío is the Vietnamese practice of rubbing the skin with a coin to alleviate various common symptoms of illness. The back, neck, head, shoulder, and chest are common sites of application. Although mimicking the lesions of trauma, it is not a harmful procedure, and no complications are known. A survey of 50 Vietnamese living in the United States since 1975 and 1976 has shown marked distrust of American Physicians, owing largely to actual or perceived criticism of cao gío. Acceptance of cao gío as a valid cultural practice will facilitate compliance and adequate medical follow-up. PMID:7441861

  11. Assessment of CAOS as a training model in spinal surgery: a randomised study.

    PubMed

    Richards, P J; Kurta, I C; Jasani, V; Jones, C H Wynn; Rahmatalla, A; Mackenzie, G; Dove, J

    2007-02-01

    The objectives of this study were (1) to quantify the benefit of computer assisted orthopaedic surgery (CAOS) pedicle screw insertion in a porcine cadaver model evaluated by dissection and computed tomography (CT); (2) to compare the effect on performance of four surgeons with no experience of CAOS, and varying experience of pedicle screw insertion; (3) to see if CT with extended windows was an acceptable method to evaluate the position of the pedicle screws in the porcine cadaver model, compared to dissection. This was a prospective, randomised, controlled and blinded porcine cadaver study. Twelve 6-month-old porcine (white skinned Landrace) lumbar spines were scanned pre-operatively by spiral CT, as required for the CAOS computer data set. Computer randomisation allocated the specimens to one of four surgeons, all new to CAOS but with different levels of experience in spinal surgery. The usual anatomical landmarks for the freehand technique were known to all four surgeons. Two pedicles at each vertebral level were randomly allocated between conventional free hand insertion and an electromagnetic image guided surgery (NAVITRAK) and 6.5 mm cancellous AO screws inserted. Post-operatively, spiral CT was blindly evaluated by an independent radiologist and the spine fellow to assess the accuracy of pedicle screw placement, by each method. The inter- and intra-observer reliability of CT was evaluated compared to dissection. The pedicle screw placement was assessed as perfect if within the pedicle along its central axis, or acceptable (within < 2 mm from perfect), and measured in millimetres from perfect thereafter. One hundred and sixty-six of 168 pedicles in 12 porcine spines were operated on. Complete data were present for 163 pedicles (81 CAOS, 82 freehand). In the CAOS group 84% of screws were deemed acceptable or perfect, compared to 75.6% with the freehand technique. Screw misplacement was significantly reduced using CAOS (P = 0.049). Seventy-nine percent of CAOS

  12. CaO interaction in the staged combustion of coal

    SciTech Connect

    Levy, A.; Merryman, E.L.; Rising, B.W.

    1983-12-19

    The LIMB (limestone injection multi-stage burner) process offers special potential for reducing NO/sub x/ and SO/sub x/ by at least 50 percent in coal combustion. This is to be accomplished by adding limestone with fuel and/or air in a low NO/sub x/ burner. This program has been directed to defining the chemistry and kinetics necessary to optimize sulfur capture in LIMB combustion. More specifically, this program has attempted to clarify the role of calcium sulfide in LIMB chemistry. When limestone is added in a staged burner, there is a strong possibility that under certain circumstances CaS is produced in the reducing (fuel-rich) zone of the burner. Since CaS is more stable than CaSO/sub 4/, this affords the opportunity to (1) operate the burner at a higher temperature, 2200 to 2500 F, (2) pass the CaS rapidly through the high temperature zone (before dissociation), and (3) complete the combustion in a lean (air-rich) region where the sulfur is finally retained in CaSO/sub 4/. For these reasons this program has concentrated on the high temperature chemistry and kinetics of CaS. To achieve the program objective, the program was divided into three tasks. These involved (1) a study of CaS formation, (2) a brief examination of CaS oxidation, and (3) a laboratory examination of the combustion of coal in the presence of CaO under first stage, fuel-rich conditions. In the most general sense, the study has shown that the formation of CaS in the reducing zones of the burner may be restricted by competing kinetics and thermodynamics. The addition of lime in LIMB will require special care to optimize the ability to capture sulfur. 36 references, 44 figures, 10 tables.

  13. Nonisothermal Thermogravimetric Analysis of Thai Lignite with High CaO Content

    PubMed Central

    Pintana, Pakamon

    2013-01-01

    Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1 from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higher E values were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal. PMID:24250259

  14. [Academic heritage of Jiu huang ben cao (Materia Medica for Relief of Famines) in Japan].

    PubMed

    He, Huiling; Xiao, Yongzhi

    2014-11-01

    Jiu huang ben cao (Materia Medica for Relief of Famines) was the first monograph on famines herbal in the history of China, which creates a new research field of edible plants. Around the middle and late 17th century, Jiu huang ben cao was spread to Japan and aroused great attention of famous Japanese herbalists. Thus, all versions of different edition systems were circulated in Japan. Later, some famous Japanese scholar ssuccessively quoted texts of Jiu huang ben cao from the Nong zheng quan shu (Whole book on Agricultural Administration) spread in Japan, and block-printed it as an independent work. As a result, Jiu huang ben cao virtually circulated widely in Japan. PMID:25620360

  15. Variations in Compressive Strength of Geopolymer due to the CaO Added Fly Ash

    NASA Astrophysics Data System (ADS)

    Zhao, Yuqing; Koumoto, Tatsuya; Kondo, Fumiyoshi

    Recently, geopolymer has been a noteworthy material which can be used as a replacement for portland cement. The mechanical characteristics and consistency of the geopolymer are strongly affected by its chemical components of fly ash. The variations in compressive strength of geopolymer due to the CaO added fly ash were investigated in this paper. The compressive strengths of geopolymer were increased with an increase in the curing period, and the characteristics changed from the one of plastic soil material to brittle material such as concrete, regardless of CaO content. Also, the results of compressive strength and modulus of deformation showed their maximum value in the case of 8-10% CaO content. From this result, the maximum characteristics of the strengths were assumed to be exerted in case which the water draining process of geopolymer was balanced with the water absorbing process of additional CaO.

  16. Measurement of secondary ionization coefficient of CaO film electrode

    NASA Astrophysics Data System (ADS)

    Suzuki, Susumu; Kashiwagi, Yasuhide; Itoh, Haruo

    2013-02-01

    The secondary ionization coefficient γ of a CaO film electrode is investigated taking into account the difference in breakdown voltage obtained by repeated voltage applications. Such measurement is performed under a sinusoidal voltage of 0.5 Hz. If the CaO film electrode acts as the cathode, breakdown voltage gradually decreases and converges to an almost constant value after several breakdowns. From the obtained results, the γ of the CaO film electrode is determined for each breakdown using Townsend's criterion. The γ in the first breakdown is lower than those in subsequent breakdowns, particularly in the steady state. The difference in γ is considered to originate from accumulated charges on the CaO film electrode. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  17. Experimental study on pore distribution characters and convert rate of CaO

    NASA Astrophysics Data System (ADS)

    Jia, Li; Zeng, Yanyan; Zhang, Tao

    2005-03-01

    During the reaction between calcium sorbents and SO2, calcium sorbents are first calcined and converted into CaO. CaO can be obtained by calcining Ca(OH)2 or CaCO3. The porosity of the sorbent is increased because of calcination and is decreased because of sulfurization. In the calcination process H2O or CO2 is escaped from the particles and pores are formed in particles. The reaction or convert rate of CaO is influenced strongly by the pore structure characters. From Ca(OH)2 to CaO the escape velocity of H2O or its mass transfer is one of the key factors influencing the pore forming. During calcination process different heating velocity, different heating time and temperature were suggested. The temperature rising rate and calcining temperature play important role to the pore structure. The convert rates of CaO obtained through different calcining conditions were investigated experimentally. Some interesting results were showed that the calcium utilization of CaO particles is determined not only by the special surface area and total pore volume, but also by pore-size distribution. The main factor influencing the sulfation is the pore diameter distribution at lower sulfation temperature. For higher reaction temperature specific volume is the important reason. But pore-size distribution is strongly influenced by heat flux and temperature in the calcining process.

  18. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this

  19. New pyrometallurgical process of EAF dust treatment with CaO addition

    NASA Astrophysics Data System (ADS)

    Chairaksa-Fujimoto, Romchat; Inoue, Yosuke; Umeda, Naoyoshi; Itoh, Satoshi; Nagasaka, Tetsuya

    2015-08-01

    The non-carbothermic zinc pyrometallurgical processing of electric arc furnace (EAF) dust was investigated on a laboratory scale. The main objective of this process was to convert highly stable zinc ferrite (ZnFe2O4), which accounts for more than half of total zinc in the EAF dust, into ZnO and Ca2Fe2O5 by CaO addition. The EAF dust was mixed with CaO powder in various ratios, pressed into pellets, and heated in a muffle furnace in air at temperatures ranging from 700 to 1100°C for a predetermined holding time. All ZnFe2O4 was transformed into ZnO and Ca2Fe2O5 at a minimum temperature of 900°C within 1 h when sufficient CaO to achieve a Ca/Fe molar ratio of 1.1 was added. However, at higher temperatures, excess CaO beyond the stoichiometric ratio was required because it was consumed by reactions leading to the formation of compounds other than ZnFe2O4. The evaporation of halides and heavy metals in the EAF dust was also studied. These components could be preferentially volatilized into the gas phase at 1100°C when CaO was added.

  20. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process. PMID:25289973

  1. Effect of sulfation on the surface activity of CaO for N2O decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Dong, Changqing; Yang, Yongping

    2015-12-01

    Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N2O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N2O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N2O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO2 or SO3 molecule forms stable local CaSO3 or CaSO4 on the CaO (1 0 0) surface with strong hybridization between the S atom of SOx and the surface O anion. The formed local CaSO3 increases the barrier energy of N2O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO4 remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO3 into CaSO4 is therefore the crucial step for deactivating the surface activity for N2O decomposition. Completely sulfated CaSO4 (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO4 for N2O decomposition.

  2. [Quantitative estimation of CaO content in surface rocks using hyperspectral thermal infrared emissivity].

    PubMed

    Zhang, Li-Fu; Zhang, Xue-Wen; Huang, Zhao-Qiang; Yang, Hang; Zhang, Fei-Zhou

    2011-11-01

    The objective of the present paper is to study the quantitative relationship between the CaO content and the thermal infrared emissivity spectra. The surface spectral emissivity of 23 solid rocks samples were measured in the field and the first derivative of the spectral emissivity was also calculated. Multiple linear regression (MLR), principal component analysis (PCR) and partial least squares regression (PLSR) were modeled and the regression results were compared. The results show that there is a good relationship between CaO content and thermal emissivity spectra features; emissivities become lower when CaO content increases in the 10.3-13 mm region; the first derivative spectra have a better predictive ability compared to the original emissivity spectra. PMID:22242490

  3. Zircon U-Pb and Lu-Hf isotopic and geochemical constraints on the origin of the paragneisses from the Jiaobei terrane, North China Craton

    NASA Astrophysics Data System (ADS)

    Shan, Houxiang; Zhai, Mingguo; Zhu, Xiyan; Santosh, M.; Hong, Tao; Ge, Songsheng

    2016-01-01

    Clastic sedimentary rocks are important tracers to understand the evolution of the continental crust. Whole-rock major and trace element data, zircon U-Pb dating and Hf isotopic data for the paragneisses from the Jiaobei terrane are presented in this study in order to constrain their protoliths, provenance and tectonic setting. The paragneisses are characterized by enrichment in Al2O3 and TiO2, negative DF (DF = 10.44 - 0.21SiO2 - 0.32Fe2O3T - 0.98MgO + 0.55CaO + 1.46Na2O + 0.54K2O) values and the presence of aluminum-rich metamorphic minerals (e.g., garnet and sillimanite). Together with the mineral assemblages and zircon features, it can be inferred that the protoliths of these rocks are of sedimentary origin. The K-A (A = Al2O3/(Al2O3 + CaO + Na2O + K2O), K = K2O/(Na2O + K2O)) and log(Fe2O3/K2O)-log(SiO2/Al2O3) diagrams indicate that they belong principally to clay-silty rocks with some contributions from graywacke. A series of geochemical indexes, such as the widely employed CIA (CIA = [Al2O3/(Al2O3 + CaO∗ + Na2O + K2O)] × 100; molar proportions) and ICV (ICV = (Fe2O3 + MnO + MgO + CaO + Na2O + K2O + TiO2)/Al2O3) values, and the A-CN-K diagram for the paragneisses indicate relatively weak weathering in the source rocks and negligible post-depositional K-metasomatism. In addition, their REE patterns, low Cr/Zr (0.61-1.99), high Zr/Y (4.81-23.59) and Th/U (3.21-40.67) ratios, the low to moderate contents of Cr (197-362 ppm) and Ni (6.68-233 ppm), and source rock discrimination diagrams collectively suggest that the sediments of the protoliths of the paragneisses in the Jiaobei terrane were derived from the source with intermediate-acidic composition, probably granitic-to-tonalitic rocks. In combination with geochronological and isotopic studies on the paragneisses and the basement rocks in the Jiaobei terrane, it is suggested that the Archean-early Paleoproterozoic granitic rocks in the Jiaobei terrane possibly provided the most important source materials. In

  4. Dissolution process for ZrO.sub.2 -UO.sub.2 -CaO fuels

    DOEpatents

    Paige, Bernice E.

    1976-06-22

    The present invention provides an improved dissolution process for ZrO.sub.2 -UO.sub.2 -CaO-type pressurized water reactor fuels. The zirconium cladding is dissolved with hydrofluoric acid, immersing the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers in the resulting zirconium-dissolver-product in the dissolver vessel, and nitric acid is added to the dissolver vessel to facilitate dissolution of the uranium from the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers.

  5. [Determination of major elements in superphosphate by X-ray fluorescence spectrometry].

    PubMed

    Rui, Yu-Kui; Li, He; Shen, Jian-Bo; Zhang, Fu-Suo

    2008-11-01

    Phosphate fertilizer is one of the most important fertilizers. The authors determined nine kinds of major elements in superphosphate, the most important phosphate fertilizer, by X-ray fluorescence spectrometry. The detection range of SiO2, Al2O3, TFe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5 is 15.0%-90.0%, 0.20%-25.0%, 0.20%-25.0%, 0.01%-0.35%, 0.20%-40.0%, 0.10%-35.0%, 0.10%-7.50%, 0.05%-7.50% and 1.00%-100.00% respectively, and the precision of the method for SiO2, Al2O3, TFe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5 range from 0.20% to 0.005%, so the method of X-ray fluorescence spectrometry is a fast and effectual method for detecting the composition of phosphate fertilizer. The contents of the above elements showed (1) the detected superphosphate content is 18.101% of P2O5, which is accordant to the labeled level (> or = 16%); (2) the detected superphosphate contains much SiO2, TFe2O3, MgO, CaO and K2O, which are necessary for plant growth and the content of which is 16.954%, 1.495%, 1.580%, 21.428% and 1.585% respectively. These data showed that phosphate fertilizer sometimes can supply some trace elements for plants, but we should eliminate the interference effect of these elements when we research the role of phosphorus; (3) superphosphate contains 3.225% of Al2O3, so the authors should attention to the aluminium poison when superphosphate is used chronically. PMID:19271522

  6. Effect of partial carbonation on the cyclic CaO carbonation reaction

    SciTech Connect

    Grasa, G.; Abanades, J.C.; Anthony, E.J.

    2009-10-15

    CaO particles from the calcination of natural limestones can be used as regenerable solid sorbents in some CO{sub 2} capture systems. Their decay curves in terms of CO{sub 2} capture capacity have been extensively studied in the literature, always in experiments allowing particles to reach their maximum carbonation conversion for a given cycle. However, at the expected operating conditions in a CO{sub 2} capture system using the carbonation reaction, a relevant fraction of the CaO particles will not have time to fully convert in the carbonator reactor. This work investigates if there is any effect on the decay curves when CaO is only partially converted in each cycle. Experiments have been conducted in a thermobalance arranged to interrupt the carbonation reaction in each cycle before the end of the fast reaction period typical in the CaO-CO{sub 2} reaction. It is shown that, after the necessary normalization of results, the effective capacity of the sorbent to absorb CO{sub 2} during particle lifetime in the capture system slightly increases and CaO particles partially converted behave 'younger' than particles fully converted after every calcination. This has beneficial implications for the design of carbonation/calcination loops.

  7. EFFECT OF SPECIFIC SURFACE AREA ON THE REACTIVITY OF CAO WITH SO2

    EPA Science Inventory

    The paper discusses results of measuring the rate of reaction of calcined limestone (CaCO3) with sulfur dioxide (SO2) and oxygen (O2) at conditions that eliminate all resistances not associated with the lime (CaO) grain surface. Reactivity increased with the square of the Brunaue...

  8. METHOD FOR VARIATION OF GRAIN SIZE IN STUDIES OF GAS-SOLID REACTIONS INVOLVING CAO

    EPA Science Inventory

    The paper describes a method for varying grain size in studies of gas-solid reactions involving CaO. (Note: Introducing grain size as an independent experimental variable should contribute to improved understanding of reactions in porous solids.) Calcining 1 micrometer CaCO3 part...

  9. IDENTIFICATION OF CASO4 FORMED BY REACTION OF CAO AND SO2

    EPA Science Inventory

    The article discusses the XRD-determination of the identity of CaSO4, formed by the reaction between CaO and S02, and the support of that determination by density measurements with helium pycnometry. The anhydrous CaS04 compound formed has an orthorhombic crystal structure and an...

  10. Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution.

    PubMed

    Miki, Takahiro; Chairaksa-Fujimoto, Romchat; Maruyama, Katsuya; Nagasaka, Tetsuya

    2016-01-25

    Zinc in Electric Arc Furnace dust or EAF dust mainly exists as ZnFe2O4 and ZnO. While ZnO can be simply dissolved into either an acidic or alkaline solution, it is difficult to dissolve ZnFe2O4. In our previous work, we introduced a process called "CaO treatment", a preliminary pyrometallurgical process designed to transform the ZnFe2O4 in the EAF dust into ZnO and Ca2Fe2O5. The halogens and others heavy metals were favorably vaporized during CaO treatment with no essential evaporation loss of zinc and iron, leaving CaO treated dust which consisted mainly of ZnO and Ca2Fe2O5 and no problematic ZnFe2O4 compound. In this work, the selective leaching of zinc over iron and calcium in the CaO treated dust was investigated using an NH4Cl solution. The effects of temperature, reaction time and NH4Cl concentration on dissolution behavior were examined. While most of the zinc in the CaO treated dust was extracted after 2 h at 70 °C with 2 M NH4Cl, only about 20% of calcium was leached in NH4Cl solution. However, the iron did not dissolve and remained as Ca2Fe2O5 in residue. It was confirmed that zinc can be effectively recovered using NH4Cl solution. PMID:26448494

  11. Materials compatibility during the chlorination of molten CaCl/sub 2/. CaO salts. [CaCl/sub 2/. CaO salt

    SciTech Connect

    Rense, C.E.C.; Fife, K.W.; Bowersox, D.F.; Ferran, M.D.

    1987-01-01

    As part of our effort to develop a semicontinuous PuO/sub 2/ reduction process, we are investigating promising materials for containing a 900/sup 0/C molten CaCl/sub 2/ . CaO chlorination reaction. We want the material to contain this reaction and to be reusable. We tested candidate materials in a simulated salt (no plutonium) using anhydrous HCl as the chlorinating agent. Data are presented on the performance of 36 metals and alloys, 9 ceramics, and 3 coatings.

  12. The mineralogy and geochemistry of quartz-tourmaline schlieren in the granites of the Primorsky Complex, Western Baikal Region

    NASA Astrophysics Data System (ADS)

    Savel'eva, V. B.; Bazarova, E. P.; Kanakin, S. V.

    2014-12-01

    Quartz-tourmaline schlieren have been found within rapakivi-like granites of the Early Proterozoic Primorsky Complex in the Western Baikal Region. These rocks are biotite leucogranites with normal alkalinity (A/CNK = 1.00-1.04); a high iron mole fraction (92-95%); a K2O/Na2O value of about 2.0; relatively high F, Li, Rb, Cs, Sn, Pb, Th, and U contents; and low Ba, Sr, Eu, Zn, Sc, and V contents. The schlieren composed of quartz and tourmaline with relics of feldspar also contain fluorite, rare muscovite, chlorite, and accessory rutile, ilmenite, zircon, monazite, xenotime, and bastnäsite. B2O3 and F contents in the schlieren are 2.29-2.63 and 0.30-0.47 wt %, respectively. Fe2O3 (4.8-5.4 wt %), F, and H2O contents are higher in these schlieren than in the host granite, while SiO2, CaO, Na2O, K2O, and P2O5 contents are lower than in host rocks. K2O/Na2O values decrease in the schlieren down to 0.4. Enrichment of the schlieren in Fe and other ore elements (Zn, Co, Cu, Sn, etc.), together with B, F, H2O, and Na, suggests that they crystallized from fluid-saturated melt segregated from aluminosilicate melt in the apical part of a shallow-seated intrusion. The formation of tourmaline may be related to the interaction of the fluid with feldspars in the crystallizing granites; it was accompanied by a separation of fluid F-CO2. Quartz precipitated at the next stage, due to the acidic character of the aqueous fluid. In general, the relationships of minerals in the schlieren indicate distinct fractionation of LREE, HREE, and Y in the fluid-saturated melt.

  13. Sulfation of CaO particles in a carbonation/calcination loop to capture CO{sub 2}

    SciTech Connect

    Grasa, G.S.; Alonso, M.; Abanades, J.C.

    2008-03-15

    CaO is being proposed as a regenerable sorbent of CO{sub 2} via a carbonation/calcination loop. It is well known that natural sorbents lose their capacity to capture CO{sub 2} with the number of cycles due to textural degradation. In coal combustion systems, reaction with the SO{sub 2} present in flue gases also causes sorbent deactivation. This work investigates the effect of partial sorbent sulfation on the amount of CaO used in systems where both carbonation and sulfation reactions are competing. We have found that SO{sub 2} reacts with the deactivated CaO resulting from repetitive calcination/carbonation reactions. Therefore, the deactivation of CaO as a result of the presence of SO{sub 2} is lower than one would expect if one assumes that SO{sub 2} reacts only with active CaO. This work shows that changes in the texture of the sorbent due to repetitive carbonation/calcination cycles tend to increase the sulfation capacity of the sorbents tested. This suggests that the purge of deactivated CaO obtained from a CO{sub 2} capture loop could be a more effective sorbent of SO{sub 2} than fresh CaO.

  14. Characteristics of HCN removal using CaO at high temperatures

    SciTech Connect

    Houzhang Tan; Xuebin Wang; Congling Wang; Tongmo Xu

    2009-03-15

    Experimental investigation on the removal of hydrogen cyanide (HCN) using calcium oxide (CaO) was carried out in a fixed bed reactor at temperature ranging from 300 to 1173 K, and the original HCN was produced during the pyrolysis of pyridine. Effects of temperature, volume space velocity, and initial HCN concentration on HCN removal were discussed. The results of temperature-programmed experiments show that temperature is the main factor affecting HCN removal. With the formation of CO, HCN starts to decrease from 473 K, and remains unchanged from 673 to 873 K. At 873 K, there is a further decrease in HCN without CO formation, and when temperature is higher than 1023 K, HCN is removed completely. In the isothermal experiments, CaCN{sub 2} was detected at 723 K, but at higher temperatures of 923 and 1123 K, there was no CaCN{sub 2} in the solid residues, and the nitrogen in the removed HCN was equal to that in the formed N{sub 2}. This indicates that at a lower temperature CaO is consumed to remove HCN, CaO + 2HCN {yields} CaCN{sub 2} + CO + H{sub 2}; but at a higher temperature, CaO acts as a catalyst for HCN removal, 2C{sub i}H{sub j} + 2HCN {yields} N{sub 2} + (j + 1 - k)H{sub 2} + 2C{sub I} + 1H{sub k}. The investigation on the removal efficiency shows that there is a critical temperature and a critical volume space velocity at which the HCN removal efficiency is able to reach up to 100%. 41 refs., 9 figs., 2 tabs.

  15. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    PubMed

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials. PMID:23743266

  16. Thermoluminescence properties of gamma irradiated CaO: Sm3+ phosphor

    NASA Astrophysics Data System (ADS)

    Prakash, D.; Nagabhushana, K. R.

    2016-07-01

    Pure and samarium doped calcium oxide (CaO) is synthesized by solution combustion technique. The samples are annealed at 600 °C for two hours. X-ray diffraction (XRD) pattern of the annealed sample show cubic phase with space group Fm3m. The average crystallite size is found to be ∼54 nm. Fourier transform infra red (FTIR) spectrum exhibits bands at 424, 544 cm-1 (Ca-O bond), 875 cm-1 (C-O bond), 1460 cm-1 (C-O stretch) and 3640 cm-1 (O-H stretch). The samples are irradiated with gamma rays in a dose range 100-4000 Gy. Thermoluminescence (TL) glow curves are recorded at a linear heating rate (β) of 5 Ks-1. A prominent TL glow with a peak at 636 K is observed in undoped sample. A new TL glow with peak at ∼458 K is observed in addition to 636 K in samarium doped (1 mol%) CaO. TL glow peak intensity (Imax) at 636 K increases with γ - dose in the study range. TL emissions at 560, 600 and 640 nm are observed in doped samples corresponding to Sm3+ transitions along with pristine emissions. TL glow curves are deconvoluted to obtain kinetic parameters. The mean value of activation energy and the frequency factor of the prominent deconvoluted TL glow peak (626 K) are found to be 1.26 eV and 4.49 × 109 s-1 respectively.

  17. Evolutionary Changes in Chlorophyllide a Oxygenase (CAO) Structure Contribute to the Acquisition of a New Light-harvesting Complex in Micromonas*♦

    PubMed Central

    Kunugi, Motoshi; Takabayashi, Atsushi; Tanaka, Ayumi

    2013-01-01

    Chlorophyll b is found in photosynthetic prokaryotes and primary and secondary endosymbionts, although their light-harvesting systems are quite different. Chlorophyll b is synthesized from chlorophyll a by chlorophyllide a oxygenase (CAO), which is a Rieske-mononuclear iron oxygenase. Comparison of the amino acid sequences of CAO among photosynthetic organisms elucidated changes in the domain structures of CAO during evolution. However, the evolutionary relationship between the light-harvesting system and the domain structure of CAO remains unclear. To elucidate this relationship, we investigated the CAO structure and the pigment composition of chlorophyll-protein complexes in the prasinophyte Micromonas. The Micromonas CAO is composed of two genes, MpCAO1 and MpCAO2, that possess Rieske and mononuclear iron-binding motifs, respectively. Only when both genes were introduced into the chlorophyll b-less Arabidopsis mutant (ch1-1) was chlorophyll b accumulated, indicating that cooperation between the two subunits is required to synthesize chlorophyll b. Although Micromonas has a characteristic light-harvesting system in which chlorophyll b is incorporated into the core antennas of reaction centers, chlorophyll b was also incorporated into the core antennas of reaction centers of the Arabidopsis transformants that contained the two Micromonas CAO proteins. Based on these results, we discuss the evolutionary relationship between the structures of CAO and light-harvesting systems. PMID:23677999

  18. Viability of Clostridium sporogenes spores after CaO hygienization of meat waste.

    PubMed

    Bauza-Kaszewska, Justyna; Paluszak, Zbigniew; Skowron, Krzysztof

    2014-01-01

    The occurrence of the pathogenic species C. perfringens and C. botulinum spores in animal by-products poses a potential epidemiological hazard. Strong entero- and neurotoxins produced by these bacteria adversely affect human health. To inactivate pathogens present in animal by-products, waste must be subjected to various methods of sanitization. The aim of the presented study was to estimate the effect of different doses of CaO on the viability of spores Clostridium sporogenes in meat wastes category 3. During the research, two doses of burnt lime were added to the poultry mince meat and meat mixed with swine blood contaminated with Clostridium sporogenes spore suspension. Half of the samples collected for microbiological analyses were buffered to achieve the pH level ~7, the other were examined without pH neutralization. To estimate the spore number, 10-fold dilution series in peptone water was prepared and heat-treated at 80 °C for 10 min. After cooling-down, one milliliter of each dilution was pour-plated onto DRCM medium solidified with agar. Statistical analysis were performed using the Statistica software. Application of 70% CaO caused complete inactivation of Clostridium spores in meat wastes after 48 hours. The highest temperature achieved during the experiment was 67 °C. Rapid alkalization of the biomass resulted in increasing pH to values exceeding 12. The effect of liming was not dependent on the meat wastes composition nor CaO dose. The experiment proved the efficiency of liming as a method of animal by-products sanitization. Application of the obtained results may help reduce the epidemiological risk and ensure safety to people handling meat wastes at each stage of their processing and utilization. PMID:25292114

  19. Adsorption and dissociation kinetics of alkanes on CaO(100)

    NASA Astrophysics Data System (ADS)

    Chakradhar, A.; Liu, Y.; Schmidt, J.; Kadossov, E.; Burghaus, U.

    2011-08-01

    The adsorption kinetics of ethane, butane, pentane, and hexane on CaO(100) have been studied by multi-mass thermal desorption (TDS) spectroscopy. The sample cleanliness was checked by Auger electron spectroscopy. A molecular and dissociative adsorption pathway was evident for the alkanes, except for ethane, which does not undergo bond activation. Two TDS peaks appeared when recording the parent mass, which are assigned to different adsorption sites/configurations of the molecularly adsorbed alkanes. Bond activation leads to desorption of hydrogen and several alkane fragments assigned to methane and ethylene formation. Only one TDS feature is seen in this case. Formation of carbon residuals was absent.

  20. DUSTER: collection of meteoric CaO and carbon smoke particles in the upper stratosphere

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.; Della Corte, V.; Rotundi, A.; Ferrari, M.; Palumbo, P.

    2014-04-01

    Nanometer CaO and pure carbon smoke particles were collected at 38-km altitude in the upper stratosphere in the Arctic during June 2008 using DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), a balloon-borne instrument for the non-destructive collection of solid particles between 200 nm to 40 microns. We report the collection of micron sized CaCO3 (calcite) grains. Their morphologies show evidence of melting and condensation after vaporization suggest at temperatures of approximately 3500 K. The formation environment of the collected grains was probably a dense dust cloud formed by the disintegration of a carbonaceous meteoroid during deceleration in the Earth's atmosphere.

  1. Secondary ionization coefficient γ of MgO, SrO and CaO and the correlation between γ and charge accumulated on CaO in argon

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Itoh, H.

    2014-12-01

    An experimental investigation of Townsend's secondary ionization coefficient γ is carried out for MgO, SrO and CaO film electrodes. These oxides are utilized, or are to be utilized, in next-generation plasma display panels. All of the experiments are performed in argon. In particular, in the case of CaO film, our attention is attracted to the effect of charge accumulated on CaO film. For this purpose, the breakdown voltage Vs is observed from waveforms of the gap voltage and charge accumulated on the dielectric film electrodes with the repeated breakdown. Townsend's criterion is utilized to estimate γ from the breakdown voltage. In the case of the CaO film, γ increases gradually with repeated breakdowns and reaches a stationary value. The increase of γ is considered to be due to the charge that accumulates on the dielectric electrode triggering the next breakdown. Therefore, it is concluded that the increased γ is sustained by a combined process consisting of restarted electrons that have accumulated on the CaO film and the original γ action, as observed in metallic electrodes in a low-pressure gas discharge.

  2. Exciton-driven highly hyperthermal O-atom desorption from nanostructured CaO

    SciTech Connect

    Sushko, Petr V.; Shluger, Alexander L.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2011-01-27

    We report qualitatively new highly-hyperthermal (HHT) oxygen atom emission from nanostructured CaO excited by 6.4 eV nanosecond laser pulses. The kinetic energy distribution of emitted O-atoms peaks at 0.7 eV, which is over four times greater than previously observed. Excitation of MgO and CaO nanostructures with UV laser pulses is known to result in thermal and hyperthermal emission of oxygen atoms when photons with energies below and above the band gap, respectively, are used. The highly energetic atomic desorption we observe, following bulk excitation, challenges the conventional view that bulk excitation can only induce thermal desorption. Using density functional theory and an embedded cluster method, we propose a mechanism for this HHT feature based on the interaction of surface holes with bulk excitons. These experimental and theoretical results suggest that specific atomic desorption mechanisms in wide-bandgap materials can be controlled by selective electronic excitation of not only the surface but also the bulk of these materials

  3. Formation of 1D adsorbed water structures on CaO(001)

    NASA Astrophysics Data System (ADS)

    Zhao, Xunhua; Bhattacharya, Saswata; Ghiringhelli, Luca M.; Levchenko, Sergey V.; Scheffler, Matthias

    2015-03-01

    Understanding the interaction of water with oxide surfaces is of fundamental importance for basic and engineering sciences. Recently, a spontaneous formation of one-dimensional (1D) adsorbed water structures have been observed on CaO(001). Interestingly, at other alkaline earth metal oxides, in particular MgO(001) and SrO(001), such structures have not been found experimentally. We calculate the relative stability of adsorbed water structures on the three oxides using density-functional theory combined with the ab initio atomistic thermodynamics. Low-energy structures at different coverages are obtained with a first-principles genetic algorithm. Finite-temperature vibrational spectra are calculated using ab initio molecular dynamics. We find a range of (T, p) conditions where 1D structures are thermodynamically stable on CaO(001). The orientation and vibrational spectra of the 1D structures are in agreement with the experiments. The formation of the 1D structures is found to be actuated by a symmetry breaking in the adsorbed water tetramer, as well as by a balance between water-water and water-substrate interactions, determined by the lattice constant of the oxide.

  4. Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.

    PubMed

    Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian

    2016-08-30

    Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro. PMID:26481467

  5. Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites

    NASA Astrophysics Data System (ADS)

    Laporte, Didier; Lambart, Sarah; Schiano, Pierre; Ottolini, Luisa

    2014-10-01

    Piston-cylinder experiments were performed to characterize the composition of liquids formed at very low degrees of melting of two fertile lherzolite compositions with 430 ppm and 910 ppm K2O at 1 and 1.3 GPa. We used the microdike technique (Laporte et al., 2004) to extract the liquid phase from the partially molten peridotite, allowing us to analyze liquid compositions at degrees of melting F down to 0.9%. At 1.3 GPa, the liquid is in equilibrium with olivine + orthopyroxene + clinopyroxene + spinel in all the experiments; at 1 GPa, plagioclase is present in addition to these four mineral phases up to about 5% of melting (T≈1240 °C). Important variations of liquid compositions are observed with decreasing temperature, including strong increases in SiO2, Na2O, K2O, and Al2O3 concentrations, and decreases in MgO, FeO, and CaO concentrations. The most extreme liquid compositions are phonolites with 57% SiO2, 20-22% Al2O3, Na2O + K2O up to 14%, and concentrations of MgO, FeO, and CaO as low as 2-3%. Reversal experiments confirm that low-degree melts of a fertile lherzolite have phonolitic compositions, and pMELTS calculations show that the amount of phonolite liquid generated at 1.2 GPa increases from 0.3% in a source with 100 ppm K2O to 3% in a source with 2000 ppm K2O. The enrichment in silica and alkalis with decreasing melt fraction is coupled with an increase of the degree of melt polymerization, which has important consequences for the partitioning of minor and trace elements. Thus Ti4+ in our experiments and, by analogy with Ti4+, other highly charged cations, and rare earth elements become less incompatible near the peridotite solidus. Our study brings a strong support to the hypothesis that phonolitic lavas or their plutonic equivalents (nepheline syenites) may be produced directly by partial melting of upper mantle rock-types at moderate pressures (1-1.5 GPa), especially where large domains of the subcontinental lithospheric mantle has been enriched in

  6. Self-healing of defects in CaO coatings on V-5%Cr-5%Ti in liquid lithium

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1994-11-01

    In-situ electrical resistance of CaO coatings produced on V-5%Cr-5%Ti by exposure of the alloy to liquid Li that contained 0.5-85 wt % dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. Examination of the specimens after cooling to room temperature revealed no spallation, but homogeneous crazing cracks were present in the CaO coating. Additional tests to investigate the in-situ self-healing behavior of the cracks indicated that rapid healing occurred at >360{degrees}C.

  7. Mineralogical and chemical analyses of ancient glass beads from Taiwan and their implications

    NASA Astrophysics Data System (ADS)

    Liou, Y. S.; Liu, Y. C.

    2015-12-01

    Large numbers of monochrome glass beads with different colors, shapes, and stylistics excavated from the archaeological sites of Taiwan, which were dated mainly from the 2nd century AD to the early Historical Period of Taiwan. Archaeologically, these glass beads were more prevalent in eastern and northern Taiwan and were generally believed to be non-native, as well as were brought into Taiwan through the maritime exchange and/or trade activities between Taiwan and Southeast Asia/China since the Neolithic Age. Nevertheless, ancient glass beads have been little studies in Taiwan, aspects of these glass beads are not well detailed. In this work, non-destructive micro-Raman spectroscopy and μXRF are used in combination to examine 56 ancient glass beads excavated from six archaeological sites, eastern Taiwan, to unravel the mineralogical and chemical compositions and to help decipher the raw materials used and the provenance of beads. Micro-Raman measurements indicate the presence of hematite, zincite, siderite, sphalerite, lead tin yellow type II, adularia, chalcedony, anatase, rutite, ankerite, graphite, calcite, etc. Hematite, zincite, siderite, sphalerite, lead tin yellow type II, and rutile were found to be colorants/opacifiers. Among these crystalline phases, lead tin yellow type II was first detected in the ancient glass bead unearthed from Taiwan, which is accordant with results of chemical analysis. The chemical results obtained by μXRF show SiO2, Al2O3, Na2O, K2O, MgO, CaO, and PbO as the most abundant oxides. It is found that Na2O, Na2O, K2O, Al2O3, and MgO are the main/minor fluxes. According to the results, the three most frequent types are mineral soda alumina glass, soda plant ash glass, and lead silicate glass. The provenance of ancient beads unearthed from archaeological sites of Taiwan is possibility of multiple sources.

  8. ExoMol molecular line lists - XIII. The spectrum of CaO

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Blissett, Audra; Asari, Usama; Vasilios, Marcus; Hill, Christian; Tennyson, Jonathan

    2016-03-01

    An accurate line list for calcium oxide is presented covering transitions between all bound ro-vibronic levels from the five lowest electronic states X 1Σ+, A' 1Π, A 1Σ+, a 3Π, and b 3Σ+. The ro-vibronic energies and corresponding wavefunctions were obtained by solving the fully coupled Schrödinger equation. Ab initio potential energy, spin-orbit, and electronic angular momentum curves were refined by fitting to the experimental frequencies and experimentally derived energies available in the literature. Using our refined model we could (1) reassign the vibronic states for a large portion of the experimentally derived energies (van Groenendael A., Tudorie M., Focsa C., Pinchemel B., Bernath P. F., 2005, J. Mol. Spectrosc., 234, 255), (2) extended this list of energies to J = 61-118 and (3) suggest a new description of the resonances from the A 1Σ+-X 1Σ+ system. We used high level ab initio electric dipole moments reported previously (Khalil H., Brites V., Le Quere F., Leonard C., 2011, Chem. Phys., 386, 50) to compute the Einstein A coefficients. Our work is the first fully coupled description of this system. Our line list is the most complete catalogue of spectroscopic transitions available for 40Ca16O and is applicable for temperatures up to at least 5000 K. CaO has yet to be observed astronomically but its transitions are characterized by being particularly strong which should facilitate its detection. The CaO line list is made available in an electronic form as supplementary data to this article and at www.exomol.com.

  9. DUSTER: collection of meteoric CaO and carbon smoke particles in the upper stratosphere .

    NASA Astrophysics Data System (ADS)

    Della Corte, V.; Rietmeijer, F. J. M.; Rotundi, A.; Ferrari, M.; Palumbo, P.

    Nanometer- to micrometer-size particles present in the upper stratosphere are a mixture of terrestrial and extra-terrestrial origins. They can be extraterrestrial particles condensed after meteor ablation. Meteoric dust in bolides is occasionally deposited into the lower stratosphere around 20 km altitude. Nanometer CaO and pure carbon smoke particles were collected at 38 km altitude in the upper stratosphere in the Arctic during June 2008 using DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval), a balloon-borne instrument for the non-destructive collection of solid particles between 200 nm to 40 microns. We report the collection of micron sized CaCO_3 (calcite) grains. Their morphologies show evidence of melting and condensation after vaporization suggest at temperatures of approximately 3500 K. The formation environment of the collected grains was probably a dense dust cloud formed by the disintegration of a carbonaceous meteoroid during deceleration in the Earth� atmosphere. For the first time, DUSTER collected meteor ablation products that were presumably associated with the disintegration of a bolide crossing the Earth's atmosphere. The collected mostly CaO and pure carbon nanoparticles from the debris cloud of a fireball, included: 1) intact fragments; 2) quenched melted grains; and 3) vapor phase condensation products. The DUSTER project was funded by the Italian Space Agency (ASI), PRIN2008/MIUR (Ministero dell'Istruzione dell'Universitá e della Ricerca), PNRA 2013(Piano Nazionale Ricerca Antartide). CNES graciously provided this flight opportunity. We thank E. Zona and S. Inarta at the Laboratorio di Fisica Cosmica INAF, Osservatorio Astronomico di Capodimonte-Universitá di Napoli Parthenope. F.J.M.R. was supported by grant NNX07AI39G from the NASA Cosmochemistry Program. We thank three anonymous reviewers who assisted us in introducing our new instrument.

  10. CO2 and potassium in the mantle: carbonaceous pelite melts from the trailing edge of a detached slab hybridizing in the mantle to ultrapotassic kamafugite

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.

    2007-12-01

    The ultrapotassic magmas from the Intra-Apennine and Roman provinces constitute worldwide endmembers in terms of K2O/Na2O, K2O content and CO2 degassing, and are associated with carbonatites. Group II kimberlites, which are geochemically similar but less extreme, occur on cratons stable since several 100 Ma. This geotectonic situation appears in strong contrast to the subduction setting of central Italy, where plate convergence has slowed down to less than a few mm/a, the slab now tearing off leading hot asthenospheric mantle to flow in between the trailing slab and the crust. A successful recipe for ultrapotassic magmas requires K/Na fractionation at some previous stage. Melts from fluid-absent melting of carbonaceous pelites at >3 GPa are ultrapottasic phonolites (SiO2 ~64 wt%) and have K2O/Na2O up to 9 because of residual cpx with jadeite80. The effect of CO2 is to stabilize residual jadeite, to lower SiO2, and to increase K2O/Na2O ratios (as compared to CO2 free melts with K2O/Na2O of 1-3 and SiO2 = 73-77 wt%). The carbonaceous pelite melts were equilibrated with fertile, refractory but cpx bearing mantle, and wherlite. At sufficient pressures (3.5 GPa) and XCO2 in the volatile component, hybridization of the carbonaceous pelite melts produces highly subsilicic kamafugites, with K2O/Na2O only slightly lowered, and XMg's >0.70 as characteristic of primitive melts. The essential role of CO2 is to reduce the olivine saturation volume and to shift the olivine-cpx-opx cotectic to lower SiO2. The Italian kamafugites are ultracalcic (CaO/Al2O3 = 1.2-1.4), and although carbonaceous pelite melts have little CaO and 20 wt% Al2O3, the assimilation of cpx and production of aluminous opx leads to ultracalcic compositions when equilibrated with refractory peridotite or wherlite. Temperatures necessary for the fluid absent carbonaceous pelite melting are 1050-1150 °C, far above any reasonable subduction geotherm. Hybridization in the mantle requires 1320-1400 °C (at 3

  11. CaO insulator coatings on a vanadium-base alloy in liquid 2 at.% calcium-lithium

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1996-10-01

    The electrical resistance of CaO coatings produced on V-4%Cr-4%Ti and V-15%Cr-5%Ti by exposure of the alloy (round bottom samples 6-in. long by 0.25-in. dia.) to liquid lithium that contained 2 at.% dissolved calcium was measured as a function of time at temperatures between 300-464{degrees}C. The solute element, calcium in liquid lithium, reacted with the alloy substrate at these temperatures for 17 h to produce a calcium coating {approx}7-8 {mu}m thick. The calcium-coated vanadium alloy was oxidized to form a CaO coating. Resistance of the coating layer on V-15Cr-5Ti, measured in-situ in liquid lithium that contained 2 at.% calcium, was 1.0 x 10{sup 10} {Omega}-cm{sup 2} at 300{degrees}C and 400 h, and 0.9 x 10{sup 10} {Omega}-cm{sup 2} at 464{degrees}C and 300 h. Thermal cycling between 300 and 464{degrees}C changed the resistance of the coating layer, which followed insulator behavior. Examination of the specimen after cooling to room temperature revealed no cracks in the CaO coating. The coatings were evaluated by optical microscopy, scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and X-ray analysis. Adhesion between CaO and vanadium alloys was enhanced as exposure time increased.

  12. Effect of CaO on the selectivity of N2O decomposition products: A combined experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Gao, Pan; Dong, Changqing; Yang, Yongping

    2016-09-01

    The effect of CaO on N2O decomposition and the selectivity of its decomposition products (NO and N2) was investigated using a fixed-bed flow reactor with varying temperatures from 317 °C to 947 °C. The selectivity of NO from CaO-catalyzed N2O decomposition is much lower than the N2 selectivity with the N2/NO products ratio greater than 12.1. Compared to N2O homogeneous decomposition with the minimum N2/NO products ratio of 6.2 at 718 °C, CaO also decreases the NO selectivity from 718 °C to 947 °C. Density functional theory calculations provide possible N2O decomposition routes on the CaO (1 0 0) surface considering both N2 and NO as N2O decomposition products. The N2 formation route is more favorable than the NO formation route in terms of energy barrier and reaction energy, and NO formation on the CaO (1 0 0) surface is likely to proceed via N2O + Osurf2- → N2 + O2 , surf2- and N2O + O2 , surf2- → 2NO + Osurf2-.

  13. Volatile fractionation and tektite source material

    NASA Astrophysics Data System (ADS)

    Walter, L. S.

    1989-09-01

    The arguments used by Love and Woronow (1988) to assess the role played in the origin of bediasites by extensive volatile fractionation are critically examined. Using the ratios of 'refractory' oxides, CaO, Al2O3, and MgO, to the 'volatile' oxides, Na2O and K2O, these authors concluded that vapor fractionation did not play a significant role. In this paper, experimental evidence is presented that shows that the assumption of volatility for the alkali elements (as least with respect to silica) to be not valid under the conditions under which tektites formed. It is shown that the results of vapor fractionation in experiments on glasses of tektite composition are approximately parallel the trends seen in bediasite analysis.

  14. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  15. Statistical analysis of the effective factors on the 28 days compressive strength and setting time of the concrete

    PubMed Central

    Abolpour, Bahador; Mehdi Afsahi, Mohammad; Hosseini, Saeed Gharib

    2014-01-01

    In this study, the effects of various factors (weight fraction of the SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, Cl, SO3, and the Blaine of the cement particles) on the concrete compressive strength and also initial setting time have been investigated. Compressive strength and setting time tests have been carried out based on DIN standards in this study. Interactions of these factors have been obtained by the use of analysis of variance and regression equations of these factors have been obtained to predict the concrete compressive strength and initial setting time. Also, simple and applicable formulas with less than 6% absolute mean error have been developed using the genetic algorithm to predict these parameters. Finally, the effect of each factor has been investigated when other factors are in their low or high level. PMID:26425360

  16. Statistical analysis of the effective factors on the 28 days compressive strength and setting time of the concrete.

    PubMed

    Abolpour, Bahador; Mehdi Afsahi, Mohammad; Hosseini, Saeed Gharib

    2015-09-01

    In this study, the effects of various factors (weight fraction of the SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, Cl, SO3, and the Blaine of the cement particles) on the concrete compressive strength and also initial setting time have been investigated. Compressive strength and setting time tests have been carried out based on DIN standards in this study. Interactions of these factors have been obtained by the use of analysis of variance and regression equations of these factors have been obtained to predict the concrete compressive strength and initial setting time. Also, simple and applicable formulas with less than 6% absolute mean error have been developed using the genetic algorithm to predict these parameters. Finally, the effect of each factor has been investigated when other factors are in their low or high level. PMID:26425360

  17. Volatile fractionation and tektite source material

    NASA Technical Reports Server (NTRS)

    Walter, Louis S.

    1989-01-01

    The arguments used by Love and Woronow (1988) to assess the role played in the origin of bediasites by extensive volatile fractionation are critically examined. Using the ratios of 'refractory' oxides, CaO, Al2O3, and MgO, to the 'volatile' oxides, Na2O and K2O, these authors concluded that vapor fractionation did not play a significant role. In this paper, experimental evidence is presented that shows that the assumption of volatility for the alkali elements (as least with respect to silica) to be not valid under the conditions under which tektites formed. It is shown that the results of vapor fractionation in experiments on glasses of tektite composition are approximately parallel the trends seen in bediasite analysis.

  18. Semimicro chemical and x-ray fluorescence analysis of lunar samples

    USGS Publications Warehouse

    Rose, H.J., Jr.; Cuttitta, F.; Dwornik, E.J.; Carron, M.K.; Christian, R.P.; Lindsay, J.R.; Ligon, D.T.; Larson, R.R.

    1970-01-01

    Major and selected minor elements were determined in seven whole rock fragments, five portions of pulverized lunar rock, and the lunar soil. Three different rock types were represented: vesicular, fine-grained basaltic rocks; medium-to coarse-grained, vuggy gabbroic rocks; and breccia. The ranges (in percent) for the major constituents of the lunar samples are: SiO2, 38 to 42; Al2O3, 8 to 14; total iron as FeO, 15 to 20; MgO, 6 to 8; CaO, 10 to 12; Na2O, 0.5 to 1; K2O, 0.05 to 0.4; TiO2, 8 to 13; MnO, 0.2 to 0.3; and Cr2O3, 0.2 to 0.4. The high reducing capacity of the samples strongly suggests the presence of Ti(III).

  19. GEMAS: Distribution of major elements in Polish agricultural soil

    NASA Astrophysics Data System (ADS)

    Dusza-Dobek, Aleksandra; Pasieczna, Anna; Kwecko, Paweł

    2014-05-01

    Amount and quality of produced food is highly dependent on soil chemical properties and composition. The GEMAS project (Geochemical Mapping of Agricultural and Grazing Land Soil of Europe) has provided new homogeneous geochemical data for Polish agricultural soils. This study presents the distribution of common major elements such as CaO, MgO, Fe2O3, Al2O3, K2O, Na2O, SiO2, determined in 129 samples of agricultural soil of Poland. The total element concentrations obtained by X-ray fluorescence spectroscopy (XRF) were compared with the results from aqua regia acid digestion determined by ICP-MS. The distribution patterns of selected major elements reveal two major geochemical provinces - the northern province and the southern province, distinguished with respect to the natural geochemical background and resulting from the geological evolution of the region. The soil of the northern province (Polish Lowland), dominated by glacial deposits, show low contents of CaO, MgO, Fe2O3, Al2O3, K2O, Na2O, and high contents of SiO2. High silica content reflects the presence of sand-rich deposits which belong to the larger European feature with cover sands and loess of mainly Weichselian age and stretching from Ukraine to western Germany and Denmark. The southern province is characterised by high concentrations of almost all major elements (except SiO2). Soils in the Sudetes, Upper Silesia and the Carpathian Mountains developed in majority on pre-Quaternary rocks. In the Sudetes, soil formed on magmatic and metamorphic rocks of Paleozoic age. In the Carpathians and Upper Silesia, the flysch and molasse formations containing various material of magmatic and sedimentary origin constitute the immediate substratum of soil.

  20. Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity

    USGS Publications Warehouse

    Belkin, H.E.; Kilburn, C.R.J.; de Vivo, B.

    1993-01-01

    Detailed sampling of the Vesuvius lavas erupted in the period A.D. 1631-1944 provides a suite of samples for comprehensive chemical analyses and related studies. Major elements (Si, Ti, Al, Fetotal, Mn, Mg, Ca, Na, K and P), volatile species (Cl, F, S, H2O+, H2O- and CO2), and ferrous iron (Fe2+) were determined for one hundred and forty-nine lavas and five tephra from the A.D. 1631-1944 Vesuvius activity. The lavas represent a relatively homogeneous suite with respect to SiO2, TiO2, FeOtotal, MnO and P2O5, but show systematic variations among MgO, K2O, Na2O, Al2O3 and CaO. The average SiO2 content is 48.0 wt.% and the rocks are classified as tephriphonolites according to their content of alkalis. All of the lavas are silica-undersaturated and are nepheline, leucite, and olivine normative. There is no systematic variation in major-element composition with time, over the period A.D. 1631-1944. The inter-eruption and intra-eruption compositional differences are the same magnitude. The lavas are highly porphyritic with clinopyroxene and leucite as the major phases. Fractionation effects are not reflected in the silica content of the lavas. The variability of MgO, K2O, Na2O, and CaO can be modelled as a relative depletion or accumulation of clinopyroxene. ?? 1993.

  1. Application of multivariate statistical analyses in the interpretation of geochemical behaviour of uranium in phosphatic rocks in the Red Sea, Nile Valley and Western Desert, Egypt.

    PubMed

    El-Arabi, Abd El-Gabar M; Khalifa, Ibrahim H

    2002-01-01

    Factor and cluster analyses as well as the Pearson correlation coefficient have been applied to geochemical data obtained from phosphorite and phosphatic rocks of Duwi Formation exposed at the Red Sea coast. Nile Valley and Western Desert. Sixty-six samples from a total of 71 collected samples were analysed for SiO2, TiO2, Al203, Fe2O3, CaO, MgO, Na2O, K2O, P2O5, Sr, U and Pb by XRF and their mineral constituents were determined by the use of XRD techniques. In addition, the natural radioactivity of the phosphatic samples due to their uranium, thorium and potassium contents was measured by gamma-spectrometry. The uranium content in the phosphate rocks with P2O5 > 15% (average of 106.6 ppm) is higher than in rocks with P2O5 < 15% (average of 35.5 ppm). Uranium distribution is essentially controlled by the variations of P2O5 and CaO, whereas it is not related to changes in SiO2, TiO2, Al2O3, Fe2O3, MgO, Na2O and K2O concentrations.-Factor analysis and the Pearson correlation coefficient revealed that uranium belaves geochemically in different ways in the phosphatic sediments and phosphorites in the Red Sea, Nile Valley and Western Desert. In the Red Sea and Western Desert phosphorites, uranium occurs mainly in oxidized U6+ state where it seems to be fixed by the phosphate ion, forming secondary uranium phosphate minerals such as phosphuranylite. In the Nile Valley phosphorites, ionic substitution of Ca2+ by U4 is the main controlling factor in the concentration of uranium in phosphate rocks. Moreover, fixation of U6- by phosphate ion and adsorption of uranium on phosphate minerals play subordinate roles. PMID:12066979

  2. Biomineral microstructures in ferromanganese nodules: evidence of the biological and abiogenous origin

    NASA Astrophysics Data System (ADS)

    Lysyuk, G. N.

    2011-10-01

    Manganese oxides, which are widespread and of great practical importance, are formed and transformed by the active role of microorganisms. Manganese aggregates occur as both crystallized varieties and disordered fine-grained phases with significant ore grade and up to 50-60 vol % of X-ray amorphous components. X-ray amorphous nanosizedMn oxides in Fe-Mn nodules from the Pacific Ocean floor were examined from the standpoint of their biogenic origin. SEM examination showed abundant mineralized biofilms on the studied samples. The chemical composition of bacterial mass is as follows (wt %): 28.34 MnO, 17.14 Fe2O3, 7.11 SiO2, 2.41 CaO, 17.90 TiO2, 1.74Na2O,1.73 A12O3,1.30 MgO, 1.25P2O5,1.25 SO3,0.68 CoO, 0.54 CuO, 0.53 NiO, and 0.50 K2O. The chemical composition of fossilized cyanobacterial mats within the interlayer space of nodules is as follows (wt %): 48.35 MnO, 6.23 Fe2O3, 8.76 MgO, 5.05 A12O3, 4.45 SiO2, 3.63 NiO, 2.30 Na2O, 2.19 CuO, 1.31 CaO, and 0.68 K2O is direct evidence for participation of bacteria in Mn oxide formation. This phase consists of mineralized glycocalix consisting of nanosized flakes of todorokite. Native metals (Cu, Fe, and Zn) as inclusions 10-20 μm in size were identified in ferromanganese nodules as well. The formation of native metals can be explained by their crystallization at highly reducing conditions maintained by organic matter.

  3. Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Chan, Garnet Kin-Lic; Yanai, Takeshi

    2013-08-01

    It is a long-standing goal to understand the reaction mechanisms of catalytic metalloenzymes at an entangled many-electron level, but this is hampered by the exponential complexity of quantum mechanics. Here, by exploiting the special structure of physical quantum states and using the density matrix renormalization group, we compute near-exact many-electron wavefunctions of the Mn4CaO5 cluster of photosystem II, with more than 1 × 1018 quantum degrees of freedom. This is the first treatment of photosystem II beyond the single-electron picture of density functional theory. Our calculations support recent modifications to the structure determined by X-ray crystallography. We further identify multiple low-lying energy surfaces associated with the structural distortion seen using X-ray crystallography, highlighting multistate reactivity in the chemistry of the cluster. Direct determination of Mn spin-projections from our wavefunctions suggests that current candidates that have been recently distinguished using parameterized spin models should be reassessed. Through entanglement maps, we reveal rich information contained in the wavefunctions on bonding changes in the cycle.

  4. Preparation and characterizaton of CaO nanoparticle for biodiesel production

    NASA Astrophysics Data System (ADS)

    Gupta, Jharna; Agarwal, Madhu

    2016-04-01

    Nanoparticle of CaO from calcium Nitrate (CaO/CaN) and Snail shell (CaO/SS) are successfully synthesized by method as described in the literature and used as an active and stable catalyst for the biodiesel production. These catalysts are characterized by Fourier-transform infrared spectra (FT-IR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA). The average crystalline size in nanometer was also calculated by Debye-Scherrer equation. The performance of the CaO/CaN and CaO/SS were tested for their catalytic activity via transesterification process and it was found that biodiesel yield has been increased from 93 to 96%. The optimum conditions for the highest yield were 8wt% catalyst loading, 65°C temperature, 12:1 methanol/oil molar ratio, and 6 h for reaction time. The nano catalyst from snail shell exhibits excellent catalytic activity and stability for the transesterification reaction, which suggested that this catalyst would be potentially used as a solid base nano catalyst for biodiesel production. In order to examine the reusability of catalyst developed from snail shell, five transesterification reaction cycles were also performed.

  5. Enhancing the quantity and quality of short-chain fatty acids production from waste activated sludge using CaO2 as an additive.

    PubMed

    Li, Yongmei; Wang, Jie; Zhang, Ai; Wang, Lin

    2015-10-15

    The effect of calcium peroxide (CaO2) addition on anaerobic fermentation of waste activated sludge (WAS) was investigated. The lab-scale experiments were conducted at 35 °C with CaO2 doses ranging from 0.05 to 0.3 g/g VSS. The performances of hydrolysis and acidification of WAS were significantly enhanced by CaO2 addition, whereas the production of methane was inhibited. Maximum total short-chain fatty acids (TSCFA) production (284 mg COD/g VSS) occurred at a CaO2 dose of 0.2 g/g VSS and fermentation time of 7 d, which was 3.9 times higher than the control tests. Further, CaO2 addition led to the conversion of other SCFAs to acetic acid. Acetic acid comprised 60.2% of TSCFA with the addition of 0.2 g CaO2/g VSS compared with 45.1% in the control tests. The mechanism of improved SCFAs generation was analyzed from the view of both chemical and biological effects. Chemical effect facilitated the disintegration of WAS, and improved the activities of both hydrolytic enzymes and acid-forming enzymes. Illumina MiSeq sequencing analysis revealed that bacteria within phylum Firmicutes increased significantly due to CaO2 addition, which played an important role in the hydrolysis and acidification of WAS. In addition, CaO2 oxidized most refractory organic contaminants, which were difficult to biodegrade under the ordinary anaerobic condition. Hydroxyl radicals were the most abundant reactive oxygen species released by CaO2, which played a key role in the removal of refractory organic compounds. We developed a promising technology to produce a valuable carbon source from WAS. PMID:26141424

  6. Fabrication and performance testing of CaO insulator coatings on V-5%Cr-5%Ti in liquid lithium

    SciTech Connect

    Park, J.H.; Dragel, G.

    1995-04-01

    Corrosion resistance of structural materials, and the magnetohydrodynamic (MHD) force and its influence on thermal hydraulics and corrosion, are major concerns in the design of liquid-metal blankets for magnetic fusion reactors (MFRs). The objective of this study is to develop in-situ stable coatings at the liquid-metal/structural-material interface, with emphasis on coatings that can be converted to an electrically insulating film to prevent adverse currents that are generated by the MHD force from passing through the structural walls. The electrical resistance of CaO coatings produced on V-5Cr-5Ti by exposure of the alloy to liquid Li that contained 0.5 - 8.5 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degree}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400-420{degree}C to produce a CaO coating.

  7. Strain-induced topological transition in SrRu2O6 and CaOs2O6

    DOE PAGESBeta

    Ochi, Masayuki; Arita, Ryotaro; Trivedi, Nandini; Okamoto, Satoshi

    2016-05-24

    The topological property of SrRu$_2$O$_6$ and isostructural CaOs$_2$O$_6$ under various strain conditions is investigated using density functional theory. Based on an analysis of parity eigenvalues, we anticipate that a three-dimensional strong topological insulating state should be realized when band inversion is induced at the A point in the hexagonal Brillouin zone. For SrRu$_2$O$_6$, such a transition requires rather unrealistic tuning, where only the $c$ axis is reduced while other structural parameters are unchanged. However, given the larger spin-orbit coupling and smaller lattice constants in CaOs$_2$O$_6$, the desired topological transition does occur under uniform compressive strain. Our study paves a waymore » to realize a topological insulating state in a complex oxide, which has not been experimentally demonstrated so far.« less

  8. An experimental approach to manufacturing technology of historical glass (XIII-XV centuries). Comparison with current glassmaking technology.

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Gimeno, Domingo; Bazzocchi, Flavia; Garcia-Valles, Maite; Martinez, Salvador

    2015-04-01

    One of the major and less explored issues in the characterization of historical glasses is the determination of their viscosity as a function of temperature in order to constrain technological aspects of glass production. Until now, assumptions on temperatures have been based on mathematical models based on chemical compositions. Hence, the topic of this work is to explore the technology of stained glass production related to the workability and melting process of the glass by experimental laboratory measurements. This work presents the analysis of viscosity of glasses from different historical sites and chemical compositions: four from Santes Creus (Tarragona, XIII century), two of classical medieval stained glass window from Santa Maria de Pedralbes (Barcelona, mid XIV century), and three of evolved late-medieval type from Santa Maria del Mar (Barcelona first half of XV century), and one sample of soda-lime industrial glass by means of Hot-Stage Microscopy and glass transformation temperature Tg by dilatometry. These data are then compared to the predictions on theoretical viscosity obtained from mathematical models based on chemical composition. These samples are classified according to their major modifier in: Na-rich (12-17% of Na2O, between 65-77% of SiO2 and less than 3 % of K2O); Ca-rich (29% of CaO, 54% of SiO2, 4% of K2O, and 4% of Na2O); K-Ca-rich (17 to 21% of K2O, more than 14% of CaO, 49-55% of SiO2and less than 2% of Na2O); Na-Ca-rich (12-14% of Na2O, 9-15% of CaO, 57-71% of SiO2 and < 6% of K2O). Glass transition temperature (Tg) is correlated to chemical composition: 464-492 °C for Na-rich, 645 °C for Ca-rich, 582-586 °C for K-Ca-rich and 497-542 °C for Na-Ca-rich glasses. Experimental viscosity-temperature curves are traced using Tg and fixed viscosity points measured by Hot-Stage microscopy (according to German standard 51730) in order to provide more accurate insight into the phases of glass production process (melting, working, conditioning

  9. Canopy spectral and chemical diversity from lowland to tree line in the Western Amazon using CAO-VSWIR

    NASA Astrophysics Data System (ADS)

    Martin, R. E.; Asner, G. P.

    2012-12-01

    Canopy chemistry and spectroscopy offer insight into community assembly and ecosystem processes in high-diversity tropical forests. Results from one lowland site in the Peruvian Amazon suggests both an environmental and an evolutionary component of canopy trait development however, the degree to which larger environmental differences influence diversity in canopy traits and their respective spectroscopic signatures across remains poorly understood. The spectranomics approach explicitly connects phylogenetic, chemical and spectral patterns in tropical canopies providing the basis for analysis, while high-fidelity, airborne remote sensing measurements extend plot-level data to landscape-scale, achieving a comprehensive view of the region. In 2011, the Carnegie Airborne Observatory (CAO) was used to sample a large region of the Western Amazon Basin in southeastern Peru, extending from lowlands to tree line in the Andean mountains. The CAO Visible-Shortwave Imaging Spectrometer (VSWIR) collected 480-band high-fidelity imaging spectroscopy data of the forest canopy, while its high-resolution LiDAR captured information on canopy structure and the underlying terrain. The data were used to quantify relationships between environmental gradients and canopy chemical and spectral diversity. Results suggest strong environmental control with additional phylogenetic influence over canopy spectral and chemical properties, particularly those related to structure, defense and metabolic function. Data from CAO-VSWIR extends the large range in canopy chemical and spectral diversity related to environmental factors across the Western Amazon Basin.

  10. Individuality and Stability in Male Songs of Cao Vit Gibbons (Nomascus nasutus) with Potential to Monitor Population Dynamics

    PubMed Central

    Ma, Chang-Yong; Fei, Han-Lan; Fan, Peng-Fei

    2014-01-01

    Vocal individuality and stability has been used to conduct population surveys, monitor population dynamics, and detect dispersal patterns in avian studies. To our knowledge, it has never been used in these kinds of studies among primates. The cao vit gibbon is a critically endangered species with only one small population living in a karst forest along China-Vietnam border. Due to the difficult karst terrain, an international border, long life history, and similarity in male morphology, detailed monitoring of population dynamics and dispersal patterns are not possible using traditional observation methods. In this paper, we test individuality and stability in male songs of cao vit gibbons. We then discuss the possibility of using vocal individuality for population surveys and monitoring population dynamics and dispersal patterns. Significant individuality of vocalization was detected in all 9 males, and the correct rate of individual identification yielded by discriminant function analysis using a subset of variables was satisfactory (>90%). Vocal stability over 2–6 years was also documented in 4 males. Several characters of cao vit gibbons allowed long-term population monitoring using vocal recordings in both China and Vietnam: 1) regular loud calls, 2) strong individuality and stability in male songs, 3) stable territories, and 4) long male tenure. During the course of this research, we also observed one male replacement (confirmed by vocal analysis). This time- and labor-saving method might be the most effective way to detect dispersal patterns in this transboundary population. PMID:24788306

  11. Influence of SrO substitution for CaO on the properties of bioactive glass S53P4.

    PubMed

    Massera, Jonathan; Hupa, Leena

    2014-03-01

    Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer. PMID:24338267

  12. CaO insulator coatings and self-healing of defects on V-Cr-Ti alloys in liquid lithium

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1996-02-01

    Electrically insulating and corrosion-resistant coatings are required at the liquid metal/structural interface in fusion first-wall/blanket applications. The electrical resistance of CaO coatings produced on V-5%Cr-5%Ti by exposure of the alloy to liquid Li that contained 0.5--85 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400--420{degrees}C to produce a CaO coating. Resistance of the coating layer measured in-situ in liquid Li was {approx}10{sup 6} {Omega} at 400{degrees}C. Thermal cycling between 300 and 700{degrees}C changed the coating layer resistance. which followed insulator behavior. These results suggest that thin homogeneous coatings can be produced on variously shaped surfaces by controlling the exposure time, temperature, and composition of the liquid metal. The technique can be applied to various shapes(e.g., inside/outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. Examination of the specimens after cooling to room temperature revealed no spallation, but homogeneous crazing cracks were present in the CaO coating. Additional tests to investigate the in-situ self-healing behavior of the cracks indicated that rapid healing occurred at {ge}360{degrees}C.

  13. Melting of CaO and CaSiO3 at Deep Mantle Condition Using First Principles Simulations

    NASA Astrophysics Data System (ADS)

    Bajgain, S. K.; Ghosh, D. B.; Karki, B. B.

    2015-12-01

    Accurate prediction of melting temperatures of major mantle minerals at high pressures is important to understand the Hadean Earth as well as to explain the observed seismic anomalies at ultra-low velocity zone (ULVZ). To further investigate the geophysical implications of our recent first principles study of molten CaO and CaSiO­3, we calculated the melting temperatures of the corresponding solid phases by integrating the Clausius-Clapeyron equation. The melting behavior of their high-pressure phases can constrain the lower mantle solidus. Our calculations show melting temperature of 5700 ± 500 kelvins for CaSiO3 and 7800 ± 600 kelvins for CaO at the base of the lower mantle (136 GPa). The bulk sound velocities of CaO and CaSiO3 liquids at the core-mantle boundary are found to be 40 % lower than P-wave seismic velocity and 22 % lower than that of MgSiO3 liquid. With substantial decrease of melting temperature by freezing point depression and iron partitioning, the partial melting of multi-component silicate and its gravitational buoyancy at ULVZ cannot be ruled out.

  14. Overcoming the polarization catastrophe in the rocksalt oxides MgO and CaO

    NASA Astrophysics Data System (ADS)

    Gaddy, Benjamin E.; Paisley, Elizabeth A.; Maria, Jon-Paul; Irving, Douglas L.

    2014-09-01

    Interfaces between dissimilar polar materials may provide a pathway to new device functionality, including high carrier mobility layers at the interface. The development of these materials has proven challenging, in part because of the high energy cost of forming polar surfaces. Our density functional theory calculations explore the mechanisms by which a real material satisfies the electrostatic criteria for stability imposed by a polar surface. The consequences of polarity are studied by comparing the formation energies, charge distribution, and electronic structure of a number of low-index surfaces of rocksalt MgO and CaO. These surfaces are explored both in their bare, undecorated form as well as with surface reconstructions and adsorbed foreign species. Our ground-state surface energies are extended to relevant environmental conditions by use of ab initio thermodynamics. We find that the high energy of bare polar surfaces is the result of the significant charge redistribution that arises to compensate the polarity and pushes electronic states into the forbidden band gap. Other mechanisms of polarity compensation (reconstruction or foreign species adsorption) are therefore seen more frequently. We explain the experimental observations of surface roughness during growth in the [111] direction. In typical epitaxial growth conditions, there is preferential formation of an octopolar reconstruction of the {111} surface, which exposes {001}-type nanofacets. The low energy of the {001} surface likely causes these facets to grow, leading to a rough surface morphology. Our results indicate that when water vapor is present during growth, a smooth, polar surface can be stabilized by the formation of a hydroxyl layer.

  15. Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst.

    PubMed

    Witoon, Thongthai; Bumrungsalee, Sittisut; Vathavanichkul, Peerawut; Palitsakun, Supaphorn; Saisriyoot, Maythee; Faungnawakij, Kajornsak

    2014-03-01

    Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325μm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles. PMID:24525218

  16. Intermitência alfvênica gerada por caos na atmosfera solar e no vento solar

    NASA Astrophysics Data System (ADS)

    Rempel, E. L.; Chian, A. C.-L.; Macau, E. E. N.; Rosa, R. R.

    2003-08-01

    Dados medidos no vento solar rápido proveniente dos buracos coronais revelam que os plasmas no meio interplanetário são dominados por flutuações Alfvênicas, caracterizadas por uma alta correlação entre as variações do campo magnético e da velocidade do plasma. As flutuações exibem muitas características esperadas em turbulência magneto-hidrodinâmica totalmente desenvolvida, tais como intermitência e espectros contínuos. Contudo, os mecanismos responsáveis pela evolução de turbulência Alfvênica intermitente não são completamente compreendidos. Neste trabalho a teoria de caos é usada para explicar como sistemas Alfvênicos, modelados pela equação Schrödinger não-linear derivativa e pela equação Kuramoto-Sivashinsky, podem se tornar fortemente caóticos à medida em que parâmetros do plasma são variados. Pequenas perturbações no parâmetro de dissipação podem fazer com que o sistema mude bruscamente de um regime periódico, ou fracamente caótico, para um regime fortemente caótico. As séries temporais das flutuações do campo magnético nos regimes fortemente caóticos exibem comportamento intermitente, em que fases laminares ou fracamente caóticas são interrompidas por fortes estouros caóticos. É mostrado que o regime fortemente caótico é atingido quando as soluções periódicas ou fracamente caóticas globalmente estáveis interagem com soluções do sistema que são fortemente caóticas, mas globalmente instáveis. Estas soluções globalmente instáveis são conjuntos caóticos não-atrativos conhecidos como selas caóticas, e são responsáveis pelos fortes estouros nos regimes intermitentes. Selas caóticas têm sido detectadas experimentalmente em uma grande variedade de sistemas, sendo provável que elas desempenhem um papel importante na turbulência intermitente observada em plasmas espaciais.

  17. On the use of ocean-atmosphere-wave models during an extreme CAO event: the importance of being coupled

    NASA Astrophysics Data System (ADS)

    Carniel, Sandro; Barbariol, Francesco; Benetazzo, Alvise; Bonaldo, Davide; Falcieri, Francesco M.; Miglietta, Mario M.; Ricchi, Antonio; Sclavo, Mauro

    2015-04-01

    During winter 2012 an extreme meteorological event stroke the whole Europe and particularly its central-southern sector. A strong and persistent spit of cold air coming from Siberian region (a Cold Air Outbreak, CAO) insisted on northern Italy and the Adriatic sea basin, leading to decreases in the sea temperatures up to 6 °C in less than two weeks, ice formation on the Venice lagoon and an exceptional snow fall in the Apennine region. In the sea the CAO was associated to a significant episode of dense water formation (DWF), a crucial phenomenon that heavily impacts the whole Adriatic Sea (from the sinking of water masses and associated ventilation of the northernmost shelf, to the flow along the western coast, until the flushing of southern Adriatic open slope and submarine canyons, with associated sediment transport and bottom reshaping). The extent of the DWF event in the Northern Adriatic sub-basin was estimated by means of coastal observatories, ad hoc measurements and, until now, results from existing one-way coupled atmosphere-ocean models. These are characterized by no SST feedback from the ocean to the atmosphere, and therefore by turbulent heat fluxes that may heavily reflect a non-consistent ocean state. The study proposes an investigation of the 2012 CAO using a fully coupled, three components, ocean-atmosphere-wave system (COAWST). Results highlight that, although the energy interplays between air and sea do not seem to significantly impact the wind forecasts, when providing heat fluxes that are consistent with the ocean temperature we find modified heat fluxes and air sea temperatures figures. Moreover, the consistent description of thermal exchanges adopted in the fully coupled model can affect the basin circulation, the quantification of dense water produced mass, and the description of its migration pathways and rates of off-shelf descent.

  18. Heterogeneous-nucleation and glass-formation studies of 56Ga2O3-44CaO

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Curreri, Peter A.; Pline, David

    1987-01-01

    Glass formation and heterogeneous crystallization are described for the reluctant-glass-forming 56Ga2O3-44CaO eutectic composition. The times and temperatures for nucleation at various cooling rates and experimental conditions were measured and empirical continuous-cooling-crystallization boundaries were constructed for various heterogeneous nucleation processes. A definition for an empirical critical cooling rate to form a glass from reluctant borderline glass formers is proposed, i.e., the cooling rate that results in glass formation in 95 percent of the quenching experiments.

  19. Petrogenesis and metallogenic setting of the Habo porphyry Cu-(Mo-Au) deposit, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangping; Mo, Xuanxue; White, Noel C.; Zhang, Bo; Sun, Mingxiang; Wang, Shuxian; Zhao, Sili; Yang, Yong

    2013-04-01

    Although most porphyry-type deposits are associated with subduction-related magmas within magmatic arc settings, recent research has identified a number of porphyry-type deposits that formed in post-subduction tectonic settings. The newly discovered Habo porphyry Cu-(Mo-Au) deposit in Yunnan, China, formed in a post-subduction tectonic setting and is located in the southwest of the Cenozoic Ailao Shan-Red River continental collision zone. The deposit is associated with the Habo South granite pluton, which consists of three mineralization-related quartz monzonite porphyries and a post-mineralization diorite porphyry. Zircons from the Habo South granite and quartz monzonite porphyries were analyzed by in situ U-Pb LA-ICP-MS, yielding a similiar age of 36 Ma, with molybdenite Re-Os isotope dating indicating that the Habo porphyry deposit formed at 35.5 Ma. Both magmatism and the associated mineralization at Habo are coeval with porphyry copper deposits in the Yulong metallogenic belt of Eastern Tibet. The Habo South granite and porphyries have SiO2 concentrations of 67.28-73.44 wt.%, MgO concentrations of <1.5 wt.%, Al2O3 concentrations around 15 wt.%, Al2O3/(CaO + Na2O + K2O) (A/CNK) ratios of >1.1, K2O + Na2O concentrations generally between 7 and 9 wt.%, and K2O/Na2O ratios of >1.4, showing indicative of high-K magmas. The Habo South granite and quartz monzonite porphyries are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), and depleted in heavy rare earth elements (HREE) and high field strength elements (HFSE), with high Sr and low Y concentrations. They have initial 87Sr/86Sr values of 0.7071-0.7083, with ɛNd(t) values from -5.3 to -3.7. These features are indicative of lower-crust derived adakitic magmas, and are similar to those of mineralized porphyries in the Yulong copper belt in Eastern Tibet. This mineralogical, geochemical, and isotope evidence strongly suggests that the magmas that formed both porphyries and the

  20. CaO insulator and Be intermetallic coatings on V-base alloys for liquid-lithium fusion blanket applications

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1996-04-01

    The objective of this study is to develop (a) stable CaO insulator coatings at the Liquid-Li/structural-material interface, with emphasis on electrically insulating coating that prevent adverse MHD-generated currents from passing through the V-alloy wall, and (b) stable Be-V intermetallic coating for first-wall components that face the plasma. Electrically insulating and corrosion-resistant coatings are required at the liquid-Li/structural interface in fusion first-wall/blanket application. The electrical resistance of CaO coatings produced on oxygen-enriched surface layers of V-5%Cr-5%Ti by exposing the alloy to liquid Li that contained 0.5-85 wt% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. Crack-free Be{sub 2}V intermetallic coatings were also produced by exposing V-alloys to liquid Li that contained Be as a solute. These techniques can be applied to various shapes (e.g., inside/outside of tubes, complex geometrical shapes) because the coatings are formed by liquid-phase reactions.

  1. Evolution of the electronic structure of CaO thin films following Mo interdiffusion at high temperature

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Pan, Yi; Pascua, Leandro; Qiu, Hengshan; Stiehler, Christian; Kuhlenbeck, Helmut; Nilius, Niklas; Freund, Hans-Joachim

    2015-01-01

    The electronic structure of CaO films of 10-60 monolayer thickness grown on Mo(001) has been investigated with synchrotron-mediated x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Upon annealing or reducing the thickness of the film, a rigid shift of the CaO bands to lower energy is revealed. This evolution is explained with a temperature-induced diffusion of Mo ions from the metal substrate to the oxide and their accumulation in the interface region of the film. The Mo substitutes divalent Ca species in the rocksalt lattice and is able to release electrons to the system. The subsequent changes in the Mo oxidation state have been followed with high-resolution XPS measurements. While near-interface Mo transfers extra electrons back to the substrate, generating an interface dipole that gives rise to the observed band shift, near-surface species are able to exchange electrons with adsorbates bound to the oxide surface. For example, exposure of O2 results in the formation of superoxo species on the oxide surface, as revealed from STM measurements. Mo interdiffusion is therefore responsible for the pronounced donor character of the initially inert oxide, and largely modifies its adsorption and reactivity behavior.

  2. The Capilla del Monte pluton, Sierras de Córdoba, Argentina: the easternmost Early Carboniferous magmatism in the pre-Andean SW Gondwana margin

    NASA Astrophysics Data System (ADS)

    Dahlquist, Juan A.; Pankhurst, Robert J.; Rapela, Carlos W.; Basei, Miguel A. S.; Alasino, Pablo H.; Saavedra, Julio; Baldo, Edgardo G.; Murra, Juan A.; da Costa Campos Neto, Mario

    2015-10-01

    New geochronological, geochemical, and isotopic data are reported for the Capilla del Monte two-mica granite pluton in the northeastern Sierras de Córdoba. An Early Carboniferous age is established by a U-Pb zircon concordia (336 ± 3 Ma) and a Rb-Sr whole-rock isochron (337 ± 2 Ma). Zircon saturation geothermometry indicates relatively high temperatures (735-800 °C). The granites have high average SiO2 (74.2 %), Na2O + K2O (7.8 %), and high field-strength elements, high K2O/Na2O (1.7) and FeO/MgO ratios (5.1), with low CaO content (0.71 %). REE patterns with marked negative Eu anomalies (Eu/Eu* 0.14-0.56) indicate crystal fractionation, dominantly of plagioclase and K-feldspar, from a peraluminous magma enriched in F. Isotope data (87Sr/86Srinitial = 0.7086, ɛ Nd336 = -5.5 to -4.4 with T DM = 1.5 Ga, zircon ɛ Hf336 +0.8 to -6.1; mean T DM = 1.5 Ga) suggest a Mesoproterozoic continental source, albeit with some younger or more juvenile material indicated by the Hf data. The pluton is the easternmost member of a Carboniferous A-type magmatic suite which shows an increase in juvenile input toward the west in this part of the pre-Andean margin. The petrological and geochemical data strongly suggest a similar intraplate geodynamic setting to that of the nearby but much larger, Late Devonian, Achala batholith, although Hf isotope signatures of zircon suggest a more uniformly crustal origin for the latter. Further studies are required to understand whether these bodies represent two independent magmatic episodes or more continuous activity.

  3. Petrology and Sr-Nd-Pb isotope geochemistry of Late Cretaceous continental rift ignimbrites, Kap Washington peninsula, North Greenland

    NASA Astrophysics Data System (ADS)

    Thorarinsson, Sigurjon B.; Holm, Paul M.; Duprat, Helene I.; Tegner, Christian

    2012-03-01

    The Late Cretaceous-Palaeocene (71-61 Ma) Kap Washington Group (KWG) volcanic sequence is exposed at the north coast of Greenland. The sequence is bimodal and was erupted in a continental rift setting during the opening of the Arctic Ocean. The succession exposed on the Kap Washington peninsula, which forms the bulk of the KWG sequence (> 5 km thick), has been sampled along four traverses with a combined stratigraphic thickness of ca. 1500 m. The sampled sequence is dominated by silicic ignimbrites (69-79 wt.% SiO2) showing geochemical features typical of ferroan, A-type granitoids. The ignimbrites range from sparsely phyric, mildly peraluminous compositions [ASI = Al2O3/(CaO + Na2O + K2O) = 1.05-1.20] to feldspar + quartz ± sodic amphibole ± Fe-Ti oxide phyric peralkaline compositions [PI = (Na2O + K2O)/Al2O3 = 1.00-1.40]. The peraluminous ignimbrites appear to overlie the peralkaline ignimbrites, although stratigraphy is complicated by faulting. Fiamme imbrication indicates that both types were erupted from a vent area located north of the Kap Washington peninsula. The peralkaline ignimbrites have Sr-Nd-Pb isotopic compositions which overlap with the compositions of KWG basalts, indicating a dominantly basaltic source. The more peralkaline compositions were generated by up to ca. 50% fractional crystallisation of alkali feldspar-quartz-dominated assemblages from mildly peralkaline parental magmas, themselves probably derived by fractionation of trachytic magmas. The peraluminous ignimbrites have slightly negative ɛNd(i) and more radiogenic 207Pb/204Pbi and 208Pb/204Pbi. Modelling indicates that they are not cogenetic with the peralkaline ignimbrites and they are inferred to have originated by partial melting of hybridised mafic crust. Petrographic evidence suggests that magma mixing was an important process and variations in Nd-Pb isotopes and trace element ratios indicate mixing between peralkaline and peraluminous magma batches.

  4. Relationship Between Iron Whisker Growth and Doping Amount of Oxide During Fe2O3 Reduction

    NASA Astrophysics Data System (ADS)

    Gong, Xuzhong; Zhao, Zhilong; Wang, Zhi; Zhang, Ben; Guo, Lei; Guo, Zhancheng

    2016-04-01

    Iron whisker growth during Fe2O3 doped with oxide reduced by CO was investigated by using in situ observation and scanning electron microscopy. The results indicated that the minimum doping amount (MDA) of various oxides, hindering the iron whisker growth, was different. The MDA of Al2O3, Li2O, Na2O, and K2O was 0.5, 0.4, 4, and 12 pct, respectively. From the reduction rate, it was found that Li2O, MgO, and Al2O3 had some suppressive effects on the Fe2O3 reduction process, thus, confining the growth of iron whisker. However, other oxides had some catalytic effects on the Fe2O3 reduction process (Fe2O3-Fe3O4-FeO-Fe), such as CaO, SrO, BaO, Na2O, and K2O. As long as their doping amount was enough, these oxides could inhibit the diffusion of the Fe atom. When the metal ionic radius in doped oxide was bigger than that of Fe3+, such as Ca2+, Sr2+, Ba2+, Na+, and K+, there were lots of spaces left in Fe2O3 doped with oxide after reduction, improving Fe atom diffusion. Consequently, their MDA was more than that of small radius to restrain the growth of iron whisker. Finally, the relationship between corresponding metal ionic radius, electron layer number, valence electron number, and MDA of oxide was expressed by using data fitting as follows: N_{{{{A}}y {{O}}x }} = 1.3 × 10^{ - 5} × {r_{{{{A}}^{x + } }}2 × √{n_{{{{A}}^{x + } }} } }/{f_{q }}

  5. The Capilla del Monte pluton, Sierras de Córdoba, Argentina: the easternmost Early Carboniferous magmatism in the pre-Andean SW Gondwana margin

    NASA Astrophysics Data System (ADS)

    Dahlquist, Juan A.; Pankhurst, Robert J.; Rapela, Carlos W.; Basei, Miguel A. S.; Alasino, Pablo H.; Saavedra, Julio; Baldo, Edgardo G.; Murra, Juan A.; da Costa Campos Neto, Mario

    2016-07-01

    New geochronological, geochemical, and isotopic data are reported for the Capilla del Monte two-mica granite pluton in the northeastern Sierras de Córdoba. An Early Carboniferous age is established by a U-Pb zircon concordia (336 ± 3 Ma) and a Rb-Sr whole-rock isochron (337 ± 2 Ma). Zircon saturation geothermometry indicates relatively high temperatures (735-800 °C). The granites have high average SiO2 (74.2 %), Na2O + K2O (7.8 %), and high field-strength elements, high K2O/Na2O (1.7) and FeO/MgO ratios (5.1), with low CaO content (0.71 %). REE patterns with marked negative Eu anomalies (Eu/Eu* 0.14-0.56) indicate crystal fractionation, dominantly of plagioclase and K-feldspar, from a peraluminous magma enriched in F. Isotope data (87Sr/86Srinitial = 0.7086, ɛ Nd336 = -5.5 to -4.4 with T DM = 1.5 Ga, zircon ɛ Hf336 +0.8 to -6.1; mean T DM = 1.5 Ga) suggest a Mesoproterozoic continental source, albeit with some younger or more juvenile material indicated by the Hf data. The pluton is the easternmost member of a Carboniferous A-type magmatic suite which shows an increase in juvenile input toward the west in this part of the pre-Andean margin. The petrological and geochemical data strongly suggest a similar intraplate geodynamic setting to that of the nearby but much larger, Late Devonian, Achala batholith, although Hf isotope signatures of zircon suggest a more uniformly crustal origin for the latter. Further studies are required to understand whether these bodies represent two independent magmatic episodes or more continuous activity.

  6. Transesterification of Nannochloropsis oculata microalga's lipid to biodiesel on Al2O3 supported CaO and MgO catalysts.

    PubMed

    Umdu, Emin Selahattin; Tuncer, Mert; Seker, Erol

    2009-06-01

    In this study, we present the activities of Al(2)O(3) supported CaO and MgO catalysts in the transesterification of lipid of yellow green microalgae, Nannochloropsis oculata, as a function of methanol amount and the CaO and MgO loadings at 50 degrees C. We found that pure CaO and MgO were not active and CaO/Al(2)O(3) catalyst among all the mixed oxide catalysts showed the highest activity. Not only the basic site density but also the basic strength is important to achieve the high biodiesel yield. Biodiesel yield over 80 wt.% CaO/Al(2)O(3) catalyst increased to 97.5% from 23% when methanol/lipid molar ratio was 30. PMID:19201601

  7. Agglomeration characteristics of river sand and wheat stalk ash mixture at high temperatures

    NASA Astrophysics Data System (ADS)

    Shang, Linlin; Li, Shiyuan; Lu, Qinggang

    2013-02-01

    The agglomeration characteristics of river sand and wheat stalk ash mixture at various temperatures are investigated using a muffle furnace. The surface structural changes, as well as the elemental makeup of the surface and cross-section of the agglomerates, are analyzed by polarized light microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). Multi-phase equilibrium calculation is performed with FactSage in identifying the melting behavior of the river sand-wheat stalk ash mixture at high temperatures. No indication of agglomeration is detected below 850°C. At a temperature of 900-1000°C, however, obvious agglomeration is observed and the agglomerates solidify further as temperature increases. The presence of potassium and calcium enrichment causes the formation of a sticky sand surface that induces agglomeration. The main component of the agglomerate surface is K2O-CaO-SiO2, which melts at low temperatures. The formation of molten silicates causes particle cohesion. The main ingredient of the binding phase in the cross-section is K2O-SiO2-Na2O-Al2O3-CaO; the agglomeration is not the result of the melting behavior of wheat stalk ash itself but the comprehensive results of chemical reaction and the melting behavior at high temperatures. The multi-phase equilibrium calculations agree well with the experimental results.

  8. Micro-Raman and micro-XRF analysis of glass beads from the Chungde site, Taiwan

    NASA Astrophysics Data System (ADS)

    Liou, Y. S.; Wang, S. C.; Liu, Y. C.

    2014-12-01

    A large number of ancient glass beads dating back from Late Neolithic Age to early Historical Period (ca. 2300-400 BP) of Taiwan have been uncovered from archaeological sites. These glass beads with variant colors, shapes, and stylistics have long been considered to possess socio-cultural significance. Due to the color and chemical composition of glass bead might be determined by raw materials, fluxing agents, colorants, opacifiers and stabilizers. In addition, ancient glass beads are rare and precious, non-destructive analysis has been employed to decipher about the provenances, manufacturing techniques, and exchange/trade routes. In this work, micro-Raman spectroscopy and micro X-ray fluorescent spectrometer (μ-XRF) were used to examine ten ancient glass beads excavated from the Chungde site, Hualien, Taiwan, dating back to 1500-800 BP, to unravel the mineralogical and chemical compositions. Micro Raman experimental results show that glass and anorthite glass are the main constituents accompanying with trace level of quartz, albite, siderite, ankerite, and amazonite. The Raman Index of Polymerization (Ip) indicate that the sintering temperature of the glass beads is in the range of 1000~1400°C. Furthermore, the chemical compositions are corresponding to the maximum stretching vibration peak wave number (νmax Si-O Stretching) and the maximum bending vibration peak wave number (δmax Si-O Bending), which are essentially consistent with that of the India-Pacific beads. The μ-XRF results indicate the presence of oxides including SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, SnO2, TiO2, CuO, etc., and could be classified to high aluminum of soda-lime glass system. According to ternary phase diagram analysis of CaO-K2O-Na2O and K2O-Al2O3-CaO, the ancient glass beads analyzed could be attributed to the India-Pacific beads, and is in accordance with that of Raman spectra. The combination of these facts leads to the conclusion that glass beads obtained from the Chungde

  9. The effect of composition on the viscosity, crystallization and dissolution of simple borate glasses and compositional design of borate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Goetschius, Kathryn Lynn

    Borate glasses have recently been developed for a variety of medical applications, but much less is known about their structures and properties than more common silicate glasses. Melt properties and crystallization tendency for compositions in the Na2O-CaO-B2O3 system were characterized using differential thermal analysis and viscosity measurements. Characteristic viscosity (isokom) temperatures varied with the ratio between the modifier content (Na2O+CaO) and B2O3, particularly at lower temperatures, consistent with the changes in the relative concentrations of tetrahedral borons in the glass structure. Similar glasses were used to study dissolution processes in water. These alkali-alkaline earth glasses dissolve congruently and follow linear dissolution kinetics. The dissolution rates were dependent on the glass structure, with slower rates associated with greater fractions of four-coordinated boron. For glasses with a fixed alkaline earth identity, the dissolution rates increased in the order LiNa2O, K2O, MgO, CaO, B2O3, SiO2, and P2O5) mixture model design was used to predict composition-property relationships to optimize the properties of new borate-based bioactive compositions for specific applications. Melt viscosity, thermal expansion coefficient, liquidus temperature and crystallization tendency were determined, as were dissolution rates in simulated body fluid (SBF).

  10. Comment on " Studies on nanoporous glassy carbon as a new electrochemical capacitor material [Y. Wen, G. Cao, Y. Yang, J. Power Sources 148 (2005) 121-128

    NASA Astrophysics Data System (ADS)

    Braun, Artur

    Gas-phase activated monolithic glassy carbon was used as electrochemical double layer capacitor electrode by a research team of Siemens AG in the early 1980s [1], J. Miklos, K. Mund, W. Naschwitz, Siemens AG, Offenlegungsschrift DE 30 11 701 A1, German Patent (1980). Wen et al. [2] (Y.H. Wen, G.P. Cao, J. Cheng, Y.S. Yang, New Carbon Mater. 18(3) (2003) 219, and [3] Y.H. Wen, G.P. Cao, Y.S. Yang, J. Power Sources 148 (2005) 121, have repeatedly questioned the performance of this glassy carbon based supercapacitor electrode concept. This asks for some comments.

  11. Hydrogen-rich gas production via CaO sorption-enhanced steam gasification of rice husk: a modelling study.

    PubMed

    Beheshti, Sayyed Mohsen; Ghassemi, Hojat; Shahsavan-Markadeh, Rasoul; Fremaux, Sylvain

    2015-01-01

    Gasification is a thermochemical process in which solid or liquid fuels are transformed into synthesis gas through partial oxidation. In this paper, a kinetic model of rice husk gasification has been developed, which is interesting for the applications of the syngas produced. It is a zero-dimensional, steady-state model based on global reaction kinetic, empirical correlation of pyrolysis and is capable of predicting hydrogen yield in the presence of sorbent CaO. The model can also be used as a useful tool to investigate the influence of process parameters including steam/biomass ratio, CaO/fuel ratio (CaO/Fuel), and gasification temperature on hydrogen efficiency, CO2 capture ratio (CCR), and average carbonation conversion (Save). Similar to hydrogen formation, CCR also increases with increasing CaO/Fuel, but an opposite trend is exhibited in Save. Model predictions were compared with available data from the literature, which showed fairly good agreement. PMID:25403373

  12. PDMS-SiO2-TiO2-CaO hybrid materials - Cytocompatibility and nanoscale surface features.

    PubMed

    Almeida, J Carlos; Wacha, András; Gomes, Pedro S; Fernandes, M Helena R; Fernandes, M Helena Vaz; Salvado, Isabel M Miranda

    2016-07-01

    Two PDMS-SiO2-TiO2-CaO porous hybrid materials were prepared using the same base composition, precursors, and solvents, but following two different sol-gel procedures, based on the authors' previous works where for the first time, in this hybrid system, calcium acetate was used as calcium source. The two different procedures resulted in monolithic materials with different structures, microstructures, and surface wettability. Even though both are highly hydrophobic (contact angles of 127.2° and 150.6°), and present different filling regimes due to different surface topographies, they have demonstrated to be cytocompatible when tested with human osteoblastic cells, against the accepted idea that high-hydrophobic surfaces are not suitable to cell adhesion and proliferation. At the nanoscale, the existence of hydrophilic silica domains containing calcium, where water molecules are physisorbed, is assumed to support this capability, as discussed. PMID:27127030

  13. Environmental controls on plant chemical traits: Using the CAO-VSWIR to characterize patterns in a mediterranean-type ecosystem

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2012-12-01

    Here we present results from a new imaging spectrometer, the Carnegie Airborne Observatory's (CAO) Visible-Short Wave Infrared (VSWIR) sensor, and we use these data to map key plant functional traits in a semi-arid ecosystem, Jasper Ridge Biological Preserve (Woodside, CA USA). We considered four fundamental plant traits: leaf nitrogen per mass (Nmass, %), leaf carbon per mass (Cmass, %), leaf water fraction (WL), and canopy water fraction (WC).With these maps we ask the following questions: (1) How do these traits vary with environmental gradients and land use history, independent of species composition? (2) Does information about plant community improve our ability to explain trait patterns? And (3) what does the variation within plant communities tell us about the underlying processes driving or limiting this ecosystem? We show that the new CAO-VSWIR combined with partial least squares regression can effectively map these four plant chemical traits across multiple plant functional types (observed v. predicted R2s ranging from 0.55 for WL to 0.84 for Cmass). To consider how these traits varied with environmental gradients we used simultaneous autoregressive modeling and found, in general, that environment and land-use history together explained about a quarter of the variation in each trait, but that information about plant community boundaries dramatically improved our predictive power. While 29 - 44% of the variation in these four traits remained unexplained, when we considered the trait distributions within each plant community we found that most plant communities were sharply peaked (leptokurtic) or near normal, while a few communities were more evenly distributed (platykurtic) for each trait. These results show that, even though environmental gradients play a small but significant role, most of the plant communities at Jasper Ridge are characterized by a narrow range of trait patterns. For the few communities that are highly divergent, possible causal

  14. First measurement of the dissociative recombination of CaO+ with electrons brings closure to Ca ion recycling chemistry in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Bones, David; Plane, John

    2016-04-01

    Modelling the temporal and spatial extent of the metal layers in the mesosphere/lower thermosphere requires knowledge of the rate coefficients of dissociative recombination of metal oxide ions with electrons. Previously, these coefficients have been assumed to be 3 × 10‑7 cm3 s‑1 at 200 K. In this study the coefficient has been measured directly for the dissociative recombination of CaO+. Measurements are made in a flowing afterglow system with a Langmuir probe. Calcium oxide ions are introduced into an argon ion/electron plasma by pulsed laser ablation of a solid target. The relative concentration of CaO+ is measured by a quadrupole mass spectrometer as a function of flow rate (3 - 5 slm), which is inversely proportional to the reaction time of the CaO+ ions with the electrons in the plasma (2.1 to 3.5 ms). Charge transfer reactions between argon ions and neutral molecules complicate the analysis. A kinetic model describing gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data to extract the DR rate coefficient for CaO+. Unlike other metals present in the atmosphere, Ca+ ions are far more abundant than neutral Ca. The new DR rate coefficient is used to explore possible reasons for this anomaly in a model of meteor-ablated calcium in the mesosphere and lower thermosphere.

  15. FOURIER TRANSFORM INFRARED PHOTOACOUSTIC SPECTROSCOPY CHARACTERIZATION OF SULFUR-OXYGEN SPECIES RESULTING FROM THE REACTION OF SO2 WITH CAO AND CACO3

    EPA Science Inventory

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) has been used to investigate the reaction of SO2 in He with CaO and CaCO3 particles at temperatures between 25 and 900 C. SO2 reacts with CaC at 25 C, while the reaction of Ca-CO3 with SO2 is first evident at 550 C ...

  16. Tephra record from the Sea of Marmara for the last 70 ka and its paleoceanographic implications

    NASA Astrophysics Data System (ADS)

    Cagatay, M.; Wulf, S.; Guichard, F.; Ozmaral, A.; Sancar; Akçer-Ön, S.; Henry, P.; Gasperini, L.

    2013-12-01

    Sea of Marmara (SoM) is a gateway between the Mediterraean and Black seas, and a tectonically active basin located on a transform plate boundary. Tephra record in the SoM is therefore very important for dating palaeoceanographic, paleoclimatic and tectonic events. We report three tephra units in cores from the SoM extending back to ca 70 ka BP and including an upper marine and a lower lacustrine units separated by a 12 ka (uncalib.) boundary. The uppermost tephra unit is up to 8 mm thick layer in the marine unit. It is heterogenous phonolitic with high total alkali content of 12.4-15.7 wt % and K2O/Na2O of 0.9 to 1.2. The middle and lower tephra layers occur in the lacustrine unit in ca 29 m-long Core MD-01-2430. The middle tephra (MT-1) is a 70 mm-thick homogeneously rhyolitic layer. The lower tephra (MT-2) is 140 mm thick and has a phonolitic-trachytic composition with CaO content of 1.7-1.9 wt % and bimodal K2O/Na2O of 1.0-1.4. Using their geochemical composition and stratigraphic analysis, we assign the tephra units, from top to bottom, to Vesuvius AP2 Pumice, Santorini Cape Riva and Campanian Ignimbrite, which have been previously dated at 3.5 ka BP, 21.95 ka BP, and 39.3 ka BP (all calender ka). The continuous sedimentary record in the Core MD-01-2430 covering the last ca 70 ka indicates that the SoM was lacustrine, disconnected from the Mediterraean Sea during MIS4, MIS3 and most of MIS2. This implies that the sill depth of the Çanakkale Strait (Dardanelles) was shallower than the present-day -65 m sill depth during MIS3 and MIS4. Figure 1: Morphotectonic map of the Sea of Marmara showing location of the studied cores (red stars). Figure 2: Geochemical biplots of tephra glass composition. a) Total alkali silica diagram b) FeO versus total alkalies for allocating cryptotephras from core MNTKS34 and ML01 to the AP2 tephra from Vesuvius. c) FeO versus CaO for correlating tephra MT1 with the Y-2 tephra from Santorini. d) SiO2 versus CaO for discriminating the

  17. Fingerprint methods for suspended sediment transport processes by using X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Beitia, C.; Ohtsu, N.; Yamasaki, S.; Yasuyuki, M.; Yamane, M.

    2014-12-01

    Suspended sediment (SS) can have significant impacts on ecological system, and high SS concentration can have significant impacts on human life. In the previous studies, radionuclide analysis has been applied to evaluate the production of SS in the river basins, which demonstrated that the surface soil erosion can be estimated by using radionuclide Pb-210ex. However, radionuclide analysis cannot indicate the relative amounts of SS transported from each individual sub-basin to the downstream end. Thus, X-ray Fluorescence Analysis (XRF Analysis) can be considered as an alternative method to radionuclide analysis because the XRF Analysis can measure 21 chemical compositions, Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl, K2O, CaO, TiO2, Cr2O3, MnO, Fe2O3, Co2O3, NiO, CuO, ZnO, Rb2O, SrO, BaO, and Y2O3 by using X-ray Fluorescence Analyzer. In June of 2007, high turbidity, which is more than 10,000 (NTU), was measured in the Oromushi River basin of Hokkaido in Japan. Therefore, this study aims to clarify the mechanism of the transport of SS in the Oromushi River basin. We measured chemical compositions of soil with diameter less than 63 μm in the Oromushi River basin in order to pay attention to SS by using XRF. The Principal Component Analysis revealed that SiO2, Al2O3, Fe2O3, CaO and Na2O are the dominant chemical compositions. Although the predominant composition was the same in a river basin including the downstream end, significant differences were found in the pattern of chemical compositions. Therefore, by using the chemical compositions of SiO2, Al2O3, Fe2O3, CaO and Na2O, the Mixing Stable Isotope Analysis in R model (MixSIAR) based on Bayesian statistics was applied to estimate the transportation rate of SS from each sub-basin to the downstream end, which agreed with the field experiment results very well. As a result, spatial patterns of SS transportation rate are found to be strongly related to surface soil type.

  18. Combustion synthesis of porous glasses and ceramics for bone repair.

    PubMed

    Castillo, M; Ayers, R A; Zhang, X; Schowengerdt, F; Moore, J J

    2001-01-01

    Porous bioactive materials with constituents such as CaO, P2O5, SiO2, MgO, K2O, Na2O implanted in bone can activate a biologic response to enhance bone healing. These biomaterials are currently formed utilizing wet chemistry, plasma spray, D-gun, sintering, and diffusion bond techniques. This work investigates the use of self propagating high temperature combustion synthesis (SHS) in the creation of porous bioactive glasses for bone repair. The use of combustion synthesis has many advantages over the methods mentioned previously. The primary advantages are the ability to control the process to provide specified porosity (% porosity, pore size distribution, interconnected pores, functionally grading of porosity), structural mechanical properties, together with rapid production of the material. The focus of this project is the investigation of combustion synthesis reactions based on the reaction system 3CaO + P2O5==>Ca3(PO4)2 and incorporating other known biocompatible constituents into the reaction. PMID:11347436

  19. Pan-African alkali granites and syenites of Kerala as imprints of taphrogenic magmatism in the South Indian shield

    NASA Technical Reports Server (NTRS)

    Santosh, M.; Drury, S. A.; Iyer, S. S.

    1988-01-01

    Granite and syenite plutons with alkaline affinities ranging in age from 550 to 750 Ma sporadically puncture the Precambrian granulites of the Kerala region. All the bodies are small (20 to 60 sq km), E-W to NW-SE elongated elliptical intrusives with sharp contacts and lie on or close to major late Proterozoic lineaments. Geochemical plots of A-F-M and An-Ab-Or relations show an apparent alkali enrichment trend on the former, but the plutons define relatively distinct fields on the latter. Most of the plutons are adamellitic to granitic by chemistry. The variations of SiO2 with log sub 10 K2O/MgO (1) brings out the distinct alkaline nature of the plutons. Some of the granites are extremely potassic, like the Peralimala pluton, which shows up to 11.8 percent K2O. On a SiO2-Al2O3-Na2O+K2O (mol percent) plot, the plutons vary from peraluminous to peralkaline, but none are nepheline normative. Low MgO, low to moderate CaO and high Fe2O3/FeO values are other common characteristics. Among trace elements, depletion of Ba, Sr and Rb with high K/Ba and K/Rb values are typical. Overall, the plutons show a trend of decreasing K/Rb ratio with increasing K content. Individual plutons show more clearly defined trends similar to those from granitic masses characterized by plagioclase fractionation.

  20. Insulator -- polaron conductor -- metal transitions in a complex oxide 12CaO.7Al2O3.

    NASA Astrophysics Data System (ADS)

    Sushko, P.; Shluger, A.; Stoneham, A.; Hayashi, K.; Matsuishi, S.; Hirano, M.; Hosono, H.

    2006-03-01

    Recent experiments have demonstrated that a complex nano-porous oxide 12CaO.7Al2O3 (C12A7) built of positively charged sub-nanometer cages can be converted from a transparent insulator to a transparent conductor by H2 doping followed by UV-light irradiation with 4--4.5 eV photons [1]. This irradiation induces optical absorption bands with maxima at 0.4 eV and 2.8 eV and high concentrations of unpaired electrons. We use ab initio calculations to reveal the mechanism of photo-induced insulator--conductor transition and the role of H atoms in this process and to elucidate the transport properties of the electrons in this system as a function of electron concentration. Our theoretical modeling suggests that at concentration below 10^20 cm-3 electrons are responsible for the polaron type electrical conductivity with the activation energy close to 0.1 eV as well as for the optical absorption at 0.4 eV and 2.8 eV [2]. We demonstrate that, as the electron concentration exceeds 10^20 cm-3, the character of electronic conductivity changes from polaron type to metallic. [1] K. Hayashi et al., Nature 419, 462 (2002). [2] P.V. Sushko, et al., Phys. Rev. Lett. 91, 126401 (2003); P.V. Sushko et al., Appl. Phys. Lett. 86, 092101 (2005).

  1. Photoluminescence of Au - formed in 12CaO · 7Al 2O 3 single crystal by Au +-implantation

    NASA Astrophysics Data System (ADS)

    Miyakawa, M.; Kamioka, H.; Hirano, M.; Kamiya, T.; Hosono, H.

    2006-09-01

    Au + ion implantation with fluences from 1 × 10 14 to 3 × 10 16 cm -2 into 12CaO · 7Al 2O 3 (C12A7) single crystals was carried out at a sample temperature of 600 °C. The implanted sample with the fluence of 1 × 10 15 cm -2 exhibited photoluminescence (PL) bands peaking at ˜3.1 and ˜2.3 eV at ⩽150 K when excited by He-Cd laser (325 nm). This was the first observation of PL from C12A7. These two PL bands are possibly due to intra-ionic transitions of an Au - ion having the electronic configuration of 6 s2, judged from their similarities to those reported on Au - ions in alkali halides. However, when the concentration of the implanted Au ions exceeded the theoretical maximum value of anions encaged in C12A7 (˜2.3 × 10 21 cm -3), surface plasmon absorption appeared in the optical absorption spectrum, suggesting Au colloids were formed at such high fluences. These observations indicate that negative gold ions are formed in the cages of C12A7 by the Au + implantation if an appropriate fluence is chosen.

  2. Genetic variants of Cao Bang hantavirus in the Chinese mole shrew (Anourosorex squamipes) and Taiwanese mole shrew (Anourosorex yamashinai).

    PubMed

    Gu, Se Hun; Arai, Satoru; Yu, Hon-Tsen; Lim, Burton K; Kang, Hae Ji; Yanagihara, Richard

    2016-06-01

    To determine the genetic diversity and geographic distribution of Cao Bang virus (CBNV) and to ascertain the existence of CBNV-related hantaviruses, natural history collections of archival tissues from Chinese mole shrews (Anourosorex squamipes) and Taiwanese mole shrews (Anourosorex yamashinai), captured in Guizho Province, People's Republic of China, and in Nantou County, Taiwan, in 2006 and 1989, respectively, were analyzed for hantavirus RNA by RT-PCR. Pair-wise alignment and comparison of the S-, M- and L-segment sequences indicated CBNV in two of five Chinese mole shrews and a previously unrecognized hantavirus, named Xinyi virus (XYIV), in seven of 15 Taiwanese mole shrews. XYIV was closely related to CBNV in Vietnam and China, as well as to Lianghe virus (LHEV), recently reported as a distinct hantavirus species in Chinese mole shrews from Yunnan Province in China. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that XYIV shared a common ancestry with CBNV and LHEV, in keeping with the evolutionary relationship between Anourosorex mole shrews. Until such time that tissue culture isolates of CBNV, LHEV and XYIV can be fully analyzed, XYIV and LHEV should be regarded as genetic variants, or genotypes, of CBNV. PMID:26921799

  3. CO{sub 2} capture capacity of CaO in long series of carbonation/calcination cycles

    SciTech Connect

    Grasa, G.S.; Abanades, J.C.

    2006-12-20

    Calcium oxide can be an effective sorbent to separate CO{sub 2} at high temperatures. When coupled with a calcination step to produce pure CO{sub 2}, the carbonation reaction is the basis for several high-temperature CO{sub 2} capture systems. The evolution with cycling of the capture capacity of CaO derived from natural limestones is experimentally investigated in this work. Long series of carbonation/calcination cycles (up to 500) varying different variables affecting sorbent capacity have been tested in a thermogravimetric apparatus. Calcination temperatures above T > 950{sup o}C and very long calcination times accelerate the decay in sorption capacity, while other variables have a comparatively modest effect on the overall sorbent performance. A residual conversion of about 7-8% that remains constant after many hundreds of cycles and that seems insensitive to process conditions has been found. This residual conversion makes very attractive the carbonation/calcination cycle, by reducing (or even eliminating) sorbent purge rates in the system. A semiempirical equation has been proposed to describe sorbent conversion with the number of cycles based on these new long data series.

  4. Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Tajammul Hussain, S.; Kamran, M.

    2013-07-01

    We synthesized (CuO, CaO2, and BaO)y/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized them by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties, such as real and imaginary parts of the dielectric constant, dielectric loss, and ac-conductivity of these composites were studied by capacitance and conductance measurements as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). X-ray diffraction analysis reveals that the characteristic behavior of the superconductor phase and the structure of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ are nearly undisturbed by doping with nanoparticles. Scanning electron microscopy images show the improvement in the intergranular linking between the superconducting grains occurring with increasing nanoparticle concentration. Microcracks are healed up with these nanoparticles, and superconducting volume fraction is also increased. Dielectric properties of these composites strongly depend on the frequency and temperature. Zero resistivity critical temperature and dielectric properties show opposite trends with the addition of nanoparticles to the Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconductor matrix.

  5. Geological control of canopy structure and function in Panamanian forests as identified by CAO-AToMS

    NASA Astrophysics Data System (ADS)

    Higgins, M.; Asner, G. P.; Martin, R. E.; Knapp, D. E.

    2012-12-01

    Geological formations and their edaphic properties are known to control plant species composition in tropical forests. It has been speculated that these edaphic and compositional patterns might also be translated into functional patterns, but this has been difficult to test due to a lack of broad-scale but detailed canopy structural and functional data. Here we use the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), which combines a 480-band visible-to-shortwave imaging spectrometer (VSWIR) with dual waveform LiDAR, to generate ultra-high resolution data on geomorphology, canopy structure, and canopy chemistry for forests in the vicinity of the Panama Canal. Using these remotely-sensed data, in conjunction with field data on soils and plant species composition, we demonstrate that geological formations regulate forest structure and chemistry in these forests via changes in soils and plant species composition. These chemical properties, moreover, correspond to canopy functional properties including photosynthetic investment and anti-herbivore defenses. Together, our findings indicate that forest canopy structure and function in these forests are an expression their geological history, over which variations due to contemporary variables such as climate are overlaid.

  6. Geochemistry of sedimentary-derived migmatite from NE Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Cruciani, Gabriele; Fancello, Dario; Franceschelli, Marcello; Scodina, Massimo

    2015-04-01

    In NE Sardinia at Porto Ottiolu, about 30 km south of Olbia (NE Sardinia), crops out a sequence of migmatized ortho and paragneiss, belonging to the Variscan basement's axial zone. Sedimentary-derived migmatite, which have a layered appearance in the field, were affected by three major variscan folding phase. D2, which is characterized by tight folds, is the most widespread deformation in the field. Leucosomes consists of discontinuous centimetre-thick, coarse-grained layers, that follow the S2 schistosity and are folded by D2 deformation phase. The contact with mesosome is sharp and sometimes marked by melanosome trails. They consist of quartz, plagioclase, very rare K-feldspar, muscovite, biotite, fibrolite, and rare kyanite. Plagioclase is unzoned oligoclase, though in some cases a thin albite rim is observed. Muscovite occurs as: i) single small- to medium-grained flakes enclosed in feldspar; ii) coarse grained crystals associated to biotite, fibrolite, and opaques, iii) in intergrowth with biotite to form thin elongated, slightly oriented trails, marking the faint foliation. Mesosomes are medium-grained, well foliated rocks, consisting of quartz, plagioclase muscovite, , biotite, fibrolite ± K-feldspar ± garnet. Fibrolite, muscovite and biotite are associated, to form strongly oriented, thick levels. Muscovite also occurs as unoriented crystals, showing quartz exsolutions and thin rims. A few mm-thick melanosome is usually present at the boundary between the leucosomes and mesosomes. Leucosomes are characterized by: SiO2: 75.4-77.9; Al2O3: 13.2-14.5; Fe2O3tot: 0.3-0.5; MgO: 0.1-0.2; CaO: 2.7- 3.7; Na2O: 3.9-4.6; K2O: 0.4-0.6 wt.%. An interesting feature is the relative high calcium content already described in other sedimentary-derived migmatite from Sardinia (Cruciani et al., 2008). In the normative Ab-An-Or diagram (Barker, 1979) the leucosomes plot at the boundary between trondhjemite/tonalite fields. All leucosomes are corundum normative and peraluminous

  7. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay.

    PubMed

    Sawai, J

    2003-08-01

    Antibacterial activities of metallic oxide (ZnO, MgO and CaO) powders against Staphylococcus aureus and Escherichia coli were quantitatively evaluated by measuring the change in electrical conductivity of the growth medium caused by bacterial metabolism (conductimetric assay). The obtained conductivity curves were analyzed using the growth inhibition kinetic model proposed by Takahashi for calorimetric evaluation, and the metallic oxides were determined for the antibacterial efficacy and kinetic parameters. The parameters provide some useful indicators for antimicrobial agents, such as the dependence of antibacterial activity on agent concentration, and the affinity between the agent and the bacterial cells. CaO was the most effective, followed by MgO and ZnO, against E. coli. On the other hand, ZnO was the most effective for S. aureus and was suggested to have a strong affinity to the cells of S. aureus. PMID:12782373

  8. The Vibrational Frequencies of CaO2, ScO2, and TiO2: A Comparison of Theoretical Methods

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.; Chertihin, George V.; Andrews, Lester; Arnold, James O. (Technical Monitor)

    1997-01-01

    The vibrational frequencies of several states of CaO2, ScO2, and TiO2 are computed at using density functional theory (DFT), the Hatree-Fock approach, second order Moller-Plesset perturbation theory (MP2), and the complete-active-space self-consistent-field theory. Three different functionals are used in the DFT calculations, including two hybrid functionals. The coupled cluster singles and doubles approach including the effect of unlinked triples, determined using perturbation theory, is applied to selected states. The Becke-Perdew 86 functional appears to be the cost effective method of choice, although even this functional does not perform well for one state of CaO2. The MP2 approach is significantly inferior to the DFT approaches.

  9. End to end assembly of CaO and ZnO nanosheets to propeller-shaped architectures by orientation attachment approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang

    2015-06-01

    Inspired by the agitation effect of propellers, heterogeneous propeller- shaped CaO/ZnO architectures were assembled in aqueous solution. Preferred nucleation and growth of CaO and ZnO nuclei resulted in their hexagonal nanosheets, and they were end to end combined into propeller-shaped architectures by oriented rotation and attachment reactions. When propeller-shaped CaO/ZnO product was used as solid base catalyst to synthesize biodiesel, a high biodiesel yield of 97.5% was achieved. The predominant exposure of active O2- on CaO(0 0 2) and ZnO(0 0 0 2) planes in propeller-shaped CaO/ZnO, led to good catalytic activity and high yield of biodiesel.

  10. Preparation of CaO as OLED getter material through control of crystal growth of CaCO{sub 3} by block copolymers in aqueous solution

    SciTech Connect

    Park, Jae-Hyung; Oh, Seong-Geun

    2009-01-08

    As the starting materials of organic light-emitting diode (OLED) getter, calcium carbonate (CaCO{sub 3}) particles with various shapes and crystal structures have been successfully prepared with additives (L64 or PEGPG), which contain blocks of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). These CaCO{sub 3} particles were calcinated into highly crystalline calcium oxide (CaO) nanoparticles with high capacity of water adsorption up to 14.23 wt.%. The CaCO{sub 3} and CaO particles prepared at various conditions were characterized using the field emission scanning electron microscopy (FE-SEM), Fourier transform infrared microscopy (FT-IR), X-ray powder diffraction (XRD), and dynamic vapor sorption (DVS) method.

  11. Role of Y{sub 2}O{sub 3}, CaO, MgO additives on structural and microstructural behavior of zirconia/mullite aggregates

    SciTech Connect

    Mishra, D. K.; Prusty, Sasmita; Mohapatra, B. K.; Singh, S. K.; Behera, S. N.

    2012-07-23

    Zirconia mullite (MUZ), Y{sub 2}O{sub 3}-MUZ, CaO-MUZ and MgO-MUZ composites, synthesized through plasma fusion technique, are becoming important due to their commercial scale of production within five minutes of plasma treatment from sillimanite, zircon and alumina mixture. The X-ray diffraction studies reveal the monoclinic zirconia phase in MUZ composite whereas mixed monoclinic, tetragonal and cubic phases of zirconia have been observed in Y{sub 2}O{sub 3}, CaO, MgO added MUZ composites. The Y{sub 2}O{sub 3}, CaO and MgO additives act as sintering aids to favour the transformation and stabilisation of tetragonal and cubic zirconia phases at room temperature. These additives also play a key role in the development of various forms of microstructure to achieve dense MUZ composites.

  12. The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.

  13. Materials Data on Na2O (SG:58) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-10-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Materials Data on Na2O2 (SG:189) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  15. Materials Data on TbNa2O3 (SG:15) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Crystallization of Na2O-SiO2 gel and glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1984-01-01

    The crystallization behavior of a 19 wt pct soda silica gel and gel-derived glass was compared to that of the ordinary glass of the same composition. Both bulk and ground glass samples were utilized. X-ray diffraction measurements were made to identify the crystalline phases and gauge the extent of crystallization. It was found that the gel crystallized in a distinctive manner, while the gel glass behavior was not qualitatively different from that of the ordinary glass.

  17. CaO insulator coatings and self-healing of defects on V-Cr-Ti alloys in liquid lithium system

    SciTech Connect

    Park, J.H.; Kassner, T.F.

    1995-09-01

    Electrically insulating and corrosion-resistant coatings are required at the liquid metal/structural interface in fusion first-wall/blanket applications. Electrical resistance of CaO coatings that were produced on V-5%Cr-5%Ti by exposure of the alloy to liquid Li containing 0.5-85 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400-420{degrees}C to produce a CaO coating. Resistance of the coating layer measured in-situ in liquid Li was {approx}10{sup 6} {Omega} at 400{degrees}C. Thermal cycling between 300 and 700{degrees}C changed the coating layer resistance, which followed insulator behavior. These results suggest that thin homogeneous coatings can be produced on variously shaped surfaces by controlling the exposure time, temperature, and composition of the liquid metal. The technique can be applied to various shapes (e.g., inside/outside of tubes, complex geometrical shapes) because the coating is formed by liquid-phase reaction. Examination of the specimens after cooling to room temperature revealed no spallation, but homogeneous crazing cracks were present in the CaO coating. Additional tests to investigate the in-situ self-healing behavior of the cracks indicated that rapid healing occurred at {>=}360{degrees}C.

  18. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    PubMed

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium. PMID:26099346

  19. Mapping the geographic distribution of canopy species communities in lowland Amazon rainforest with CAO-AToMS (Invited)

    NASA Astrophysics Data System (ADS)

    Feret, J.; Asner, G. P.

    2013-12-01

    Mapping regional canopy diversity will greatly advance our understanding as well as the conservation of tropical rainforests. Changes in species composition across space and time are particularly important to understand the influence of climate, human activity and environmental factors on these ecosystems, but to date such monitoring is extremely challenging and is facing a scale gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. Advances were recently made in the field of spectroscopic imagery for the estimation of canopy alpha-diversity, and an original approach based on the segmentation of the spectral space proved its ability to estimate Shannon diversity index with unprecedented accuracy. We adapted this method in order to estimate spectral dissimilarity across landscape as a proxy for changes in species composition. We applied this approach and mapped species composition over four sites located in lowland rainforest of Peruvian Amazon. This study was based on spectroscopic imagery acquired using the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), operating a unique sensor combining the fine spectral and spatial resolution required for such task. We obtained accurate estimation of Bray-Curtis distance between pairs of plots, which is the most commonly used metric to estimate dissimilarity in species composition (n=497 pairs, r=0.63). The maps of species composition were then compared to topo-hydrographic properties. Our results indicated a strong shift in species composition and community diversity between floodplain and terra firme terrain conditions as well as a significantly higher diversity of species communities within Amazonian floodplains. These results pave the way for global mapping of tropical canopy diversity at fine geographic resolution.

  20. Network of hydrogen bonds near the oxygen-evolving Mn(4)CaO(5) cluster of photosystem II probed with FTIR difference spectroscopy.

    PubMed

    Service, Rachel J; Hillier, Warwick; Debus, Richard J

    2014-02-18

    We previously provided experimental evidence that an extensive network of hydrogen bonds exists near the oxygen-evolving Mn4CaO5 cluster in photosystem II and that elements of this network form part of a dominant proton-egress pathway leading from the Mn4CaO5 cluster to the thylakoid lumen. The evidence was based on (i) the elimination of the same ν(C═O) mode of a protonated carboxylate group in the S2-minus-S1 FTIR difference spectrum of wild-type PSII core complexes from the cyanobacterium Synechocystis sp. PCC 6803 by the mutations D1-E65A, D2-E312A, and D1-E329Q and (ii) the substantial decrease in the efficiency of the S3 to S0 transition caused by the mutations D1-D61A, D1-E65A, and D2-E312A. The eliminated ν(C═O) mode corresponds to an unidentified carboxylate group whose pKa value decreases in response to the increased charge that develops on the Mn4CaO5 cluster during the S1 to S2 transition. In the current study, we have extended our work to include the ν(C═O) regions of other Sn+1-minus-Sn FTIR difference spectra and to additional mutations of residues inferred to participate in networks of hydrogen bonds near the Mn4CaO5 cluster or leading from the Mn4CaO5 cluster to the thylakoid lumen. Our data suggest that a different carboxylate group has its pKa value increased during the S2 to S3 transition and that a third carboxylate group experiences a change in its environment during the S0 to S1 transition. The pKa values that shift during the S1 to S2 and S2 to S3 transitions appear to be restored during the S3 to S0 transition. The D1-R334A mutation decreases or eliminates the same ν(C═O) modes from the S2-minus-S1 and S3-minus-S2 spectra as mutations D1-E65A, D2-E312A, and D1-E329Q and substantially decreases the efficiency of the S3 to S0 transition. We conclude that D1-R334 participates in the same dominant proton-egress pathway that was identified in our previous study. The D1-Q165E mutation leaves the ν(C═O) region of the S2-minus-S1

  1. Characterization and origin of the Taishanmiao aluminous A-type granites: implications for Early Cretaceous lithospheric thinning at the southern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Changming; Chen, Liang; Bagas, Leon; Lu, Yongjun; He, Xinyu; Lai, Xiangru

    2016-07-01

    Late Mesozoic magmatic rocks from the Taishanmiao Batholith were collected for LA-ICP-MS dating, Sr-Nd-Hf isotope systematics, and whole-rock major and trace element geochemistry to help understand the nature of collisional and extensional events along the southern margin of the North China Craton. The batholith consists of three texturally distinguishable phases of a 125 ± 1 Ma medium- to coarse-grained syenogranite, a 121 ± 1 Ma fine- to medium-grained syenogranite, and a 113 ± 1 Ma porphyritic monzogranite. Most of the units in the batholith are syenogranitic in composition with high levels of silica (70-78 wt% SiO2), alkalis (8.0-8.6 wt% Na2O + K2O), Fe* (FeOT/(FeOT + MgO) = 0.76-0.90), and depletion in CaO (0.34-1.37 wt%), MgO (0.12-0.52 wt%), TiO2 (0.09-0.40 wt%), and A/CNK (Al2O3/(Na2O + K2O + CaO)) molar ratios of 1.00-1.11. All samples have high proportions of Ga, Nb, Zr, Ga/Al, and REE, and depletions in Ba, Sr, Eu, and compatible elements, indicating that the batholith consists of A-type granites. The zircon saturation temperature for these units yields a mean value of 890 °C, and zircons with Early Cretaceous magmatic ages have ɛNd( t) values of -14.0 to -12.0, ɛHf( t) values ranging from -18.7 to -2.1, and corresponding Hf model ages of 2339-1282 Ma. These geochemical and isotopic characteristics allowed us to conclude that the primary magma for the Taishanmiao Batholith originated from partial melting of Precambrian crustal rocks in the medium-lower crust. However, the high Nb and Ta contents and low normalized Nb/Ta values for the Taishanmiao granites are due to fractionation in Nb- and Ta-rich amphibole (or biotite). It is further proposed that these aluminous A-type granites were generated in an extensional tectonic setting during the Early Cretaceous, which was induced by lithospheric thinning and asthenospheric upwelling beneath eastern China toward the Paleo-Pacific Plate.

  2. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Boucher, Thomas F.; Ozanne, Marie V.; Carmosino, Marco L.; Dyar, M. Darby; Mahadevan, Sridhar; Breves, Elly A.; Lepore, Kate H.; Clegg, Samuel M.

    2015-05-01

    The ChemCam instrument on the Mars Curiosity rover is generating thousands of LIBS spectra and bringing interest in this technique to public attention. The key to interpreting Mars or any other types of LIBS data are calibrations that relate laboratory standards to unknowns examined in other settings and enable predictions of chemical composition. Here, LIBS spectral data are analyzed using linear regression methods including partial least squares (PLS-1 and PLS-2), principal component regression (PCR), least absolute shrinkage and selection operator (lasso), elastic net, and linear support vector regression (SVR-Lin). These were compared against results from nonlinear regression methods including kernel principal component regression (K-PCR), polynomial kernel support vector regression (SVR-Py) and k-nearest neighbor (kNN) regression to discern the most effective models for interpreting chemical abundances from LIBS spectra of geological samples. The results were evaluated for 100 samples analyzed with 50 laser pulses at each of five locations averaged together. Wilcoxon signed-rank tests were employed to evaluate the statistical significance of differences among the nine models using their predicted residual sum of squares (PRESS) to make comparisons. For MgO, SiO2, Fe2O3, CaO, and MnO, the sparse models outperform all the others except for linear SVR, while for Na2O, K2O, TiO2, and P2O5, the sparse methods produce inferior results, likely because their emission lines in this energy range have lower transition probabilities. The strong performance of the sparse methods in this study suggests that use of dimensionality-reduction techniques as a preprocessing step may improve the performance of the linear models. Nonlinear methods tend to overfit the data and predict less accurately, while the linear methods proved to be more generalizable with better predictive performance. These results are attributed to the high dimensionality of the data (6144 channels

  3. Materials Data on K2O2 (SG:64) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-01

    In this study, the effects of grain size and the addition of CaCO3 on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO3 densified the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics at 1075 °C. In the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO3 content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe2CaO4 was observed, together with the disappearance of the second phase CuO. The grain size of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO3 content increased from 0 to 5 wt%. Initially rising to 807 after CaCO3 addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO3 content increased. The bending strength grew linearly with the CaCO3 content and reached twice the value for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with an addition of 5.0 wt% CaCO3. The initial permeability of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic decreased substantially from 402 to 103 as the addition of CaCO3 in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic was maximized at 95 for 1.0 wt% CaCO3 addition.

  5. Species classification and bioactive ingredients accumulation of BaiJiangCao based on characteristic inorganic elements analysis by inductively coupled plasma-mass spectrometry and multivariate analysis

    PubMed Central

    Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang

    2015-01-01

    Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721

  6. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  7. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag

    SciTech Connect

    Kim, Min Sik; Jun, Yubin; Lee, Changha Oh, Jae Eun

    2013-12-15

    The use of calcium oxide (CaO) demonstrates a superior potential for the activation of ground granulated blast furnace slag (GGBFS), and it produces a higher mechanical strength than calcium hydroxide [Ca(OH){sub 2}]. The mechanical strength differences between CaO- and Ca(OH){sub 2}-activated GGBFS binders are explored using isothermal calorimetry, powder X-ray diffraction, thermogravimetric and differential thermal analysis (TGA and DTA) as well as compressive strength testing. Calcium silicate hydrate (C–S–H), Ca(OH){sub 2} and a hydrotalcite-like phase are found as reaction products in all samples. The TGA and DTA results indicate that the use of CaO produces more C–S–H, although this is not likely to be the primary cause of higher strength development in the CaO-activated GGBFS. Rather, other factors such as porosity may govern the strength at a higher order of magnitude. Significant reduction of Ca(OH){sub 2} occurs only with the use of Ca(OH){sub 2}, followed by the formation of carbonate (CaCO{sub 3}), indicating carbonation. -- Highlights: •CaO showed a better potential for the activation of GGBFS than Ca(OH){sub 2}. •Strength test, XRD, TGA/DTA and isothermal calorimetry are used. •C-S-H, Ca(OH){sub 2}, and a hydrotalcite-like phase are found in all samples. •The use of Ca(OH){sub 2} causes some degree of carbonation.

  8. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    PubMed Central

    Dong-Ae, KIM; Hany, ABO-MOSALLAM; Hye-Young, LEE; Jung-Hwan, LEE; Hae-Won, KIM; Hae-Hyoung, LEE

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved. Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements. Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitro rat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC. Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs. Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  9. Crystallization paths in SiO2-Al2O3-CaO system as a genotype of silicate materials

    NASA Astrophysics Data System (ADS)

    Lutsyk, V. I.; Zelenaya, A. E.

    2013-12-01

    The phases trajectories in the fields of primary crystallization of cristobalite (SiO2cr), tridymite (SiO2tr), mullite (3Al2O3-2SiO2) and in a field of liquid immiscibility are analyzed on a basis of computer model for T-x-y diagram of SiO2-Al2O3-CaO system. The concentration fields with unique set of microconstituents and the fields without individual crystallization schemes and microconstituents are revealed.

  10. Phase selection in the containerless solidification of undercooled CaO {center_dot} 6Al{sub 2}O{sub 3} melts

    SciTech Connect

    Li Mingjun; Kuribayashi, Kazuhiko

    2004-07-12

    The CaO {center_dot} 6Al{sub 2}O{sub 3} melts were solidified on an aero-acoustic levitator under a containerless processing condition at various undercoolings. A high-speed video was operated to monitor the recalescence behavior, from which the growth velocity as a function of melt undercooling was determined. The microstructures were observed and the crystalline phases were identified using the X-ray diffraction technique, indicting that the Al{sub 2}O{sub 3} was solidified when the melt temperature was higher than the peritectic temperature, T{sub p}. When the melt was undercooled below T{sub p}, the CaO {center_dot} 6Al{sub 2}O{sub 3} (CA{sub 6}) peritectic phase was crystallized directly from the undercooled melts. With respect to the direct formation of the peritectic phase, further analysis from the viewpoints of competitive nucleation indicated that the minimum free energy principle may be applied to elucidate the nucleation of CA{sub 6} phase. In terms of the competitive growth behavior, the interface attachment kinetics for Al{sub 2}O{sub 3} and CA{sub 6} phases are calculated by using the classical BCT model indicating that although the Al{sub 2}O{sub 3} phase doped by CaO has about four times larger interface kinetic coefficient than that of the CA{sub 6} peritectic phase, the growth kinetics of Al{sub 2}O{sub 3} in the melt with the CaO {center_dot} 6Al{sub 2}O{sub 3} chemical composition is not sufficiently high to replace the CA{sub 6} phase as the primary phase. Therefore, once CA{sub 6} is nucleated, it can develop into a macro crystal as the primary phase. The competitive nucleation and growth behavior in the CA{sub 6} system is different from those in other well-studied peritectic alloys and the present investigation on the phase formation will be an essential supplement to the phase selection theory.

  11. [Classes of crude drugs and its distribution of producing area in the attached illustrations in Ben cao tu jing (Illustrated Classic of Materia Medica)].

    PubMed

    Xu, T; Peng, H S

    2016-03-01

    Ben cao tu jing (Illustrated Classic of Materia Medica) is the earliest extant atlas book of materia medica in China, with 933 attached drawings. Among them, the largest portion, amounting to 670, are herbaceous plants, mostly commonly used, with definite marks of the origin producing areas, distributed across 149 administrative divisions(prefectures and counties) of the Song Dynasty, most of them in Northern area which were distributed denser than those in Southern area. The densest ones were located in Southern Shanxi, Eastern Sichuan and Eastern Anhui. In the attached drawings, the frequency of highest occurrence appeared in this Classic are three prefectures, Chuzhou, Shizhou and Guangzhou. PMID:27255195

  12. Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture

    SciTech Connect

    Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David A.

    2013-08-15

    We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst-capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst-capture agents on (1) the syngas composition, (2) CO2 and H2S capture, and (3) the steam-coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO-CaCO3 chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO3 was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO-CaCO3 cycles. The increased steam-coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2-4% per CaO-CaCO3 cycle. We also discuss an important application of this combined gasifier-calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO4 and ash in the precalcined feedstock.

  13. The role of temperature on Cr(VI) formation and reduction during heating of chromium-containing sludge in the presence of CaO.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Zhai, Jianping; Zhao, Yongbin; Li, Qin; Cui, Hao

    2015-11-01

    In this study, the temperature dependence of Cr(VI) formation and reduction in the presence of CaO was examined during the thermal treatment of sludge that contains chromium. thermogravimetry-differential scanning calorimetry and X-ray diffractometry were used to characterize the thermal behavior and phase transformation, respectively. Na2CO3 leaching procedure was employed to determine the amount of Cr(VI). The result showed that CaO promoted Cr(III) oxidation, however, its influence is very dependent on heating temperature, with the extent of the effect varying with temperature. From 200-400 °C, the presence of CaO facilitated formation of intermediate product Cr2O3+x containing Cr(VI) during dehydration of chromium hydrate, while Cr2O3+x would decompose as temperature over 400 °C, accompanied by part of Cr(VI) being reduced to Cr(III). From 500 to 900 °C, Cr(III) reacted with CaO to form a leachable CaCrO4 product. This product was stable and a prolonged heating time did not reduce the amount of Cr(VI) significantly. At 1000-1200 °C, part of CaCrO4 was reduced to Ca(CrO2)2 in 1h. While extended heating time above 1h resulted in the Ca(CrO2)2 being oxidized reversibly to CaCrO4 at 1200 °C. Since CaCrO4 is thermodynamically less stable over 1000 °C, MgO could induce CaCrO4 to be reduced into MgCr2O4 at around 900 °C, lower than that for the reduction from CaCrO4 into Ca(CrO2)2. It suggested that adding MgO might be a potential approach for inhibiting Cr(VI) formation during heating sludge containing chromium. PMID:26072117

  14. Influences of CaO on Crystallization, Microstructures, and Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Tang, Bo; Xu, Mingjiang

    2015-10-01

    We have developed BaO-CaO-Al2O3-B2O3-SiO2 glass-ceramics with high thermal coefficient of expansion (TCE) to overcome thermal mismatch at board level. The crystalline phases include quartz (major), cristobalite (minor), and bazirite BaZrSi3O9 (minor). Calculations from whole-pattern fitting show that the crystallinity varies slightly within the range of 33.48% to 34.89%, while the mass fraction of the phases changes remarkably with the CaO content. This indicates that CaO cannot promote crystallization of Ba-Al-B-Si glass, but effectively suppresses the phase transformation from quartz to cristobalite, making the thermal expansion curves linear. An empirical equation for the TCE versus the temperature and the amount of CaO is established. Furthermore, the densification mechanism of Ca modifiers is revealed. Due to its higher field strength than Ba, substitution of Ca increases the glass viscosity and inhibits ion diffusion. Excessive CaO is thus harmful to the density, bending strength, and electrical properties. The sample with 10 wt.% CaO sintered at 950°C exhibited high bending strength (154.1 MPa) and high TCE (12.38 ppm/°C) as well as good electrical properties ( ɛ = 6.2, tan δ = 5 × 10-4, ρ = 3.8 × 1012 Ω cm).

  15. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    NASA Astrophysics Data System (ADS)

    Ichikawa, Shintaro; Nakamura, Toshihiro

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, and total Fe2O3). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g- 1 range (e.g., 140 μg g- 1 for Na2O, 31 μg g- 1 for Al2O3, and 8.9 μg g- 1 for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry.

  16. Distribution of major and trace elements in surface sediments of the western Gulf of Thailand: Implications to modern sedimentation

    NASA Astrophysics Data System (ADS)

    Liu, Shengfa; Shi, Xuefa; Yang, Gang; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2016-04-01

    In this study, we analyze major and trace elements (SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, Na2O, TiO2, P2O5, MnO, Cu, Pb, Ba, Sr, V, Zn, Co, Ni, Cr, and Zr) and grain size of 157 surface sediment samples from the western Gulf of Thailand (GoT). On the basis of the space distribution characteristics, the study area can be classified into three geochemical provinces. Province I covers the northern and northwestern coastal zones of the GoT, including the whole upper GoT and thus the sediments from the rivers in the area. It contains high contents of SiO2. Province II is located in the middle of the GoT and has similar geochemistry composition as the South China Sea (SCS). It contains sediments that are characterized by higher contents of Na2O, TiO2, Ba, Cr, V, Zn, Zr, and Ni. Province Ш is located in the lower GoT, close to Malaysia. Major and trace elements in this area showed complex distribution patterns, which may be due to terrestrial materials from Malay rivers combining with some sediments from the SCS in this province. The results also indicate that grain size is the controlling factor in elemental contents, and that the hydrodynamic environment and mineral composition of the sediments play an important role in the distribution of these elements. The anthropogenic impact of heavy metal introduction (especially Cr, Zn, Cu, and Pb) can be seen in surface sediments from the nearshore region of Chantaburi province and north of Samui Island.

  17. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Trépanier, Sylvain; Mathieu, Lucie; Daigneault, Réal; Faure, Stéphane

    2016-04-01

    This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank-based correlation coefficients were calculated to compare predicted and analysed values from a least-altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program.

  18. Effect of carbonation temperature on CO2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO3

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Sreekantan, Srimala; Hinode, Hirofumi; Kurniawan, Winarto; Thant, Aye Aye; Othman, Radzali; Mohamed, Abdul Rahman; Salime, Chris

    2016-07-01

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO2 capture mainly due to their high CO2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO3 with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO2 adsorption capacity of CaO derived from aragonite CaCO3 sample. At 300 °C, the sample reached the CO2 adsorption capacity of 0.098 g-CO2/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO2/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO2 adsorption capacity of the CaO derived from aragonite CaCO3.

  19. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.

    PubMed

    Liu, Shiyu; Xie, Qinglong; Zhang, Bo; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-03-01

    This study investigated fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Effects of reaction temperature, CaO/HZSM-5 ratio, and corn stover/scum ratio on co-pyrolysis product fractional yields and selectivity were investigated. Results showed that co-pyrolysis temperature was selected as 550°C, which provides the maximum bio-oil and aromatic yields. Mixed CaO and HZSM-5 catalyst with the weight ratio of 1:4 increased the aromatic yield to 35.77 wt.% of feedstock, which was 17% higher than that with HZSM-5 alone. Scum as the hydrogen donor, had a significant synergistic effect with corn stover to promote the production of bio-oil and aromatic hydrocarbons when the H/C(eff) value exceeded 1. The maximum yield of aromatic hydrocarbons (29.3 wt.%) were obtained when the optimal corn stover to scum ratio was 1:2. PMID:26773959

  20. Performance and economic assessments of a solid oxide fuel cell system with a two-step ethanol-steam-reforming process using CaO sorbent

    NASA Astrophysics Data System (ADS)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2016-02-01

    The hydrogen production process is known to be important to a fuel cell system. In this study, a carbon-free hydrogen production process is proposed by using a two-step ethanol-steam-reforming procedure, which consists of ethanol dehydrogenation and steam reforming, as a fuel processor in the solid oxide fuel cell (SOFC) system. An addition of CaO in the reformer for CO2 capture is also considered to enhance the hydrogen production. The performance of the SOFC system is analyzed under thermally self-sufficient conditions in terms of the technical and economic aspects. The simulation results show that the two-step reforming process can be run in the operating window without carbon formation. The addition of CaO in the steam reformer, which runs at a steam-to-ethanol ratio of 5, temperature of 900 K and atmospheric pressure, minimizes the presence of CO2; 93% CO2 is removed from the steam-reforming environment. This factor causes an increase in the SOFC power density of 6.62%. Although the economic analysis shows that the proposed fuel processor provides a higher capital cost, it offers a reducing active area of the SOFC stack and the most favorable process economics in term of net cost saving.

  1. [Textual research on Guang dong xin yu (New Sayings of Guangdong) quoted in Ben cao gang mu shi yi (Supplements to Compendium of Materia Medica].

    PubMed

    Zhang, Ruixian; Zhang, Wei; Li, Jian; Liang, Fei

    2014-05-01

    Altogether 15 terms for Guang dong xin yu (New Sayings of Guangdong) were used in Ben cao gang mu shi yi (Supplements to Compendium of Materia Medica), including Yue yu (Cantonese sayings), Chong yu (Sayings from Insect Drug), Jie yu (Sayings from Crustacean Drug), Xin yu (New Sayings), Yue hai xiang yu (Fragrant Sayings from Cantonese Region), Yue zhi mu yu (Sayings from Plants in Cantonese Annals), Guang dong suo yu (Trivial Sayings from Guangdong), Yue shan lu (Records of Cantonese Mountains), Yue lu (Cantonese Records), Jiao guang lu (Joint Guangdong Records), Yue cao zhi (Records of Cantonese Grasses), Guang guo lu (Records of Guangdong Fruits), Nan yue suo ji (Trivial Records of Southern Canton), Guang zhi (Guangdong Records), Yue zhi (Cantonese Records) etc. dealing with 57 sorts of drugs (with individual overlapping ones), the author of Xin yu was Qu Dajun, a surviving fogy of the Ming Dynasty actively involved in the activities to restore the old dynasty and resist the Qing Dynasty, and was persecuted in the literary inquisition in which his works were burnt so that Zhao Xuemin, when quoting his texts, had to go in a roundabout way. PMID:25208840

  2. Fluorescence properties of Eu3+-doped alumino silicate glasses

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas; Kuhn, Stefan; Tiegel, Mirko; Rüssel, Christian

    2014-11-01

    Alumino silicate glasses of a very broad range of molar compositions doped with 1 ṡ 1020 Eu3+ cm-3 (about 0.2 mol% Eu2O3) were prepared. As network modifier oxides Li2O, Na2O, K2O, MgO, CaO, SrO, BaO, ZnO, PbO, Y2O3 and La2O3 have been used. All glasses show relatively broad fluorescence excitation and emission spectra. For most glasses only a weak effect of the glass composition on the excitation and emission spectra is observed. Although the glasses should be structurally similar, notable differences are found for the fluorescence lifetimes. These increase steadily with decreasing mean atomic weight, decreasing refractive index and decreasing optical basicity of the glasses, which may be explained by local field effects. An exception from this rule are the strontium, barium and potassium containing glasses, which show significantly increased fluorescence lifetimes despite of their high refractive index, optical basicity and molecular weight. The non mono-exponential fluorescence decay curves as well as the fluorescence spectra indicate a massive change in the local surroundings of the doped rare earth ions for these glasses.

  3. Liquidus Temperature of High-Level Waste Borosilicate Glasses with Spinel Primary Phase

    SciTech Connect

    Hrma, Pavel R. ); Vienna, John D. ); Crum, Jarrod V. ); Piepel, Gregory F. ); Mika, Martin; Robert W. Smith; David W. Shoesmith

    2000-01-01

    Liquidus temperatures (TL) were measured for high-level waste (HLW) borosilicate glasses covering a Savannah River composition region. The primary crystallization phase for most glasses was spinel, a solid solution of trevorite (NiFe2O4) with other oxides (FeO, MnO, and Cr2O3). The TL values ranged from 859 to 1310?C. Component additions increased the TL (per mass%) as Cr2O3 261?C, NiO 85?C, TiO2 42?C, MgO 33?C, Al2O3 18?C, and Fe2O3 18?C and decreased the TL (per mass%) as Na2O -29?C, Li2O -28?C, K2O -20?C, and B2O3 -8?C. Other oxides (CaO, MnO, SiO2, and U3O8) had little effect. The effect of RuO2 is not clear.

  4. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  5. 210Pb-derived chronology in sediment cores evidencing the anthropogenic occupation history at Corumbataí River basin, Brazil

    NASA Astrophysics Data System (ADS)

    Bonotto, D. M.; de Lima, J. L. N.

    2006-07-01

    Activity profiles of excess 210Pb combined with chemical data determined in two sediment cores from Corumbataí River basin, São Paulo State, Brazil, provided new insights into the reconstruction of historical inputs of anthropogenic constituents, contributing to improving management strategies of the hydrological resources in the basin since most of the municipalities extensively utilize the waters of Corumbataí River and tributaries for drinking purposes, among other uses. Excellent significant relationships between loss on ignition (LOI) and organic matter were found for sediments of both analyzed profiles. Silica was found to be inversely related to organic matter at both analyzed profiles: its decrease accompanied an increase in the specific surface of the sediments. This relationship was confirmed by a great number of inverse significant correlations among silica and oxides Na2O, K2O, CaO, MgO, Al2O3, P2O5, Fe2O3, MnO, and TiO2. It was possible to identify the role of organic matter on adsorption of several oxides/elements in the core sediments profiles. Apparent sediment mass accumulation rates corresponding to 224 and 802 mg cm-2 year-1 were obtained, and are compatible with field evidence, indicating a higher value associated with sand mining activities interfering with the natural/normal sedimentation process, due to modifications of the channel drainage.

  6. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    PubMed

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate. PMID:26967339

  7. Spectral studies of erbium doped soda lime silicate glasses in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Sharma, Y. K.; Surana, S. S. L.; Singh, R. K.; Dubedi, R. P.

    2007-02-01

    Optical absorption and photoluminescence spectra of Er 3+ doped soda lime silicate glasses of the composition (in wt.%) 68.94SiO 2-22.55Na 2O-1.91CaO-4.96K 2O-0.85B 2O 3-0.29As 2O 3- xEr 2O 3 where x = 0.0, 0.2, 0.3 and 0.5 have been studied in the UV-VIS/NIR regions. From the measured intensities of the various absorption bands of these glasses, the Judd-Ofelt parameters Ω2, Ω4 and Ω6 have been evaluated. Judd-Ofelt theory has been successfully applied to characterize the absorption and luminescence spectra of these glasses. From this theory various radiative properties like spontaneous emission probability, radiative life time, fluorescence branching ratio and stimulated emission cross-section for various emission bands of these glasses in the visible and NIR spectral regions have been determined and reported. An attempt has been made to through some light on the environment of Er 3+ in this glass system. Radiative properties of fluorescence band at ˜1.54 μm suggest the suitability of this glass system for broadband amplifier in the third telecom window.

  8. Principal Component Analysis of Chinese Porcelains from the Five Dynasties to the Qing Dynasty

    NASA Astrophysics Data System (ADS)

    Yap, C. T.; Hua, Younan

    1992-10-01

    This is a study of the possibility of identifying antique Chinese porcelains according to the period or dynasty, using major and minor chemical components (SiO2 , Al2O3 , Fe2O3 , K2O, Na2O, CaO and MgO) from the body of the porcelain. Principal component analysis is applied to published data on 66 pieces of Chinese procelains made in Jingdezhen during the Five Dynasties and the Song, Yuan, Ming and Qing Dynasties. It is shown that porcelains made during the Five Dynasties and the Yuan (or Ming) and Qing Dynasties can be segregated completely without any overlap. However, there is appreciable overlap between the Five Dynasties and the Song Dynasty, some overlap between the Song and Ming Dynasties and also between the Yuan and Ming Dynasties. Interestingly, Qing procelains are well separated from all the others. The percentage of silica in the porcelain body decreases and that of alumina increases with recentness with the exception of the Yuan and Ming Dynasties, where this trend is reversed.

  9. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.

    PubMed

    Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai

    2010-02-01

    Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications. PMID:20057014

  10. Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair.

    PubMed

    Gu, Yifei; Wang, Gang; Zhang, Xin; Zhang, Yadong; Zhang, Changqing; Liu, Xin; Rahaman, Mohamed N; Huang, Wenhai; Pan, Haobo

    2014-03-01

    Three-dimensional porous scaffolds of a borosilicate bioactive glass (designated 13-93B1), with the composition 6Na2O-8K2O-8MgO-22CaO-18B2O3-36SiO2-2P2O5 (mol%), were prepared using a foam replication technique and evaluated in vitro and in vivo. Immersion of the scaffolds for 30 days in a simulated body fluid in vitro resulted in partial conversion of the glass to a porous hydroxyapatite composed of fine needle-like particles. The capacity of the scaffolds to support bone formation in vivo was evaluated in non-critical sized defects created in the femoral head of rabbits. Eight weeks post-implantation, the scaffolds were partially converted to hydroxyapatite, and they were well integrated with newly-formed bone. When loaded with platelet-rich plasma (PRP), the scaffolds supported bone regeneration in segmental defects in the diaphysis of rabbit radii. The results indicate that these 13-93B1 scaffolds, loaded with PRP or without PRP, are beneficial for bone repair due to their biocompatibility, conversion to hydroxyapatite, and in vivo bone regenerative properties. PMID:24433915

  11. First geochemical and geohronological data from granitoids in Ordu area, NE Turkey

    NASA Astrophysics Data System (ADS)

    Özdamar, Şenel; Aydın, Halil Can

    2016-04-01

    The major and trace elements and Ar-Ar results of the plutonic rocks from the Ordu plutons, Eastern Turkey, were studied to understand petrogenesis. The plutonic rocks consist of a variety of rock types ranging from quartzmonzonite to granite. These plutonic rocks have SiO2=57,70-77,10, Al2O3=12,35-18,10, Fe2O3=2,17-7,21, MgO=0,33-3,09, CaO=0,25-6,12, Na2O=2,65-3,64, K2O=3,66-7,48. All of the rocks show a shoshonitic afinity. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N=6 to 15]. They display small negative Eu anomalies with enrichment of LILE and less amount of depletion of HFSE. The 40Ar/39Ar ages ˜44 Ma. These ages are interpreted as crystalliczation ages of the plutoniz rocks and also these ages imply collision of the Pontide and Anatolide-Tauride platform.

  12. A Structurally Based Viscosity Model for Oxide Melts

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hua; Chou, Kuo-Chih; Mills, Ken

    2014-04-01

    A structurally based viscosity model is proposed to represent the viscosity of oxide melts as functions of both temperature and composition; The oxide melts cover the following constituents: Li2O, Na2O, K2O, MgO, CaO, SrO, BaO, FeO, MnO, Al2O3, SiO2, CaF2, TiO2, Fe2O3, and P2O5. The model describes the slag structure in terms of the various forms of oxygen ions which are classified according to the metal cations they bond with. Approximate methods for calculating the concentrations of these oxygen ions are proposed and are then used to describe the effect of melt structure on viscosity. The model provides a good description of the variations in viscosity with composition and temperature. The measured viscosities were compared with values calculated with the model, and the current model was found to provide reliable estimates of viscosities of slags used in various industrial processes ( e.g., blast furnace, basic oxygen steelmaking, ladle refining, continuous casting of steel, coal gasification, and electroslag remelting).

  13. [Preparation of sub-standard samples and XRF analytical method of powder non-metallic minerals].

    PubMed

    Kong, Qin; Chen, Lei; Wang, Ling

    2012-05-01

    In order to solve the problem that standard samples of non-metallic minerals are not satisfactory in practical work by X-ray fluorescence spectrometer (XRF) analysis with pressed powder pellet, a method was studied how to make sub-standard samples according to standard samples of non-metallic minerals and to determine how they can adapt to analysis of mineral powder samples, taking the K-feldspar ore in Ebian-Wudu, Sichuan as an example. Based on the characteristic analysis of K-feldspar ore and the standard samples by X-ray diffraction (XRD) and chemical methods, combined with the principle of the same or similar between the sub-standard samples and unknown samples, the experiment developed the method of preparation of sub-standard samples: both of the two samples above mentioned should have the same kind of minerals and the similar chemical components, adapt mineral processing, and benefit making working curve. Under the optimum experimental conditions, a method for determination of SiO2, Al2O3, Fe2O3, TiO2, CaO, MgO, K2O and Na2O of K-feldspar ore by XRF was established. Thedetermination results are in good agreement with classical chemical methods, which indicates that this method was accurate. PMID:22827101

  14. Vanadium chlorite from a sandstone-hosted vanadium-uranium deposit, Henry basin, Utah.

    USGS Publications Warehouse

    Whitney, G.; Northrop, H.R.

    1986-01-01

    This ore deposit formed by reduction and precipitation of U and V in the presence of organic matter at the interface between a stagnant brine and overlying circulating meteoric water. Some samples of the vanadium chlorite (heated before analysis) contain = or >10% V2O5; in fresh samples most of the V is in the V3+ state. XRD data suggest that Fe and V are concentrated preferentially in the interlayer hydroxide sheets of the chlorite. A d060 value of 1.52 A indicates that the chlorite probably has a dioctahedral structure distended by the presence of octahedral Fe and V; it is a IIb polytype. The V ore zone is flanked by peripheral zones with perfectly ordered chlorite/smectite containing much less V than the pure chlorite. Chemical analysis of a sample heated to 900oC before analysis gave SiO2 44.89, Al2O3 25.14, TiO2 0.35, Fe2O3 8.29, MgO 8.47, CaO 0.84, Na2O 0.27, K2O 2.18, Li2O 0.16, UO3 0.92, V2O5 9.14, = 100.65, together with Cr 10, Mn 200, Co 150, Ni 5.8, Cu 10, Zn 140 ppm; XRD, DTG, TG and IR curves are presented. -R.A.H.

  15. Straczekite, a new calcium barium potassium vanadate mineral from Wilson Springs, Arkansas.

    USGS Publications Warehouse

    Evans, H.T., Jr.; Nord, G.; Marinenko, J.; Milton, C.

    1984-01-01

    Straczekite occurs as a rare secondary mineral in fibrous seams, along with other V minerals (A.M. 64-713), in ore from the vanadium mine in Wilson Springs (formerly Potash Sulfur Springs), Garland County, Arkansas. It forms soft, thin laths of dark greenish black crystals up to 0.5 mm in length. Indexed XRD data are tabulated; strongest lines 3.486(100), 10.449(50), 1.8306(50), 1.9437(15) A; a 11.679, b 3.6608, c 10.636 A, beta 100.53o; space group C2/m, C2 or Cm. Chemical analysis gave V2O5 66.4, V2O4 15.3, Fe2O3 0.9, Na2O 0.4, K2O 1.8, CaO 2.5, BaO 5.5, H2O 7.2, = 100.0, leading to the formula (Ca0.39Ba0.31K0.33Na0.11)- 196(V4+1.59V5+6.31Fe3+0.10)O20.02(H2O)2.9; Dcalc. 3.21 g/cm3. A possible layer structure is discussed. The name is for J. A. Straczek, Chief Geologist at Union Carbide Corp.-R.A.H.

  16. The geochemistry model of the surface sediment determined by using ED-XRF technique: a case study of the Boka Kotorska bay, Adriatic Sea.

    PubMed

    Tanaskovski, Bojan; Jović, Mihajlo; Miličić, Ljiljana; Pezo, Lato; Mandić, Milica; Stanković, Slavka

    2016-06-01

    The spatial distribution of major oxides (Na2O, K2O, SiO2, Al2O3, Fe2O3, CaO, MgO, MnO, TiO2, P2O5) and numerous elements (Cr, Co, Ni, Cu, Zn, As, Se, Pb, Sn, Sb, Ba, Sr, Br, Rb, Zr, Mo, Cs, Y, V, Ga, La, U, Th, Nb, W, Sc, Ge, Gd, Yb, Hf, and Ce) was determined by using energy dispersive X-ray fluorescence spectrometry on the basis of previously measured organic matter and carbonates. The optimal measuring variables for the investigated oxides and elements were determined by using five standard reference materials. The carbonated sediment type can be determined on the basis of the highest Sr, Sc, La, Nb, Hf, and Yb concentrations followed with the lowest concentrations of the remaining elements and the negative Ce anomaly. The complexity of the obtained data was also examined by principal component analysis (PCA) and cluster analysis (CA) in the identifying geochemical composition of the surface sediment. Boka Kotorska bay's geographical position, orographical configuration, and hydrographic characteristics influence the geochemistry model of the surface sediment, quite different from the open sea. PMID:26948969

  17. Mineralogical and chemical compositions of the paleosols of different ages buried under kurgans in the southern Ergeni region and their paleoclimatic interpretation

    NASA Astrophysics Data System (ADS)

    Tatyanchenko, T. V.; Alekseeva, T. V.; Kalinin, P. I.

    2013-04-01

    The chemical and mineralogical compositions and the contents and properties of the organic matter were studied in the paleosols of different ages buried under the kurgan group "Kalmykia" in the southern part of the Ergeni Upland. The investigated sequence of soils included profiles developed on the given territory about 5100, 4410, 4260, 4120, 3960, and 600 yrs ago. The background light chestnut soil was also examined. The results of our study showed that the earlier established climate changes in this area during the second half of the Holocene are reflected in the chemical and mineralogical compositions of the soils. These characteristics can be used as indicators of the paleoclimatic conditions together with some petrophysical characteristics, such as the magnetic susceptibility of the soil samples. The study of the mineralogical composition of the clay fraction of the paleosols attests to the transformation of the smectitic phase, accumulation of illites, and destruction of chlorites manifested at different degrees. It is argued that the geochemical indices—CIA, Al2O3/(CaO + MgO + K2O + Na2O), Rb/Sr, and Ba/Sr—are sensitive to climate changes and reflect the transformation of the mineral soil mass and the soil genesis.

  18. Multielement chemical and statistical analyses from a uranium hydrogeochemical and stream-sediment survey in and near the Elkhorn Mountains, Jefferson County, Montana; Part II, Stream sediments

    USGS Publications Warehouse

    Suits, V.J.; Wenrich, K.J.

    1982-01-01

    Fifty-two stream-sediment samples, collected from an area south of Helena, Jefferson County, Montana, were sieved into two size fractions (50 ppm for the fine fraction) were encountered in samples from the Warm Springs Creek drainage area, along Prickly Pear Creek near Welmer and Golconda Creeks and along Muskrat Creek. All groups showed a significant correlation at the 99 percent confidence level (r between 0.73 and 0.77) between U and Th. Uranium was found to correlate significantly only with Th (as mentioned above) and with -Ni in the fine fraction of the volcanics group. U correlates significantly with -Al2O3, Ba, organic C, -K2O, -Sr and Y in both size fractions for the Boulder batholith. Correlations between U and each of several elements differ for the fine and coarse fractions of the Boulder batholith group, suggesting that the U distribution in these stream sediments is in large part controlled by grain size. Correlations were found between U and CaO, Cr, Fe203, -Na2O, Sc, -SiO2, TiO2, Yb and Zr in the coarse fraction but not in the fine fraction. U correlates weakly (to the 90% confidence level, crc<.37) with -Co and -Cu in the fine but not the coarse fraction. These results are compared to a previous study in the northern Absaroka mountains. Correlation coefficients between all other elements determined from these samples are also shown in Tables 12 to 15.

  19. Reactions of yttria-stabilized zirconia with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1978-01-01

    The reactions between partially stabilized zirconia, containing 8 weight-percent yttria, and oxides and sulfates of various elements were studied at 1200, 1300, and 1400 C for times to 800, 400, and 200 hours, respectively. These oxides and sulfates represent impurities and additives potentially present in gas turbine fuels or impurities in the turbine combustion air as well as the elements of the substrate alloys in contact with zirconia. Based on the results, these compounds can be classified in four groups: (1) compounds which did not react with zirconia (Na2SO4, K2SO4, Cr2O3, Al2O3 and NiO); (2) compounds that reached completely with both zirconia phases (CaO, BaO, and BaSO4); (3) compounds that reacted preferentially with monoclinic zirconia (Na2O, K2O, CoO, Fe2O3, MgO, SiO2, and ZnO); and (4) compounds that reacted preferentially with cubic zirconia (V2O5, P2O5).

  20. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings.

    PubMed

    Mantsos, T; Chatzistavrou, X; Roether, J A; Hupa, L; Arstila, H; Boccaccini, A R

    2009-10-01

    The aim of this study was the fabrication of three-dimensional, highly porous, bioactive scaffolds using a recently developed bioactive glass powder, denominated '0106', with nominal composition (in wt%): 50 SiO(2), 22.6 CaO, 5.9 Na(2)O, 4 P(2)O(5), 12 K(2)O, 5.3 MgO and 0.2 B(2)O(3). The optimum sintering conditions for the fabrication of scaffolds by the foam-replica method were identified (sintering temperature: 670 degrees C and dwell time: 5 h). Composite samples were also fabricated by applying a biopolymer coating of poly((D,L)-lactic acid) (PDLLA) using a dip coating process. The average compressive strength values were 0.4 MPa for uncoated and 0.6 MPa for coated scaffolds. In vitro bioactivity studies in simulated body fluid (SBF) showed that a carbonate hydroxyapatite (HCAp) layer was deposited on uncoated and coated scaffolds after only 4 days of immersion in SBF, demonstrating the high in vitro bioactivity of the scaffolds. It was also confirmed that the scaffold structure remained amorphous (no crystallization) after the specific heat treatment used, with scaffolds exhibiting mechanical properties and bioactivity suitable for use in bone tissue engineering applications. PMID:19776493

  1. High-Temperature Viscosity of Commercial Glasses

    SciTech Connect

    Hrma, Pavel R.

    2006-08-31

    Arrhenius models were developed for glass viscosity within the processing temperature of six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Both local models (for each of the six glass types) and a global model (for the composition region of commercial glasses, i.e., the six glass types taken together) are presented. The models are based on viscosity data previously obtained with rotating spindle viscometers within the temperature range between 900 C and 1550 C; the viscosity varied from 1 Pa?s to 750 Pa?s. First-order models were applied to relate Arrhenius coefficients to the mass fractions of 15 components: SiO2, TiO2, ZrO2, Al2O3, Fe2O3, B2O3, MgO, CaO, SrO, BaO, PbO, ZnO, Li2O, Na2O, K2O. The R2 is 0.98 for the global model and ranges from .097 to 0.99 for the six local models. The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100 C to 1550 C and viscosity range from 5 to 400 Pa?s.

  2. High-Temperature Viscosity Of Commercial Glasses

    SciTech Connect

    Hrma, Pavel R; See, Clem A; Lam, Oanh P; Minister, Kevin B

    2005-01-01

    Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa∙s to 750 Pa∙s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, and Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pas.

  3. Refinement of major- and minor-element PIXE analysis of rocks and minerals

    NASA Astrophysics Data System (ADS)

    Heirwegh, Christopher M.; Campbell, John L.; Czamanske, Gerald K.

    2016-01-01

    An attempt has been made to assess the accuracy of the particle-induced X-ray emission (PIXE) fundamental parameters with standards approach to quantifying major- and minor-element constituents of silicate glasses and minerals. A deviation from linearity at low energies in the channel-energy calibration relationship was identified as a source of undesired residues in GUPIX-fitting. A correction for this effect was developed using a general-purpose spectrum fitting program and was incorporated in GUPIX. The PIXE spectra of sixteen well-characterized electron microprobe standards were then processed. Complementary electron probe micro-analysis (EPMA) measurements were used to support the comparison of the PIXE results with previous characterizations. Major element concentrations were found to differ on average from literature values as follows: SiO2 (-0.28 ± 0.12%), Al2O3 (0.72 ± 0.74%), MgO (0.11 ± 0.63%), Na2O (-2.6 ± 1.2%), K2O (1.1 ± 0.7%), CaO (-0.35 ± 0.37%), TiO2 (2.5 ± 1.9%), MnO (0.8 ± 4.7%), FeO (0.98 ± 0.93%). These results indicate that major and minor elemental analysis can be achieved with high accuracy using the present Guelph micro-PIXE setup.

  4. Environmental changes in the western Amazônia: morphological framework, geochemistry, palynology and radiocarbon dating data.

    PubMed

    Horbe, Adriana M C; Behling, Hermann; Nogueira, Afonso C R; Mapes, Russell

    2011-09-01

    The sediments from the Coari lake, a "terra firme" lake sculpted into Plio-Pleistocene deposits, and the Acará lake, a flooding-type lake developed on Quaternary sediments in the floodplain of the mid-Solimões river, in the western Amazônia, Brazil, were studied to investigate the environmental condition of their developing. This study includes mineral composition, geochemistry, Pb isotope, palinology, radiocarbon-age and morphological framework of the lakes obtained from SRTM satellite images. The geological and the environmental conditions in the two lakes are highly variable and suggest that their evolution reflect autogenic processes under humid rainforest condition. Although kaolinite, quartz, muscovite, illite, and smectite are the main minerals in both lakes, the geochemistry indicates distinct source, the Acará lake sediments have higher concentrations of Al(2)O(3), Fe(2)O(3), FeO, CaO, K(2)O, MgO, Na(2)O, P(2)O(5), Ba, V, Cu, Ni, Zn, Pb, Sr, Li, Y and La and have more radiogenic Pb than the Coari lake sediments. The radiocarbon ages suggest that at 10160 yr BP the Coari lake started to be developed due to avulsion of the Solimões river, and the Acará lake was formed by the meander abandonment of Solimões river retaining its grass dominated shore at ca. 3710 yr BP. PMID:21830005

  5. Geochemistry and petrogenesis of Proterozoic granitic rocks from northern margin of the Chotanagpur Gneissic Complex (CGC)

    NASA Astrophysics Data System (ADS)

    Yadav, Bhupendra S.; Wanjari, Nishchal; Ahmad, Talat; Chaturvedi, Rajesh

    2016-07-01

    This study presents the geochemical characteristics of granitic rocks located on the northern margin of Chotanagpur Gneissic Complex (CGC), exposed in parts of Gaya district, Bihar and discusses the possible petrogenetic process and source characteristics. These granites are associated with Barabar Anorthosite Complex and Neo-proterozoic Munger-Rajgir group of rocks. The granitic litho-units identified in the field are grey, pink and porphyritic granites. On the basis of geochemical and petrographic characteristics, the grey and pink granites were grouped together as GPG while the porphyritic granites were named as PG. Both GPG and PG are enriched in SiO2, K2O, Na2O, REE (except Eu), Rb, Ba, HFSE (Nb, Y, Zr), depleted in MgO, CaO, Sr and are characterised by high Fe* values, Ga/Al ratios and high Zr saturation temperatures (GPGavg˜ 861 ∘C and PGavg˜ 835 ∘C). The REE patterns for GPG are moderately fractionated with an average (La/Yb)N˜ 4.55 and Eu/Eu* ˜ 0.58, than PG which are strongly fractionated with an average (La/Yb)N˜ 31.86 and Eu/Eu* ˜ 0.75. These features indicate that the granites have an A-type character. On the basis of geochemical data, we conclude that the granites are probably derived from a predominant crustal source with variable mantle involvement in a post-collisional setting.

  6. Performance of CaO and MgO for the hot gas clean up in gasification of a chlorine-containing (RDF) feedstock.

    PubMed

    Corella, José; Toledo, José M; Molina, Gregorio

    2008-11-01

    Calcined limestone (CaO) and calcined dolomite (CaO.MgO) were tested at bench scale to study their usefulness in cleaning hot raw gas from a fluidized bed gasifier of a synthetic or simulated refuse-derived fuel (RDF) with a high (3 wt%) content in chlorine. In the gas cleaning reactor two main reactions occurred simultaneously: the elimination of HCl and the elimination of tar by steam reforming. The elimination of HCl formed CaCl2 and MgCl2 with melting points below the high (above 800 degrees C) temperatures required for the simultaneous tar elimination reaction. So, the CaO-based particles progressively melted and the catalytic gas cleaning reactor became a compact, agglomerated or glued, cake. Therefore, the life and usefulness of the CaO-based solids used was very low. Nevertheless, and to further avoid these problems, some positive guidelines for future research are proposed here. PMID:18372172

  7. GC-MS Analysis and Volatile Profile Comparison for the Characteristic Smell from Liang-wai Gan Cao (Glycyrrhiza uralensis) and Honey-Roasting Products.

    PubMed

    He, Min; Yang, Zhi-Yu; Guan, Wen-Na; Vicente Gonçalves, Carlos M; Nie, Juan; Wu, Hai

    2016-07-01

    The characteristic smell of Liang-wai Gan Cao (Glycyrrhiza uralensis) and honey-roasting products was comprehensively analyzed using gas chromatography-mass spectrometry (GC-MS). Steam distillation and headspace solid-phase microextraction (HS-SPME) were used to extract volatile organic compounds (VOCs). Multiple fibers of SPME may reflect the samples' comprehensive information to the greatest extent, depending on their chemical characters. After chemometric resolution and spectra interpretation, many aroma compounds could be identified from GC-MS data. As a result, principal component analysis was set for the differentiation of several G. uralensis samples in different regions, and some important peaks could be found. Next, VOCs' profiles of honey-roasting products suggested that the flavors could be influenced by honey and pharmaceutical technologies. PMID:26994113

  8. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst.

    PubMed

    Joshi, Girdhar; Rawat, Devendra S; Sharma, Amit Kumar; Pandey, Jitendra K

    2016-11-01

    Microwave enhanced fast and efficient alcoholysis (methanolysis and ethanolysis) of non-edible oils (algal, jatropha and pongamia) is achieved using chemically activated waste egg shell derived CaO (i.e. CaO(cesp)) as heterogeneous catalyst. CaO(cesp) was extracted from waste chicken egg shell and further activated chemically by supporting transition metal oxide. The maximum conversion was achieved using 3wt% catalysts under 700W microwave irradiation and 10:1 alcohol/oil ratio in 6min. Alcoholysis using ZnO activated CaO(cesp) catalyst has shown higher reaction yields in comparison to other modified catalysts. Methanolysis has shown better biodiesel conversion in comparison to ethanolysis. The catalyst has shown longer lifetime and sustained activity after being used for four cycles. Due to more saturated fatty acid content; algal biodiesel has shown improved fuel properties in comparison to other biodiesels. PMID:27521785

  9. Identifying Source Heterogeneity of Italian K-rich Volcanism With Melt Inclusions: Roccamonfina Revisited

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Nikogosian, I. K.

    2007-12-01

    Volcanism along the Tyrrhenian border of peninsular Italy is characterized by a wide compositional variety of potassic and ultrapotassic rocks, inferred to be related to metasomatic enrichment of mantle sources. Assessing the diversity of their source components and processes from erupted products remains challenging, since the bulk lavas rarely represent primary melts. Roccamonfina stratovolcano has erupted lavas and pyroclastics (e.g., Luhr and Giannetti, 1987; Giannetti and Luhr, 1983, 1990) that have traditionally been distinguished into a qtz- normative K-series (KS), and a Si-undersaturated high-K series (HKS). We have studied olivine-hosted (Fo=93- 87) melt inclusions of five representative mafic lavas (46-52 wt.% SiO2, 5-8 wt.% MgO, 1.4-6.3 wt.% K2O) from both series, aiming to assess the compositional diversity of primary melts. Relatively high CaO contents of HKS olivines (0.4-0.6 wt.%) are clearly distinct from those of KS olivines (0.03- 0.35 wt.%), irrespective of Fo contents, and appear to correlate with the degree of alkali enrichment. Heating- stage-homogenized MI (n=150) show strong compositional variations in each series. No systematic variations exist between the CaO contents of MI and host olivine, but highest K2O, P2O5, F concentrations were found in MI of HKS, and highest CaO (up to 19 wt.%), CaO/Al2O3, (up to 1.5), S and Cl in those of KS. Nevertheless, potassium contents of the primitive melts (MgO>7 wt.%) show a strong diversity in samples from both series (0.5-5 wt.% K2O in KS; 0.5-9 wt.% in HKS). Collectively, the MI data show that most of the bulk lava compositions reported so far do not represent primary melts, tending to overestimate SiO2, K2O, Na2O, and Al2O3, and underestimate MgO, CaO and TiO2. Importantly, bulk samples appear to be composed of multiple melts, suggesting contributions from heterogeneous mantle domains. MI in HKS olivines have the highest incompatible trace element contents. Both series show subduction-type LILE

  10. Factors Related to Adoption and Non-Adoption of Technical and Organizational Recommendations by Farmers Involved with Societe de Developpement du Cacao (SO.DE.CAO) in Cameroon. A Research Summary.

    ERIC Educational Resources Information Center

    Kamga, Andre; Cheek, Jimmy G.

    In order to promote cocoa production and assist cocoa farmers in overcoming diseases in this crop, the government of Cameroon created an experimental corporation called Societe de Developpement du Cacao (SO.DE.CAO) in 1974. This organization functioned much like an extension service to provide information about crop production and disease control.…

  11. Geochronology and geochemistry of the Early Cretaceous Jigongshan and Qijianfeng batholiths in the Tongbai orogen, central China: implications for lower crustal delamination

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyang; Ma, Changqian; Li, Jianwei; She, Zhenbing; Zhang, Chao

    2013-06-01

    The Jigongshan and Qijianfeng batholiths in the Tongbai orogen consist mainly of porphyritic hornblende-biotite monzogranite, biotite monzogranite, and biotite syenogranite, which are variably intruded by lamprophyre, diorite, and syenogranite dykes. Mafic microgranular enclaves commonly occur in the hornblende-biotite monzogranite, whereas surmicaceous enclaves are found in the biotite monzogranite. Both batholiths have zircon U-Pb ages ranging from ca. 139 to 120 Ma, indicating their emplacement in the Early Cretaceous. The hornblende-biotite monzogranite has an adakitic affinity marked by relatively high Sr/Y and (La/Yb) N ratios, lack of Eu anomalies, low MgO and Ni contents, and Na2O > K2O. Its chemical compositions, combined with enriched Sr-Nd isotopic signatures, suggest formation by dehydration melting of mafic rocks in a thickened lower crust. This thickened crust resulted from the Permo-Triassic subduction-collision between the North China and South China blocks and persisted until the Early Cretaceous. The biotite monzogranite and biotite syenogranite have low Al2O3, CaO, and Sr contents, low Rb/Sr, FeOt/MgO, and (Na2O + K2O)/CaO ratios, and flat HREE patterns with moderate to weak Eu anomalies. They were produced by partial melting of crustal materials under relatively low pressure. Partial melting at different crustal levels could have significantly contributed to mechanical weakening of the crust. The diorite and lamprophyre dykes show linear trends between SiO2 and major or trace elements on Harker diagrams, with two lamprophyre samples containing normative nepheline and olivine. These rocks have high La/Yb and Dy/Yb ratios, both displaying co-variation with contents of Yb. They were originated from relatively deep lithospheric mantle followed by fractionation of olivine + clinopyroxene + apatite + Fe-Ti oxides. Extensive partial melting in the lithospheric mantle indicates relatively high temperatures at this level. We suggest that the presence of

  12. New data on selected Ivory Coast tektites

    USGS Publications Warehouse

    Cuttitta, F.; Carron, M.K.; Annell, C.S.

    1972-01-01

    Fourteen Ivory Coast tektites exhibit a range of bulk indices of refraction of 1.5156 to 1.5217 ?? 0.0004 and of bulk specific gravities of 2.428 to 2.502 ??0.005. Seven of these Ivory Coast (IVC) tektites were analyzed for major and minor element content. Compared to tektites from other strewn fields, their SiO2 content is low (67.2-69.1 %), A12O3 relatively high (15.8-16.8 %), and total iron relatively high but with a more restricted range (6.3-6.8 % as FeO). Their lime content is low (0.71-1.35%) compared to Australasian tektites but their MgO CaO ratio (about 3.1) is unusually high. All other tektite groups have Na2O K2O ratios less than unity, but the Na2O K2O ratio of the IVC tektites is slightly greater than unity. Their K Rb ratios range from 200 to 256 and average 227, which is higher than those determined for Australasian tektites, but similar to some obtained for moldavites. The Li content (41-48 ppm) is about the same as that of the Australasian tektites, but the Cs and Rb are lower, being 1.9 to 2.9 and 57 to 86 ppm, respectively. The IVC tektites are high in Cr (260-375 ppm), Co (19-25 ppm) and Ni (101-167 ppm), and particularly in Pb (<10-18 ppm), Cu (13-21 ppm) and Ga (14-23 ppm). The high Cr Ni ratios of the IVC tektites (range 2-3.6) are similar to those found for australites, philippinites and thailandites, but not the javanites and indochinites. Evaluation of these and other reported data show that compositional similarities between the IVC tektites and green or black Bosumtwi Crater glasses strongly support the hypothesis of a common impact origin-i.e. the Bosumtwi Crater site. Comparison of the IVC tektite composition with those of returned lunar materials (gabbros, basalts, breccia and soils) do not support a lunar origin for the Ivory Coast tektites. ?? 1972.

  13. Geochemistry of the Cretaceous coals from Lamja Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Implications for paleoenvironment, paleoclimate and tectonic setting

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Hakimi, Mohammed Hail; Adegoke, Adebanji Kayode

    2015-04-01

    The Cretaceous coals of Lamja Formation located in Yola Sub-basin of the Northern Benue Trough, northeastern Nigeria, were analyzed based on a combined investigation of organic and inorganic geochemistry to define the paleodepositional environment condition, organic matter source inputs and their relation to paleoclimate and tectonic setting. The total organic carbon and sulfur contents of Lamja Formation coals ranges from 48.2%-67.8% wt.% and 0.42%-0.76% wt.%, respectively, pointing their deposition in freshwater environment with inferred marine influence during burial. Biomarkers and chemical compositions provide evidence for a major contribution of land-derived organic matter, with minor aquatic organic matter input. Minerals such as quartz, pyrite, kaolinite, illite, montmorillonite and calcite were present in the coals, suggesting that these minerals were sourced from terrigenous origin with slightly marine influence, considered as post-depositional. This is consistent with a significant amount of the oxides of major elements such as SiO2, Fe2O3, Al2O3, TiO2, CaO, and MgO. The investigated biomarkers are characterized by dominant odd carbon numbered n-alkanes (n-C23 to n-C33), moderately high Pr/Ph ratios (1.72-3.75), very high Tm/Ts ratios (18-29), and high concentrations of regular sterane C29, indicating oxic to relatively suboxic conditions, delta plain marine environment of deposition with prevalent contribution of land plants and minor aquatic organic matter input. Concentrations of trace elements such as Ba, Sr, Cr, Ni, V, Co and their standard ratios also suggested that the organic matter was deposited under oxic to relatively suboxic conditions, which is in parts deposited under marine influenced. Some standard binary plots of SiO2 versus (Al2O3 + K2O + Na2O) indicate a semi-arid paleoclimatic condition whereas log SiO2 versus (K2O/Na2O) also revealed passive continental margin setting. The inferred tectonic setting is in agreement with the tectonic

  14. A Statistical Framework for Calculating and Assessing Compositional Linear Trends Within Fault Zones: A Case Study of the NE Block of the Clark Segment, San Jacinto Fault, California, USA

    NASA Astrophysics Data System (ADS)

    Rockwell, Brian G.; Girty, Gary H.; Rockwell, Thomas K.

    2014-11-01

    Utilizing chemical data derived from the various fault zone architectural components of the Clark strand of the San Jacinto fault, southern California, USA, we apply for the first time non-central principal component analysis to calculate a compositional linear trend within molar A-CN-K space. In this procedure A-CN-K are calculated as the molar proportions of Al2O3 (A), CaO* + Na2O (CN), and K2O (K) in the sum of molar Al2O3, Na2O, CaO*, and K2O. CaO* is the molar CaO after correction for apatite. We then derive translational invariant chemical alteration intensity factors, t, for each architectural component through orthogonal projection of analyzed samples onto the compositional linear trend. The chemical alteration intensity factor t determines the relative change in composition compared to the original state (i.e., the composition of the altered wall rocks). It is dependent on the degree of intensity to which the process or processes responsible for the change in composition of each architectural component has been active. These processes include shearing, fragmentation, fluid flow, and generation of frictional heat. Non-central principal component analysis indicates that principal component 1 explains 99.7 % of the spread of A-CN-K data about the calculated compositional linear trend (i.e., the variance). The significance level for the overall one-way analysis of variance (ANOVA) is 0.0001. Such a result indicates that at least one significant difference across the group of means of t values is different at the 95 % confidence level. Following completion of the overall one-way ANOVA, the difference in means t test indicated that the mean of the t values for the fault core are different than the means obtained from the transition and damage zones. In contrast, at the 95 % confidence level, the means of the t values for the transition and damage zones are not statistically distinguishable. The results of XRD work completed during this study revealed that the <2

  15. Effect of Slag Composition on the Distribution Behavior of Pb between FetO-SiO2 (-CaO, Al2O3) Slag and Molten Copper

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Park, Soo-Sang; Park, Joo Hyun

    2012-10-01

    The distribution behavior of Pb between molten copper and FetO-SiO2 (-CaO, Al2O3) slags was investigated at 1473 K (1200 °C) and p_{{{{O}}2 }} = 10^{ - 10} {{atm}} in view of the reaction mechanism of Pb dissolution into the slag. Furthermore, the lead capacity of the slag was estimated from the experimental results. The distribution ratio of Pb ( L Pb) decreases with increasing CaO content ( 6 mass pct) irrespective of Fe/SiO2 ratio (1.4 to 1.7). However, the addition of alumina into a slag with Fe/SiO2 = 1.5 linearly decreases the L Pb, whereas a minimum value is observed at about 4 mass pct Al2O3 at Fe/SiO2 = 1.3. The log L Pb continuously decreases with increasing Fe/SiO2 ratio, and the addition of Al2O3 (5 to 15 mass pct) into the silica-saturated iron silicate slag (Fe/SiO2 < 1.0) yields the highest Pb distribution ratio. This is mainly due to a decrease in the FeO activity even at silica saturation. The log L Pb linearly decreases by increasing the log (Fe3+/Fe2+) value. The Pb distribution ratio increases and the excess free energy of PbO decreases with increasing Cu2O content in the slag. However, from the viewpoint of copper loss into the slag, the silica-saturated system containing small amounts of alumina is strongly recommended to stabilize PbO in the slag phase at a low Cu2O content. The lead capacity was defined in the current study and shows a linear correlation with the activity of FeO in a logarithmic scale, indicating that the concept of lead capacity is a good measure of absorption ability of Pb in iron silicate slags, and the activity of FeO can be a good basicity index in iron silicate slag.

  16. Iron/manganese ratio and manganese content in shield lavas from Ko’olau Volcano, Hawai’i

    NASA Astrophysics Data System (ADS)

    Huang, Shichun; Humayun, Munir; Frey, Frederick A.

    2007-09-01

    Precise Fe/Mn ratios and MnO contents have been determined for basalts from the Hawaiian shields of Ko'olau and Kilauea by inductively coupled plasma mass spectrometry. It is well known that the youngest Ko'olau (Makapu'u-stage) shield lavas define a geochemical endmember for Hawaiian lavas in terms of CaO and SiO 2 contents and isotopic ratios of O, Sr, Nd, Hf, Pb, and Os. We find that their MnO content is also distinct. Despite the small range in MnO, 0.146 to 0.176 wt%, the precision of our data is sufficient to show that among unaltered Ko'olau lavas MnO content is correlated with Nd-Hf-Pb isotopic ratios, La/Nb and Al 2O 3/CaO elemental ratios, and contents of SiO 2, MgO and Na 2O + K 2O adjusted for olivine fractionation. These trends are consistent with two-component mixing; one endmember is a SiO 2-rich, MnO-, and MgO-poor dacite or andesite melt, generated by low degree (10-20%) partial melting of eclogite. Since this low-MgO endmember (dacite or andesite melt) has very low FeO and MnO contents, mixing of high Fe/Mn dacite or andesite melt with a MgO-rich picritic melt, the other endmember, does not significantly increase the Fe/Mn in mixed magmas; consequently, Ko'olau and Kilauea lavas have similar Fe/Mn. We conclude that the high Fe/Mn in Hawaiian lavas relative to mid-ocean ridge basalt originates from the high MgO endmember in Hawaiian lavas.

  17. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications.

    PubMed

    Hoppe, Alexander; Jokic, Bojan; Janackovic, Djordje; Fey, Tobias; Greil, Peter; Romeis, Stefan; Schmidt, Jochen; Peukert, Wolfgang; Lao, Jonathan; Jallot, Edouard; Boccaccini, Aldo R

    2014-02-26

    Loading biomaterials with angiogenic therapeutics has emerged as a promising approach for developing superior biomaterials for engineering bone constructs. In this context, cobalt-releasing materials are of interest as Co is a known angiogenic agent. In this study, we report on cobalt-releasing three-dimensional (3D) scaffolds based on a silicate bioactive glass. Novel melt-derived "1393" glass (53 wt % SiO2, 6 wt % Na2O, 12 wt % K2O, 5 wt % MgO, 20 wt % CaO, and 4 wt % P2O5) with CoO substituted for CaO was fabricated and was used to produce a 3D porous scaffold by the foam replica technique. Glass structural and thermal properties as well as scaffold macrostructure, compressive strength, acellular bioactivity, and Co release in simulated body fluid (SBF) were investigated. In particular, detailed insights into the physicochemical reactions occurring at the scaffold-fluid interface were derived from advanced micro-particle-induced X-ray emission/Rutherford backscattering spectrometry analysis. CoO is shown to act in a concentration-dependent manner as both a network former and a network modifier. At a concentration of 5 wt % CoO, the glass transition point (Tg) of the glass was reduced because of the replacement of stronger Si-O bonds with Co-O bonds in the glass network. Compressive strengths of >2 MPa were measured for Co-containing 1393-derived scaffolds, which are comparable to values of human spongy bone. SBF studies showed that all glass scaffolds form a calcium phosphate (CaP) layer, and for 1393-1Co and 1393-5Co, CaP layers with incorporated traces of Co were observed. The highest Co concentrations of ∼12 ppm were released in SBF after reaction for 21 days, which are known to be within therapeutic ranges reported for Co(2+) ions. PMID:24476347

  18. The dissolution of natural and artificial dusts in glutamic acid

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  19. Cuprian fraipontite and sauconite from the Defiance-Silver Bill mines, Gleeson, Arizona.

    USGS Publications Warehouse

    Foord, E.E.; Taggart, J.E.; Conklin, N.M.

    1983-01-01

    XRD studies have shown the fine-grained, light blue-green mineral previously identified as turquoise or chrysocolla to be the rare species fraipontite + or - admixed sauconite. Composite microprobe and XRF analyses gave SiO2 24.8, Al2O3 17.3, CaO 0.34, CuO 5.2, ZnO 40.95, H2O (ign. loss, 900oC) 12.8, = 101.39, yielding the formula (Zn1.84Al0.77Cu0.24box 0.13- Ca0.02)3.00(Si1.51Al0.49)2.00O5(OH)4. Semiquantitative emission spectrographic analysis showed Fe 0.007, Mg 0.01, Ca 0.07, Si 10, Al major, Na 0.015, Zn major, Cu 5%; Mn 15, B 150, Be 7, Ni 50, Pb 15, Sc 15, Ga 70 and Ag 1 ppm. It has a 5.331(8), b 9.23(1), c 7.275(6) A, beta 104.15o; H. 3.5-4; Dcalc 3.44, Dobs. 3.08- 3.10; mean refr. ind. approx 1.61. Much of the fraipontite is admixed with sauconite, which may be forming from the fraipontite. XRF analysis of this material gave SiO2 32.8, Al2O3 10.9, MgO < 0.1, CaO 1.51, Na2O < 0.2, K2O < 0.02, TiO2 < 0.02, P2O5 < 0.02, MnO < 0.02, CuO 4.65, ZnO 39.9, ign. loss 13.9, = 103.7.-G.W.R.

  20. Oxygen vacancies and peroxo groups on regular and low-coordinated sites of MgO, CaO, SrO, and BaO surfaces

    NASA Astrophysics Data System (ADS)

    Di Valentin, Cristiana; Ferullo, Ricardo; Binda, Riccardo; Pacchioni, Gianfranco

    2006-03-01

    The formation of an oxygen vacancy and the simultaneous re-adsorption of an oxygen atom on regular and low-coordinated (LC) sites (edges and corners) of the surface of alkaline-earth oxides with cubic rock salt structure, MgO, CaO, SrO, and BaO, has been investigated using DFT cluster model calculations. The process corresponds to the formation of a surface Frenkel defect when the vacancy formation energy is partially compensated by the energy gained in the formation of a peroxo group. The structural and electronic properties of vacancies and peroxo groups along the series of alkaline-earth oxides have been analyzed. We found that the role of low-coordinated sites on the surface chemistry of alkaline-earth oxides is of crucial importance for MgO, but decreases for the heavier members. For instance, on BaO the formation of a peroxo group is practically site-insensitive. This is not the case of the vacancy formation, which is always favored on the low-coordinated sites.

  1. Synthesis and characterization of phosphates in molten systems Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr)

    NASA Astrophysics Data System (ADS)

    Zatovsky, Igor V.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Ogorodnyk, Ivan V.; Shishkin, Oleg V.

    2011-03-01

    The crystallization of complex phosphates from the melts of Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/ МIII=1. The fields of crystallization of CsCaP 3O 9, β-Ca 2P 2O 7, Cs 2CaP 2O 7, Cs 3CaFe(P 2O 7) 2, Ca 9MIII(PO 4) 7 ( MIII—Fe, Cr), Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 and CsCa 10(PO 4) 7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa 10(PO 4) 7 and Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.

  2. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on γ-Al2O3

    SciTech Connect

    Verrier, Christelle LM; Kwak, Ja Hun; Kim, Do Heui; Peden, Charles HF; Szanyi, Janos

    2008-07-15

    NOx uptake experiments were performed on a series of alkaline earth oxide (AEO) (MgO, CaO, SrO, BaO) on γ-alumina materials. Temperature Programmed Desorption (TPD) conducted on He flow revealed the presence of two kinds of nitrate species: i.e. bulk and surface nitrates. The ratio of these two types of nitrate species strongly depends on the nature of the alkaline earth oxide. The amount of bulk nitrate species increases with the basicity of the alkaline earth oxide. This conclusion was supported by the results of infrared and 15N solid state NMR studies of NO2 adsorption. Due to the low melting point of the precursor used for the preparation of MgO/Al2O3 material (Mg(NO3)2), a significant amount of Mg was lost during sample activation (high temperature annealing) resulting in a material with properties were very similar to that of the γ-Al2O3 support. The effect of water on the NOx species formed in the exposure of the AEO-s to NO2 was also investigated. In agreement with our previous findings for the BaO/γ-Al2O3 system, an increase of the bulk nitrate species and the simultaneous decrease of the surface nitrate phase were observed for all of these materials.

  3. Vibrational fingerprints of the Mn4CaO5 cluster in Photosystem II by mixed quantum-classical molecular dynamics.

    PubMed

    Bovi, Daniele; Capone, Matteo; Narzi, Daniele; Guidoni, Leonardo

    2016-10-01

    A detailed knowledge of the structures of the catalytic steps along the Kok-Joliot cycle of Photosystem II may help to understand the strategies adopted by this unique enzyme to achieve water oxidation. Vibrational spectroscopy has probed in the last decades the intermediate states of the catalytic cycle, although the interpretation of the data turned out to be often problematic. In the present work we use QM/MM molecular dynamics on the S2 state to obtain the vibrational density of states at room temperature. To help the interpretation of the computational and experimental data we propose a decomposition of the Mn4CaO5 moiety into five separate parts, composed by "diamond" motifs involving four atoms. The spectral signatures arising from this analysis can be easily interpreted to assign experimentally known bands to specific molecular motions. In particular, we focused in the low frequency region of the vibrational spectrum of the S2 state. We can therefore identify the observed bands around 600-620cm(-1) as characteristic for the stretching vibrations involving Mn1-O1-Mn2 or Mn3-O5 moieties. PMID:27444240

  4. A network pharmacology approach to discover active compounds and action mechanisms of San-Cao Granule for treatment of liver fibrosis

    PubMed Central

    Wei, Shizhang; Niu, Ming; Wang, Jian; Wang, Jiabo; Su, Haibin; Luo, Shengqiang; Zhang, Xiaomei; Guo, Yanlei; Liu, Liping; Liu, Fengqun; Zhao, Qingguo; Chen, Hongge; Xiao, Xiaohe; Zhao, Pan; Zhao, Yanling

    2016-01-01

    Ethnopharmacological relevance San-Cao Granule (SCG) has been used in patients with liver fibrosis for many years and has shown good effect. However, its mechanism of therapeutic action is not clear because of its complex chemical system. The purpose of our study is to establish a comprehensive and systemic method that can predict the mechanism of action of SCG in antihepatic fibrosis. Materials and methods In this study, a “compound–target–disease” network was constructed by combining the SCG-specific and liver fibrosis–specific target proteins with protein–protein interactions, and network pharmacology was used to screen out the underlying targets and mechanisms of SCG for treatment of liver fibrosis. Then, some key molecules of the enriched pathway were chosen to verify the effects of SCG on liver fibrosis induced by thioacetamide (TAA). Results This systematic approach had successfully revealed that 16 targets related to 11 SCG compounds were closely associated with liver fibrosis therapy. The pathway-enrichment analysis of them showed that the TGF-β1/Smad signaling pathway is relatively important. Animal experiments also proved that SCG could significantly ameliorate liver fibrosis by inhibiting the TGF-β1/Smad pathway. Conclusion SCG could alleviate liver fibrosis through the molecular mechanisms predicted by network pharmacology. Furthermore, network pharmacology could provide deep insight into the pharmacological mechanisms of Chinese herbal formulas. PMID:26929602

  5. Ab initio study of the positronation of the CaO and SrO molecules including calculation of annihilation rates.

    PubMed

    Buenker, Robert J; Liebermann, Heinz-Peter

    2012-07-15

    Ab initio multireference single- and double-excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e(+)CaO, and e(+)SrO. The adiabatic dissociation limit for the (2)Σ(+) lowest states of the latter systems consists of the positive metal ion ground state (M(+)) and the OPs complex (e(+)O(-)), although the lowest energy limit is thought to be e(+)M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed-shell X (1)Σ(+) ground states of both systems is found to lie in the 0.16-0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e(+)SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance. PMID:22522712

  6. Mineralogy, geochemistry and genesis of the modern sediments of Seyfe Lake, Kırşehir, central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Önalgil, Nergis; Kadir, Selahattin; Külah, Tacit; Eren, Muhsin; Gürel, Ali

    2015-02-01

    Seyfe Lake (Kırşehir, Turkey) is located within a depression zone extending along a NW-SE-trending fault in central Anatolia. Evaporite and carbonate sediments occur at the bottom of the lake which is fed by high-sulfate spring and well waters circulating N-S through salt domes. The recent sediments of Seyfe Lake are deposited in delta, backshore, beach, mud-flat and shallow lake environments. In the mud-flat environment, calcite, gypsum, halite, and thenardite are associated with fine-grained detrital sediments. Sediments from the margin to the lake center are distributed as calcite, gypsum and halite ± thenardite, yielding an annular distribution pattern. An increase in Na2O, SO3, and S, and a decrease in CaO toward the lake center are due to sediment distribution. On the other hand, a positive correlation of SiO2 with MgO, K2O, Na2O, Al2O3, and Fe2O3 + TiO2 is attributed to the presence of smectite, illite and feldspar. In addition, a positive correlation of Sr and Ba with CaO is related to the amount of gypsum in the sediments. Strontium is associated with in situ gypsum crystals; it increases in the intermediate and central zones of the lake as a result of a relative increase in salinity toward the lake center. The association of Sr with gypsum in the sediments suggests that Ca and Sr were derived from Sr-bearing evaporites and their carbonate host rocks, which were the likely aquifers for the brine. The S- and O-isotopic compositions of sulfate crystals range from +19.1‰ to +21.7‰ and from +16.9‰ to +20.9‰ SMOW, respectively, suggesting precipitation in a closed lake system. A relative increase of oxygen and sulfur isotope ratios toward the lake center suggests dissolution of gypsum in the host rock, with contributions from circulating groundwater and sulfate reduction (possibly by bacterial reduction). 87Sr/86Sr isotope ratios range from 0.707286 to 0.707879, suggesting a non-marine Oligo-Pliocene evaporitic host rock source for precipitation in

  7. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China

    USGS Publications Warehouse

    Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y.

    2010-01-01

    The fly ash from the Jungar Power Plant, Inner Mongolia, China, is unique because it is highly enriched in alumina (Al2O3>50%). The fly ash mainly consists of amorphous glass and mullite and trace amounts of corundum, quartz, char, calcite, K-feldspar, clay minerals, and Fe-bearing minerals. The mullite content in fly ash is as high as 37.4% because of high boehmite and kaolinite contents in feed coal. Corundum is a characteristic mineral formed during the combustion of boehmite-rich coal.Samples from the economizer were sieved into six size fractions (<120, 120-160, 160-300, 300-360, 360-500, and >500 mesh) and separated into magnetic, mullite+corundum+quartz (MCQ) and glass phases for mineralogical and chemical analysis. The corundum content increases but amorphous glass decreases with decreasing particle size. Fractions of small particle sizes are relatively high in mullite, probably because mullite was formed from fine clay mineral particles under high-temperature combustion condition. Similarly, fine corundum crystals formed in the boiler from boehmite in feed coal. The magnetic phase consists of hematite, magnetite, magnesioferrite, and MgFeAlO4 crystals. The MCQ phase is composed of 89% mullite, 6.1% corundum, 4.5% quartz, and 0.5% K-feldspar.Overall, the fly ash from the power plant is significantly enriched in Al2O3 with an average of 51.9%, but poor in SiO2, Fe2O3, CaO, MgO, Na2O, P2O5, and As. Arsenic, TiO2, Th, Al2O3, Bi, La, Ga, Ni, and V are high in mullite, and the magnetic matter is enriched in Fe2O3, CaO, MnO, TiO2, Cs, Co, As, Cd, Ba, Ni, Sb, MgO, Zn, and V. The remaining elements are high in the glass fraction. The concentration of K2O, Na2O, P2O5, Nb, Cr, Ta, U, W, Rb, and Ni do not clearly vary with particle size, while SiO2 and Hg decrease and the remaining elements clearly increase with decreasing particle size. ?? 2009 Elsevier B.V.

  8. [Study on carving workers of Chong xiu zheng he jing shi zheng lei bei yong ben cao (Revised Prepared Materia Medica Classified under Syndromes in Zhenghe Period) published by Huiming Xuan (Huiming Sanctum)].

    PubMed

    Liang, Fei; Li, Jian; Zhang, Wei; Zhang, Rui-Xian

    2012-11-01

    The ancient carving workers have made a great contribution to the xylographic printing art in ancient China, so the studies on them are significant for a survey of ancient Chinese printing history, and for the identification of ancient Chinese books edition. Zheng lei ben cao published by Huiming Xuan (Huiming Sanctum) in the Jin and Yuan dynasties, which is the earliest extant edition of Zhenghe version system of Zheng lei ben cao and has important literature value. Thirty carving workers were involved in its printing process. On the whole, these workers had a relatively high technique and completed a remarkably fine work. In addition to lettering, 28 persons of them also made a total of 536 pages with 900 exquisite engraving illustrations on Chinese materia medica included in this book. Because of the high levels on carving, this precious book has been the representative of Pingshui edition, which has a great reputation but has very few works now. PMID:23363847

  9. Role of a Water Network around the Mn4CaO5 Cluster in Photosynthetic Water Oxidation: A Fourier Transform Infrared Spectroscopy and Quantum Mechanics/Molecular Mechanics Calculation Study.

    PubMed

    Nakamura, Shin; Ota, Kai; Shibuya, Yuichi; Noguchi, Takumi

    2016-01-26

    Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II. Around the Mn4CaO5 cluster, a hydrogen bond network is formed by several water molecules, including four water ligands. To clarify the role of this water network in the mechanism of water oxidation, we investigated the effects of the removal of Ca(2+) and substitution with metal ions on the vibrations of water molecules coupled to the Mn4CaO5 cluster by means of Fourier transform infrared (FTIR) difference spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. The OH stretching vibrations of nine water molecules forming a network between D1-D61 and YZ were calculated using the QM/MM method. On the the calculated normal modes, a broad positive feature at 3200-2500 cm(-1) in an S2-minus-S1 FTIR spectrum was attributed to the vibrations of strongly hydrogen-bonded OH bonds of water involving the vibrations of water ligands to a Mn ion and the in-phase coupled vibration of a water network connected to YZ, while bands in the 3700-3500 cm(-1) region were assigned to the coupled vibrations of weakly hydrogen-bonded OH bonds of water. All the water bands were lost upon Ca(2+) depletion and Ba(2+) substitution, which inhibit the S2 → S3 transition, indicating that a solid water network was broken by these treatments. By contrast, Sr(2+) substitution slightly altered the water bands around 3600 cm(-1), reflecting minor modification in water interactions, consistent with the retention of water oxidation activity with a decreased efficiency. These results suggest that the water network around the Mn4CaO5 cluster plays an essential role in the water oxidation mechanism particularly in a concerted process of proton transfer and water insertion during the S2 → S3 transition. PMID:26716470

  10. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in Dong-ChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients

    PubMed Central

    Lo, Hui-Chen; Hsieh, Chienyan; Lin, Fang-Yi; Hsu, Tai-Hao

    2013-01-01

    The caterpillar fungus Ophiocordyceps sinensis (syn.† Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either “yartsa gunbu” or “DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo)” (“winter worm-summer grass”), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as “soft gold” in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of “DongChongXiaCao” is different for O. sinensis, Cordyceps spp.,‡ and Cordyceps spƒ. Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols. Other bioactive components have been found as well, including two peptides (cordymin and myriocin), melanin, lovastatin, γ-aminobutyric acid, and cordysinins. Recently, the bioactivities of O. sinensis were described, and they include antiarteriosclerosis, antidepression, and antiosteoporosis activities, photoprotection, prevention and treatment of bowel injury, promotion of endurance capacity, and learning-memory improvement. H. sinensis has the ability to accelerate leukocyte recovery, stimulate lymphocyte proliferation, antidiabetes, and improve kidney injury. Starting January 1st, 2013, regulation will dictate that one fungus can only have one name, which will end the system of using separate names for anamorphs. The anamorph name “H. sinensis” has changed by the International Code of Nomenclature for algae, fungi, and plants to O. sinensis. PMID:24716152

  11. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment.

    PubMed

    Wang, Si-Jia; He, Pin-Jing; Shao, Li-Ming; Zhang, Hua

    2016-10-01

    Minerals including Al2O3, SiO2 and CaO are predominant matrixes in waste, and are thought to facilitate lead (Pb) emission control. This study distinguished the inhibition of each mineral on common stable Pb-containing compounds, including highly volatile PbCl2 and less volatile PbO. Al2O3 can lower the volatilization temperature of Pb by 29 °C due to the generation of a eutectic compound and play a minor but non-negligible role in reducing Pb volatilization. The most conspicuous inhibition effect was exerted by SiO2 and a mixture of Al2O3 and SiO2, which completely integrated PbO into the glass phase at 690 °C and prohibited its migration. In contrast, SiO2 had no significant inhibition on volatile PbCl2. CaO inhibited PbO volatilization in the absence of oxygen by controlling its diffusion, while it converted PbO to Ca2PbO4 in the presence of oxygen, thus controlling Pb diffusion and decreasing the Pb volatilization ratio and rate. The influence of CaO on PbCl2 was complex because CaO can convert PbCl2 to PbO with formation of CaCl2, and CaCl2 can also be a Cl-donor for PbO. The roles of mineral matrixes in Pb conversion were shown to be important for Pb emission control. PMID:27434254

  12. Effect of mechanical grinding of MCPM and CaO mixtures on their composition and on the mechanical properties of the resulting self-setting hydraulic calcium phosphate cements.

    PubMed

    Serraj, S; Boudeville, P; Terol, A

    2001-01-01

    Calcium bis-dihydrogenophosphate monohydrate (or monocalcium phosphate monohydrate, MCPM) is often used as the acid calcium phosphate in hydraulic calcium phosphate cement formulations. But commercial MCPM is not pure; it contains a small amount of orthophosphoric acid and moisture. Consequently, MCPM is difficult to mill and the powder is sticky and presents aggregates. Because granularity influences the mechanical properties of the hardened cements, a possible way to get around this difficulty that has been proposed is to premix it with other materials before grinding. We therefore ground commercial MCPM with CaO. A rapid decrease in the amount of MCPM was observed during mechanical grinding by a solid-solid reaction with calcium oxide. The final products were anhydrous or dihydrate dicalcium phosphate and/or hydroxyapatite or calcium-deficient hydroxyapatite depending on the initial calcium-to-phosphate (Ca/P) ratio. The mechanical properties (compressive strength and setting time) of cements made from MCPM and CaO were affected whatever the Ca/P ratio as a consequence of the change in composition of the starting materials. Storage at different temperatures of MCPM and CaO mixtures manually ground in a mortar for only 2 min and without mechanical grinding did not affect their composition, but a decrease was observed in the compressive strength of cements made from these mixtures. PMID:15348376

  13. Elevation of liquidus temperature in a gel-derived Na2O-SiO2 glass

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.

    1983-01-01

    The liquidus temperatures of a 19 wt% soda-silica glass prepared by gel and conventional techniques were determined. X-ray diffraction measurements of the glasses which were heat-treated at several temperatures were used to experimentally determine the liquidus temperatures. It was found that the gel-derived glass has an elevated liquidus. This result is discussed in relation to the previous discovery that the immiscibility temperature of this gel-derived glass is elevated

  14. Rhein 8-O-β-D-Glucopyranoside Elicited the Purgative Action of Daiokanzoto (Da-Huang-Gan-Cao-Tang), Despite Dysbiosis by Ampicillin.

    PubMed

    Takayama, Kento; Tabuchi, Norihiko; Fukunaga, Masahito; Okamura, Nobuyuki

    2016-01-01

    Sennoside A (SA), the main purgative constituent of Daiokanzoto (da-huang-gan-cao-tang; DKT), is generally regarded as a prodrug that is transformed into an active metabolite by β-glucosidase derived from Bifidobacterium spp. It has been suggested that antibiotics would promote dysbiosis, and thereby inhibit the purgative activity of DKT. In this study, ampicillin was administered to mice for 8 d, and the changes in the SA metabolism of SA alone and of DKT were investigated. The results showed that the SA metabolism of SA singly continued to be inhibited by ampicillin, but that of DKT was activated from day 3 under the same conditions. In order to investigate the mechanism of SA metabolism activated by DKT in the mice administered ampicillin, changes in the SA metabolism were observed in the presence of rhein 8-O-β-D-glucopyranoside (RG) in rhubarb and liquiritin in glycyrrhiza, both of which accelerated the SA metabolism. In fact, RG achieved an activation of SA metabolism similar to that by DKT. The purgative action of DKT, which was continued treatment of the ampicillin, was significantly greater than that by SA alone, and it was shown that RG was involved in this effect. We also analyzed changes in the intestinal microbiota before and after administration of ampicillin. No Bifidobacteria were detected throughout the treatment, but the population of Bacteroides was significantly increased after 3 d under the same conditions. Taken together, these results strongly suggested that the RG in DKT changed the function of Bacteroides and thereby allowed DKT to metabolize SA. PMID:26934929

  15. Red emission generation through highly efficient energy transfer from Ce(3+) to Mn(2+) in CaO for warm white LEDs.

    PubMed

    Feng, Leyu; Hao, Zhendong; Zhang, Xia; Zhang, Liangliang; Pan, Guohui; Luo, Yongshi; Zhang, Ligong; Zhao, Haifeng; Zhang, Jiahua

    2016-01-28

    CaO:Ce(3+),Mn(2+) phosphors with various Mn(2+) concentrations were synthesized by a solid state reaction method. Efficient energy transfer from Ce(3+) to Mn(2+) was observed and it allows the emission color of CaO:Ce(3+),Mn(2+) to be continuously tuned from yellow (contributed by Ce(3+)) to red (by Mn(2+)) with an increase in Mn(2+) concentration and upon blue light excitation. The red emission becomes dominant when the Mn(2+) concentration is ≥0.014 with an energy transfer efficiency higher than 87% which can reach as high as 94% for a Mn(2+) concentration of only 0.02. A critical distance of 10.5 Å for the Ce(3+)-Mn(2+) energy transfer was determined. A faster decrease of Ce(3+) luminescence intensity in comparison with its lifetime was observed on increasing the Mn(2+) concentration. The analysis of this feature reveals that the Ce(3+) excitation energy can be completely transferred to Mn(2+) if the Ce(3+)-Mn(2+) distance is shorter than 7.6 Å. A warm white LED was fabricated through integrating an InGaN blue LED chip and a blend of two phosphors (YAG:Ce(3+) yellow phosphor and CaO:0.007Ce(3+),0.014Mn(2+) red phosphor) into a single package, which has CIE chromaticity coordinates of (x = 0.37, y = 0.35), a correlated color temperature of 3973 K and a color rendering index of 83.1. The results indicate that CaO:Ce(3+),Mn(2+) may serve as a potential red phosphor for blue LED based warm white LEDs. PMID:26678301

  16. Geometric and electronic structures of the synthetic Mn4CaO4 model compound mimicking the photosynthetic oxygen-evolving complex.

    PubMed

    Shoji, Mitsuo; Isobe, Hiroshi; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-04-20

    Water oxidation by photosystem II (PSII) converts light energy into chemical energy with the concomitant production of molecular oxygen, both of which are indispensable for sustaining life on Earth. This reaction is catalyzed by an oxygen-evolving complex (OEC) embedded in the huge PSII complex, and its mechanism remains elusive in spite of the extensive studies of the geometric and electronic structures. In order to elucidate the water-splitting mechanism, synthetic approaches have been extensively employed to mimic the native OEC. Very recently, a synthetic complex [Mn4CaO4(Bu(t)COO)8(py)(Bu(t)COOH)2] () closely mimicking the structure of the native OEC was obtained. In this study, we extensively examined the geometric, electronic and spin structures of using the density functional theory method. Our results showed that the geometric structure of can be accurately reproduced by theoretical calculations, and revealed many similarities in the ground valence and spin states between and the native OEC. We also revealed two different valence states in the one-electron oxidized state of (corresponding to the S2 state), which lie in the lower and higher ground spin states (S = 1/2 and S = 5/2), respectively. One remarkable difference between and the native OEC is the presence of a non-negligible antiferromagnetic interaction between the Mn1 and Mn4 sites, which slightly influenced their ground spin structures (spin alignments). The major reason causing the difference can be attributed to the short Mn1-O5 and Mn1-Mn4 distances in . The introduction of the missing O4 atom and the reorientation of the Ca coordinating ligands improved the Mn1-O5 and Mn1-Mn4 distances comparable to the native OEC. These modifications will therefore be important for the synthesis of further advanced model complexes more closely mimicking the native OEC beyond . PMID:27055567

  17. Petrogenesis of Triassic granites from the Nanling Range in South China: Implications for geochemical diversity in granites

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhao, Zi-Fu; Zheng, Yong-Fei

    2014-12-01

    A combined study of whole-rock major-trace elements and Sr-Nd isotopes, zircon U-Pb ages, Hf and O isotopes as well as biotite geochemistry was carried out for Triassic granite intrusions from the Nanling Range in South China. The results provide insights into the effects of source composition and melting conditions on the geochemical diversity of granites. The granites of interest are peraluminous, and contain primary muscovite and tourmaline. They are characterized by high zircon δ18O values of > 9.0‰, high initial 87Sr/86Sr values of ~ 0.7200, and homogeneous εNd(t) values of - 11.3 to - 9.8, as well as variable zircon εHf(t) values of - 12.2 to - 5.8. Biotite geochemistry is similar to that of common peraluminous granites. An integrated interpretation of these petrological, mineralogical and geochemical data indicates that these granites were derived from partial melting of metasedimentary rocks under variable physicochemical conditions. The differences in whole-rock and biotite geochemistry between the intrusions are ascribed to the variable effects of source heterogeneity and melting temperature. The Luxi intrusion exhibits higher contents of MgO, FeOT, TiO2 and CaO than common melts derived from metasedimentary rocks, tight variations in major-trace elements and homogeneous Sr-Nd isotopic compositions, and homogeneous biotite composition with high Mg# [= Mg / (Mg + Fe) in molar] and lower whole-rock A/CNK values [= Al2O3 / (CaO + Na2O + K2O) in molar]. These can be explained by originating from a relatively mafic metasedimentary source. On the other hand, the geochemical diversity of granites can be caused by the difference in melting temperature in addition to the source heterogeneity. This is suggested by the Xiazhuang and Fucheng intrusions which exhibit similar range of SiO2. Nevertheless, the Fucheng intrusion is ferroan, and high in TiO2, (Na2O + K2O)/CaO, TiO2/MgO, Ga/Al and Zr + Nb + Ce + Y, but low in CaO, MgO and Mg#. Most of its major

  18. Conditions of crystallization of the Ural platinum-bearing ultrabasic massifs: evidence from melt inclusions

    NASA Astrophysics Data System (ADS)

    Simonov, Vladimir; Puchkov, Victor; Prikhod'ko, Vladimir; Stupakov, Sergey; Kotlyarov, Alexey

    2013-04-01

    Conditions of the Ural platinum-bearing ultramafic massifs formation attract attention of numerous researchers. A most important peculiarity of such plutons is their dunite cores, to which commercial Pt deposits are related. There are a different opinions about genesis of these massifs and usual methods not always can solve this question. As a result of melt inclusions study in the Cr-spinel the new data on physical and chemical parameters of dunite crystallization of the Nizhnii Tagil platinum-bearing ulrabasic massif (Ural) was obtained. The comparative analysis of Cr-spinels, containing melt inclusions, has shown essential differences of these minerals from chromites of the ultrabasic ophiolite complexes and of modern oceanic crust. Contents of major chemical components in the heated and quenched melt inclusions are close to those in the picrite and this testifies dunite crystallization from ultrabasic (to 24 wt.% MgO) magma. On the variation diagrams for inclusions in Cr-spinel the following changes of chemical compositions are established: during SiO2 growth there is falling of FeO, MgO, and increase of CaO, Na2O contents. Values of TiO2, Al2O3, K2O and P2O5 remain as a whole constant. Comparing to the data on the melt inclusions in Cr-spinel from the Konder massif, we see that values of the most part of chemical components (SiO2, TiO2, K2O, P2O5) are actually overlapped. At the same time, for the Nizhnii Tagil platinum-bearing massif the big maintenances of FeO and CaO in inclusions are marked. Distinct dependence of the majority of components from the MgO content in inclusions is observed: values TiO2, Al2O3 FeO, CaO and Na2O fall at transition to more magnesia melts. On the peculiarities of distribution of petrochemical characteristics melt inclusions in considered Cr-spinels are co-ordinated with the data on evolution of compositions of melts and rocks of model stratified ultramafic plutons during their crystallization in the magmatic chambers. On the

  19. Effects of CaF2 vis-a-vis TiO2 as nucleating agent in SiO2-Al2O3-CaO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debasis Pradip; Datta, Tanmoy; Das, Sudip Kumar

    2013-06-01

    The independent effects of CaF2 and TiO2 on the glass-ceramics based on SiO2-Al2O3-CaO system have been investigated. The crystallization behavior, microstructure, mechanical properties and chemical resistance of the glass-ceramics were studied by Differential Thermal Analysis (DTA), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), FTIR, mechanical and chemical resistance measurements. The CaF2 containing glass ceramics are found to be much superior to that of TiO2 containing glass ceramics on the basis of sintering strength, mechanical and chemical properties.

  20. Probing the role of P dbnd O stretching mode enhancement in nerve-agent sensors: Simulation of the adsorption of diisopropylfluorophosphate on the model MgO and CaO surfaces

    NASA Astrophysics Data System (ADS)

    Kolodziejczyk, Wojciech; Majumdar, D.; Roszak, Szczepan; Leszczynski, Jerzy

    2007-12-01

    The interactions of diisopropylfluorophosphate (DFP) with model MgO and CaO surfaces have been investigated using density functional (DFT) and Møller-Plesset second order perturbation techniques. The geometries were fully optimized at the DFT level. The calculated interaction energies and the corresponding thermodynamic properties show that DFP is physisorbed on these two model oxide surfaces and adsorption on the MgO surface is stronger. Analyses of the calculated IR and Raman spectra point to the enhancement of the P dbnd O stretching mode with respect to the isolated DFP and this property could be used to detect nerve-agents using surface-enhanced Raman spectroscopy.

  1. Cerro Uturuncu SW Bolivia: Preliminary Observations from Field work, Geochemistry and Petrology

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Feeley, T.

    2010-12-01

    Cerro Uturuncu is a potentially active composite cone volcano located in the back-arc of the Andean Central Volcanic Zone (CVZ) in SW Bolivia. It is composed primarily of porphyritic andesitic to dacitic lavas ranging in SiO2 contents from 61-67 wt.%. Currently, a minimum of 85 separate flows and domes have been identified with the possibility of up to 30 more. InSAR observations between 1992 and 2006, show current states of unrest with active deformation being most intense at 1-2 cm/yr located around the summit of Uturuncu. This deformation is hypothesized to be attributed to upward movement of magma from the Altiplano-Puna magmatic body located at a depth of 17-20 km. Previously determined 39Ar/40Ar ages place the most active period between 870-271 ka. Lava flows and domes contain phenocrysts of zoned plagioclase, orthopyroxene, biotite and rare quartz. Dacitic flows and domes contain silicic andesite inclusions, mircrogranitic inclusions, crustal xenoliths and norite nodules. Pyroclastic material was not observed suggesting that Uturuncu primarily erupted effusively. Three preliminary observations can be drawn from new major and trace element data. First, two distinct suites of magmas with different trace elements signatures are identified. One suite has low Nb, low Nd and low Sr (12.2-14.8 Nb ppm; 214-253 Sr ppm; 34-38 Nd ppm); the other has high Nb, high Nd and high Sr (16-34 Nb ppm; 46-67 Nd ppm; 308-498 Sr ppm). This second suite is the most dominant containing 60 of the identified flows and domes. Second, the ranges in major element compositions suggest that crustal assimilation and magma mixing were important processes in the evolution of the system. This evidence includes consistent decreases in MgO (3.63-1.18 wt.%) and CaO (5.05-3.27 wt.%) and erratic and variable increases in K2O (3.40-4.05 wt.%) and Na2O (2.03-2.73 wt.%) with increasing SiO2. Third, major and trace element data suggest Uturuncu is atypical compared to other volcanic systems in the

  2. Improving SiO2 impurity tolerance of Ce0.8Sm0.2O1.9: Synergy of CaO and ZnO in scavenging grain-boundary resistive phases

    NASA Astrophysics Data System (ADS)

    Ge, Lin; Ni, Qing; Cai, Guifan; Sang, Tianyi; Guo, Lucun

    2016-08-01

    Rapid oxygen ion conduction, which is important in solid oxide fuel cell (SOFC) electrolytes, is often dramatically hindered by the presence of even small concentrations of impurities such as SiO2, which is ubiquitous in ceramic processing. In this study, rapid degradation of the grain boundary (GB) conduction of Ce0.8Sm0.2O1.9 (SDC) is observed with increasing SiO2 addition from 0 to 1 wt%. Nearly complete GB conduction recovery is achieved through synergy between CaO and ZnO in the SDC + x wt% Si systems. Scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) demonstrate the formation of a Ca-, Si-, and Sm-containing secondary phases, which is related to the enhancements in GB conductivity and reductions in activation energy. The scavenging effect of CaO is verified in this study and ZnO is observed to promote the scavenging reaction. Compared with the single-addition case (CaO/ZnO), the much higher SiO2 impurity tolerance of the combined system suggests the commercial potential of the "scavenger + promoter" strategy presented in this work.

  3. Toward Models for the Full Oxygen-Evolving Complex of Photosystem II by Ligand Coordination To Lower the Symmetry of the Mn3CaO4 Cubane: Demonstration That Electronic Effects Facilitate Binding of a Fifth Metal

    PubMed Central

    2015-01-01

    Synthetic model compounds have been targeted to benchmark and better understand the electronic structure, geometry, spectroscopy, and reactivity of the oxygen-evolving complex (OEC) of photosystem II, a low-symmetry Mn4CaOn cluster. Herein, low-symmetry MnIV3GdO4 and MnIV3CaO4 cubanes are synthesized in a rational, stepwise fashion through desymmetrization by ligand substitution, causing significant cubane distortions. As a result of increased electron richness and desymmetrization, a specific μ3-oxo moiety of the Mn3CaO4 unit becomes more basic allowing for selective protonation. Coordination of a fifth metal ion, Ag+, to the same site gives a Mn3CaAgO4 cluster that models the topology of the OEC by displaying both a cubane motif and a “dangler” transition metal. The present synthetic strategy provides a rational roadmap for accessing more accurate models of the biological catalyst. PMID:25241826

  4. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine

    USGS Publications Warehouse

    Gates, Olcott; Moench, R.H.

    1981-01-01

    titanium and poorer in magnesium and nickel than the Silurian basalts; and the Eastport Formation has rhyolites and silicic dacites that have higher average SiO2 and K2O contents and higher ratios of FeO* to MgO than the Silurian ones. The younger Devonian assemblage is represented by one sample of basalt from a flow in red beds of the post-Acadian Upper Devonian Perry Formation, and by three samples from pre-Acadian diabases that intrude the Leighton and Hersey Formations. These rocks are even richer in titanium and iron and poorer in magnesium and nickel than the older Devonian basalts. Post-Acadian granitic plutons exposed along the coastal belt for which analyses are available are tentatively included in the younger Devonian assemblage. The most conspicuous features of the coastal volcanics and associated intrusives are the preponderance of rocks of basaltic composition ( < 52 percent SiO2 ) in the Silurian assemblage, and the near absence in all assemblages of intermediate rocks having 57-67 percent SiO2 (calculated without volatiles). All the rocks are variably altered spilites and keratophyres. The basaltic types are adequately defined, however, by eight samples of least altered basalts having calcic plagioclase, clinopyroxene, and 0.5 percent or less CO2 , The more altered basalts are variably enriched or depleted in Na2O, K2O, and CaO relative to the least altered ones. In the silicic rocks no primary ferromagnesian minerals are preserved. The Na2O and K2O contents of the silicic rocks are erratic; they are approximately reciprocal, possibly owing to alkali exchange while the rocks were still glassy. We propose that the coastal volcanic belt extended along an axis of thermal swelling in the Earth's mantle and upward intrusion of partially melted mantle into the sialic Avalonian crust. These processes were accompanied by shoaling and emergence of the belt, and they produced the bimodal volcanism. Tholeiitic basaltic melts segregated from mantle material

  5. Provenance analysis of the Oligocene turbidites (Andaman Flysch), South Andaman Island: A geochemical approach

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, P. C.; Ghosh, Biswajit

    2015-07-01

    The Oligocene-aged sandstone-shale turbidites of the Andaman Flysch are best exposed along the east coast of the South Andaman Island. Previously undocumented sandstone-shale geochemistry, investigated here, provides important geochemical constraints on turbidite provenance. The average 70.75 wt% SiO2, 14.52 wt% Al2O3, 8.2 wt% FeMgO and average 0.20 Al2O3/SiO2 and 1.08 K2O/Na2O ratios in sandstones, compare with quartzwackes. The shale samples have average 59.63 wt% SiO2, 20.29 wt% Al2O3, 12.63 wt% FeMgO and average 2.42 K2O/Na2O and 0.34 Al2O3/SiO2 ratios. Geochemical data on CaO-Na2O-K2O diagram fall close to a granite field and on K2O/Na2O-SiO2 diagram within an active continental margin tectonic setting. The range and average values of Rb and Rb/Sr ratios are consistent with acid-intermediate igneous source rocks, while the values and ratios for Cr and Ni are with mafic rocks. Combined geochemical, petrographic and palaeocurrent data indicate a dominantly plutonic-metamorphic provenance with a lesser contribution from sedimentary and volcanic source, which is possibly the Shan-Thai continental block and volcanic arc of the north-eastern and eastern Myanmar. Chemical index of alteration (CIA) values suggests a moderate range of weathering of a moderate relief terrane under warm and humid climate.

  6. Method of preventing oxidation of graphite fireproof material

    NASA Technical Reports Server (NTRS)

    Yamauchi, S.; Suzuki, H.

    1981-01-01

    A method of preventing oxidation of graphite fireproof material is given. A blend of 1 to 33 weight parts alumina and 3 to 19 parts of K2O + Na2O in 100 parts of SiO2 is pulverized followed by addition of 5 to 160 parts of silicon carbide powder in 100 parts of the mixture. This is thoroughly blended and coated on the surface of graphite fireproof material.

  7. Growth of Megaspherulites In a Rhyolitic Vitrophyre

    NASA Technical Reports Server (NTRS)

    Smith, Robert K.; Tremallo, Robin L.; Lofgren, Gary E.

    2000-01-01

    Megaspherulites occur in the middle zone of a thick sequence of rhyolitic vitrophyre that occupies a small, late Eocene to early Oligocene volcanic-tectonic basin near Silver Cliff, Custer County, Colorado. Diameters of the megaspherulites range from 0.3 m to over 3.66 m, including a clay envelope. The megaspherulites are compound spherulites. consisting of an extremely large number (3.8 x 10(exp 9) to 9.9 x 10(exp 9)) of individual growth cones averaging 3 mm long by 1.25 mm wide at their termination. They are holocrystalline, very fine- to fine-grained, composed of disordered to ordered sanidine (orthoclase) and quartz, and surrounded by a thin K-feldspar, quartz rich rind, an inner clay layer with mordenite, and an outer clay layer composed wholly of 15 A montmorillonite. Whole rock analyses of the megaspherulites show a restricted composition from their core to their outer edge, with an average analyses of 76.3% SiO2, 0.34% CaO, 2.17% Na2O, 6.92% K2O, 0.83% H2O+ compared to the rhyolitic vitrophyre from which they crystallize with 71.07% SiO2, 0.57% CaO, 4.06% Na2O,4.l0% K2O, and 6.40% H2O+. The remaining oxides of Fe2O3 (total Fe), A12O3, MnO,MgO, TiO2, P2O5, Cr2O3, and trace elements show uniform distribution between the megaspherulites and the rhyolitic vitrophyre. Megaspherulite crystallization began soon after the rhyolitic lava ceased to flow as the result of sparse heterogeneous nucleation, under nonequilibrium conditions, due to a high degree of undercooling, delta T. The crystals grow with a fibrous habit which is favored by a large delta T ranging between 245 C and 295 C, despite lowered viscosity, and enhanced diffusion due to the high H2O content, ranging between 5% and 7%. Therefore, megaspherulite growth proceeded in a diffusion controlled manner, where the diffusion, rate lags behind the crystal growth rate at the crystal-liquid interface, restricting fibril lengths and diameters to the 10 micron to 15 micron and 3 micron and 8 micron ranges

  8. Major Elements Budget Between Abyssal Peridotite And Seawater During The Serpentinization

    NASA Astrophysics Data System (ADS)

    Yu, X.; Dong, Y.; Li, X.; Chu, F.

    2012-12-01

    Water-Rock Interaction is one of the most hot-debated issues among geologists, geophysicists, as well as geochemists. Abyssal peridotites recovered from the seafloor are often greatly affected or alterated by seawater in the form of serpentinization. The alteration to the peridotites makes it difficult to do the straightforward analysis for its primary composition as it was settled in the upper mantle, which confine the usage of these rare direct samples from the mantle in the scientific study, such as mantle dynamics, mantle composition and crust-mantle interaction. Besides, It was revealed recently that the serpentinization of abyssal peridotites may give birth to the hydrothermal activity. The elements migration during the serpentinization may perform a great role on the chemical composition of the hydrothermal fluid, which can support a hidden chemosynthetic ecosystem in the abyssal seabed. The research work focused on the major elements behavior during the serpentinization by studying the partially serpentinized samples of abyssal peridotite from Southwest Indian Ridge. The primary mineral assemblage of peridotite is olivine (Mg2SiO4), orthopyroxene (Mg2Si2O6), clinopyroxene (CaMgSi2O6) and spinel ((Mg,Fe)(Al,Cr)2O4). The major chemical composition are usually as SiO2 (30~45wt.%), MgO (20~45 wt.%), FeO and Fe2O3 (total 5~15 wt.%). Besides there are very few MnO, CaO, Al2O3, Cr2O3, NiO, Na2O, K2O and H2O. While on the other hand the serpentinized peridotite shows a more complicated mineral assemblage, besides the primary minerals there are more alteration minerals, such as serpentine (Mg3[Si2O5](OH)4), magnetite (Fe3O4), talc (Mg3[Si4O10](OH)2), brucite (Mg(OH)2), tremolite (Ca2Mg5[Si8O22](OH)2), chromite (FeCr2O4), chlorite ((Mg,Fe)6[(Si,Al)4O10](OH)8), and other accessary minerals like native metals, sulfides, clay minerals and hornblende. According to the EMPA analysis, the serpentinized sample shows the chemical composition as SiO2(~40 wt.%), MgO(~30 wt

  9. Geochemistry and petrogenesis of Mashhad granitoids: An insight into the geodynamic history of the Paleo-Tethys in northeast of Iran

    NASA Astrophysics Data System (ADS)

    Mirnejad, H.; Lalonde, A. E.; Obeid, M.; Hassanzadeh, J.

    2013-06-01

    Mashhad granitoids in northeast Iran are part of the so-called Silk Road arc that extended for 8300 km along the entire southern margin of Eurasia from North China to Europe and formed as the result of a north-dipping subduction of the Paleo-Tethys. The exact timing of the final coalescence of the Iran and Turan plates in the Silk Road arc is poorly constrained and thus the study of the Mashhad granitoids provides valuable information on the geodynamic history of the Paleo-Tethys. Three distinct granitoid suites are developed in space and time (ca. 217-200 Ma) during evolution of the Paleo-Tethys in the Mashhad area. They are: 1) the quartz diorite-tonalite-granodiorite, 2) the granodiorite, and 3) the monzogranite. Quartz diorite-tonalite-granodiorite stock from Dehnow-Vakilabad (217 ± 4-215 ± 4 Ma) intruded the pre-Late Triassic metamorphosed rocks. Large granodiorite and monzogranite intrusions, comprising the Mashhad batholith, were emplaced at 212 ± 5.2 Ma and 199.8 ± 3.7 Ma, respectively. The high initial 87Sr/86Sr ratios (0.708042-0.708368), low initial 143Nd/144Nd ratios (0.512044-0.51078) and low ɛNd(t) values (- 5.5 to - 6.1) of quartz diorite-tonalite-granodiorite stock along with its metaluminous to mildly peraluminous character (Al2O3/(CaO + Na2O + K2O) Mol. = 0.94-1.15) is consistent with geochemical features of I-type granitoid magma. This magma was derived from a mafic mantle source that was enriched by subducted slab materials. The granodiorite suite has low contents of Y (≤ 18 ppm) and heavy REE (HREE) (Yb < 1.53 ppm) and high contents of Sr (> 594 ppm) and high ratio of Sr/Y (> 35) that resemble geochemical characteristics of adakite intrusions. The metaluminous to mildly peraluminous nature of granodiorite from Mashhad batholiths as well as its initial 87Sr/86Sr ratios (0.705469-0.706356), initial 143Nd/144Nd ratios (0.512204-0.512225) and ɛNd(t) values (- 2.7 to - 3.2) are typical of adakitic magmas generated by partial melting of a

  10. Primitive, high-Mg basaltic andesites: direct melts of the shallow, hot, wet mantle

    NASA Astrophysics Data System (ADS)

    Andrews, A.; Grove, T. L.

    2013-12-01

    Direct mantle melts are rare in subduction zone settings. Such melts are identified by Mg #s (Mg # = Mg / (Mg+Fe)) greater than ~0.73, indicating chemical equilibrium with Fo90 mantle olivine. Most of these primitive arc melts are basaltic, characterized by SiO2 contents of ~48-50 wt % and MgO contents ranging from 8-10 wt %. However, primitive basaltic andesites with mantle-equilibrated Mg #s have also been found at subduction zones worldwide. These basaltic andesites have higher SiO2 contents (53-58 wt %) than typical primitive basalts as well as high MgO (8-10 wt %). Because these rocks have high SiO2 contents and yet retain evidence for chemical equilibrium with the mantle (Mg #s), their petrogenesis has sparked intense debate as researchers have tried to discern how these samples fit into the paradigm of mantle melting at subduction zones. Through an understanding of the conditions and processes that produce the SiO2 enrichment in these rocks, we also aim to understand the role of these melts in producing the observed andesitic compositional characteristics of the continental crust. To understand the petrogenesis of primitive, high-Mg basaltic andesites, this study investigates the experimental melts of undepleted mantle peridotite plus a slab component (Na-2O + K2O) from 1,205-1,470°C at 1.0-2.0 GPa under water-undersaturated conditions (0-5 wt % H2O). At 1.0 and 1.2 GPa, the experimental melts reproduce the compositions of natural primitive, high-Mg basaltic andesites in all major elements (SiO2, TiO2, Al2O3, FeO, MnO, MgO, and Na2O+K2O) except CaO. CaO contents are higher than the range of the natural samples by ~2 wt % at the highest silica contents of the experiments (54-56 wt% SiO2). This suggests that at 1.0-1.2 GPa, a higher percent of melting (30-35 %) with 3-5 wt % H2O is required to drive the chemical compositions of the experiments toward the representative compositions of the natural rocks. The experimental melts also show that mantle-wall rock

  11. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites

    NASA Astrophysics Data System (ADS)

    Dall'Agnol, Roberto; de Oliveira, Davis Carvalho

    2007-02-01

    The varying geochemical and petrogenetic nature of A-type granites is a controversial issue. The oxidized, magnetite-series A-type granites, defined by Anderson and Bender [Anderson, J.L., Bender, E.E., 1989. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos 23, 19-52.], are the most problematic as they do not strictly follow the original definition of A-type granites, and approach calc-alkaline and I-type granites in some aspects. The oxidized Jamon suite A-type granites of the Carajás province of the Amazonian craton are compared with the magnetite-series granites of Laurentia, and other representative A-type granites, including Finnish rapakivi and Lachlan Fold Belt A-type granites, as well as with calc-alkaline, I-type orogenic granites. The geochemistry and petrogenesis of different groups of A-types granites are discussed with an emphasis on oxidized A-type granites in order to define their geochemical signatures and to clarify the processes involved in their petrogenesis. Oxidized A-type granites are clearly distinguished from calc-alkaline Cordilleran granites not only regarding trace element composition, as previously demonstrated, but also in their major element geochemistry. Oxidized A-type granites have high whole-rock FeO t/(FeO t + MgO), TiO 2/MgO, and K 2O/Na 2O and low Al 2O 3 and CaO compared to calc-alkaline granites. The contrast of Al 2O 3 contents in these two granite groups is remarkable. The CaO/(FeO t + MgO + TiO 2) vs. CaO + Al 2O 3 and CaO/(FeO t + MgO + TiO 2) vs. Al 2O 3 diagrams are proposed to distinguish A-type and calc-alkaline granites. Whole-rock FeO t/(FeO t + MgO) and the FeO t/(FeO t + MgO) vs. Al 2O 3 and FeO t/(FeO t + MgO) vs. Al 2O 3/(K 2O/Na 2O) diagrams are suggested for discrimination of oxidized and reduced A-type granites. Experimental data indicate that, besides pressure, the nature of A-type granites is dependent of ƒO 2 conditions and the water content

  12. Petrogenesis and geodynamic setting of Early Cretaceous mafic-ultramafic intrusions, South China: A case study from the Gan-Hang tectonic belt

    NASA Astrophysics Data System (ADS)

    Qi, Youqiang; Hu, Ruizhong; Liu, Shen; Coulson, Ian M.; Qi, Huawen; Tian, Jianji; Zhu, Jingjing

    2016-08-01

    A study using whole-rock major-trace elements and Sr-Nd isotopes as well as zircon U-Pb dating has been carried out on Early Cretaceous mafic-ultramafic intrusions from the Gan-Hang tectonic belt (GHTB), South China, to understand the origin of mantle sources and the sequential evolution of the underlying Late Mesozoic lithospheric mantle of this area. The study focused on two intrusions, one at Quzhou and the other at Longyou (see Fig. 1). They are primarily composed of mafic-ultramafic rocks with wide range of chemical compositions. The Quzhou mafic rocks have relatively narrow ranges of SiO2 (48.94-51.79 wt%), MgO (6.07-7.21 wt%), Fe2O3 (10.48-11.56 wt%), CaO (8.20-8.81 wt%), and Mg# (51.7-56.5) with relatively low K2O (0.56-0.67 wt%) and Na2O (3.09-3.42 wt%). By contrast, the ultramafic rocks from Longyou have distinct lower SiO2 (41.50-45.11 wt%) and higher MgO (9.05-9.90 wt%), Fe2O3 (12.14-12.62 wt%), CaO (8.64-10.67 wt%), and Mg# (59.5-61.1) with relatively higher K2O (1.32-1.75 wt%) and Na2O (4.53-5.08 wt%). They are characterized by Ocean Island Basalts (OIB)-type trace element distribution patterns, with a significant enrichment of light rare earth elements (LREE), large ion lithophile elements (LILE, i.e., Rb, Ba, K, and Sr) and high field strength elements (HFSE, i.e., Nb, Ta), and slight depletion of Th, U, Ti, and Y. The intrusions exhibit relatively depleted Sr-Nd isotope compositions, with (87Sr/86Sr)i range of 0.7035 to 0.7055 (143Nd/144Nd)i of 0.51264 to 0.51281 and εNd(t) values of + 3.0 to + 6.6. Zircon U-Pb dating of Longyou and Quzhou intrusions yields consistent magma emplacement ages of 129.0 ± 3.9 to 126.2 ± 2.4 Ma, respectively. The dating results are consistent with the peak of extension in Early Cretacerous throughout the Gan-Hang tectonic belt. Their magmas were principally derived from near-solidus partial melting of pyroxenites with different content of silica, and the pyroxenites were resulted from a juvenile SCLM peridotite

  13. The Use of Multi-Component Statistical Techniques in Understanding Subduction Zone Arc Granitic Geochemical Data Sets

    NASA Astrophysics Data System (ADS)

    Pompe, L.; Clausen, B. L.; Morton, D. M.

    2015-12-01

    Multi-component statistical techniques and GIS visualization are emerging trends in understanding large data sets. Our research applies these techniques to a large igneous geochemical data set from southern California to better understand magmatic and plate tectonic processes. A set of 480 granitic samples collected by Baird from this area were analyzed for 39 geochemical elements. Of these samples, 287 are from the Peninsular Ranges Batholith (PRB) and 164 from part of the Transverse Ranges (TR). Principal component analysis (PCA) summarized the 39 variables into 3 principal components (PC) by matrix multiplication and for the PRB are interpreted as follows: PC1 with about 30% of the variation included mainly compatible elements and SiO2 and indicates extent of differentation; PC2 with about 20% of the variation included HFS elements and may indicate crustal contamination as usually identified by Sri; PC3 with about 20% of the variation included mainly HRE elements and may indicate magma source depth as often diplayed using REE spider diagrams and possibly Sr/Y. Several elements did not fit well in any of the three components: Cr, Ni, U, and Na2O.For the PRB, the PC1 correlation with SiO2 was r=-0.85, the PC2 correlation with Sri was r=0.80, and the PC3 correlation with Gd/Yb was r=-0.76 and with Sr/Y was r=-0.66 . Extending this method to the TR, correlations were r=-0.85, -0.21, -0.06, and -0.64, respectively. A similar extent of correlation for both areas was visually evident using GIS interpolation.PC1 seems to do well at indicating differentiation index for both the PRB and TR and correlates very well with SiO2, Al2O3, MgO, FeO*, CaO, K2O, Sc, V, and Co, but poorly with Na2O and Cr. If the crustal component is represented by Sri, PC2 correlates well and less expesively with this indicator in the PRB, but not in the TR. Source depth has been related to the slope on REE spidergrams, and PC3 based on only the HREE and using the Sr/Y ratios gives a reasonable

  14. A Study of Melt Inclusions in Tin-Mineralized Granites From Zinnwald, Germany

    NASA Astrophysics Data System (ADS)

    Sookdeo, C. A.; Webster, J. D.; Eschen, M. L.; Tappen, C. M.

    2001-12-01

    We have analyzed silicate melt inclusions from drill core samples from the eastern Erzgebirge region, Germany, to investigate magmatic-hydrothermal and mineralizing processes in compositionally evolved, tin-bearing granitic magmas. Silicate melt inclusions are small blebs of glass that are trapped or locked within phenocrysts and may contain high concentrations of volatiles that usually leave magma via degassing. Quartz phenocrysts were carefully hand picked from crushed samples of albite-, zinnwaldite- +/- lepidolite-bearing granitic dikes from Zinnwald and soaked in cold dilute HF to remove any attached groundmass. The cleaned phenocrysts were loaded into precious metal capsules with several drops of immersion oil to create a reducing environment at high temperature. The quartz-bearing capsules were inserted into quartz glass tubes, loaded into a furnace for heating at temperatures of 1025\\deg and 1050\\deg C (1atm) for periods of 20 to 30 hours, and subsequently the inclusions were quenched to glass. The inclusions were analyzed for major and minor elements (including F, Cl, and P) by electron microprobe and for H2O, trace elements, and ore elements by ion microprobe. The melt inclusion compositions are similar to that of the whole-rock sample from which the quartz separates were extracted. The average melt inclusion and whole-rock compositions are peraluminous, high in silica and rare alkalis, and low in MgO, CaO, FeO, MnO, and P2O5. Unlike the whole-rock sample, the melt inclusions contain from 0.5 to more than 4 wt.% F. The Cl contents of the inclusions are variable and range from hundreds of ppm to several thousand ppm. The variable and strong enrichments in F of the melt inclusions may correlate with (Na2O/Na2O+K2O) in the inclusions which is consistent with crystal fractionation of feldspars which drives the residual melt to increasing Na contents. Overall, the compositions of these melt inclusions are different from melt inclusions extracted from the

  15. A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks

    NASA Astrophysics Data System (ADS)

    Ji, Shaocheng; Shao, Tongbin; Michibayashi, Katsuyoshi; Long, Changxing; Wang, Qian; Kondo, Yosuke; Zhao, Weihua; Wang, Hongcai; Salisbury, Matthew H.

    2013-09-01

    large portion of the middle to lower crust beneath the continents and oceanic island arcs consists of amphibolites dominated by hornblende and plagioclase. We have measured P and S wave velocities (Vp and Vs) and anisotropy of 17 amphibole-rich rock samples containing 34-80 vol % amphibole at hydrostatic pressures (P) up to 650 MPa. Combined petrophysical and geochemical analyses provide a new calibration for mean density, average major element contents, mean Vp-P and Vs-P coefficients, intrinsic Vp and Vs anisotropy, Poisson's ratios, the logarithmic ratio Rs/p, and elastic moduli of amphibole-rich rocks. The Vp values decrease with increasing SiO2 and Na2O + K2O contents but increase with increasing MgO and CaO contents. The maximum (≤0.38-0.40 km/s) and minimum S wave birefringence values occur generally in the propagation direction parallel to Y and normal to foliation, respectively. Amphibole plays a critical role in the formation of seismic anisotropy, whereas the presence of plagioclase, quartz, pyroxene, and garnet diminishes the anisotropy induced by amphibole crystallographic preferred orientations (CPOs). The CPO variations cause different anisotropy patterns illustrated in the Flinn diagram of Vp(X)/Vp(Y)-Vp(Y)/Vp(Z) plots. The results make it possible to distinguish, in terms of seismic properties, the amphibolites from other categories of lithology such as granite-granodiorite, diorite, gabbro-diabase, felsic gneiss, mafic gneiss, eclogite, and peridotite within the Earth's crust. Hence, amphibole, aligned by dislocation creep, anisotropic growth, or rigid-body rotation, is the most important contributor to the seismic anisotropy of the deep crust beneath the continents and oceanic island arcs, which contains rather little phyllosilicates such as mica or chlorite.

  16. Natural radionuclide concentrations in granite rocks in Aswan and Central-Southern Eastern Desert, Egypt and their radiological implications.

    PubMed

    Issa, Shams A M; Uosif, M A M; Abd el-Salam, L M

    2012-07-01

    Different types of granites, used extensively in local construction, were collected from five localities in Egypt, namely: Abu Ziran (Central Eastern Desert), Gabal El Maesala (Aswan) and three areas from Wadi Allaqi, (Gabal Abu Marw, Gabal Haumor and Gabal um Shalman), in the South Eastern Desert. Granite samples were studied radiologically, petrographically and geochemically. The contents of natural radionuclides ((226)Ra, (232)Th and (40)K) were measured in investigated samples by using gamma spectrometry [NaI (Tl) 3'×3']. The activity concentrations of (226)Ra, (232)Th and (40)K in the selected granite samples ranged from 9±0.5 to 111±7, 8±1 to 75±4 and 100±6 to 790±40 Bq kg(-1), respectively. The external hazard index (H(ex)), absorbed dose and annual effective dose rate were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. The calculated radium equivalents were lower than the values recommended for construction materials (370 Bq kg(-1)). The excess lifetime cancer risks were also calculated. Petrographically, the granites studied are varied in the form of potash-feldspar, quartz, plagioclase, mica and hornblende. The accessory minerals are zircon, apatite and allanite. Geochemically, the chemical composition of the granite is studied especially for major oxides. They are characterized to have SiO(2), K(2)O, Na(2)O and Al(2)O(3) with depletion in CaO, MgO, TiO(2) and P(2)O(5). PMID:22147926

  17. Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Dehouck, Erwin; McLennan, Scott M.; Meslin, Pierre-Yves; Cousin, Agnès.

    2014-12-01

    X-ray diffraction patterns of the three samples analyzed by Curiosity's Chemistry and Mineralogy (CheMin) instrument during the first year of the Mars Science Laboratory mission—the Rocknest sand, and the John Klein and Cumberland drill fines, both extracted from the Sheepbed mudstone—show evidence for a significant amorphous component of unclear origin. We developed a mass balance calculation program that determines the range of possible chemical compositions of the crystalline and amorphous components of these samples within the uncertainties of mineral abundances derived from CheMin data. In turn, the chemistry constrains the minimum abundance of amorphous component required to have realistic compositions (all oxides ≥ 0 wt %): 21-22 wt % for Rocknest and 15-20 wt % for Cumberland, in good agreement with estimates derived from the diffraction patterns (~27 and ~31 wt %, respectively). Despite obvious differences between the Rocknest sand and the Sheepbed mudstone, the amorphous components of the two sites are chemically very similar, having comparable concentrations of SiO2, TiO2, Al2O3, Cr2O3, FeOT, CaO, Na2O, K2O, and P2O5. MgO tends to be lower in Rocknest, although it may also be comparable between the two samples depending on the exact composition of the smectite in Sheepbed. The only unambiguous difference is the SO3 content, which is always higher in Rocknest. The observed similarity suggests that the two amorphous components share a common origin or formation process. The individual phases possibly present within the amorphous components include: volcanic (or impact) glass, hisingerite (or silica + ferrihydrite), amorphous sulfates (or adsorbed SO42-), and nanophase ferric oxides.

  18. Geochemistry and evolution of the South Platte granite-pegmatite system, Jefferson County, Colorado

    NASA Astrophysics Data System (ADS)

    Simmons, Wm. B.; Lee, Maxie T.; Brewster, Renee H.

    1987-03-01

    The South Platte pegmatite district is well known for its significant enrichment in the rare earth elements (REE), Y, Nb, F, and for the exceptionally well-developed internal zonation of the complex pegmatites located within a reversely zoned portion of the Pikes Peak batholith. Chemical trends both within and between pegmatites define the behavior of major and trace elements and the role of F in the fractionation of the granitic magma and pegmatitic fluids, suggesting a new model for the evolution of the granite-pegmatite system. Whole-rock XRF and INAA analyses of the host Pikes Peak granite and quartz monzonite and pegmatite wall zones provide strong evidence that all three are related by differentiation. With increasing SiO 2, there is systematic enrichment in K 2O, Na 2O, and Rb, and depletion in CaO, MgO, FeO∗, TiO 2, P 2O 5, Ba, Sr, and Sc. REE, Y, Zr, and Th were strongly partitioned out of the wall zone into the final residual fluids where they were concentrated up to an order of magnitude over levels in the granite. Within the district, there is also chemical zonation of F, Nb, Th, U, and REE between groups of pegmatites. Polyzonal quartz-core types typically contain more fluorite, samarskite, HREE-zircon, and yttrian-fluorite than their bizonal composite-core counterparts, which contain only sparse fluorite and allanite. The sequence of magmatic evolution involved: (1) a process of diffusive differentiation and fractional crystallization which produced a chemically stratified magma chamber with a hotter more mafic quartz monzonitic base and a more felsic, granitic top enriched in H 2O, F, HREE, Nb, and Y; (2) resurgence of the more mafic lower level crystal mush in to the upper more felsic part of the pluton; and (3) separation of pegmatitic fluids from the juxtaposed magmas giving rise to two compositionally distinct groups of pegmatites.

  19. Partial melting of apatite-bearing charnockite, granulite, and diorite: Melt compositions, restite mineralogy, and petrologic implications

    NASA Technical Reports Server (NTRS)

    Beard, James S.; Lofgren, Gary E.; Sinha, A. Krishna; Tollo, Richard P.

    1994-01-01

    Melting experiments (P = 6.9 kbar, T = 850-950 deg C, NNO is less than fO2 is less than HM) were done on mafic to felsic charnockites, a dioritic gneiss, and a felsic garnet granulite, all common rock types in the Grenville basement of eastern North America. A graphite-bearing granulite gneiss did not melt. Water (H2O(+) = 0.60 to 2.0 wt %) is bound in low-grade, retrograde metamorphic minerals and is consumed during the earliest stages of melting. Most melts are water-undersaturated. Melt compositions range from metaluminous, silicic granodiorite (diorite starting composition) to peraluminous or weakly metaluminous granites (all others). In general, liquids become more feldspathic, less silicic, and less peraluminous and are enriched in FeO, MgO, and TiO2 with increasing temperature. Residual feldspar mineralogy controls the CaO, K2O, and Na2O contents of the partial melts and the behavior of these elements can be used, particularly if the degree of source melting can be ascertained, to infer some aspects of the feldspar mineralogy of the source. K-feldspar, a common restite phase in the charnockite and granulite (but not the diorite) should control the behavior of Ba and, possibly, Eu in these systems and yield signatures of these elements that can distinguish source regions and, in some cases, bulk versus melt assimilation. Apatite, a common restite phase, is enriched in rare earth elements (REE), especially middle REE. Retention of apatite in the restite will result in steep, light REE-enriched patterns for melts derived from the diorite and charnockites.

  20. Chemical modifications accompanying blueschist facies metamorphism of Franciscan conglomerates, Diablo Range, California

    USGS Publications Warehouse

    Moore, Diane E.; Liou, J.G.; King, B.-S.

    1981-01-01

    As part of an investigation of blueschist-facies mineral parageneses in pebbles and matrix of some Franciscan metaconglomerates of the Diablo Range, California, textural and major-element chemical analyses were conducted on a number of igneous pebbles that comprise a range of rock types from granite and dacite to gabbro and basalt. Compositions of the igneous pebbles differ significantly from common igneous rocks, particularly with respect to Ca, K, Na, Si and H2O. The SiO2 and H2O contents are characteristically high and the K2O contents low. The CaO and Na2O contents may be relatively enriched or reduced in different pebbles. The igneous pebbles show little evidence of alteration prior to their incorporation into the Franciscan conglomerates, and the chemical modifications are considered to have been produced during metamorphism of the conglomerates to (lawsonite + albite + aragonite ?? jadeite)-bearing assemblages. The observed variations in the pebbles are shown to be functions of: (1) bulk chemistry; (2) the igneous mineral assemblage; (3) the stable metamorphic mineral assemblage; and (4) the composition of pore fluids in the conglomerates. The relative proportions of Mg and Fe in most of the pebbles apparently have been unaffected by the metamorphism, and these parameters, along with other textural and chemical factors, were used to determine the petrogenetic affinities of the igneous pebbles. The plutonic and most of the volcanic pebbles correspond to calc-alkaline rock series, whereas a few volcanic pebbles show apparent Fe-enrichment characteristic of tholeiitic rocks. A continental margin arc-batholith complex would be the best source for these igneous detrital assemblages. Conglomerates in local areas differ in igneous lithologies from conglomerates in other areas and probably differ somewhat in age, perhaps reflecting varying degrees of unroofing of such a complex during deposition of Franciscan sediments. ?? 1981.

  1. Clay mineralogical and geochemical constraints on late Pleistocene weathering processes of the Qaidam Basin, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Miao, WeiLiang; Fan, QiShun; Wei, HaiCheng; Zhang, XiYing; Ma, HaiZhou

    2016-09-01

    At the Qarhan Salt Lake (QSL) on the central-eastern Qaidam Basin, northern Tibetan Plateau, Quaternary lacustrine sediments have a thickness of over 3000 m and mainly composed of organic-rich clay and silty clay with some silt halite and halite. In this study, a 102-m-long sediment core (ISL1A) was obtained from the QSL. Combining with AMS 14C and 230Th dating, clay minerals and major-element concentrations of ISL1A were used to reconstruct the weathering process and trend of the QSL since late Pleistocene. The results reveal that the clay mineral from <2 μm fraction in ISL1A is composed of illite (47-77%), chlorite (8-27%), smectite (including illite-smectite mixed layers, 3-29%) and kaolinite (2-11%). Such clay mineral assemblages in ISL1A derived primarily from felsic igneous rocks, gneisses and schists of Eastern Kunlun Mountains on the south of the QSL. The abundance of illite mineral displays an opposite fluctuation trending with that of smectite, chlorite and kaolinite mineral in ISL1A, which is significantly different from the monsoon-controlled regions. Moreover, higher values of illite, kaolinite/chlorite and illite/chlorite ratios, and lower values of smectite, chlorite and kaolinite minerals occurred in 83-72.5 ka, 68.8-54 ka, 32-24 ka, corresponding to late MIS 5, late MIS 4, early MIS 3 and late MIS 3, respectively. These three phases were almost similarly changed with oxygen isotopes of authigenic carbonates and pollen records in ISL1A, which implies that stronger chemical weathering corresponds to higher effective moisture periods of source region in the Qaidam Basin. Based on chemical weathering index and (Al2O3-(CaO + Na2O)-K2O) diagram, chemical weathering degree in this study area takes a varying process from low to intermediate on the whole.

  2. X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads.

    PubMed

    Nakayama, Kenichi; Nakamura, Toshihiro

    2005-07-01

    Major and trace elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, Rb, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Gd, Dy, Th and U) in igneous rocks were assayed with fused lithium borate glass beads using X-ray fluorescence spectrometry. Low dilution glass beads, which had a 1:1 sample-to-flux ratio, were prepared for determination of rare earth elements. Complete vitrification of 1:1 mixture required heating twice at 1200 degrees C with agitation. Extra pure reagents containing determinants were used for calibrating standards instead of the rock standard. The calibration curves of the 23 elements showed good linearity. Furthermore, the lower limits of detection corresponding to three times the standard deviation for blank measurements were 26 mass ppm for Na2O, 6.7 for MgO, 4.5 for Al2O3, 4.5 for SiO2, 18 for P2O5, 1.1 for K2O, 4.0 for CaO, 3.9 for TiO2, 1.6 for MnO, 0.8 for Fe2O3, 0.5 for Rb, 0.2 for Sr, 0.4 for Y, 0.5 for Zr, 3.3 for La, 6.5 for Ce, 2.7 for Pr, 2.1 for Nd, 1.7 for Sm, 0.7 for Gd, 2.7 for Dy, 0.5 for Th, and 0.6 for U. Using the present method, we determined the contents of these 23 elements in four rhyolitic and granitic rocks from Japan. PMID:16038502

  3. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  4. Geochemistry of Cretaceous granites from Mianning in the Panxi region, Sichuan Province, southwestern China: Implications for their generation

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Huang, Zhilong; Qi, Liang; Fu, Pingqing; Liu, Congqiang; Li, Endong; Guan, Tao

    2007-03-01

    The Cretaceous granites of Mianning, located in the northern Panxi region, were emplaced after collision of the Tibetan Plateau and Yangtze Block. These granites have very high K 2O + Na 2O, Ga, Zr, Nb, Y, REE (except Eu), and very low MgO, CaO, P 2O 5, and Sr contents relative to M-, I- or S-type granites. Based on the chemical discrimination criteria of Whalen et al . [Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, distribution and petrogenesis. Contributions to Mineralogy and Petrology 95, 407-419], most of them are A-type granites. Moreover, the granites plot in the range of post-collision granites and belong to the A2 type. Elevated initial Sr isotopic ratios (>0.72) suggest their derivation dominantly from a crustal source. These features are consistent with granite formation in a post-orogenic setting, such as after subduction or collision between of the Tibetan Plateau and Yangtze Block. In addition, the granites are characterized by low abundances of Ba, Sr, P, Ti, and Eu, positive correlation between Ba and Eu anomalies, and negative correlation between Rb and K/Rb. Plots of Rb vs. Sr suggest that fractional crystallization affected the final compositions of these granites after melting from a dominantly crustal source. From the late Proterozoic to late Mesozoic, the crustal composition, compared to that of the mantle, appears to have increased in the Panxi region. While the mantle component played an important part in the generation of Cretaceous granites in southeastern China, its influence was relatively minor in the Panxi region. Thus, there was a significant difference in mantle evolution between southeastern China and the Panxi region, which led to different metallogenic processes.

  5. Effect of float glass composition on liquidus temperature and devitrification behaviour

    SciTech Connect

    Hrma, Pavel R.; Smith, D. E.; Matyas, Josef; Yeager, John D.; Jones, James V.; Boulos, Edward N.

    2006-06-01

    Liquidus temperatures (TL) were measured for the following float glass-type composition region (in mass%): 72?7 to 74?0 SiO2, 13?1 to 14?2 Na2O, 7?95 to 8?95 CaO, 2?97 to 3?97 MgO, 0?10 to 0?45 Al2O3, and 0?03 to 0?10 K2O. Glasses also contained constant minor fractions of Fe2O3 (0?71) and TiO2 (0?01). Fractions of silica, wollastonite, and devitrite were determined in glasses quenched from 900 C. Partial specific values for TL were evaluated for silica and wollastonite phase-fields. The measured TL values were compared with values estimated using various models available in the literature. The differences between predicted and measured TL for the float glass composition region can be attributed to several causes, the most prominent being the neglecting of differences in the slopes of liquidus surfaces within different primary phase-fields. Inaccurate estimates can also be expected when a model is applied to a glass with a smaller or a larger number of key components. Finally, erroneous estimates occur when the model is extrapolated beyond the composition region covered by data to which model equations were fitted, or when a model that covers a large composition region is applied to a smaller subregion where the TL -composition relationship has a significant lack of fit.

  6. Isotopic variation in the Tuolumne Intrusive Suite, central Sierra Nevada, California

    USGS Publications Warehouse

    Kistler, R.W.; Chappell, B.W.; Peck, D.L.; Bateman, P.C.

    1986-01-01

    Granitoid rocks of the compositionally zoned Late Cretaceous Toulumne Intrusive Suite in the central Sierra Nevada, California, have initial87Sr/86Sr values (Sri) and143Nd/144Nd values (Ndi) that vary from 0.7057 to 0.7067 and from 0.51239 to 0.51211 respectively. The observed variation of both Sri and Ndi and of chemical composition in rocks of the suite cannot be due to crystal fractionation of magma solely under closed system conditons. The largest variation in chemistry, Ndi, and Sri is present in the outer-most equigranular units of the Tuolumne Intrusive Suite. Sri varies positively with SiO2, Na2O, K2O, and Rb concentrations, and negatively with Ndi, Al2O3, Fe2O3, MgO, FeO, CaO, MnO, P2O5, TiO2, and Sr concentrations. This covariation of Sri, Ndi and chemistry can be modeled by a process of simple mixing of basaltic and granitic magmas having weight percent SiO2 of 48.0 and 73.3 respectively. Isotopic characteristic of the mafic magma are Sri=0.7047, Ndi=0.51269 and ??18O=6.0, and of the felsic magma are Sri=0.7068, Ndi=0.51212 and ??18O=8.9. The rocks sampled contain from 50 to 80% of the felsic component. An aplite in the outer equigranular unit of the Tuolumne Intrusive Suite apparently was derived by fractional crystallization of plagioclase and hornblende from magma with granudiorite composition that was a product of mixing of the magmas described above. Siliceous magmas derived from the lower crust, having a maximum of 15 percent mantle-derived mafic component, are represented by the inner prophyritic units of the Tuolumne Intrusive Suite. ?? 1986 Springer-Verlag.

  7. Tertiary epizonal plutonic rocks of the Selway-Bitterroot Wilderness, Idaho County, Idaho

    SciTech Connect

    Motzer, W.E.

    1996-01-01

    Geologic mapping in the Selway-Bitterroot Wilderness identified approximately 731 kmS of epizonal plutonic granitic rocks within the Bitterroot lobe of the Idaho batholith. From north to south, the intrusions are the Rock Lake Creek stock and the Whistling Pig, Running Creek, Bad Luck and Painted Rocks plutons. The stock and plutons consist of medium- to coarse-grained biotite and hornblende-biotite syenorgranite to monzogranite and quartz syenite capped by fine-grained biotite leucogranite. These rocks are intruded by late-synplutonic leucogranite dikes and post plutonic porphyritic rhyolite to rhyodacite and basalt dikes. The medium-grained granitic rocks are high in SiO2, K2O, Na2O, Ga, Th, U, W and Zr, but low in Al7O3, CaO, MgO, Cr, Ni, Co and V. Most of the granites are peraluminous. Rare-earth element (REE) plots (rock sample/chondrite) show enrichment in light REE over heavy REE with strong EU depletions. K-Ar biotite radiometric age determinations for medium-grained granites in all of the plutons range from approximately 51 Ma (Whistling Pig pluton) to 43.7 Ma (Painted Rocks pluton). Petrogenetic studies suggest that the plutons were rapidly emplaced to within 3.0 km of the paleosurface. The types, textures and color of the rocks result from devolatilization of the crystallizing melt and very low-grade hydrothermal alteration. The fluorine-rich melts are the fractionated with accumulate residue; they are considered to be anorogenic (A-type) granites intruded into the center of a metamorphic core complex.

  8. Porous and strong bioactive glass (13–93) scaffolds prepared by unidirectional freezing of camphene-based suspensions

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang; Tomsia, Antoni P.

    2011-01-01

    Scaffolds of 13–93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt %) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1–7 °C/min) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure, and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C/min (porosity = 50 ± 4%; average pore diameter = 100 μm), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. PMID:21855661

  9. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

    2010-01-01

    Scaffolds of 13-93 bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 2P2O5, 54SiO2; mol %), containing oriented pores with controllable diameter, were prepared by unidirectional freezing of camphene-based suspensions (10 vol% particles) on a cold substrate (−196°C or 3°C). By varying the annealing time (0–72 h) to coarsen the camphene phase, constructs with the same porosity (86 ± 1%) but with controllable pore diameters (15–160 μm) were obtained after sublimation of the camphene. The pore diameters had a self-similar distribution that could be fitted by a diffusion-controlled coalescence model. Sintering (1 h at 690°C) was accompanied by a decrease in the porosity and pore diameter, the magnitude of which depended on the pore size of the green constructs, giving scaffolds with a porosity of 20–60% and average pore diameter of 6–120 μm. The compressive stress vs. deformation response of the sintered scaffolds in the orientation direction was linear, followed by failure. The compressive strength and elastic modulus in the orientation direction varied from 180 MPa and 25 GPa, respectively, (porosity = 20%) to 16 MPa and 4 GPa, respectively, (porosity = 60%), which were 2–3 times larger than the values in the direction perpendicular to the orientation. The potential use of these 13-93 bioactive glass scaffolds for the repair of large defects in load-bearing bones, such as segmental defects in long bones, is discussed. PMID:20807594

  10. Geochemistry of rock units at the potential repository level, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Peterman, Z.E.; Cloke, P.L.

    2002-01-01

    The compositional variability of the phenocryst-poor member of the 12.8 Ma Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults. The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in wt. % or g/100 g is: SiO2, 76.29; Al2O3, 12.55; FeO, 0.14; Fe2O3, 0.97; MgO, 0.13; CaO, 0.50; Na2O, 3.52; K2O, 4.83; TiO2, 0.11; and MnO, 0.07. ?? 2002 Published by Elsevier Science Ltd.

  11. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.

    PubMed

    Zhao, Shichang; Wang, Hui; Zhang, Yadong; Huang, Wenhai; Rahaman, Mohamed N; Liu, Zhongtang; Wang, Deping; Zhang, Changqing

    2015-03-01

    There is growing interest in the use of synthetic biomaterials to deliver inorganic ions that are known to stimulate angiogenesis and osteogenesis in vivo. In the present study, we investigated the effects of varying amounts of copper in a bioactive glass on the response of human bone marrow-derived mesenchymal stem cells (hBMSCs) in vitro and on blood vessel formation and bone regeneration in rat calvarial defects in vivo. Porous scaffolds of a borosilicate bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5, mol.%) doped with 0.5, 1.0 and 3.0wt.% CuO were created using a foam replication method. When immersed in simulated body fluid, the scaffolds released Cu ions into the medium and converted to hydroxyapatite. At the concentrations used, the Cu in the glass was not toxic to the hBMSCs cultured on the scaffolds in vitro. The alkaline phosphatase activity of the hBMSCs and the expression levels of angiogenic-related genes (vascular endothelial growth factor and basic fibroblast growth factor) and osteogenic-related genes (runt-related transcription factor 2, bone morphogenetic protein-2 and osteopontin) increased significantly with increasing amount of Cu in the glass. When implanted in rat calvarial defects in vivo, the scaffolds (3wt.% CuO) significantly enhanced both blood vessel formation and bone regeneration in the defects at 8weeks post-implantation. These results show that doping bioactive glass implants with Cu is a promising approach for enhancing angiogenesis and osteogenesis in the healing of osseous defects. PMID:25534470

  12. Nyerereite from calcite carbonatite at the Kerimasi Volcano, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Zaitsev, A. N.

    2010-12-01

    The extinct Quaternary Kerimasi volcano located in the southern part of the Gregory Rift, northern Tanzania, contains both intrusive and extrusive calciocarbonatites. One carbonate mineral with a high content of Na and Ca has been found in a sample of volcanic carbonatite, which is probably a cumulate rock. On the basis of Raman spectroscopy and SEM/EDS, this mineral was identified as nyerereite, ideally Na2Ca(CO3)2. It occurs as solid inclusions up to 300 × 200 μm in size in magnetite and contains (wt. %) 25.4-27.4 Na2O, 26.0-26.8 CaO, 1.6-1.9 K2O, 0.6-1.8 FeO, 0.3-0.6 SrO, <0.4 BaO, 1.4-2.3 SO3, and 0.6-0.9 P2O5. The average mineral formula is (Na1.84K0.08)Σ1.92(Ca1.00Fe0.03Sr0.01)Σ1.04[(CO3)1.91(SO4)0.05(PO4)0.02]Σ1.98. A few inclusions in magnetite also contain calcite, which is considered here to be a late-stage, subsolidus mineral. The occurrence of nyerereite in carbonatite supports Hay's (1983) idea that some of the extrusive carbonatites at the Kerimasi volcano were originally alkaline rich and contained both calcite and nyerereite as primary minerals.

  13. Petrogeochemistry of listvenite association in metaophiolites of Sahlabad region, eastern Iran: Implications for possible epigenetic Cu-Au ore exploration in metaophiolites

    NASA Astrophysics Data System (ADS)

    Aftabi, Alijan; Zarrinkoub, Mohammad Hossien

    2013-01-01

    Petrogeochemical investigations at the Sahlabad region have revealed that epigenetic listvenite veins occur in sheared zones of metaophiolitic suites of Cretaceous age. The listvenite mineralization developed in three forms, namely (1) the silica-listvenite veins which are chiefly composed of chalcedony, opal, quartz, pyrite, chalcopyrite, serpentine and relicts of chrome spinels, magnetite and fuchsite; (2) the carbonate listvenite veins which are comprised principally of magnesite, dolomite, calcite, siderite, pyrite, chalcopyrite, serpentine and relicts of fuchsite, chrome spinels and magnetite; and (3) the silica-carbonate listvenite veins which include opal, quartz, dolomite, magnesite, pyrite, chalcopyrite, serpentine and relicts of chrome spinels and magnetite. The absence of mineralized granitoids and the frequent occurrences of clearcut non-metamorphosed veins indicate that the mineralizing fluids were rich in CO2, H2O, H2S and H4SiO4 and possibly formed as a result of metamorphic dehydration and decarbonation reactions of the oceanic crust at the amphibolite-greenschist facies. Geochemically, the listvenites are enriched in SiO2, MgO, CaO, CO2, LOI, Cr, Ni, Co, Au, Cu, Ag, Hg, and Pt. Also, the veins contain high values of LOI, indicating the H2O-CO2-rich metamorphogenic fluids. The high Cr content and detectable values of K2O, Al2O3 and Na2O in the listvenite veins possibly indicate the presence of fuchsite and chrome spinels. The geochemical signatures attest that the hydrothermal fluids probably derived from a metamorphosed ultramafic protolith. The maximum values for gold, copper, mercury and silver in the listvenites are about 1.9 ppm, 5.4 %, 8 ppm and 6.5 ppm, respectively and provide a unique exploration guide for further gossan sampling, remote sensing mapping, isotopic and fluid inclusion studies in the Iranian metaophiolites.

  14. Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis

    NASA Astrophysics Data System (ADS)

    Guzmics, Tibor; Mitchell, Roger H.; Szabó, Csaba; Berkesi, Márta; Milke, Ralf; Abart, Rainer

    2011-02-01

    Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na-K-Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite-monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900-1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C-O-H-S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5-10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.

  15. Clay mineral burial diagenesis: A case study from the Calabar flank of the Niger Delta

    NASA Astrophysics Data System (ADS)

    Braide, Sokari P.

    Detailed clay mineralogic and chemical analyses of Tertiary subsurface sediments of the Agbada and Akata Formations, from two wells on the Calabar Flank of the Niger Delta, have been systematically studied with a view to understanding clay mineral burial diagenesis. Five principal clay minerals, smectite, illite, kaolinite, chlorite and various proportions of mixed-layer illite/smectite were identified. Seven major oxides (SiO 2, Al 2O 3, MgO, Fe 2O 3, CaO, Na 2O, K 2O) were analysed for with an atomic absorption spectrophotometer, with a view to ascertain any depth related variations. The geothermal gradient of the two wells (Uruan-1 and Uda-1) was also calculated. The results appear to suggest a transformation from smectite to a mixed-layer illite/smectite (I/S) phase. The transformation first goes to a random I/S phase, and then to ordered I/S and back to random I/S, even though postulated conditions for a complete transformation to illite did exist. It would therefore seem, from this case study, that neither temperature nor the availability of potassium is the principal factor controlling the transformation. Kaolinite and chlorite distribution does not exhibit any systematic trend that could be related to burial diagenesis. These results provoked an extensive literature review on the subject, and key ideas discerned are summarized here. The prognosis? In the author's opinion, we still have a lot to learn about the factors that control the mechanics and reaction extent of clay mineral burial diagenesis.

  16. Deciphering heavy metal contamination zones in soils of a granitic terrain of southern India using factor analysis and GIS

    NASA Astrophysics Data System (ADS)

    Purushotham, D.; Lone, Mahjoor Ahmad; Rashid, Mehnaz; Rao, A. Narsing; Ahmed, Shakeel

    2012-08-01

    Soil contamination by heavy metals has been a major concern for last few decades due to increase in urbanization and industrialization. The main objective of this research was to identify the heavy metal contaminated zones in the study area. Twenty five soil samples collected throughout the agriculture, residential and industrial areas were analysed by X-ray Fluorescence Spectrometer (XRF) for trace metals and major oxides. These metals can affect the quality of soil and infiltrate through the soil, thereby causing groundwater pollution. Based on the chemical analysis of major oxides (SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, TiO2, and P2O5) and their distribution; it is observed that these soils are predominantly siliceous type with slight enrichment of alumina component in the study area. Correlation matrix (CM) and factor analysis (FA) is employed to the heavy metal variables, viz., Ba, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn and Zr of the soil to determine the dominant factors contributing to the soil contamination in the area. In the analysis, five factors emerged as significant contributors to the soil quality. The total contribution of these five factors is about 90%. The contribution of the first factor is about 45% and has significant positive loadings of Co, Cr, Cu, Ni and Zn. The contribution of second factor is 22% and has significant positive loadings of Rb, Sr and Y. The contribution of third, fourth and fifth factors is 10, 8 and 5% and show positive loadings for lead, molybdenum and barium respectively to the soil contamination. The spatial variation maps deciphering different zones of heavy metal concentration in the soil were generated in a GIS (geographic information system) based environment using ArcGIS 9.3.1. The results reveal that heavy metal contamination in the area is mainly due to anthropogenic activities.

  17. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts

    NASA Astrophysics Data System (ADS)

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper

    2016-03-01

    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  18. The Geochronology and Geochemistry of Highly Fractionated I-type Granite within Gangdese batholith in Sangri Area, South Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhao, Z.; Mo, X.; Zhu, D. C.; Wei, Y.; Liu, D.

    2015-12-01

    Long-term subduction of Neo-Tethyan oceanic lithosphere beneath an active continental margin arise prolonged plutonic activity, which is illustrated by the vast chain of Gangdese batholith in the south margin of Lhasa Terrane, Southern Tibet. Although extensive studies have performed on the source regions, spatial-temporal associations and geotectonic implications of the granitic rocks within the batholith, the magmatic evolution and petrogenesis of plutons in Sangri area have remained poorly studied. Here we present zircon U-Pb geochronology, Hf isotope and bulk-rock geochemistry of the late Cretaceous Sangri biotite granites (SBG) in order to shed light on this issue. Zircon U-Pb geochronology demonstrates the plutonic activity emplaced at 67~65Ma. The SBG belong to high-K calc-alkaline series, displaying highly fractionated I-type signature with high content of SiO2 (74.26~76.93%), K2O+Na2O (7.87~8.56%), but low content of CaO (0.28~1%) and P2O5 (0.02~0.04%) and pronounced depletion in Sr, Ba, Eu, Nb and Zr. The affinity of mantle component in the SBG that was elucidated by positive zircon Epsilon Hf(t) of 4.6~10.9, which makes it indistinguishable from other granitic rocks within Gangdese batholith. Tectonic models of evolution of the Neo-Tethyan Ocean suggest that the break-off of the oceanic slab is required in order to generate enormous magmatism in Gangdese batholith during 66~50Ma. Associated with the coeval gabbroic and dioritic intrusions occurred in Sangri area, we suggest the magma of SBG had been derived from juvenile lower crust mingled with mantle component upwelling through the window of Neo-Tethyan oceanic slab, and were subjected to high degree of fractionation in the magma chamber.

  19. (210)Pb and composition data of near-surface sediments and interstitial waters evidencing anthropogenic inputs in Amazon River mouth, Macapá, Brazil.

    PubMed

    Nery, José Reinaldo Cardoso; Bonotto, Daniel Marcos

    2011-04-01

    Activity profiles of excess (210)Pb determined in three sediment cores from Amazon River mouth, Macapá city, Brazil, provided the evaluation of sedimentation rates, contributing to a better knowledge of the hydrological conditions in the site that is the capital of Amapá State and is drained by the waters of the huge Amazon River. Chemical data were also determined in the sediments, allowing identify signatures coupled to anthropogenic inputs held in the past in Amapá State. Significant direct relationships between LOI (loss on ignition) and organic matter were found for all sediments profiles. Silica was found to be inversely related to organic matter in the three profiles; its decrease accompanied an increase on the specific surface of the sediments. This relationship was confirmed by a great number of inverse significant correlations among silica and oxides Na(2)O, K(2)O, CaO, MgO, Al(2)O(3), P(2)O(5), Fe(2)O(3) and MnO. It was possible to identify the role of organic matter on adsorption of several oxides in the core sediments profiles. Apparent sediment mass accumulation rates corresponding to values between 450 and 2510 mg cm(-2)yr(-1) were obtained, and are compatible with the results of others studies. The (210)Pb activities in one sampling point suggested the occurrence of anthropogenic inputs related to the initial period of the mining activities conducted in Serra do Navio, Amapá State, for the commercialization of Mn ores. This was reinforced by the abrupt fluctuations in chemical data obtained for the sediments and composition of the interstitial waters occurring there. The Atlantic hurricane activity also appeared to affect the sedimentation rates in the area, as two different values were recorded in each profile. PMID:21353731

  20. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  1. Mineralogical, geochemical and radiological characterisation of Selmo Formation in Batman area, Turkey.

    PubMed

    Isik, Umit; Damla, Nevzat; Akkoca, Dicle Bal; Cevik, Uğur

    2012-06-01

    This work deals with the mineralogical, geochemical and radiological characterisations of Selmo Formation in Batman neighbourhood. The upper Miocene-Pliocene Selmo Formation is common in the centre of Batman and composed of carbonated sandy claystones and silty-sandy stone lenses. The common whole minerals of the samples are quartz, feldspars, calcite and dolomite. The clay minerals are smectite, illite, chlorite and mixed-layer clay (chlorite-smectite). The geochemical mean values of the samples are 51.7% SiO(2); 12.6% Al(2)O(3); 6.2% Fe(2)O(3); 3.6% MgO; 6.3% CaO; 1.1% Na(2)O; 1.7% K(2)O; 0.8% TiO(2); 0.2% P(2)O(5); 0.1% MnO; and 0.03% Cr(2)O(3). In addition, baseline maps for the concentrations of each radionuclide, the radium equivalent activity and the outdoor gamma dose rate distributions have been plotted for the study area. The mean activity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs were determined to be 32, 24, 210 and 9 Bq kg(-1), respectively. The assessments of the radiological hazard indices, such as radium equivalent activity, absorbed dose rate in air, annual effective dose equivalent, excess lifetime cancer risk, external hazard index and internal hazard index, were calculated and compared with the internationally accepted reference values. This study shows that the concentrations of radioactivities in the measured samples were within the recommended safety limits and did not pose to be any significant source of radiation hazard. PMID:22316137

  2. Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Melikechi, N.; Cousin, A.; Wiens, R. C.; Lasue, J.; Clegg, S. M.; Tokar, R.; Bender, S.; Lanza, N. L.; Maurice, S.; Berger, G.; Forni, O.; Gasnault, O.; Dyar, M. D.; Boucher, T.; Lewin, E.; Fabre, C.

    2016-06-01

    Laser-induced breakdown spectroscopy (LIBS) provides chemical information from atomic, ionic, and molecular emissions from which geochemical composition can be deciphered. Analysis of LIBS spectra in cases where targets are observed at different distances, as is the case for the ChemCam instrument on the Mars rover Curiosity, which performs analyses at distances between 2 and 7.4 m is not a simple task. In our previous work we showed that spectral distance correction based on a proxy spectroscopic standard created from first-shot dust observations on Mars targets ameliorates the distance bias in multivariate-based elemental-composition predictions of laboratory data. In this work, we correct an expanded set of neutral and ionic spectral emissions for distance bias in the ChemCam data set. By using and testing different selection criteria to generate multiple proxy standards, we find a correction that minimizes the difference in spectral intensity measured at two different distances and increases spectral reproducibility. When the quantitative performance of distance correction is assessed, there is improvement for SiO2, Al2O3, CaO, FeOT, Na2O, K2O, that is, for most of the major rock forming elements, and for the total major-element weight percent predicted. However, for MgO the method does not provide improvements while for TiO2, it yields inconsistent results. In addition, we have observed that many emission lines do not behave consistently with distance, evidenced from laboratory analogue measurements and ChemCam data. This limits the effectiveness of the method.

  3. Comparing results from two continental geochemical surveys to world soil composition and deriving Predicted Empirical Global Soil (PEGS2) reference values

    NASA Astrophysics Data System (ADS)

    de Caritat, Patrice; Reimann, Clemens; Bastrakov, E.; Bowbridge, D.; Boyle, P.; Briggs, S.; Brown, D.; Brown, M.; Brownlie, K.; Burrows, P.; Burton, G.; Byass, J.; de Caritat, P.; Chanthapanya, N.; Cooper, M.; Cranfield, L.; Curtis, S.; Denaro, T.; Dhnaram, C.; Dhu, T.; Diprose, G.; Fabris, A.; Fairclough, M.; Fanning, S.; Fidler, R.; Fitzell, M.; Flitcroft, P.; Fricke, C.; Fulton, D.; Furlonger, J.; Gordon, G.; Green, A.; Green, G.; Greenfield, J.; Harley, J.; Heawood, S.; Hegvold, T.; Henderson, K.; House, E.; Husain, Z.; Krsteska, B.; Lam, J.; Langford, R.; Lavigne, T.; Linehan, B.; Livingstone, M.; Lukss, A.; Maier, R.; Makuei, A.; McCabe, L.; McDonald, P.; McIlroy, D.; McIntyre, D.; Morris, P.; O'Connell, G.; Pappas, B.; Parsons, J.; Petrick, C.; Poignand, B.; Roberts, R.; Ryle, J.; Seymon, A.; Sherry, K.; Skinner, J.; Smith, M.; Strickland, C.; Sutton, S.; Swindell, R.; Tait, H.; Tang, J.; Thomson, A.; Thun, C.; Uppill, B.; Wall, K.; Watkins, J.; Watson, T.; Webber, L.; Whiting, A.; Wilford, J.; Wilson, T.; Wygralak, A.; Albanese, S.; Andersson, M.; Arnoldussen, A.; Baritz, R.; Batista, M. J.; Bel-lan, A.; Birke, M.; Cicchella, C.; Demetriades, A.; Dinelli, E.; De Vivo, B.; De Vos, W.; Duris, M.; Dusza-Dobek, A.; Eggen, O. A.; Eklund, M.; Ernstsen, V.; Filzmoser, P.; Finne, T. E.; Flight, D.; Forrester, S.; Fuchs, M.; Fugedi, U.; Gilucis, A.; Gosar, M.; Gregorauskiene, V.; Gulan, A.; Halamić, J.; Haslinger, E.; Hayoz, P.; Hobiger, G.; Hoffmann, R.; Hoogewerff, J.; Hrvatovic, H.; Husnjak, S.; Janik, L.; Johnson, C. C.; Jordan, G.; Kirby, J.; Kivisilla, J.; Klos, V.; Krone, F.; Kwecko, P.; Kuti, L.; Ladenberger, A.; Lima, A.; Locutura, J.; Lucivjansky, P.; Mackovych, D.; Malyuk, B. I.; Maquil, R.; McLaughlin, M.; Meuli, R. G.; Miosic, N.; Mol, G.; Négrel, P.; O'Connor, P.; Oorts, K.; Ottesen, R. T.; Pasieczna, A.; Petersell, V.; Pfleiderer, S.; Poňavič, M.; Prazeres, C.; Rauch, U.; Reimann, C.; Salpeteur, I.; Schedl, A.; Scheib, A.; Schoeters, I.; Sefcik, P.; Sellersjö, E.; Skopljak, F.; Slaninka, I.; Šorša, A.; Srvkota, R.; Stafilov, T.; Tarvainen, T.; Trendavilov, V.; Valera, P.; Verougstraete, V.; Vidojević, D.; Zissimos, A. M.; Zomeni, Z.

    2012-02-01

    Analytical data for 10 major oxides (Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2), 16 total trace elements (As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn and Zr), 14 aqua regia extracted elements (Ag, As, Bi, Cd, Ce, Co, Cs, Cu, Fe, La, Li, Mn, Mo and Pb), Loss On Ignition (LOI) and pH from 3526 soil samples from two continents (Australia and Europe) are presented and compared to (1) the composition of the upper continental crust, (2) published world soil average values, and (3) data from other continental-scale soil surveys. It can be demonstrated that average upper continental crust values do not provide reliable estimates for natural concentrations of elements in soils. For many elements there exist substantial differences between published world soil averages and the median concentrations observed on two continents. Direct comparison with other continental datasets is hampered by the fact that often mean, instead of the statistically more robust median, is reported. Using a database of the worldwide distribution of lithological units, it can be demonstrated that lithology is a poor predictor of soil chemistry. Climate-related processes such as glaciation and weathering are strong modifiers of the geochemical signature inherited from bedrock during pedogenesis. To overcome existing shortcomings of predicted global or world soil geochemical reference values, we propose Preliminary Empirical Global Soil reference values based on analytical results of a representative number of soil samples from two continents (PEGS2).

  4. Differentiation in the cumulates from a Mauna Loa, Hawaii magma chamber

    SciTech Connect

    Schwindinger, K.R.; Anderson, A.F.

    1985-01-01

    The interstitial glass in cognate nodules from Mauna Loa, has by chemical diffusion or convective fluid transport, remained in equilibrium with the overlying magma. The glass bearing nodules were collected from Damona Cone on the southwest rift zone of Mauna Loas. The nodules have approximately 15% olivine, 40% orthopyroxene plus clinopyroxene (3-20%), and 85% plagioclase plus vescicular glass (2-25%). Olivine norites have anhedral olivine mantled with anhedral orthopyroxene, subhedral to euhedral pyroxene, anhedral plagioclase, and 20 to 25% glass. Olivine gabbros have anhedral olivine, subequant, anhedral to subhedral pyroxene and plagioclase and less than 10% glass. The bulk composition of greater than 15%, MgO, with the textures, indicate the nodules are an accumulative origin. Thus these nodules are partially solidified pieces of crystal/liquid accumulative mush. The compositions of the olivines are Fa 18 to 25 mole percent, of the plagioclases are An 70 to 80 mole percent. The composition of the orthopyroxene is En76 Fs19 Wo5, and of the clinopyroxene is En50 Fall Wo30. The composition of the interstitial glasses is: SiO2 52.54, TiO2 2.04, Al2O3 14.39, FeO 11.47, MgO 7.15, CaO 10.28, Na20 1.42, K2O 0.39, P2O5 0.21. The low Na2O is from two nodules that may have experienced high temperature alteration. The uniformity of the glass composition, in contrast to its large variation in the mode, suggests the interstitial liquid in the mush has remained in equilibrium with some large reservoir of MgO rich liquid, such as the magma above the mush. Two possible mechanisms of cation exchange between the magma and the interstitial liquid of the mush are chemical diffusion and convective fluid transport.

  5. Geochemistry of the Paleocene-Eocene and Miocene-Pliocene clayey materials of the eastern part of the Wouri River (Douala sub-basin, Cameroon): Influence of parent rocks

    NASA Astrophysics Data System (ADS)

    Ngon Ngon, G. F.; Mbog, M. B.; Etame, J.; Ntamak-Nida, M. J.; Logmo, E. O.; Gerard, M.; Yongue-Fouateu, R.; Bilong, P.

    2014-03-01

    Major and trace element concentrations of clay deposits of the Missole II and Bomkoul respectively from the Paleocene-Eocene N'Kapa Formation and the Miocene-Pliocene-Matanda-Wouri Formation in the eastern part of the Wouri River in the Douala sub-basin of Cameroon have been investigated to identify the parent rocks. To carry out this study, X-ray diffraction, inductively coupled plasma-atomic emission spectrometry (ICP/AES) and inductively coupled plasma-mass spectrometry (ICP/MS) were performed to determine respectively the mineralogical and chemical data of Missole II and Bomkoul clayey materials. Clay sediments are essentially kaolinitic and illitic, and kaolinitic and smectitic respectively in both sites. They are generally siliceous, aluminous with small iron and bases (MgO, CaO, Na2O, and K2O) contents. Samples of Missole II profiles are more siliceous than those from the Bomkoul grey and dark grey clayey materials. Clayey materials have high Chemical Index of Alteration (CIA = 80-99.34) which suggests that they are strongly weathered under humid tropical climate before and after their deposition in the coastal plain. The value of Eu/Eu* (0.48-0.61), La/Sc (2.15-20.50), Th/Sc (0.74-2.25), Th/Co (1.08-8.33), and Cr/Th (5.24-13.55) ratios support essentially a silicic or felsic parent rocks. Total REE concentrations reflect the variations in their grain-size fractions. Chondrite-normalised REE patterns with LREE enrichment, flat HREE, and negative Eu anomaly are attributed essentially to silicic or felsic parent rocks like those from weathered materials developed from the gneisses around the coastal plain in the littoral part of Cameroon (Noa Tang et al., 2012), main characteristic of Paleocene-Eocene and Miocene-Pliocene clay sediments of Missole II and Bomkoul areas.

  6. Authenticity and provenance studies of copper-bearing andesines using Cu isotope ratios and element analysis by fs-LA-MC-ICPMS and ns-LA-ICPMS.

    PubMed

    Fontaine, Gisela H; Hametner, Kathrin; Peretti, Adolf; Günther, Detlef

    2010-12-01

    Whereas colored andesine/labradorite had been thought unique to the North American continent, red andesine supposedly coming from the Democratic Republic of the Congo (DR Congo), Mongolia, and Tibet has been on the market for the last 10 years. After red Mongolian andesine was proven to be Cu-diffused by heat treatment from colorless andesine starting material, efforts were taken to distinguish minerals sold as Tibetan and Mongolian andesine. Using nanosecond laser ablation-inductively coupled plasma mass spectrometry (ICPMS), the main and trace element composition of andesines from different origins was determined. Mexican, Oregon, and Asian samples were clearly distinguishable by their main element content (CaO, SiO(2) Na(2)O, and K(2)O), whereas the composition of Mongolian, Tibetan, and DR Congo material was within the same range. Since the Li concentration was shown to be correlated with the Cu concentration, the formerly proposed differentiation by the Ba/Sr vs. Ba/Li ratio does not distinguish between samples from Tibet and Mongolia, but only between red and colorless material. Using femtosecond laser ablation multi-collector ICPMS in high-resolution mode, laboratory diffused samples showed variations up to 3‰ for (65)Cu/(63)Cu within one mineral due to the diffusion process. Ar isotope ratio measurements proved that heat treatment will reduce the amount of radiogenic (40)Ar in the samples significantly. Only low levels of radiogenic Ar were found in samples collected on-site in both mine locations in Tibet. Together with a high intra-sample variability of the Cu isotope ratio, andesine samples labeled as coming from Tibet are most probably Cu-diffused, using initially colorless Mongolian andesines as starting material. Therefore, at the moment, the only reliable source of colored andesine/labradorite remains the state of Oregon. PMID:20967428

  7. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation.

    PubMed

    Dvininov, E; Popovici, E; Pode, R; Cocheci, L; Barvinschi, P; Nica, V

    2009-08-15

    The synthesis and properties of metal oxide pillared cationic clays (PILCs) has been subject to numerous studies in the last decades. In order to obtain TiO(2)-pillared type materials, sodium montmorillonite from Romania-areal of Valea Chioarului, having the following composition (% wt): SiO(2)-72.87; Al(2)O(3)-14.5; MgO-2.15; Fe(2)O(3)-1.13; Na(2)O-0.60; K(2)O-0.60; CaO-0.90; PC-5.70 and cation exchange capacity, determined by ammonium acetate method, of 82 meq/100g, as matrix, was used. Sodium form of the clay was modified, primarily, by intercalation of cetyl-trimethylammonium cations between negatively charged layers which will lead to the expansion of the interlayer space. For the preparation of the TiO(2)-pillared clay, the alkoxide molecules, as titania precursor, were adsorbed onto/into clay samples (1 mmol Ti/g clay), in hydrochloric acid environment, the resulted species being converted into TiO(2) pillars by calcination. The as-prepared materials have been used as catalysts for Congo Red dye photodegradation, under UV. The photocatalytic activity of the pillared clays is a function of TiO(2) pillars size, their increase leading to the enhancement of the contact areas between dye solution and photoactive species present in the interlayer space. The structural characteristics and properties of the obtained materials were investigated by X-ray Diffraction, Thermogravimetry Analysis, UV-vis Diffuse Reflectance, Transmission Electron Microscopy and Energy Dispersive X-ray Analysis. PMID:19250741

  8. Geochemical study of the granitic rocks from the Ryongnam massif, Geochang, South Korea

    NASA Astrophysics Data System (ADS)

    Han, M.; Kim, J.; Yang, K.

    2009-12-01

    The geochemical studies on the granitic rocks of the central part of the Ryongnam massif were carried out in order to constrain the petrogenesis and the paleotectonic environment. The area is composed of Precambrian gneissic rocks and metamorphosed sedimentary rocks, age-unknown granite and dioritic rocks, and Jurassic granitic rocks. The modal compositions indicate that the studied granitic rocks are granodiorite, monzogranite, syeno-granite, and alkali-feldspar granite. Except for Na2O and K2O, the contents of most oxides such as P2O5, TiO2, Al2O3, CaO, MgO and Fe2O3 decrease when SiO2 increases. These granitic rocks belong to the calc-alkaline series in the TAS and AFM diagram. They also show high-K nature, indicating the rocks experienced considerable differentiations. The studied granitic rocks correspond to Peraluminous and I-type(less than 1.1) in the A/CNK diagram. Chondrite-normalized REE patterns show generally enrichment in LREE and depleted in HREE. This suggests that the magma has been largely differentiated at an early stage. REE patterns of different granitic rocks in composition are subparallel each other, suggesting cogenetic in origin. The (-) anomaly of Eu shows that the granitic rocks were generated from residual magma which had fractionated plagioclase. Furthermore, the amount of total REE of the studied granitic rocks ranges 46.93~108.84 ppm, which corresponds to the range of granitic rocks from the continental margin granite. On the N-type MORB normalized spiderdiagram, the studied rocks generally show Nb-Ta and Hf-Zr trough, indicating the subduction-related products. According to the tectonomagmatic discrimination diagram, they correspond to volcanic arc granite(VAG). The major and trace element characteristics of the granitic rocks support their emplacement at the active continental margin.

  9. Petrogenesis of the Dengzhazi A-type pluton from the Taihang-Yanshan Mesozoic orogenic belts, North China Craton

    NASA Astrophysics Data System (ADS)

    Xiaolu, Niu; Bin, Chen; Xu, Ma

    2011-05-01

    The voluminous Mesozoic monzonitic to monzogranitic rocks in the north China craton (NCC) mostly show high-K calc-alkaline and I-type granitoids features. The Dengzhazi granitic pluton, however, shows features typical of A-type granites. The A-type pluton was emplaced in the Taihang-Yanshan orogenic belts of the northern margin of the NCC, with zircon U-Pb ages of around 140 Ma. The Dengzhazi A-type granites are characterized by high SiO 2 (70.2-77.7 wt.%), K 2O + Na 2O, Zr, Nb, Ga, Zn, and Y contents as well as high Ga/Al ratios, and extremely low CaO, Ba, Sr. In addition, they show high zircon saturation temperatures (870-950 °C), low water and low oxygen fugacity. All these features are consistent with the A-type affinity of the pluton. In situ Hf isotopic analyses for the dated zircons show relatively small range of ɛHf( t) (-13 to -17). They also have homogeneous initial Nd isotopic compositions with ɛNd( t) ranging from -15.1 to -16.3. The Hf and Nd isotopic data suggest that the Dengzhazi A-type granites originated from a homogeneous crustal source, probably the Archean mafic-intermediate granulites. Taking into account the high temperatures, the low H 2O and fO 2 of the magma system, we believe that partial melting of the granulites should have been triggered by underplating of mantle-derived magmas at the base of the mafic lower crust in an extensional regime. The Dengzhazi A-type granite is the oldest pluton of the Taihang-Yanshan Mesozoic magma belts, signifying the commencement of extensive underplating of mafic magmas, and thus of lithospheric thinning in the northern NCC.

  10. Major and trace element distributions in manganese nodules and micronodules as well as abyssal clay from the Clarion-Clipperton abyssal plain, Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Duliu, O. G.; Alexe, V.; Moutte, J.; Szobotca, S. A.

    2009-04-01

    The contents of seven major components (TiO2, Fe2O3, MgO, CaO, Na2O, K2O and P2O5) and 15 trace elements (Sc, V, Cr, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, Nd, Eu, Yb and Th) were determined by ICP-AE spectrometry in 27 samples of manganese nodules, micronodules as well as abyssal clay collected by dredging from an area of nearly 1,9802 nautical miles in the central Clarion-Clipperton abyssal plain at a depth of about 4,500 m. Statistical analyses were used to compare among individual as well as pooled datasets, in addition to different indicators such as La/Th, Ni/Cu and LREE/HREE ratios for the Clarion-Clipperton samples, as well as between these and corresponding values for the upper continental crust (UCC), North America Shale Composite (NASC), and igneous Indian and Pacific Mid-Ocean Ridge Basalts (MORBs). The results show significant correlations between major components in the Clarion-Clipperton samples and Pacific Ocean MORB, whereas trace elements (excepting Ni and Cu) correlate better with the UCC and NASC. There is also depletion in LREEs, together with a Ce negative anomaly for all Clarion-Clipperton samples. The nodule, micronodule and abyssal clay datasets each reveal typical clusters of components such as P2O5 and Y, La, Nd, Eu, Tb, or Ni and Cu. Compared to abyssal clay, the nodule as well as micronodules show significant enrichment in Ni and Cu; nevertheless, an essentially constant Ni/Cu ratio indicates that all samples come from the sediment surface. The distributions of major components as well as trace elements for the Clarion-Clipperton samples present, to different degrees, characteristics common to both the upper continental crust and Mid-Ocean Ridge Basalt, strongly implying a hydrothermal origin, most probably from East Pacific Rise material transported by the Pacific North Equatorial Current.

  11. Late Ediacaran (605-580 Ma) post-collisional alkaline magmatism in the Arabian-Nubian Shield: A case study of Serbal ring-shaped intrusion, southern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Azer, Mokhles K.

    2013-11-01

    The Serbal pluton is a late Neoproterozoic (605-580 Ma) post-collisional A-type granites in southern Sinai, Egypt (northernmost Arabian-Nubian Shield, ANS). It is characterized by discontinuous ring-shaped outcrops dislocated by later faulting. The pluton intrudes late Neoproterozoic metamorphic and high-K calc-alkaline rocks. The Serbal pluton mostly comprises an outer zone of alkali feldspar granite surrounding a core of peralkaline granite. Gradational and sharp contacts in the Serbal granites suggest that they were emplaced with a very short time interval, still before complete crystallization of the earlier batch. Serbal granites are highly evolved (75.98-78.52 wt.% SiO2) and display the typical geochemical characteristics of post-collisional A-type granites, namely high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga and Y and low CaO, MgO, Ba, and Sr. They are rich in REE and have extreme Eu-negative anomalies (Eu/Eu* = 0.01-0.23). The chemical characteristics indicate that the peralkaline granite shares many features of granites with the tetrad REE effect. The Serbal pluton evolved through fractional crystallization of a parental magma derived through partial melting of a juvenile crustal protolith that had been extracted from a source having mantle geochemical and isotopic characteristics. The crystallization temperatures using Fe-Ti oxides of the Serbal granites point to their formation at high temperatures, up to 650-850 °C at a shallow depth of emplacement (<10 km).

  12. Thermal Expansion Calculation of Silicate Glasses at 210°C, Based on the Systematic Analysis of Global Databases

    SciTech Connect

    Fluegel, Alex

    2010-10-01

    Thermal expansion data for more than 5500 compositions of silicate glasses were analyzed statistically. These data were gathered from the scientific literature, summarized in SciGlass© 6.5, a new version of the well known glass property database and information system. The analysis resulted in a data reduction from 5500 glasses to a core of 900, where the majority of the published values is located within commercial glass composition ranges and obtained over the temperature range 20 to 500°C. A multiple regression model for the linear thermal expansivity at 210°C, including error formula and detailed application limits, was developed based on those 900 core data from over 100 publications. The accuracy of the model predictions is improved about twice compared to previous work because systematic errors from certain laboratories were investigated and corrected. The standard model error (precision) was 0.37 ppm/K, with R² = 0.985. The 95% confidence interval for individual predictions largely depends on the glass composition of interest and the composition uncertainty. The model is valid for commercial silicate glasses containing Na2O, CaO, Al2O3, K2O, MgO, B2O3, Li2O, BaO, ZrO2, TiO2, ZnO, PbO, SrO, Fe2O3, CeO2, fining agents, and coloring and de-coloring components. In addition, a special model for ultra-low expansion glasses in the system SiO2-TiO2 is presented. The calculations allow optimizing the time-temperature cooling schedule of glassware, the development of glass sealing materials, and the design of specialty glass products that are exposed to varying temperatures.

  13. Inorganic data from El'gygytgyn Lake sediments: stages 6-11

    NASA Astrophysics Data System (ADS)

    Minyuk, P. S.; Borkhodoev, V. Ya.; Wennrich, V.

    2013-01-01

    Geochemical study was performed on sediment of deep drilling core from El'gygytgyn Lake, located in central Chukotka, northeastern Russia (67°30' N; 172°05' E). Major and rare elements were determined by X-ray fluorescence spectroscopy (XRF) on 600 samples covering the timeframe between ca. 450 and 125 ka corresponding to Marine Isotope Stages (MIS) 11 to 6. Inorganic geochemistry data indicates significant variations in the elemental compositions corresponding to the glacials and interglacials periods. Interglacial sediments are characterized by high contents of SiO2, Na2O, CaO, K2O, Sr and are depleted in Al2O3, Fe2O3, TiO2, MgO. Extreme enrichments in SiO2 during MIS 11.3 and 9.3 are caused by an enhanced flux of biogenic silica (BSi). Geochemical structure of stage 11 shows very similar peculiarities to features of stage 11 from records of Lake Baikal/SE Siberia and Antarctic ice cores. High contents of TiO2, Fe2O3, MgO, Al2O3, LOI, Ni, Cr and Zr are typical for sediments of glacial stages, among those MIS 7.4 and 6.6 are the most marked. Peaks in the Fe2O3 content and coinciding low Fe2O3/MnO ratios during glacials indicate reducing condition in the sediments. This is also supported by enrichments in P2O5 and MnO, indicating an increased abundance of authigenic fine grained vivianite. Some elemental ratios indicate an enhanced alteration of glacial sediments accompanied by a loss of mobile elements, like Na, Ca, K and Sr. The higher alteration of sediments can presumably be traced back to changes in the sedimentation regime and diagenetic processes, and thus, reflects environmental changes.

  14. Inorganic geochemistry data from Lake El'gygytgyn sediments: marine isotope stages 6-11

    NASA Astrophysics Data System (ADS)

    Minyuk, P. S.; Borkhodoev, V. Y.; Wennrich, V.

    2014-03-01

    Geochemical analyses were performed on sediments recovered by deep drilling at Lake El'gygytgyn in central Chukotka, northeastern Russia (67°30' N; 172°05' E). Major and rare element concentrations were determined using X-ray fluorescence spectroscopy (XRF) on the < 250 μm fraction from 617 samples dated to ca. 440 and 125 ka, which approximates marine isotope stages (MIS) 11 to 6. The inorganic geochemistry indicates significant variations in elemental composition between glaciations and interglaciations. Interglacial sediments are characterized by high contents of SiO2, Na2O, CaO, K2O, and Sr and are depleted in Al2O3, Fe2O3, TiO2, and MgO. An extreme SiO2 enrichment during MIS 11.3 and 9.3 was caused by an enhanced flux of biogenic silica (BSi). The geochemical structure of MIS 11 shows similar characteristics as seen in MIS 11 records from Lake Baikal (southeastern Siberia) and Antarctic ice cores, thereby arguing for the influence of global forcings on these records. High sediment content of TiO2, Fe2O3, MgO, Al2O3, LOI, Ni, Cr, and Zr typifies glacial stages, with the most marked increases during MIS 7.4 and 6.6. Reducing conditions during glacial times are indicated by peaks in the Fe2O3 content and coinciding low Fe2O3/MnO ratios. This conclusion also is supported by P2O5 and MnO enrichment, indicating an increased abundance of authigenic, fine-grained vivianite. Elemental ratios (CIA, CIW, PIA, and Rb/Sr) indicate that glacial sediments are depleted in mobile elements, like Na, Ca, K and Sr. This depletion was caused by changes in the sedimentation regime and thus reflects environmental changes.

  15. Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Feng, Chengyou; Zhao, Yiming; Li, Daxin

    2015-12-01

    The post-collisional magmatism of Qiman Tagh is characterized by the intrusion of voluminous intermediate to felsic granitoids, including syenogranite, monzogranite, granodiorite, tonalite and diorite. The granitoids can be divided into two magmatic suites: Calc-alkaline (CA) and alkaline (Alk), which were emplaced from ~ 236 Ma to ~ 204 Ma. The CA suite contains metaluminous granodiorites and monzogranites. Typical Qiman Tagh CA granodiorites show moderately fractionated REE patterns ((La/Yb)N = 4.35-25.11) with significant negative Eu anomalies (Eu/Eu* = 0.54-1.34), and the primitive mantle-normalized spidergrams show strong depletion of Nb and Sr. The Qiman Tagh CA monzogranites show similar fractionated REE patterns ((La/Yb)N = 2.70-13.5) with less prominent negative Eu anomalies, and the chondrite-normalized spidergrams show strongly depleted Ba, Nb and Sr. The Alk suite, including syenogranite, is highly potassic (K2O/Na2O = 1.09-3.56) and peraluminous (A/CNK = 0.91-1.06). Compared to typical Qiman Tagh CA granodiorites, the Qiman Tagh Alk granitoids can be distinguished by their higher Rb, Nb, Ga/Al, FeO*/MgO, Y/Sr and Rb/Sr, as well as their lower Mg#, MgO, CaO, Al2O3, Sr, Co, V, Eu/Eu*, Ba/Nb, La/Nb, Ba/La and Ce/Nb. The Qiman Tagh CA rocks were most likely to be derived from the partial melting of garnet-amphibolite-facies rocks in the lower crust, leaving behind anhydrous granulite-facies rocks with plagioclase and garnet in the residue. The Alk rocks may have formed by the continued partial melting of granulite-facies rocks at elevated temperatures (> 830 °C).

  16. Origin of the disseminated magnetite pyroxenite in the Tieshanmiao-type iron deposits in the Wuyang region of Henan Province, China

    NASA Astrophysics Data System (ADS)

    Yao, Tong; Li, Hou-Min; Li, Wen-Jun; Li, Li-Xing; Zhao, Chuang

    2015-12-01

    The Tieshanmiao-type iron deposits in the southern North China Craton comprise two types of ores: banded pyroxene-magnetite quartzite (BMQ) and disseminated magnetite pyroxenite (DMP). Whether the quartz-poor DMP represents metamorphosed iron-bearing ultramafic rocks or chemical sedimentary rocks is still unclear. Pyroxene compositions in the DMP are low in Al2O3 and TiO2, which are similar to those from the BMQ and altered marble and pyroxenite. However, the compositions are different from those in the metamorphosed ultramafic rocks. The DMP and BMQ also show similar major element contents, with dominant SiO2, total Fe2O3, CaO, MgO but low contents of Al2O3, TiO2, MnO, Na2O, K2O, indicating a similar source through submarine chemical precipitation with little input from terrestrial or volcanic materials. The BMQ, DMP and magnetite separates from these rocks exhibit seawater-like signatures of REE patterns with LREE depletion, positive La, Gd and Y anomalies and high Y/Ho ratios, indicating that seawater participated in the formation of the iron ores. Combined with strong positive Eu anomalies, we infer that the deposition of the BMQ and DMP was mainly controlled by the mixing of seawater with hydrothermal fluids. The lack of negative Ce anomalies of the DMP, BMQ and magnetite separates indicate an anoxic marine environment. The DMP is rich in carbonate but relatively poor in silica and the BMQ is rich in silica but poor in carbonate. The protoliths of the DMP and BMQ in the Tieshanmiao-type iron deposits are inferred to be quartz-carbonate iron-bearing formations which underwent subsequent metamorphism.

  17. Mineralogy and geochemistry of pseudogley soils and recent alluvial clastic sediments in the Ngog-Lituba region, Southern Cameroon: An implication to their genesis

    NASA Astrophysics Data System (ADS)

    Ndjigui, Paul-Désiré; Ebah Abeng, Sandrine Appolonie; Ekomane, Emile; Nzeukou, Aubin Nzeugang; Ngo Mandeng, Francine Sidonie; Matoy Lindjeck, Marthe

    2015-08-01

    Mineralogical and geochemical investigations have been done on the hydromorphic clays (pseudogley soils and recent alluvial clastic sediments) in the Sanaga Maritime region (Southern Cameroon). Pseudogley soils are developed on gneisses from the Yaoundé Group. They have a dark brown to greyish brown color, with silty clay texture. Their mineral assemblage is made up of kaolinite, goethite, quartz, smectite, rutile, muscovite-illite and feldspars. The alluvial clastic sediments are characterized by variable colors (purple yellow, greenish, dark brown and purple brown) and sandy clay to clay texture. The mineral assemblage of alluvial clays is similar to that of pseudogley soils. SEM observations confirm the presence of kaolinite, smectite, quartz and muscovite-illite. Infrared data show that kaolinite is more orderly in pseudogley than in the alluvial clastic sediments. The Ngog-Lituba gneisses have moderate contents in SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O and several trace elements including REE. High element depletion is noticed in the pseudogley soils except Cr, V, Zr, Pb and REE. However, the alluvial clays are marked by a strong mobilization of LILE (Na, K, Ba, Rb and Sr) and REE, relative to the parent rock and pseudogley soils. The chondrite-normalized REE patterns are homogenous and parallel with Ce-anomalies. The (La/Yb)N shows that the REE fractionation increase from the parent rock to the alluvial clastic sediments. The mineralogical and geochemical features show that the clastic river sediments are derived from the erosion of the neighboring pseudogley materials before hydraulic sorting.

  18. Petrological and geochemical comparition between the upper and lower rhyolite of the Binchuan basaltic profile,Emeishan LIP succession

    NASA Astrophysics Data System (ADS)

    Huixin, H.; Yu, W.

    2013-12-01

    Emeishan basalt is well known worldwide,and it has been well tested from the geochemistry and petrology.However,the eruptional rock sequences is rare reported. Some former work reported that on the top of Emeishan basalt,there is always sit with rhyolite(or felsic-composition,mainly are rhyolite and trachyte ).This work is focusing on newly found rhyolite and trachyte succession at the bottom of Binchuan basalt pofile,and the comparition between the bottom and top felsic-composition of the Binchuan pofile basaltic related succession from petrological and geochemistry points. The bottom rhyolite is lack of phenocryst,and the filling of blowhole is observed quartz only. Otherwise,the phenocryst of the top rhyolite is mainly alkaline-feldspar. The upper layered rhyolite is less sillical rich than the lower part with the content of SiO2 65-70,68-74 respectively. Additionally,the content of TiO2 (0.82-0.87,0.57-0.70),Total Fe2O3(5.15-5.87,2.89-4.88),MgO(2.13-2.64,0.19-0.48),CaO(1.18-1.49,0.13-0.42), P2O5(0.18-0.25,0.02-0.25) of the upper layered rhyolite is more abundant than the lower layer. However,the amount of the Na2O,K2O of both upper and lower rhyolite can not be distinguished clearly as weathering effect suspectively. This may note that the two kinds of rhyolite are formed from different geological process. The upper may due to the crystallization differentiation of the mafic magmas ,while the lower is formed in the result of crust remelting.

  19. PIXE and ICP-AES analysis of early glass unearthed from Xinjiang (China)

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Cheng, H. S.; Ma, B.; Li, Q. H.; Zhang, P.; Gan, F. X.; Yang, F. J.

    2005-10-01

    Early glasses (about 1066 BC-220 AD) unearthed from Xinjiang of China were chemically characterized by using PIXE and ICP-AES. It was found that these glasses were basically attributed to PbO-BaO-SiO2 system, K2O-SiO2 system, Na2O-CaO-SiO2 system and Na2O-CaO-PbO-SiO2 system. The results from the cluster analysis showed that some glasses had basically similar recipe and technology. The PbO-BaO-SiO2 glass and the K2O-SiO2 glass were thought to come from the central area and the south of ancient China, respectively. The part of the Na2O-CaO-SiO2 glass (including the Na2O-CaO-PbO-SiO2 glass) might be imported from Mesopotamia, while the other part might be locally produced.

  20. Influence of ZrO2-Y2O3 and ZrO2-CaO coatings on microstructural and mechanical properties on Mg-1,3Ca- 5,5Zr biodegradable alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Matei, MN; Oprisan, B.; Chicet, D.; Earar, K.

    2016-06-01

    Zirconia (ZrO2) as a ceramic biomaterial facilitates the osteoconductivity in new bone formation around implant. In order to improve the degradation and the surface properties, it is necessary to apply a surface film to satisfy multiple clinical requirements such as mechanical strength, biocompatibility, and degradation rate. Therefore, surface changing to form a tenacious, biocompatible and corrosion resistant modified layer has become a necessary study in biodegradable materials. The aim of the study is to observe the morphology, structural and scratch analysis for some coatings of ZrO2-CaO and ZrO2-Y2O3 having similar thickness deposited with an atmospheric plasma spraying facility, Sulzer Metco 9MCE, using scanning electron microscopy and X-Ray diffraction. Some mechanical aspects were highlighted during the scratch test. Comparative scratch tests were carried out to study the bonding properties between the coatings and the substrates.

  1. Enhanced stability of CaO and/or La2O3 promoted Pd/Al2O3 egg-shell catalysts in partial oxidation of methane to syngas.

    PubMed

    Wang, Jinlong; Yu, Hongbo; Ma, Zhen; Zhou, Shenghu

    2013-01-01

    An egg-shell Pd/Al2O3 catalyst showed higher activity than a regular Pd/Al2O3 catalyst in the partial oxidation of methane to syngas, but a common problem of this reaction is the catalyst deactivation on stream. We attempted to modify the egg-shell catalyst via impregnation with some metal oxide additives. Although the addition of MgO did not show any beneficial effect, the addition of CaO and/or La2O3 significantly improved the stability due to the suppression of carbon deposition and phase transformation of the Al2O3 support. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and thermogravimetric analysis (TGA). PMID:23860276

  2. Synthesis and characterization of 64SiO2-26CaO-5P2O5-5CuO bioactive composition for the growth of hydroxyapatite layer by XRD, Raman and pH studies

    NASA Astrophysics Data System (ADS)

    Kaur, Pardeep; Singh, K. J.

    2016-05-01

    Bioactive sample with the nominal composition of 64SiO2-26CaO-5P2O5-5CuO has been prepared in the laboratory by using the sol-gel technique. The bioactivity of the prepared sample has been analyzed by using the Tris Simulated Body Fluid which has also been prepared in the laboratory. XRD and Raman techniques have been employedto probe the formation of hydroxyapatite layer. pH studies has also been undertaken to check the acidic/non-acidic behavior of sample. Growth of hydroxyapatite layer has been observed after one day on the surface of the sample. Moreover, sample has been observed to be non-acidic in nature.

  3. Geochemistry of Eclogite Xenoliths from Kimberlite Pipe Udachnaya

    NASA Astrophysics Data System (ADS)

    Agashev, Aleksey; Pokhilenko, Ludmila; Pokhilenko, Nikolai

    2016-04-01

    A suite of 17 unique big (1 to 20 kg) and fresh ecligite xenoliths from Udachnaya kimberlite pipe have been studied for their whole-rock and minerals major and trace elements composition.Whole rock major elements composition of the Udachnaya eclogite xenoliths suite have a great variability in their MgO contents (9-19Wt%). Based on major elements composition Udachnaya eclogites can be subdivided in two subsets, high magnesian (Mg# 68.8-81.9) and low magnesian (Mg# 56.8-59). High variations also shown by Al2O3 and Na2O concentrations and high Mg# samples tend to contain less of those oxides then low Mg# samples with some exceptions. Two eclogitic groups are clearly different in style of inter-elements correlations. FeO and CaO contents are positively correlate with MgO in low Mg# group of eclogites but negatively in high Mg# group. The same relations present between Al2O3 contents of eclogite group with their Mg#. Compared to present day MORB composition eclogite samples have similar contents of most of elements with some depletion in TiO2 and P2O5 and enrichment in MgO and K2O. The variability of these elements concentrations can be related to melt extraction while elevated K2O can indicate late metasomatic enrichment. In terms of trace elements composition Udachnaya eclogites are enriched over PM but comparable to that of MORB composition, except significant enrichment in LILE elements (Rb, Ba, K, Sr). The records of both subduction related processes and mantle metasomatism could be find in geochemical features of these rocks. Most of the eclogites show positive Eu anomaly which is direct evidence of plagioclase accumulation in eglogites protolith. Variation of La/Yb ratio (1-11), in majority of samples are the range 2-4 indicates different degrees of samples metasomatic enrichment in LREE. Udachnaya eclogites have range of Sm/Nd ratio from 0.25 to 0.5 (MORB is 0.32) which positive covariates with Nd content. This trend could not be a result of melt extraction nor

  4. K-rich glass-bearing wehrlite xenoliths from Yitong, Northeastern China: petrological and chemical evidence for mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Mercier, J.-C. C.; Lin, Chuanyong; Shi, Lanbin; Menzies, M. A.; Ross, J. V.; Harte, B.

    1996-11-01

    Ultramafic xenoliths in Cenozoic alkali basalts from Yitong, northeast China comprise three types in terms of their modal mineralogy: lherzolite, pyroxenite and wehrlite. The wehrlite suite always contains interstitial pale/brown glass which occupies several per cent by volume of the whole rock. The texture of the wehrlites is porphyroclastic with some large strained grains of olivine (0.5 1 mm) scattered in a very fine grained matrix (0.1 mm), implying a metamorphic origin for the protolith rather than an igneous origin. The host minerals are compositionally zoned, showing evidence of reaction with a melt. Petrological evidence for resorption of spinel (lherzolite) and orthopyroxene (wehrlite) by infiltrating melt further supports the hypothesis that the wehrlites result from interaction between a partial melting residue and a melt, which preferentially replaced primary spinel, Cr-diopside and enstatite to produce secondary clinopyroxene (cpx) + olivine (ol) ± chromite ± feldspar (fd). The composition of the mineral phases supports this inference and, further indicates that, prior to melt impregnation, the protoliths of these wehrlites must have been subjected to at least one earlier Fe-enrichment event. This explanation is consistent with the restricted occurrence of glasses in the wehrlite suite. The glass is generally associated with fine-grained (0.1 mm) minerals (cpx+ol+chromite ±fd). Electron microprobe analyses of these glasses show them to have high SiO2 content (54 60 wt%), a high content of alkalis (Na2O, 5.6 8.0%; K2O, 6.3 9.0%), high Al2O3 (20 24%), and a depletion in CaO (0.13 2.83%), FeO (0.89 4.42%) and MgO (0.29 1.18%). Ion probe analyses reveal a light rare earth element-enrichment in these glasses with chondrite normalised (La)n = 268 480. The high K2O contents in these glasses and their mode of occurrence argue against an origin by in-situ melting of pre-existent phases. Petrographic characteristics and trace element data also exclude the

  5. Chemo-stratigraphy in the Murray Formation Using ChemCam

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Anderson, R. B.; Bridges, N.; Bridges, J.; Calef, F. J., III; Clegg, S. M.; Le Deit, L.; Fisk, M. R.; Forni, O.; Gasnault, O.; Kah, L. C.; Kronyak, R. E.; Lanza, N.; Lasue, J.; Mangold, N.; Maurice, S.; Milliken, R.; Ming, D. W.; Nachon, M.; Newsom, H. E.; Rapin, W.; Stack, K.; Sumner, D. Y.; Wiens, R. C.

    2015-12-01

    Curiosity has completed a detailed chemo-stratigraphy analysis at the Pahrump exposure of the Murray formation. In total >570 chemical measurements and supporting remote micro images to classify texturally were collected. Chemical trends with both stratigraphic position and with texture were evaluated. From these data emerges a complex aqueous history where sediments have interacted with fluids with variable chemistry in distinct episodes. The ChemCam data collected at the nearby "Garden City" (GC) vein complex provides constraints on the chemical evolution of the Pahrump. GC is thought be stratigraphically above the Pahrump outcrop. Fluids producing the veins likely also migrated through the Pahrump sediments. Multiple episodes of fluids are evident at GC, forming distinct Ca sulfate, F-rich, enhanced MgO, and FeO-rich veins. These different fluid chemistries could be the result of distinct fluids migrating through the section from a distance with a pre-established chemical signature, fluids locally evolved from water rock interactions, or both. Texturally rocks have been classified into two distinct categories: fine grained or as cross-bedded sandstones. The sandstones have significantly lower SiO2, Al2O3, and K2O and higher FeO, and CaO. Fine grained rocks have further been sub-classified as resistant and recessive with other textural features such as laminations and pits noted.The strongest chemical trend in the fine-grained sandstones shows enhancements in MgO and FeO in erosion-resistant materials compared to fine grained recessive units, suggesting that increased abundance of Mg- and/or iron-rich cements may provide additional strength. The MgO and FeO variations with texture are independent of stratigraphic locations (e.g resistant material at both the bottom and top of the outcrop both are enhanced in MgO and FeO). The presence of the GC MgO and FeO rich veins provides additional evidence for fluids rich in these elements were present in the outcrop. Other

  6. Characteristics of chemical weathering and water-rock interaction in Lake Nyos dam (Cameroon): Implications for vulnerability to failure and re-enforcement

    NASA Astrophysics Data System (ADS)

    Fantong, Wilson Y.; Kamtchueng, Brice T.; Yamaguchi, Kohei; Ueda, Akira; Issa; Ntchantcho, Romaric; Wirmvem, Mengnjo J.; Kusakabe, Minoru; Ohba, Takeshi; Zhang, Jing; Aka, Festus T.; Tanyileke, Gregory; Hell, Joseph V.

    2015-01-01

    For the first time, comprehensive study of hydrogeochemistry of water seeps, role of chemical weathering on dam failure, estimation of minimum width of dam to resist failure and simulation of changes in dissolved ions and secondary mineral was conducted on the Lake Nyos dam. The salient results and conclusions were; the dam spring water represented a mixture of 60-70% rainwater and 30-40% Lake water (from 0 to -40 m). The chemistry of the observed waters was Ca-HCO3 for rainwater, Ca-Mg-HCO3 in boreholes, and Mg-Ca-HCO3- for spring water. The relative rate at which ions dissolved in water was HCO3- > Mg2+ > Ca2+ > Na+ > SiO2 > K+ > NO3- > SO42- > Cl-. Weathering of rocks resulted in the formation of clay minerals such as kaolinite and smectite. Relative mobility of elements compared to Alumina (Al2O3) indicated that in monzonites there was a loss of CaO, Na2O, K2O, P2O5 and gain of SiO2, Fe2O3, TiO2, MnO and MgO, while in basalts there was a loss of SiO2, Fe2O3, Ca2O, NaO, MgO and gain of TiO2, K2O and P2O5. Values of chemical alteration index that ranged from 49 to 82 suggest a weak to intermediate categories of chemical weathering that occurred at a rate of 5.7 mm/year. Paired to that rate, which suggests that the dam is not vulnerable to failure at the previously thought time scale, some other processes (physical weathering, secondary mineral formation and lake overflow) can cause instant failure. Hydrostatic pressure of 1.6 GN generated by Lake water can be supported only when the width of the dam is greater than 19 m. PHREEQC-based simulation for 10 years indicates decoupling of Ca and Mg, and Na and Mg. Multidisciplinary monitoring of the dam is advocated.

  7. A study of physical and optical absorption spectra of VO2+ ions in potassium and sodium oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.

  8. O(-) identified at high temperatures in CaO-based catalysts for oxidative methane dimerization

    NASA Technical Reports Server (NTRS)

    Freund, F.; Maiti, G. C.; Batllo, F.; Baerns, M.

    1990-01-01

    A technique called charge-distribution analysis (CDA) is employed to study mobile charge carriers in the oxidation catalysts CaO, CaO with 11 percent Na2O, and CaO with 10 percent La2O3. A threshold temperature of about 550-600 C is identified at which highly mobile charge carriers are present, and the CDA studies show that they are O(-) states. The present investigation indicates the usefulness of CDA in catalysis research with pressed powder samples and gas/solid reactions.

  9. Leaching of silica bands and concentration of magnetite in Archean BIF by hypogene fluids: Beebyn Fe ore deposit, Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Duuring, Paul; Hagemann, Steffen

    2013-03-01

    The ~2,752-Ma Weld Range greenstone belt in the Yilgarn Craton of Western Australia hosts several Fe ore deposits that provide insights into the role of early hypogene fluids in the formation of high-grade (>55 wt% Fe) magnetite-rich ore in banded iron formation (BIF). The 1.5-km-long Beebyn orebody comprises a series of steeply dipping, discontinuous, <50-m-thick lenses of magnetite-(martite)-rich ore zones in BIF that extend from surface to vertical depths of at least 250 m. The ore zones are enveloped by a 3-km-long, 150-m-wide outer halo of hypogene siderite and ferroan dolomite in BIF and mafic igneous country rocks. Ferroan chlorite characterises 20-m-wide proximal alteration zones in mafic country rocks. The magnetite-rich Beebyn orebody is primarily the product of hypogene fluids that circulated through reverse shear zones during the formation of an Archean isoclinal fold-and-thrust belt. Two discrete stages of hypogene fluid flow caused the pseudomorphic replacement of silica-rich bands in BIF by Stage 1 siderite and magnetite and later by Stage 2 ferroan dolomite. The resulting carbonate-altered BIF is markedly depleted in SiO2 and enriched in CaO, MgO, LOI, P2O5 and Fe2O3(total) compared with the least-altered BIF. Subsequent reactivation of these shear zones and circulation of hypogene fluids resulted in the leaching of existing hypogene carbonate minerals and the concentration of residual magnetite-rich bands. These Stage 3 magnetite-rich ore zones are depleted in SiO2 and enriched in K2O, CaO, MgO, P2O5 and Fe2O3(total) relative to the least-altered BIF. Proximal wall rock hypogene alteration zones in mafic igneous country rocks (up to 20 m from the BIF contact) are depleted in SiO2, CaO, Na2O, and K2O and are enriched in Fe2O3(total), MgO and P2O5 compared with distal zones. Recent supergene alteration affects all rocks within about 100 m below the present surface, disturbing hypogene mineral and the geochemical zonation patterns associated with

  10. Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure

    USGS Publications Warehouse

    Katongo, C.; Koeberl, C.; Witzke, B.J.; Hammond, R.H.; Anderson, R.R.

    2004-01-01

    The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock-metamorphosed minerals. The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2, (29-58 wt%), Al2O3 (6-14 wt%), and CaO (7-30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75-99), coupled with the Al2O3-(CaO*,+Na2O -K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson

  11. Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure

    NASA Astrophysics Data System (ADS)

    Katongo, Crispin; Koeberl, Christian; Witzke, Brian J.; Hammond, Richard H.; Anderson, Raymond R.

    2004-01-01

    The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock-metamorphosed minerals. The shocked minerals represent impact ejecta from the 74-Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84-21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal-unit samples, mainly from the Gregory 84-21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2 (29-58 wt%), Al2O3 (6-14 wt%), and CaO (7-30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75-99), coupled with the Al2O3-(CaO*+Na2O)-K2O (A-CN'-K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present-day crater radius of Manson

  12. Attaching an alkali metal atom to an alkaline earth metal oxide (BeO, MgO, or CaO) yields a triatomic metal oxide with reduced ionization potential and redirected polarity.

    PubMed

    Nowiak, Grzegorz; Skurski, Piotr; Anusiewicz, Iwona

    2016-04-01

    The existence of a series of neutral triatomic metal oxides MON and their corresponding cations MON (+) (M = Be, Mg, Ca; N = Li, Na, K) was postulated and verified theoretically using ab initio methods at the CCSD(T)/6-311+G(3df)//MP2/6-311+G(3df) level of theory. The calculations revealed that the vertical ionization potentials (IPs) of the MON radicals (calculated using the outer-valence Green's function technique (OVGF) with the 6-311+G(3df) basis set) were ca. 2-3 eV smaller than the IPs of the corresponding MO and NO systems or that of the isolated M atom. Population analysis of the neutral triatomic MON molecules and their corresponding MO counterparts indicated that the attachment of an alkali metal atom to any oxide MO (BeO, MgO, CaO) reverses its polarity, which manifests itself as the redirection of the dipole moment vector. PMID:26994021

  13. Proto-Pacific-margin source for the Ordovician turbidite submarine fan, Lachlan Orogen, southeast Australia: Geochemical constraints

    NASA Astrophysics Data System (ADS)

    Offler, R.; Fergusson, C. L.

    2016-04-01

    The Early Palaeozoic proto-Pacific Pacific margin of Gondwana was characterised by a huge turbidite submarine fan with abundant clastic detritus derived from unknown sources within Gondwana. These deposits are widespread in the Lachlan Orogen of southeast Australia and include the Ordovician Adaminaby Group. Here we show that the mudstones and sandstones of the Adaminaby Group have chemical compositions that indicate the detritus in them was derived from a felsic, continental source similar in composition to Post Archean Australian Shales (PAAS). Chondrite normalised REE patterns showing LREE enrichment, flat PAAS normalised patterns and elemental ratios La/Sc, Cr/Th, Cr/V, Th/Sc and Th/U, have been used to support this interpretation. The dominance of quartz, and to a lesser degree plagioclase and biotite in the sandstones, suggests that the source was mainly granodioritic to tonalitic in composition. Th/Yb and Ta/Yb ratios indicate that the source was probably calc-alkaline, continental and shoshonitic. In addition, the presence of detrital muscovite, low-grade metamorphic and felsic volcanic clasts, demonstrates that a low-grade metamorphic terrane and volcanic arc contributed to the detritus observed in the samples. The presence of well-rounded zircons and tourmalines, very high Zr contents, high Zr/Sc and higher Cr/V ratios in some samples particularly in the Shoalhaven River area, indicate that some of the detritus was recycled. SiO2 versus (Al2O3 + K2O + Na2O) plots suggest the source areas experienced conditions varying from humid/semi-humid to semi-arid. Textural features and weathering trends of samples from all locations follow a curved pathway on Al2O3 - (CaO* + Na2O) - K2O (ACNK) diagrams, and indicate that the clays formed from weathering had been K-metasomatised prior to penetrative deformation. Chemical indices of alteration (CIA) reveal that even the freshest sandstones are altered and others are moderately to strongly altered. Discrimination

  14. Glass and mineral analyses from first deposits of Peach Spring Supereruption (SW USA) illuminate initial tapping of a zoned magma chamber

    NASA Astrophysics Data System (ADS)

    Mccracken, R. G.; Miller, C. F.; Buesch, D.; Gualda, G. A.; Covey, A.

    2012-12-01

    The Peach Spring supereruption (18.78±0.02 Ma) was sourced from Silver Creek caldera in the southern Black Mountains, Arizona (Ferguson et al. in press). The resulting ignimbrite, the Peach Spring Tuff (PST), blanketed >32,000 km2 of Arizona, California, and Nevada (Buesch, 1993). Underlying the ignimbrite is a thin (≤ 1m thick) basal layered deposit that consists of texturally distinct layers 1a-e (Valentine et al. 1989) and is present up to ~100 km from the source caldera. Basal layered deposits contain the first material erupted during the PST supereruption, preceding the main eruption event. Petrography and geochemistry of minerals and pumice clasts from basal layered deposits collected ~15-100 km from the caldera, combined with a survey of glass and crystal compositions from both outflow and basal deposits, permit (1) comparisons with the overlying ignimbrite, and (2) insights into the initial stages of the supereruption and extraction of magma from the chamber. Pumice clasts from a pumice-rich layer (1a2) of the basal deposit were characterized by LA-ICPMS and SEM. Unaltered glass has a uniform high-Si rhyolite composition (76.7% SiO2, 13.0% Al2O3, 3.6% Na2O, 5.3% K2O, 0.6% FeO, <0.1% MgO, 0.6% CaO, 0.1% TiO2). Mildly altered glass is similar but has lower Na2O and higher K2O. Pumice clasts are relatively crystal poor (<10% phenocrysts) with an assemblage dominated by sanidine (~Or55Ab43An2), with lesser plagioclase (~Ab73An19Or8), minor hornblende and biotite, and accessory magnetite, sphene, zircon, chevkinite, and apatite; no quartz was identified. Initial LA-ICPMS results for glass reveal REE patterns with large negative Gd (0.21: i.e. U-shaped REE pattern) and Eu (0.31) anomalies, very low Ba and Sr (≤10 ppm), and high Rb (~250 ppm). These compositions are essentially identical to those of the most common pumice from distal outflow ignimbrite, but very different from crystal-rich (>30%) trachyte pumice that dominates the intracaldera fill and is

  15. Geochemistry and petrogenesis of Paleo-Proterozoic granitoids from Mahakoshal Supracrustal Belt (MSB), CITZ

    NASA Astrophysics Data System (ADS)

    Yadav, Bhupendra; Ahmad, Talat; Kaulina, Tatiana; Bayanova, Tamara

    2015-04-01

    Voluminous granitic magmatism of Proterozoic age occupies a vast expanse at the southern margin of Mahakoshal Supracrustal Belt (MSB), CITZ. The present study focuses on eastern part of this belt and discusses possible crustal evolution processes based on the geochemical, geochronological and Sm-Nd isotopic constraints on these rocks. The rocks present are predominantly granites and gneisses viz. grey to pink granite gneiss and leuco- to mesocratic granites. In general these rocks are medium to coarse grained and microscopically show typical granitic assemblages with apatite, titanite, zircon and allanite as accessories. Mineralogically these rocks are grouped into three categories viz. Hbl-Bt granite gneiss, Bt- granite gneiss and Bt-granite. Major oxide characteristics show that the Hbl-Bt granite Gneiss are metaluminous (ASI~0.98), whereas Bt- granite gneiss (ASI=1.05-1.22) and Bt- granite (ASI=1.03-1.21) are weakly peraluminous to strongly peraluminous. In terms of Fe* number and alkali-lime index these rocks belong to magnesian and calc-alkalic series respectively. Overall these rocks range from 59.43 to 72.01 wt.% SiO2 and have low Na2O content (average ~2.60 wt.%) with average ~4.02 wt.% K2O and high K2O/Na2O ratio. On Harker variation diagrams, all rock types show negative correlation for TiO2, P2O5, CaO, MnO, MgO, Fe2O3T and Al2O3 against SiO2 suggesting fractionation of Pl-Hbl-Ttn-Mag-Ap during evolution of these rocks. On chondrite-normalized Rare Earth Element (REE) plot, the Bt-granite is enriched in LREE ((La/Sm)N ~10.21) and show negative Eu anomaly (Eu/Eu*=0.39) with depleted HREE ((Gd/Yb)N ~4.38). The Hbl-Bt granite gneiss shows LREE ((La/Sm)N ~6.68) depletion and enriched HREE ((Gd/Yb)N ~2.05) patterns compared to Bt-granite, with negative Eu anomaly (Eu/Eu*=0.44). Whereas Bt-gneiss is moderate in comparison with LREE enrichment ((La/Sm)N ~9.17) and HREE depletion ((Gd/Yb)N ~3.02) with weak negative Eu anomaly (Eu/Eu*=0.60). Multi-elemental plot

  16. Physico-chemical conditions of crystallization of the Guli ulrabasic massif (North Part of the Siberian Platform): evidence from melt inclusions

    NASA Astrophysics Data System (ADS)

    Simonov, Vladimir; Vasiliev, Yuri; Kotlyarov, Alexey; Stupakov, Sergey

    2014-05-01

    Conditions of formation of the Guli ultrabasic massif (Maimecha Kotui Province in the North Part of the Siberian Platform) attract attention of numerous researchers. For the solution of genetic problems of various rocks from this ultramafic complex the data on melt inclusions in minerals has been earlier used (Sokolov et al., 1999; Rass, Plechov, 2000; Sokolov, 2003; Panina, 2006). At the same time, formation of dunites, occupying the main volume of the Guli massif, remain almost not considered by means of thermobarogeochemical methods and the role of magmatic processes in this case is not ascertained. As a result of melt inclusions study in the Cr-spinel the new data on physical and chemical parameters of dunite crystallization in the Guli ulrabasic massif was obtained. On the ratio (Na2O + K2O) - SiO2 the majority of analyses of glasses and calculated compositions of inclusions settle down in the field of subalkaline series. On the diagram MgO - SiO2 bulk chemical compositions of inclusions (with the magnesium content of 19-28 wt. %) correspond to picrites and picrite-basalts. They are in close association with the data on inclusions in the Cr-spinel from dunites of Konder (Siberian Platform) and Nizhnii Tagil (Ural Mountains) platinum-bearing ultrabasic massifs and also are situated near to the field of inclusions in the olivine phenocrysts from meimechites (Maimecha Kotui Province in the North Part of the Siberian Platform). Similarity of melt inclusions in the Cr-spinel from the dunite of the Guli massif and in the olivine from meimechites is established on the variety of petrochemical components - Al2O3, CaO, Na2O, K2O. The calculated compositions of inclusions from dunites coincide mostly with the data on inclusions from meimechites, while glasses of inclusions from Cr-spinel contain less titan and magnesium. As a whole for the melts of the Maimecha Kotui Province (that form both dunites of the Guli massif and meimechites) much higher contents of TiO2 (from

  17. Crystallization of tholeiitic basalt in Alae Lava Lake, Hawaii

    USGS Publications Warehouse

    Peck, D.L.; Wright, T.L.; Moore, J.G.

    1966-01-01

    . Ferric-ferrous ratios suggest that oxidation with maximum intensity between 550??C and 610??C moved downward in the crust as it cooled; this was followed by reduction at a temperature of about 100??C. The crystallized basalt is a homogeneous fine-grained rock containing on the average 48.3 percent by volume intergranular pyroxene (augite > pigeonite), 34.2 percent plagioclase laths (An60 70), 7.9 percent interstitial glass, 6.9 percent opaques (ilmenite > magnetite), 2.7 percent olivine (Fo70 80), and a trace of apatite. Chemical analyses of 18 samples, ranging from initially quenched pumice to lava cored more than a year after the eruption from the center and from near the base of the lake, show little variation from silica-saturated tholeiitic basalt containing 50.4 percent SiO2, 2.4 percent Na2O, and 0.54 percent K2O. Apparently there was no significant crystal settling and no appreciable vapor-phase transport of these components during the year of crystallization. However, seven samples of interstitial liquid that had been filter-pressed into gash fractures and drill holes from partly crystalline mush near the base of the crust show large differences from the bulk composition of the solidified crust-lower MgO, CaO, and Al2O3; and higher total iron, TiO2, Na2O, K2O, P2O5, and F, and, in most samples, SiO2. The minor elements Ba, Ga, Li, Y, and Yb and possibly Cu tend to be enriched in the filter-pressed liquids, and Cr and possibly Ni tend to be depleted. ?? 1966 Stabilimento Tipografico Francesco Giannini & Figli.

  18. The thermal stability of sideronatrite and its decomposition products in the system Na2O-Fe2O3-SO2-H2O

    NASA Astrophysics Data System (ADS)

    Ventruti, Gennaro; Scordari, Fernando; Della Ventura, Giancarlo; Bellatreccia, Fabio; Gualtieri, Alessandro F.; Lausi, Andrea

    2013-09-01

    The thermal stability of sideronatrite, ideally Na2Fe3+(SO4)2(OH)·3(H2O), and its decomposition products were investigated by combining thermogravimetric and differential thermal analysis, in situ high-temperature X-ray powder diffraction (HT-XRPD) and Fourier transform infrared spectroscopy (HT-FTIR). The data show that for increasing temperature there are four main dehydration/transformation steps in sideronatrite: (a) between 30 and 40 °C sideronatrite transforms into metasideronatrite after the loss of two water molecules; both XRD and FTIR suggest that this transformation occurs via minor adjustments in the building block. (b) between 120 and 300 °C metasideronatrite transforms into metasideronatrite II, a still poorly characterized phase with possible orthorhombic symmetry, consequently to the loss of an additional water molecule; X-ray diffraction data suggest that metasideronatrite disappears from the assemblage above 175 °C. (c) between 315 and 415 °C metasideronatrite II transforms into the anhydrous Na3Fe(SO4)3 compound. This step occurs via the loss of hydroxyl groups that involves the breakdown of the [Fe3+(SO4)2(OH)]{∞/2-} chains and the formation of an intermediate transient amorphous phase precursor of Na3Fe(SO4)3. (d) for T > 500 °C, the Na3Fe(SO4)3 compound is replaced by the Na-sulfate thenardite, Na2SO4, plus Fe-oxides, according to the Na3Fe3+(SO4)3 → 3/2 Na2(SO4) + 1/2 Fe2O3 + SOx reaction products. The Na-Fe sulfate disappears around 540 °C. For higher temperatures, the Na-sulfates decomposes and only hematite survives in the final product. The understanding of the thermal behavior of minerals such as sideronatrite and related sulfates is important both from an environmental point of view, due to the presence of these phases in evaporitic deposits, soils and sediments including extraterrestrial occurrences, and from the technological point of view, due to the use of these materials in many industrial applications.

  19. Enhancement of luminescence properties in Er3+ doped TeO2-Na2O-PbX (X=O and F) ternary glasses.

    PubMed

    Kumar, Kaushal; Rai, S B; Rai, D K

    2007-04-01

    An enhancement of luminescence properties in Er3+ doped ternary glasses is observed on the addition of PbO/PbF2. The infrared to visible upconversion emission bands are observed at 410, 525, 550 and 658 nm, due to the 2H9/2-->4I15/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 transitions respectively, on excitation with 797 nm laser line. A detailed study reveals that the 2H9/2-->4I15/2 transition arises due to three step upconversion process while other transitions arise due to two step absorption. On excitation with 532 nm radiation, ultraviolet and violet upconversion bands centered at 380, 404, 410 and 475 nm wavelengths are observed along with one photon luminescence bands at 525, 550, 658 and 843 nm wavelengths. These bands are found due to the 4G11/2-->4I15/2, 2P3/2-->4I13/2, 2H9/2-->4I15/2, 2P3/2-->4I11/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 and 4S3/2-->4I13/2 transitions, respectively. Though incorporation of PbO and PbF2 both enhances fluorescence intensities however, PbF2 content has an important influence on upconversion luminescence emission. The incorporation of PbF2 enhances the red emission (658 nm) intensity by 1.5 times and the violet emission (410 nm) intensity by 2.0 times. A concentration dependence study of fluorescence reveals the rapid increase in the red (4F9/2-->4I15/2) emission intensity relative to the green (4S3/2-->4I15/2) emission with increase in the Er3+ ion concentration. This behaviour has been explained in terms of an energy transfer by relaxation between excited ions. PMID:16872889

  20. Boson mode, Medium Range Structure and Intermediate Phase (IP) in (Na2O)x(B2O3)1-x glasses

    NASA Astrophysics Data System (ADS)

    Vignarooban, K.; Boolchand, P.; Micoulaut, M.; Malki, M.

    2012-02-01

    Raman scattering of titled glasses are examined using a T64000 Dispersive system. Scattering strengths of the Boson mode (40 cm-1, 70 cm-1) and the Boroxyl ring (BR) mode (808 cm-1) are found to decrease with increasing x at the same rate in the 0 < x < 20% soda range. Apparently, the 2D character of BRs embedded in a 3D network gives rise to the Boson mode.ootnotetextM. Flores-Ruiz and G. Naumis, PRB, 2011. 83: p. 184204 The triad of modes (705, 740, 770 cm-1) near the 808 cm-1 mode are found to display a maximum in scattering strength near x = 37% (705 cm-1), 33% (740 cm-1) and 25% (770 cm-1), suggesting that these are also ring modes of Na-tripentaborate (STPB), Na-diborate (SDB) and Na-triborate (STB) super-structures. Variations in Raman scattering strengths also suggest that STB percolate near x = 20%, the stress transition, while the STPB and SDTB percolate near x = 40%, the rigidity transition. These transitions were inferred from m-DSC experiments that show an intermediate phase in the 20% < x < 40% range in dry and homogeneous glasses.

  1. Moessbauer Effect Study of Bi2O3. Na2O. B2O3. Fe2O3 Glass System

    SciTech Connect

    Salah, S.H.; Kashif, I.; Salem, S.M.; Mostafa, A.G.; El-Manakhly, K.A.

    2005-04-26

    Sodium-tetra-borate host glass containing both bismuth and iron cations were prepared obeying the composition (Na2B4O7)0.75 (Fe2O3)0.25-x (Bi2O3)x [where x = 0.0, 0.05, 0.10, 0.15, 0.20, and 0.25 mol.%]. X-ray diffraction indicated that all samples were in a homogeneous glassy phase. Moessbauer effect results showed that all iron ions appeared as Fe3+ ions occupying tetrahedral coordination state. The covalency of the Fe-O bond increased as bismuth oxide was gradually increased. IR measurements indicated the presence of some non-bridging oxygens and confirmed that iron ions occupy the tetrahedral coordination state. It was found also that, as Bi2O3 was gradually increased both magnetic susceptibility and specific volume decreased, while both density and molar volume increased.

  2. In vivo behavior of bioactive phosphate glass-ceramics from the system P2O5-Na2O-CaO containing TiO2.

    PubMed

    Monem, Ahmed Soltan; ElBatal, Hatem A; Khalil, Elsayed M A; Azooz, Moenis A; Hamdy, Yousry M

    2008-03-01

    Soda lime phosphate bioglass-ceramics with incorporation of small additions of TiO2 were prepared in the metaphosphate and pyrophosphate region, using an appropriate two-step heat treatment of controlled crystallization defined by differential thermal analysis results. Identification and quantification of crystalline phases precipitated from the soda lime phosphate glasses were performed using X-ray diffraction analysis. Calcium pyrophosphate (beta-Ca2P2O7), sodium metaphosphate (NaPO3), calcium metaphosphate (beta-Ca(PO3)2), sodium pyrophosphate (Na4P2O7), sodium calcium phosphate (Na4Ca(PO3)6) and sodium titanium phosphate (Na5Ti(PO4)3) phases were detected in the prepared glass-ceramics. The degradation of the prepared glass-ceramics were carried out for different periods of time in simulated body fluid at 37 degrees C using granules in the range of (0.300-0.600 mm). The released ions were estimated by atomic absorption spectroscopy and the surface textures were measured by scanning electron microscopy. Evaluation of in vivo bioactivity of the prepared glass-ceramics was carried through implanting the samples in the rabbit femurs. The results showed that the addition of 0.5 TiO2 mol% enhanced the bioactivity while further increase of the TiO2 content decreased the bioactivity. The effect of titanium dioxide on the bioactivity was interpreted on the basis of its action on the crystallization process of the glass-ceramics. PMID:17701314

  3. Alkali element enrichments on the BABBs at the IODP Expedition 333 Site C0012 in the northern Shikoku Basin

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Nakamura, K.; Fujinaga, K.

    2015-12-01

    The Shikoku Basin is a back arc basin located westside of the Izu-Ogasawara (Bonin) arc, spreading was from 25 to 15 Ma. The drilling of the DSDP, ODP and IODP recovered the backarc basin basalt (BABB) of the Shikoku Basin. Site C0012, south of the Kii Peninsula, was operated during the IODP Exp 333, and BABB was recovered 100m thickness under the 520m of sediment. This BABB is divided into upper aphyric pillow (Unit 1) and lower massive flow (Unit 2) divided at the 560 mbsf, and show variable degree of alteration, clay mineral and zeolite depositions. SiO2 and MgO contents of these basalts are 47-55 and 5-8 wt%. These basalts show wide variation of enrichment of alkali elements, 2.3-7.5 and 0.4-4.2 wt% of Na2O and K2O. Na2O+K2O contents show 3.2-8.0 wt%, and 2 wt% higher trends than other BABBs in the Shikoku Basin at the same SiO2 contents. Na2O and K2O show proportional and anti-proportional trends with increasing LOI. Therefore, both alkali element enrichments in these rocks are caused by secondary mineralization, and host phase of Na2O is hydrous and that of K2O is anhydrous minerals. Secondary mineral phases was mainly identified by XRD. The identified host phases of Na are analcime and thomsonite. Analcime is observed in rocks of more than 4 wt% of Na2O. Chlorite and smectite are identified to clay minerals. This mineral assemblage indicates the high-temperature zeolite facies alteration. The host phases of K are mainly identified into K-feldspar. We assume that secondary mineralization of K-fd is associated with low-temperature albitization. Compared to the lithostratigraphy, the Na enrichment is prominent in the Unit 1 and upper 20 m of the Unit 2, and the K enrichment is prominent in lower part of the Unit 2. We consider that the Na enrichment associated with zeolite depositions occurred under high water/rock ratio with active hydrothermal circulation because of high water permeability of pillow lava, and K enrichment associated with albitization occurred

  4. Binary, ternary and quaternary silicates of CaO, BaO and ZnO in high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD)

    SciTech Connect

    Kerstan, Marita; Mueller, Matthias; Ruessel, Christian

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We examined the thermal expansion of various silicates of CaO, BaO and ZnO. Black-Right-Pointing-Pointer Thermal expansions were determined by dilatometry and high-temperature X-ray diffraction. Black-Right-Pointing-Pointer High-temperature X-ray diffraction enabled to determine anisotropic thermal expansion. Black-Right-Pointing-Pointer CaSiO{sub 3}, Ca{sub 3}Si{sub 2}O{sub 7} and BaCa{sub 2}Si{sub 3}O{sub 9} exhibit the highest thermal expansion. Black-Right-Pointing-Pointer CaSiO{sub 3}, Ca{sub 3}Si{sub 2}O{sub 7} and BaCa{sub 2}Si{sub 3}O{sub 9} are suitable as components in high temperature seals. -- Abstract: Gas-tight seals based on glasses suitable for joining of materials with high thermal expansion coefficients are for example required for solid-oxide fuel cells. If these seals are to be used at high temperatures, they can only be fabricated from glasses which enable the crystallization of phases with high thermal expansion coefficients. This paper reports on some components from systems suitable for high thermal expansion seals: binary calcium silicates, CaSiO{sub 3}, Ca{sub 3}Si{sub 2}O{sub 7} and Ca{sub 2}SiO{sub 4} zinc silicates, Zn{sub 2}SiO{sub 4}, ternary silicates of BaO, CaO and ZnO, BaCa{sub 2}Si{sub 3}O{sub 9}, Ca{sub 2}ZnSi{sub 2}O{sub 7}, and one quaternary silicate, Ba{sub 2}CaZn{sub 2}Si{sub 6}O{sub 17,} studied by high-temperature X-ray diffraction. Only CaSiO{sub 3}, Ca{sub 3}Si{sub 2}O{sub 7} and BaCa{sub 2}Si{sub 3}O{sub 9} exhibit thermal expansion coefficients in the range suitable for high thermal expansion seals of 11.2-11.8 Multiplication-Sign 10{sup -6} K{sup -1} (100-800 Degree-Sign C). The thermal expansions strongly depend on the respective crystallographic axis. The coefficient of thermal expansion of a sealing glass is not only affected by the thermal expansions of the crystalline phases, but also by that of the residual glassy phase as well as by the elastic properties. The phase

  5. Variation of photoluminescence features in Pr{sup 3+} doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    SciTech Connect

    Balakrishna, A.; Rajesh, D.; Babu, S.; Ratnakaram, Y. C.

    2015-06-24

    Pr{sup 3+} (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10MgO-10CaO and 49Li{sub 2}B{sub 4}O{sub 7}-20BaF{sub 2}-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr{sup 3+} ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (A{sub T}), branching ratios (β) and stimulated emission cross-section (σ{sub P}). Stimulated emission cross-section (σ{sub p}) of prominent emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} and {sup 1}D{sub 2}→{sup 3}H{sub 4} of Pr{sup 3+} ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, {sup 3}P{sub 0}→{sup 3}H{sub 4} posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.

  6. Structural changes correlated with magnetic spin state isomorphism in the S2 state of the Mn4CaO5 cluster in the oxygen-evolving complex of photosystem II

    DOE PAGESBeta

    Chatterjee, Ruchira; Han, Guangye; Kern, Jan; Gul, Sheraz; Fuller, Franklin D.; Garachtchenko, Anna; Young, Iris D.; Weng, Tsu -Chien; Nordlund, Dennis; Alonso-Mori, Roberto; et al

    2016-05-09

    The Mn4CaO5 cluster in photosystem II catalyzes the four-electron redox reaction of water oxidation in natural photosynthesis. This catalytic reaction cycles through four intermediate states (Si, i = 0 to 4), involving changes in the redox state of the four Mn atoms in the cluster. Recent studies suggest the presence and importance of isomorphous structures within the same redox/intermediate S-state. It is highly likely that geometric and electronic structural flexibility play a role in the catalytic mechanism. Among the catalytic intermediates that have been identified experimentally thus far, there is clear evidence of such isomorphism in the S2 state, withmore » a high-spin (5/2) (HS) and a low spin (1/2) (LS) form, identified and characterized by their distinct electron paramagnetic resonance (EPR spectroscopy) signals. We studied these two S2 isomers with Mn extended X-ray absorption fine structure (EXAFS) and absorption and emission spectroscopy (XANES/XES) to characterize the structural and electronic structural properties. The geometric and electronic structure of the HS and LS S2 states are different as determined using Mn EXAFS and XANES/XES, respectively. The Mn K-edge XANES and XES for the HS form are different from the LS and indicate a slightly lower positive charge on the Mn atoms compared to the LS form. Based on the EXAFS results which are clearly different, we propose possible structural differences between the two spin states. As a result, such structural and magnetic redox-isomers if present at room temperature, will likely play a role in the mechanism for water-exchange/oxidation in photosynthesis.« less

  7. Rectal cancer delivery of radiotherapy in adequate time and with adequate dose is influenced by treatment center, treatment schedule, and gender and is prognostic parameter for local control: Results of study CAO/ARO/AIO-94

    SciTech Connect

    Fietkau, Rainer . E-mail: rainer.fietkau@med.uni-rostock.de; Roedel, Claus; Hohenberger, Werner; Raab, Rudolf; Hess, Clemens; Liersch, Torsten; Becker, Heinz; Wittekind, Christian; Hutter, Matthias; Hager, Eva; Karstens, Johann; Ewald, Hermann; Christen, Norbert; Jagoditsch, Michael; Martus, Peter; Sauer, Rolf

    2007-03-15

    Purpose: The impact of the delivery of radiotherapy (RT) on treatment results in rectal cancer patients is unknown. Methods and Materials: The data from 788 patients with rectal cancer treated within the German CAO/AIO/ARO-94 phase III trial were analyzed concerning the impact of the delivery of RT (adequate RT: minimal radiation RT dose delivered, 4300 cGy for neoadjuvant RT or 4700 cGy for adjuvant RT; completion of RT in <44 days for neoadjuvant RT or <49 days for adjuvant RT) in different centers on the locoregional recurrence rate (LRR) and disease-free survival (DFS) at 5 years. The LRR, DFS, and delivery of RT were analyzed as endpoints in multivariate analysis. Results: A significant difference was found between the centers and the delivery of RT. The overall delivery of RT was a prognostic factor for the LRR (no RT, 29.6% {+-} 7.8%; inadequate RT, 21.2% {+-} 5.6%; adequate RT, 6.8% {+-} 1.4%; p = 0.0001) and DFS (no RT, 55.1% {+-} 9.1%; inadequate RT, 57.4% {+-} 6.3%; adequate RT, 69.1% {+-} 2.3%; p = 0.02). Postoperatively, delivery of RT was a prognostic factor for LRR on multivariate analysis (together with pathologic stage) but not for DFS (independent parameters, pathologic stage and age). Preoperatively, on multivariate analysis, pathologic stage, but not delivery of RT, was an independent prognostic parameter for LRR and DFS (together with adequate chemotherapy). On multivariate analysis, the treatment center, treatment schedule (neoadjuvant vs. adjuvant RT), and gender were prognostic parameters for adequate RT. Conclusion: Delivery of RT should be regarded as a prognostic factor for LRR in rectal cancer and is influenced by the treatment center, treatment schedule, and patient gender.

  8. Geochemical characterization of migmatized orthogneiss from Porto Ottiolu (NE Sardinia, Italy) and its inferences on partial melting process

    NASA Astrophysics Data System (ADS)

    Cruciani, Gabriele; Fancello, Dario; Franceschelli, Marcello; Columbu, Stefano

    2015-04-01

    by the occurrence of myrmekitic miscrostructures between quartz and feldspar, quartz films at the feldspar interface and by albite rims around plagioclase. Some selected samples were analysed for major, minor and trace element content. The leucosomes are characterized by the following major elements content: SiO2: 72.9-76.2; Al2O3: 14.7-15.4; Fe2O3tot: 0.1-0.7; MgO: 0.1-0.3; CaO: 0.5-3.2; Na2O: 2.4-3.5; K2O: 4.0-8.6 wt%. The noticeable wide range in CaO and K2O is related to the high variability of the plagioclase/K-feldspar ratio. Most leucosomes have granitic composition, except for those occurring along shear zones that have tonalitic composition. Mesosomes major elements contents are SiO2 ca. 70; Al2O3: 14.4-15.1; Fe2O3tot: 2.1-3.4; MgO ca. 1.0; CaO ca. 3.0; Na2O ca. 3.5; K2O ca. 2.6 wt.%. They have granodioritic compositions. All leucosome and mesosome samples are corundum normative. Chondrite-normalized REE patterns of leucosomes are characterized by a marked positive Eu anomaly and by LREE enrichment. Mesosomes are characterized by marked negative Eu anomalies, as well as by LREE and HREE enrichment. ∑REE is higher in mesosomes (153 ppm) than in leucosomes (20-63 ppm). Field relationships, microstructural and geochemical data support the hypothesis that migmatization was generated by partial melting of a probaby Ordovician granitoid. The origin of the various types of leucosome has been discussed.

  9. IT Leadership: CAO 2.0

    ERIC Educational Resources Information Center

    Voyles, Bennett

    2006-01-01

    Most of the time, technology in the classroom is a "we" or "they" issue: On one side are the people who deploy and operate the systems, on the other, the academics and staffers who use them. But, typically, on both sides, everyone is so busy trying to prepare for the next class or the next term that there's little opportunity to ask what new…

  10. Optimization of the thermodynamic properties and phase diagrams of P2O5-containing systems

    NASA Astrophysics Data System (ADS)

    Hudon, Pierre; Jung, In-Ho

    2014-05-01

    P2O5 is an important oxide component in the late stage products of numerous igneous rocks such as granites and pegmatites. Typically, P2O5 combines with CaO and crystallizes in the form of apatite, while in volatile-free conditions, Ca-whitlockite is formed. In spite of their interest, the thermodynamic properties and phase diagrams of P2O5-containg systems are not well known yet. In the case of the pure P2O5 for example, no experimental thermodynamic data are available for the liquid and the O and O' solid phases. As a result, we re-evaluated all the thermodynamic and phase diagram data of the P2O5 unary system [1]. Optimization of the thermodynamic properties and phase diagrams of the binary P2O5 systems was then performed including the Li2O-, Na2O-, MgO-, CaO-, BaO-, MnO-, FeO-, Fe2O3-, ZnO-, Al2O3-, and SiO2-P2O5 [2] systems. All available thermodynamic and phase equilibrium data were simultaneously reproduced in order to obtain a set of model equations for the Gibbs energies of all phases as functions of temperature and composition. In particular, the Gibbs energy of the liquid solution was described using the Modified Quasichemical Model [3-5] implemented in the FactSage software [6]. Thermodynamic modeling of the Li2O-Na2O-K2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2 system, which include many granite-forming minerals such as nepheline, leucite, pyroxene, melilite, feldspar and spinel is currently in progress. [1] Jung, I.-H., Hudon, P. (2012) Thermodynamic assessment of P2O5. J. Am. Ceram. Soc., 95 (11), 3665-3672. [2] Rahman, M., Hudon, P. and Jung, I.-H. (2013) A coupled experimental study and thermodynamic modeling of the SiO2-P2O5 system. Metall. Mater. Trans. B, 44 (4), 837-852. [3] Pelton, A.D. and Blander, M. (1984) Computer-assisted analysis of the thermodynamic properties and phase diagrams of slags. Proc. AIME Symp. Metall. Slags Fluxes, TMS-AIME, 281-294. [4] Pelton, A.D. and Blander, M. (1986) Thermodynamic analysis of ordered liquid solutions by a modified

  11. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores.

    PubMed

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F

    2012-07-15

    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  12. Silicate melt inclusions in clinopyroxene phenocrysts from mafic dikes in the eastern North China Craton: Constraints on melt evolution

    NASA Astrophysics Data System (ADS)

    Cai, Ya-Chun; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Liu, Xuan; Liu, Yongsheng

    2015-01-01

    Silicate melt inclusions (SMIs) in magmatic minerals provide key information on the chemical and mineralogical evolution of source magmas. The widespread Cretaceous mafic dikes in the Jiaojia region of the eastern North China Craton contain abundant SMIs within clinopyroxene phenocrysts. The daughter minerals in these SMIs include amphibole, plagioclase, pyrite and ilmenite, together with CO2 + CH4 and CH4 as the major volatile phase. The total homogenization temperatures of the SMIs range between 1280 and 1300 °C. The host clinopyroxene phenocrysts in these dolerite dikes are dominantly augite with minor diopside. From LA-ICPMS analyses of the SMIs, we identify two compositional groups: (1) low-MgO (6.0-7.6 wt.%) SMIs and (2) high-MgO (11.2-13.9 wt.%) SMIs. The Low-MgO group exhibits higher concentrations of TiO2, Al2O3, Na2O, P2O5 and lower CaO and CaO/Al2O3 ratio as compared to the high-MgO SMIs. The trace element patterns of the two types of SMIs are similar to those of the host mafic dikes. However, the low-MgO SMIs and host mafic dikes are clearly more enriched in all the trace elements as compared to the high-MgO type, especially with regard to the highly incompatible elements. The estimated capture temperatures and pressures are 1351-1400 °C and 1.6-2.1 GPa for the high-MgO SMIs and 1177-1215 °C and 0.6-1.1GPa for the low-MgO type. The high-MgO and low-MgO SMIs were trapped at depths of ∼51-68 km and ∼20-35 km, respectively. Computations show that the parental melt is mafic with SiO2 content 49.6 wt% and Mg# 80.0 with relatively low total alkali contents (1.35 wt% Na2O + K2O) and high CaO (15.2 wt%). Exploratory runs with the program MELTS and pMELTS show that the low-MgO and high-MgO SMIs were derived from the same parental melt through different degrees of crystallization. Clinopyroxene and a small amount of olivine were the fractionating phases during the evolution from parental melts to high MgO melts, while the low MgO melts experienced

  13. Fertilization ratios of N-P2O5-K2O for Tifton 85 bermudagrass on two coastal plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bermudagrass [Cynodon dactylon (L.) Pers.] cultivar Tifton 85 is widely grown throughout the southeastern United States and many other countries for forage production. Because Tifton 85 is actually a hybrid between C. dactylon and C. nlemfuensis, it may not respond to fertilization in the same way ...

  14. Multi-component diffusion between molten SiO2 inclusions and surrounding felsic melt in an indochinite: Tektites as natural laboratories

    NASA Astrophysics Data System (ADS)

    Macris, C. A.; Eiler, J. M.; Asimow, P. D.; Stolper, E. M.

    2013-12-01

    Tektites are natural glasses thought to have formed as a result of melting and quenching of distally ejected terrestrial material upon hypervelocity (>11 km/s) impact on Earth. Some tektites contain inclusions of lechatelierite (nearly pure SiO2 glass; 99-100 wt. % SiO2), generally thought to be the amorphous relicts of partially digested quartz grains (Koeberl, 1994). Electron and ion microprobe analyses of major and minor elements were performed on transects between lechatelierite inclusions and the surrounding felsic glass in an indochinite (sample from Newman et al., 1995). The surrounding glass is peraluminous with an average composition of 73.4 wt.% SiO2, 12.8 wt.% Al2O3, 4.5 wt. % FeO, 2.3 wt.% K2O, and < 2 wt.% (each) CaO, MgO, Na2O, and TiO2. The boundary between the lechatelierite and felsic glass is broad (~30 μm), with complex concentration profiles reflecting diffusion between the two melts at high temperatures (>2200 °C for formation of lechatelierite; Bunch et al., 2012) prior to quenching. Although all components except SiO2 are pinned to near zero at the same point at the lechatelierite end of the profiles, the shapes of the oxide concentration profiles differ, with Ca and Mg falling off from their far-field values first, followed in order by Fe, Ti, Al, Na, and K. K has apparently propagated the longest distance, diffusing faster than other components from the surrounding melt toward the lechatelierite. Furthermore, concentration profiles of K2O systematically increase, reach a maximum, then decrease closest to lechatelierite, indicating uphill diffusion of K against its concentration gradient. All concentration profiles are asymmetric, becoming steepest towards the most silicic portions of the interdiffusion zone approaching lechatelierite, likely due to the sharp compositional contrast between matrix glass and inclusions. Sato (1974) observed similar alkali enrichment in coronas around quartz xenocrysts in basalt and andesite, where K, and to

  15. Multi-analytical characterization of archaeological ceramics. A case study from the Sforza Castle (Milano, Italy).

    NASA Astrophysics Data System (ADS)

    Barberini, V.; Maspero, F.; Galimberti, L.; Fusi, N.

    2009-04-01

    The aim of this work was the characterization, using several analytical techniques, of a sample of ancient pottery found during archaeological excavations in the 14th century's Sforza Castle in Milano. The use of a multi-analytical approach is well established in the study of archaeological materials (e.g. Tite et al. 1984, Ribechini et al. 2008). The chemical composition of the sample was determined with X-ray fluorescence spectroscopy. The chemical composition is: SiO2 61.3(±3)%, Al2O3 22.5(±2)%, Fe2O3 7.19(±6)%, K2O 3.85(±1)%, MgO 1.6(±1)%, Na2O 1.6(±4)% (probably overestimated), TiO2 1.02(±2)%, CaO 0.93(±1)%, MnO 0.15(±1)% and P2O5 0.06(±2)%. The K2O content, important when dealing with TL dating, was determined also with atomic absorption spectrophotometry. The K2O content determined with atomic absorption is 3.86(±3)%, in agreement with X-ray fluorescence analysis. The mineralogical composition of the sample was determined with X-ray powder diffraction: quartz 59.6(±1) wt%, mica 37.8(±3) wt% and feldspar (plagioclase) 2.6(±2) wt%. The sample homogeneity was assessed with X-ray computerised tomography (CT), which is a very powerful non-destructive analysis tool for 3D characterization (Sèguin, 1991). CT images show differences in materials with different X-ray absorption (mainly depending on different densities) and 3D reconstruction has many interesting archaeological applications (e.g. study of sealed jars). CT images of the studied sample showed the presence of angular fragments (probably quartz) few millimetres wide immersed in a fine grained matrix. Moreover, before and after the CT analysis, some ceramic powder was sampled to perform thermoluminescence analysis (TL, the powder used for this analysis can not be recovered). It was thus possible to evaluate the dose absorbed by the material due the X-ray irradiation. The dose absorbed after 3 hours of irradiation, the time needed for a complete scan of a 7 x 5 x 1 cm, is about 100 Gy, which

  16. The Tonalite-Trondhjemite-Granodiorite (TTG) to Calc-alkaline Granodiorite-Granite Transition: Evolution of the Archaean Basement of the Quadrilátero Ferrífero Province (Southeast Brazil)

    NASA Astrophysics Data System (ADS)

    Farina, F.; Albert, C.; Lana, C.; Stevens, G.

    2014-12-01

    The Bação, Bonfim and Belo Horizonte domes are the largest domes in the Archaean Southern São Francisco craton (Quadrilátero Ferrífero, Brazil). These domes are mainly formed by fine-grained banded gneisses typically intruded by leucogranitic veins and by weakly foliated granites, cropping out as large batholiths and small scale-domains closely associated to the gneisses. Granites and gneisses have high silica content (70-76 wt%), K2O ranging from 2wt% to 6wt%, Sr from 600 to 40 ppm and La/Yb from 150 to 5. Based on their K2O/Na2O ratios, these rocks are subdivided in three groups: sodic (K2O/Na2O≤0.7), transitional (0.7<K2O/Na2O<1.1) and potassic (K2O/Na2O≥1.1). There is no direct relationship between the metamorphic overprint (granites vs. gneisses) and the K2O/Na2O ratio; e.g. granites plots equally in the sodic and potassic groups. Overall, the composition of gneisses and granitoids in the three domes marks the transition between Archean TTGs and modern calc-alkalic granitoids. LA-ICP-MS zircon U-Pb data allow three main periods of magmatism to be defined. The oldest recorded magmatic contribution to the craton began at 3200 Ma, as attested by the occurrence of inherited zircons in younger granitoids as well as by the fact that zircons with a ca. 3200 Ma age represent a significant subset in the detrital zircon population of the greenstone belt. Subsequent magmatic events took place at 2930-2870 Ma and 2780-2700 Ma. The geochronological data reveal that, although the sodic rocks represent a greater proportion of the older gneisses, sodic, transitional and potassic granitoids intruded contemporaneously. The geochemistry of sodic and transitional granites and gneisses suggests that they formed by partial melting of TTG source rocks that are not preserved in the rock record. MC-ICP-MS Hf isotope data on magmatic zircon, suggesting crustal reworking with minor or no involvement of juvenile magmas, support this interpretation. Further recycling of sodic

  17. Origin of primitive ultra-calcic arc melts at crustal conditions - Experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands

    NASA Astrophysics Data System (ADS)

    Lanzo, Giovanni; Di Carlo, Ida; Pichavant, Michel; Rotolo, Silvio G.; Scaillet, Bruno

    2016-07-01

    To interpret primitive magma compositions in the Aeolian arc and contribute to a better experimental characterization of ultra-calcic arc melts, equilibrium phase relations have been determined experimentally for the La Sommata basalt (Som-1, Vulcano, Aeolian arc). Som-1 (Na2O + K2O = 4.46 wt.%, CaO = 12.97 wt.%, MgO = 8.78 wt.%, CaO/Al2O3 = 1.03) is a reference primitive ne-normative arc basalt with a strong ultra-calcic affinity. The experiments have been performed between 44 and 154 MPa, 1050 and 1150 °C and from NNO + 0.2 to NNO + 1.9. Fluid-present conditions were imposed with H2O-CO2 mixtures yielding melt H2O concentrations from 0.7 to 3.5 wt.%. Phases encountered include clinopyroxene, olivine, plagioclase and Fe-oxide. Clinopyroxene is slightly earlier than olivine in the crystallization sequence. It is the liquidus phase at 150 MPa, being joined by olivine on the liquidus between 44 and 88 MPa. Plagioclase is the third phase to appear in the crystallization sequence and orthopyroxene was not found. Experimental clinopyroxenes (Fs7-16) and olivines (Fo78-92) partially reproduce the natural phenocryst compositions (respectively Fs5-7 and Fo87-91). Upon progressive crystallization, experimental liquids shift towards higher SiO2 (up to ~ 55 wt.%), Al2O3 (up to ~ 18 wt.%) and K2O (up to ~ 5.5 wt.%) and lower CaO, MgO and CaO/Al2O3. Experimental glasses and natural whole-rock compositions overlap, indicating that progressive crystallization of Som-1 type melts can generate differentiated compositions such as those encountered at Vulcano. The low pressure cotectic experimental glasses reproduce glass inclusions in La Sommata clinopyroxene but contrast with glass inclusions in olivine which preserve basaltic melts more primitive than Som-1. Phase relations for the La Sommata basalt are identical in all critical aspects to those obtained previously on a synthetic ultra-calcic arc composition. In particular, clinopyroxene + olivine co-saturation occurs at very low

  18. Melt inclusions and origin of granite in migmatitic granulites from the Kerala Khondalite Belt, Southern India

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; Cesare, Bernardo; Salvioli Mariani, Emma; Cavallo, Andrea

    2010-05-01

    =73 wt%, K2O =6.7 wt%, Na2O =1 wt% and CaO <1 wt%. EMP analyses on the primary glassy inclusions in not re-heated samples provide similar compositions, while the differentiated melt in partially crystallized MI has higher CaO content and lower K2O content. The EMP characterization therefore confirms the work hypothesis that the different types of MI had the same original composition, except for the different trapped accessories, and that melt in partially crystallized MI is the result of a differentiation of the original trapped melt via crystal fractionation. The low Na content of melt in inclusions is consistent with the scarcity or absence of plagioclase in the melanosome of the studied samples, and with the UHT conditions at which the rocks melted. In fact, in the Q-Ab-An diagram melts plot far from the haplogranitic minima. Our results show that MI studies represent a powerful novel approach in the petrology of crustal melting and S-type granite genesis, and highlight the potential pitfalls of assuming anatectic melt as having a minimum melt composition. References Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D., Cavallo, A., 2009. Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology 37, 627-630.

  19. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Srinivasan, A

    2016-12-01

    Composite nanofibrous membranes based on sol-gel derived 45SiO2 24.5CaO 24.5 Na2O 6 P2O5 (bioglass, BG) and 43SiO2 24.5CaO 24.5 Na2O 6 P2O5 2Fe2O3 (magnetic bioglass, MBG) blended with polyvinyl alcohol (PVA) have been electrospun. These low cost membranes were mostly amorphous in structure with minor crystalline (sodium calcium phosphate) precipitates. All membranes were biodegradable. Among these, the composites exhibited higher tensile strength, better proliferation of human osteosarcoma MG63 cells and higher alkaline phosphatase enzyme activity than the bare PVA membrane, indicating their potential in bone tissue engineering. The magnetic PVA-MBG scaffold was also found to be a promising candidate for magnetic hyperthermia application. PMID:27612814

  20. Search for solid conductors of Na/+/ and K/+/ ions - Five new conductors

    NASA Technical Reports Server (NTRS)

    Singer, J.; Kautz, H.; Fielder, W.; Fordyce, J.

    1975-01-01

    Five new conductors of positive Na and K ions, for use as separators in high energy secondary batteries, have been discovered. They include: (1) the pyrochlores NaTaWO6 and NaTa2O5F; (2) the bcc form of NaSbO3; and (3) the niobates 2Na2O-3Nb2O5 and 2K2O-3Nb2O5, with the alkali ions probably in open layers of the completely determined structure. On the basis of approximately 40 structure types, generalizations have been made regarding the relation between structure and ionic transport.

  1. Study of natural glasses through their behaviour as membrane electrodes

    USGS Publications Warehouse

    Truesdell, A.H.

    1962-01-01

    THE low-temperature chemical alteration of natural glass occurs in two stages: an initial stage in which it remains glassy but absorbs as much as 6 per cent water1, and a final stage in which devitrification to clay minerals, with release of silica, occurs2,3. During the first stage the composition of the glass may change, with gain of K2O and water and loss of Na2O (Smith, R. L., personal communication). This change is due to ion exchange. ?? 1962 Nature Publishing Group.

  2. Glass-to-metal seals comprising relatively high expansion metals

    NASA Technical Reports Server (NTRS)

    Hirayama, C. (Inventor)

    1974-01-01

    A glass suitable for glass-to-metal seals that has a resistance to attack by moisture and a high coefficient of linear thermal expansion is introduced. Linear expansion covers the range from 12 to 14 x 10 to the minus 6 C between room temperature and 500 C. The glass is essentially composed of, by molar percent, about 9% of K2O, about 10% of Na2O, about 70% of SiO2, about 6% Al2O3, and about 5% of MgO.

  3. Petrology and physical properties of granites from the Illinois Deep Hole in Stephenson County

    NASA Astrophysics Data System (ADS)

    Lidiak, Edward G.; Denison, Roger E.

    1983-09-01

    Two main basement granitoid types have been identified in core samples from the Illinois deep hole project. The main variety is a medium- to coarse-grained porphyritic biotite granite with phenocrysts of microcline perthite and less commonly quartz and sodic plagioclase in a matrix of these minerals and biotite, muscovite, fluorite, magnetite, ilmenite, zircon, hornblende, apatite, sphene, monazite, rutile, and clinopyroxene (relict). The texture is typically hypidiomorphic gradational to recrystallized xenomorphic. The second main granitoid, which occurs in the upper part of hole UPH 3, is a fine-grained granoblastic to lepidoblastic gneissic granite that is distinct from and possibly older than the nonfoliated granite. The textures of both rocks have been modified by a mild cataclastic shearing that has partially recrystallized the more susceptible mineral phases. Thin fracture planes that crosscut the earlier foliations are common. Microprobe analyses indicate that biotites in the gneissic granite are chemically distinct from those in the granite. Biotites in the gneissic granite have higher Fe/Fe + Mg ratio, FeO, and Al2O3 and lower MgO and SiO2. Reflection microscopy and microprobe analyses indicate that the oxide phases in the two rocks are also different. The oxides in the granite are magnetite and ilmenite, whereas hematite and pseudobrookite occur in the gneissic granite. The biotite and Fe-Ti oxide data represent additional evidence in support of the fact that the granite and gneissic granite are distinct rocks and probably not part of a continuous comagmatic sequence. Major element chemical analyses indicate that the granites have affinities to anorogenic rapakivi granites. The granites in the deep holes are high in SiO2, alkalis (Na2O+K2O), F, FeO/MgO; low in Al2O3, FeO, Fe2O3, TiO2, MnO, and P2O5; and slightly low in MgO and CaO. Magnetic susceptibility and density measurements correlate generally well with magnetic susceptibility and density logs

  4. Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan Volcanic Province, India: implications for the mantle and magma chamber processes

    NASA Astrophysics Data System (ADS)

    Vijaya Kumar, Kopparapu; Chavan, Chakradhar; Sawant, Sariput; Naga Raju, K.; Kanakdande, Prachiti; Patode, Sangita; Deshpande, Krishna; Krishnamacharyulu, S. K. G.; Vaideswaran, T.; Balaram, V.

    2010-06-01

    Spatial and temporal variations in the geochemistry of an extrusive basaltic section of Deccan traps record progressive changes in mantle melting and crustal filtration and are relevant to understand continental flood basalt (CFB) magmatism. In the present work we have carried out detailed field, petrographic, density and magnetic susceptibility, and geochemical investigations on a small, semi-continuous extrusive section in the eastern Deccan Volcanic Province (DVP) to understand the role of shallow magma chambers in CFB magmatism. Four formations, Ajanta, Chikhli, Buldhana and Karanja crop out in the Gangakhed-Ambajogai area with increasing elevation. Our studies indicate that: (1) the Karanja Formation represents a major magma addition, as indicated by abrupt change in texture, increases in MgO, CaO, Ni, Cr, and Sr, and drastic decreases in Al2O3, Na2O, K2O, Rb, Ba, REE, bulk-rock density and magnetic susceptibility; (2) assimilation fractional crystallization, crystal-laden magmas, and accessory cumulus phases influence the trace element chemistry of Deccan basalts; (3) the predicted cumulate sequence of olivine gabbro-leucogabbro-oxide-apatite gabbro is supported by the observed layered series in a shallow magma chamber within the DVP; (4) the initial magma was saturated with olivine, plagioclase, and augite, and final the pressure of equilibration for the Gangakhed-Ambajogai section basalts is ~2 kbar (~6 km depth); (5) petrophysical parameters act as proxies for magmatic processes; (6) a small layer of oxide-rich basalts may represent the latest erupted pulse in a given magmatic cycle in the DVP; (7) parental basalts to some of the red boles, considered as formation boundaries, might represent small degree partial melts of the mantle; (8) SW Deccan basaltic-types continue into the eastern DVP; and (9) in addition to the magma chamber processes, dynamic melting of the mantle may have controlled DVP geochemistry. The present study underscores the importance of

  5. Geochemical indications and Detrital Zircon U-Pb ages of net-like laterite from Youjiang terrace, Bose Basin, southwestern China: new evidence of proximal provenance for laterite sediments

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Hong, H.; Li, C.; Ye, H.; Yang, H.

    2015-12-01

    The net-like laterite sediments is widely spread over the terraces and high lands of the river valley in southern China during mid-Pleistocene, although whose origin is still debated. The Xiaomei laterite sediments on the terraces of Youjiang River, Guangxi Zhuang Autonomous Region, southern China, was dominated by the intermittently uplift of the Tibetan Plateau for the mechanism during the Quaternary times. Compared to the loess-paleosol deposits in Chinese Loess Plateau (CLP), the upper continental crust (UCC) and the post-Archean Australian average shale (PAAS), the sediments show notable depletion of the relative mobile compositions like CaO, MgO, Na2O, K2O, Sr, Ba and the accumulation of TiO2, Al2O3, Fe2O3(t), Zr, but similar with other laterite sediments (the Xuancheng and Jiujiang laterite profiles) in the middle to lower reaches of Yangtze River, southern China. The relatively uniform La/Th ratio, U/Pb vs. Th/Pb ratio and chondrite-normalized REE distribution pattern of Xiaomei samples are similar with the loess-paleosol deposits and UCC values, which suggesting the sediments have experienced well-mixing prior to deposition and intense superficial weathering. The low ɛNd(t) values and uniform 147Sm/144Nd ratios with the 87Sr/86Sr vs. Rb/Sr ratios show the notable differences with loess-paleosol deposits and the recycling function of the old fluvial sediments which are similar with the Pearl River sediments. The stable zircon age distribution pattern with three age groups of 240-300Ma, 420-480Ma and 900-1000Ma for Xiaomei laterite samples are different with the loess-paleosol deposits and its source regions. The zircons are mainly derived from a source of the Upper Permian to Middle Triassic clastic rocks in Youjiang Basin, superordinate tectonic unit of Bose Basin, and their potential source areas like the Emeishan Large Igneous Province (Emeishan LIP) and the southeastern area of south China Craton (SCC). For the basis of these data, we suggest that that

  6. Geochemistry and geodynamics of a Late Cretaceous bimodal volcanic association from the southern part of the Pannonian Basin in Slavonija (Northern Croatia)

    USGS Publications Warehouse

    Pamic, J.; Belak, M.; Bullen, T.D.; Lanphere, M.A.; McKee, E.H.

    2000-01-01

    In this paper we present petrological and geochemical information on a bimodal basaltrhyolite suite associated with A-type granites of Late Cretaceous age from the South Pannonian Basin in Slavonija (Croatia). Basalts and alkali-feldspar rhyolites, associated in some places with ignimbrites, occur in volcanic bodies that are interlayered with pyroclastic and fossiliferous Upper Cretaceus sedimentary rocks. The petrology and geochemistry of the basalts and alkali-feldspar rhyolites are constrained by microprobe analyses, major and trace element analyses including REE, and radiogenic and stable isotope data. Basalts that are mostly transformed into metabasalts (mainly spilites), are alkalic to subalkalic and their geochemical signatures, particularly trace element and REE patterns, are similar to recent back-arc basalts. Alkali-feldspar rhyolites have similar geochemical features to the associated cogenetic A-type granites, as shown by their large variation of Na2O and K2O (total 8-9%), very low MgO and CaO, and very high Zr contents ranging between 710 and 149ppm. Geochemical data indicate an amphibole lherzolite source within a metasomatized upper mantle wedge, with the influence of upper mantle diapir with MORB signatures and continental crust contamination. Sr incorporated in the primary basalt melt had an initial 87Sr/86Sr ratio of 0.7039 indicating an upper mantle origin, whereas the 87Sr/86Sr ratio for the alkalifeldspar rhyolites and associated A-type granites is 0.7073 indicating an apparent continental crust origin. However, some other geochemical data favour the idea that they might have mainly originated by fractionation of primary mafic melt coupled with contamination of continental crust. Only one rhyolite sample appears to be the product of melting of continental crust. Geological and geodynamic data indicate that the basalt-rhyolite association was probably related to Alpine subduction processes in the Dinaridic Tethys which can be correlated with

  7. Experimental and Petrological Constraints on Lunar Differentiation from the Apollo 15 Green Picritic Glasses

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, Linda T.; Chatterjee, Nilanjan; Grove, Timothy L.

    2003-01-01

    Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520 C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520 C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A-B-C glass trends could not have been formed by fractional crystallization or any continuous assimilation/fractional crystallization (AFC) process. The B and C glass compositional trends could not have been formed by batch or incremental melting of an olivine + orthopyroxene source or any other homogeneous source, though the A glasses may have been formed by congruent melting over a small pressure range at depth. The B compositional trend is well modeled by starting with an intermediate A composition and assimilating a shallower, melted cumulate, and the C compositional trend is well modeled by a second assimilation event. The assimilation process envisioned is one in which heat and mass transfer were separated in space and time. In an initial intrusive event, a picritic magma crystallized and provided heat to melt magma ocean cumulates. In a later replenishment event, the picritic magma incrementally mixed with the melted cumulate (creating the compositional trends in the green glass data set

  8. A large eruption convulsed in prehistoric times an extensive area of Catamarca, Southern Central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, Jose-Luis; Ratto, Norma; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Rejas, Marta; Lobo, Agustin

    2016-04-01

    Geomorphological, stratigraphical, mineralogical and chemical characteristics of many recent 30-160 cm ash deposits occurring at the Bolsón de Fiambalá in Catamarca, NW Argentina, allow their correlation. This lithostratigraphic unit is named Fiambalá Ash and it is uncovered or covered by colluvial deposits and present-day aeolian deposits, reworked products of the primary fall deposits. The grain size of these ash deposits is gritty rather than silty. They are nearly unique among regional ashes in containing hornblende phenocrysts. In addition, they are made up of glass (subangular blocky shards), feldspars, biotite, and quartz; magnetite, ilmenite, apatite and titanite are scarce. The glass is rhyolitic (˜75 to 79 % m/m SiO2; ˜3 to 4 % m/m Na2O; ˜3 to 5 % m/m K2O; 1 to 2 % m/m CaO; normalized to 100 %). On the other hand, in northern margins of Fiambalá basin, extensive remnants of fines-poor pumiceous debris flows and hyperconcentrated sandflow deposits as thick as 10 m are exposed on the walls of the river gorges, where the base is usually covered, e.g., Chuquisaca River. There is no significant unconformity or intercalation of other materials, thus suggesting rapid emplacement after a single eruptive event. A preliminary age of Fiambalá Ash based on archaeological studies bracket it between 1400-1270 and 1270-980 cal a BP (OxCal 4.2.4, SHCal13, 2 sigma). The geographical distribution, the geomorphological features observed in satellite images and the information on the main trends of the stratigraphy, the abundance of hornblende and biotite in the younger proximal ash fall deposits, ignimbrites and lava-domes of the Nevado Tres Cruces complex, favours this edifice as the strongest candidate to be the source of the Upper Holocene pyroclastic deposits found in the Fiambalá basin. The archaeological records seem to evidence the abrupt environmental and societal changes associated with this major eruption. Significant areas of Catamarca were likely

  9. Petrology and geochemistry of Mesozoic granitic rocks from the Nansha micro-block, the South China Sea: Constraints on the basement nature

    NASA Astrophysics Data System (ADS)

    Yan, Quanshu; Shi, Xuefa; Liu, Jihua; Wang, Kunshan; Bu, Wenrui

    2010-01-01

    There are several micro-blocks dispersed in the South China Sea (SCS), e.g., Xisha-Zhongsha block, Nansha block and Reed-Northeastern Palawan block, etc., but detailed petrological constraints on their basement nature were previously lacking. The magmatic ages for granitic rock samples from two dredge stations in the Nansha micro-block vary from 159 to 127 Ma, which are comparable to magmatic activities occurred in the northern margin (Pearl river mouth), HongKong and East China. Petrographic characteristics, major-, trace element and Sr-Nd isotopic data of nine samples from two dredged station performed in the Nansha micro-block, the SCS, are reported. Petrographically, these granitic rocks can be divided into two groups which underwent a complex history of magmatic process, i.e., tonalitic rock (Group I) and monzogranitic rock (Group II). The Rittmann index ( σ) for these rocks (1.9-3.1) suggest that they belong to calc-alkaline rocks. Group I rocks which is of typical I-type, have higher contents of TiO 2, Al 2O 3, FeO, MgO, CaO, Na 2O and P 2O 5, but lower values of SiO 2 and K 2O, when compared with those of Group II with I-type characteristics. Group I rocks are produced by partial melting of older Precambrian basement with the variable influence of mantle-derived magma which results from the interaction of released fluids from the subducted slab and the overlying mantle wedge in a general convergent margin setting, and Group II rocks result from partial melting of lower crustal basic rocks (amphibolite) and/or further partial melting of the Group I rocks associated with the variable influence from the underplating mantle-derived magma resulting from lithospheric extensional regime. Both Groups I and II have undergone assimilation and fractional crystallization (AFC) processes during its petrogenesis. This study therefore demonstrates that there exists a continental basement within micro-blocks in the South China Sea, and further supports the idea that a

  10. Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Chatterjee, N.; Grove, T. L.

    2003-04-01

    Phase equilibrium experiments on the most magnesian Apollo 15C green picritic glass composition indicate a multiple saturation point with olivine and orthopyroxene at 1520 deg C and 1.3 GPa (about 260 km depth in the moon). This composition has the highest Mg# of any lunar picritic glass and the shallowest multiple saturation point. Experiments on an Apollo 15A composition indicate a multiple saturation point with olivine and orthopyroxene at 1520°C and 2.2 GPa (about 440 km depth in the moon). The importance of the distinctive compositional trends of the Apollo 15 groups A, B, and C picritic glasses merits the reanalysis of NASA slide 15426,72 with modern electron microprobe techniques. We confirm the compositional trends reported by Delano (1979, 1986) in the major element oxides SiO2, TiO2, Al2O3, Cr2O3, FeO, MnO, MgO, and CaO, and we also obtained data for the trace elements P2O5, K2O, Na2O, NiO, S, Cu, Cl, Zn, and F. Petrogenetic modeling demonstrates that the Apollo 15 A-B-C glass trends could not have been formed by fractional crystallization or any continuous assimilation/fractional crystallization (AFC) process. The B and C glass compositional trends could not have been formed by batch or incremental melting of an olivine + orthopyroxene source or any other homogeneous source, though the A glasses may have been formed by congruent melting over a small pressure range at depth. The B compositional trend is well modeled by starting with an intermediate A composition and assimilating a shallower, melted cumulate, and the C compositional trend is well modeled by a second assimilation event. The assimilation process envisioned is one in which heat and mass transfer were separated in space and time. In an initial intrusive event, a picritic magma crystallized and provided heat to melt magma ocean cumulates. In a later replenishment event, the picritic magma incrementally mixed with the melted cumulate (creating the compositional trends in the green glass data

  11. Heavy metal accumulation in balsam pear and cowpea related to the geochemical factors of variable-charge soils in the Pearl River Delta, South China.

    PubMed

    Chang, Chun-Ying; Xu, Xiang-Hua; Liu, Chuan-Ping; Li, Shu-Yi; Liao, Xin-Rong; Dong, Jun; Li, Fang-Bai

    2014-07-01

    Variable-charge (v-c) soils in subtropical areas contain considerable amounts of iron/aluminum (Fe/Al) oxides that can strongly influence the fate of heavy metals in agricultural ecosystems. However, the relationship between heavy metal accumulation in vegetables and the geochemical factors associated with v-c soils in subtropical regions remains unknown. The present study investigated heavy metal accumulation under field conditions in the Pearl River Delta (PRD) by measuring the content of 8 heavy metals (zinc (Zn), arsenic (As), copper (Cu), mercury (Hg), lead (Pb), chromium (Cr), nickel (Ni) and cadmium (Cd)) in 43 pairs of v-c soil and vegetable (balsam pear and cowpea) samples. Soil physicochemical properties including pH, texture, organic matter and oxide minerals (Fe2O3, SiO2, Al2O3, CaO, MgO, K2O and Na2O) were also analyzed. Heavy metal accumulation from soil to vegetables was assessed based on bioconcentration factors (BCFs). The results showed that soil extractable Fe, oxide minerals and chemical weathering indices of v-c soils strongly affected heavy metal accumulation, whereas the content of Zn, Cu, Cr and Ni in vegetables was strongly affected by the soil clay content. Significant correlations were found between the BCFs of heavy metals and oxide minerals. However, no significant relationship was found between pH and heavy metal accumulation (except for Cu) in balsam pear and cowpea. Correlation analyses showed that a lower oxalate/DCB- extractable Fe content might indicate greater heavy metal (Zn, Cu, Hg, Cr and Ni) accumulation in vegetables. Therefore, it can be deduced that oxalate/DCB- extractable Fe content is a critical geochemical factor that determines the bioavailability of heavy metals and that iron biogeochemical cycles play vital roles in the fate of heavy metals in vegetable fields in this area. These findings provide new insights into the behaviors and fate of heavy metals in subtropical v-c soils and can be used to develop possible

  12. The Southeast Asian Tin Belt

    NASA Astrophysics Data System (ADS)

    Schwartz, M. O.; Rajah, S. S.; Askury, A. K.; Putthapiban, P.; Djaswadi, S.

    1995-07-01

    Range-type plutons (28% of tin production). Tin-mineralized plutons are characterized by high concentrations of SiO 2, K 2O, Rb, Sn, Th and U, whereas the concentrations of Fe 2O 3, MgO, CaO, Na 2O, Ba and Sr as well as the Fe2O3/FeO ratios are low. Tin-mineralized plutons are also distinguished by high initial 87Sr/86Sr ratios low magnetic susceptibilities.

  13. Geochemistry and U-Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central India Tectonic Zone, India

    NASA Astrophysics Data System (ADS)

    Bora, Sita; Kumar, Santosh; Yi, Keewook; Kim, Namhoon; Lee, Tae Ho

    2013-07-01

    The northern part of Central India Tectonic Zone (CITZ) is delineated by an arc-shaped supracrustal belt commonly referred to as Mahakoshal Belt, which is considered as a product of intense rifting of sialic crust that occurred at ca 2400-2600 Ma. Several granitoid plutons intrude the Parsoi Formation of Mahakoshal Belt. Among these, an elliptical small stock-like granitoid body trending E-W is exposed in and around Jhirgadandi region of Mahakoshal Belt, referred herein as Jhirgadandi Pluton. It is composed of minor amount of mafic rocks (diorite) and predominant granitoids. Country-rock pelitic xenoliths and microgranular enclaves (ME) are commonly hosted in granitoids but are absent in diorite. The ME exhibit typical magmatic texture with a Bt(±Cpx ± Hbl)-Pl-Kf-Qtz-Mag-Ap assemblage, similar to that in host granitoids but with contrasting mineral proportions. Whole-rock molar Al2O3/(CaO + Na2O + K2O) (A/CNK) ratios of diorite (0.63-0.72), ME (0.69-1.21) and granitoids (0.83-1.05) suggest their nature largely metaluminous (I-type) to rarely peraluminous (S-type) granitoids. On most binary plots involving silica, two distinct compositional paths can be recognized; one formed by an array of differentiating diorite and ME, and another by fractionating granitoids gradually depleting in compatible elements. It is most likely that ME were generated by progressive and concurrent mixing of coeval pristine mafic (diorite) and granitoid magmas and fractionation processes. However, coherent and identical trace elements (except for Sr, Th, Y and Ni) and REE patterns for ME-granitoid pairs most likely suggest partial to near-complete chemical equilibration through varying degrees of diffusion process across the ME - partly crystalline host granitoid boundary. High-precision U-Pb SHRIMP zircon 206Pb/238U ages for ME (1758 ± 19 Ma) and host granitoid (1753 ± 9.1 Ma) from Jhirgadandi Pluton further support the notion that they were coeval. The obtained age (˜1750 Ma) of

  14. Reprint of "Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: Composition of lavas from 1988 to 2007"

    NASA Astrophysics Data System (ADS)

    Keller, J.; Zaitsev, A. N.

    2012-11-01

    The natrocarbonatites of Oldoinyo Lengai, Tanzania, are unique in magmatic petrology. The historical activity of Oldoinyo Lengai has seen changes from nephelinitic to natrocarbonatitic character of the emitted magmas. Since 1983 the activity was characterized by the effusion of fluid natrocarbonatite lava from which we have collected and analyzed fresh samples in the summit crater from 1988 to 2007. The available compositional data set forms the basis for presenting and discussing the typical composition and variation of natrocarbonatites and their relationship to the silicate magmas of Oldoinyo Lengai. The "type" natrocarbonatite major and trace element composition is derived for an average of 25 samples with low standard deviation. Oldoinyo Lengai carbonatites are unique in almost all aspects of their petrological and geochemical characteristics and are characterized as extremely alkali-rich, with Na2O + K2O generally about 40 wt.%, and with high CaO contents of 14-18 wt.%. This composition results from the presence of phenocrysts of nyerereite (Na,K)2Ca(CO3)2 and gregoryite (Na,K,Cax)2-x(CO3) dominating the highly porphyritic natrocarbonatite lavas, with sylvite and fluorite as main groundmass minerals. The significance of particular trace element concentrations and ratios of equally incompatible elements (REE, Ba, Sr, Th/U, Nb/Ta, Zr/Hf) is evaluated for models of liquid-liquid separation. In defining a "type" natrocarbonatite composition, we also distinguish special variations in chemical and/or mineralogical compositions as follows: (1) silicate-bearing natrocarbonatites, characterized by the occurrence of nephelinite spheroids, as in the 1993 and 2006 lavas; (2) residual melt compositions as described from the 1988 eruptive period as represented by the aphyric, filter-pressed interstitial melt of solidifying porphyritic lavas; (3) an interlude during 2000 when natrocarbonatites with sylvite and fluorite microcrysts were emitted. After 25 years of mostly mild

  15. Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: Composition of lavas from 1988 to 2007

    NASA Astrophysics Data System (ADS)

    Keller, J.; Zaitsev, A. N.

    2012-09-01

    The natrocarbonatites of Oldoinyo Lengai, Tanzania, are unique in magmatic petrology. The historical activity of Oldoinyo Lengai has seen changes from nephelinitic to natrocarbonatitic character of the emitted magmas. Since 1983 the activity was characterized by the effusion of fluid natrocarbonatite lava from which we have collected and analyzed fresh samples in the summit crater from 1988 to 2007. The available compositional data set forms the basis for presenting and discussing the typical composition and variation of natrocarbonatites and their relationship to the silicate magmas of Oldoinyo Lengai. The "type" natrocarbonatite major and trace element composition is derived for an average of 25 samples with low standard deviation. Oldoinyo Lengai carbonatites are unique in almost all aspects of their petrological and geochemical characteristics and are characterized as extremely alkali-rich, with Na2O + K2O generally about 40 wt.%, and with high CaO contents of 14-18 wt.%. This composition results from the presence of phenocrysts of nyerereite (Na,K)2Ca(CO3)2 and gregoryite (Na,K,Cax)2-x(CO3) dominating the highly porphyritic natrocarbonatite lavas, with sylvite and fluorite as main groundmass minerals. The significance of particular trace element concentrations and ratios of equally incompatible elements (REE, Ba, Sr, Th/U, Nb/Ta, Zr/Hf) is evaluated for models of liquid-liquid separation. In defining a "type" natrocarbonatite composition, we also distinguish special variations in chemical and/or mineralogical compositions as follows: (1) silicate-bearing natrocarbonatites, characterized by the occurrence of nephelinite spheroids, as in the 1993 and 2006 lavas; (2) residual melt compositions as described from the 1988 eruptive period as represented by the aphyric, filter-pressed interstitial melt of solidifying porphyritic lavas; (3) an interlude during 2000 when natrocarbonatites with sylvite and fluorite microcrysts were emitted. After 25 years of mostly mild

  16. Petrogenesis, geochronology, and tectonic significance of granitoids in the Tongshan intrusion, Anhui Province, Middle-Lower Yangtze River Valley, eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Du, Yang-Song; Teng, Chuan-Yao; Zhang, Jing; Pang, Zhen-Shan

    2014-01-01

    The Tongshan copper deposit in Anhui Province is a typical mid-sized skarn and porphyry type deposit in the Anqing-Guichi district along the Middle-Lower Yangtze River Valley, eastern China. The Tongshan intrusion is closely related to this mineralization. The intrusion mainly comprises rocks that are quartz diorite porphyry, quartz monzonite porphyry, and granodiorite porphyry. Plagioclase in these rocks is mostly andesine (An = 31.0-42.9), along with minor oligoclase. Biotite is magnesium-rich [Mg/(Mg + Fe) = 0.52-0.67] and aluminum-poor (Al2O3 = 12.32-14.09 wt.%), and can be classified as magnesio-biotite. Hornblende is TiO2-poor (<1.96 wt.%) and magnesium-rich [Mg/(Mg + Fe) > 0.60], and is magnesio-hornblende or edenite. The SHRIMP zircon U-Pb age of the quartz monzonite porphyry is 145.1 ± 1.2 Ma, which corresponds to the middle Yanshanian period. Whole-rock geochemical results show that the rocks are silica-rich (SiO2 = 60.23-66.23 wt.%) and alkali-rich (K2O + Na2O = 4.97-8.72 wt.%), and low in calcium (CaO = 2.61-5.66 wt.%). Trace element results show enrichments in large ion lithophile element (e.g., K, Rb, and Ba) and depletions in some high field strength elements (e.g., Nb, Ta, P, and Ti). The total rare earth element (REE) content of the rocks is low (ΣREE < 200 μg/g), and they exhibit light REE enrichment [(La/Yb)N > 10] and small positive Eu anomalies (average δEu = 1.16). These mineralogical, geochronological, and geochemical results show that the intrusion has a mixed crust-mantle source. The Tongshan intrusion was formed by multiple emplacements of crustally contaminated basaltic magma generated by varying degrees of partial melting of enriched lithospheric mantle and lower crust. Hornblende thermobarometry yielded magmatic crystallization temperatures of 652-788 °C and an average crystallization pressure of 1.4 kbar, which corresponds to a depth of approx. 4.7 km. Biotite thermobarometry yielded similar temperatures and lower pressures of 735

  17. A Raman model for determining the chemical composition of silicate glasses

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Morgavi, Daniele; Hess, Kai-Uwe; Neuville, Daniel R.; Perugini, Diego; Dingwell, Donald B.

    2015-04-01

    Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light which provides information about molecular vibrations of the investigated sample. Since the discovery of the Raman Effect (1928) in scattered light from liquids, the Raman investigation has been extended to a large number of substances at different pressure-temperature conditions. Recently, the Raman instrument setup has rapidly grown thanks to the progress in development of lasers, charge coupled devices and confocal systems (see Neuville et al. 2014 for a review). Here we present the first Raman model able to determine the chemical composition of silicate glasses. In this study we combine chemical analysis from magma mixing experiments between remelted basaltic and rhyolitic melts, with a high spatial resolution Raman spectroscopy investigation; we focus on tracking the evolution of the Raman spectrum with chemical composition of silicate glasses. The mixing process is driven by a recently-developed apparatus that generates chaotic streamlines in the melts (Morgavi et al., 2013), mimicking the development of magma mixing in nature. From these experiments we obtained a glassy filament with a chemical composition ranging from a basalt to a rhyolite. Raman and microprobe measurements have been performed on a filament of ~1000 μm diameter, every 2.5-20 μm. The evolution of the acquired Raman spectra with the measured chemical composition has been parametrized by combining both the Raman spectra of the basaltic and rhyolitic end-members. Using the developed Raman model we have been able to determine the chemical composition (mol% of SiO2, Al2O3, FeO, CaO, MgO, Na2O and K2O) of the investigated filament. Additionally, the proposed Raman model has been successfully tested using external remelted natural samples; reference glasses (Jochum et al., 2000), a remelted basalt, andesite from Etna and Montserrat respectively. Finally, as the Raman spectrum depends on the

  18. Geochemistry of oceanic igneous rocks - Ridges, islands, and arcs - With emphasis on manganese, scandium, and vanadium

    USGS Publications Warehouse

    Doe, B.R.

    1997-01-01

    A database on a number of elements in oceanic volcanic rocks is presented, including the principal major-element oxides - SiO2, TiO2, Al2O3, Fe2O3(T), MnO, MgO, CaO, Na2O, K2O, and P2O5 (where T refers to total iron) - and the trace elements - Ba, Ce, Cr, Cu, Ni, Sc, Sr, V, Pb (mainly by isotope dilution), Yb, Zn, and Zr. Interpretations are given for transition metals, with emphasis on Mn, Sc, and V, in order to determine the concentration of the elements in primitive melts and assess their trends in magmatic differentiation. Transition metals are not enriched in plagioclase, so all are incompatible with pure plagioclase removal - that is, they become enriched in the melt. Both Cr and Ni are known to be highly compatible with olivine separation - i.e., they are depleted in the melt early in differentiation. Also, Sc is compatible with clinopyroxene (Cpx) removal from the melt and is depleted by separation of Cpx. Copper does not fit well in any of the principal silicates, but Cu, like Ni, is greatly enriched in sulfides that may remain in the source or separate from the magma. Decreasing Ni abundances and increasing Cu contents during differentiation are a sign of olivine separation. In the analysis presented herein, V - in the absence of Cpx separation - is found to behave remarkably like the moderately incompatible element Zn, and these two elements add to the list of element pairs of similar incompatibility whose ratios are insensitive to differentiation and to submarine weathering as well. Both are enhanced in titanomagnetite, so both would he compatible during titanomagnetite separation. When Cpx separates, however, V becomes compatible like Sc, but Zn remains incompatible. Thus, decreasing V (and Sc) contents and increasing Zn contents during differentiation are a sign of Cpx separation. Manganese often behaves much like Zn and therefore is moderately incompatible, but Mn is less compatible than Zn and V in titanomagnetite. Thus, decreasing Zn and V with

  19. Apatite and clinopyroxene as tracers for metasomatic processes in nepheline clinopyroxenites of Uralian-Alaskan-type complexes in the Ural Mountains, Russian Federation

    NASA Astrophysics Data System (ADS)

    Krause, Joachim; Harlov, Daniel E.; Pushkarev, Evgeny V.; Brügmann, Gerhard E.

    2013-11-01

    Clinopyroxene and apatite are found to trace metasomatic processes in nepheline-bearing clinopyroxenites (tilaites) from the igneous, mafic-ultramafic Uralian-Alaskan-type complexes of Kytlym and Nizhny Tagil, Ural Mountains, Russian Federation. The clinopyroxenites consist predominantly of coarse-grained, partially to totally altered clinopyroxene phenocrysts in a matrix of fine-grained olivine, clinopyroxene, plagioclase, K-feldspar, and nepheline. Apatite occurs as idiomorphic inclusions (<25 μm) in the clinopyroxene and as xenomorphic grains in the matrix. In the matrix, plagioclase is partially to totally replaced by a fine-grained symplectitic intergrowth of K-feldspar and nepheline most likely due to the influx of an K2O-, Na2O-, and Al2O3-bearing fluid. During conversion of the plagioclase, CaO and SiO2 were partitioned into the fluid. Altered areas in the clinopyroxene phenocrysts are characterized by the redistribution of major and trace elements. This includes depletion in Mg, Rb, and Sr and enrichment in Al, Na, Ba, U, Th, REE except Eu, and HFSE compared to the original magmatic areas in the clinopyroxene. Apatite inclusions in the altered areas of the clinopyroxene and in the matrix are enriched in Cl relative to apatite inclusions in the unaltered areas of clinopyroxene. It is proposed that these rocks experienced a two-stage metasomatic process. Stage 1 was the partial to total alteration of plagioclase to K-feldspar and nepheline due to interaction with an infiltrating (K,Na)Cl-rich brine (most likely late magmatic) with an Al component, which enriched the fluid in CaCl2. Stage 2 consisted of the partial to total chemical alteration of the original magmatic clinopyroxene by this now CaCl2-enriched fluid through the mechanism of coupled dissolution-reprecipitation. This process also chemically altered the apatite inclusions from fluor-chlorapatite to chlor-fluorapatite and redistributed as well as partially removed the titanomagnetite inclusions in

  20. Petrological constraints on magma storage and transfer beneath Volcán Cerro Machín (Colombia): A volcano showing signs of unrest

    NASA Astrophysics Data System (ADS)

    Muir, D.; Caricchi, L.; Mendez, R.; Londoño, J. M.

    2012-04-01

    Cerro Machín Volcano, located in the Central Cordillera (Colombia) is a dacitic volcano positioned along a large-scale fracture system. Past activity is characterised by explosions of varying intensities and by the effusion of lava domes, with 6 main eruptive cycles occurring over the last 10 kyrs. Currently, the volcano presents two central domes with a total diameter of about 3 km, where two fumarolic fields are located. The rest of the edifice is composed of a 600 m thick ring of pyroclastic flows. Recent seismic swarms, located at depths between 18 and 2 km, have prompted further investigation of this volcanic system. Erupted products are dacitic with similar bulk chemistries to Pinatubo (65.1 wt% SiO2, 2.1 wt% MgO, 2.1 wt% K2O, 4.3 wt% CaO and 4.4 wt% Na2O) apart from FeOT, which at 3.3 wt%, is lower by around 1 wt%. The mineralogical assemblage is composed of plagioclase, quartz, hornblende (two populations: high- and low-Mg) and biotite phenocrysts along with ilmenite, magnetite, and accessory apatite and zircon. All phases, both in products of explosive eruption and dome samples, appear to be at equilibrium with an absence of sieve textures in plagioclase and no dehydration reaction rims in the hydrous phases. Because of the similarities in bulk composition, phase equilibria experiments for Pinatubo (Scaillet et al., 2001) can be used to provide information on the storage conditions of Machín magmas prior to eruption. The presence of biotite suggests temperatures lower than 750°C with melt water contents of at least 5.7 wt % corresponding to water saturation pressures between 225 and 240 MPa. Analyses to determine the amount of sulphur present in the magma are currently being performed to assess its possible influence on the stability of biotite (Scaillet et al., 2001). The lack of evidence of mineral resorption in the eruptive products may imply relatively low magmatic temperatures or fast rates of magma transfer beneath Cerro Machín volcano. We are

  1. The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Ryan B.; Morris, Richard V.; Clegg, Samuel M.; Bell, James F.; Wiens, Roger C.; Humphries, Seth D.; Mertzman, Stanley A.; Graff, Trevor G.; McInroy, Rhonda

    2011-10-01

    Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-volatile (<2 wt.%) silicate samples (90 rock slabs, corresponding powders, and 22 geostandards) were split into training, validation, and test sets. The LIBS spectra and chemical compositions of the training set were used with three multivariate methods to predict the chemical compositions of the test set. The methods were partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs. Both the full LIBS spectrum and the intensity at five pre-selected spectral channels per major element (feature selection) were used as input data for the multivariate calculations. The training spectra were supplied to the algorithms without averaging ( i.e. five spectra per target) and with averaging ( i.e. all spectra from the same target averaged and treated as one spectrum). In most cases neural networks did not perform better than PLS for our samples. PLS2 without spectral averaging outperformed all other procedures on the basis of lowest quadrature root mean squared error (RMSE) for both the full test set and the igneous rocks test set. The RMSE for PLS2 using the igneous rock slab test set is: 3.07 wt.% SiO 2, 0.87 wt.% TiO 2, 2.36 wt.% Al 2O 3, 2.20 wt.% Fe 2O 3, 0.08 wt.% MnO, 1.74 wt.% MgO, 1.14 wt.% CaO, 0.85 wt.% Na 2O, 0.81 wt.% K 2O. PLS1 with feature selection and averaging had a higher quadrature RMSE than PLS2, but merits further investigation as a method of reducing data volume and computation time and potentially improving prediction accuracy, particularly for samples that differ significantly from the training set. Precision and accuracy were influenced

  2. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model.

    PubMed

    Zhao, Shichang; Li, Le; Wang, Hui; Zhang, Yadong; Cheng, Xiangguo; Zhou, Nai; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-01-01

    There is a need for better wound dressings that possess the requisite angiogenic capacity for rapid in situ healing of full-thickness skin wounds. Borate bioactive glass microfibers are showing a remarkable ability to heal soft tissue wounds but little is known about the process and mechanisms of healing. In the present study, wound dressings composed of borate bioactive glass microfibers (diameter = 0.4-1.2 μm; composition 6Na2O, 8K2O, 8MgO, 22CaO, 54B2O3, 2P2O5; mol%) doped with 0-3.0 wt.% CuO were created and evaluated in vitro and in vivo. When immersed in simulated body fluid, the fibers degraded and converted to hydroxyapatite within ∼7 days, releasing ions such as Ca, B and Cu into the medium. In vitro cell culture showed that the ionic dissolution product of the fibers was not toxic to human umbilical vein endothelial cells (HUVECs) and fibroblasts, promoted HUVEC migration, tubule formation and secretion of vascular endothelial growth factor (VEGF), and stimulated the expression of angiogenic-related genes of the fibroblasts. When used to treat full-thickness skin defects in rodents, the Cu-doped fibers (3.0 wt.% CuO) showed a significantly better capacity to stimulate angiogenesis than the undoped fibers and the untreated defects (control) at 7 and 14 days post-surgery. The defects treated with the Cu-doped and undoped fibers showed improved collagen deposition, maturity and orientation when compared to the untreated defects, the improvement shown by the Cu-doped fibers was not markedly better than the undoped fibers at 14 days post-surgery. These results indicate that the Cu-doped borate glass microfibers have a promising capacity to stimulate angiogenesis and heal full-thickness skin defects. They also provide valuable data for understanding the role of the microfibers in healing soft tissue wounds. PMID:25890736

  3. Geochemical Investigation of Saddlebag Lake Roof Pendant and Lee Vining Intrusive Suite Origins

    NASA Astrophysics Data System (ADS)

    Wonderly, A.; Canchola, J.; Putirka, K. D.

    2009-12-01

    Our study is to determine to what extent volcanic rocks from the Saddlebag Lake Roof Pendant (SLRP) represent the erupted complement of the Sierra Nevada Batholith (SNB). SLRP formation is thought to be prior to or synchronous with Sierra Nevada orogeny. Age dates of the SLRP are similar to age dates from the Lee Vining Intrusive Suite (LVIS), so the LVIS may be the plutonic equivalent of the SLRP (Kistler and Fleck 1994). A hypothesized analog between SLRP-LVIS is the Wilson Ridge Pluton (WRP)-River Mountains (RM) complex in southern Nevada, which is a dismembered volcanic complex offset by normal faulting (Honn and Smith, 2008). WRP and RM trace element data from Honn and Smith plot very similar on a Hf-Th-Ta ternary diagram, and Sr and Nd isotope analyses also indicate that the Nevada rocks are co-magmatic. Our goal is to conduct geochemical tests to determine whether the SLRP and LVIS are co-genetic. Our preliminary data support the possibility that the SLRP may provide a window into the magmatic evolutionary processes that led to the development of the LVIS, and the SNB generally. Eighteen samples were collected from the SLRP; major element compositions of whole rocks yield similar weight percents of major oxides for some published data from the LVIS (Bateman et al. 1984). Our SLRP samples, though, trend to higher MgO, Fe2O3, Al2O3, and CaO, lower in SiO2 and Na2O+K2O. If the SLRP and LVIS are indeed related, the SLRP samples may represent some of the less-differentiated liquids from which the LVIS was derived. We were only able to find one basalt (51.2 wgt % SiO2), albeit with very low MgO (2.17 wt %), which may give clues as to the origin of the LVIS. If the mafic enclaves in the LVIS were once liquid, then the SLRP basalts should be comparable to mafic enclaves in composition. We are also analyzing mafic enclaves from the LVIS to explore whether these are liquid precursors to Sierra Nevada Batholith granites.

  4. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Ghiorso, Mark S.; Sack, Richard O.

    1995-03-01

    A revised regular solution-type thermodynamic model for twelve-component silicate liquids in the system SiO2 TiO2 Al2O3 Fe2O3 Cr2O3 FeO MgO CaO Na2O K2O P2O5 H2O is calibrated. The model is referenced to previously published standard state thermodynamic properties and is derived from a set of internally consistent thermodynamic models for solid solutions of the igneous rock forming minerals, including: (Mg, Fe2+, Ca)-olivines, (Na, Mg, Fe2+, Ca)M2 (Mg, Fe2+, Ti, Fe3+, Al)M1 (Fe3+, Al, Si)2 TETO6- pyroxenes, (Na,Ca,K)-feldspars, (Mg, Fe2+) (Fe3+, Al, Cr)2O4-(Mg, Fe2+)2 TiO4 spinels and (Fe2+, Mg, Mn2+)TiO3-Fe2O3 rhombohedral oxides. The calibration utilizes over 2,500 experimentally determined compositions of silicate liquids coexisting at known temperatures, pressures and oxygen fugacities with apatite ±feldspar ±leucite ±olivine ±pyroxene ±quartz ±rhombohedral oxides ±spinel ±whitlockite ±water. The model is applicable to natural magmatic compositions (both hydrous and anhydrous), ranging from potash ankaratrites to rhyolites, over the temperature ( T) range 900° 1700° C and pressures ( P) up to 4 GPa. The model is implemented as a software package (MELTS) which may be used to simulate igneous processes such as (1) equilibrium or fractional crystallization, (2) isothermal, isenthalpic or isochoric assimilation, and (3) degassing of volatiles. Phase equilibria are predicted using the MELTS package by specifying bulk composition of the system and either (1) T and P, (2) enthalpy (H) and P, (3) entropy (S) and P, or (4) T and volume (V). Phase relations in systems open to oxygen are determined by directly specifying the f o2 or the T-P-f o2 (or equivalently H- P-f o2, S- P-f o2, T-V- f o2) evolution path. Calculations are performed by constrained minimization of the appropriate thermodynamic potential. Compositions and proportions of solids and liquids in the equilibrium assemblage are computed.

  5. Geochemistry and mineralogy of the older (> 40 ka) ignimbrites in the Campanian Plain, southern Italy

    NASA Astrophysics Data System (ADS)

    Belkin, Harvey E.; Raia, Federica; Rolandi, Giuseppe; Jackson, John C.; de Vivo, Benedetto

    2010-05-01

    The Campanian Plain in southern Italy has been volcanically active during the last 600 ka. The largest and best known eruption at 39 ka formed the Campanian Ignimbrite (CI), which has the largest volume (~310 km3) and the greatest areal extent. However, significant, but scattered deposits of older ignimbrites underlie the CI and document a long history of trachytic eruptions. We examined the geochemistry and mineralogy of 11 older ignimbrite strata by optical petrography, electron microprobe, scanning electron microscope, X-ray diffraction, and various whole-rock geochemical techniques. Strata at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley A (245.9 ka), Seiano Valley B (289.6 ka), Taurano 7 (205.6 and 210.4 ka), Taurano 9 (183.8 ka), and Taurano 14 (157.4 ka) have been previously dated by the 40Ar/39Ar technique (Rolandi et al., 2003, Min. & Pet., 79) on hand-picked sanidine. The older ignimbrites are trachytic, but are highly altered with LOI from 8 to 17 wt%. Whole-rock compositions reflect variable element mobility during weathering; TiO2, Al2O3, Fe-oxide, and CaO tend to be enriched relative to average CI composition, whereas Na2O and K2O are depleted. X-ray diffraction identified major chabazite, kaolinite, and illite-smectite alteration products in some samples. The phenocryst mineralogy in all of the strata is typical for trachyte magma and consists of plagioclase (~An80 to ~An40), potassium feldspar (~Or50 to ~Or80), biotite (TiO2 = ~4.6 wt%, BaO = ~0.70 wt%, F = ~0.65 wt%), diopside (~Ca47Mg48Fe5 to ~Ca48Mg34Fe18), titanomagnetite, and uncommon Ca-amphibole. Relatively immobile trace elements Zr, Hf, Nb, and Th display similar abundance, linear trends, and ratios as those measured in the Campanian Ignimbrite: Th/Hf = ~4, Zr/Hf = ~50, and Zr/Nb = ~6. The similarity of trace element systematics and phenocryst mineralogy among the Campanian Ignimbrite and the older ignimbrites suggests that the magmagenesis processes and parental source have

  6. Explosive eruption of rhyodacitic magma at the Cordón-Caulle volcanic complex, southern Chile

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Schipper, C.

    2011-12-01

    After lying dormant for decades, the Cordón-Caulle volcanic complex (CCVC) reactivated again on 4 June, 2011 with an explosive eruption that produced a sustained vertical ash column reaching roughly 14,000 m a.s.l. This explosive phase produced a tephra plume that dispersed E-SE across the Chilean Patagonia into Argentina, and within a week encircled the globe prompting widespread disruption to air traffic and several airport closures. After about 3 weeks of fluctuating explosive activity, a lava flow began effusing from the same vent as the initial activity. We analyzed pumice and ash samples of the Plinian fall from 4 June for their major and trace element makeup, mineralogical characteristics, and 3D textural relationships within pyroclasts. The light beige, phenocryst-poor (<5 vol%) pumice contains plagioclase (~1mm) as its primary phase, and magnetite, orthopyroxene and clinopyroxene in sub-equal amounts. The crystals often form intergrowth clusters but may also be found separate and enclosed in highly vesicular microlite-free glass. As shown by XRF analyses on bulk pumice and ash samples collected from two localities southeast of the vent, the current eruptives comprise the following (in wt.%): SiO2 = 69.6, TiO2 = 0.70, Al2O3 = 14.3, Fe2O3 = 4.56, MnO = 0.11, MgO = 0.54, CaO = 2.3, Na2O = 5.14, K2O = 2.75, P2O5 = 0.11; and, (in ppm): Cr = 6.7, Ni = 2.3, Rb = 70.3, Sr = 163.3, Y = 51.7, Zr = 328, Ba = 702, Pb = 23.7. Interestingly, these compositions are virtually identical to those of magma erupted during 1960 and closely resemble rhyodacite erupted in 1921 from nearby vents. The primary difference between the present eruption and its recent predecessors is the much greater eruptive vigour of the current phase. Another distinction between the present and past historical eruptions is the presence of conspicuous mafic-felsic mingling textures in a small percentage (~0.5 vol%) of the current pumice. Textural and chemical analyses of the mafic blobs are

  7. Origin of hydrous fluids at seismogenic depth: Constraints from natural and experimental fault rocks

    NASA Astrophysics Data System (ADS)

    Mittempergher, Silvia; Dallai, Luigi; Pennacchioni, Giorgio; Renard, François; Di Toro, Giulio

    2014-01-01

    Fluids control the mechanical behavior of fault zones during the seismic cycle. We used geochemical, mineralogical, microstructural, hydrogen isotope compositions and Fourier Transform Infrared (FTIR) investigations to characterize the origin of hydrous fluids involved in ductile and brittle shear zones at the bottom of the seismogenic crust. Natural samples were collected from exhumed mylonitic shear zones and cataclasite-pseudotachylyte bearing faults in the northern Adamello (Italian Southern Alps), which were active at 9-11 km depth. Pseudotachylytes, solidified coseismic friction-induced melts, testify to ancient seismogenic behavior of the faults. Natural pseudotachylytes were compared with artificial pseudotachylytes produced in high velocity friction experiments simulating seismic slip. Mylonites have mineralogical, elemental and hydrogen isotope compositions (-80‰<δD<-78‰) similar to the host tonalite (-77‰<δD<-73‰), within the analytical error of ±5‰. Cataclasites have instead mineralogical (chlorite, epidote, K-feldspar, no biotite), major and trace elements (enrichment in K2O, Ba, Rb; depletion in CaO, Na2O, SiO2) and hydrogen isotope (-69‰<δD<-60‰) compositions suggesting interactions with a crustal metamorphic fluid. Pseudotachylytes are composed of high temperature minerals (plagioclase, biotite, dmisteinbergite, cordierite, and scapolite) and have elemental compositions resulting from mixing of tonalite and cataclasite. Pseudotachylytes have complex microstructures, including: (i) microlitic domains, with well crystallized micrometric biotite, which have hydrogen isotope composition (-81‰<δD<-59‰) similar to cataclasites and tonalite; and (ii) cryptocrystalline domains, with poorly crystallized biotite, which have very high water content, release water upon heating at T>50 °C and have low δD value (-93‰). The hydrogen isotope composition of bulk samples is dominated by the composition of cryptocrystalline domains (-103

  8. Timing of post-collisional H-type to A-type granitic magmatism: U Pb titanite ages from the Alpine central Anatolian granitoids (Turkey)

    NASA Astrophysics Data System (ADS)

    Köksal, Serhat; Romer, Rolf L.; Göncüoglu, M. Cemal; Toksoy-Köksal, Fatma

    2004-12-01

    The last stages of the continental collision during the closure of the Neotethyan ocean in central Anatolia are characterized by post-collisional H- and A-type granitoids intruding both the metamorphic country rocks and allochthonous ophiolitic rocks of the central Anatolian crystalline complex. Available Rb Sr and K Ar whole-rock and mineral age data on the H- and A-type granitoids in central Anatolia are inconsistent. To better constrain the geological relevance and the timing of the change in the chemical character of magmatism in the wake of the Alpine orogeny in Anatolia, we re-evaluated the geochemical characteristics and dated titanite from representative H- (Baranadag quartz-monzonite: BR) and A-type (Çamsari quartz-syenite: CS) granitoids by the U Pb method. BR is a high-K calc-alkaline intrusion with mafic microgranular enclaves and shows enrichment of LILE relative to HFSE. The alkaline CS displays higher SiO2, Na2O+K2O, Fe/Mg, Rb, Th and HFSE with corresponding depletion in CaO, MgO, Fe2O3tot, P2O5, Ba, Sr, and Ti. Chondrite-normalized REE patterns of the BR and CS samples have LREE-enriched and flat HREE patterns, whereas CS differs from BR by higher LREE enrichment and lower MREE and HREE contents. Mineralogical and geochemical characteristics suggest that BR and CS were not products of the same magma source. BR was derived from a subduction-modified depleted hybrid-source and CS had an enriched mantle source with significant crustal contribution. The U Pb titanite ages of the H-type central Anatolian granitoids (BR) and the A-type granitoids (CS) are 74.0±2.8 and 74.1±0.7 Ma, respectively. The coeval evolution of post-collisional/calc-alkaline H- to A-type magmatism was possibly associated with source heterogeneity and variable involvement of continental materials during the evolution of these granitoids. These new age data constrain the timing of the onset of a post-collision extensional period following the Alpine thickening

  9. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE PAGESBeta

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.; Jantzen, C.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmore » turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ≈ P2O5 > Na2O ≈ B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ≈ SnO2 > Others ≈ SiO2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  10. Geochemistry of K/T-boundary Chicxulub ejecta of NE-Mexico

    NASA Astrophysics Data System (ADS)

    Harting, M.; Deutsch, A.; Rickers, K.

    2003-12-01

    Many K/T sections all over the world contain impact spherules supposed related to the Chicxulub event. This study focus on ejecta layers in NE-Mexican profiles. We carried out systematic XRF and synchrotron radiation measurements on such spherules at the HASYLAB and ANKA facilities as well as microprobe analyses (CAMECA SX50). Area scans on tektite-like material of the Bochil section reveal a pronounced zonation in the inner part, dominated by Ba and Sr whereas secondary CaCO3 dominates in the altered margin. The composition of the spherules from the Mesa-Juan Perez section differ significantly from the Beloc (Haiti) and Bochil tektite glasses. At Mesa-Juan Perez, spherules are either extremely rich in Fe and Ca or consist of smectite, some of those carry carbonate inclusions. Yttrium, La and Ce are zoned within the smectite with concentrations below the detection limit and up to 20 æg/g The Ca-rich inclusions are enriched in Y (up to 35 æg/g) and La (18 æg/g) and, compared to the surrounding smectite, also in Ce (up to 34 æg/g). The Ce enrichment in spherules from the Mesa-Juan Perez section indicates impact-melted carbonates of the Yucatan carbonate platform as possible precursor rocks. Recent investigations focus on the chemistry of melt rock samples from the PEMEX wells Yucatan-6 and Chicxulub-1: Their average composition (mean of 250 data points in wt-percent ) is 61.6 for SiO2, 0.16 for TiO2, 18.07 for Al2O3, 0.01 for Cr2O3, 1.98 for Na2O, 1.5 for FeO, 0.05 for MnO, 0.01 for NiO, 0.31 for MgO, 9.14 for K2O, 3.44 for CaO, and 0.01 for SO2. These results are in some cases comparable to the geochemistry of ejecta glasses, e.g. from Beloc (Haiti).

  11. Calcinaksite, KNaCa(Si4O10) H2O, a new mineral from the Eifel volcanic area, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Aksenov, Sergey M.; Rastsvetaeva, Ramiza K.; Blass, Günter; Varlamov, Dmitry A.; Pekov, Igor V.; Belakovskiy, Dmitry I.; Gurzhiy, Vladislav V.

    2015-08-01

    The new mineral calcinaksite, ideally KNaCa(Si4O10) · H2O, the first hydrous and Ca-dominant member of the litidionite group, is found in a xenolith of metamorphosed carbonate-rich rock from the southern lava flow of the Bellerberg volcano, Eastern Eifel region, Rheinland-Pfalz, Germany. It is associated with wollastonite, gehlenite, brownmillerite, Ca2SiO4 (larnite or calcio-olivine), quartz, aragonite, calcite, jennite, tobermorite and ettringite. Calcinaksite occurs as clusters of colourless to light-grey subhedral prismatic crystals. The mineral is brittle, with Mohs' hardness of 5; Dmeas is 2.62(2) g/cm3 and Dcalc is 2.623 g/cm3. The IR spectrum shows the presence of H2O molecules forming three different H-bonds. Calcinaksite is optically biaxial (+), α = 1.542(2), β = 1.550(2), γ = 1.565(3), 2 V meas = 75(10). The chemical composition (electron-microprobe data, H2O determined by the Alimarin method, wt%) is: Na2O 6.69, K2O 12.01, CaO 15.04, FeO 0.59, SiO2 61.46, H2O 4.9, total 100.69. The empirical formula is H2.11 K0.99Na0.84Ca1.04Fe0.03Si3.98O11. The crystal structure was solved and refined to R 1 = 0.053, wR 2 = 0.075 based upon 3057 reflections having I > 3σ( I). Calcinaksite is triclinic, space group P , a = 7.021(2), b = 8.250(3), c = 10.145(2) Å. α = 102.23(2)°, β = 100.34(2)°, γ = 115.09(3)°, V = 495.4(3) Å3, Z = 2. The strongest reflections of the X-ray powder pattern [ d, Å ( I,%) ( hkl)] are: 3.431 (70) (-121, -211, -210, 012, 0-22), 3.300 (67) (-031), 3.173 (95) (-103, -201, -220, 003, 111), 3.060 (100) (-212, 2-11, -221, 200, -1-13, 021, -202), 2.851 (83) (0-23, -122, 1-13, 1-31), 2.664 (62) (1-23, -222, 201).

  12. Osumilite-(Mg): Validation as a mineral species and new data

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Rastsvetaeva, R. K.; Aksenov, S. M.; Belakovskiy, D. I.; Van, K. V.; Schüller, W.; Ternes, B.

    2013-12-01

    Osumilite-(Mg), the Mg-dominant analogue of osumilite, has been approved by the CNMNC IMA as a new mineral species. The holotype sample has been found at Bellerberg, Eifel volcanic area, Germany. Fluorophlogopite, sanidine, cordierite, mullite, sillimanite, topaz, pseudobrookite and hematite are associated minerals. Osumilite-(Mg) occurs as short prismatic or thick tabular hexagonal crystals reaching 0.5 × 1 mm in size in the cavities in basaltic volcanic glasses at their contact with thermally metamorphosed xenoliths of pelitic rocks. The mineral is brittle, with Mohs' hardness 6.5. Cleavage was not observed. Color is blue to brown. D meas = 2.59(1), D calc = 2.595 g/cm3. No bands corresponding to H2O and OH-groups are in the IR spectrum. Osumilite-(Mg) is uniaxial (+), ω = 1.539(2), ɛ = 1.547(2). The chemical composition (electron microprobe, average of 5 point analyses, wt %) is: 0.08 Na2O, 3.41 K2O, 0.04 CaO, 7.98 MgO, 0.28 MnO, 21.57 Al2O3, 3.59 Fe2O3, 62.33 SiO2, total 99.28. The empirical formula is: (K0.72Na0.03Ca0.01)(Mg1.97Mn0.04)[Al4.21Fe{0.45/3+}Si10.32]O30. The simplified formula is: KMg2Al3(Al2Si10)O10. The crystal structure was refined on a single crystal, R = 0.0294. Osumilite-(Mg) is hexagonal, space group P6/ mcc; a = 10.0959(1), c = 14.3282(2)Å, V = 1264.79(6) Å3, Z = 2. The strongest reflections in the X-ray powder diffraction pattern [ d, Å I %) ( hkl)] are: 7.21 (37) (002), 5.064 (85) (110), 4.137 (45) (112), 3.736 (43) (202), 3.234 (100) (211), 2.932 (42) (114), 2.767 (51) (204). A type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  13. Formation and emplacement of two contrasting late-Mesoproterozoic magma types in the central Namaqua Metamorphic Complex (South Africa, Namibia): Evidence from geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Bial, Julia; Büttner, Steffen H.; Frei, Dirk

    2015-05-01

    The Namaqua Metamorphic Complex is a Mesoproterozoic low-pressure, granulite facies belt along the southern and western margin of the Kaapvaal Craton. The NMC has formed between ~ 1.3 and 1.0 Ga and its central part consists essentially of different types of granitoids intercalated with metapelites and calc-silicate rocks. The granitoids can be subdivided into three major groups: (i) mesocratic granitoids, (ii) leucocratic granitoids and (iii) leucogranites. The high-K, ferroan mesocratic granitoids (54-75 wt% SiO2) have a variable composition ranging from granitic to tonalitic, and contain biotite and/or hornblende or orthopyroxene. They are strongly enriched in REE and LILE, indicating A-type chemical characteristics, and are depleted in Ba, Sr, Eu, Nb, Ta and Ti. The leucocratic granitoids and leucogranites (68-76 wt% SiO2) differ from the other group in having a granitic or slightly syenitic composition containing biotite and/or garnet/sillimanite. They have lower REE and MgO, FeOt, CaO, TiO2, MnO concentrations, but higher Na2O and K2O contents. Compositional variations in mesocratic granitoids indicate their formation by fractional crystallization of a mafic parental magma. Leucocratic granitoids and leucogranites lack such trends, which suggests melting of a felsic crustal source without subsequent further evolution of the generated magmas. The mineralogical and geochemical characteristics of the mesocratic granitoids are consistent magmatic differentiation of a mantle derived, hot (> 900 °C) parental magma. The leucocratic granitoids and leucogranites granites were formed from low-temperature magmas (< 730 °C), generated during fluid-present melting from metasedimentary sources. New U-Pb zircon ages reveal that both magma types were emplaced into the lower crust within a 30-40 million years interval between 1220-1180 Ma. In this time period the crust reached its thermal peak, which led to the formation of the leucocratic granitoids and leucogranites. A

  14. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry

    USGS Publications Warehouse

    Driese, S.G.; Jirsa, M.A.; Ren, M.; Brantley, S.L.; Sheldon, N.D.; Parker, Dana C.; Schmitz, M.

    2011-01-01

    Field and laboratory investigations of a 2690.83Ma (207Pb/206Pb age of Saganaga Tonalite) unconformity exposed in outcrop in northeastern Minnesota, USA, reveal evidence for development of a deep paleoweathering profile with geochemical biosignatures consistent with the presence of microbial communities and weakly oxygenated conditions. Weathering profiles are characterized by a 5-50m thick regolith that consists of saprolitized Saganaga Tonalite and Paulson Lake succession basaltic metavolcanic rocks retaining rock structure, which is cross-cut by a major unconformity surface marking development of a successor basin infilled with alluvial deposits. The regolith and unconformity are overlain by thick conglomerate deposits that contain both intrabasinal (saprock) as well as extrabasinal detritus. Thin-section microscopy and electron microprobe analyses reveal extensive hydrolysis and sericitization of feldspars, exfoliation and chloritization of biotite, and weathering of Fe-Mg silicates and Cu-Fe sulfides; weathering of Fe-Ti oxides was relatively less intense than for other minerals and evidence was found for precipitation of Fe oxides. Geochemical analyses of the tonalite, assuming immobile TiO2 during weathering (??Ti,j), show depletion of SiO2, Al2O3, Na2O, CaO, MgO, and MnO, and to a lesser degree of K2O, relative to least-weathered parent materials. Significant Fe was lost from the tonalite. A paleoatmospheric pCO2 of 10-50 times PAL is estimated based on geochemical mass-balance of the tonalite profile and assuming a formation time of 50-500Kyr. Interpretations of metabasalt paleoweathering are complicated by additions of sediment to the profile and extensive diagenetic carbonate (dolomite) overprinting. Patterns of release of P and Fe and retention of Y and Cu in tonalite are consistent with recent laboratory experiments of granite weathering, and with the presence of acidic conditions in the presence of organic ligands (produced, for example, by a

  15. Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part II: Geochemical overview and modelling

    NASA Astrophysics Data System (ADS)

    Ridolfi, Filippo; Renzulli, Alberto; Perugini, Diego; Cesare, Bernardo; Braga, Roberto; Del Moro, Stefano

    2016-02-01

    This work reports a geochemical overview and modelling of the lavas erupted ~ 4.4 Ma ago at San Vincenzo (Tuscan Magmatic Province, TMP). Although these lavas cover a relatively small area (~ 10 km2), they show very large geochemical variations caused by the interaction of mantle-derived and crustal-anatectic magmas. The lavas consist of peraluminous rhyolites (87Sr/86Sr(i) up to 0.726) hosting primarily variably sized magmatic enclaves with shoshonite/latite compositions (87Sr/86Sr(i) down to 0.708). New whole-rock data for a large shoshonite enclave show high concentrations of LREE, LILE, and tetravalent HFSE, coupled with pentavalent HFSE depletions and enrichments in compatible elements such as Cr and Co. The chondrite-normalised REE pattern is strongly fractionated and characterised by a negative Eu anomaly (Eu/Eu* = 0.79). Hybridisation and AFC models suggest that the shoshonite enclave is the result of 12% rhyolite contamination of a mantle-derived magma akin to the potassic trachybasalt/shoshonite lavas of Capraia Island (~ 4.6 Ma; TMP), following an 18.5% assimilation of Late Triassic metasediments (13% evaporite and 5.5% carbonate) and 56% fractionation of clinopyroxene (39%), plagioclase (10%), and biotite (7%). Each rhyolite sample is characterised by mineral-scale isotopic disequilibria (e.g., 87Sr/86Sr(i) = 0.711-0.726), glass inclusions with large K2O/Na2O variations (1.1-3.4) and a poli-thermobarometric history of crustal melt production at eutectic conditions. A multi-parametric approach accounting for K2O/Na2O (1.3-2.2), 87Sr/86Sr(i) (0.713-0.725), Sr (104-311 ppm) and Rb (294-403 ppm) whole-rock variations, allowed us to divide the anatectic (A) rhyolites into five groups (A1, A2.1, A2.2, A2.3, A3). Group A1 shows the highest 87Sr/86Sr(i) ratios and the lowest values of Sr, K2O/Na2O and Rb. It is related to A2.1 and A3 rhyolites by positive K2O/Na2O-Rb and K2O/Na2O-FeO correlations. These three rhyolite groups crop out in the south of San

  16. High to ultrahigh potassic alkaline volcanic belt along the Ankara-Erzincan suture (northern Turkey): new geochemical and Ar-Ar data constraining petrogenesis with implications for the late Cretaceous subduction of the Neotethys Ocean

    NASA Astrophysics Data System (ADS)

    Genc, S. Can; Gulmez, Fatma; Tuysuz, Okan; Karacik, Zekiye; Roden, Michael F.; Zeki Billor, M.; Hames, Willis E.

    2013-04-01

    Remnants of some high- to ultrahigh-K alkaline volcanic rocks crop out as isolated small and discontinuous bodies along the Ankara-Erzincan suture belt in northern Turkey. These rocks are represented by leucite-bearing lavas (LB), basaltic andesites, trachytes, monzonite/syenites) and lamprophyres. Leucite-bearing rocks are small stocks, dikes and lava flows. Pebbles and blocks of the LB are found in the coeval volcanic debris avalanche deposits and volcanoclastic breccias. Leucite-bearing rocks are mainly phonotephrite, tephriphonolite, trachyandesite and basaltic trachyandesites (shoshonite) and have mineral assemblages of lct + cpx + ol + pl + Kfs + mag+ ap. Leucites were almost totally analcimized. Trachytes and monzonite/syenites, which are seen as small stocks and dikes, are characterized by amp + bt + pl + Kfs + spn + ap + opq paragenesis. Lamprophyres are mica-rich melanocratic dikes, and include cpx + mica (phlogopitic) + Kfs + ap + opq. Rarely leucite, olivine and plagioclase are also present. Ar-Ar data reveal that this volcanic activity occurred between 73.6±0.18 and 76.78±0.19 Ma, corresponding to latest Cretaceous. All the samples from the high- and ultrahigh-K volcanic belt are alkaline in nature. Leucite-bearing lavas are characterized by their MgO (2.70-5.81, av. 4.58 wt.%), K2O (0.79-4.81, av. 2.35 wt.%), Na2O (4.86-7.48, av. 3.58 wt.%) and K2O/Na2O (0.13-0.92, av. 0.42 wt.%). The low K2O and K2O/Na2O contents of these rocks are due to extensive analcimization of the leucites. Major oxide contents in lamprophyric rocks are 3.25-7.48 (MgO), 1.35-7.76 (K2O), 1.77-4.00 (Na2O) and 0.31-2.69 (K2O/Na2O). The silica content of these rocks are variable and range from 47.18-50.26 (wt.%) (LB) to 39.14-53.28 (lamprophyres). Based on their major element contents, these rocks are classified as plagioleucitites or ultrapotassic rocks of the active orogenic zones (Foley, 1992). Leucite-bearing rocks, lamprophyres and the trachytes (with their hypabyssal

  17. Geochemical, Mineralogical, and Sedimentological Investigation of Phosphorite and its Clay-Rich Mine Tailings from a Phosphate Mine, Togo, West Africa

    NASA Astrophysics Data System (ADS)

    Rezaie Boroon, M.; Ramirez, P. C.; Gnandi, K.

    2009-12-01

    Clay-rich mine tailings from phosphate mine operations in Togo West, Africa present major environmental and economic problems. Options for reclamation and restoration of the tailings are limited and are fundamentally restricted due to poorly executed waste management. The major control on the bulk physical properties of the tailings is the mineralogy of the materials. Clay samples from raw phosphate mined were obtained to investigate its sedimentological geochemical, and bulk properties Tailings were also analyzed for similar properties. The phosphatic deposits are Eocene in age, 1 to 10s of meters thick and consist mostly of moderately to poorly sorted phosphatized pellets, formanifera, and other bioclastic debris. Attapulgite occurs interstitially. Moisture contents of clays from the raw phosphate varies from 4.00 to 7.11 wt%. Francolite is the main mineral phase present in the samples analyzed. Geochemically, the rocks show significant enrichment in P2O5 and CaO. P2O5 concentrations vary from approximately 29 to 35.78 wt%. A strong correlation (r2 = 0.92) occurs between CaO and P2O5 abundances indicating that apatite is a major control on the phosphate. A number of heavy metal elements and trace elements occur. Cr, V, Ni, Cu, and Cd are interpreted to be in phosphate minerals, largely apatite. Mean oxide compositions (wt %) are 31.27% P2O5, 43.74% CaO, 9.50% SiO2, 4.30% Al2O3, 2.96% Fe2O3, 0.11 % K2O, 0.19% TiO2, 0.02% MnO, 0.02% MgO, 0.02 % Na2O, and 6.12 % LOI (loss of ignition). Our analysis shows that Cd, U, Th, and F are incorporated into the francolite. We conclude that the phosphorites in Togo formed under oxic, shallow-water conditions where microbial populations assimilated phosphorus primarily from seawater and mediated precipitation of calcium fluroapatite during early digenesis at the sediment-water interface. Analysis of the mine tailings show that the purification process leads to the enrichment of certain metals (Cr, Cu, Ni, V, Zn, Ba, Sr, Fe, and

  18. Sr-Nd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: Constraints on its formation setting

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Liu, Chuan-Zhou; Wu, Fu-Yuan; Zhang, Chang; Ji, Wei-Qiang; Wang, Jian-Gang

    2016-08-01

    The Cretaceous Xigaze ophiolite is best exposed at the central part of the Yarlung-Zangbo Suture Zone, Tibet Plateau. It consists of a thick section of mantle peridotites, but a relatively thin mafic sequence. This study presents geochronological and geochemical data for intrusive dykes (both mafic and felsic) and basalts to revisit the formation setting of the Xigaze ophiolite. The rodingites are characterized by high CaO and low Na2O contents relative to mafic dykes and show big variations in trace element compositions. Both gabbros and diabases have similar geochemical compositions, with MgO contents of 6.42-11.48 wt% and Mg# of 0.56-0.71. They display REE patterns similar to N-MORB and are variably enriched in large ion lithophile elements. Basalts have fractionated compositions and display LREE-depleted patterns very similar to N-MORB. They do not show obvious enrichment in LILE and depletion in high-field-strength elements, but a negative Nb anomaly is present. The studied plagiogranites have compositions of trondhjemite to tonalite, with high Na2O and low K2O contents. They have low TiO2 contents less than 1 wt%, consistent with melts formed by anatexis of gabbros rather than by differentiation of basalts. Zircons from seven samples, including three rodingites, three plagiogranites, and one gabbro, have been dated and yielded U-Pb ages of 124.6 ~ 130.5 Ma, indicating the Xigaze ophiolite was formed during the Early Cretaceous. They have mantle-like δ18O values of + 4.92 ~ + 5.26‰ and very positive εHf(t) values of + 16 ~ + 13.3. Ages of the rodingites and less altered gabbros indicate that serpentinization was occurred at ~ 125 Ma. Occurrence of both gabbroic and diabase dykes within the serpentinites suggests that the mantle lithosphere of the Xigaze ophiolite was rapidly exhumed. Both mafic and felsic dykes have slightly more radiogenic 87Sr/86Sr ratios relative to MORB, but depleted Hf-Nd isotpe compositions. They have a limited range of ε

  19. Melting and subsolidus phase relations in peridotite and eclogite systems with reduced Csbnd Osbnd H fluid at 3-16 GPa

    NASA Astrophysics Data System (ADS)

    Litasov, Konstantin D.; Shatskiy, Anton; Ohtani, Eiji

    2014-04-01

    Melting phase relations of peridotite and eclogite coexisting with reduced C-O-H fluid have been studied at 3-16 GPa and 1200-1600 °C. In order to perform these experiments the double-capsule technique with fO2 control by outer Mo-MoO2 or Fe-FeO buffer capsule was designed and developed for multianvil experiments at pressures 3-21 GPa. Silicate phase assemblages resemble those in volatile-free lithologies, i.e. olivine/wadsleyite-orthopyroxene-clinopyroxene-garnet in peridotite and garnet-omphacite in eclogite. Melting was detected by the appearance of quenched crystals of pyroxene, feldspar and glassy silica. Estimated solidus temperatures for peridotite + C-O-H fluid with fO2=Fe-FeO are 1200 °C at 3 GPa and 1700 °C at 16 GPa. The solidus of the system with fO2=Mo-MoO2 was about 100 °C lower. Estimated solidus temperatures for eclogite + C-O-H fluid with fO2=Fe-FeO are 1100 °C at 3 GPa and 1600 °C at 16 GPa, and for eclogite at fO2=Mo-MoO2 solidus temperatures were 20-50 °C lower. These solidus temperatures are much higher (300-500 °C) than those for peridotite and eclogite systems with H2O and/or CO2, but are still 300-400 °C lower than the solidi of volatile-free peridotite and eclogite at studied pressures. The compositions of partial melt were estimated from mass-balance calculations: partial melts of peridotite have CaO-poor (6-9 wt.%) basaltic compositions with 44-47 wt.% SiO2 and 1.1-1.6 wt.% Na2O. Melts of eclogite contain more SiO2 (47-49 wt.%) and are enriched in CaO (9-15 wt.%), Na2O (9-14 wt.%), and K2O (1.3-2.2 wt.%). All runs contained graphite or diamond crystals along with porous carbon aggregate with micro-inclusions of silicates indicating that reduced fluid may dissolve significant amounts of silicate components. Analyses of carbon aggregates using a defocused electron microprobe beam reveal compositions similar to estimated partial melts. The diamonds formed from reduced C-O-H fluid may have natural analogues as polycrystalline

  20. Thermodynamics and phase equilibria of the silicate-fluoride-water systems: Implications for fluorine-bearing granites

    NASA Astrophysics Data System (ADS)

    Dolejs, David

    The progressive enrichment in volatiles and light incompatible elements observed during upper-crustal differentiation of granitic and rhyolitic magmas leads to significant changes in melt physical-chemical properties and has important implications for ore deposition and volcanic devolatization. Thermodynamic calculations and experimental studies of melting equilibria in the Na 2O-K2O-Al2O3-SiO2-F 2O-1-H2O system are used to evaluate mineral stabilities, fluid compositions, the extent of fluoride-silicate liquid-liquid immiscibility, fluorine and water solubility limits and differentiation paths of natural fluorine-bearing silicic magmas. The interaction of fluorine with rock-forming aluminosilicates corresponds to progressive fluorination by the thermodynamic component F2O-1. Formation of fluorine-bearing minerals first occurs in peralkaline and silica-undersaturated systems that buffer fluorine concentrations at very low levels (villiaumite, fluorite). The highest concentrations of fluorine are achieved in peraluminous silica-oversaturated systems, saturated with fluorite or topaz. Thermodynamic models of fluorosilicate melts indicate clustering of silicate tetrahedra in the Na2O-SiO 2-F2O-1 system, whereas initial NaAl-F short-range order evolves into partial O-F disorder in the albite-cryolite system. Experiments performed at 520-1100°C and 0.1-100 MPa completely describe liquidus relations and differentiation paths of fluorine-bearing felsic magmas. Coordination differences and short-range order effects between [NaAl]-F, Na-F vs. Si-O lead to the fluoride-silicate liquid immiscibility, which extends from the silica-cryolite binary through the peralkaline albite-silica-cryolite ternary and closes in multicomponent, topaz-bearing systems owing to the destabilizing effect of increasing peraluminosity. Liquidus relations indicate that fluoride-silicate liquid-liquid immiscibility is inaccessible to quartz-feldspar-saturated granitic melts. Differentiation paths of

  1. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Topuz, Gültekin; Altherr, Rainer; Siebel, Wolfgang; Schwarz, Winfried H.; Zack, Thomas; Hasözbek, Altuğ; Barth, Mathias; Satır, Muharrem; Şen, Cüneyt

    2010-04-01

    The Gümüşhane pluton, a high-K calc-alkaline I-type granodiorite/granite complex, forms an important component of the pre-Liassic basement of the Eastern Pontides (NE Turkey). In its eastern part, the pluton shows a compositional zonation ranging from biotite-hornblende granodiorite in the NW through biotite-hornblende granite to leucogranite/granophyre in the SE. Numerous mafic microgranular enclaves (up to ˜ 40 cm in diameter) suggest the former presence of globules of mafic melt during crystallization. Emplacement of the pluton occurred during the latest Early Carboniferous, as shown by the 320 ± 4 Ma 40Ar- 39Ar biotite/hornblende and 324 ± 6 Ma LA-ICP-MS U-Pb zircon ages. In Harker diagrams, samples of the different rock types exhibit well-defined data trends. With increasing SiO 2, the abundances of TiO 2, Al 2O 3, Fe 2O 3tot, MnO, MgO, CaO, P 2O 5 and Sc decrease, but those of K 2O and Rb increase. However, the variations of Sr, Ba, (La/Yb) cn, Sr/Y and ∑ REEs vs. SiO 2 form distinctive groupings, which cannot be explained by a simple fractional crystallization. Chondrite-normalized (cn) REE patterns of granodiorite/granite samples show concave-upward shapes with (La/Yb) cn ranging from 5.2 to 12.4 and Eu/Eu* from 0.84 to 0.47, while there is almost no fractionation of the middle REE relative to the heavy REE. In primitive mantle-normalized element concentration diagrams, all rocks display marked negative anomalies in Ba, Nb/Ta, Sr, P and Ti, but positive anomalies in K and Pb. These geochemical features imply a fractionating mineral assemblage of clinopyroxene, amphibole and plagioclase without significant involvement of garnet. The granophyres are, on the other hand, characterized by higher K 2O/Na 2O and Rb/Sr ratios, lower (La/Yb) cn ratios (1.3 to 4.8) and more pronounced negative anomalies in Ba, Nb/Ta, Sr, Eu, P and Ti. Initial ɛNd values range from - 3.78 to - 5.30 and Nd model ages from 1.38 to 163 Ga. The magmas of the granite

  2. Juvenile accretion (2360-2330 Ma) in the São Francisco Craton, and implications for the Columbia supercontinent: evidence from U-Pb zircon ages, Sr-Nd-Hf and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Teixeira, W.; Ávila, C.

    2012-12-01

    The Mineiro and the Itabuna-Salvador-Curaçá belts are segments of an Early Proterozoic orogen, in the São Francisco/West Congo-North Gabon craton. The latter segment includes island-arc rocks with preserved portions of the accretionary prism and back-arc basins, developed between 2.4 and 2.0 Ga. The Mineiro belt evolved marginally to the Minas passive margin basin (<2.55 to 2.35 Ga). It contains mainly granitoid rocks with ages between 2.25-2.20 Ga and 2.12-2.08 Ga, along with coeval back arc sequences. The overall framework includes regional metamorphism and related faults and shear zones across both belts. Similar tectonic features are portrayed by the West Central African belt (of Eburnean age) by considering the early contiguous African counterpart. We present an integrated geochronologic and geochemical study for the Resende Costa orthogneiss (Mineiro belt): the gneissic rocks are slightly metaluminous to peraluminous, subalkaline, show varied SiO2 (69 to 73wt.%) contents, and low K2O and high- Na2O +CaO ones. Chemically, they are compatible with high Al2O3 trondhjemites. They also show weak positive Eu/Eu* anomalies, low Rb (24 to 70ppm), Ba (500 to 1000ppm), Th (2.1 to 8.5ppm) contents, very high Sr/Y ratios (75 to 158) and variable LREE and low HREE patterns (Yb < 1.23 ppm). The Resende Costa pluton yields two U-Pb (LA-ICPMS) zircon crystallization ages (2358±10 Ma and 2356±12 Ma), while the zircon rims yield 2133±32 Ma, interpreted as the age of metamorphism. The Sm/Nd TDM whole rock model ages are between 2.35-2.50 Ga, whereas the ɛNd(t) values range from +1.2 to +3.0, ɛSr(t) from +10 to -6, and ɛHf(t) in zircon between -3 to +6. The nearby Ramos gneissic pluton gives U-Pb zircon age of 2331±17 Ma, TDM age of 2.4 Ga, ɛNd(t) +2.2, ɛHf(t) (-9/+9) and ɛSr(t) +40 values. The overall signature implies to short crustal residence for the protholiths with minor contamination during the petrogenesis. Published data reveal that the nearby Lagoa Dourada

  3. Carbonatization of oceanic crust by the seafloor hydrothermal activity and its significance as a CO2 sink in the Early Archean1

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kato, Yasuhiro

    2004-11-01

    least altered dolerite, all altered basalt samples are enriched in K 2O, Rb, and Ba, and are depleted in Na 2O, reflecting the presence of K-mica replacing primary plagioclase. In addition, noticeable CO 2 enrichment is recognized in the basalt due to the ubiquitous presence of carbonate minerals, but there was essentially neither gain nor loss of CaO. This suggests that the CO 2 in the hydrothermal fluid (seawater) was trapped by using Ca originally contained in the basalt. The CaO/CO 2 ratios of the basalt are generally the same as that of pure calcite, indicating that Ca in the basalt was almost completely converted to calcite during the carbonatization, although Mg and Fe were mainly redistributed into noncarbonate minerals such as chlorite. The carbon flux into the Early Archean oceanic crust by the seafloor hydrothermal carbonatization is estimated to be 3.8 × 10 13 mol/yr, based on the average carbon content of altered oceanic crust of 1.4 × 10 -3 mol/g, the alteration depth of 500 m, and the spreading rate of 1.8 × 10 11 cm 2/yr. This flux is equivalent to or greater than the present-day total carbon flux. It is most likely that the seafloor hydrothermal carbonatization played an important role as a sink of atmospheric and oceanic CO 2 in the Early Archean.

  4. An Approach to Geochemical and Protolith Features of the Mesozoic HP/LT Rocks in the Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Firat; Yiǧitbaş, Erdinç; Onur Tunç, Ä.°Smail

    2010-05-01

    The Biga Peninsula in northwestern Anatolia is a tectonic mosaic comprised of different tectonic units which represented by continental and oceanic assemblages in different origin and ages. High-degree metamorphic rocks occur in the both Çamli ca metamorphics and Çetmi Group. HP eclogite/blueschists are associated with quartz-mica schist within the Çamli ca metamorphics. On the other hand, another HP eclogite/blueschist unit is associated with garnet-mica schist in the Çetmi Group. The host Çamli ca metamorphic rocks record only a single - stage greenschist - facies metamorphism and were juxtaposed with the high - grade metamorphic rocks along ductile - semi-brittle (?) strike - slip faults after the high degree metamorphism and during or after the low-grade metamorphism of the Çamli ca metamorphic unit. Major, trace and rare earth elements (REE) compositions of HP eclogite/blueschist and associated metasedimentary rocks from the Biga Peninsula have been determined to reveal their protolith, source area and tectonic setting. Whole-rock geochemistry for the HP eclogite/blueschist suggests that their protoliths were basalt with high TiO2 and K2O-Na2O content and Nb/Y ratios. Most HP metabasite samples plot in the tholeiitic basalt field. ∑ REE abundances range from 47.55 to 107.4 ppm. Europium anomolies are variable (Eu/Eu*= 0.9-1.1) and generally small negative (average Eu/Eu*=1) which is implying weak plagioclase fractionation. REE pattern and trace element contents similar to typical MORB based on tectonic discrimination diagrams. The relatively high concentrations of CaO and low concentrations of K2O suggest that the protoliths were derived from a depleted source. Metasedimentary rocks coexisting with HP metamorphic rocks have different SiO2, Al2O3 and TiO2 values in the both Çamli ca metamorphics and Çetmi Group. Those of the Çamli ca metamorphics have high SiO2 and low Al2O3 and TiO2 values. However, those of the Çetmi Group have low SiO2 and

  5. Geochemistry of the Yangla volcanic rocks and its relationship to Cu mineralization in the Yangla copper deposit, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Yang, Xian; Liu, Jiajun; Zhai, Degao; Han, Siyu; Wang, Huan; Yang, Longbo; Huo, Dongliang

    2012-10-01

    The Yangla copper deposit is a recently discovered, giant copper deposit with an estimated Cu reserve of about 1,200,000 tons. Development is now underway. Previous studies have reported that the Yangla copper deposit is a VMS-type deposit related to the Yangla volcanic rocks. Volcanic bulk-rock analyses shows high contents of Si (49.3%-58.7%), Na2O (Na2O = 3.3%-4.9%), MgO (MgO = 3.7%-8.6%), and CaO(CaO = 6.8%-9.0%), low TiO2 (TiO2 = 0.9%-2.1%) and K2O(K2O = 0.2%-1.4%) contents. The geochemistry of the volcanic represent forearc basalts. Four molybdenites samples from the ore bodies in the deposit yield Re-Os model ages ranging from 229.7 ± 3.3 Ma to 233 ± 3.4 Ma. The REE distribution patterns and the primitive-mantle-normalized trace element patterns of the volcanic rocks are similar to the ores, indicating the Yangla copper deposit are closely associated with the Yangla volcanic rocks. The results contribute to our understanding of the genesis of the Yangla copper deposit and will guide further exploration in the region.

  6. The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: a case study from southern India

    NASA Astrophysics Data System (ADS)

    Rajesh, H. M.

    2007-11-01

    Large charnockite massifs occur in some of the Precambrian high-grade terrains like the southern Indian granulite terrain. The Cardamom Hill charnockite massif from the Madurai Block, southern India, consists of an intermediate type and silicic type, with the intermediate type showing similarities to high-Ba-Sr granitoids with low K2O/Na2O ratios and the silicic type showing similarities to high-Ba-Sr granitoids with high K2O/Na2O ratios. Within the constraints imposed by near basaltic composition of the most mafic samples and their relatively high concentrations of both compatible and incompatible elements, comparison with recent experimental studies on various source compositions, and trace- and rare-earth-element modeling, the distinctive features of the intermediate charnockites can be best explained in terms of assimilation-fractional crystallization (AFC) models involving interaction between a mantle-derived basaltic magma and lower crustal materials. Silicic charnockites on the other hand are high temperature melts of moderately hydrous basaltic magmas. A two-stage model which involves an initial partial melting of hydrous basaltic magma and later fractionation explains the geochemical features of the silicic charnockites, with the fractionation stage most probably an open system AFC. It is suggested that for massifs showing spatial association of intermediate and silicic charnockites, a model taking into account their compositional difference in terms of the effect of variations in the conditions (e.g., temperature, water fugacity) that prevailed, can account for plausible petrogenetic scenarios.

  7. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    NASA Astrophysics Data System (ADS)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  8. New data on selected Ivory Coast tektites.

    NASA Technical Reports Server (NTRS)

    Cuttitta, F.; Carron, M. K.; Annell, C. S.

    1972-01-01

    Fourteen Ivory Coast tektites exhibit a range of bulk indices of refraction of 1.5156 to 1.5217 plus or minus 0.0004 and of bulk specific gravities of 2.428 to 2.502 plus or minus 0.005. Seven of these Ivory Coast (IVC) tektites were analyzed for major and minor element content. Compared to tektites from other strewn fields, their SiO2 content is low (67.2-69.1%), Al2O3 relatively high (15.8-16.8%), and total iron relatively high but with a more restricted range (6.3-6.8% as FeO). Their lime content is low (0.71-1.35%) compared to Australasian tektites but their MgO/CaO ratio (about 3.1) is unusually high. All other tektite groups have Na2O/K2O ratios less than unity, but the Na2O/K2O ratio of the IVC tektites is slightly greater than unity. Their K/Rb ratios range from 200 to 256 and average 227.

  9. Effect of the Chemical Composition on The Pyroplastic Deformation of Sanitaryware Porcelain Body

    NASA Astrophysics Data System (ADS)

    Yeşim Tunçel, Derya; Kerim Kara, Mustafa; Özel, Emel

    2011-10-01

    Pyroplastic deformation is the bending of a ceramic specimen caused by gravity during heat treatment. It can be defined as the loss of shape of product during its firing. Pyroplastic deformation is related to properties of liquid phases formed during firing. Therefore, the effect of the chemical composition on the pyroplastic deformation of sanitaryware porcelain was investigated in this study. Systematical compositional arrangements were made according to different combinations of (SiO2/Al2O3) and (Na2O/K2O) ratios by using Seger formula approach. Pyroplastic deformation behaviour of compositions within a controlled firing regime was investigated by using fleximeter. The bodies were also prepared in a special form by slip casting method at laboratory scale in order to determine the pyroplastic deformation of the samples. The experimental results showed that a definite combination at SiO2/Al2O3 ratio of 5 and Na2O/K2O ratio of 4 give the lowest pyroplastic deformation in the porcelain body formulations. The pyroplastic deformation value of this composition was determined as 25 mm which is 44% lower than that of the standard composition (45 mm).

  10. Compositional change of granitoids from Eastern Pontides Orogenic Belt (NE Turkey) at ca. 84 Ma: Response to slab rollback of the Black Sea

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Zhu, Di-Cheng; Eyuboglu, Yener; Wu, Fu-Yuan; Rızaoǧlu, Tamer; Zhao, Zhi-Dan; Xu, Li-Juan

    2016-04-01

    Magma generation and evolution is a natural consequence of mantle dynamics and crust-mantle interaction. As a result, changes of magma compositions in time and space can be used, in turn, to infer these deep processes. In this paper we report new zircon U-Pb age and Hf isotope, whole-rock major and trace element, and Nd isotope data for the granitoids from Kürtün in Eastern Pontides. These data, together with the data in the literature, reveal the occurrence of magma compositional variations at ca. 84 Ma in the region, providing new insights into the mantle dynamics responsible for the generation of the extensive Late Cretaceous felsic magmatism in Eastern Pontides Orogenic Belt (NE Turkey) (Eyuboglu et al., 2015). Group I samples (SiO2 = 77-62 wt.%) were concentrated in 91-86 Ma and are characterized by their low CaO (1.6-1.5 wt.%) and Th (8.2-3.0 ppm) contents and low K2O/Na2O (0.7-0.1) and Th/La (0.4-0.2) ratios. Group II samples (SiO2 = 71-63 wt.%) were concentrated in 82-72 Ma and include high concentrations of CaO (5.2-3.0 wt.%) and Th (29.6-14.3), high K2O/Na2O (1.5-1.1) and varying Th/La (1.0-0.5) ratios. Group I samples have positive zircon eHf(t) (+9.6 to +7.6) and whole-rock eNd(t) (+3.5 to +2.5), significantly differing from those of Group II samples with eHf(t) of +1.9 to -1.5 and whole-rock eNd(t) of -3.6 to -3.8. Modeling results indicate that the Nd-Hf isotopic compositions of Group I and II samples can be interpreted as having derived from partial melting of the low-K amphibolite within the juvenile lower crust beneath the Eastern Pontides Orogenic Belt that incorporated into 15-20% and 70-75% enriched components from the basement rocks represented by the Carboniferous granites exposed in the region, respectively. In combination with the geological observations that indicate the occurrence of regional thermal subsidence (Bektaş et al., 1999) and extensional structure (Bektaş et al., 1999, 2001) during the Campanian (83.6-72.1 Ma), the coeval

  11. A petrologic study of the Teanaway Basalt: Eocene slab window volcanism in central WA

    NASA Astrophysics Data System (ADS)

    Roepke, E.; Tepper, J. H.; Ivener, D.

    2013-12-01

    O (0.16-0.28 wt% vs 0.11-0.24 wt%), and TiO2 (1.2-2.4 wt% vs 0.8-2.7 wt%), and have a narrower range of CaO (1.5-9.4 wt%) and Na2O (1.5-3.3 wt%) concentrations. Both LR and ER samples display modest LREE enrichment (La/Yb = 2.1-3.7) and similar incompatible element ratios, suggesting similar sources. ER samples show a broader range of REE contents but extend to lower levels, and have smaller negative Eu anomalies (Eu/Eu* = 0.55-0.96). Pearce element ratio plots suggest much of the variation reflects different degrees of plag+cpx fractionation. Alkaline lavas are restricted to ER and the central area of the TB. Differences in concentration at similar Mg# (most notably in Fe2O3T, TiO2, MnO, and Na2O) suggest multiple parent magmas, probably from similar mantle sources. With increasing stratigraphic height in the ~1.6 km thick LR section, there are general decreases in SiO2 (60 to 54 wt%), and general increases in CaO (4 to 8 wt%), MnO (0.1-0.15 wt%), and P2O5 (0.2-0.65 wt%). Mg# displays several cycles of decrease followed by increase, each extending over 400-1000m. These trends are suggestive of an evolving system that experienced multiple replenishment events.

  12. Late Paleozoic granitoid magmatism in Chukotka and its relation to Ellesmerian orogeny in Arctic Alaska and Canada

    NASA Astrophysics Data System (ADS)

    Luchitskaya, Marina; Sokolov, Sergey; Kotov, Alexander; Katkov, Sergey; Sal'nikova, Elena; Yakovleva, Sonya

    2013-04-01

    erosion by Permian-Triassic carbonate-terrigenous and sandy-argillaceous deposits. Kibera pluton is composed mainly of Amph-Bi granites and granite-porphyres. Endocontact zone is presented by foliated Bi granodiorites which were dated. Within Kuekvyun Rise [2] in the core of lineated antiform structure Devonian deposits, metamorphosed to amphibolite facies and deformed, are exposed. Earlier such structures were considered as horst-like saliences of Paleozoic cover and crystalline basement, now, as structures of granite-metamorphic core complexes [3-5]. In the central part of antiform there are micaceous and Gar-Bi schists, marbled limestones, Q-Fsp-Ep-Bi-Amph, Bi-Amph-Cpx schists, intruded by subconcordant bodies of Amph-Bi quartz syenites. At the peripheral parts of rise metamorphic complexes are discordantly overlain by terrigenous deposits of Permian(?)-Triassic age. Granodiorites of Kibera pluton (N 69°56' 50.5'', E172°40' 52,1''; SiO2=67.34%, TiO2=0.41%, Al2O3=14.72%, FeO=2.66%, Fe2O3=1.88%, MnO=0.074%, MgO=1.4%, CaO=2.48%, Na2O=3.71%, K2O=3.42%, P2O5=0.232%) have foliated texture, blastogranitic structure and are composed of quartz, plagioclase, potassic feldspar and biotite. Accessory minerals are sphene, allanite, apatite and zircon. Amph-Bi quartz syenites of Kuekvyun pluton (N 68°37'25.4'', E178°28'21,2'', SiO2=63.51%, TiO2=0.40%, Al2O3=16.57%, FeO=2.3%, Fe2O3=1.8%, MnO= 0.056%, MgO=0.99%, CaO=3.6%, Na2O=3.24%, K2O=5.83%, P2O5=0.245%) also have foliated texture, blastohypidiomorphic structure and are composed of plagioclase, potassic feldspar, amphibole, biotite and quartz. Sphene prevails within accessory minerals, allanite, apatite and zircon are also present. U-Pb geochronological studies for Kibera granodiorite are carried out for three microshots (10-15 grains) of most transparent zircon crystals, selected from 85-100 and 100-150 micron fractions. Points of isotope composition of studied microshots form Discordia, which lower intersection with Concordia

  13. Shlykovite KCa[Si4O9(OH)] · 3H2O and cryptophyllite K2Ca[Si4O10] · 5H2O, new mineral species from the Khibiny alkaline pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Zubkova, N. V.; Filinchuk, Ya. E.; Chukanov, N. V.; Zadov, A. E.; Pushcharovsky, D. Yu.; Gobechiya, E. R.

    2010-12-01

    New minerals, shlykovite and cryptophyllite, hydrous Ca and K phyllosilicates, have been identified in hyperalkaline pegmatite at Mount Rasvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. They are the products of low-temperature hydrothermal activity and are associated with aegirine, potassium feldspar, nepheline, lamprophyllite, eudialyte, lomonosovite, lovozerite, tisinalite, shcherbakovite, shafranovskite, ershovite, and megacyclite. Shlykovite occurs as lamellae up to 0.02 × 0.02 × 0.5 mm in size or fibers up to 0.5 mm in length usually combined in aggregates up to 3 mm in size, crusts, and parallel-columnar veinlets. Cryptophyllite occurs as lamellae up to 0.02 × 0.1 × 0.2 mm in size intergrown with shlykovite being oriented parallel to {001} or chaotically arranged. Separate crystals of the new minerals are transparent and colorless; the aggregates are beige, brownish, light cream, and pale yellowish-grayish. The cleavage is parallel to (001) perfect. The Mohs hardness of shlykovite is 2.5-3. The calculated densities of shlykovite and cryptophyllite are 2.444 and 2.185 g/cm3, respectively. Both minerals are biaxial; shlykovite: 2 V meas = -60(20)°; cryptophyllite: 2 V meas > 70°. The refractive indices are: shlykovite: α = 1.500(3), β = 1.509(2), γ = 1.515(2); cryptophyllite: α = 1.520(2), β = 1.523(2), γ = 1.527(2). The chemical composition of shlykovite determined by an electron microprobe (H2O determined from total deficiency) is as follows, wt %: 0.68 Na2O, 11.03 K2O, 13.70 CaO, 59.86 SiO2, 14.73 H2O; the total is 100.00. The empirical formula calculated on the basis of 13 O atoms (OH/H2O calculated from the charge balance) is (K0.96Na0.09)Σ1.05Ca1.00Si4.07O9.32(OH)0.68 · 3H2O. The idealized formula is KCa[Si4O9(OH)] · 3H2O. The chemical composition of cryptophyllite determined by an electron microprobe (H2O determined from the total deficiency) is as follows, wt %: 1.12 Na2O, 17.73 K2O, 11.59 CaO, 0.08 Al2O3, 50.24 SiO2, 19.24 H2

  14. Pre-caldera collapse of the Tastau volcanoplutonic ring complex (Eastern Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Dokukina, K.

    2009-04-01

    Tastau volcanoplutonic ring complex belongs to the Zaisan Magmatic Province of Eastern Kazakhstan. ZMP consists of voluminous volcanic and plutonic rocks emplaced during regional extension affecting the Zaisan orogen. Extension affected crust previously thickened by the Late Carboniferous - Permian collision of the Kazakhstan with the Siberian craton (Buslov et al., 2004). Coeval mafic-felsic magmatism in the ZMP mostly consists of anatectic acidic magmas (Ermolov et al., 1983; Titov et al., 2001) with associated mantle-derived magmas having high-K calc-alkaline. Age of the Zaisan magmatism is Permian - Early Triassic (248 - 293 Ma) (Shcherba et al., 1998, Lyons et al., 2002). The hypabyssal Tastau volcanoplutonic ring complex 248 ± 34 Ma is the largest multiphase intrusive bodies which represent a volcanic root system. The complex intruded low-grade sedimentary rocks, which comprises sandstone and siltstone of a greywacke composition. The folded sedimentary complex was metamorphosed at a greenschist facies and up to hornblende hornfels facies during the intrusion of the complex. The volcanoplutonic complex has a form of an ellipse (13?18 km). Arc-shaped belts of composition dykes are intrude in the host rocks. A wide variety of magmatic rocks is represented within the Tastau volcanoplutonic complex: leucogranite, granite, granosyenite, gabbronorite and gabbro-diorite and calcium basite. Tastau magmatic rocks represent the continued calc-alkaline series and they are characterized by variations in chemical compositions (46 < SiO2 < 78 wt. %). Unhybrid gabbronorite have the most magnesia content (#Mg=0.50 - 0.55). Synplutonic mafic dikes and enclave are a subalcaline gabbro, a monzonite, a syenite and a quartz syenite (SiO2 = 46.2 - 62.8, Al2O3 = 15.8 - 19.6, TiO2 = 0.75 - 2.22, FeOtot = 4.7 - 11.5, MgO = 1.8 - 5.4, CaO = 2 - 7 wt.%) and high content of alkalines (Na2O+K2O = 5.2 - 9.3 wt.%). Mafic enclaves are depleted relatively the Maxut gabbro in Sr, Ca; and rich

  15. The Comparative Structural Study of Vitreous Matrices P{sub 2}O{sub 5}centre dotMeO [MeO ident to Li{sub 2}O (M{sub 1}) or CaO (M{sub 2})] Systems and {sub x}Fe{sub 2}O{sub 3}(100-x)[P{sub 2}O{sub 5}centre dotMeO] Glasses by Raman Spectroscopy

    SciTech Connect

    Andronache, C.

    2010-01-21

    For getting information about the way in which the structural units presented in glass matrices P{sub 2}O{sub 5}centre dotLi{sub 2}O (M{sub 1}) and P{sub 2}O{sub 5}centre dotCaO (M{sub 2}) are modifying with the substitutions Li{sub 2}O with CaO, these glasses where investigated by Raman spectroscopies. The absorption bands obtained and their assignments for each those two matrices are summarized. The influence of Fe{sub 2}O{sub 3} content on the structure of M1 and M2 matrices was followed.

  16. Zircon U-Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: Implication for magmatic evolution and tectonic transition

    NASA Astrophysics Data System (ADS)

    Li, Zilong; Zhou, Jing; Mao, Jianren; Santosh, M.; Yu, Minggang; Li, Yinqi; Hu, Yizhou; Langmuir, Charles H.; Chen, Zhongxing; Cai, Xiongxiang; Hu, Yanhua

    2013-10-01

    Granitoids (175-80 Ma) representing a prominent Yanshanian (Jurassic to Cretaceous) magmatic event in South China widely intrude the Precambrian crystalline basement and Paleozoic strata. Here we report zircon U-Pb age data, geochemical characteristics and Sr-Nd isotopes of the Late Jurassic and Early Cretaceous granitoids from the northwestern Zhejiang Province (ZXB) of southeastern China. Our results reveal two distinct episodes for the Yanshanian magmatism. The Jiemeng and Datongkeng granodiorites formed at 148.6 ± 1.1 Ma, whereas the Huangshitan, Jiuligang and Ruhong aluminous A-type granites were generated between 129.0 ± 0.6 Ma and 126.1 ± 1.1 Ma. The two magmatic phases represent a tectonic transition from an active continental margin to post-orogenic setting during the Late Jurassic (ca. 150 Ma) to Early Cretaceous (ca. 128 Ma). Geochemically, these intrusions are granodioritic to granitic in composition and show an affinity of S-type and A-type granitoids, respectively. The S-type granodiorites of Jiemeng and Datongkeng are characterized by moderate SiO2 (65.0-69.6 wt.%), high K2O + Na2O (5.0-7.6 wt.%), K2O/Na2O (1.2-1.5), Zr (31-109 ppm), Sr (71-190 ppm) and high field strength elements, low to intermediate Mg#, and moderate Nb depletion. The A-type granites of Huangshitan, Jiuligang and Ruhong are characterized by high SiO2 (72.7-77.2 wt.%), K2O + Na2O (6.9-8.8 wt.%), K2O/Na2O (1.3-2.1), FeT/(FeT + Mg), Ga (17-29 ppm, > 20 ppm commonly), Zr (96-197 ppm) and Sr (8-45 ppm) with slight Nb depletion. The S-type granodiorites have higher Mg#, A/NK, Sr, Sr/Ba, Sr/Y, (La/Yb)N, and LREE/HREE, and lower SiO2, K2O + Na2O, Ga and Zr with weak negative Eu anomalies compared to those of the A-type granites with negative Eu anomalies. All these rocks show Y/Nb ratios > 1.2, high initial 87Sr/86Sr (ISr) ratios and low ɛNd(t), and are depleted in Nb, Ti and Sr, indicating crustal origin with subduction zone signatures. We suggested that the ZXB S-type granitic

  17. Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry

    NASA Astrophysics Data System (ADS)

    Dey, Sukanta; Rai, A. K.; Chaki, Anjan

    2009-05-01

    Petrographic and geochemical data on the sandstones of the Proterozoic intracratonic Kaladgi-Badami basin, southern India are presented to elucidate the palaeoweathering pattern, and composition and tectonics of their provenance. The Kaladgi-Badami basin, hosting the Kaladgi Supergroup, occupies an E-W trending area. The Supergroup unconformably overlies Archaean basement TTG gneisses, granites and greenstones, comprises a cyclic arenite-pelite-carbonate association and is divided into the Bagalkot and Badami Groups. The immature arkosic character of the basal Saundatti Quartzite Member (Bagalkot Group) containing fresh and angular feldspars, along the northern margin of the basin, suggests that during the initial stage of deposition, this part of the basin received sediments from a restricted, uplifted and less weathered source dominated by K-rich granites occurring to the north. In contrast, the Saundatti Quartzite along the southern margin displays a mostly mature, quartz-rich character with less abundant but severely weathered feldspars, and higher SiO 2 and CIA but lower Al 2O 3, TiO 2, Rb, Sr, Ba, K 2O, K 2O/Na 2O, Zr/Ni and Zr/Cr. This is interpreted in terms of a tectonically stable, considerably weathered mixed source (Archaean gneisses, granites and greenstones) along the southern fringe of the basin. The highly mature (quartz arenite) Muchkundi Quartzite Member (also of the Bagalkot Group), occurring higher up in the succession, exhibits minor but severely altered feldspars, and higher SiO 2, Na 2O, CIA, Cr and Ni with lower K 2O, Al 2O 3, TiO 2 and K 2O/Na 2O. This reflects that with the passage of time the source evolved to a uniform, extensively weathered, tectonically stable peneplained provenance which consisted of less evolved TTG gneisses and greenstones. This was followed by closure, deformation and upliftment of the basin hosting the Bagalkot Group and subsequent deposition of the Badami Group. Sandstone Members of this younger Group (Cave

  18. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    NASA Astrophysics Data System (ADS)

    Larson, Peter B.; Cunningham, Charles G.; Naeser, Charles W.

    1994-03-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na