Sample records for nacl crystals irradiated

  1. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    NASA Technical Reports Server (NTRS)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  2. Fabrication of large binary colloidal crystals with a NaCl structure

    PubMed Central

    Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.

    2009-01-01

    Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259

  3. Crystallization of D-mannitol in binary mixtures with NaCl: phase diagram and polymorphism.

    PubMed

    Telang, Chitra; Suryanarayanan, Raj; Yu, Lian

    2003-12-01

    To study the crystallization, polymorphism, and phase behavior of D-mannitol in binary mixtures with NaCl to better understand their interactions in frozen aqueous solutions. Differential scanning calorimetry, hot-stage microscopy, Raman microscopy, and variable-temperature X-ray diffractometry were used to characterize D-mannitol-NaCl mixtures. NaCl and D-mannitol exhibited significant melt miscibility (up to 7.5% w/w or 0.20 mole fraction of NaCl) and a eutectic phase diagram (eutectic composition 7.5% w/w NaCl; eutectic temperature 150 degrees C for the alpha and beta polymorphs of D-mannitol and 139 degrees C for the delta). The presence of NaCl did not prevent mannitol from crystallizing but, depending on sample size, affected the polymorph crystallized: below 10 mg, delta was obtained; above 100 mg, alpha was obtained. Pure mannitol crystallized under the same conditions first as the delta polymorph and then as the a polymorph, with the latter nucleating on the former. KCl showed similar eutectic points and melt miscibility with D-mannitol as NaCl. LiCl yielded lower eutectic melting points, inhibited the crystallization of D-mannitol during cooling, and enabled the observation of its glass transition. Despite their structural dissimilarity, significant melt miscibility exists between D-mannitol and NaCl. Their phase diagram has been determined and features polymorph-dependent eutectic points. NaCl influences the polymorphic behavior of mannitol, and the effect is linked to the crystallization of mannitol in two polymorphic stages.

  4. Synthesis of calcium oxalate crystals in culture medium irradiated with non-equilibrium atmospheric-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.

  5. Nucleation and growth of sodium colloids in NaCl under irradiation: theory and experiment

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Turkin, A. A.; Abyzov, A. S.; Sugonyako, A. V.; Vainshtein, D. I.; den Hartog, H. W.

    2005-01-01

    A mechanism of radiation-induced emission of Schottky defects from extended defects proposed originally for metals has recently been applied to ionic crystals, where it is based on interactions of excitons with extended defects such as dislocations and colloids. Exciton trapping and decay at colloids may result in the emission of F centers and consequent shrinkage of the colloid. In the present paper, the radiation-induced emission of F centers is taken into account in the modeling of nucleation and growth of sodium colloids and chlorine bubbles in NaCl exposed to electron or gamma irradiation. The evolution of colloid and bubble number densities and volume fractions with increasing irradiation dose is modeled in the framework of a modified rate theory and compared with experimental data. Experimental values of the colloid volume fractions and number densities have been estimated on the basis of latent heat of melting of metallic Na obtained with combined differential scanning calorimetry experiments and atomic force microscopy investigations of metallic clusters.

  6. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    NASA Astrophysics Data System (ADS)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  7. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  8. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  9. Paradoxes of the influence of small Ni impurity additions in a NaCl crystal on the kinetics of its magnetoplasticity

    NASA Astrophysics Data System (ADS)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2016-01-01

    A comparative study of magnetoplasticity in two types of NaCl crystals differing in impurity content only by a small Ni addition (0.06 ppm) in one of them, NaCl(Ni), has been carried out. Two methods of sample magnetic exposure were used: in a constant field B = 0-0.6 T and in crossed fields in the EPR scheme—the Earth's field B Earth (50 μT) and a variable pumping field tilde B( ˜ 1 μ T) at frequencies ν 1 MHz. In the experiments in the EPR scheme, the change of the field orientation from tilde B bot B_{Earth} to . {tilde B} |B_{Earth} led to almost complete suppression of the effect in the NaCl(Ni) crystals and reduced only slightly (approximately by 20%) the height of the resonance peak of dislocation mean paths in the crystals without Ni, with the amplitude of the mean paths in NaCl(Ni) in the orientation tilde B bot B_{Earth} having been appreciably lower than that in NaCl. In contrast, upon exposure to a constant magnetic field, a more intense effect was observed in the crystal with Ni. The threshold pumping field amplitude tilde B, below which the effect is absent under resonance conditions, for the NaCl(Ni) crystals turned out to be a factor of 5 smaller than that for NaCl, while the thresholds of a constant magnetic field coincide for both types of crystals. All these differences are discussed in detail and interpreted.

  10. Supercrystallization of KCl from solution irradiated by soft X-rays

    NASA Astrophysics Data System (ADS)

    Janavičius, A. J.; Rinkūnas, R.; Purlys, R.

    2016-10-01

    The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.

  11. Tribochemical wear of single crystal aluminum in NaCl solution studied by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cai, M.; Langford, S. C.; Dickinson, J. T.

    2011-09-01

    We report a systematic study of chemically enhanced wear of single crystal aluminum surfaces in aqueous solutions using an environmentally equipped atomic force microscope (AFM). The experiments were conducted by using a standard Si3N4 AFM tip to apply a localized force on a polished, single crystal aluminum (110) surface. Most measurements were performed in 0.5 M NaCl solution. We show the effect of applied force, number of scans, chemical solution, and temperature on the chemical-mechanical wear of aluminum on the nanometer scale. Aggressive chemical environments significantly enhance the wear of aluminum relative to scanning in dry air. Quantitative measurements show that the wear volume increases in proportion to the square root of force and the number of scans (or time). Arrhenius plots of wear volume versus temperature are consistent with an activation energy of 31 kJ/mol for scanning in 0.5 M NaCl. The wear of the AFM tip and the aluminum substrate is explained in terms of the synergistic surface chemical reactions and mechanical action of the tip. We compare these results to previous studies of AFM wear of silicate glass.

  12. Low-temperature creation of Frenkel defects via hot electron-hole recombination in highly pure NaCl single crystals

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Nagirnyi, V.; Shablonin, E.; Vasil'chenko, E.

    2016-07-01

    The creation spectrum of stable F centres (being part of F-H pairs of Frenkel defects) by synchrotron radiation of 7-40 eV has been measured for highly pure NaCl single crystals at 12 K using a highly sensitive luminescent method. It is shown that the efficiency of F centre creation in a closely packed NaCl is low at the decay of anion or cation excitons (7.8-8.4 and 33.4 eV, respectively) or at the recombination of relaxed conduction electrons and valence holes. Only the recombination of nonrelaxed (hot) electrons with holes provides the energy exceeding threshold value EFD, which is sufficient for the creation of Frenkel defects at low temperature.

  13. Dehydration process in NaCl solutions under various external electric fields

    NASA Astrophysics Data System (ADS)

    Kadota, Kazunori; Shimosaka, Atsuko; Shirakawa, Yoshiyuki; Hidaka, Jusuke

    2007-06-01

    Ionic motions at solid-liquid interface in supersaturated NaCl solutions have been investigated by molecular dynamics (MD) simulation for understanding crystal growth processes. The density profile in the vicinity of the interfaces between NaCl(100) and the supersaturated NaCl solution was calculated. Diffusion coefficients of water molecules in the solution were estimated as a function of distance from the crystal interface. It turned out that the structure and dynamics of the solution in the interfaces was different from those of bulk solution owing to electric fields depending on the surface charge. Therefore, the electric field was applied to the supersaturated solutions and dehydration phenomenon occurring in the process of the crystal growth was discussed. As the electric field increased, it was observed that the Na+ keeping strongly hydration structure broke out by the electric force. In supersaturated concentration, the solution structure is significantly different from that of dilution and has a complicated structure with hydration ions and clusters of NaCl. If the electric fields were applied to the solutions, the breakout of hydration structure was not affected with increasing the supersaturated ratio. This reason is that the cluster structures are destroyed by the electric force. The situation depends on the electric field or crystal surface structure.

  14. Characterisation of irradiation-induced defects in ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Prochazka, I.; Cizek, J.; Lukac, F.; Melikhova, O.; Valenta, J.; Havranek, V.; Anwand, W.; Skuratov, V. A.; Strukova, T. S.

    2016-01-01

    Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.

  15. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Patra, Anirban; Tomé, Carlos N.; Golubov, Stanislav I.

    2017-08-01

    A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.

  16. Thermal-gradient migration of brine inclusions in salt crystals. [Synthetic single crystals of NaCl and KCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of bothmore » all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables.« less

  17. Effect of gamma-ray irradiation on isothermal crystallization of biodegradable poly(ethylene succinate)

    NASA Astrophysics Data System (ADS)

    Chuang, Yu-Fan; Chou, Yu-Cheng; Yang, Fuqian; Lee, Sanboh

    2016-09-01

    The effects of gamma-ray irradiation on the isothermal crystallization of biodegradable poly(ethylene succinate) (PESu) and the growth behavior of PESu spherulites have been studied by differential scanning calorimetry and polarized optical microscopy. The irradiation doses used in the study are 0, 200, 400, and 600 kGy. The kinetic parameters for the isothermal crystallization have been determined, using the Avrami relationship. The nucleation constants and activation energy for the growth of the PESu spherulites have been analyzed, using the Lauritzen-Hoffman growth theory. Triple melting points have been observed for all the irradiated PESu. The gamma irradiation has no observable effect on the Avrami exponent, and the composite rate constant increases first with the increase of the crystallization temperature, reaches maximum at the crystallization temperature of 35 °C, and then decreases with the increase of the crystallization temperature for both the non-irradiated and irradiated PESu. There exists a transition of the growth of the PESu spherulites from regime II to regime III. Both the nucleation constants and activation energy increase with increasing the irradiation dose. The gamma irradiation increases the energy barrier for the migration of polymer chains.

  18. INTERACTION OF LASER RADIATION WITH MATTER: Influence of Ca and Pb impurities on the bulk optical strength of ultrapure NaCl and KCl crystals

    NASA Astrophysics Data System (ADS)

    Vinogradov, An V.; Voszka, R.; Kovalev, Valerii I.; Faĭzullov, F. S.; Janszky, J.

    1987-06-01

    A significant increase (by a factor of about 3) of the bulk damage threshold in the case of interaction of CO2 laser radiation pulses with ultrapure NaCl and KCl crystals grown in a reactive atmosphere was observed on introduction of divalent metal ions Ca and Pb in concentrations of 10-5-10-6 mol/mol. Impurities were introduced in concentrations of 10-8-10-3 and 2×10-7-10-4 mol/mol into the melts of KCl and NaCl, respectively. The concentration of other impurities (including OH) did not exceed ~10-6 mol/mol. A physical model was developed to account for the observed dependence on the basis of an analogy between a system of colloidal particles and F centers in a crystal and a liquid-vapor system.

  19. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    NASA Astrophysics Data System (ADS)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  20. The structure of PbCl2 on the {100} surface of NaCl and its consequences for crystal growth

    NASA Astrophysics Data System (ADS)

    Townsend, Eleanor R.; Brugman, Sander J. T.; Blijlevens, Melian A. R.; Smets, Mireille M. H.; de Poel, Wester; van Enckevort, Willem J. P.; Meijer, Jan A. M.; Vlieg, Elias

    2018-04-01

    The role that additives play in the growth of sodium chloride is a topic which has been widely researched but not always fully understood at an atomic level. Lead chloride (PbCl2) is one such additive which has been reported to have growth inhibition effects on NaCl {100} and {111}; however, no definitive evidence has been reported which details the mechanism of this interaction. In this investigation, we used the technique of surface x-ray diffraction to determine the interaction between PbCl2 and NaCl {100} and the structure at the surface. We find that Pb2+ replaces a surface Na+ ion, while a Cl- ion is located on top of the Pb2+. This leads to a charge mismatch in the bulk crystal, which, as energetically unfavourable, leads to a growth blocking effect. While this is a similar mechanism as in the anticaking agent ferrocyanide, the effect of PbCl2 is much weaker, most likely due to the fact that the Pb2+ ion can more easily desorb. Moreover, PbCl2 has an even stronger effect on NaCl {111}.

  1. Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Dhanasekaran, R.

    2012-09-01

    Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.

  2. Water-Soluble Epitaxial NaCl Thin Film for Fabrication of Flexible Devices.

    PubMed

    Lee, Dong Kyu; Kim, Sungjoo; Oh, Sein; Choi, Jae-Young; Lee, Jong-Lam; Yu, Hak Ki

    2017-08-18

    We studied growth mechanisms of water-soluble NaCl thin films on single crystal substrates. Epitaxial growth of NaCl(100) on Si(100) and domain-matched growth of NaCl(111) on c-sapphire were obtained at thicknesses below 100 nm even at room temperature from low lattice mismatches in both cases. NaCl thin film, which demonstrates high solubility selectivity for water, was successfully applied as a water-soluble sacrificial layer for fabrication of several functional materials, such as WO 3 nano-helix and Sn doped In 2 O 3 nano-branches.

  3. Electron paramagnetic resonance of gamma-irradiated single crystals of 3-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Aşik, Biray

    2008-06-01

    The electron paramagnetic resonance of single crystals of 3-nitroacetanilide has been observed and analyzed for different orientations of the crystal in the magnetic field, after being damaged at 300 K by γ-irradiation. The crystals have been investigated between 123 and 300 K. The spectra were found to be temperature independent. The irradiation of 3-nitroacetanilide by γ-rays produces radicals at the nitrogen atoms in the molecule. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor were determined.

  4. Effect of strain and stress on the relative dimensions of the 'hard' and 'soft' regions in crept NaCl single crystals

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Freed, Alan D.

    1992-01-01

    It is shown that the L exp h and L exp s ratio, where these are respectively the average dimensions of the hard and soft regions as a function of stress and strain in crept NaCl single crystals, significantly influences the steady-state creep and power-law breakdown in these crystals. This is suggested to be due to a change in the internal stresses of the material. The present observations also indicate that steady-state creep is more likely to be influenced by the degree of refinement in the cell boundaries within the subgrains than by the formation of equiaxed subgrains under power-law conditions.

  5. Protein Crystallization by Combining Laser Irradiation and Solution-Stirring Techniques

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Niino, Ai; Murakami, Satoshi; Takano, Kazufumi; Matsumura, Hiroyoshi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2005-03-01

    Bovine adenosine deaminase in the absence of an inhibitor (free-ADA) does not form crystals when using conventional crystallization methods. Using a solution-stirring technique, we recently succeeded in generating a small number of free-ADA crystals. In this paper, we demonstrate the combination of laser-irradiated growth and stirring (COLAS). This technique was found to be useful for controlling crystal nucleation and growth, which led to the production of a much larger number of high-quality free-ADA crystals.

  6. Re-crystallization of ITO films after carbon irradiation

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Khan, Shahid; Khan, Majid; Abbas, Turab Ali

    2017-01-01

    2.0 MeV carbon ion irradiation effects on Indium Tin Oxide (ITO) thin films on glass substrate are investigated. The films are irradiated with carbon ions in the fluence range of 1 × 1013 to 1 × 1015 ions/cm2. The irradiation induced effects in ITO are compared before and after ion bombardment by systematic study of structural, optical and electrical properties of the films. The XRD results show polycrystalline nature of un-irradiated ITO films which turns to amorphous state after 1 × 1013 ions/cm2 fluence of carbon ions. Further increase in ion fluence to 1 × 1014 ions/cm2 re-crystallizes the structure and retains for even higher fluences. A gradual decrease in the electrical conductivity and transmittance of irradiated samples is observed with increasing ion fluence. The band gap of the films is observed to be decreased after carbon irradiation.

  7. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    DOE PAGES

    Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.

    2017-05-10

    A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less

  8. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.

    A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less

  9. EPR study of free radical in gamma-irradiated bis(cyclopentadienyl)zirconium dichloride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz

    2017-06-01

    Bis(cyclopentadienyl)zirconium dichloride (BCZD; zirconocene dichloride) single crystals were exposed to 60Co-γ irradiation at room temperature. The irradiated single crystals were investigated between 125 and 470 K by electron paramagnetic resonance spectroscopy. The spectra of the crystals were found to be temperature independent. The paramagnetic center was attributed to the cyclopentadienyl radical. The g values of the radiation damage center observed in BCZD single crystal and the hyperfine structure constants of the free electron with nearby protons were obtained.

  10. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagase, Takeshi, E-mail: t-nagase@uhvem.osaka-u.ac.jp; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871; Yamashita, Ryo

    2016-04-28

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x}more » interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.« less

  11. Co-doped sodium chloride crystals exposed to different irradiation temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of themore » dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.« less

  12. Ferromagnetism in proton irradiated 4H-SiC single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ren-Wei; Wang, Hua-Jie; Chen, Wei-Bin

    Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.

  13. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  14. Electron irradiation induced effects on the physico-chemical properties of L-Arginine Maleate Dihydrate (LAMD) single crystals

    NASA Astrophysics Data System (ADS)

    Thomas, Prince; Dhole, S. D.; Joseph, Ginson P.

    2018-07-01

    Single crystals of L-Arginine Maleate Dihydrate (LAMD) have been synthesized by slow solvent evaporation technique and irradiated with 6 MeV electrons at fluences of 0.5 ×1015e /cm2 , 1.0 ×1015e /cm2 and 1.5 ×1015e /cm2 . The Powder X-ray Diffraction (PXRD) studies showed that the intensity of the diffraction peaks of the Electron Beam (EB) irradiated crystals decreases with irradiation fluence. The electron irradiation induced effects on the optical parameters such as cut-off wavelength, band gap, Urbach energy and refractive index have been studied and the results are tabulated. The electronic parameters such as valence electron plasma energy, ℏωp , Penn gap, Ep , Fermi energy, EF and Electronic polarizability, α for pure and irradiated LAMD crystals are calculated. The electrical and thermal properties of the pure and irradiated LAMD crystals are also investigated.

  15. EPR investigation of gamma irradiated single crystal guaifenesin: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tasdemir, Halil Ugur; Sayin, Ulku; Türkkan, Ercan; Ozmen, Ayhan

    2016-04-01

    Gamma irradiated single crystal of Guaifenesin (Glyceryl Guaiacolate), an important expectorant drug, were investigated with Electron Paramagnetic Resonance (EPR) spectroscopy between 123 and 333 K temperature at different orientations in the magnetic field. Considering the chemical structure and the experimental spectra of the gamma irradiated single crystal of guaifenesin sample, we assumed that alkoxy or alkyl-type paramagnetic species may be produced by irradiation. Depending on this assumption, eight possible alkoxy and alkyl-type radicals were modeled and EPR parameters of these modeled radicals were calculated using the B3LYP/6-311++G(d,p)-level of density functional theory (DFT). Theoretically calculated values of alkyl-type modeled radical(R3) are in good agreement with experimentally determined EPR parameters of single crystal. Furthermore, simulation spectra which are obtained by using the theoretical initial values are well matched with the experimental spectra. It was determined that a stable Cα •H2αCβHβCγH2γ (R3) alkyl radical was produced in the host crystal as a result of gamma irradiation.

  16. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOEpatents

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  17. Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Nithya, R.; Ramasamy, P.

    2014-03-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Effects induced by irradiation on europium doped LiBaF3 (lithium barium fluoride) single crystals were monitored by optical absorption, photoluminescence and thermoluminescence studies. The absorption bands of Eu2+ ions with peaks at 240, 290 and 320 nm were observed in the LiBaF3:Eu2+ crystal. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the radiation dose. The additional absorption peak at around 570 nm was observed in irradiated crystal due to the ionization process Eu2+(-)e-→Eu3+. Photoluminescence of Eu2+ doped LiBaF3 single crystal shows sharp line peaked at ~359 nm and a broad band extending between 370 and 450 nm which shows a considerable reduction in Eu2+ PL intensity after gamma irradiation. Irradiated LiBaF3:Eu2+ sample has revealed three intense TL glow peaks at 128 °C (peak-1), 281 °C (peak-2) and 407 °C (peak-3). Activation energy (E) and frequency factor (s) of the latter two peaks were determined by various heating rate (VHR) method and graphical method.

  18. Imaging of gamma-Irradiated Regions of a Crystal

    NASA Technical Reports Server (NTRS)

    Dragoi, Danut; McClure, Steven; Johnston, Allan; Chao, Tien-Hsin

    2004-01-01

    A holographic technique has been devised for generating a visible display of the effect of exposure of a photorefractive crystal to gamma rays. The technique exploits the space charge that results from trapping of electrons in defects induced by gamma rays. The technique involves a three-stage process. In the first stage, one writes a holographic pattern in the crystal by use of the apparatus shown in Figure 1. A laser beam of 532-nm wavelength is collimated and split into signal and reference beams by use of a polarizing beam splitter. On its way to the crystal, the reference beam goes through a two-dimensional optical scanner that contains two pairs of lenses (L1y, L2y and L1x,L2x) and mirrors M1 and M2, which can be rotated by use of micrometer drives to make fine adjustments. The signal beam is sent through a spatial light modulator that imposes the holographic pattern, then through two imaging lenses L(sub img) on its way to the crystal. An aperture is placed at the common focus of lenses Limg to suppress high-order diffraction from the spatial light modulator. The hologram is formed by interference between the signal and reference beams. A camera lens focuses an image of the interior of the crystal onto a charge-coupled device (CCD). If the crystal is illuminated by only the reference beam once the hologram has been formed, then an image of the hologram is formed on the CCD: this phenomenon is exploited to make visible the pattern of gamma irradiation of the crystal, as described next. In the second stage of the process, the crystal is removed from the holographic apparatus and irradiated with rays at a dose of about 100 krad. In the third stage of the process, the crystal is remounted in the holographic apparatus in the same position as in the first stage and illuminated with only the reference beam to obtain the image of the hologram as modified by the effect of the rays. The orientations of M1 and M2 can be adjusted slightly, if necessary, to maximize the

  19. Defects induced in cerium dioxide single crystals by electron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costantini, Jean-Marc; Miro, Sandrine; Touati, Nadia

    In this work, Micro-Raman spectroscopy, X-band electron paramagnetic resonance (EPR) spectroscopy, and UV-visible optical absorption spectroscopy were used to study the damage production in cerium dioxide (CeO 2) single crystals by electron irradiation for three energies (1.0, 1.4, and 2.5 MeV). The Raman-active T 2g peak was left unchanged after 2.5-MeV electron irradiation at a high fluence. This shows that no structural modifications occurred for the cubic fluorite structure. UV-visible optical absorption spectra exhibited a characteristic sub band-gap tail for 1.4-MeV and 2.5-MeV energies, but not for 1.0 MeV. Narrow EPR lines were recorded near liquid-helium temperature after 2.5-MeV electronmore » irradiation; whereas no such signal was found for the virgin un-irradiated crystal or after 1.0-MeV irradiation for the same fluence. The angular variation of these lines in the {111} plane revealed a weak g-factor anisotropy assigned to Ce 3+ ions (with the 4f 1 configuration) in a high-symmetry local environment. Finally, it is concluded that Ce 3+ ions may be produced by a reduction resulting from the displacement damage process. However, no evidence of F + or F 0 center or hole center formation due to irradiation was found from the present EPR and optical absorption spectra.« less

  20. Defects induced in cerium dioxide single crystals by electron irradiation

    DOE PAGES

    Costantini, Jean-Marc; Miro, Sandrine; Touati, Nadia; ...

    2018-01-12

    In this work, Micro-Raman spectroscopy, X-band electron paramagnetic resonance (EPR) spectroscopy, and UV-visible optical absorption spectroscopy were used to study the damage production in cerium dioxide (CeO 2) single crystals by electron irradiation for three energies (1.0, 1.4, and 2.5 MeV). The Raman-active T 2g peak was left unchanged after 2.5-MeV electron irradiation at a high fluence. This shows that no structural modifications occurred for the cubic fluorite structure. UV-visible optical absorption spectra exhibited a characteristic sub band-gap tail for 1.4-MeV and 2.5-MeV energies, but not for 1.0 MeV. Narrow EPR lines were recorded near liquid-helium temperature after 2.5-MeV electronmore » irradiation; whereas no such signal was found for the virgin un-irradiated crystal or after 1.0-MeV irradiation for the same fluence. The angular variation of these lines in the {111} plane revealed a weak g-factor anisotropy assigned to Ce 3+ ions (with the 4f 1 configuration) in a high-symmetry local environment. Finally, it is concluded that Ce 3+ ions may be produced by a reduction resulting from the displacement damage process. However, no evidence of F + or F 0 center or hole center formation due to irradiation was found from the present EPR and optical absorption spectra.« less

  1. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  2. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.

    PubMed

    Benet, Jorge; MacDowell, Luis G; Sanz, Eduardo

    2015-04-07

    In this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al., J. Chem. Phys. 122, 194501 (2005)]. We analyse the influence of the simulation setup on interfacial properties and find that facets prepared as an elongated rectangular stripe give the same results as those prepared as squares for all cases but the 111 face. For some crystal orientations, we observe at small wave-vectors a behaviour not consistent with capillary wave theory and show that this behavior does not depend on the simulation setup.

  3. Some new results on the frequency characteristics on quartz crystals irradiated by ionizing and particle radiations

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1981-01-01

    The frequency behavior of AT-cut quartz crystals irradiated by X -, gamma rays and fast neutrons. Initial instability in frequency for gamma and neutron irradiated crystals was found. All the different radiations first give a negative frequency shift at lower doses which are followed by positive frequency shift for increased doses. Results are explained in terms of the fundamental crystal structure. Applications of the frequency results for radiation hardening are proposed.

  4. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    DOE PAGES

    Jiang, Xingmao; Liu, Nanguo; Assink, Roger A.; ...

    2011-01-01

    Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureido)azobenzene (TSUA). The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG), propylene glycol propyl ether (PGPE), and dipropylene glycol propyl ether (DPGPE) delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchablemore » pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.« less

  5. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; Qiao, Mei; Wang, Tie-Jun; Zhang, Jing; Liu, Yong; Liu, Peng; Zhu, Zi-Hua; Wang, Xue-Lin

    2017-09-01

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this paper, we used 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated Y2SiO5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prism coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.

  6. Primary and aggregate color centers in proton irradiated LiF crystals and thin films for luminescent solid state detectors

    NASA Astrophysics Data System (ADS)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Bonfigli, F.; Libera, S.; Picardi, L.; Ronsivalle, C.; Vincenti, M. A.; Montereali, R. M.

    2015-04-01

    Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 1011-1015 protons/cm2. The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F2 and F3+ photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences.

  7. Photoluminescence and positron annihilation spectroscopic investigation on a H+ irradiated ZnO single crystal

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakrabarti, Mahuya; Sanyal, D.; Bhowmick, D.; Dechoudhury, S.; Chakrabarti, A.; Rakshit, Tamita; Ray, S. K.

    2012-08-01

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H+ ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a ‘hydrogen at oxygen vacancy’ type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ˜4 × 1017 cm-3 (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ˜175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  8. Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal.

    PubMed

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-08-15

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H(+) ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a 'hydrogen at oxygen vacancy' type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10(17) cm(-3) (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  9. Electrical and thermoluminescence properties of γ-irradiated La2CuO4 crystals

    NASA Astrophysics Data System (ADS)

    El-Kolaly, M. A.; Abd El-Kader, H. I.; Kassem, M. E.

    1994-12-01

    Measurements of the electrical properties of unirradiated as well as ?-irradiated La2CuO4 crystals were carried out at different temperatures in the frequency range of 0.1-100 kHz. Thermoluminescence (TL) studies were also performed on such crystals in the temperature range of 300-600K. The conductivity of the unirradiated La2CuO4 crystals were found to obey the power law frequency dependence at each measured temperature below the transition temperature (Tc = 450K). The activation energies for conduction and dielectric relaxation time have been calculated. The TL response and the dc resistance were found to increase with ?-irradiation dose up to 9-10 kGy. The results showed that the ferroelastic domain walls of La2CuO4 crystal as well as its TL traps are sensitive to ?-raditaion. This material can be used in radiation measurements in the range 225 Gy-10 kGy.

  10. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  11. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y 2SiO 5 crystal

    DOE PAGES

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; ...

    2017-01-28

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this study, we used 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated Y 2SiO 5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prismmore » coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. Finally, 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.« less

  12. Spectral Behavior of Irradiated Sodium Chloride Crystals Under Europa-Like Conditions

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Carlson, Robert W.; Hand, Kevin P.

    2017-12-01

    F- and M-color center formation (decay) was observed during (after) irradiation of sodium chloride crystal grains with 10 keV electrons as a function of temperature, radiation dose rate, and radiation dose. The F centers (peak center: 460 nm) were found to form and decay at a faster rate than the M centers (peak center: 720 nm). These effects were influenced by temperature and possibly by irradiation dose rate. Tracking the band depth ratio of the color center features during irradiation could enable age determination of geologically very young features on the surface of Europa and other icy ocean worlds.

  13. Oxidation and reduction in irradiated binary crystals of resorcinol and progesterone

    NASA Astrophysics Data System (ADS)

    Box, Harold C.; Budzinski, Edwin E.

    1985-12-01

    The binary single crystals of resorcinol and progesterone were x-irradiated at 4.2 K. The semiquinone of resorcinol was generated by radiation induced oxidation. The oxidation and reduction products were identified from ESR and ENDOR measurements. (AIP)

  14. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    NASA Astrophysics Data System (ADS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-11-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.

  15. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    NASA Astrophysics Data System (ADS)

    Iwano, Keisuke; Yamanoi, Kohei; Iwasa, Yuki; Mori, Kazuyuki; Minami, Yuki; Arita, Ren; Yamanaka, Takuma; Fukuda, Kazuhito; Empizo, Melvin John F.; Takano, Keisuke; Shimizu, Toshihiko; Nakajima, Makoto; Yoshimura, Masashi; Sarukura, Nobuhiko; Norimatsu, Takayoshi; Hangyo, Masanori; Azechi, Hiroshi; Singidas, Bess G.; Sarmago, Roland V.; Oya, Makoto; Ueda, Yoshio

    2016-10-01

    We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV) to near-infrared (NIR) window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H), deuterium (D), and helium (He) ions with 1-keV energy and ˜ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV) to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  16. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grachev, V.; Meyer, M.; Malovichko, G.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of galliummore » electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.« less

  17. Colloidal crystal growth monitored by Bragg diffraction interference fringes.

    PubMed

    Bohn, Justin J; Tikhonov, Alexander; Asher, Sanford A

    2010-10-15

    We monitored the crystal growth kinetics of crystallization of a shear melted crystalline colloidal array (CCA). The fcc CCA heterogeneously nucleates at the flow cell wall surface. We examined the evolution of the (1 1 1) Bragg diffraction peak, and, for the first time, quantitatively monitored growth by measuring the temporal evolution of the Bragg diffraction interference fringes. Modeling of the evolution of the fringe patterns exposes the time dependence of the increasing crystal thickness. The initial diffusion-driven linear growth is followed by ripening-driven growth. Between 80 and 90 microM NaCl concentrations the fcc crystals first linearly grow at rates between 1.9 and 4.2 microm/s until they contact homogeneously nucleated crystals in the bulk. At lower salt concentrations interference fringes are not visible because the strong electrostatic interactions between particles result in high activation barriers, preventing defect annealing and leading to a lower crystal quality. The fcc crystals melt to a liquid phase at >90 microM NaCl concentrations. Increasing NaCl concentrations slow the fcc CCA growth rate consistent with the expectation of the classical Wilson-Frenkel growth theory. The final thickness of wall-nucleated CCA, that is determined by the competition between growth of heterogeneously and homogenously nucleated CCA, increases with higher NaCl concentrations. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Direct Coexistence Methods to Determine the Solubility of Salts in Water from Numerical Simulations. Test Case NaCl.

    PubMed

    Manzanilla-Granados, Héctor M; Saint-Martín, Humberto; Fuentes-Azcatl, Raúl; Alejandre, José

    2015-07-02

    The solubility of NaCl, an equilibrium between a saturated solution of ions and a solid with a crystalline structure, was obtained from molecular dynamics simulations using the SPC/E and TIP4P-Ew water models. Four initial setups on supersaturated systems were tested on sodium chloride (NaCl) solutions to determine the equilibrium conditions and computational performance: (1) an ionic solution confined between two crystal plates of periodic NaCl, (2) a solution with all the ions initially distributed randomly, (3) a nanocrystal immersed in pure water, and (4) a nanocrystal immersed in an ionic solution. In some cases, the equilibration of the system can take several microseconds. The results from this work showed that the solubility of NaCl was the same, within simulation error, for the four setups, and in agreement with previously reported values from simulations with the setup (1). The system of a nanocrystal immersed in supersaturated solution was found to equilibrate faster than others. In agreement with laser-Doppler droplet measurements, at equilibrium with the solution the crystals in all the setups had a slight positive charge.

  19. Factors Affecting the Plasticity of Sodium Chloride, Lithium Fluoride, and Magnesium Oxide Single Crystals. 1

    NASA Technical Reports Server (NTRS)

    Stearns, Carl A.; Pack, Ann E.; Lad, Robert A.

    1959-01-01

    A study was made of the relative magnitude of the effects of various factors on the ductility of single crystals of sodium chloride (NaCl), lithium fluoride (LiF), and magnesium oxide (MgO). Specimen treatments included water-polishing, varying cleavage rate, annealing, quenching, X-irradiation, surface coating, aging, and combinations of some of these treatments. The mechanical behavior of the crystals was studied in flexure and in compression, the latter study being performed at both constant strain rate and constant load. Etch-pit studies were carried out to provide some pertinent information on the results of pretreatment on the dislocation concentration and distribution in the vicinity of the surface. The load deformation curves for these ionic single crystals show an initial region of very low slope which proved to be due to anelastic deformation. The extent of initial anelastic deformation is modified by specimen pretreatment in a way that suggests that this deformation is the result of expansion of cleaved-in dislocation loops, which can contract on the removal of the stress. The effects of the various pretreatments on the load and deflection at fracture are in accord with the prediction one might make with regard to their effect on the nucleation of fatal surface cracks. For NaCl, increases in ductility are always accompanied by increases in strength. The creep constants for NaCl are a function of treatments which affect the bulk structure but are not a function of treatments which only affect the surface.

  20. Electron spin resonance of an irradiated single crystal of potassium hydrogen maleate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasaki, Machio; Itoh, Koichi

    1963-09-15

    Electron spin resonance absorptions of x-irradiated single crystals of potassium hydrogen maleate and potassium deuterium maleate were observed. Both compounds gave the same hyperfine structures, although the slightly sharper line widths were observed for the deuterium exchanged compound.

  1. Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS

    NASA Astrophysics Data System (ADS)

    Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Dolgushev, V. A.; Tikhomirova, N. A.

    The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m 2 PAR (photosynthetically active radiation) and the air temperature 24 °C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake

  2. EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal

    NASA Astrophysics Data System (ADS)

    Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.

    2011-12-01

    In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.

  3. Variables affecting the acceptability of radappertized ground beef products. Effects of food grade phosphates, NaCl, fat level, and grinding methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, J.S.; Shults, G.W.; Mason, V.C.

    1977-01-01

    A series of experiments was conducted to determine the effect of different variables on the quality of an irradiated ground beef product. Factors studied included: different food-grade phosphates; NaCl content; fat content; and size of grind. The influence of these variables on the cooking loss (moisture retention), shear press values and sensory scores was studied. The addition of phosphates and NaCl was desirable in controlling cooking losses. The most effective phosphate was tetrasodium pyrophosphate. The addition of NaCl decreased the shear press force required to penetrate the beef patty, i.e., it tenderized the product. Phosphate addition did not affect themore » shear press force. Increased fat content increased the cooking losses, but did not affect the shear press force. Irradiation with sterilizing doses had a marked effect on decreasing the shear press force.« less

  4. A thermochemical explanation for the stability of NaCl3 and NaCl7

    NASA Astrophysics Data System (ADS)

    Fernandes de Farias, Robson

    2017-03-01

    Thermodynamically stable cubic and orthorhombic NaCl3 as well as NaCl7 have been synthesized (Zhang et al., 2013). In the present work, a thermochemical explanation for the stability of such unusual sodium chlorides is provided, based on lattice energy values. Using the Glasser-Jenkins generalized equation (Glasser and Jenkins, 2000) lattice energies (kJ mol-1) of -162.5, -168.9 and -113.1 are calculated for Pm3n NaCl3, Pnma NaCl3 and NaCl7, respectively. It is postulated that any NaxCly compound could be synthesized, if the ionic character of the Nasbnd Cl bond in the prepared compound remains around 80%, and the sodium charge below unit.

  5. Isothermal crystallization of gamma irradiated LDPE in the presence of oxygen

    NASA Astrophysics Data System (ADS)

    Lanfranconi, M. R.; Alvarez, V. A.; Perez, C. J.

    2015-06-01

    This work is focused on the study of the effect of oxygen on the isothermal crystallization process of gamma irradiated low density polyethylene (LDPE). The induction time increased with the dose indicating a retarding effect. On other hand, at the same dose, this parameter decreased with the augment in the oxygen content. The classical Avrami equation was used to analyze the crystallization kinetic of these materials. n values suggested that both, the dose and the oxygen content, did not affect the mechanism of crystals growth. An Arrhenius type equation was used for the rate constant (k). Used models correctly reproduced the experimental data. TTT diagrams of studied materials were constructed and also reflected the effects of the doses and the oxygen content.

  6. Vortex dynamics in β-FeSe single crystals: effects of proton irradiation and small inhomogeneous stress

    NASA Astrophysics Data System (ADS)

    Amigó, M. L.; Haberkorn, N.; Pérez, P.; Suárez, S.; Nieva, G.

    2017-12-01

    We report on the critical current density J c and the vortex dynamics of pristine and 3 MeV proton irradiated (cumulative dose equal to 2× {10}16 cm-2) β-FeSe single crystals. We also analyze a remarkable dependence of the superconducting critical temperature T c, J c and the flux creep rate S on the sample mounting method. Free-standing crystals present T c = 8.4(1) K, which increases to 10.5(1) K when they are fixed to the sample holder by embedding them with GE-7031 varnish. On the other hand, the irradiation has a marginal effect on T c. The pinning scenario can be ascribed to twin boundaries and random point defects. We find that the main effect of irradiation is to increase the density of random point defects, while the embedding mainly reduces the density of twin boundaries. Pristine and irradiated crystals present two outstanding features in the temperature dependence of the flux creep rate: S(T) presents large values at low temperatures, which can be attributed to small pinning energies, and a plateau at intermediate temperatures, which can be associated with glassy relaxation. From Maley analysis, we observe that the characteristic glassy exponent μ changes from ˜1.7 to 1.35-1.4 after proton irradiation.

  7. Influence of electron irradiation on hydrothermally grown zinc oxide single crystals

    NASA Astrophysics Data System (ADS)

    Lu, L. W.; So, C. K.; Zhu, C. Y.; Gu, Q. L.; Li, C. J.; Fung, S.; Brauer, G.; Anwand, W.; Skorupa, W.; Ling, C. C.

    2008-09-01

    The resistivity of hydrothermally grown ZnO single crystals increased from ~103 Ω cm to ~106 Ω cm after 1.8 MeV electron irradiation with a fluence of ~1016 cm-2, and to ~109 Ω cm as the fluence increased to ~1018 cm-2. Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 1018 cm-2, the normalized TSC signal increased by a factor of ~100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 °C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.

  8. Transition from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Jiao, Liang; Wang, Haiyan

    2011-12-01

    Response to irradiation of nanocrystalline 3C-SiC is studied using 2 MeV Au+ ions near the critical temperature for amorphization and is compared to the behavior of its monocrystalline counterpart under the identical irradiation conditions. The irradiated samples have been characterized using in-situ ion channeling, ex-situ x-ray diffraction, and helium ion microscopy. Compared to monocrystalline 3C-SiC, a faster amorphization process in the nanocrystalline material (average grain size = 3.3 nm) is observed at 500 K. However, the nanograin grows with increasing ion fluence at 550 K and the grain size tends to saturate at high fluences. The striking contrast demonstrates amore » sharp transition from irradiation-induced interface-driven amorphization at 500 K to crystallization at 550 K. The results could show potential impacts of nanocrystalline SiC on nuclear fuel cladding and structural components of next-generation nuclear energy systems.« less

  9. Effects of crystallization interfaces on irradiated ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Brewer, S. J.; Williams, S. C.; Cress, C. D.; Bassiri-Gharb, N.

    2017-11-01

    This work investigates the role of crystallization interfaces and chemical heterogeneity in the radiation tolerance of chemical solution-deposited lead zirconate titanate (PZT) thin films. Two sets of PZT thin films were fabricated with crystallization performed at (i) every deposited layer or (ii) every three layers. The films were exposed to a range of 60Co gamma radiation doses, between 0.2 and 20 Mrad, and their functional response was compared before and after irradiation. The observed trends indicate enhancements of dielectric, ferroelectric, and piezoelectric responses at low radiation doses and degradation of the same at higher doses. Response enhancements are expected to result from low-dose (≤2 Mrad), ionizing radiation-induced charging of internal interfaces—an effect that results in neutralization of pre-existing internal bias in the samples. At higher radiation doses (>2 Mrad), accumulation and self-ordering of radiation-modified, mobile, oxygen vacancy-related defects contribute to degradation of dielectric, ferroelectric, and piezoelectric properties, exacerbated in the samples with more crystallization layers, potentially due to increased defect accumulation at these internal interfaces. These results suggest that the interaction between radiation and crystallization interfaces is multifaceted—the effects of ionization, domain wall motion, point defect mobility, and microstructure are considered.

  10. Crystallization of calcium oxalate dihydrate in a buffered calcium-containing glucose solution by irradiation with non-equilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Ikehara, Yuzuru; Hori, Masaru

    2017-10-01

    Oxalate was synthesized in the glucose solution by irradiation with non-equilibrium atmospheric pressure plasma (NEAPP), in which the NEAPP plume contacted the solution surface, via the generation of several intermediate organic products such as gluconic acid. A thermodynamically unstable phase of calcium oxalate dihydrate crystallized rapidly during incubation of a NEAPP-irradiated glucose solution that contained calcium ions and was buffered at neutral pH. Longer irradiation times increased the growth rate and the number of seed crystals.

  11. Statistical Nature of Atomic Disorder in Irradiated Crystals

    NASA Astrophysics Data System (ADS)

    Boulle, A.; Debelle, A.

    2016-06-01

    Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ =0.73 - 0.37 range, i.e., far from the commonly assumed Gaussian case (γ =2 )]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter fDXRD to quantify the disordering. fDXRD is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.

  12. Low-temperature glasslike properties in (NaCl)1-x(NaCN)x

    NASA Astrophysics Data System (ADS)

    Watson, Susan K.; Pohl, R. O.

    1995-04-01

    Thermal conductivity, internal friction, transverse sound velocity (60 mK to 300 K), and specific-heat data (100 mK to 40 K) for (NaCl)1-x(NaCN)x (x=0, 0.025, 0.05, 0.1, 0.76, 1) show a progression from crystalline to glasslike behavior as the CN- concentration is increased from 0 to 76 %. The evolution of glasslike properties is compared to that in other crystals in which glasslike properties evolve with increasing disorder, e.g., (KBr)1-x(KCN)x and Ba1-xLaxF2-x. For (KBr)1-x(KCN)x, Sethna and Chow have shown that as the concentration of the almost freely rotating CN- ions is increased the average potential barrier for CN- reorientation also increases through elastic quadrupolar interactions. For x~0.5, only a small density of low-energy states is left, which equals that observed in structural glasses. In Ba1-xLaxF2-x, on the other hand, the crystal field for small doping x is so large that no atomic motion occurs at low temperatures. (NaCl)1-x(NaCN)x is shown to represent an intermediate case, in that the crystal field is non-negligible at small x, yet glasslike low-energy excitations indicative of very small potential barrier heights evolve with increasing x. It is argued that random internal strains cause a decrease of the barrier heights in these crystals, which lead to the low-energy excitations. It is proposed that random strains have a similar effect in other disordered crystals as in Ba1-xLaxF2-x, which for small x show no low-energy mobile states, yet which for large x become glasslike.

  13. Features of the structural states of KNbO{sub 3} single crystals before and after fast-neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stash, A. I., E-mail: astas@yandex.ru; Ivanov, S. A.; Stefanovich, S. Yu.

    Neutron irradiation is a unique tool for forming new structural states of ferroelectrics, which cannot be obtained by conventional methods. The inf luence of the irradiation by two doses of fast neutrons (F = 1 × 10{sup 17} and 3 × 10{sup 17} cm{sup –2}) on the structure and properties of KNbO{sub 3} single crystals has been considered for the first time. The developed method for taking into account the experimental correction to the diffuse scattering has been used to analyze the structural changes occurring in KNbO{sub 3} samples at T = 295 K and their correlations with the behaviormore » of dielectric and nonlinear optical characteristics. The irradiation to the aforementioned doses retains the KNbO{sub 3} polar structure, shifting Т{sub Ð}¡ to lower temperatures and significantly affecting only the thermal parameters and microstructure of single crystals. Neutron irradiation with small atomic displacements provides a structure similar to the high-temperature modification of an unirradiated KNbO{sub 3} crystal.« less

  14. An electron paramagnetic resonance study on irradiated triphenylphosphinselenid single crystal

    NASA Astrophysics Data System (ADS)

    Aras, Erdal; Karatas, Ozgul; Meric, Yasemin; Abbass, Hind Kh; Birey, Mehmet; Kilic, Ahmet

    2014-09-01

    The single crystals of triphenylphosphinselenid [C18H15PSe] were produced by slow evaporation of concentrated ethyl acetate solutions. These single crystals were exposed to 60Co gamma (γ) rays with a dose speed of 0.980 kGy/h at the room temperature for 72 h. The free radical over the sample was observed using electron paramagnetic resonance (EPR)-X band spectrometer. The EPR spectra were recorded between 120 and 400 K. Furthermore, the sample irradiated was rotated in steps of 10° and analyzed for different orientations of the crystal in the magnetic field. Only one radical structure was determined on the molecule. The hyperfine constants of the sample were found to be anisotropic. The average values of these constants and value of g were calculated as following: g=2.007656, aSe=37.47 G, aP=27.44 G, aHa=17.28 G, and aHb=18.16 G.

  15. On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures.

    PubMed

    Espinosa, J R; Young, J M; Jiang, H; Gupta, D; Vega, C; Sanz, E; Debenedetti, P G; Panagiotopoulos, A Z

    2016-10-21

    Direct coexistence molecular dynamics simulations of NaCl solutions and Lennard-Jones binary mixtures were performed to explore the origin of reported discrepancies between solubilities obtained by direct interfacial simulations and values obtained from the chemical potentials of the crystal and solution phases. We find that the key cause of these discrepancies is the use of crystal slabs of insufficient width to eliminate finite-size effects. We observe that for NaCl crystal slabs thicker than 4 nm (in the direction perpendicular to the interface), the same solubility values are obtained from the direct coexistence and chemical potential routes, namely, 3.7 ± 0.2 molal at T = 298.15 K and p = 1 bar for the JC-SPC/E model. Such finite-size effects are absent in the Lennard-Jones system and are likely caused by surface dipoles present in the salt crystals. We confirmed that μs-long molecular dynamics runs are required to obtain reliable solubility values from direct coexistence calculations, provided that the initial solution conditions are near the equilibrium solubility values; even longer runs are needed for equilibration of significantly different concentrations. We do not observe any effects of the exposed crystal face on the solubility values or equilibration times. For both the NaCl and Lennard-Jones systems, the use of a spherical crystallite embedded in the solution leads to significantly higher apparent solubility values relative to the flat-interface direct coexistence calculations and the chemical potential values. Our results have broad implications for the determination of solubilities of molecular models of ionic systems.

  16. Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism.

    PubMed

    Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J

    2016-12-01

    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).

  17. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    NASA Astrophysics Data System (ADS)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  18. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles.

    PubMed

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-28

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO 4 ). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  19. Temperature-dependent formation of NaCl dihydrate in levitated NaCl and sea salt aerosol particles

    NASA Astrophysics Data System (ADS)

    Peckhaus, Andreas; Kiselev, Alexei; Wagner, Robert; Duft, Denis; Leisner, Thomas

    2016-12-01

    Recent laboratory studies indicate that the hydrated form of crystalline NaCl is potentially important for atmospheric processes involving depositional ice nucleation on NaCl dihydrate particles under cirrus cloud conditions. However, recent experimental studies reported a strong discrepancy between the temperature intervals where the efflorescence of NaCl dihydrate has been observed. Here we report the measurements of the volume specific nucleation rate of crystalline NaCl in the aqueous solution droplets of pure NaCl suspended in an electrodynamic balance at constant temperature and humidity in the range from 250 K to 241 K. Based on these measurements, we derive the interfacial energy of crystalline NaCl dihydrate in a supersaturated NaCl solution and determined its temperature dependence. Taking into account both temperature and concentration dependence of nucleation rate coefficients, we explain the difference in the observed fractions of NaCl dihydrate reported in the previous studies. Applying the heterogeneous classical nucleation theory model, we have been able to reproduce the 5 K shift of the NaCl dihydrate efflorescence curve observed for the sea salt aerosol particles, assuming the presence of super-micron solid inclusions (hypothetically gypsum or hemihydrate of CaSO4). These results support the notion that the phase transitions in microscopic droplets of supersaturated solution should be interpreted by accounting for the stochastic nature of homogeneous and heterogeneous nucleation and cannot be understood on the ground of bulk phase diagrams alone.

  20. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  1. Electron beam irradiation induced changes in liquid-crystal compound 5CB

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Sarkar, S. K.; Wadhawan, V. K.; Verma, R.; Das, I. M. L.; Dąbrowski, R.; Tykarska, M.; Dhar, R.

    2008-12-01

    Electron beam irradiation studies on liquid crystal material 5CB have been carried out at a temperature where the compound exists in the isotropic liquid phase. In situ time-resolved spectroscopic characterization was carried out during the irradiation. Three different transients were observed during the 2-μs electron pulse. After about 50 μs, only one transient species was found to be present, which has an absorption peak at 360 nm. Radiolysed sample exhibits a broad absorption at ˜400 nm. The dielectric measurements show that even a low level of irradiation results in a dramatic increase in the component of dielectric permittivity normal to the long axes of the molecules ɛ⊥', and a corresponding decrease in the dielectric anisotropy (Δɛ'=ɛ∥'-ɛ⊥' ). These studies show that 5CB is prone to substantial radiation damage on exposure to the beam of high-energy electrons.

  2. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation.

    PubMed

    Saleh, H M; Annuar, M S M; Simarani, K

    2017-11-01

    Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm -2 , irradiation time 120min and 0.1gL -1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Statistical Nature of Atomic Disorder in Irradiated Crystals.

    PubMed

    Boulle, A; Debelle, A

    2016-06-17

    Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ=0.73-0.37 range, i.e., far from the commonly assumed Gaussian case (γ=2)]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter f_{D}^{XRD} to quantify the disordering. f_{D}^{XRD} is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.

  4. Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase

    PubMed Central

    Gillespie, C. M.; Asthagiri, D.; Lenhoff, A. M.

    2014-01-01

    Crystal polymorphs of glucose isomerase were examined to characterize the properties and to quantify the energetics of protein crystal growth. Transitions of polymorph stability were measured in poly(ethylene glycol)/NaCl solutions, and one transition point was singled out for more detailed quantitative analysis. Single crystal x-ray diffraction was used to confirm space groups and identify complementary crystal structures. Crystal polymorph stability was found to depend on the NaCl concentration, with stability transitions requiring > 1 M NaCl combined with a low concentration of PEG. Both salting-in and salting-out behavior was observed and was found to differ for the two polymorphs. For NaCl concentrations above the observed polymorph transition, the increase in solubility of the less stable polymorph together with an increase in the osmotic second virial coefficient suggests that changes in protein hydration upon addition of salt may explain the experimental trends. A combination of atomistic and continuum models was employed to dissect this behavior. Molecular dynamics simulations of the solvent environment were interpreted using quasi-chemical theory to understand changes in protein hydration as a function of NaCl concentration. The results suggest that protein surface hydration and Na+ binding may introduce steric barriers to contact formation, resulting in polymorph selection. PMID:24955067

  5. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    PubMed

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  6. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  7. Lattice damage assessment and optical waveguide properties in LaAlO3 single crystal irradiated with swift Si ions

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Crespillo, M. L.; Huang, Q.; Wang, T. J.; Liu, P.; Wang, X. L.

    2017-02-01

    As one of the representative ABO3 perovskite-structured oxides, lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and has attracted plenty of fundamental research and promising applications in recent years. Electronic, magnetic, optical and other properties of LaAlO3 strongly depend on its crystal structure, which could be strongly modified owing to the nuclear or electronic energy loss deposited in an ion irradiation environment and, therefore, significantly affecting the performance of LaAlO3-based devices. In this work, utilizing swift (tens of MeV) Si-ion irradiation, the damage behavior of LaAlO3 crystal induced by nuclear or electronic energy loss has been studied in detail utilizing complementary characterization techniques. Differing from other perovskite-structured crystals in which the electronic energy loss could lead to the formation of an amorphous region based on the thermal spike mechanism, in this case, intense electronic energy loss in LaAlO3 will not induce any obvious structural damage. The effects of ion irradiation on the mechanical properties, including hardness increase and elastic modulus decrease, have been confirmed. On the other hand, considering the potential applications of LaAlO3 in the field of integrated optoelectronics, the optical-waveguide properties of the irradiation region have been studied. The significant correspondence (symmetrical inversion) between the iWKB-reconstructed refractive-index profile and SRIM-simulated dpa profile further proves the effects (irradiation-damage production and refractive-index decrease) of nuclear energy loss during the swift-ion penetration process in LaAlO3 crystal. In the case of the rather-thick damage layer produced by swift-ion irradiation, obtaining a damage profile will be constrained owing to the analysis-depth limitation of the characterization techniques (RBS/channeling), and our analysis process (optical guided-mode measurement and

  8. Improvement of seawater salt quality by hydro-extraction and re-crystallization methods

    NASA Astrophysics Data System (ADS)

    Sumada, K.; Dewati, R.; Suprihatin

    2018-01-01

    Indonesia is one of the salt producing countries that use sea water as a source of raw materials, the quality of salt produced is influenced by the quality of sea water. The resulting average salt quality contains 85-90% NaCl. The Indonesian National Standard (SNI) for human salt’s consumption sodium chloride content is 94.7 % (dry base) and for industrial salt 98,5 %. In this study developed the re-crystallization without chemical and hydro-extraction method. The objective of this research to choose the best methods based on efficiency. The results showed that re-crystallization method can produce salt with NaCl content 99,21%, while hydro-extraction method content 99,34 % NaCl. The salt produced through both methods can be used as a consumption and industrial salt, Hydro-extraction method is more efficient than re-crystallization method because re-crystallization method requires heat energy.

  9. Formation of metal nanoparticles in MgF2, CaF2 and BaF2 crystals under the electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Bochkareva, Elizaveta S.; Sidorov, Alexander I.; Yurina, Uliana V.; Podsvirov, Oleg A.

    2017-07-01

    It is shown experimentally that electron beam action with electrons energies of 50 and 70 keV on MgF2, CaF2 and BaF2 crystals results in local formation in the crystal near-surface layer of Mg, Ca or Ba nanoparticles which possess plasmon resonance. In the case of MgF2 spheroidal nanoparticles are formed, in the cases of CaF2 and BaF2 - spherical. The formation of metal nanoparticles is confirmed by computer simulation in dipole quasistatic approximation. The dependence of absorption via electron irradiation dose is non-linear. It is caused by the increase of nanoparticles concentration and by the increase of nanoparticles sizes during irradiation. In the irradiated zones of MgF2 crystals, for irradiation doses less than 80 mC/cm2, the intense luminescence in a visible range appears. The practical application of fabricated composite materials for multilevel optical information recording is discussed.

  10. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    PubMed

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  11. Ion irradiation-induced crystal structure changes in inverse spinel MgIn 2O 4

    DOE PAGES

    Tang, Ming; Valdez, James A.; Wang, Yongqiang; ...

    2016-07-29

    We performed 400 keV Ne and 200 keV He ion irradiations on fully inverse MgIn 2O 4 samples at cryogenic temperature (~ 77 K), in order to examine the influence of radiation-induced cation disordering on crystal structure. In the case of MgIn 2O 4 samples irradiated with Ne ions to a peak displacement damage dose of 4 displacements per atom (dpa), a spinel-to-rocksalt phase transformation was observed. Conversely, for MgIn 2O 4 samples irradiated with He ions to a peak displacement damage dose of 5 dpa, the only observed structural effect involved cation rearrangements from an inverse to a “random”more » spinel structure.« less

  12. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeltner, R.; Russell, P. St.J.; Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particlemore » material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.« less

  13. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field

    NASA Astrophysics Data System (ADS)

    Kolafa, Jiří

    2016-11-01

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  14. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field.

    PubMed

    Kolafa, Jiří

    2016-11-28

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  15. Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend

    NASA Astrophysics Data System (ADS)

    Balaji, Anand Bellam; Ratnam, Chantara Thevy; Khalid, Mohammad; Walvekar, Rashmi

    2017-12-01

    The irradiation stability of ethylene-propylene diene terpolymer (EPDM)/ polypropylene (PP) blends is studied in an attempt to develop radiation compatible PP/EPDM blends suitable for medical applications. The PP/EPDM blends with mixing ratios of 80/20, 50/50/ 20/80 were prepared in an internal mixer at 165 °C and a rotor speed of 50 rpm followed by compression molding. The blends and the individual components were irradiated using 3.0 MeV electron beam (EB) accelerator at doses ranging from 0 to 100 kGy in air and room temperature. Later, the PP/EPDM blends were subjected to gel content, thermal stability, crystallization and dynamic mechanical properties before and after irradiation. Results revealed that the irradiation-induced crosslinking in the PP/EPDM blend increases with the increasing irradiation dose and the EPDM content in the blend. However, the thermal stability of the blends did not show any significant changes upon irradiation. The dynamic mechanical analysis shows that the EPDM rich blend has higher compatibility than PP dominant blends. A further improvement in the blend compatibility found to be achieved upon irradiation.

  16. The near-infrared waveguide properties of an LGS crystal formed by swift Kr8+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Fan; Liu, Peng; Liu, Tao; Zhang, Lian; Sun, Jian-Rong; Wang, Zhi-Guang; Wang, Xue-Lin

    2013-11-01

    In this work, we report on the optical properties in the near-infrared region of a LGS crystal planar waveguide formed by swift heavy ion irradiation. The planar optical waveguide in a LGS crystal was fabricated by 330 MeV Kr8+-ion implantation at a fluence of 1 × 1012 cm-2. The initial beam had an energy of 2.1 GeV and was slowed down by passing it through a 259 μm thick Al foil. The guided mode was measured using a prism coupler at a wavelength of 1539 nm. The near-field intensity distribution of the mode was recorded by a CCD camera using the end-face coupling method. The FD-BPM was used to simulate the guided mode profile. The lattice damage induced by SHI irradiation in the LGS crystal was studied using micro-Raman spectroscopy. The Raman spectra are consistent with the stopping power distributions of the Kr8+ ions simulated by SRIM and with the micro-photograph of the waveguide taken by a microscope using polarized light.

  17. Molecular dynamics simulation of fast particle irradiation on the single crystal CeO2

    NASA Astrophysics Data System (ADS)

    Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-11-01

    We used a molecular dynamics method to simulate structural relaxation caused by the high-energy-ion irradiation of single crystal CeO2. As the initial condition, we assumed high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order diameter located in the center of the single crystal. The potential proposed by Inaba et al. was utilized to calculate interactions between atoms [H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, Solid State Ionics 122 (1999) 95-103]. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it was dissipated in the crystal. We compared the obtained results with those of computer simulations for UO2 and found that CeO2 was more stable than UO2 when supplied with high thermal energy.

  18. Fast crystallization of amorphous Gd{sub 2}Zr{sub 2}O{sub 7} induced by thermally activated electron-beam irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhangyi; Qi, Jianqi, E-mail: qijianqi@scu.edu.cn; Zhou, Li

    2015-12-07

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionizationmore » irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.« less

  19. Solubility of KF and NaCl in water by molecular simulation.

    PubMed

    Sanz, E; Vega, C

    2007-01-07

    The solubility of two ionic salts, namely, KF and NaCl, in water has been calculated by Monte Carlo molecular simulation. Water has been modeled with the extended simple point charge model (SPC/E), ions with the Tosi-Fumi model and the interaction between water and ions with the Smith-Dang model. The chemical potential of the solute in the solution has been computed as the derivative of the total free energy with respect to the number of solute particles. The chemical potential of the solute in the solid phase has been calculated by thermodynamic integration to an Einstein crystal. The solubility of the salt has been calculated as the concentration at which the chemical potential of the salt in the solution becomes identical to that of the pure solid. The methodology used in this work has been tested by reproducing the results for the solubility of KF determined previously by Ferrario et al. [J. Chem. Phys. 117, 4947 (2002)]. For KF, it was found that the solubility of the model is only in qualitative agreement with experiment. The variation of the solubility with temperature for KF has also been studied. For NaCl, the potential model used predicts a solubility in good agreement with the experimental value. The same is true for the hydration chemical potential at infinite dilution. Given the practical importance of solutions of NaCl in water the model used in this work, whereas simple, can be of interest for future studies.

  20. Solid solutions of gadolinium doped zinc oxide nanorods by combined microwave-ultrasonic irradiation assisted crystallization

    NASA Astrophysics Data System (ADS)

    Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad

    2017-12-01

    Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.

  1. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  2. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godinho, Jose R. A.; Stack, Andrew G.

    Here we investigate the growth kinetics and morphology of barite (BaSO 4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl 2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overallmore » growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m -2∙h -1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl 2, respectively.« less

  3. Effect of proton irradiation on superconductivity in optimally doped BaFe 2 ( As 1 - x P x ) 2 single crystals

    DOE PAGES

    Smylie, M. P.; Leroux, M.; Mishra, V.; ...

    2016-03-10

    In this paper, irradiation with 4 MeV protons was used to systematically introduce defects in single crystals of the iron-arsenide superconductor BaFe 2(As 1-xP x) 2, x = 0.33. The effect of disorder on the low-temperature behavior of the London penetration depth λ(T) and transition temperature T c was investigated. In nearly optimally doped samples with T c ~ 29 K, signatures of a superconducting gap with nodes were observed. Contrary to previous reports on electron-irradiated crystals, we do not see a disorder-driven lifting of accidental nodes, and we observe that proton-induced defects are weaker pair breakers than electron-induced defects.more » Finally, we attribute our findings to anisotropic electron scattering caused by proton irradiation defects.« less

  4. Spatially resolved nuclear spin relaxation, electron spin relaxation and light absorption in swift heavy ion irradiated LiF crystals.

    PubMed

    Stork, H; Dinse, K-P; Ditter, M; Fujara, F; Masierak, W; Neumann, R; Schuster, B; Schwartz, K; Trautmann, C

    2010-05-12

    Spatially resolved (19)F and (7)Li spin-lattice relaxation rates are measured for LiF single crystals after irradiation with two kinds of swift heavy ions ((12)C of 133 MeV and (208)Pb of 1.78 GeV incident energy). Like in earlier studies on (130)Xe and (238)U irradiated LiF crystals, we found a strong enhancement of the nuclear spin-lattice relaxation rate within the ion penetration depth and a slight--but still significant--enhancement beyond. By evaluating the nuclear relaxation rate enhancement within the ion range after irradiation with different projectiles, a universal relationship between the spin-lattice relaxation rate and the dose is deduced. The results of accompanying X-band electron paramagnetic resonance relaxation measurements and optical absorption spectroscopy are included in a physical interpretation of this relationship. Also the reason for the enhanced relaxation rate beyond the ion range is further discussed.

  5. EPR and photoluminescence study of irradiated anion-defective alumina single crystals

    NASA Astrophysics Data System (ADS)

    Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.

    2017-09-01

    Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.

  6. Comparison of luminescence property of gamma-ray irradiated Tb3+ -doped and Ce3+ co-doped potassium halide single crystals.

    PubMed

    Bangaru, S; Ravi, D; Saradha, K

    2017-05-01

    Single crystals of KCl and KBr singly and doubly doped with Tb 3 + and Ce 3 + , respectively, were successfully grown using the Bridgeman technique. This work reports the comparative luminescence behavior and optical absorption characterization of non-irradiated and γ-ray-irradiated single crystals of these materials. The existing defect and the defect created by γ-ray irradiation were monitored by optical absorption spectra. The excitation and emission spectra of these materials were measured at room temperature with a spectrofluorometer and the pertaining results were compared. The F-band comparison was made when bleached with F-light for 2 mins. The trap-level changes in KCl and KBr when it is singly and doubly doped enabled us to draw conclusions on the nature of the defect and on the recombination processes involved. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Microscopic study of crystal growth in cryopreservation agent solutions and water.

    PubMed

    Tao, Le-Ren; Hua, Tse-Chao

    2002-10-01

    Ice formation inside or outside cells during cryopreservation is evidently the main factor of cryoinjury to cells. In the study described here a high voltage DC electric field and a cryomicroscopic stage were used to test DMSO and NaCl solutions under electric field strengths ranging from 83 kV/m to 320 kV/m. Dendritic ice crystals became asymmetric when the electric field was activated. This change in the ice crystal shape was more pronounced in the ionic NaCl solution. In addition, ice growth of distilled water without an electric field was tested under different cooling rates.

  8. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Di; Miao, Yinbin; Xu, Ruqing

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performedmore » to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.« less

  9. Radiation damage in vitamin B 1: An endor study of an x-irradiated single crystal of thiamine

    NASA Astrophysics Data System (ADS)

    Geoffroy, M.; Reddy, M. V. V. S.; Lambelet, P.; Horman, I.

    A single crystal of thiamine chloride hydrochloride has been x-irradiated at room temperature and studied by 1H-ENDOR spectroscopy at 110 K. It is shown that at least two radical species are trapped in the crystal. Several 1H-hyperfine tensors have been determined for each radical; they indicate that one species is due to cleavage of the thiamine molecule into its pyrimidine and thiazole moieties while the other species is due to hydrogen addition onto the pyrimidine ring.

  10. The influence of crystal structure on ion-irradiation tolerance in the Sm(x)Yb(2-x)TiO5 series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aughterson, R. D.; Lumpkin, G. R.; de los Reyes, M.

    2016-04-01

    his ion-irradiation study covers the four major crystal structure types in the Ln(2)TiO(5) series (Ln = lanthanide), namely orthorhombic Pnma, hexagonal P63/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. This is the first systematic examination of the complete Ln(2)TiO(5) crystal system and the first reported examination of the hexagonal structure. A series of samples, based on the stoichiometry Sm(x)Yb(2-x)TiO5 (where x = 2, 1.4, 1, 0.6, and 0) have been irradiated using 1 MeV Kr2+ ions and characterised in-situ using a transmission electron microscope. Two quantities are used to define ion-irradiation tolerance: critical dose of amorphisation (D-c), which is themore » irradiating ion dose required for a crystalline to amorphous transition, and the critical temperature (T-c), above which the sample cannot be rendered amorphous by ion irradiation. The structure type plus elements of bonding are correlated to ion-irradiation tolerance. The cubic phases, Yb2TiO5 and Sm0.6Yb1.4TiO5, were found to be the most radiation tolerant, with Tc values of 479 and 697 K respectively. The improved radiation tolerance with a change in symmetry to cubic is consistent with previous studies of similar compounds.« less

  11. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  12. Sorption isotherms of salted minced pork and of lean surface of dry-cured hams at the end of the resting period using KCl as substitute for NaCl.

    PubMed

    Comaposada, J; Arnau, J; Gou, P

    2007-12-01

    The effect of KCl on sorption isotherms was determined on salted minced meat (with 0%, 30% and 100% molar substitution of NaCl by KCl) at 5°C and 25°C and meat from a 3mm thick slice from the surface of dry-cured hams (with 0% and 35% molar substitution of NaCl by KCl) held at 70-75%, 75-80% and 80-85% air relative humidity during the resting period. The sorption isotherms were determined gravimetrically by exposing the meat samples to several atmospheres of known relative humidity controlled by different saturated salts according to the COST90 method. The sorption equipment consisted of a chamber containing 11 containers, covering the water activity (a(w)) range from 0.112 to 0.946 at 25°C. The hermetically closed sorption containers filled with KCl and minced meat samples were irradiated at 3kGrey (gamma irradiation (60)Co). The water content at equilibrium was higher in minced meat with NaCl than in minced meat with KCl (100% molar substitution of NaCl by KCl) at 5°C within the range of 0.4313 and 0.7565 a(w). However, when substitution was 30% in minced meat and 35% in hams the isotherms were similar to isotherm without substitution.

  13. Natural variability in Drosophila larval and pupal NaCl tolerance.

    PubMed

    Riedl, Craig A L; Oster, Sara; Busto, Macarena; Mackay, Trudy F C; Sokolowski, Marla B

    2016-05-01

    The regulation of NaCl is essential for the maintenance of cellular tonicity and functionality, and excessive salt exposure has many adverse effects. The fruit fly, Drosophila melanogaster, is a good osmoregulator and some strains can survive on media with very low or high NaCl content. Previous analyses of mutant alleles have implicated various stress signaling cascades in NaCl sensitivity or tolerance; however, the genes influencing natural variability of NaCl tolerance remain for the most part unknown. Here, we use two approaches to investigate natural variation in D. melanogaster NaCl tolerance. We describe four D. melanogaster lines that were selected for different degrees of NaCl tolerance, and present data on their survival, development, and pupation position when raised on varying NaCl concentrations. After finding evidence for natural variation in salt tolerance, we present the results of Quantitative Trait Loci (QTL) mapping of natural variation in larval and pupal NaCl tolerance, and identify different genomic regions associated with NaCl tolerance during larval and pupal development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  15. Kinetin Reversal of NaCl Effects

    PubMed Central

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  16. Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun

    2017-10-01

    In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.

  17. The Crystallization of Canavalin as a Function of pH and NaCl Concentration

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Gorti, Sridhar; Pusey, Marc L.

    2004-01-01

    We posed the question of what happens to a protein that is known to grow as an n-mer when it is placed in solution conditions where it is monomeric. The trypsin-treated, or cut, form of the protein canavalin (CCAN) has been shown to nucleate and grow crystals as a trimer from neutral to slightly acidic solutions. Under these conditions the solution is composed almost wholly of trimers. The crystalline protein can be readily dissolved by weakly basic solution, which has been proposed to result in a solution that is monomeric. There are three possible outcomes to an attempt at crystallization of the protein under monomeric (high pH) conditions: 1) we will obtain the same crystals as under trimer conditions, but at different protein concentrations governed by the self association equilibria; 2) we will obtain crystals having a different symmetry, based upon a monomeric growth unit; 3) we will not obtain crystals. Obtaining the first result would be indicative that the solution-phase self-association process is critical to the crystal nucleation and growth process. The second result would be less clear, as it may also reflect a pH-dependent shift in the trimer-trimer molecular interactions. The third result, particularly for experiments in the transition pH's between trimeric and monomeric CCAN, would indicate that the monomer does not crystallize, and that solution phase self association is not part of the crystal nucleation and growth path. Results are presented for crystallization experiments of CCAN over the pH 6.4 to 9.6 range. Fluorescence anisotropy, light scattering, and gel filtration experiments show that the solutions are primarily trimers, with association to form larger species occurring as a function of protein concentration.

  18. Electron scattering in graphene with adsorbed NaCl nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The mainmore » inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.« less

  19. Secretory NaCl and volume flow in renal tubules.

    PubMed

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  20. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    NASA Astrophysics Data System (ADS)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  1. Femtosecond laser irradiation of olivine single crystals: Experimental simulation of space weathering

    NASA Astrophysics Data System (ADS)

    Fazio, A.; Harries, D.; Matthäus, G.; Mutschke, H.; Nolte, S.; Langenhorst, F.

    2018-01-01

    Space weathering is one of the most common surface process occurring on atmosphere-free bodies such as asteroids and the Moon. It is caused mainly by solar wind irradiation and the impact of micrometeoroids. In order to simulate space weathering effects, in particular those produced by hypervelocity impacts, we produced microcraters via ultra-short (∼100 fs) laser irradiation of crystallographically oriented slices of forsterite-rich (Fo94.7) olivine. The main advantages of the application of a femtosecond laser radiation to reproduce the space weathering effects are (1) the high peak irradiance (1015 W cm-2), which generates the propagation of the shock wave at the nanosecond timescale (i.e., timescale of the micrometeoroid impacts); (2) the rapid transfer of energy to the target material, which avoids the interaction of laser light with the developing vapor plume; (3) a small laser beam, which allows the effects of a single impact to be simulated. The results of our spectroscopic and electron microscopic investigation validate this approach: the samples show strong darkening and reddening of the reflectance spectra and structural damages similar to the natural microcraters found on regolith grains of the Moon and asteroid 25143 Itokawa. Detailed investigations of several microcrater cross-sections by transmission electron microscopy allowed the detection of shock-induced defect microstructures. From the top to the bottom of the grain, the shock wave causes evaporation, melting, solid-state recrystallization, misorientation, fracturing, and the propagation of dislocations with Burgers vectors parallel to [001]. The formation of a short-lived vapor plume causes the kinetic fractionation of the gas and the preferential loss of lighter elements, mostly magnesium and oxygen. The high temperatures within the melt layer and the kinetic loss of oxygen promote the thermal reduction of iron and nickel, which leads to the formation of metallic nanoparticles (npFe0). The

  2. NaCl intake and preference threshold of spontaneously hypertensive rats.

    PubMed

    Fregly, M J

    1975-09-01

    Both male and female spontaneously hypertensive (SH) rats have an appetite for NaCl solution. The appetite is present when a choice is offered between distilled water and either isotonic or hypertonic (0.25 M) NaCl solution to drink. Total fluid intake (water plus NaCl solution) was greater for SH rats than for controls while food intakes (g/100 g body wt/day) of SH rats were not different from controls. Mean body weight of SH rats was always less than that of controls. The appetite for NaCl solution was accompanied by a significant reduction in preference (detection) threshold. SH rats could detect the difference between distilled water and NaCl solution when the concentration of the latter was 12 mEq/liter compared to a control threshold of 30 mEq/liter. The NaCl appetite and reduced NaCl preference threshold induced by spontaneous hypertension is in marked contrast to the NaCl aversion induced by other types of experimentally induced hypertension in rats. The mechanism or mechanisms responsible for these differences remain for further study.

  3. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphologymore » allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.« less

  4. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions.

    PubMed

    Walker, Rachel L; Searles, Keith; Willard, Jesse A; Michelsen, Rebecca R H

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  5. Crystallization of sodium chloride from a concentrated calcium chloride-potassium chloride-sodium chloride solution in a CMSMPR crystallizer: Observation of crystal size distribution and model validation

    NASA Astrophysics Data System (ADS)

    Choi, Byung Sang

    conditions by studying the detailed crystallization processes, such as nucleation, growth, and breakage, as well as agglomeration. The purification of CaCl2 solution involving the crystallization of NaCl from the solution mixture of CaCl2, KCl, and NaCl as shipped from Dow Chemical, Ludington, in a CMSMPR crystallizer was studied as our model system because of its nucleation and crystal growth tendencies with less agglomeration. This project also generated a significant body of experimental data that are available at URL that is http://www.che.utah.edu/˜ring/CrystallizationWeb.

  6. Irradiation-induced defect formation and damage accumulation in single crystal CeO2

    NASA Astrophysics Data System (ADS)

    Graham, Joseph T.; Zhang, Yanwen; Weber, William J.

    2018-01-01

    The accumulation of irradiation-induced disorder in single crystal CeO2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO2 thin films using 2 MeV Au2+ ions were carried out up to a total fluence of 1.3 ×1016 cm-2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes in correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.

  7. Irradiation-induced defect formation and damage accumulation in single crystal CeO 2

    DOE PAGES

    Graham, Joseph T.; Zhang, Yanwen; Weber, William J.

    2017-11-15

    Here, the accumulation of irradiation-induced disorder in single crystal CeO 2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO 2 thin films using 2 MeV Au 2+ ions were carried out up to a total fluence of 1.3 x 10 16 cm –2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes inmore » correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.« less

  8. Irradiation-induced defect formation and damage accumulation in single crystal CeO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Joseph T.; Zhang, Yanwen; Weber, William J.

    Here, the accumulation of irradiation-induced disorder in single crystal CeO 2 has been investigated over a wide range of ion fluences. Room temperature irradiations of epitaxial CeO 2 thin films using 2 MeV Au 2+ ions were carried out up to a total fluence of 1.3 x 10 16 cm –2 Post-irradiation disorder was characterized using ion channeling Rutherford backscattering spectrometry (RBS/C) and confocal Raman spectroscopy. The Raman measurements were interpreted by means of a phonon confinement model, which employed rigid ion calculations to determine the phonon correlation length in the irradiated material. Comparison between the dose dependent changes inmore » correlation length of the Raman measurements and the Ce disorder fraction from RBS/C provides complementary quantitative details on the rate of point and extended defect formation on the Ce and O sub-lattices over a broad range of ion fluences. Raman measurements, which are significantly more sensitive than RBS/C at low doses, reveal that the nucleation rate of defects is highest below 0.1 displacements per atom (dpa). Comparison between Raman and RBS/C measurements suggests that between 0.1 and 10 dpa the damage evolution is characterized by modest growth of point defects and/or small clusters, while above 10 dpa the preexisting defects rapidly grow into extended clusters and/or loops.« less

  9. Krypton ion irradiation-induced amorphization and nano-crystal formation in pyrochlore Lu2Ti2O7 at room temperature

    NASA Astrophysics Data System (ADS)

    Xie, Qiu-Rong; Zhang, Jian; Yin, Dong-Min; Guo, Qi-Xun; Li, Ning

    2015-12-01

    Polycrystalline pyrochlore Lu2Ti2O7 pellets are irradiated with 600-keV Kr3+ ions up to a fluence of 1.45 × 1016 Kr3+/cm2. Irradiation induced structural modifications are examined by using grazing incidence x-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The GIXRD reveals that amorphous fraction increases with the increase of fluences up to 2 × 1015 Kr3+/cm2, and the results are explained with a direct-impact model. However, when the irradiation fluence is higher than 2 × 1015 Kr3+/cm2, the amorphous fraction reaches a saturation of ∼80%. Further TEM observations imply that nano-crystal is formed with a diameter of ∼10 nm within the irradiation layer at a fluence of 4 × 1015 Kr3+/cm2. No full amorphization is achieved even at the highest fluence of 1.45 × 1016 Kr3+/cm2 (∼36 displacement per atom). The high irradiation resistance of pyrochlore Lu2Ti2O7 at higher fluence is explained on the basis of enhanced radiation tolerance of nano-crystal structure. Project sponsored by the National Natural Science Foundation of China (Grant No. 11205128) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012121034).

  10. Effects of neutron and electron irradiation on superconducting HgBa 2CuO 4+ δ single crystals

    NASA Astrophysics Data System (ADS)

    Zehetmayer, M.; Eisterer, M.; Kazakov, S. M.; Karpinski, J.; Wisniewski, A.; Puzniak, R.; Daignere, A.; Weber, H. W.

    2004-08-01

    We report on measurements of the magnetic moment in superconducting HgBa 2CuO 4+ δ single crystals by SQUID magnetometry. Neutron and electron irradiation are employed to modify the defect structure. Both types of radiation affect the irreversible properties, but characteristic qualitative differences occur, which will be discussed.

  11. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  12. The short range anion-H interaction is the driving force for crystal formation of ions in water.

    PubMed

    Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre

    2009-05-07

    The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.

  13. Ion-Specific Interfacial Crystallization of Polymer-Grafted Nanoparticles

    DOE PAGES

    Zhang, Honghu; Wang, Wenjie; Mallapragada, Surya; ...

    2017-06-27

    In this study, ion-specific effects on the assembly and crystallization of polyethylene-glycol-grafted Au nanoparticles (PEG-AuNPs) at the vapor–liquid interface are examined by surface sensitive synchrotron X-ray scattering methods. We show that monovalent salts, such as KCl and NaCl, that do not advance phase separation of pure PEG at room temperature induce two-dimensional (2D) self-assembly and crystallization of PEG-AuNPs with some distinctions. Whereas for KCl the 2D hexagonal coherence length of the PEG-AuNP superlattices is remarkably large compared to other salts (over micron-sized crystalline grains), NaCl induces coexistence of two hexagonal structures. Using various salts, we find that the value ofmore » the lattice constant is correlated to the ionic hydration entropy consistent with the Hofmeister series.« less

  14. Oxygen vacancy-induced room-temperature ferromagnetism in D—D neutron irradiated single-crystal TiO2 (001) rutile

    NASA Astrophysics Data System (ADS)

    Xu, Nan-Nan; Li, Gong-Ping; Pan, Xiao-Dong; Wang, Yun-Bo; Chen, Jing-Sheng; Bao, Liang-Man

    2014-10-01

    Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D—D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.

  15. Optical and structural properties of Nd:MgO:LiNbO3 crystal irradiated by 2.8-MeV He ions

    NASA Astrophysics Data System (ADS)

    Jia, Chuan-Lei; Li, Song; Song, Xiao-Xiao

    2017-07-01

    We report the optical and structural properties of helium-implanted optical waveguides in Nd:MgO:LiNbO3 laser crystals. The prism-coupling method is used to investigate the dark-mode properties at the wavelength of 632.8 nm. The spontaneous generation of ultraviolet, blue, red, and near-infrared fluorescence emissions is demonstrated under excitation with an 808-nm laser diode. The effects of ion irradiation on the structural properties are characterized using the high-resolution X-ray diffraction technique. The results show that the initial luminescence properties of Nd:MgO:LiNbO3 crystals are slightly modified by irradiation with 2.8 MeV He ions at fluences of 1.5 × 1016 ions/cm2 at room temperature.

  16. Purification of proteins from solutions containing residual host cell proteins via preparative crystallization.

    PubMed

    Hekmat, Dariusch; Breitschwerdt, Peter; Weuster-Botz, Dirk

    2015-09-01

    To investigate quantitatively and reproducibly a scalable, preparative crystallization method in novel stirred tanks using three different protein solutions containing residual microbial host cell proteins (HCP). Lysozyme from solutions being spiked with up to 15% host cell proteins (HCP) (corresponding to 176,500 ppm) was crystallized within a 2.4-4.6 h at 93.7% yield using NaCl and glycerol. Lipase was crystallized under comparable conditions using NaCl and a mixture of two polyethylene glycols (PEG). Enhanced green fluorescent protein (eGFP) was overexpressed in E. coli yielding a solution containing 23% target protein. Residual HCP content after pre-treatment was 7-16%. eGFP was crystallized from these solutions within 1.75-4 h at 88.7% step yield using ethanol and the same mixture of two PEG as in the case of lipase. HCP contained in the solvent channels of the protein crystals could be removed by diffusive washing yielding final purities at or above 99%. Preparative crystallization can be carried out with fast kinetics and high yields from solutions containing residual impurities and may represent an attractive alternative purification method compared to preparative chromatography, especially at large production scales.

  17. Effects of heavy-ion irradiation on the microwave surface impedance of (Ba1-x K x )Fe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Ghigo, G.; Torsello, D.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Tamegai, T.

    2018-07-01

    The electrodynamic response of Ba1-x K x Fe2As2 single crystals at the microwave frequencies has been investigated by means of a coplanar resonator technique, at different values of non-magnetic disorder introduced into the samples by heavy-ion irradiation. The surface impedance Z s = R s + iX s conforms to the classical skin effect above the critical temperature. Below T c, R s monotonically decreases while X s shows a peak, which evolves as a function of the irradiation fluence. The disorder-dependent Z s (T) curves are analyzed within a two-fluid model, suitably modified to account for a finite quasiparticle fraction at T = 0. The analysis gives, for the unirradiated crystal, quasiparticle relaxation times τ that are in good agreement with previous literature. Smaller τ values are deduced for the disordered crystals, both in the normal and in the superconducting states. The limits of application of the model are discussed.

  18. Magneto-optical study of Ba(Fe{sub 1-x}M{sub x}{sub 2}As{sub2} (M = Co and Ni) single crystals irradiated with heavy ions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozorov, R.; Tanatar, M. A.; Roy, B.

    Optimally doped single crystals of Ba(Fe{sub 1-x}M{sub x}){sub 2}As{sub 2} (M=Co, Ni) were irradiated with 1.4 GeV {sup 208}Pb{sup 56+} ions at fluences corresponding to matching fields of B{phi} = 0.1, 0.5, 1, and 2 T. Magneto-optical imaging has been used to map the distribution of the magnetic induction in the irradiated samples. The imaging is complemented by the magnetization measurements. The results show a substantial enhancement of the apparent critical current densities as revealed by the much larger Bean penetration fields and an increase in the hysteretic magnetization. However, the effect depends on the compound, temperature, and applied magneticmore » field. In Ba(Fe{sub 0.926}Co{sub 0.074}){sub 2}As{sub 2} crystals, at 15 K and low fields, the enhancement appears to scale with the irradiation dose at a rate of about 0.27 MA {center_dot} cm{sup -2} T{sup -1}, whereas in Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} crystals, higher irradiation doses are less effective. Our results suggest that moderate irradiation with heavy ions is an effective way to homogeneously enhance the current-currying capabilities of pnictide superconductors.« less

  19. NaCl responsive taste cells in the mouse fungiform taste buds.

    PubMed

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  20. Rise and fall of ferromagnetism in O-irradiated Al{sub 2}O{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803; Xu, Juping

    2015-06-21

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al{sub 2}O{sub 3} single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al{sub 2}O{sub 3} crystal and form stable V{sub Al}-V{sub Al} ferromagnetic coupling at roommore » temperature.« less

  1. Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction.

    PubMed

    Le Guenic, Sarah; Gergela, David; Ceballos, Claire; Delbecq, Frederic; Len, Christophe

    2016-08-22

    Pentose dehydration and direct transformation of xylan into furfural were performed in a water-cyclopentyl methyl ether (CPME) biphasic system under microwave irradiation. Heated up between 170 and 190 °C in the presence of Nafion NR50 and NaCl, d-xylose, l-arabinose and xylan gave furfural with maximum yields of 80%, 42% and 55%, respectively. The influence of temperature and reaction time on the reaction kinetics was discussed. This study was also completed by the survey of different reactant ratios, such as organic layer-water or catalyst-inorganic salt ratios. The exchange between proton and cation induced by an excess of NaCl was monitored, and a synergetic effect between the remaining protons and the released HCl was also discovered.

  2. Disorder in KHCO3 as studied by EPR and DTA in Cu2+ doped and gamma-irradiated single crystals

    NASA Astrophysics Data System (ADS)

    Koksal, F.; Karabulut, B.; Demir, D.; Icbudak, H.; Koseoglu, R.

    2005-08-01

    Kalicinite (KHCO3) single crystals were investigated by the electron paramagnetric resonance (EPR) technique in their Cu2+ doped and gamma- irradiated states. It is observed that the behavior of the spectrum is the same at ambient and low temperatures down to 113 K in consistence with the monoclinic symmetry of the crystal. However, when the temperature is increased to 313 K, only one site signals were observed at all orientations of the magnetic field for the Cu2+ doped samples as the site splitted signals overlap at this temperature. Furthermore, for the gamma-irradiated crystals, two sites were observed for the induced H(C)over dot O-3 and (C)over dot O-2(-) radicals at ambient temperature for an arbitrary orientation of the magnetic field. However, when the temperature is increased to 348 K, the signals due to the H(C)over dot O-3 radical overlap indicating only one site, but the signals due to (C)over dot O-2(-) the radical do not and continue to indicate the presence of the two sites. Therefore, we conclude that this one site transition at 313 K is due to the disordering of the proton vacancies, as the charge compensation of Cu2+ is fulfilled by K+ and proton holes. This indicates that the proton vacancies come to disorder at 313 K and the protons get disordered at 348 K. The differential thermal analysis results show two small endothermic peaks for the Cu2+ doped and gamma-irradiated samples at 313 and 348 K that were attributed to the disorder of the proton vacancies and protons, in consistency with the EPR results.

  3. Factors affecting inactivation of Moraxell-Acinetobacter cells in an irradiation process. [/sup 137/Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firstenberg-Eden, R.; Rowley, D.B.; Shattuck, G.E.

    1980-09-01

    The effect of various stages of the irradiation processing of beef on the injury and inactivation of radiation-resistant Moraxella-Acinetobactor cells was studied. Moraxella-Acinetobacter cells were more resistant to heat inactivation and injury when heated in meat with salts (0.75% NaCl and 0.375% sodium tripolyphosphate) than in meat without salts. These salts had no effect on radiation resistance. Heated cells were more sensitive to radiation inactivation and injury than unheated cells. After repair, the cells regained their resistance to both NaCl and irradiation. Freezing and storage at -40/sup 0/C for 14 days had only a slight effect on either unstressed ormore » heat-stressed cells.« less

  4. Periarteritis nodosa in rats treated with chronic excess sodium chlorides (NaCl) after X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Nakagawa, Y.; Ito, A.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions,more » elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.« less

  5. Periarteritis nodosa in rats treated with chronic excess sodium chloride (NaCl) after X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Nakagawa, Y.; Ito, A.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically, these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions,more » elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.« less

  6. Evaporative crystallization of salts from Electrodialysis concentrated brine at atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Du, Wei; Cheng, Penggao; Tang, Na; Wang, Xuekui

    2018-02-01

    A large amount of concentrated brine was produced as by-product during the process of the electrodialysis seawater desalination. In this study, the crystallization sequences of different salts from the brine through evaporative crystallization at both atmospheric and subatmospheric pressures were investigated in detail. The profile of the boiling temperature with density and the relationship between the boiling temperature and the pressure were recorded. The combination of Powder X-Ray Diffraction and the polarizing microscope was employed to identify the salts in the solid form. It can be inferred that NaCl crystallized out firstly and then MgSO4·6H2O and CaSO4 precipitate in order at both atmospheric and subatmospheric pressures, and it should be noticed that CaSO4 crystallized as anhydrate at 70°C and 90°C while as dihydrate at 50°C. At the end of all the experiments the precipitation rates of CaSO4 and NaCl have reached to more than 95% while MgSO4 only reached to about 60%.

  7. Structure of free radicals in irradiated acetyl-L-leucine single crystals at 77 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almanov, G.A.; Bogdanchikov, G.A.; Usov, O.M.

    1988-09-01

    By using the EPR method, two types of radicals are observed, which are formed in acetyl-L-leucine single crystals irradiated at 77K. These are alkyl type radicals (CH/sub 3/)/sub 2/CCH/sub 2/CH(NHCOCH/sub 3/)COOH and peptide group radicals. When the crystals are defrozen to room temperatures, the radicals of the second type disappear without formation of paramagnetic particles. Two possible structures of the peptide group radicals were studied by the INDO method. On defreezing to room temperature, the alkyl group radical is retained, while the peptide radical disappears without formation of paramagnetic particles. For the protonated form of the anion-radical, a better agreementmore » is observed between the theoretically calculated and the experimentally obtained HFI constants. The quantum chemical analysis of the possible structures of the peptide group radicals indicates that the formation of the protonated form of the anion-radical is energetically favorable.« less

  8. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts*

    PubMed Central

    Guo, Rong-fang; Yuan, Gao-feng; Wang, Qiao-mei

    2013-01-01

    To understand the regulation mechanism of NaCl on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCl were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCl. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCl at relatively low concentrations (20, 40, and 60 mmol/L). NaCl treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCl treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCl could be desirable for human nutrition. PMID:23365011

  9. Homoepitaxial growth of metal halide crystals investigated by reflection high-energy electron diffraction

    DOE PAGES

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; ...

    2017-01-10

    Here, we report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flowmore » growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications.« less

  10. Superconductivity could occur Na-supersaturated NaCl

    NASA Astrophysics Data System (ADS)

    Hanaki, Koji

    1997-04-01

    A flow-into electron and a flow-out hole mean flow-into of two unit electric c harges. Even if an exciton consisting of an electron and a hole is a neutral q uasi-particle, overlapping of excitons, namely, the bose condensation changes into a superconductor where half the electric current is due to holes moving t oward the reverse direction. The Meisner effect of the bose condensation comes from the precession of the each exciton under the magnetic field^1. Moreo ver, the present mechanism is supported with that superconducting material alw ays has two kinds of carriers. The superconductivity of NaCl comes from the ab ove-mentioned theory. Free stable holes at first and then electrons are produc ed in NaCl when considerable number of Cl^- lattice vacancies are brought in NaCl mainly because some electrons in the Cl-3p filled band fall into the v acancies. The coexistence of two kinds of stable carriers does not always mean the presence of excitons like VO with electrons not paired and localized in e ach V atom though. While, the absorption spectrum of the NaCl has already conf irmed the presence of excitons; the strength of the spectrum seems to indicate the formation of the bose condensation. Thus we could expect a new supercondu ctor. 1) Hanaki B.Am.P.Soc.,40-1(1995)568

  11. Influence of Surfactants on Sodium Chloride Crystallization in Confinement

    PubMed Central

    2017-01-01

    We study the influence of different surfactants on NaCl crystallization during evaporation of aqueous salt solutions. We found that at concentrations of sodium chloride close to saturation, only the cationic surfactant CTAB and the nonionic surfactant Tween 80 remain stable. For the nonionic surfactant, the high concentration of salt does not significantly change either the critical micellar concentration (CMC) or the surface tension at the CMC; for the cationic surfactant, the CMC is reduced by roughly 2 orders of magnitude upon adding the salt. The presence of both types of surfactants in the salt solution delays the crystallization of sodium chloride with evaporation. This, in turn, leads to high supersaturation which induces the rapid precipitation of a hopper crystal in the bulk. The crystallization inhibitor role of these surfactants is shown to be mainly due to the passivation of nucleation sites at both liquid/air and solid/liquid interfaces rather than a change in the evaporation rate which is found not to be affected by the presence of the surfactants. The adsorption of surfactants at the liquid/air interface prevents the crystallization at this location which is generally the place where the precipitation of sodium chloride is observed. Moreover, sum frequency generation spectroscopy measurements show that the surfactants are also present at the solid/liquid interface. The incorporation of the surfactants into the salt crystals is investigated using a novel, but simple, method based on surface tension measurements. Our results show that the nonionic surfactant Tween 80 is incorporated in the NaCl crystals but the cationic surfactant CTAB is not. Taken together, these results therefore allow us to establish the effect of the presence of surfactants on sodium chloride crystallization. PMID:28425711

  12. Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution

    PubMed Central

    Zhou, Aifen; Baidoo, Edward; He, Zhili; Mukhopadhyay, Aindrila; Baumohl, Jason K; Benke, Peter; Joachimiak, Marcin P; Xie, Ming; Song, Rong; Arkin, Adam P; Hazen, Terry C; Keasling, Jay D; Wall, Judy D; Stahl, David A; Zhou, Jizhong

    2013-01-01

    Desulfovibrio vulgaris Hildenborough strains with significantly increased tolerance to NaCl were obtained via experimental evolution. A NaCl-evolved strain, ES9-11, isolated from a population cultured for 1200 generations in medium amended with 100 mM NaCl, showed better tolerance to NaCl than a control strain, EC3-10, cultured for 1200 generations in parallel but without NaCl amendment in medium. To understand the NaCl adaptation mechanism in ES9-11, we analyzed the transcriptional, metabolite and phospholipid fatty acid (PLFA) profiles of strain ES9-11 with 0, 100- or 250 mM-added NaCl in medium compared with the ancestral strain and EC3-10 as controls. In all the culture conditions, increased expressions of genes involved in amino-acid synthesis and transport, energy production, cation efflux and decreased expression of flagellar assembly genes were detected in ES9-11. Consistently, increased abundances of organic solutes and decreased cell motility were observed in ES9-11. Glutamate appears to be the most important osmoprotectant in D. vulgaris under NaCl stress, whereas, other organic solutes such as glutamine, glycine and glycine betaine might contribute to NaCl tolerance under low NaCl concentration only. Unsaturation indices of PLFA significantly increased in ES9-11. Branched unsaturated PLFAs i17:1 ω9c, a17:1 ω9c and branched saturated i15:0 might have important roles in maintaining proper membrane fluidity under NaCl stress. Taken together, these data suggest that the accumulation of osmolytes, increased membrane fluidity, decreased cell motility and possibly an increased exclusion of Na+ contribute to increased NaCl tolerance in NaCl-evolved D. vulgaris. PMID:23575373

  13. Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyuan; Shuai, Yao; Gong, Chaoguan; Wu, Chuangui; Luo, Wenbo; Böttger, Roman; Zhou, Shengqiang; Zhang, Wanli

    2018-03-01

    Single crystalline 128°Y-cut LiNbO3 thin films with a thickness of 670 nm are fabricated onto Si substrates by means of crystal ion slicing (CIS) technique, adhesive wafer bonding using BCB as the medium layer to alleviate the large thermal coefficient mismatch between LiNbO3 and Si, and the X-ray diffraction pattern indicates the exfoliated thin films have good crystalline quality. The LiNbO3 thin films are modified by low energy Ar+ irradiation, and the surface roughness of the films is decreased from 8.7 nm to 3.4 nm. The sputtering of the Ar+ irradiation is studied by scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy, and the results show that an amorphous layer exists at the surface of the exfoliated film, which can be quickly removed by Ar+ irradiation. A two-stage etching mechanism by Ar+ irradiation is demonstrated, which not only establishes a new non-contact surface polishing method for the CIS-fabricated single crystalline thin films, but also is potentially useful to remove the residue damage layer produced during the CIS process.

  14. Radiation damage induced in Al2O3 single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2016-06-01

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al2O3 single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al2O3 samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al2O3 samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 1013 Xe/cm2). It can be assigned to the formation of new lattice plane.

  15. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  16. Rapid and reversible photoinduced switching of a rotaxane crystal

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Jen; Tsai, Ya-Ching; Suzaki, Yuji; Osakada, Kohtaro; Miura, Atsushi; Horie, Masaki

    2016-11-01

    Crystalline phase transitions caused by external stimuli have been used to detect physical changes in the solid-state properties. This study presents the mechanical switching of crystals of ferrocene-containing rotaxane controlled by focused laser light. The expansion and contraction of the crystals can be driven by turning on and off laser light at 445 nm. The irradiation-induced expansion of the crystal involves elongation along the a, b and c axes at 30 °C, whereas heating of the crystal at 105 °C causes the shortening of c axis. The expansions reversibly occur and have the advantage of a rapid relaxation (reverse) process. Single-crystal X-ray crystallography reveals the detailed structural changes of the molecules, corresponding to a change in the size of the crystals on laser irradiation. This molecular crystal behaviour induced by laser irradiation, is demonstrated for the remote control of objects, namely, microparticle transport and microswitching in an electric circuit.

  17. Understanding the Effects of NaCl, NaBr and Their Mixtures on Silver Nanowire Nucleation and Growth in Terms of the Distribution of Electron Traps in Silver Halide Crystals

    PubMed Central

    Rui, Yunjun; Zhao, Weiliang; Zhu, Dewei; Wang, Hengyu; Song, Guangliang; Swihart, Mark T.; Wan, Neng; Gu, Dawei; Tang, Xiaobing; Yang, Ying; Zhang, Tianyou

    2018-01-01

    In recent years, many research groups have synthesized ultra-thin silver nanowires (AgNWs) with diameters below 30 nm by employing Cl− and Br− simultaneously in the polyol process. However, the yield of AgNWs in this method was low, due to the production of Ag nanoparticles (AgNPs) as an unwanted byproduct, especially in the case of high Br− concentration. Here, we investigated the roles of Cl− and Br− in the preparation of AgNWs and then synthesized high aspect ratio (up to 2100) AgNWs in high yield (>85% AgNWs) using a Cl− and Br− co-mediated method. We found that multiply-twinned particles (MTPs) with different critical sizes were formed and grew into AgNWs, accompanied by a small and large amount of AgNPs for the NaCl and NaBr additives, respectively. For the first time, we propose that the growth of AgNWs of different diameters and yields can be understood based on the electron trap distribution (ETD) of the silver halide crystals. For the case of Cl− and Br− co-additives, a mixed silver halide crystal of AgBr1−xClx was formed, rather than the AgBr/AgCl mixture reported previously. In this type of crystal, the ETD is uniform, which is beneficial for the synthesis of AgNWs with small diameter (30~40 nm) and high aspect ratio. AgNW transparent electrodes were prepared in air by rod coating. A sheet resistance of 48 Ω/sq and transmittance of 95% at 550 nm were obtained without any post-treatment. PMID:29538281

  18. Influence of solution chemistry on the inactivation of particle-associated viruses by UV irradiation.

    PubMed

    Feng, Zhe; Lu, Ruiqing; Yuan, Baoling; Zhou, Zhenming; Wu, Qingqing; Nguyen, Thanh H

    2016-12-01

    MS2 inactivation by UV irradiance was investigated with the focus on how the disinfection efficacy is influenced by bacteriophage MS2 aggregation and adsorption to particles in solutions with different compositions. Kaolinite and Microcystis aeruginosa were used as model inorganic and organic particles, respectively. In the absence of model particles, MS2 aggregates formed in either 1mM NaCl at pH=3 or 50-200mM ionic strength CaCl 2 solutions at pH=7 led to a decrease in the MS2 inactivation efficacy because the virions located inside the aggregate were protected from the UV irradiation. In the presence of kaolinite and Microcystis aeruginosa, MS2 adsorbed onto the particles in either 1mM NaCl at pH=3 or 50-200mM CaCl 2 solutions at pH=7. In contrast to MS2 aggregates formed without the presence of particles, more MS2 virions adsorbed on these particles were exposed to UV irradiation to allow an increase in MS2 inactivation. In either 1mM NaCl at pH from 4 to 8 or 2-200mM NaCl solutions at pH=7, the absence of MS2 aggregation and adsorption onto the model particles explained why MS2 inactivation was not influenced by pH, ionic strength, and the presence of model particles in these conditions. The influence of virus adsorption and aggregation on the UV disinfection efficiency found in this research suggests the necessity of accounting for particles and cation composition in virus inactivation for drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Proteome Analyses of Staphylococcus aureus Biofilm at Elevated Levels of NaCl

    PubMed Central

    Islam, Nazrul; Ross, Julia M; Marten, Mark R

    2016-01-01

    Our studies demonstrate that sodium chloride (NaCl) induces changes in biofilm, mediated by increased production of polysaccharides intercellular adhesion (PIA). We identified 12 proteins that showed higher abundance in increased level of NaCl. This includes one important protein (IsaA) known to be associated with biofilm stability. In addition, we also found higher abundance of a cold shock protein, CspA, at higher NaCl. We have also identified several other proteins that are differentially expressed to the elevated levels of NaCl and mapped them in the regulatory pathways of PIA. The majority of proteins are involved with various aspects bacterial metabolic function. Our results demonstrated that NaCl influences gene regulatory networks controlling exopolysaccharide expression. PMID:26973848

  20. SHALLOW ELECTRON TRAPS IN SINGLE CRYSTALS OF RUTILE STUDIED BY X-RAY IRRADIATION USING LOW FREQUENCY DIELECTRIC MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, K.G.

    1962-04-01

    Defect structure in single crystals of rutile was studied by dielectric measurements at 2 cps and above, before and after irradiation with hard x rays. The results were analyzed by a Cole-Cole plot, which is a circle with its cenier shifted away from the dielectric constant axis. X irradiation shifts the center of the Cole-Cole plot toward the dielectric constant axis, indicating a decrease in distribution of relaxation times by evacuation of electrons from their shallow traps, which after release produce interfacial polarization. An attempt was also made to calculate the a-c behavior from d-c data, but the errors atmore » frequencies of measurement were toe high, thus defying comparison with experimental data. (auth)« less

  1. Ultrastructural properties of laser-irradiated and heat-treated dentin.

    PubMed

    Rohanizadeh, R; LeGeros, R Z; Fan, D; Jean, A; Daculsi, G

    1999-12-01

    Previous studies using scanning electron microscopy and infrared absorption spectroscopy reported that laser irradiation causes compositional changes in enamel. The purpose of this study was to evaluate the ultrastructural and compositional changes in dentin caused by irradiation with a short-pulse laser (Q-switched Nd:YAG). The irradiated and non-irradiated areas of the lased dentin samples were investigated by scanning (SEM) and transmission electron microscopy (TEM), micro-micro electron diffraction, and electron microprobe analysis of dispersive energy (EDX). Heat-treated dentin was similarly investigated. This study demonstrated that laser irradiation resulted in the recrystallization of dentin apatite and in the formation of additional calcium phosphate phases consisting of magnesium-substituted beta-tricalcium phosphate, beta-TCMP, beta-(Ca,Mg)3(PO4)2, and tetracalcium phosphate, TetCP, Ca4(PO4)O. TEM analyses of the modified and unmodified zones of the irradiated areas showed two types of crystal populations: much larger crystals from the modified zone and crystals with size and morphology similar to those of dentin apatite in the unmodified zone. The morphology of crystals in the modified zones in the irradiated dentin resembled those of dentin sintered at 800 or 950 degrees C. In the irradiated areas (modified and unmodified zones), the Ca/P ratio was lower compared with that in the non-irradiated dentin. The Mg/Ca ratio in the modified zones was higher than that in the unmodified zones and in the non-irradiated dentin. In sintered dentin, the Mg/Ca ratio increased as a function of sintering temperature. The ultrastructural and compositional changes observed in laser-irradiated dentin may be attributed to high temperature and high pressure induced by microplasma during laser irradiation. These changes may alter the solubility of the irradiated dentin, making it less susceptible to acid dissolution or to the caries process.

  2. Mid-infrared ridge waveguide in MgO:LiNbO3 crystal produced by combination of swift O5+ ion irradiation and precise diamond blade dicing

    NASA Astrophysics Data System (ADS)

    Cheng, Yazhou; Lv, Jinman; Akhmadaliev, Shavkat; Zhou, Shengqiang; Kong, Yongfa; Chen, Feng

    2015-10-01

    We report on the fabrication of ridge waveguide operating at mid-infrared wavelength in MgO:LiNbO3 crystal by using O5+ ion irradiation and precise diamond blade dicing. The waveguide shows good guiding properties at the wavelength of 4 μm along the TM polarization. Thermal annealing has been implemented to improve the waveguiding performances. The propagation loss of the ridge waveguide has been reduced to be 1.0 dB/cm at 4 μm after annealing at 310 °C. The micro-Raman spectra indicate that the microstructure of the MgO:LiNbO3 crystal has no significant change along the ion track after swift O5+ ion irradiation.

  3. Formation and trapping of free radicals in irradiated purines: EPR and ENDOR of hypoxanthine derivatives studied as single crystals

    NASA Astrophysics Data System (ADS)

    Tokdemir, Sibel

    Four different derivatives of hypoxanthine (hypoxanthine-HCl·H 2O, Na+·Inosine-·2.5H 2O, sodium inosine monophosphate, and calcium inosine monophosphate) were irradiated in the form of single crystals with the objective of identifying the radical products. To do so, magnetic resonance methods (EPR, ENDOR experiments and EPR spectrum simulations) were used to study radical products in crystals following x-irradiation at ˜10 K without warming, and under conditions of controlled warming. Also, computational chemistry methods were used in combination with the experimental methods to assist in identifying the radical products. Immediately following irradiation at 10 K, at least three different radicals were observed for hypoxanthine·HCl·H2O. R5.1 was identified at the product of electron addition followed by protonation of the parent at N3. R5.2 was identified as the product of electron loss followed by deprotonation at N7, and R5.3 was tentatively identified as the product of electron gain followed by protonation at 06. On warming to room temperature, three new radicals were observed: R6.1 and R6.3 were the products of net H addition to C8 and C2 respectively, while R6.2 was the product of OH addition to C8. At least four different radical products of Na+·Inosine - were detected immediately after irradiation at 10 K. R7.1 was identified as the electron-loss product of the parent hypoxanthine base, and R7.2 was identified as the product of net H-abstraction from C5 ' of the sugar. R7.3 and R7.4 were tentatively identified as the products of net H-addition to 06 (probably via electron addition followed by protonation), and the (doubly-negative) product of electron-gain, respectively. R7.5, the C8-H addition radical, was the only product detected on warming sodium inosine crystals to room temperature. Because the ENDOR spectra from sodium IMP irradiated at 10K were complex, it was possible to identify only two radicals. R8.1 was identified as the purine base

  4. NaCl and water responses across the frog tongue epithelium in vitro.

    PubMed

    Soeda, H; Sakudo, F

    1990-01-01

    Isolated dorsal epithelium of the frog tongue elicited transepithelial NaCl and water responses across the tissue when NaCl was added to or removed from the adapting Ringer solution in the mucosal surface, respectively. The NaCl response which was a negative polarization in the mucosa with respect to the serosa was associated with a decrease in resistance across the tissue, whereas the water response which was a positive polarization was associated with an increase in the resistance. The decrease and increase in the tissue resistance remained unchanged by various polarizations of the transepithelial potential difference across the tissue. Characteristics of the NaCl and water responses were similar in many respects to those in the taste cells and nerves of frogs. Thus the NaCl and water responses may relate to taste reception.

  5. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  6. Membrane crystallization of lysozyme: kinetic aspects

    NASA Astrophysics Data System (ADS)

    Profio, Gianluca Di; Curcio, Efrem; Cassetta, Alberto; Lamba, Doriano; Drioli, Enrico

    2003-10-01

    The relevant kinetic aspects related to an innovative method of biological macromolecules crystallization based on microporous hydrophobic membranes, used both as active surfaces to promote heterogeneous nucleation and as a mass-transfer apparatus to concentrate macromolecular solutions by solvent removal in vapour phase, have been evaluated. Polypropylene membranes, supplied in the form of hollow fibres, have been aligned in a versatile system, designed for an on-line spectrophotometric monitoring of hen egg white lysozyme crystallizing solutions (experimental conditions: 0.1 M NaAc/HAc Buffer pH 4.6, 0.5-5.8% wt/vol NaCl, 20°C). The turbidity measurements have been exploited in order to follow: (i) the induction time of crystallization, (ii) the early stage nucleation kinetics based on the Rayleigh scattering theory, and (iii) the crystal growth rate (coupled with data evaluated from image-analysis carried out by optical microscopy) under a model hypothesis of exponential growth of clusters. The crystals have been qualitatively assessed by an X-ray crystallographic analysis carried out at the synchrotron light laboratory ELETTRA.

  7. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  8. Study on accumulated crystallization characteristics of amorphous Ge2Sb2Te5 induced by multi-pulsed laser irradiations with different fluences

    NASA Astrophysics Data System (ADS)

    Fan, T.; Liu, F. R.; Li, W. Q.; Guo, J. C.; Wang, Y. H.; Sun, N. X.; Liu, F.

    2018-07-01

    Accumulated crystallization characteristics of amorphous Ge2Sb2Te5 (a-GST) films induced by multi-pulsed laser irradiations with different fluences were investigated by x-ray diffraction (XRD), Raman spectroscopy and spectrophotometer. Solid-state transformation was performed at low fluence (LF, 30.5 mJ cm‑2), whereas melting-cooling transformation dominated at medium and high fluence (MF, 45.7 and HF, 61 mJ cm‑2). Solid-state transformation induced by subsequent LF pulses promoted the growth and coalescence of grains, linearly increasing the average grain size, accordingly causing blue-shifts of the Raman spectral peaks. For MF/HF pulse irradiated films, the relatively high laser fluence increased the melting depth and reduced the volume fraction of the crystalline state induced by individual pulses, thereby increasing the threshold of laser pulse numbers for XRD detectable crystallization. However, the remelting depth induced by subsequent MF/HF laser pulse progressively decreased. The remelting-recrystallization process refined grain sizes, which improved the red-shifts of Raman spectral peaks. Moreover, optical contrast increased dramatically compared to single laser irradiation and five-level storage could be realized for a linear increase of optical contrast. The present study is fundamental for realizing the potential of multi-level devices.

  9. Energetics of acclimation to NaCl by submerged, anoxic rice seedlings

    PubMed Central

    Kurniasih, Budiastuti; Greenway, Hank; Colmer, Timothy David

    2017-01-01

    Background and aims Our aim was to elucidate how plant tissues under a severe energy crisis cope with imposition of high NaCl, which greatly increases ion fluxes and hence energy demands. The energy requirements for ion regulation during combined salinity and anoxia were assessed to gain insights into ion transport processes in the anoxia-tolerant coleoptile of rice. Methods We studied the combined effects of anoxia plus 50 or 100 mm NaCl on tissue ions and growth of submerged rice (Oryza sativa) seedlings. Excised coleoptiles allowed measurements in aerated or anoxic conditions of ion net fluxes and O2 consumption or ethanol formation and by inference energy production. Key Results Over 80 h of anoxia, coleoptiles of submerged intact seedlings grew at 100 mm NaCl, but excised coleoptiles, with 50 mm exogenous glucose, survived only at 50 mm NaCl, possibly due to lower energy production with glucose than for intact coleoptiles with sucrose as substrate. Rates of net uptake of Na+ and Cl− by coleoptiles in anoxia were about half those in aerated solution. Ethanol formation in anoxia and O2 uptake in aerobic solution were each increased by 13–15 % at 50 mm NaCl, i.e. ATP formation was stimulated. For acclimation to 50 mm NaCl, the anoxic tissues used only 25 % of the energy that was expended by aerobic tissues. Following return of coleoptiles to aerated non-saline solution, rates of net K+ uptake recovered to those in continuously aerated solution, demonstrating there was little injury during anoxia with 50 mm NaCl. Conclusion Rice seedlings survive anoxia, without the coleoptile incurring significant injury, even with the additional energy demands imposed by NaCl (100 mm when intact, 50 mm when excised). Energy savings were achieved in saline anoxia by less coleoptile growth, reduced ion fluxes as compared to aerobic coleoptiles and apparent energy-economic ion transport systems. PMID:27694332

  10. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  11. Luminescence upconversion under hydrostatic pressure in the 3d-metal systems Ti2+:NaCl and Ni2+:CsCdCl3

    NASA Astrophysics Data System (ADS)

    Wenger, Oliver S.; Salley, G. Mackay; Valiente, Rafael; Güdel, Hans U.

    2002-06-01

    We present a study of upconversion materials and processes under external hydrostatic pressure. The near-infrared to visible photon upconversion properties of Ti2+-doped NaCl and Ni2+-doped CsCdCl3 at 15 K are studied as a function of external hydrostatic pressure. It is found that in Ti2+:NaCl pressure can be used to switch on an efficient upconversion mechanism, which is inactive at ambient pressure, leading to an order-of-magnitude enhancement of the overall upconversion efficiency of this material. For Ni2+:CsCdCl3 it is demonstrated that upconversion luminescence excitation spectroscopy can be used to study the pressure dependence of excited state absorption transitions. The results demonstrate the ability to tune upconversion properties by altering the local crystal field of active ions, in addition to probing the pressure dependence of excited state absorption transitions via upconversion spectroscopy.

  12. Irradiation effects and hydrogen behavior in H2+ and He+ implanted γ-LiAlO2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Zhang, Jiandong; Kovarik, Libor

    2017-02-01

    Gamma-phase lithium aluminate (gamma-LiAlO2) is a breeder material for tritium, a necessary substance for strategic stockpile and fusion power systems. A fundamental study of structural evolution and tritium diffusion in gamma-LiAlO2 under displacive irradiation is needed to fully assess the material performance. This study utilizes ion implantation of protium (surrogate for tritium) and helium in gamma-LiAlO2 single crystals at elevated temperatures to emulate the irradiation effects. The results show that at 573 K there are two distinct disorder saturation stages to 1 dpa without full amorphization; overlapping implantation of H2+ and He+ ions suggests possible formation of gas bubbles. Formore » irradiation to 1E21 H+/m2 (0.36 dpa at peak) at 773 K, amorphization occurs at surface with H diffusion and dramatic Li loss; the microstructure contains bubbles and cubic LiAl5O8 precipitates with sizes up to 200 nm or larger. In addition, significant H diffusion and release are observed during thermal annealing.« less

  13. Magnesite Solubility at 800 ºC, 10 kbar, in H2O-CO2± NaCl solutions: implications for carbon transport in the mantle

    NASA Astrophysics Data System (ADS)

    Fineman, D.; Manning, C. E.

    2017-12-01

    Magnesite (MgCO3) is an important carbon reservoir in the upper mantle. It can be a product of interaction with mantle fluids, but its solubility has not been determined at high P and T. We measured magnesite solubility at 800 ºC, 10 kbar, in H2O-CO2± NaCl solutions. The NaCl mole fraction (XNaCl) ranged from 0 to 0.4. XCO2 = 0.05 was fixed by addition of hydrous oxalic acid and low fH2 generated by hematite or Mn oxide sealed in inner Pt capsules, added along with a crimped Pt capsule containing pure natural magnesite crystals to a larger Pt capsule containing H2O-CO2± NaCl fluid. Solubility was determined after quenching by the weight loss of the capsule containing magnesite. Magnesite solubility in pure water is 0.02 molal, nearly the same as calcite, 0.025 molal. Solubility rises to 0.37 molal with addition of NaCl to XNaCl =0.3. This value is 1/3 that of calcite at the same XNaCl. Graphite precipitated in experiments at XNaCl > 0.3 and resulted in inconsistent solubility measurements. There are two probable causes: (1) reduction of H2O activity and increase in CO2 activity via NaCl addition, or (2) exhaustion of the fO2 buffer. The experiments demonstrate that transport of Mg+2 and carbonate are substantially increased by saline solutions in the mantle.

  14. Optical waveguides in Nd:GdVO4 crystals fabricated by swift N3+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Yao, Yicun; Chen, Feng

    2012-12-01

    Optical planar waveguides have been manufactured in Nd:GdVO4 crystal by swift N3+ ions irradiation at fluence of 1.5 × 1014 ions/cm2. A typical "barrier"-style refractive index profile was formed and the light can be well confined in the waveguide region. The modal distribution of the guided modes obtained from numerical calculation has a good agreement with the experimental modal distribution. The measured photoluminescence spectra revealed that the fluorescence properties of the Nd3+ ions have been modified to some extent in the waveguide's volume. The propagation loss of the planar waveguide can decrease to lower than 1 dB/cm after adequate annealing.

  15. Effect of electron irradiation on superconductivity in single crystals of Ba ( Fe 1 – x Ru x ) 2 As 2 ( x = 0.24 )

    DOE PAGES

    Prozorov, R.; Kończykowski, M.; Tanatar, M. A.; ...

    2014-11-18

    A single crystal of isovalently substituted Ba(Fe 1-xRu x) 2As 2 (x=0.24) is sequentially irradiated with 2.5 MeV electrons up to a maximum dose of 2.1×10 19 e -/cm 2. The electrical resistivity is measured in situ at T=22 K during the irradiation and ex situ as a function of temperature between subsequent irradiation runs. Upon irradiation, the superconducting transition temperature T c decreases and the residual resistivity ρ0 increases. We find that electron irradiation leads to the fastest suppression of T c compared to other types of artificially introduced disorder, probably due to the strong short-range potential of themore » pointlike irradiation defects. As a result, a more detailed analysis within a multiband scenario with variable scattering potential strength shows that the observed T c versus ρ 0 is fully compatible with s ± pairing, in contrast to earlier claims that this model leads to a too rapid suppression of T c with scattering.« less

  16. Impacts of Irradiation Sources on Quality Attributes of Low-salt Sausage during Refrigerated Storage

    PubMed Central

    Kim, Hyun-Wook; Choi, Yun-Sang

    2017-01-01

    This study was performed to investigate the impacts of irradiation sources on quality attributes of low-salt sausage during refrigerated storage. Control sausage was prepared with 1.5% sodium chloride (NaCl), whereas low-salt sausage was formulated with 0.75% NaCl (a 50% reduction; L-control). Sausage samples were vacuum-packaged, and low-sausages were irradiated with gamma-ray, electron-beam and X-ray at 5 kGy, respectively. The samples were stored at 4°C for 28 d to determine changes in quality attributes. The pH of low-salt sausages was unaffected by irradiation at 5 kGy (p>0.05). Higher redness values were found at irradiated low-salt sausages compared to control (p<0.05). The hardness, gumminess and chewiness of control sausage were higher than those of low-salt sausages (p<0.05). However, there were no significant differences in the textural parameters between low-salt sausage treatments. The overall sensory acceptability score of irradiated/low-salt sausages were lower than L-control due to decreased scores for cooked meat flavor but increased radiolytic off-flavor (p<0.05). The initial 2-thiobarbituric acid-reactive substances (TBARS) values of irradiated/low-salt sausages were higher than control and L-control (p<0.05). However, the TBARS values of irradiated treatments were significantly lower than control at the end of storage. Irradiation could effectively inhibit the microorganism growth (total aerobic bacteria, coliforms, Enterobacteriaceae, and Pseudomonas spp.) in low-salt sausages (p<0.05). Therefore, our findings show that irradiation could be to improve microbial safety of low-salt sausages, and suggest that further studies should be necessary to reducing radiolytic off-flavor of irradiated/low-salt sausages. PMID:29147093

  17. Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine

    2017-09-01

    Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.

  18. Temperature dependence of thermal pressure for NaCl

    NASA Astrophysics Data System (ADS)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  19. Isolation of isoelectrically pure cholera toxin for crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    We have determined that the failure of cholera toxin to crystallize well results from its isoelectric heterogeneity, which is probably due to a post-translational process such as deamidation of its B subunit. Every sample of cholera toxin we have examined from commercial or academic suppliers has been heterogeneous; heterogeneous cholera toxin does not crystallize satisfactorily. We have overcome this problem by using ion-exchange fast protein liquid chromatography (FPLC) to obtain an isoelectrically homogeneous species of cholera toxin. Homogeneous cholera toxin crystallizes readily, forming single, nonmosaic crystals suitable for x-ray diffraction studies. For this process, protein was applied to a MonoQmore » ion-exchange column, then eluted with an isocratic low salt buffer followed by a linear salt gradient (0-100 mM NaCl). Column fractions were analyzed on isoelectric focusing gels, and those fractions containing the desired homogeneous species were pooled and concentrated. Crystals formed within 24 to 48 hours in a MOPS/PEG buffer, which made use of slow isoelectric precipitation to induce crystallization. 23 refs., 6 figs.« less

  20. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

    2014-11-01

    In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.

  1. Rapid localized crystallization of lysozyme by laser trapping.

    PubMed

    Yuyama, Ken-Ichi; Chang, Kai-Di; Tu, Jing-Ru; Masuhara, Hiroshi; Sugiyama, Teruki

    2018-02-28

    Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL). The crystallization is not observed during laser trapping, but initiated by stopping the laser irradiation. The generated crystals are localized densely in a circular area with a diameter of a few millimetres around the focal spot and show specific directions of the optical axes of the HEWL crystals. To interpret this unique crystallization, we propose a mechanism that nucleation and the subsequent growth take place in a highly concentrated domain consisting of HEWL liquid-like clusters after turning off laser trapping.

  2. Optical ridge waveguides in Nd:LGS crystal produced by combination of swift C5+ ion irradiation and precise diamond blade dicing

    NASA Astrophysics Data System (ADS)

    Cheng, Yazhou; Lv, Jinman; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-07-01

    We report on the fabrication of optical ridge waveguides in Nd:LGS crystal by using combination of swift C5+ ion irradiation and precise diamond blade dicing. The ridge structures support guidance both at 632.8 nm and 1064 nm wavelength along the TE and TM polarizations. The lowest propagation losses of the ridge waveguide for the TM mode are ~1.6 dB/cm at 632.8 nm and ~1.2 dB/cm at 1064 nm, respectively. The investigation of micro-fluorescence spectra and micro-Raman spectra indicates that the Nd3+ luminescence features have been well preserved and the microstructure of the waveguide region has no significant change after C5+ ion irradiation.

  3. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors.

    PubMed

    Wang, Qiming; Shalaev, Evgenyi

    2018-04-01

    In situ and non-invasive detection of solute crystallization during freeze-drying would facilitate cycle optimization and scale-up from the laboratory to commercial manufacturing scale. The objective of the study is to evaluate heat flux sensor (HFS) as a tool for monitoring solute crystallization and other first-order phase transitions (e.g., onset of freezing). HFS is a thin-film differential thermopile, which acts as a transducer to generate an electrical signal proportional to the total heat applied to its surface. In this study, HFS is used to detect both primary (ice formation) and secondary (also known as eutectic) solute + water crystallization during cooling and heating of solutions in a freeze-dryer. Binary water-solute mixtures with typical excipients concentrations (e.g., 0.9% of NaCl and 5% mannitol) and fill volumes (1 to 3 ml/vial) are studied. Secondary crystallization is detected by the HFS during cooling in all experiments with NaCl solutions, whereas timing of mannitol crystallization depends on the cooling conditions. In particular, mannitol crystallization takes place during cooling, if the cooling rate is lower than the critical value. On the other hand, if the cooling rate exceeds the critical cooling rate, mannitol crystallization during cooling is prevented, and crystallization occurs during subsequent warming or annealing. It is also observed that, while controlled ice nucleation allows initiation of the primary freezing event in different vials simultaneously, there is a noticeable vial-to-vial difference in the timing of secondary crystallization. The HFS could be a valuable process monitoring tool for non-invasive detection of various crystallization events during freeze-drying manufacturing.

  4. Ion beam radiation effects on natural halite crystals

    NASA Astrophysics Data System (ADS)

    Arun, T.; Ram, S. S.; Karthikeyan, B.; Ranjith, P.; Ray, D. K.; Rout, B.; Krishna, J. B. M.; Sengupta, Pranesh; Parlapalli, Venkata Satyam

    2017-10-01

    Halites are one of the interesting material due to its color variations. Natural halites whose color ranges from transparent to dark blue were studied by UV-VIS and Raman spectroscopy. The halite crystals were irradiated with 3 MeV proton micro-beam (∼20 μm beam width with ∼80 PA beam current) for 10 and 90 min to study the radiation damage. After 10 mins of irradiation, small spot developed on the surface of transparent halite crystal whereas after 90 mins of irradiation the spot spread inside the bulk leading to a brown coloration (20 μm initial size to ∼2.0 mm final size). The irradiated portion and the un-irradiated portion of the halites was characterized by Raman spectroscopic technique. The variation in the population density was observed from the UV-Vis spectra. The change in the Raman band intensities was observed for transparent, blue colored and proton beam irradiation halites. Such variation of spectroscopic characteristics due to proton irradiation suggests that the halite can be used for the radiation monitoring.

  5. HREM study of irradiation damage in human dental enamel crystals.

    PubMed

    Brès, E F; Hutchison, J L; Senger, B; Voegel, J C; Frank, R M

    1991-06-01

    Several phenomena have been observed during the examination of human dental enamel crystals (mainly constituted by hydroxyapatite (OHAP] by high-resolution electron microscopy (HREM) at 300 and 400 keV: orientation-dependent damage in the form of mass loss from voids or uniform destruction of crystal structure, beam-induced diffusion creating outgrowths at the crystal surfaces, recrystallization of the bulk crystal and crystallization of the inorganic components of the matrix surrounding the crystals. These beam-induced crystals have the CaO structure. The phenomena observed are most likely due to various electron-crystal interaction mechanisms (ballistic knock-on damage, electronic excitations, temperature rise, etc.). In this paper, the contribution of the ballistic process to the phenomena observed is discussed. The quantitative description of the knock-on collisions rests on the McKinley-Feshbach cross-section formula. The minimum ion displacement energies which appear in this expression have been estimated on the basis of the electrostatic ion binding energies, and the covalent bond energies if required. It is shown that hydroxyl, calcium and oxygen ions can effectively be displaced by the incident 300 and 400 keV electrons. Thus, the formation of CaO crystals by the combination of calcium and oxygen ions diffusing from their initial sites inside the OHAP lattice can tentatively be explained.

  6. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE PAGES

    Yu, K. Y.; Fan, Z.; Chen, Y.; ...

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe 96Zr 4 nanocomposite alloy. Irradiation resulted in amorphization of Fe 2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphousmore » nanocomposites.« less

  7. Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jinbo; Guo, Jing; Ma, Runze; Meng, Xiangzhi; Jiang, Ying

    2017-03-01

    The dissolution of sodium chloride (NaCl) in water is a frequently encountered process in our daily lives. While the NaCl dissolution process in liquid water has been extensively studied, whether and how the dissolution occurs below the freezing point is still not clear. Using a low-temperature scanning tunneling microscope (STM), here we were able to directly visualize the dissolution of Au-supported NaCl (0 0 1) bilayer islands by water at atomic level. We found that the single water molecule on the STM tip can assist the extraction of single Na+ from the NaCl surface even at 5 K, while leaving the Cl- intact. When covered with a full water monolayer, the NaCl islands started to dissolve from the step edges and also showed evidence of dissolution inside the terraces as the temperature was raised up to 145 K. At 155 K, the water molecules completely desorbed from the surface, which was accompanied with the decomposition and restructuring of the bilayer NaCl islands. Those results suggest that the dissolution of NaCl may occur well below the freezing point at the ice/NaCl interfaces and is mainly driven by the interaction between the water molecules and the Na+, which is in clear contrast with the NaCl dissolution in liquid water.

  8. Neutron-diffraction studies of the crystal structure and the color enhancement in γ-irradiated tourmaline

    NASA Astrophysics Data System (ADS)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    Tourmaline gemstones have an extremely complex composition and show great variety in color. Most color centers are related to transition-metal ions. Oxidation/reduction of these ions is known to be related with the color enhancement of tourmaline caused by gamma-ray ( γ)-irradiation and/or thermal treatment. However, the current understanding of the microscopic structure of the color centers remains weak. In this work, γ-irradiation was performed on three types of tourmaline gemstones to enhance the colors of the gemstones: two pink from Afghanistan and one green from Nigeria. All three samples were irradiated at 600 and 800 kGy. Their crystal structural and chemical behaviors have been investigated by using a Rietveld refinement analysis of neutron diffraction data, Energy Dispersive X-ray Fluorescence (EDXRF), Ultraviolet-visible Spectroscopy (UV-Vis) and X-ray Photoelectron Spectroscopy (XPS), and the results were compared with data obtained for samples in the natural state. Pink tourmaline of a high number of Mn ions (T2, 0.24 wt%) showed significant improvement in the quality of the pink color (rubellite) after irradiation of 800 kGy while the pink tourmaline of low MnO content (T1, 0.08 wt%) showed color adulteration. Pink color enhancement in T2, responding to darker pink, was associated with increases in the two absorption bands, one peaking at 396 and the other at 522 nm, after irradiation. These absorption bands are ascribed to d-d transitions of divalent manganese. T1 with color enhancement due to oxidation of Mn2+ showed a slightly larger < Y- O> distance. The green tourmaline containing much higher amounts of both Mn (T3) and Fe ions, 2.59 wt% and 5.7 wt%, respectively, changed to a yellow color after irradiation at 800 kGy. The refined structural parameters of this sample revealed distortions in the Z site. The < Z- O> distance decreased from 2.033 to 2.0192 Å. In addition, the unit-cell parameter was decreased after irradiation. The color change

  9. The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator.

    PubMed

    Passanha, Pearl; Kedia, Gopal; Dinsdale, Richard M; Guwy, Alan J; Esteves, Sandra R

    2014-07-01

    External stress factors in the form of ionic species or temperature increases have been shown to produce a stress response leading to enhanced PHA production. The effect of five different NaCl concentrations, namely 3.5, 6.5, 9, 12 and 15 g/l NaCl on PHA productivity using Cupriavidus necator has been investigated alongside a control (no added NaCl). A dielectric spectroscopy probe was used to measure PHA accumulation online in conjunction with the chemical offline analysis of PHA. The highest PHA production was obtained with the addition of 9 g/l NaCl, which yielded 30% higher PHA than the control. Increasing the addition of NaCl to 15 g/l was found to inhibit the production of PHA. NaCl addition can therefore be used as a simple, low cost, sustainable, non toxic and non reactive external stress strategy for increasing PHA productivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Amiloride-Sensitive and Amiloride-Insensitive Responses to NaCl + Acid Mixtures in Hamster Chorda Tympani Nerve

    PubMed Central

    Hettinger, Thomas P.; Savoy, Lawrence D.; Frank, Marion E.

    2012-01-01

    Component signaling in taste mixtures containing both beneficial and dangerous chemicals depends on peripheral processing. Unidirectional mixture suppression of chorda tympani (CT) nerve responses to sucrose by quinine and acid is documented for golden hamsters (Mesocricetus auratus). To investigate mixtures of NaCl and acids, we recorded multifiber responses to 50 mM NaCl, 1 and 3 mM citric acid and acetic acid, 250 μM citric acid, 20 mM acetic acid, and all binary combinations of each acid with NaCl (with and without 30 μM amiloride added). By blocking epithelial Na+ channels, amiloride treatment separated amiloride-sensitive NaCl-specific responses from amiloride-insensitive electrolyte-generalist responses, which encompass all of the CT response to the acids as well as responses to NaCl. Like CT sucrose responses, the amiloride-sensitive NaCl responses were suppressed by as much as 50% by citric acid (P = 0.001). The amiloride-insensitive electrolyte-generalist responses to NaCl + acid mixtures approximated the sum of NaCl and acid component responses. Thus, although NaCl-specific responses to NaCl were weakened in NaCl–acid mixtures, electrolyte-generalist responses to acid and NaCl, which tastes KCl-like, were transmitted undiminished in intensity to the central nervous system. The 2 distinct CT pathways are consistent with known rodent behavioral discriminations. PMID:22451526

  11. An ESR study of the stable radical in a γ-irradiated single crystal of 17α-dydroxy-progesterone

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Pietrzak, J.; Konopka, R.

    1990-11-01

    Electron spin resonance spectroscopy was used to investigate γ-radiation damage of 17α-hydroxy-progesterone molecules in a single crystal. Two types of radicals with different rates of recombination were observed and a definite structure was assigned to the specimen by analyzing the orientational variation of the spectra. The unpaired electron of the radical is delocalized in the 2 pz orbitals of the C(6), C(4) and C(3) atoms, giving rise to a hyperfine spectrum by interaction with two equivalent α-protons in positions 4 and 6 and with two non-equivalent β-protons attached to C(7). The hyperfine coupling tensors are reported, together with the g tensor of the radical. The presence of additional intermolecular interactions caused by hydrogen bonding between O(3) and HO(17) of two molecules does not change the type of radical (which is the same as the stable radical in a γ-irradiated single crystal of progesterone) but does increase the hyperfine coupling anisotropy.

  12. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE PAGES

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.; ...

    2016-06-03

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  13. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. T., E-mail: li48@llnl.gov; Bayu Aji, L. B.; Heo, T. W.

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar{sup +} ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. The propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  14. Effect of medium range order on pulsed laser crystallization of amorphous germanium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. T.; Bayu Aji, L. B.; Heo, T. W.

    Sputter deposited amorphous Ge thin films had their nanostructure altered by irradiation with high-energy Ar + ions. The change in the structure resulted in a reduction in medium range order (MRO) characterized using fluctuation electron microscopy. The pulsed laser crystallization kinetics of the as-deposited versus irradiated materials were investigated using the dynamic transmission electron microscope operated in the multi-frame movie mode. In conclusion, the propagation rate of the crystallization front for the irradiated material was lower; the changes were correlated to the MRO difference and formation of a thin liquid layer during crystallization.

  15. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less

  16. Crystal plasticity investigation of the microstructural factors influencing dislocation channeling in a model irradiated bcc material

    DOE PAGES

    Patra, Anirban; McDowell, David L.

    2016-03-25

    We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heightsmore » are computed at free surfaces and compared to relevant experiments.« less

  17. Constant Enthalpy Change Value during Pyrophosphate Hydrolysis within the Physiological Limits of NaCl*

    PubMed Central

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-01-01

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 m NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 m NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of −35 kJ/mol was obtained for the halophile and non-halophiles at 1.5–4.0 and 0.1–2.0 m NaCl, respectively. These results show that solvation changes caused by up to 4.0 m NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl. PMID:23965994

  18. Age related decreases in neural sensitivity to NaCl in SHR-SP.

    PubMed

    Osada, Kazumi; Komai, Michio; Bryant, Bruce P; Suzuki, Hitoshi; Tsunoda, Kenji; Furukawa, Yuji

    2003-03-01

    To determine whether neurophysiological taste responses of young and old rats are different, recordings were made from the whole chorda tympani nerve which innervates taste buds on the anterior tongue. SHR-SP (Stroke-Prone Spontaneously Hypertensive Rats) in two age groups were studied. Chemical stimuli included single concentrations of 250 mM NH(4)Cl, 100 mM NaCl, 100 mM KCl, 500 mM sucrose, 20 mM quinine-hydrochloride, 10 mM HCl, 10 mM monosodium glutamate (MSG), 10 mM L- glutamic acid (L-Glu) and an NaCl concentration series. The magnitude of the neural response (response ratio) was calculated by dividing the amplitude of the integrated response by the amplitude of the spontaneous activity that preceded it. Substantial neural responses to all chemicals were obtained at both ages. The responses to KCl, sucrose, quinine-hydrochloride, HCl, monosodium glutamate (MSG) and glutamic acid (Glu) did not change with age, but the response to NaCl did decrease significantly. The profile of the response/concentration function for NaCl differed with age. In particular, the responses to solutions more concentrated than 100 mM NaCl were significantly weaker in aged than in young SHR-SPs. We also observed that recovery from amiloride treatment on the tongue of SHR-SPs was faster in aged rats than in young ones, suggesting that there is some functional difference in the sodium-specific channels on the taste cell. These results suggest that aged SHR-SP may be less able than young SHR-SPs to discriminate among higher concentrations of NaCl solutions.

  19. The Salty Scrambled Egg: Detection of NaCl Toward CRL 2688

    NASA Astrophysics Data System (ADS)

    Highberger, J. L.; Thomson, K. J.; Young, P. A.; Arnett, D.; Ziurys, L. M.

    2003-08-01

    NaCl has been detected toward the circumstellar envelope of the post-AGB star CRL 2688 using the IRAM 30 m telescope, the first time this molecule has been identified in a source other than IRC +10216. The J=7-->6, 11-->10, 12-->11, and 18-->17 transitions of NaCl at 1, 2, and 3 mm have been observed, as well as the J=8-->7 line of the 37Cl isotopomer. The J=12-->11 line was also measured at the ARO 12 m telescope. An unsuccessful search was additionally conducted for AlCl toward CRL 2688, although in the process new transitions of NaCN were observed. Both NaCl and NaCN were found to be present in the AGB remnant wind, as suggested by their U-shaped line profiles, indicative of emission arising from an optically thin, extended shell-like source of radius ~10"-12". These data contrast with past results in IRC +10216, where the distribution of both molecules is confined to within a few arcseconds of the star. A high degree of excitation is required for the transitions observed for NaCl and NaCN; therefore, these two species likely arise in the region where the high-velocity outflow has collided with the remnant wind. Here the effects of shocks and clumping due to Rayleigh-Taylor instabilities have raised the densities and temperatures significantly. The shell source is thus likely to be clumpy and irregular. The chemistry producing the sodium compounds is consequently more complex than simple LTE formation. Abundances of NaCl and NaCN, relative to H2, are f~1.6×10-10 and ~5.2×10-9, respectively, while the upper limit to AlCl is f<2×10-9. These values differ substantially from those in IRC +10216, where AlCl has an abundance near 10-7. The NaCl observations additionally indicate a chlorine isotope ratio of 35Cl/37Cl=2.1+/-0.8 in CRL 2688, suggestive of s-process enhancement of chlorine 37.

  20. A combined physicochemical-biological method of NaCl extraction from the irrigation solution in the BTLSS

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia

    2016-07-01

    The use of processed human wastes as a source of minerals for plants in closed biotechnical life support systems (BTLSS) leads to high salt levels in the irrigation solution, as urine contains high concentrations of NaCl. It is important to develop a process that would effectively decrease NaCl concentration in the irrigation solution and return this salt to the crew's diet. The salt-tolerant plants (Salicornia europea) used to reduce NaCl concentration in the irrigation solution require higher salt concentrations than those of the solution, and this problem cannot be resolved by concentrating the solution. At the same time, NaCl extracted from mineralized wastes by physicochemical methods is not pure enough to be included in the crew's diet. This study describes an original physicochemical method of NaCl extraction from the solution, which is intended to be used in combination with the biological method of NaCl extraction by using saltwort plants. The physicochemical method produces solutions with high NaCl concentrations, and saltwort plants serve as a biological filter in the final phase, to produce table salt. The study reports the order in which physicochemical and biological methods of NaCl extraction from the irrigation solution should be used to enable rapid and effective inclusion of NaCl into the cycling of the BTLSS with humans. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  1. Effect of Co-60 gamma radiation on optical, dielectric and mechanical properties of strontium L-ascorbate hexahydrate NLO crystal

    NASA Astrophysics Data System (ADS)

    Dileep, M. S.; Suresh Kumar, H. M.

    2018-04-01

    A potentially useful nonlinear optical semi-organic single crystal of strontium L-ascorbate hexahydrate (SLAH) was grown by solution growth slow evaporation technique at room temperature. The grown crystal is semi transparent, yellowish in color with monoclinic crystal system having space group P21 and is stable up to 198 °C. Further, SLAH crystals were irradiated with gamma rays produced by 60Co with different doses of 10 KGy, 30 KGy and 50 KGy at room temperature and then studied the effect of gamma-rays on dielectric properties, optical absorption, microhardness and SHG efficiency. The absorption study reveals that the absorbance of the grown crystal is appeared to be low throughout the visible region with a lower cutoff wavelength of 277 nm and these parameters are not affected upon gamma irradiation. The luminescence intensity of the crystal is also not affected by the irradiation. There is noticeable changes were observed in dielectric properties and hardness of the materials for different doses of gamma irradiation. The second harmonic generation (SHG) efficiency of the grown crystal is 0.54 times that of the KDP crystal and is decreased moderately by increasing the dosage of gamma irradiation.

  2. Synthesis of rhenium nitride crystals with MoS2 structure

    NASA Astrophysics Data System (ADS)

    Kawamura, Fumio; Yusa, Hitoshi; Taniguchi, Takashi

    2012-06-01

    Rhenium nitride (ReN2) crystals were synthesized from a metathesis reaction between ReCl5 and Li3N under high pressure. The reaction was well controlled by the addition of a large amount of NaCl as reaction inhibitor to prevent a violent exothermic reaction. The largest rhenium nitride crystals obtained had a millimeter-order size with a platelet shape. X-ray diffraction analysis revealed that rhenium nitride has MoS2 structure similar to hexagonal rhenium diboride (ReB2) which has recently been investigated as an ultra-hard material. The structure was different from any structures previously predicted for ReN2 by theoretical calculations.

  3. An electrochemical quartz crystal microbalance study of magnesium dissolution

    NASA Astrophysics Data System (ADS)

    Ralston, K. D.; Thomas, S.; Williams, G.; Birbilis, N.

    2016-01-01

    A quartz crystal microbalance (QCM) was used in conjunction with electrochemical measurements to study dissolution of pure magnesium (Mg) sensors in dilute NaCl electrolytes. Open circuit potential and potentiodynamic polarisation experiments were conducted in 0.01 M NaCl, having pH values 3 (buffered) and 6 (unbuffered). In the pH 3 solution, the Mg sensor showed a net mass-loss during the electrochemical tests, whereas, in the unbuffered pH 6 solution Mg showed a net mass-gain, corresponding to the growth of an Mg(OH)2 film on its surface. The loss in the electrochemical efficiency of Mg dissolution due to such direct parasitic Mg(OH)2 growth has been estimated to be around 17-34%. This loss relates to the low capacities and voltage fluctuations reported during discharge of primary Mg batteries.

  4. Shape-memory NiTi foams produced by replication of NaCl space-holders.

    PubMed

    Bansiddhi, A; Dunand, D C

    2008-11-01

    NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam.

  5. Polymer Morphological Change Induced by Terahertz Irradiation

    PubMed Central

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-01-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10−20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules. PMID:27272984

  6. Polymer Morphological Change Induced by Terahertz Irradiation

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Suzuki, Hal; Otani, Chiko; Nagai, Masaya; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2016-06-01

    As terahertz (THz) frequencies correspond to those of the intermolecular vibrational modes in a polymer, intense THz wave irradiation affects the macromolecular polymorph, which determines the polymer properties and functions. THz photon energy is quite low compared to the covalent bond energy; therefore, conformational changes can be induced “softly,” without damaging the chemical structures. Here, we irradiate a poly(3-hydroxybutylate) (PHB) / chloroform solution during solvent casting crystallization using a THz wave generated by a free electron laser (FEL). Morphological observation shows the formation of micrometer-sized crystals in response to the THz wave irradiation. Further, a 10-20% increase in crystallinity is observed through analysis of the infrared (IR) absorption spectra. The peak power density of the irradiating THz wave is 40 MW/cm2, which is significantly lower than the typical laser intensities used for material manipulation. We demonstrate for the first time that the THz wave effectively induces the intermolecular rearrangement of polymer macromolecules.

  7. Ultrasound assisted crystallization of mefenamic acid: Effect of operating parameters and comparison with conventional approach.

    PubMed

    Iyer, Sneha R; Gogate, Parag R

    2017-01-01

    The current work investigates the application of low intensity ultrasonic irradiation for improving the cooling crystallization of Mefenamic Acid for the first time. The crystal shape and size has been analyzed with the help of optical microscope and image analysis software respectively. The effect of ultrasonic irradiation on crystal size, particle size distribution (PSD) and yield has been investigated, also establishing the comparison with conventional approach. It has been observed that application of ultrasound not only enhances the yield but also reduces the induction time for crystallization as compared to conventional cooling crystallization technique. In the presence of ultrasound, the maximum yield was obtained at optimum conditions of power dissipation of 30W and ultrasonic irradiation time of 10min. The yield was further improved by application of ultrasound in cycles where the formed crystals are allowed to grow in the absence of ultrasonic irradiation. It was also observed that the desired crystal morphology was obtained for the ultrasound assisted crystallization. The conventionally obtained needle shaped crystals transformed into plate shaped crystals for the ultrasound assisted crystallization. The particle size distribution was analyzed using statistical means on the basis of skewness and kurtosis values. It was observed that the skewness and excess kurtosis value for ultrasound assisted crystallization was significantly lower as compared to the conventional approach. XRD analysis also revealed better crystal properties for the processed mefenamic acid using ultrasound assisted approach. The overall process intensification benefits of mefenamic acid crystallization using the ultrasound assisted approach were reduced particle size, increase in the yield and uniform PSD coupled with desired morphology. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mechanism of light-induced domain nucleation in LiNbO 3 crystals

    NASA Astrophysics Data System (ADS)

    Liu, De'an; Zhi, Ya'nan; Luan, Zhu; Yan, Aimin; Liu, Liren

    2007-09-01

    In this paper, within the spectrum range from 351 nm to 799 nm, the different reductions of nucleation field induced by the focused continuous irradiation with different light intensity are achieved in congruent LiNbO 3 crystals. The reduction proportion increases exponentially with decreasing the irradiation wavelength, and decreases exponentially with increasing the irradiation wavelength. Basing on photo-excited effect, we propose a proper model to explain the mechanism of light-induced domain nucleation in congruent LiNbO 3 crystals.

  9. A possible NaCl pathway in the bioregenerative human life support system

    NASA Astrophysics Data System (ADS)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  10. First principles molecular dynamics of molten NaCl

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-03-01

    First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.

  11. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition.

    PubMed

    Shao, Jun-Hua; Deng, Ya-Min; Jia, Na; Li, Ru-Ren; Cao, Jin-Xuan; Liu, Deng-Yong; Li, Jian-Rong

    2016-06-01

    The objective was to elucidate the influence of NaCl and polyphosphates in the stage of protein swelling on the water-holding capacity (WHC) of meat batter. The meat batters were formulated with salt in different ways by adding established amounts of only NaCl, only polyphosphates, jointly adding NaCl and polyphosphates, and a control without any salt. An increase (p<0.05) in water retention was found when a combination of NaCl and polyphosphates was used. A high textural parameter was observed in the two treatments with NaCl, but not in the group with only polyphosphate. For the polyphosphate group, T22 was lower (p<0.05) than in the other three before heating; however, after heating, T21 and T22 were both significantly decreased, and a new component emerged, T23, which was significantly lower than the others. For the NaCl treatment, heated or not, T22 was always the highest. It was revealed that NaCl had affected the WHC by increasing the mobility and distribution of water, particularly with polyphosphate, but polyphosphate could not be an equal substitute for NaCl given its resulting lowest textural properties and poor microstructure. By presenting different hydration states in the protein swelling stage, the meat batter qualities were differentiated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Sea salt irradiation experiments relevant to the surface conditions of ocean worlds such as Europa and Enceladus

    NASA Astrophysics Data System (ADS)

    Hand, Kevin P.; Carlson, Robert W.

    2015-11-01

    We have conducted a set of laboratory experiments to measure changes in NaCl, KCl, MgCl2, and mixtures of these salts, as a function of exposure to the temperature, pressure, and radiation conditions relevant to ice covered ocean worlds in our solar system. Reagent grade salts were placed onto a diffuse aluminum target at the end of a cryostat coldfinger and loaded into an ultra-high vacuum chamber. The samples were then cooled to 100 K and the chamber pumped down to ~10-8 Torr, achieving conditions comparable to the surface of several moons of the outer solar system. Samples were subsequently irradiated with 10 keV electrons at an average current of 1 µA.We examined a range of conditions for NaCl including pure salts grains (~300 µm diameter), salt grains with water ice deposited on top, and evaporites. For the evaporites saturated salt water was loaded onto the cryostat target, the chamber closed, and then slowly pumped down to remove the water, leaving behind a salt evaporate for irradiation.The electron bombardment resulted in the trapping of electrons in halogen vacancies, yielding the the F- and M- color centers. After irraditiation we observed yellow-brown discoloration in NaCl. KCl was observed to turn a distinct violet. In NaCl these centers have strong absorptions at 450 nm and 720 nm, respectively, providing a highly diagnostic signature of otherwise transparent alkali halides, making it possible to remotely characterize and quantify the composition and salinity of ocean worlds.

  13. Modelling of heating and photoexcitation of single-crystal silicon under multipulse irradiation by a nanosecond laser at 1.06 μm

    NASA Astrophysics Data System (ADS)

    Polyakov, D. S.; Yakovlev, E. B.

    2018-03-01

    We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.

  14. UV response on dielectric properties of nano nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Pandey, Kamal Kumar; Tripathi, Pankaj Kumar; Misra, Abhishek Kumar; Manohar, Rajiv

    2018-03-01

    In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB) and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz-10 MHz in the nematic mesophase range.

  15. Improvement of shelf stability and processing properties of meat products by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Lee, Kyong-Haeng; Kim, Hee-Yun

    2002-03-01

    To evaluate the effects of gamma irradiation on the processing properties of meat products, emulsion-type sausage, beef patties and pork loin ham were manufactured. Most contaminated bacteria were killed by 3 kGy-irradiation to raw ground beef, and sausage can be manufactured with desirable flavor, a reduction of NaCl and phosphate, and extension of shelf life using gamma irradiation on the raw meat. The beef patties were manufactured with the addition of antioxidants (200 ppm), BHA, ascorbyl palmitate, α-tocopherol, or β-carotene, and gamma-irradiation. Retardation of lipid oxidation appeared at the patties with an antioxidant. A dose of 5 kGy was observed to be as effective as the use of 200 ppm NaNO 2 to provide and maintain the desired color of the product during storage. After curing, irradiation, heating and smoking could extensively prolong the shelf life of the hams.

  16. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress.

    PubMed

    Masood, Sajid; Saleh, Livia; Witzel, Katja; Plieth, Christoph; Mühling, Karl H

    2012-07-01

    Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Metastable Solution Thermodynamic Properties and Crystal Growth Kinetics

    NASA Technical Reports Server (NTRS)

    Kim, Soojin; Myerson, Allan S.

    1996-01-01

    The crystal growth rates of NH4H2PO4, KH2PO4, (NH4)2SO4, KAl(SO4)2 central dot 12H2O, NaCl, and glycine and the nucleation rates of KBr, KCl, NaBr central dot 2H2O, (NH4)2Cl, and (NH4)2SO4 were expressed in terms of the fundamental driving force of crystallization calculated from the activity of supersaturated solutions. The kinetic parameters were compared with those from the commonly used kinetic expression based on the concentration difference. From the viewpoint of thermodynamics, rate expressions based on the chemical potential difference provide accurate kinetic representation over a broad range of supersaturation. The rates estimated using the expression based on the concentration difference coincide with the true rates of crystallization only in the concentration range of low supersaturation and deviate from the true kinetics as the supersaturation increases.

  18. Effects of dilute aqueous NaCl solution on caffeine aggregation

    NASA Astrophysics Data System (ADS)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  19. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  20. Beam tests of proton-irradiated PbWO4 crystals and evaluation of double-ended read-out technique for mitigation of radiation damage effects

    NASA Astrophysics Data System (ADS)

    Lucchini, Marco; CMS Collaboration

    2017-11-01

    The harsh radiation environment in which detectors will have to operate during the High Luminosity phase of LHC (HL-LHC) represents a crucial challenge for many calorimeter technologies. In the CMS forward calorimeters, ionizing doses and hadron fluences will reach up to 300 kGy (at a dose rate of 30 Gy/h) and 2 × 1014 cm-2, respectively, at the pseudo-rapidity region of |η| = 2.6. To evaluate the evolution of the CMS ECAL performance in such conditions, a set of PbWO4 crystals, exposed to 24 GeV protons up to integrated fluences between 2.1 × 1013 cm-2 and 1:3 × 1014 cm2, has been studied in beam tests. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The evolution of the PbWO4 crystals calorimetric performance has been well understood and parameterized in terms of increasing light absorption inside the crystal volume. A double-ended read-out configuration, in which two identical photodetectors are coupled to the opposite ends of each crystal, has also been tested. The separate and simultaneous read out of the light from the two ends of the crystal allows to correct for longitudinal shower fluctuations and to mitigate the degradation of energy resolution in highly damaged crystals. The non-linear response to electromagnetic showers, arising from high non-uniformity of light collection efficiency along the longitudinal axis of irradiated crystals, can also be corrected by means of the double-ended read-out technique.

  1. Kinetics Study on the Effect of NaCl on the CaSO4 Dissolution Behavior

    NASA Astrophysics Data System (ADS)

    Song, Jingyao; Shi, Peiyang; Wang, Yeguang; Jiang, Maofa

    2018-01-01

    The study of the dissolution kinetics of CaSO4 is essential for the control of the dissolution and recrystallization behavior of CaSO4. In this work, the kinetic behavior of CaSO4 dissolved in NaCl solution was investigated by means of conductivity meter. The results show that with the increase of concentration of NaCl, the temperature rise and the time prolonged, the dissolution rate of dihydrate CaSO4 gradually increases, and the dissolved apparent activation energy is gradually decreased. When the NaCl concentration is 1.8%, the dissolution kinetic equation is 1-(1-α) 1/3=5.46*10-4exp (-9147/RT) t; When the NaCl concentration is 3.0%, the dissolution kinetic equation is 1-(1-α) 1/3=2.81×10-4 exp (-6753/RT)t; When the NaCl concentration is 3.6%, the dissolution kinetic equation is 1-(1-α) 1/3=3.07×l0-4exp(-6103/RT)t.

  2. A high-throughput method to measure NaCl and acid taste thresholds in mice.

    PubMed

    Ishiwatari, Yutaka; Bachmanov, Alexander A

    2009-05-01

    To develop a technique suitable for measuring NaCl taste thresholds in genetic studies, we conducted a series of experiments with outbred CD-1 mice using conditioned taste aversion (CTA) and two-bottle preference tests. In Experiment 1, we compared conditioning procedures involving either oral self-administration of LiCl or pairing NaCl intake with LiCl injections and found that thresholds were the lowest after LiCl self-administration. In Experiment 2, we compared different procedures (30-min and 48-h tests) for testing conditioned mice and found that the 48-h test is more sensitive. In Experiment 3, we examined the effects of varying strength of conditioned (NaCl or LiCl taste intensity) and unconditioned (LiCl toxicity) stimuli and concluded that 75-150 mM LiCl or its mixtures with NaCl are the optimal stimuli for conditioning by oral self-administration. In Experiment 4, we examined whether this technique is applicable for measuring taste thresholds for other taste stimuli. Results of these experiments show that conditioning by oral self-administration of LiCl solutions or its mixtures with other taste stimuli followed by 48-h two-bottle tests of concentration series of a conditioned stimulus is an efficient and sensitive method to measure taste thresholds. Thresholds measured with this technique were 2 mM for NaCl and 1 mM for citric acid. This approach is suitable for simultaneous testing of large numbers of animals, which is required for genetic studies. These data demonstrate that mice, like several other species, generalize CTA from LiCl to NaCl, suggesting that they perceive taste of NaCl and LiCl as qualitatively similar, and they also can generalize CTA of a binary mixture of taste stimuli to mixture components.

  3. NaCl strongly modifies the physicochemical properties of aluminum hydroxide vaccine adjuvants.

    PubMed

    Art, Jean-François; Vander Straeten, Aurélien; Dupont-Gillain, Christine C

    2017-01-30

    The immunostimulation capacity of most vaccines is enhanced through antigen adsorption on aluminum hydroxide (AH) adjuvants. Varying the adsorption conditions, i.e. pH and ionic strength (I), changes the antigen adsorbed amount and therefore the ability of the vaccine to stimulate the immune system. Vaccine formulations are thus resulting from an empirical screening of the adsorption conditions. This work aims at studying the physicochemical effects of adjusting the ionic strength of commercial AH adjuvant particles suspensions with sodium chloride (NaCl). X-ray photoelectron spectroscopy data show that AH particles surface chemical composition is neither altered by I adjustment with NaCl nor by deposition on gold surfaces. The latter result provides the opportunity to use AH-coated gold surfaces as a platform for advanced surface analysis of adjuvant particles, e.g. by atomic force microscopy (AFM). The morphology of adjuvant particles recovered from native and NaCl-treated AH suspensions, as studied by scanning electron microscopy and AFM, reveals that AH particles aggregation state is significantly altered by NaCl addition. This is further confirmed by nitrogen adsorption experiments: I adjustment to 150mM with NaCl strongly promotes AH particles aggregation leading to a strong decrease of the developed specific surface area. This work thus evidences the effect of NaCl on AH adjuvant structure, which may lead to alteration of formulated vaccines and to misinterpretation of data related to antigen adsorption on adjuvant particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Polycrystalline silicon thin-film transistors with location-controlled crystal grains fabricated by excimer laser crystallization

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung

    2007-11-01

    In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.

  5. Ion irradiation damage in ilmenite at 100 K

    USGS Publications Warehouse

    Mitchell, J.N.; Yu, N.; Devanathan, R.; Sickafus, K.E.; Nastasi, M.A.; Nord, G.L.

    1997-01-01

    A natural single crystal of ilmenite (FeTiO3) was irradiated at 100 K with 200 keV Ar2+. Rutherford backscattering spectroscopy and ion channeling with 2 MeV He+ ions were used to monitor damage accumulation in the surface region of the implanted crystal. At an irradiation fluence of 1 ?? 1015 Ar2+/cm2, considerable near-surface He+ ion dechanneling was observed, to the extent that ion yield from a portion of the aligned crystal spectrum reached the yield level of a random spectrum. This observation suggests that the near-surface region of the crystal was amorphized by the implantation. Cross-sectional transmission electron microscopy and electron diffraction on this sample confirmed the presence of a 150 nm thick amorphous layer. These results are compared to similar investigations on geikielite (MgTiO3) and spinel (MgAl2O4) to explore factors that may influence radiation damage response in oxides.

  6. "JCE" Classroom Activity Connections: NaCl or CaCl[subscript 2], Smart Polymer Gel Tells More

    ERIC Educational Resources Information Center

    Chen, Yueh-Huey; Lin, Jia-Ying; Wang, Yu-Chen; Yaung, Jing-Fun

    2010-01-01

    This classroom activity connection demonstrates the differences between the effects of NaCl (a salt of monovalent metal ions) and CaCl[subscript 2] (a salt of polyvalent metal ions) on swollen superabsorbent polymer gels. Being ionic compounds, NaCl and CaCl[subscript 2] both collapse the swollen polymer gels. The gel contracted by NaCl reswells…

  7. Effect of ENaC Modulators on Rat Neural Responses to NaCl

    PubMed Central

    Mummalaneni, Shobha; Qian, Jie; Phan, Tam-Hao T.; Rhyu, Mee-Ra; Heck, Gerard L.; DeSimone, John A.; Lyall, Vijay

    2014-01-01

    The effects of small molecule ENaC activators N,N,N-trimethyl-2-((4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanoyl)oxy)ethanaminium iodide (Compound 1) and N-(2-hydroxyethyl)-4-methyl-2-((4-methyl-1H-indol-3-yl)thio)pentanamide (Compound 2), were tested on the benzamil (Bz)-sensitive NaCl chorda tympani (CT) taste nerve response under open-circuit conditions and under ±60 mV applied lingual voltage-clamp, and compared with the effects of known physiological activators (8-CPT-cAMP, BAPTA-AM, and alkaline pH), and an inhibitor (ionomycin+Ca2+) of ENaC. The NaCl CT response was enhanced at −60 mV and suppressed at +60 mV. In every case the CT response (r) versus voltage (V) curve was linear. All ENaC activators increased the open-circuit response (ro) and the voltage sensitivity (κ, negative of the slope of the r versus V curve) and ionomycin+Ca2+ decreased ro and κ to zero. Compound 1 and Compound 2 expressed a sigmoidal-saturating function of concentration (0.25–1 mM) with a half-maximal response concentration (k) of 0.49 and 1.05 mM, respectively. Following treatment with 1 mM Compound 1, 8-CPT-cAMP, BAPTA-AM and pH 10.3, the Bz-sensitive NaCl CT response to 100 mM NaCl was enhanced and was equivalent to the Bz-sensitive CT response to 300 mM NaCl. Plots of κ versus ro in the absence and presence of the activators or the inhibitor were linear, suggesting that changes in the affinity of Na+ for ENaC under different conditions are fully compensated by changes in the apical membrane potential difference, and that the observed changes in the Bz-sensitive NaCl CT response arise exclusively from changes in the maximum CT response (rm). The results further suggest that the agonists enhance and ionomycin+Ca2+ decreases ENaC function by increasing or decreasing the rate of release of Na+ from its ENaC binding site to the receptor cell cytosol, respectively. Irrespective of agonist type, the Bz-sensitive NaCl CT response demonstrated a maximum response enhancement

  8. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  9. Redistribution of distal tubule Na+-Cl- cotransporter (NCC) in response to a high-salt diet.

    PubMed

    Sandberg, Monica B; Maunsbach, Arvid B; McDonough, Alicia A

    2006-08-01

    The distal convoluted tubule (DCT) apical Na(+)-Cl(-) cotransporter (NCC) is responsible for the reabsorption of 5-10% of filtered NaCl and is the target for thiazide diuretics. NCC abundance is increased during dietary NaCl restriction and by aldosterone and decreased during a high-salt (HS) diet and mineralocorticoid blockade. This study tested the hypothesis that subcellular distribution of NCC is also regulated in response to changes in dietary salt. Six-week-old Sprague-Dawley rats were fed a normal-salt diet (NS; 0.4% NaCl) for 3 wk, then switched to a HS diet (4% NaCl) for 3 wk or a low-salt diet (LS; 0.07% NaCl) for 1 wk. Under anesthesia, kidneys were excised, renal cortex was dissected, and NCC was analyzed with specific antibodies after either 1) density gradient centrifugation followed by immunoblotting or 2) fixation followed by immunoelectron microscopy. The HS diet decreased NCC abundance to 0.50 +/- 0.10 of levels in LS diet (1.00 +/- 0.23). The HS diet also caused a redistribution of NCC from low to higher density membranes. Immunoelectron microscopy revealed that NCC resides predominantly in the apical membrane in rats fed the LS diet and increases in subapical vesicles in rats fed the HS diet. In conclusion, a HS diet provokes a rapid and persistent redistribution of NCC from apical to subapical membranes, a mechanism that would facilitate a homeostatic decrease in NaCl reabsorption in the DCT to compensate for increased dietary salt.

  10. Different blocking effects of HgCl2 and NaCl on aquaporins of pepper plants.

    PubMed

    Martínez-Ballesta, M Carmen; Diaz, Rafael; Martínez, Vicente; Carvajal, Micaela

    2003-12-01

    In this study we have compared the short-term effects of both NaCl and HgCl2 on aquaporins of Capsicum annuum L. plants, in order to determine whether or not they are similar. Stomatal conductance, turgor, root hydraulic conductance and water status were measured after 0.5, 2, 4 and 6 h of NaCl (60 mmol/L) or HgCl2 (50 micromol/L) treatment. When 60 mmol/L NaCl was added to the nutrient solution, a large decrease in stomatal conductance was observed after 2 h. However, when HgCl2 (50 micromol/L) was added, the decrease occurred after 4 h. The number of open stomata closed was always lower in plants treated with HgCl2 than in plants treated with NaCl. The water content of the Hg(2+)-treated plants was decreased, compared with controls and NaCl-treated. The root hydraulic conductance decreased after HgCl2 and NaCl treatment plants. Turgor of leaf epidermal cells was greatly reduced in plants treated with HgCl2, but remained constant in the NaCl treatment, compared with control plants. The fact that the stomatal conductance was reduced more rapidly after NaCl addition, followed by the stomatal closure, and that both water content and turgor did not differ from the control suggests that in NaCl-treated plants there must be a signal moving from root to shoot. Therefore, the control of plant homeostasis through a combined regulation of root and stomatal exchanges may be dependent on aquaporin regulation.

  11. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  12. Fluorescence Studies of Protein Crystallization Interactions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  13. Gustatory Plasticity in "C. elegans" Involves Integration of Negative Cues and NaCl Taste Mediated by Serotonin, Dopamine, and Glutamate

    ERIC Educational Resources Information Center

    Hukema, Renate K.; Rademakers, Suzanne; Jansen, Gert

    2008-01-01

    While naive "Caenorhabditis elegans" individuals are attracted to 0.1-200 mM NaCl, they become strongly repelled by these NaCl concentrations after prolonged exposure to 100 mM NaCl. We call this behavior gustatory plasticity. Here, we show that "C. elegans" displays avoidance of low NaCl concentrations only when pre-exposure to NaCl is combined…

  14. Magnetic measurements of superconducting LiFeAs single crystals under high pressure

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kiyotaka; Otsuka, Keisuke; Ogawa, Saki; Takeuchi, Jun

    2018-05-01

    Measurements of DC magnetization for single crystal specimens of LiFeAs have been performed under pressure using liquid argon and NaCl as pressure transmitting media (PTM) to generate hydrostatic and nearly uniaxial pressure along c-axis, respectively. It has been found that Tc linearly decreases under pressure with pressure coefficient dTc / dP ∼ - 1.6 - 1.7 K/GPa, and then shows a pressure independent behavior with Tc ∼ 8 K above 5 GPa. These behaviors are observed independently of whether we select liquid argon or NaCl as PTM. This suggests that c-axis lattice constant is not an important factor to determine Tc in LiFeAs, in contrast to KxFe2-ySe2 and (NH3)yAxFe2Se2 (A=alkali metal).

  15. F-aggregate centers formation in BaLiF3 crystals

    NASA Astrophysics Data System (ADS)

    Prado, L.; Gomes, L.; Baldochi, S. L.; Morato, S. P.; Vieira, N. D.

    The kinetics of F-aggregate centers formation is investigated in the inverted fluoroperovskite of BaLiF3 submitted to electron-irradiation. By studies of the changes in the absorption spectra during storage of samples in the dark, at room temperature, it was possible to verify a surprising and interesting dependence on defect formation with the crystal growth direction. In spite of its cubic structure, crystals grown in the <100> and <111> directions and submitted to the same conditions of irradiation, showed in particular, to enhance the production of a defect absorbing at 630 nm in <100> crystals which we believe to correspond to F+2-centers in BaLiF3

  16. Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.

    PubMed

    Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho

    2015-05-19

    Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems.

  17. Method for the preparation of photochromic insulating crystals

    DOEpatents

    Abraham, Marvin M.; Boldu, Jose L.; Chen, Yok; Orera, Victor M.

    1986-01-01

    A method for preparing reversible-photochromic magnesium oxide (MgO) crystals. Single crystals of MgO doped with both lithium (Li) and nickel (Ni) are grown by a conventional arc fusion method. The as-grown crystals are characterized by an amber coloration. The crystals lose the amber coloration and become photochromic when they are thermochemically reduced by heating at temperatures greater than 1000.degree. K. in a hydrogen atmosphere. Alternate irradiation with UV and visible light result in rejuvenation and bleaching of the amber coloration, respectively.

  18. Mechanical behavior of nanocrystalline NaCl islands on Cu(111).

    PubMed

    Bombis, Ch; Ample, F; Mielke, J; Mannsberger, M; Villagómez, C J; Roth, Ch; Joachim, C; Grill, L

    2010-05-07

    The mechanical response of ultrathin NaCl crystallites of nanometer dimensions upon manipulation with the tip of a scanning tunneling microscope (STM) is investigated, expanding STM manipulation to various nanostructuring modes of inorganic materials as cutting, moving, and cracking. In the light of theoretical calculations, our results reveal that atomic-scale NaCl islands can behave elastically and follow a classical Hooke's law. When the elastic limit of the nanocrystallites is reached, the STM tip induces atomic dislocations and consequently the regime of plastic deformation is entered. Our methodology is paving the way to understand the mechanical behavior and properties of other nanoscale materials.

  19. Texture evolution and mechanical behaviour of irradiated face-centred cubic metals

    NASA Astrophysics Data System (ADS)

    Chen, L. R.; Xiao, X. Z.; Yu, L.; Chu, H. J.; Duan, H. L.

    2018-02-01

    A physically based theoretical model is proposed to investigate the mechanical behaviour and crystallographic texture evolution of irradiated face-centred cubic metals. This model is capable of capturing the main features of irradiated polycrystalline materials including irradiation hardening, post-yield softening and plasticity localization. Numerical results show a good agreement with experimental data for both unirradiated and irradiated stress-strain relationships. The study of crystallographic texture reveals that the initial randomly distributed texture of unirradiated metals under tensile loading can evolve into a mixture of [111] and [100] textures. Regarding the irradiated case, crystallographic texture develops in a different way, and an extra part of [110] texture evolves into [100] and [111] textures. Thus, [100] and [111] textures become dominant more quickly compared with those of the unirradiated case for the reason that [100] and [111]-oriented crystals have higher strength, and their plastic deformation behaviours are more active than other oriented crystals. It can be concluded that irradiation-induced defects can affect both the mechanical behaviour and texture evolution of metals, both of which are closely related to irradiation hardening.

  20. Modeling Tetragonal Lysozyme Crystal Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2003-01-01

    Tetragonal lysozyme 110 face crystal growth rates, measured over 5 orders of magnitude in range, can be described using a model where growth occurs by 2D nucleation on the crystal surface for solution supersaturations of c/c(sub eq) less than or equal to 7 +/- 2. Based upon the model, the step energy per unit length, beta was estimated to be approx. 5.3 +/- 0.4 x 10(exp -7) erg/mol-cm, which for a step height of 56 A corresponds to barrier of approx. 7 +/- 1 k(sub B)T at 300 K. For supersaturations of c/c(sub eq) > 8, the model emphasizing crystal growth by 2D nucleation not only could not predict, but also consistently overestimated, the highest observable crystal growth rates. Kinetic roughening is hypothesized to occur at a cross-over supersaturation of c/c(sub eq) > 8, where crystal growth is postulated to occur by a different process such as adsorption. Under this assumption, all growth rate data indicated that a kinetic roughening transition and subsequent crystal growth by adsorption for all solution conditions, varying in buffer pH, temperature and precipitant concentration, occurs for c/c(sub eq)(T, pH, NaCl) in the range between 5 and 10, with an energy barrier for adsorption estimated to be approx. 20 k(sub B)T at 300 K. Based upon these and other estimates, we determined the size of the critical surface nucleate, at the crossover supersaturation and higher concentrations, to range from 4 to 10 molecules.

  1. Irradiation Creep in Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less

  2. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.

    PubMed

    Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi

    2006-09-14

    Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.

  3. Tilt sensor based on intermodal photonic crystal fiber interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Ni, Kai; Zhao, Chunliu; Ye, Manping; Jin, Yongxing

    2014-09-01

    A tilt sensor based on an intermodal photonic crystal fiber (PCF) interferometer is demonstrated. The sensor consists of a tubular filled with NaCl aqueous solutions and an intermodal PCF interferometer, which is formed by using a short PCF with two single-mode fibers (SMFs) spliced at both ends, and the air-holes in the splice regions are fully collapsed. The intermodal PCF interferometer is fixed in a rigid glass tubular with a slant orientation, and a half of the PCF is immersed in the NaCl aqueous solutions, while the other half is exposed in air. When tilting the tubular, the length of the PCF immersed changes so that the transmission spectrum moves. Therefore, by monitoring the wavelength shift, the tilt angle can be achieved. In the experiment, a 0.8-cm-length intermodal PCF interferometer was adopted. The sensitivity of the proposed sensor was obtained from -1.5461 nm/° to -30.1244 nm/° when measuring from -35.1° to 37.05°.

  4. Unusual paired pattern of radiohaloes on a diamond crystal from Guaniamo (Venezuela)

    NASA Astrophysics Data System (ADS)

    Schulze, Daniel J.; Nasdala, Lutz

    2016-11-01

    An octahedral diamond crystal from Guaniamo, Venezuela shows a multitude of round radiocolouration spots that indicate a remarkable formation history. Spots always occur in pairs, with similar spacing and intensity ratio between the two spots of each pair. We interpret this pattern to be the result of long-term irradiation of the stone emanating from a multitude of radioactive point sources. At some point during the irradiation, the stone must have experienced a translational movement which shifted it ca. 50 μm relative to the adjacent material [i.e., the (111) crystal face was a fault plane], after which irradiation continued. The Neoproterozoic age of the Guaniamo kimberlites and the high degree of radiation damage suggest that both of the two irradiation periods lasted over hundreds of millions of years. This interpretation is supported by results of He-irradiation experiments.

  5. Investigation of Oxygen Diffusion in Irradiated UO2 with MD Simulation

    NASA Astrophysics Data System (ADS)

    Günay, Seçkin D.

    2016-11-01

    In this study, irradiated UO2 is analyzed by atomistic simulation method to obtain diffusion coefficient of oxygen ions. For this purpose, a couple of molecular dynamics (MD) supercells containing Frenkel, Schottky, vacancy and interstitial types for both anion and cation defects is constructed individually. Each of their contribution is used to calculate the total oxygen diffusion for both intrinsic and extrinsic ranges. The results display that irradiation-induced defects contribute the most to the overall oxygen diffusion at temperatures below 800-1,200 K. This result is quite sensible because experimental data shows that, from room temperature to about 1,500 K, irradiation-induced swelling decreases and irradiated UO2 lattice parameter is gradually recovered because defects annihilate each other. Another point is that, concentration of defects enhances the irradiation-induced oxygen diffusion. Irradiation type also has the similar effect, namely oxygen diffusion in crystals irradiated with α-particles is more than the crystals irradiated with neutrons. Dynamic Frenkel defects dominate the oxygen diffusion data above 1,500—1,800 K. In all these temperature ranges, thermally induced Frenkel defects make no significant contribution to overall oxygen diffusion.

  6. Modification of the electrical, optical and thermal properties of L-Arginine Perchlorate single crystals by 5 kGy and 8 kGy electron beam irradiation for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Thomas, Prince; Santhosh Kumar, R.; Sreekanth, G.; John, Bitto; Sanjeev, Ganesh; Joseph, Ginson P.

    2017-11-01

    This paper attempts to elucidate the effect of 5 kGy and 8 kGy electron irradiation on the optical, thermal and electrical properties of a prominent amino acid crystal, L-Arginine Perchlorate (LAPCl) grown by low-temperature solution growth technique. Optical absorption studies revealed that the UV lower cut-off wavelength shift towards the higher wavelength region (Red shift), the optical band gap of LAPCl were found to be decreasing while the Urbach energy was found to be increasing with increasing the dosage of irradiation. Fourier Transform Infrared (FT-IR) spectroscopic result showed that peak intensities corresponding to typical bonding increase with the increase in electron beam irradiation dosage. Electrical studies revealed that the dielectric constant, loss and conductivity of the sample increases with increasing the dosage of irradiation. The behaviour of electrical properties on temperature and thermal properties has also been investigated.

  7. Phonon assisted electronic transition in telluric acid ammonium phosphate single crystals

    NASA Astrophysics Data System (ADS)

    El-Muraikhi, M.; Kassem, M. E.; Al-Houty, L.

    The effect of gamma-irradiation on the absorption optical spectra of telluric acid ammonium phosphate single crystals (TAAP) has been studied, in the wave length of 200-600 nm, for samples irradiated by various doses up to 10 Mrad. The results show that the electron phonon coupling constant increases with the irradiation dose.

  8. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-10-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.

  9. Method for the preparation of photochromic insulating crystals

    DOEpatents

    Abraham, M.M.; Boldu, J.L.; Chen, Y.; Orera, V.M.

    1984-09-28

    A method for preparing reversible-photochromic magnesium oxide (MgO) crystals is disclosed. Single crystals of MgO doped with both lithium (Li) and nickel (Ni) are grown by a conventional arc fusion method. The as-grown crystals are characterized by an amber coloration. The crystals lose the amber coloration and become photochromic when they are thermochemically reduced by heating at temperatures greater then 1000/sup 0/K in a hydrogen atmosphere. Alternate irradiation with uv and visible light result in rejuvenation and bleaching of the amber coloration, respectively.

  10. Doping- and irradiation-controlled pinning of vortices in BaFe 2 (As 1 - x P x ) 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Jia, Y.; Schlueter, J. A.

    We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe 2 (As 1 - x P x ) 2 . Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in thesemore » materials.« less

  11. Doping- and irradiation-controlled pinning of vortices in BaFe{<_2}(As{<_1-x}P{<_x}){<_2} single crystals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, L.; Jia, Y.; Schlueter, J. A.

    We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}. Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in these materials.

  12. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    PubMed

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  13. Copper doping of ZnO crystals by transmutation of 64Zn to 65Cu: An electron paramagnetic resonance and gamma spectroscopy study

    NASA Astrophysics Data System (ADS)

    Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.

    2014-06-01

    Transmutation of 64Zn to 65Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64Zn nuclei to 65Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu2+ ions (where 63Cu and 65Cu hyperfine lines are easily resolved). A spectrum from isolated Cu2+ (3d9) ions acquired after the neutron irradiation showed only hyperfine lines from 65Cu nuclei. The absence of 63Cu lines in this Cu2+ spectrum left no doubt that the observed 65Cu signals were due to transmuted 65Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu+-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu+-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.

  14. Interaction of stress and dietary NaCl intake in hypertension: renal neural mechanisms.

    PubMed

    DiBona, Gerald F

    2013-10-01

    A synthesizing concept of the development of primary hypertension is that it arises from an interaction of genetic and environmental factors. Of the environmental factors, dietary NaCl intake and mental stress are among the most thoroughly investigated. This review will focus on the interaction between genetic predisposition and the environmental influences of dietary NaCl intake and mental stress in the development of primary hypertension.

  15. Raman study of apatite amorphised with swift heavy ions under various irradiation conditions

    NASA Astrophysics Data System (ADS)

    Weikusat, Christian; Glasmacher, Ulrich A.; Schuster, Beatrice; Trautmann, Christina; Miletich, Ronald; Neumann, Reinhard

    2011-04-01

    Crystallographically oriented Durango fluorapatites were exposed to swift heavy ions (Xe, Ta, Au, U) at different irradiation conditions. Beam-induced sample modifications were investigated with respect to the effect of fluence (109-1013 ions/cm2), electronic energy loss (18-27 keV/nm), and pressure (3.6-11.5 GPa) applied during irradiation. In situ high-pressure irradiation was performed in diamond anvil cells. Confocal Raman spectroscopy was used to trace the occurring changes in the crystal lattice. Fragmentation of the crystal specimen depends on the orientation and sample thickness and was found to scale with energy loss and fluence. The radiation damage for irradiation along the c-axis was found to be larger than for the < hk0> direction, independent of the confining pressure. Observations on samples irradiated at high pressures indicate a stabilising effect, leading to reduced amorphisation in comparison to the samples irradiated without pressure.

  16. Up-conversion nanoparticles sensitized inverse opal photonic crystals enable efficient water purification under NIR irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Wang, Lili; Ma, Xiumei; Ren, Junfeng; Sun, Qinxing; Shi, Yongsheng; Li, Lin; Shi, Jinsheng

    2018-03-01

    A novel porous monolayer inverse opal (IO) structure was prepared by a simple sol-gel method combined with a self-assembly PS photonic crystal (PC) as template. By prolonging deposition time of PS spheres, three-dimensional multilayer TiO2 IOPC was also fabricated. Up-conversion nanoparticles (UCNPs) were selected to sensitize TiO2 IOPCs. Photocatalytic activity of as-prepared materials was investigated by disinfection of bacteria and organic pollutant degradation. Under NIR light irradiation, a large improvement in bacterial inactivation and photodegradation efficiency could be seen for NYF/TiO2 composites in comparison with other samples. As for monolayer NYF/TiO2, water disinfection of 100% inactivation of bacteria is realized within 11 h and kinetic constant of RhB degradation is 0.133 h-1, which is about 10 times higher than that of pure TiO2 IOPCs. Reasons of enhanced photocatalytic activity were systematically investigated and a possible mechanism for NIR-driven photocatalysis was reasonably proposed.

  17. Corrosion Properties of SAC305 Solder in Different Solution of HCl and NaCl

    NASA Astrophysics Data System (ADS)

    Nurwahida, M. Z.; Mukridz, M. M.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    Potentiodynamic polarization was used to studied the corrosion properties of SAC305 solder in different solution of 1.0 M HCl and 3.5 wt.% NaCl using the same scanning rate of 1.0 mV/s. The polarization curves indicated that corrosion in NaCl was less severe than in HCl solution based on corrosion current and passivation behavior obtained. Morphology and phases obtained after corrosion using SEM and XRD were analyzed. Microstructure analysis shows the present of compact corrosion product with presence of larger flake for polarization in NaCl compared to HCl. Phases present in XRD analysis confirmed the present of SnO and SnO2 corrosion product for sample from both solutions.

  18. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.

    PubMed

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p < 0.05) survival rate during freeze-drying when subjected to a pre-stressed period under the conditions of 2% (w/v) NaCl for 2 h in the late growth phase. The main energy source for the life activity of lactic acid bacteria is related to the glycolytic pathway. To investigate the phenomenon of this stress-related viability improvement in L. bulgaricus, the activities and corresponding genes of key enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p < 0.05) glucose utilization. The activities of glycolytic enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.

  19. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  20. Crystal MD: The massively parallel molecular dynamics software for metal with BCC structure

    NASA Astrophysics Data System (ADS)

    Hu, Changjun; Bai, He; He, Xinfu; Zhang, Boyao; Nie, Ningming; Wang, Xianmeng; Ren, Yingwen

    2017-02-01

    Material irradiation effect is one of the most important keys to use nuclear power. However, the lack of high-throughput irradiation facility and knowledge of evolution process, lead to little understanding of the addressed issues. With the help of high-performance computing, we could make a further understanding of micro-level-material. In this paper, a new data structure is proposed for the massively parallel simulation of the evolution of metal materials under irradiation environment. Based on the proposed data structure, we developed the new molecular dynamics software named Crystal MD. The simulation with Crystal MD achieved over 90% parallel efficiency in test cases, and it takes more than 25% less memory on multi-core clusters than LAMMPS and IMD, which are two popular molecular dynamics simulation software. Using Crystal MD, a two trillion particles simulation has been performed on Tianhe-2 cluster.

  1. Effects of high NaCl diet on arterial pressure in Sprague-Dawley rats with hepatic and sinoaortic denervation.

    PubMed

    Gao, Shuang; Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu

    2005-08-01

    The Na(+) receptor that exists in the hepatoportal region plays an important role in postprandial natriuresis and the regulation of Na(+) balance during NaCl load. Thus it would be considered that a dysfunction of the hepatic Na(+) receptor might result in the elevation of arterial pressure under a condition of high NaCl diet. To elucidate this hypothesis, arterial pressure was continuously measured during three weeks of high NaCl diet (8% NaCl) in four groups of rats: (i) intact rats, (ii) rats with hepatic denervation (HD), (iii) rats with sinoaortic denervation (SAD), and (iv) rats with SAD+HD. During a 1-week normal NaCl diet period, there was no difference in arterial pressure among the four groups. A high NaCl diet had no influence on arterial pressure in intact or HD rats; however, it significantly increased by 11 +/- 3 mmHg in SAD rats. The addition of HD to SAD had no synergistic effect on arterial pressure; i.e., in SAD+HD rats, mean arterial pressure increased by 13 +/- 1 mmHg. In conclusion, sinoaortic baroreceptor, but not hepatic Na(+) receptor, has a significant role in the long-term regulation of arterial pressure on a high NaCl diet.

  2. Structural defects caused by swift ions in fluorite single crystals

    NASA Astrophysics Data System (ADS)

    Assylbayev, Ruslan; Lushchik, Aleksandr; Lushchik, Cheslav; Kudryavtseva, Irina; Shablonin, Evgeni; Vasil'chenko, Evgeni; Akilbekov, Abdirash; Zdorovets, Maxim

    2018-01-01

    A comparative study of radiation damage caused by the irradiation of oxygen-free calcium fluoride single crystals with ∼GeV 132Xe or 209Bi heavy ions, 100-keV light hydrogen ions (protons) or X-rays at room temperature has been performed. Optical absorption in a wide spectral region from NIR to VUV (1.5-10.5 eV), its dependence on stepwise preheating of the irradiated CaF2 crystals to a certain temperature as well as thermally stimulated luminescence accompanying the main annealing stages have been analyzed. It is shown that in addition to different F-type aggregates, Ca colloids and trifluorine quasi-molecules, complex and temperature stable structural defects responsible for VUV absorption (in particular, the 9.8 eV band) are induced in CaF2 only after irradiation with swift heavy ions. The origin and tentative creation mechanisms of such defects as well as the features of the used irradiation types are considered.

  3. Mechanism of Urea Crystal Dissolution in Water from Molecular Dynamics Simulation.

    PubMed

    Anand, Abhinav; Patey, G N

    2018-01-25

    Molecular dynamics simulations are used to determine the mechanism of urea crystal dissolution in water under sink conditions. Crystals of cubic and tablet shapes are considered, and results are reported for four commonly used water models. The dissolution rates for different water models can differ considerably, but the overall dissolution mechanism remains the same. Urea dissolution occurs in three stages: a relatively fast initial stage, a slower intermediate stage, and a final stage. We show that the long intermediate stage is well described by classical rate laws, which assume that the dissolution rate is proportional to the active surface area. By carrying out simulations at different temperatures, we show that urea dissolution is an activated process, with an activation energy of ∼32 kJ mol -1 . Our simulations give no indication of a significant diffusion layer, and we conclude that the detachment of molecules from the crystal is the rate-determining step for dissolution. The results we report for urea are consistent with earlier observations for the dissolution of NaCl crystals. This suggests that the three-stage mechanism and classical rate laws might apply to the dissolution of other ionic and molecular crystals.

  4. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  5. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  6. Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill

    NASA Astrophysics Data System (ADS)

    Alinejad, Babak; Mahmoodi, Korosh

    Natural graphite is a soft material that conventional milling methods fail to grind into nanoparticles. We found that adding NaCl into graphite during milling allows obtaining graphene nanoflakes of about 50×200nm2 as evidenced by Transmission Electron Microscope (TEM). NaCl particles are substantially brittle and harder than graphite, serving as milling agents by both helping to chop graphite into smaller pieces and preventing graphite particles from agglomeration. After milling, NaCl can be easily washed away by water. Probable mechanism for exfoliation of graphene during the modified ball milling may be explained by NaCl and graphene slipping or sliding against and over each other, exfoliating the graphene particles into thin layers.

  7. F + centre generation in MgO crystals at high density of excitation by accelerated electrons of subthreshold energy

    NASA Astrophysics Data System (ADS)

    Annenkov, Y. M.; Surzhikov, A. P.; Surzhikov, V. P.; Pogrebnjak, A. D.

    1981-07-01

    Optical absorption spectra and the angular distribution of annihilated positrons in MgO crystals irradiated by subtreshold superdense electron pulses are measured. The experimental results obtained show the effective contribution of the creation mechanism of non-impact radiation defects in MgO crystals at the highest electron irradiation densities.

  8. Determination of monomer concentrations in crystallizing lysozyme solutions

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Pusey, Marc L.

    1992-01-01

    We have developed a non-optical technique for the study of aggregation in lysozyme and other protein solutions. By monitoring the rate at which lysozyme traverses a semipermeable membrane it was possible to quantitate the degree of aggregation in supersaturated solutions. Using this technique, we have measured the concentration of monomers and larger aggregates in under- and oversaturated lysozyme solutions, and in the presence of crystals, at pH 4.0 and 3 percent NaCl (0.1M NaAc). Comparison of these concentration profiles with (110) face growth rate data supports the theory that tetragonal lysozyme crystals grow by addition of preformed aggregates and not by monomer addition. The data suggest that a considerable population of aggregates larger than dimers are present at lysozyme concentrations above 22 mg/ml. Determination of dimer concentrations, and equilibrium constants for subsequent aggregation levels, are currently underway.

  9. Forward to cryogenic temperature: laser cooling of Yb: LuLiF crystal

    NASA Astrophysics Data System (ADS)

    Zhong, Biao; Luo, Hao; Lei, Yongqing; Shi, Yanling; Yin, Jianping

    2017-06-01

    The high quality Yb-doped fluoride crystals have broad prospects for optical refrigeration. We have laser cooled the Yb:LuLiF crystal to a temperature below the limit of current thermoelectric coolers ( 180 K). The 5% Yb:LuLiF crystal sample has a geometry of 2 mm×2 mm×5 mm and was supported by two fibers of 200 μm in diameter. They were placed in a 2×10-4 Pa vacuum chamber with an environment temperature of 294.5 K. The 1019 nm CW laser of power 38.7 W was adopted to irradiate the sample. The temperature of the sample was measured utilizing the DLT methods. After 20 minutes of laser irradiation, the 5% Yb:LuLiF crystal sample was cooled down to 182.4 K. By further optimizing experimental conditions and increasing the doped Yb concentration, the Yb:LuLiF crystal might be optically cooled below the cryogenic temperature of 123K in the near future.

  10. Purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies of great cormorant (Phalacrocorax carbo) haemoglobin.

    PubMed

    Jagadeesan, G; Malathy, P; Gunasekaran, K; Harikrishna Etti, S; Aravindhan, S

    2014-11-01

    Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to the trigonal system P3₁21, with unit-cell parameters a=b=55.64, c=153.38 Å, β=120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.

  11. Effects of selective lingual gustatory deafferentation on suprathreshold taste intensity discrimination of NaCl in rats.

    PubMed

    Colbert, Connie L; Garcea, Mircea; Spector, Alan C

    2004-12-01

    In rats, chorda tympani nerve transection (CTX) greatly increases the detection threshold of sodium chloride (NaCl) and severely disrupts salt discriminability. Here it is shown that CTX has surprisingly little effect, if any, on suprathreshold intensity discrimination. Glossopharyngeal nerve transection (GLX), which has no reported effect on salt sensibility, also did not affect performance. Rats were tested in a 2-response, operant taste intensity discrimination task. Difference thresholds for CTX rats were only slightly higher (-0.15 log/10 unit) than those for GLX and sham-transected rats, when 0.05 M served as the standard, and did not significantly differ when 0.1 M NaCl was the standard. Although the perceived intensity of NaCl might be reduced by CTX, input from remaining taste nerves sufficiently maintains the relative discriminability of suprathreshold NaCl concentrations.

  12. Using electron irradiation to probe iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Cho, Kyuil; Kończykowski, M.; Teknowijoyo, S.; Tanatar, M. A.; Prozorov, R.

    2018-06-01

    High-energy electron irradiation at low temperatures is an efficient and controlled way to create vacancy–interstitial Frenkel pairs in a crystal lattice, thereby inducing nonmagnetic point-like scattering centers. In combination with London penetration depth and resistivity measurements, the electron irradiation was used as a phase-sensitive probe to study the superconducting order parameter in iron-based superconductors (FeSCs), lending strong support to sign-changing s ± pairing. Here, we review the key results of the effect of electron irradiation in FeSCs.

  13. Differential tolerance of 3 self-rooted Citrus limon cultivars to NaCl stress.

    PubMed

    Tsabarducas, V; Chatzistathis, T; Therios, I; Koukourikou-Petridou, M; Tananaki, C

    2015-12-01

    One-year-old self-rooted cuttings of three Citrus limon cultivars (Nouvel Athos, Lisbon, Maglini) were grown in 1 L black plastic bags, containing a mixture of sand: perlite (1:1), in order to investigate: i) if genotypic differences to salt stress existed, ii) if KNO3 can alleviate salinity stress, iii) the role of carbohydrates (such as the sugars fructose, glucose and sucrose) and proline as possible osmoregulators in C. limon osmoprotection, and iv) if genotypic differences to salt stress tolerance exist among the 3 studied cultivars. The experiment included 3 treatments: i) control (C), i.e. 25% modified Hoagland (No2) solution (MHS)-NaCl, ii) T1, 25% MHS+80 mM NaCl, iii) T2, 25% MHS+80 mM NaCl+5 mM KNO3. Plant growth was negatively affected by high NaCl (T1); the highest Cl and Na quantities have been absorbed by Lisbon, while the lowest ones by Maglini. Salt stress reduced macronutrient and Zn concentrations, as well as the total carbohydrate concentration, and increased peroxidase (POD) activity and chlorophyll fluorescence in the leaves of the 3 C. limon cultivars studied; five mM KNO3 application alleviated the harmful effect of salt stress on leaf total carbohydrate concentration and leaf N and K concentrations. Sucrose was dramatically reduced in all the three genotypes studied, while leaf fructose concentration was significantly increased in Nouvel Nouvel Nouvel Athos and Maglini under salt stress. Leaf proline concentration of Maglini was significantly decreased by the high NaCl concentration, while Nouvel Athos and Lisbon had high proline concentration in their leaves. In conclusion, from the significantly decreased levels of proline for Maglini, together with the greatest reduction of the ratio Fv/Fm and the least enhancement of POD activity-compared to the other two cultivars-it can be concluded that Maglini was more susceptible to salinity, and should not be preferred for cultivation under NaCl stress. Finally, rich KNO3 application

  14. A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition.

    PubMed

    Xing, Tong; Zhao, Xue; Han, Minyi; Cai, Linlin; Deng, Shaolin; Zhou, Guanghong; Xu, Xinglian

    2017-09-01

    The selection of broilers for augmented growth rate and breast has brought about wooden-breast (WB) muscle abnormalities, which caused substantial economic losses. The objective of this study was to compare water holding capacity, water mobility and distribution, salt-soluble protein (SSP) content, and protein profiles of normal and WB chicken meat with different additions of NaCl. Thirty WB and 30 normal chicken breasts were selected from a deboning line of a major Chinese processing plant at 2 to 3 h post mortem. Two different meat batters were formulated to 150 mg/g meat protein and different NaCl contents (0%, 1%, 2%, 3%, and 4%). Results indicated that as NaCl contents increased, the cooking loss of meat batters decreased (P < 0.05). Increasing the NaCl content to 3% or more increased the solubility of myofibrillar protein and the extraction of SSPs, which resulted in the improving of cooking yield. Over a range of salt concentrations, normal and WB meat showed different protein profiles, with myosin heavy chain exhibiting a higher intensity at ≥3% salt level. Low-field nuclear magnetic resonance (LF-NMR)revealed an increased T22 and higher P22 in raw WB meat compared to normal meat (P < 0.05). Regarding the meat batters, WB meat batters had reduced T21 and lower immobilized water proportions at low NaCl contents (<2%). After heating, T2 shifted towards higher relaxation times with increasing NaCl contents in meat gels. Meat gels prepared from WB had a lower proportion of water within the myofibrillar protein matrix and a greater proportion of exuded bulk water at NaCl contents <3% (P < 0.05), while at higher NaCl contents the difference was eliminated, thus improving water retention capacity. In conclusion, for raw meat, meat batters and gels, water distribution and mobility of WB exhibited significant differences compared to normal meat. The addition of NaCl affected water mobility and distributions in meat batters, with a level of 3% NaCl eliminating the

  15. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    NASA Technical Reports Server (NTRS)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  16. Purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies of great cormorant (Phalacrocorax carbo) haemoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagadeesan, G.; Malathy, P.; Gunasekaran, K.

    2014-10-25

    The great cormorant hemoglobin has been isolated, purified and crystallized and the three dimensional structure is solved using molecular replacement technique. Haemoglobin is the iron-containing oxygen-transport metalloprotein that is present in the red blood cells of all vertebrates. In recent decades, there has been substantial interest in attempting to understand the structural basis and functional diversity of avian haemoglobins. Towards this end, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies have been carried out on cormorant (Phalacrocorax carbo) haemoglobin. Crystals were grown by the hanging-drop vapour-diffusion method using PEG 3350, NaCl and glycerol as precipitants. The crystals belonged to themore » trigonal system P3{sub 1}21, with unit-cell parameters a = b = 55.64, c = 153.38 Å, β = 120.00°; a complete data set was collected to a resolution of 3.5 Å. Matthews coefficient analysis indicated that the crystals contained a half-tetramer in the asymmetric unit.« less

  17. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    PubMed

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater

  18. Longitudinal uniformity, time performances and irradiation test of pure CsI crystals

    NASA Astrophysics Data System (ADS)

    Angelucci, M.; Atanova, O.; Baccaro, S.; Cemmi, A.; Cordelli, M.; Donghia, R.; Giovannella, S.; Happacher, F.; Miscetti, S.; Sarra, I.; Soleti, S. R.

    2016-07-01

    To study an alternative to BaF2, as the crystal choice for the Mu2e calorimeter, 13 pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of 100 p.e./MeV ( 150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average δ -0.6%/cm. The timing performances of the Opto Materials crystal, read with a UV extended MPPC, have been evaluated with minimum ionizing particles. A timing resolution of 330 ps ( 440 ps) is achieved when connecting the photosensor to the MPPC with (without) optical grease. The crystal radiation hardness to a ionization dose has also been studied for one pure CsI crystal from SICCAS. After exposing it to a dose of 900 Gy, a decrease of 33% in the LY is observed while the LRU remains unchanged.

  19. Desorption isotherms of salted minced pork using K-lactate as a substitute for NaCl.

    PubMed

    Muñoz, I; Arnau, J; Costa-Corredor, A; Gou, P

    2009-12-01

    The aim of this study was to obtain and compare water desorption isotherms of ground meat containing NaCl (0.107kg NaCl/kg raw-meat dry matter) and/or K-lactate as NaCl substitute at two different levels of molar substitution (30% and 100%). A thin layer of salted ground meat was dried and sampled at pre-determined times. The moisture content of the samples and their water activities (a(w)) were measured at 5°C and 25°C. Results showed that ground meat with NaCl and/or different K-lactate contents had a similar water desorption isotherm for a(w) ranging from 0.7 to 1.0. Below 0.7, the water equilibrium content fell with small decreases in a(w) faster for meat with NaCl than for meat with K-lactate. K-lactate could reduce the excessive hardening at the surface of salted meat products. Experimental desorption isotherms were compared to those estimated using two approaches of the Ross equation. Models provided a good fit for the experimental data.

  20. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  1. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carriedmore » out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.« less

  2. Phase Separation and Crystallization of Hemoglobin C in Transgenic Mouse and Human Erythrocytes

    PubMed Central

    Canterino, Joseph E.; Galkin, Oleg; Vekilov, Peter G.; Hirsch, Rhoda Elison

    2008-01-01

    Individuals expressing hemoglobin C (β6 Glu→Lys) present red blood cells (RBC) with intraerythrocytic crystals that form when hemoglobin (Hb) is oxygenated. Our earlier in vitro liquid-liquid (L-L) phase separation studies demonstrated that liganded HbC exhibits a stronger net intermolecular attraction with a longer range than liganded HbS or HbA, and that L-L phase separation preceded and enhanced crystallization. We now present evidence for the role of phase separation in HbC crystallization in the RBC, and the role of the RBC membrane as a nucleation center. RBC obtained from both human homozygous HbC patients and transgenic mice expressing only human HbC were studied by bright-field and differential interference contrast video-enhanced microscopy. RBC were exposed to hypertonic NaCl solution (1.5–3%) to induce crystallization within an appropriate experimental time frame. L-L phase separation occurred inside the RBC, which in turn enhanced the formation of intraerythrocytic crystals. RBC L-L phase separation and crystallization comply with the thermodynamic and kinetics laws established through in vitro studies of phase transformations. This is the first report, to the best of our knowledge, to capture a temporal view of intraerythrocytic HbC phase separation, crystal formation, and dissolution. PMID:18621841

  3. Covering surface nanobubbles with a NaCl nanoblanket.

    PubMed

    Berkelaar, Robin P; Zandvliet, Harold J W; Lohse, Detlef

    2013-09-10

    By letting a NaCl aqueous solution of low (0.01 M) concentration evaporate on a highly oriented pyrolytic graphite (HOPG) surface, it is possible to form a thin film of salt. However, pre-existing surface nanobubbles prevent the homogeneous coverage of the surface with the salt, keeping the footprint areas on the substrate pristine. Comparing the surface nanobubbles in the salt solution with their associated footprint after drying, provides information on the shrinkage of nanobubbles during the hours-long process of drying the liquid film. At a slightly higher NaCl concentration and thus salt layer thickness, the nanobubbles are covered with a thin blanket of salt. Once the liquid film has evaporated until a water film remains that is smaller than the height of the nanobubbles, the blanket of salt cracks and unfolds into a flower-like pattern of salt flakes that is located at the rim of the nanobubble footprint. The formation of a blanket of salt covering the nanobubbles is likely to considerably or even completely block the gas out-flux from the nanobubble, partially stabilizing the nanobubbles against dissolution.

  4. NaCl osmotic perturbation can modulate hydration control in rabbit cornea.

    PubMed

    Ruberti, Jeffrey W; Klyce, Stephen D

    2003-03-01

    The corneal endothelium transports solute from the stroma to the aqueous humor, maintaining corneal hydration. Currently, little is known about how this active transport system is controlled. The purpose of this study is to investigate in greater detail the corneal response to small NaCl osmotic perturbations using a more refined automatic thickness measurement system in a search for response signatures of transport control. Adult New Zealand White rabbit corneas were debrided of their epithelium, excised and mounted in perfusion chambers. The endothelium, thus isolated, was bathed in isotonic Glutathione Bicarbonate Ringer's (GBR) solution and the bare anterior stroma was covered with silicone oil. Following stabilization in isotonic GBR, the endothelial perfusate was altered by +/-15 mOsm or+/-45 mOsm for 1 hr and 45 min by addition or removal of NaCl and returned (reversal) to GBR for 1 hr and 45 min. An enhanced, automatic scanning specular microscope monitored stromal thickness. The effective membrane transport coefficients were determined from the stromal thickness vs. time curves using an established numerical model of corneal hydration dynamics. It was found that the small (+/-15 mOsm) NaCl perturbations of the rabbit corneal endothelium resulted in a rapid trans-endothelial stromal volume control response that was not reversible after return to GBR. Long after the expected dissipation of the induced transients, this thickness 'controlling' response ultimately resulted in a sustained net thinning of 14 microm following the hypotonic perturbation and reversal, and a net swelling of 16 microm following the hypertonic perturbation and reversal. Model calculations indicated that the change induced by the perturbation could be explained by an immediate and persistent reduction of the passive endothelial NaCl permeability by 26% for the -15 mOsm perturbation compared to the +15 mOsm perturbation. This change persisted even after return to GBR. In contrast, the

  5. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution.

    PubMed

    Lanaro, G; Patey, G N

    2018-01-14

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (∼49 kJ mol -1 ) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li + and F - ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  6. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lanaro, G.; Patey, G. N.

    2018-01-01

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (˜49 kJ mol-1) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li+ and F- ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  7. Cell growth and water relations of the halophyte, Atriplex nummularia L., in response to NaCl.

    PubMed

    Casas, A M; Bressan, R A; Hasegawa, P M

    1991-06-01

    Growth reduction or cessation is an initial response of Atriplex nummularia L. cells to NaCl. However, A. nummularia L. cells that are adapted to 342 and 428 mM NaCl are capable of sustained growth in the presence of salt. Cells that are adapted to NaCl exhibit a reduced rate of division compared to unadapted cells. Unlike salt adapted cells of the glycophyte Nicotiana tabacum L., A. nummularia L. cells do not exhibit reduced rate of cell expansion after adaptation. However, the cell expansion rate of unadapted A. nummularia L. cells is considerably slower than that of unadapted glycophyte cells and this normally low rate of cell expansion may contribute to the enhanced capacity of the halophyte to tolerate salt. Turgor of NaCl adapted cells was equivalent to unadapted cells indicating that the cells of the halophyte do not respond to salt by osmotic "over adjustment" as reported for the glycophyte tobacco (Binzel et al. 1985, Plant Physiol. 79:118-125).

  8. Durability of building stones against artificial salt crystallization

    NASA Astrophysics Data System (ADS)

    Min, K.; Park, J.; Han, D.

    2005-12-01

    Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.

  9. Emission from Crystals Irradiated with a Beam of Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Buranchenko, A. G.; Tarasenko, V. F.; Beloplotov, D. V.; Baksht, E. Kh.

    2018-01-01

    An investigation of the spectral and amplitude-temporal characteristics of emission from different crystals, promising in terms of their application as detectors of runaway electrons, is performed. This emission is excited by subnanosecond electron beams generated in a gas diode. It is found out that at the electron energies of tens-hundreds of kiloelectronvolts, the main contribution into the emission from CsI, ZnS, type IIa artificial and natural diamonds, sapphire, CaF2, ZrO2, Ga2O3, CaCO3, CdS, and ZnSe crystals comes from the cathodoluminescence; the radiation pulse duration depends on the crystal used and sufficiently exceeds the Cherenkov radiation pulse duration. It is demonstrated that the latter radiation exhibits low intensity and can be detected in the short-wave region of the spectrum in the cases where a monochromator and a high-sensitivity photomultiplier tube (PMT) are used.

  10. Optimization of crystals from nanodrops: crystallization and preliminary crystallographic study of a pheromone-binding protein from the honeybee Apis mellifera L.

    PubMed

    Lartigue, Audrey; Gruez, Arnaud; Briand, Loïc; Pernollet, Jean-Claude; Spinelli, Silvia; Tegoni, Mariella; Cambillau, Christian

    2003-05-01

    Pheromone-binding proteins (PBPs) are small helical proteins ( approximately 13-17 kDa) present in various sensory organs from moths and other insect species. They are involved in the transport of pheromones from the sensillar lymph to the olfactory receptors. Here, crystals of a PBP (Amel-ASP1) originating from honeybee (Apis mellifera L.) antennae and expressed as recombinant protein using the yeast Pichia pastoris are reported. Crystals of Amel-ASP1 have been obtained by the sitting-drop vapour-diffusion method using a nanodrop-dispensing robot under the following conditions: 200 nl of 40 mg ml(-1) protein solution in 10 mM Tris, 25 mM NaCl pH 8.0 was mixed with 100 nl of well solution containing 0.15 M sodium citrate, 1.5 M ammonium sulfate pH 5.5. The protein crystallizes in space group C222(1), with unit-cell parameters a = 74.8, b = 85.8, c = 50.2 A. With one molecule in the asymmetric unit, V(M) is 3.05 A(3) Da(-1) and the solvent content is 60%. A complete data set has been collected at 1.6 A resolution on beamline ID14-2 (ESRF, Grenoble). The nanodrop crystallization technique used with a novel optimization procedure made it possible to consume small amounts of protein and to obtain a unique crystal per nanodrop, suitable directly for data collection in-house or at a synchrotron-radiation source.

  11. Thermal-gradient migration of brine inclusions in salt crystals

    NASA Astrophysics Data System (ADS)

    Yagnik, S. K.

    1982-09-01

    High level nuclear waste disposal in a geologic repository was proposed. Natural salt deposits which are considered contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all liquid and gas liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusion shape and size are discussed.

  12. Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution

    NASA Astrophysics Data System (ADS)

    Tasić, Žaklina Z.; Petrović Mihajlović, Marija B.; Radovanović, Milan B.; Simonović, Ana T.; Antonijević, Milan M.

    2018-05-01

    The effect of (6R,7R)-7-[[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azobicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cephradine) on corrosion behavior of copper in 0.9% NaCl solution was investigated. The electrochemical methods including the open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy and quantum chemical calculations were used for this investigation. According to the results obtained by potentiodynamic polarization, cephradine acts as mixed type inhibitor. Also, the results obtained by electrochemical impedance spectroscopy indicate that cephradine provides good copper protection in 0.9% NaCl solution. The inhibition efficiency of cephradine increases with increasing its concentration. The scanning electron microscopy with energy dispersive X-ray spectroscopy confirms that a protective layer is formed on the copper surface due to the adsorption of cephradine on the active sites on the copper surface. Adsorption of cephradine in 0.9% NaCl solution follows the Langmuir adsorption isotherm. Quantum chemical calculations are in agreement with results obtained by electrochemical measurements.

  13. Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces.

    PubMed

    Wilson, P W; Haymet, A D J

    2008-09-18

    Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948.

  14. Ridge waveguides in Nd:ABC3O7 disordered crystals produced by swift C5+ ion irradiation and precise diamond dicing: Broad band guidance and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Luan, Qingfang; He, Ruiyun; Cheng, Chen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Yu, Haohai; Zhang, Huaijin; Chen, Feng

    2015-05-01

    Optical ridge waveguides have been manufactured in the crystals of Nd:SrLaGa3O7 and Nd:SrGdGa3O7 by combining techniques of swift carbon ion irradiation with precise diamond blade dicing. The guiding properties of the waveguides are investigated at broadband (at wavelength of 633 nm, 1064 nm, and 4 μm). After annealing treatment at 200 °C for 1 h, the propagation losses of ridge waveguides could be reduced to as low as 1 dB/cm. The confocal microfluorescence emission spectra confirm that the fluorescence properties of Nd3+ ions are almost unchanged after the ion irradiation processing, showing promising potentials as application of miniature light sources in integrated optics.

  15. Antireflective coating for AgBr-TlI and AgBr-TlBr0.46I0.54 solid solution crystals

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexandr; Salimgareev, Dmitrii; Lvov, Alexandr; Zhukova, Liya

    2016-12-01

    We researched the process of ultraviolet (UV) irradiation for the crystals of AgBr-TlI and AgBr-TlBr0.46I0.54 systems. It was found that on the surface of irradiated crystals, the film is formed and film grain size depends on exposure time and crystal composition. This film proved to gain the transmission by reducing the reflection from its surface within the 8.0-27.0 μm range.

  16. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-11-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant.

  17. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed Central

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-01-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant. PMID:8022933

  18. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Adams, T.; Adzic, P.; Ahuja, S.; Anderson, D.; Andrews, M. B.; Antropov, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Argirò, S.; Askew, A.; Attikis, A.; Auffray, E.; Baccaro, S.; Baffioni, S.; Bailleux, D.; Baillon, P.; Barney, D.; Barone, L.; Bartoloni, A.; Bartosik, N.; Becheva, E.; Bein, S.; Silva, C. Beirāo Da Cruz E.; Bell, K. W.; Benaglia, A.; Bendavid, J.; Berry, D.; Besancon, M.; Betev, B.; Bialas, W.; Bianchini, L.; Biino, C.; Bitioukov, S.; Bornheim, A.; Brianza, L.; Brinkerhoff, A.; Brown, R. M.; Brummitt, A.; Busson, P.; Candelise, V.; Carrillo Montoya, C. A.; Cartiglia, N.; Cavallari, F.; Chang, Y. W.; Chen, K. F.; Chevenier, G.; Chipaux, R.; Clement, E.; Cockerill, D. J. A.; Corpe, L.; Couderc, F.; Courbon, B.; Cox, B.; Cucciati, G.; Cussans, D.; D'imperio, G.; Da Silva Di Calafiori, D. R.; Dafinei, I.; Daguin, J.; Daskalakis, G.; Tinoco Mendes, A. D.; De Guio, F.; Degano, A.; Dejardin, M.; Del Re, D.; Della Ricca, G.; Denegri, D.; Depasse, P.; Dev, N.; Deyrail, D.; Di Marco, E.; Diamond, B.; Diemoz, M.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Doan, T. H.; Dobrzynski, L.; Dolgopolov, A.; Donegà, M.; Dordevic, M.; Dröge, M.; Durkin, T.; Dutta, D.; El Mamouni, H.; Elliott-Peisert, A.; Elmalis, E.; Fabbro, B.; Fasanella, G.; Faure, J.; Fay, J.; Fedorov, A.; Ferri, F.; Francis, B.; Frank, N.; Franzoni, G.; Funk, W.; Ganjour, S.; Gascon, S.; Gastal, M.; Geerebaert, Y.; Gelli, S.; Gerosa, R.; Ghezzi, A.; Giakoumopoulou, V. A.; Givernaud, A.; Gninenko, S.; Godinovic, N.; Goeckner-Wald, N.; Golubev, N.; Govoni, P.; Gras, P.; Guilloux, F.; Haller, C.; Hamel de Monchenault, G.; Hansen, M.; Hansen, P.; Hardenbrook, J.; Heath, H. F.; Hill, J.; Hirosky, R.; Hobson, P. R.; Holme, O.; Honma, A.; Hou, W.-S.; Hsiung, Y.; Iiyama, Y.; Ille, B.; Ingram, Q.; Jain, S.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kachanov, V.; Kalafut, S.; Kao, K. Y.; Kellams, N.; Kesisoglou, S.; Khatiwada, A.; Konoplyannikov, A.; Konstantinov, D.; Korzhik, M.; Kovac, M.; Kubota, Y.; Kucher, I.; Kumar, A.; Kumar, A.; Kuo, C.; Kyberd, P.; Kyriakis, A.; Latyshev, G.; Lecoq, P.; Ledovskoy, A.; Lei, Y. J.; Lelas, D.; Lethuillier, M.; Li, H.; Lin, W.; Liu, Y. F.; Locci, E.; Longo, E.; Loukas, D.; Lu, R.-S.; Lucchini, M. T.; Lustermann, W.; Mackay, C. K.; Magniette, F.; Malcles, J.; Malhotra, S.; Mandjavidze, I.; Maravin, Y.; Margaroli, F.; Marinelli, N.; Marini, A. C.; Martelli, A.; Marzocchi, B.; Massironi, A.; Matveev, V.; Mechinsky, V.; Meng, F.; Meridiani, P.; Micheli, F.; Milosevic, J.; Mousa, J.; Musella, P.; Nessi-Tedaldi, F.; Neu, C.; Newman, H.; Nicolaou, C.; Nourbakhsh, S.; Obertino, M. M.; Organtini, G.; Orimoto, T.; Paganini, P.; Paganis, E.; Paganoni, M.; Pandolfi, F.; Panov, V.; Paramatti, R.; Parracho, P.; Pastrone, N.; Paulini, M.; Pauss, F.; Pauwels, K.; Pellegrino, F.; Pena, C.; Perniè, L.; Peruzzi, M.; Petrakou, E.; Petyt, D.; Pigazzini, S.; Piroué, P.; Planer, M.; Plestina, R.; Polic, D.; Prosper, H.; Ptochos, F.; Puljak, I.; Quittnat, M.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Ranjan, K.; Rasteiro Da Silva, J.; Razis, P. A.; Romanteau, T.; Rosowsky, A.; Rovelli, C.; Rusack, R.; Salerno, R.; Santanastasio, F.; Santra, A.; Schönenberger, M.; Seez, C.; Sharma, V.; Shepherd-Themistocleous, C.; Shiu, J. G.; Shivpuri, R. K.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Smiljkovic, N.; Soffi, L.; Sun, M.; Symonds, P.; Tabarelli de Fatis, T.; Tambe, N.; Tarasov, I.; Taroni, S.; Teixeira De Lima, R.; Thea, A.; Theofilatos, K.; Thiant, F.; Titov, M.; Torbet, M.; Trapani, P. P.; Tropea, P.; Tsai, J. f.; Tsirou, A.; Turkewitz, J.; Tyurin, N.; Tzeng, Y. M.; Uzunian, A.; Valls, N.; Varela, J.; Veeraraghavan, V.; Verdini, P. G.; Vichoudis, P.; Vlassov, E.; Wang, J.; Wang, T.; Weinberg, M.; Wolfe, E.; Wood, J.; Zabi, A.; Zahid, S.; Zelepoukine, S.; Zghiche, A.; Zhang, L.; Zhu, K.; Zhu, R.; Zuyeuski, R.

    2016-04-01

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1× 1013 and 1.3× 1014 cm-2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb-1 and 3000 fb-1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. The experimental results obtained can be used to estimate the long term performance of the CMS ECAL.

  19. Acclimation to NaCl and light stress of heterotrophic Chlamydomonas reinhardtii for lipid accumulation.

    PubMed

    Fan, Jianhua; Zheng, Lvhong

    2017-09-01

    Salt stress has been proven very effective in enhancing the lipid content among many photoautotrophically grown microalgae species including marine and freshwater algae. Nevertheless, its effect on heterotrophic grown cells and lipid accumulation is scarcely known. This study sought to demonstrate a new train of thought for cost-effective biofuels production by heterotrophic culture of Chlamydomonas reinhardtii coupling with subsequent salt and light stress. NaCl treatments (25-200 mM) gradually suppressed the cell growth. After one day's acclimation, the cells restored slow growth with light supplement (200 μmol/m2/s) in low salt concentration (0-50 mM). However, high concentration of NaCl (200 mM) dose caused permanent damage, with over 47% cells death after 3 days treatment. The highest lipid content of 35.8% and lipid productivity of 28.6 mg/L/d were achieved by 50 mM NaCl stress and light treatment upon heterotrophic grown cells. Cells lost their green pigmentation and became yellowish under 100-200 mM NaCl conditions, whereas cells grown in 0-50 mM NaCl retained their dark-green pigmentation. Variable-to-maximum fluorescence ratio (Fv/Fm) and non-photochemical quenching (NPQ) value were markedly influenced under salt and light stress, indicating that severe inhibition of photosynthetic ability was occurred. Moreover, we further demonstrated the dynamic changes of cell growth and lipid accumulation would potentially be caused by the increase of intracellular redox state. To our knowledge, this study is the first instance in which C. reinhardtii was applied to oil accumulation by using combination of heterotrophic culture and multiple stress, and opened up a new territory for the further development of microalgae-based biofuels production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Effect of irradiation on stored vacuum packaged Wiltshire bacon

    NASA Astrophysics Data System (ADS)

    Dempster, JF; Halls, NA

    Wiltshire cured 'middle-cut' bacon (NaCl, 4.87%; 40 mg/kg NO 2; 53 mg/kg NO 3) was boned, sliced and vacuum packaged. It was irradiated (25 kGy: 10 kGy) and stored aerobically (5 0 : 15 0). At weekly intervals the bacon was evaluated bacteriologically and organoleptically (appearance, odour, colour of lean and fat) against unirradiated (control) samples). Results indicated that irradiation (10 kGy) did not permanently inhibit bacterial growth. After initial reductions in count of 0.99 g -1-1(15 0C) and log 3.61 g -1 (5 0C), maximum numbers were reached in 28 days at 15 0C (log 10.32 g -1) and in 35 days at 5 0C (log 8.05 g -1). However viability was significantly affected by 25 kGy irradiation: final numbers reached being log 2.22 g -1 (15 0C) at 35 days and log 3.38 g -1 (5 0C) at 42 days. Appearance and colour (fat and lean) were not significantly impaired by irradiation. However the interaction of storage temperature (5 0 : 15 0C), irradiation (10 kGy: 25 kGy): duration of storage (42 days) and initial count (log 7.24 g -1) had pronounced adverse effects on odour judgements. Evaluation of odour changes in bacon due to irradiation require further investigation. This is especially so since it is often possible to detect odour changes in raw meat after doses as low as 0.5 kGy (Coleby 1959).

  1. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].

    PubMed

    Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She

    2013-09-01

    By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control.

  2. Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress.

    PubMed

    Asthana, Ravi K; Nigam, Subhasha; Maurya, Archana; Kayastha, Arvind M; Singh, Sureshwar P

    2008-05-01

    Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mM: NaCl fragmented and recovered on transfer to -NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mM/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0-54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mM/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.

  3. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documentedmore » methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten

  4. Surface chemical properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS.

    PubMed

    Křepelová, Adéla; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-12-17

    We study the surface of sodium chloride-water mixtures above, at, and below the eutectic temperature using X-ray photoelectron spectroscopy (XPS) and electron-yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NaCl frozen solutions are mimicking sea-salt deposits in ice or snow. Sea-salt particles emitted from the oceans are a major contributor to the global aerosol burden and can act as a catalyst for heterogeneous chemistry or as cloud condensation nuclei. The nature of halogen ions at ice surfaces and their influence on surface melting of ice are of significant current interest. We found that the surface of the frozen solution, depending on the temperature, consists of ice and different NaCl phases, that is, NaCl, NaCl·2H(2)O, and surface-adsorbed water.

  5. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    NASA Astrophysics Data System (ADS)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  6. Variations of water's local-structure induced by solvation of NaCl

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhang, Feng-Shou; Huang, Yu-Gai; Fang, Xia

    2010-03-01

    The researches on the structure of water and its changes induced by solutes are of enduring interests. The changes of the local structure of liquid water induced by NaCl solute under ambient conditions are studied and presented quantitatively with some order parameters and visualized with 2-body and 3-body correlation functions. The results show that, after the NaCl are solvated, the translational order t of water is decreased for the suppression of the second hydration shells around H2O molecules; the tetrahedral order (q) of water is also decreased and its favorite distribution peak moves from 0.76 to 0.5. In addition, the orientational freedom k and the diffusion coefficient D of water molecules are reduced because of new formed hydrogen-bonding structures between water and solvated ions.

  7. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  8. Body Temperatures During Exercise in Deconditioned Dogs: Effect of NACL and Glucose Infusion

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kruk, B.; Nazar, K.; Kaciuba-Usciko, H.

    2000-01-01

    Infusion of glucose (Glu) into normal exercising dogs attenuates the rise in rectal temperature (Delta-Tre) when compared with delta-Tre during FFA infusion or no infusion. Rates of rise and delta-=Tre levels are higher during exercise after confinement. Therefore, the purpose of this study was to determine if Glu infusion would attenuate the exercise-induced excess hyperthermia after deconditioning. Rectal and quadricep femoris muscle temperatures (Tmu) were measured in 7 male, mongrel dogs dogs (19.6 +/- SD 3.0 kg) during 90 minutes of treadmill exercise (3.1 +/-SD 0.2 W/kg) with infusion (30ml/min/kg) of 40% Glu or 0.9% NaCL before BC) and after confinement (AC) in cages (40 x 110 x 80 cm) for 8 wk. Mean (+/-SE body wt. were 19.6 +/- 1.1 kg BC and 19.5 +/- 1.1kg AC, exercise VO2 were not different (40.0 - 42.0 mi/min/kg-1). With NaCl AC, NaCl BC, GluAC, and GluBC: Delta-Tre were, 1.8, 1.4, 1.3 and 0.9C respectively; and Delta-Tmu were 2.3, 1.9, 1.6, and 1.4C. respectively (P<0.05 from GluBC). Compared with NaCl infusion, attenuated both Delta-Tre and Delta-Tmu BC and AC, respectively. Compared with GluBC, GluAC attenuated Delta-Tmu but not Delta-Tre. Thus. with similar heat production, the mechanism for attenuation at bad body temperature with Glu infusion must affect avenues of heat dissipation.

  9. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  10. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    NASA Astrophysics Data System (ADS)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  11. Structural changes of Ti3SiC2 induced by helium irradiation with different doses

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Su, Ranran; Shi, Liqun; O'Connor, Daryl J.; Wen, Haiming

    2018-03-01

    In this study, the microstructure changes of Ti3SiC2 MAX phase material induced by helium irradiation and evolution with a sequence of different helium irradiation doses of 5 × 1015, 1 × 1016, 5 × 1016 and 1 × 1017 cm-2 at room temperature (RT) were characterized with grazing incidence X-ray diffraction (GIXRD) and Raman spectra analysis. The irradiation damage process of Ti3SiC2 can be roughly divided into three stages according to the level of helium irradiation dose: (1) for a low damage dose, only crystal and damaged Ti3SiC2 exit; (2) at a higher irradiation dose, there is some damaged TiC phase additionally; (3) with a much higher irradiation dose, crystal TiC phase could be found inside the samples as well. Moreover, the 450 °C 5 × 1016 cm-2 helium irradiation on Ti3SiC2 has confirmed that Ti3SiC2 has much higher irradiation tolerance at higher temperature, which implies that Ti3SiC2 could be a potential future structural and fuel coating material working at high temperature environments.

  12. Inhibition effect of sugar-based amphiphiles on eutectic formation in the freezing-thawing process of aqueous NaCl solution.

    PubMed

    Ogawa, Shigesaburo; Osanai, Shuichi

    2007-04-01

    DSC and simultaneous XRD-DSC measurements were carried out to clarify the interaction among the ingredients in a ternary aqueous solution composed of NaCl, a sugar-based amphiphile or free sugar, and water. Two aspects of the inhibition of eutectic formation were suggested through the addition of the sugar amphiphile. One was the retention of the glass state of the eutectic phase, and the other was the trapping of NaCl hydrate into the sugar moiety of the amphiphilic aggregate. The difference between the free sugar and the amphiphilic one in terms of the trapping of NaCl hydrate was attributable to their dissimilarity in the dissolution state. The results indicated that the free sugars in water could interact with NaCl hydrate on the basis of their various hydroxyl groups. On the other hand, the sugar-based amphiphiles generated a self-assembly aggregate in the system, and interacted with NaCl hydrate by a salting-in effect with their sugar moiety in the freezing-thawing process. It was confirmed that the number of sugar units played an important role in trapping NaCl hydrate in the system. The effects of the structural isomerism in the sugars were slight with regard to the inhibition of eutectic formation.

  13. Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress

    NASA Astrophysics Data System (ADS)

    Wang, Dongmei; Wang, Weiwei; Xu, Nianjun; Sun, Xue

    2016-12-01

    Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaCl stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the most rapid growth was observed at 1.00 mol L-1 NaCl, followed by 2.00 mol L-1 NaCl. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00 mol L-1 NaCl, decreasing to 37.33% and 26.39% of those values, respectively, in the presence of 3.00 mol L-1 NaCl, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00 mol L-1 NaCl, followed by 1.00 mol L-1 NaCl. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaCl concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit ( rbcL), and small subunit ( rbcS), attained their highest abundances in the presence of 1.00 and 2.00 mol L-1 NaCl, respectively. The CA mRNA accumulation was induced from 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaCl stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaCl in D. viridis.

  14. Magnetotransport of proton-irradiated BaFe 2As 2 and BaFe 1.985Co 0.015As 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, D. A.; Yates, K. A.; Peng, N.

    2015-02-17

    In this paper, we study the magnetotransport properties of the ferropnictide crystals BaFe 2As 2 and BaFe 1.985Co 0.015As 2. These materials exhibit a high field linear magnetoresistance that has been attributed to the quantum linear magnetoresistance model. In this model, the linear magnetoresistance is dependent on the concentration of scattering centers in the material. By using proton-beam irradiation to change the defect scattering density, we find that the dependence of the magnitude of the linear magnetoresistance on scattering quite clearly contravenes this prediction. Finally, a number of other scaling trends in the magnetoresistance and high field Hall data aremore » observed and discussed.« less

  15. Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress.

    PubMed

    Siddiqui, Manzer H; Mohammad, Firoz; Khan, M Masrooor A; Al-Whaibi, Mohamed H

    2012-01-01

    In the present study, N and S assimilation, antioxidant enzymes activity, and yield were studied in N and S-treated plants of Brassica juncea (L.) Czern. & Coss. (cvs. Chuutki and Radha) under salt stress. The treatments were given as follows: (1) NaCl(90) mM+N(0)S(0) mg kg(-1) sand (control), (2) NaCl(90) mM+N(60)S(0) mg kg(-1) sand, (3) NaCl(90) mM+N(60)S(20) mg kg(-1) sand, (4) NaCl(90) mM+N(60)S(40) mg kg(-1) sand, and (5) NaCl(90) mM+N(60)S(60) mg kg(-1) sand. The combined application of N (60 mg kg(-1) sand) and S (40 mg kg(-1) sand) proved beneficial in alleviating the adverse effect of salt stress on growth attributes (shoot length plant(-1), fresh weight plant(-1), dry weight plant(-1), and area leaf(-1)), physio-biochemical parameters (carbonic anhydrase activity, total chlorophyll, adenosine triphosphate-sulphurylase activity, leaf N, K and Na content, K/Na ratio, activity of nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase, and content of glutathione and ascorbate), and yield attributes (pods plant(-1), seeds pod(-1), and seed yield plant(-1)). Therefore, it is concluded that combined application of N and S induced the physiological and biochemical mechanisms of Brassica. The stimulation of antioxidant enzymes activity and its synergy with N and S assimilation may be one of the important mechanisms that help the plants to tolerate the salinity stress and resulted in an improved yield.

  16. Effect of real-world sounds on protein crystallization.

    PubMed

    Zhang, Chen-Yan; Liu, Yue; Tian, Xu-Hua; Liu, Wen-Jing; Li, Xiao-Yu; Yang, Li-Xue; Jiang, Han-Jun; Han, Chong; Chen, Ke-An; Yin, Da-Chuan

    2018-06-01

    Protein crystallization is sensitive to the environment, while audible sound, as a physical and environmental factor during the entire process, is always ignored. We have previously reported that protein crystallization can be affected by a computer-generated monotonous sound with fixed frequency and amplitude. However, real-world sounds are not so simple but are complicated by parameters (frequency, amplitude, timbre, etc.) that vary over time. In this work, from three sound categories (music, speech, and environmental sound), we selected 26 different sounds and evaluated their effects on protein crystallization. The correlation between the sound parameters and the crystallization success rate was studied mathematically. The results showed that the real-world sounds, similar to the artificial monotonous sounds, could not only affect protein crystallization, but also improve crystal quality. Crystallization was dependent not only on the frequency, amplitude, volume, irradiation time, and overall energy of the sounds but also on their spectral characteristics. Based on these results, we suggest that intentionally applying environmental sound may be a simple and useful tool to promote protein crystallization. Copyright © 2018. Published by Elsevier B.V.

  17. Magnetic properties of single crystal alpha-benzoin oxime: An EPR study

    NASA Astrophysics Data System (ADS)

    Sayin, Ulku; Dereli, Ömer; Türkkan, Ercan; Ozmen, Ayhan

    2012-02-01

    The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of alpha-benzoinoxime (ABO) have been examined between 120 and 440 K. Considering the dependence on temperature and the orientation of the spectra of single crystals in the magnetic field, we identified two different radicals formed in irradiated ABO single crystals. To theoretically determine the types of radicals, the most stable structure of ABO was obtained by molecular mechanic and B3LYP/6-31G(d,p) calculations. Four possible radicals were modeled and EPR parameters were calculated for the modeled radicals using the B3LYP method and the TZVP basis set. Calculated values of two modeled radicals were in strong agreement with experimental EPR parameters determined from the spectra. Additional simulated spectra of the modeled radicals, where calculated hyperfine coupling constants were used as starting points for simulations, were well matched with experimental spectra.

  18. Solid state structural investigations of the bis(chalcone) compound with single crystal X-ray crystallography, DFT, gamma-ray spectroscopy and chemical spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut

    2018-04-01

    A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.

  19. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    NASA Astrophysics Data System (ADS)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  20. Solubility of NaCl and KCl in aqueous HCl from 20 to 85°C

    USGS Publications Warehouse

    Potter, Robert W.; Clynne, Michael A.

    1980-01-01

    The solubilities of NaCl and KCl in aqueous HCl solutions were determined from 20 to 85°C at concentrations ranging from 0 to 20 g of HCl/100 g of solution. Equations are given that describe the solubilities over the range of conditions studied. For NaCl and KCl respectively measured solubilities show an average deviation from these equations of ??0.10 and ??0.08 g/100 g of saturated solution.

  1. A novel laser-based method for controlled crystallization in dental prosthesis materials

    NASA Astrophysics Data System (ADS)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  2. Heavy ion irradiation-induced microstructural evolution in pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} at room temperature and 723 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Q.R.; Zhang, J., E-mail: zhangjian@xmu.edu.cn; Dong, X.N.

    Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} at room temperature and 723 K to a fluence of 4×10{sup 15} ions/cm{sup 2}, corresponding to an average ballistic damage dose of 10 displacements per atom in the peak damage region. Irradiation-induced microstructural evolution was examined by grazing incidence X-ray diffraction, and cross-sectional transmission electron microscopy. Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal which has the identical structure of pyrochlore, and the formation of nano-crystal is attributed to the mechanism of epitaxial recrystallization. However, an orderedmore » pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Graphical Abstract: Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} to a fluence of 4×10{sup 15} ions/cm{sup 2} at room temperature and 723 K, Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal. However, an ordered pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Highlights: Pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated by heavy ions at RT and 723 K. At RT irradiation, ~75% of amorphization was achieved. The nano-crystals were formed in the damage layer at RT irradiation. The formed nano-crystals enhanced the radiation tolerance of Lu{sub 2}Ti{sub 2}O{sub 7}. A pyrochlore to fluorite phase transformation was observed at 723 K irradiation.« less

  3. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    NASA Astrophysics Data System (ADS)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  4. Ecotoxicological evaluation of three deicers (NaCl, NaFo, CMA)-effect on terrestrial organisms.

    PubMed

    Robidoux, P Y; Delisle, C E

    2001-02-01

    The use of chemical deicers such as sodium chloride (NaCl) has increased significantly during the past three decades. Deicers induce metal corrosion and alter the physicochemical properties of soils and water. Environmental damage caused by the use of NaCl has prompted government agencies to find alternative deicers. This article presents a comparative ecotoxicological study of three deicers on soil organisms. Sodium formiate (NaFo) and calcium-magnesium acetate (CMA) are the most interesting commercially available deicers based upon their characteristics and potential toxicity. Organisms used in this study were four species of macrophytes (cress (Lepidium sativum), barley (Ordeum vulgare), red fescue grass (Festuca rubra), Kentucky bluegrass (Poa pratensis)) and an invertebrate (Eisenia fetida). Using standardized and modified methods, the relative toxicity of deicers was CMA < NaFo congruent with NaCl. The results demonstrate that these chemicals could have similar impacts in terrestrial environments since similar quantities of NaFo and greater amounts of CMA are necessary to achieve the same efficiency as NaCl. The toxicity of the tested substances was lower in natural composted soil than in artificial substrate (silica or OECD soil), indicating decreased environmental bioavailability. The response of the organisms changed according to endpoint, species, and soil characteristics (artificial substrate as compared to natural organic soil). The most sensitive endpoint measured was macrophyte growth with Kentucky bluegrass being the most sensitive species. Copyright 2001 Academic Press.

  5. Influence of NaCl Concentrations on Coagulation, Temperature, and Electrical Conductivity Using a Perfusion Radiofrequency Ablation System: An Ex Vivo Experimental Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aube, Christophe, E-mail: ChAube@chu-angers.fr; Schmidt, Diethard; Brieger, Jens

    2007-02-15

    Purpose. To determine, by means of an ex vivo study, the effect of different NaCl concentrations on the extent of coagulation obtained during radiofrequency (RF) ablation performed using a digitally controlled perfusion device. Method. Twenty-eight RF ablations were performed with 40 W for 10 min using continuous NaCl infusion in fresh excised bovine liver. For perfusion, NaCl concentrations ranging from 0 (demineralized water) to 25% were used. Temperature, the amount of energy, and the dimensions of thermal-induced white coagulation were assessed for each ablation. These parameters were compared using the nonparametric Mann-Whitney test. Correlations were calculated according to the Spearmanmore » test. Results. RF ablation performed with 0.9% to 25% concentrations of NaCl produced a mean volume of coagulation of 30.7 {+-} 3.8 cm{sup 3}, with a mean short-axis diameter of 3.6 {+-} 0.2 cm. The mean amount of energy was 21,895 {+-} 1,674 W and the mean temperature was 85.4 {+-} 12.8 deg. C. Volume of coagulation, short-axis diameter, and amount of energy did not differ significantly among NaCl concentrations (p > 0.5). A correlation was found between the NaCl concentration and the short-axis diameter of coagulation (r = 0.64) and between the NaCl concentration and the mean temperature (r = 0.67), but not between the NaCl concentration and volume of coagulation. Conclusion. In an ex vivo model, continuous perfusion with high NaCl concentrations does not significantly improve the volume of thermal-induced coagulation. This may be because the use of a low-power generator cannot sufficiently exploit the potential advantage of better tissue conductivity provided by NaCl perfusion.« less

  6. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO 4 crystals

    DOE PAGES

    Adams, T.; Adzic, P.; Ahuja, S.; ...

    2016-04-11

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO 4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO 4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 10 13 and 1.3 × 10 14 cm –2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb –1 and 3000 fb –1 respectively, corresponding to the end of the LHCmore » and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.« less

  7. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO 4 crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.; Adzic, P.; Ahuja, S.

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO 4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO 4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 10 13 and 1.3 × 10 14 cm –2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb –1 and 3000 fb –1 respectively, corresponding to the end of the LHCmore » and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.« less

  8. Color tuning of photonic gel films by UV irradiation

    NASA Astrophysics Data System (ADS)

    Shin, Sung Eui; Kim, Su Young; Shin, Dong Myung

    2010-02-01

    Block copolymers have drawn increasing attention for fabricating functional nanomaterials due to their properties of self-assembly. In particular, photonic crystals hold promise for multiple optical applications. We prepared 1D photonic crystals with polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 57 kg /mol-b-57 kg/mol. The lamellar stacks, which are alternating layers of hydrophilic and hydrophobic moiety of PS-b-P2VP, are obtained by exposing the spin coated film under chloroform vapor. The band gaps of the lamellar films interestingly varied after immersion into the quaternizing solvents containing 5wt% of iodomethane solubilized in n-hexane. We demonstrate about the influence of UV light on those photonic gel films. To study of different properties of films, UV-visible absorption spectra were measured as a different UV irradiation time at swollen films with distilled water. The UV-visible maximum absorption spectra shifted by UV irradiation time. Dependent on the time of UV irradiations, we can change the photonic band gap.

  9. Effects of organic matter on crystallization of struvite in biologically treated swine wastewater.

    PubMed

    Capdevielle, Aurélie; Sýkorová, Eva; Béline, Fabrice; Daumer, Marie-Line

    2016-01-01

    A sustainable way to recover phosphorus (P) in swine wastewater involves a preliminary step of P dissolution followed by the separation of particulate organic matter (OM). The next two steps are firstly the precipitation of struvite crystals done by adding a crystallization reagent (magnesia) and secondly the filtration of the crystals. To develop the process successfully at an industrial scale, the control of the mechanisms of precipitation is the key point in order to obtain high value-added products, that is, big struvite crystals easy to harvest and handle. Experiments with process parameters optimized previously in a synthetic swine wastewater were performed on real swine wastewater to assess the role of the OM on struvite crystallization. After 24 h, with a pH increase to 6.8 only, 90% of the initial P was precipitated and 60% was precipitated as struvite. 80% of the solid recovered was in the fraction > 100 µm. The other forms recovered were brushite, amorphous calcium phosphate, NaCl, KCl and OM. The influence of OM on struvite precipitation in acidified swine wastewater was negative on the reaction kinetics but positive on the size of the struvite crystals. The presence of colloidal particles increased the size of the struvite crystals but slowed down the kinetics due to the viscosity induced by the repulsive force of the colloids. The maximum size of single struvite crystals (200 µm) was observed with the presence of particulate OM.

  10. Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route.

    PubMed

    Benavides, A L; Aragones, J L; Vega, C

    2016-03-28

    The solubility of NaCl in water is evaluated by using three force field models: Joung-Cheatham for NaCl dissolved in two different water models (SPC/E and TIP4P/2005) and Smith Dang NaCl model in SPC/E water. The methodology based on free-energy calculations [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] and [J. L. Aragones et al., J. Chem. Phys. 136, 244508 (2012)] has been used, except, that all calculations for the NaCl in solution were obtained by using molecular dynamics simulations with the GROMACS package instead of homemade MC programs. We have explored new lower molalities and made longer runs to improve the accuracy of the calculations. Exploring the low molality region allowed us to obtain an analytical expression for the chemical potential of the ions in solution as a function of molality valid for a wider range of molalities, including the infinite dilute case. These new results are in better agreement with recent estimations of the solubility obtained with other methodologies. Besides, two empirical simple rules have been obtained to have a rough estimate of the solubility of a certain model, by analyzing the ionic pairs formation as a function of molality and/or by calculating the difference between the NaCl solid chemical potential and the standard chemical potential of the salt in solution.

  11. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    DOE PAGES

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...

    2016-05-21

    Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less

  12. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress.

    PubMed

    Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K

    2006-09-01

    Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.

  13. The structure of N2 adsorbed on the rumpled NaCl(100) surface—A combined LEED and DFT-D study

    NASA Astrophysics Data System (ADS)

    Vogt, Jochen

    2012-11-01

    The structure of N2 physisorbed on the NaCl(100) single crystal surface is investigated by means of quantitative low-energy electron diffraction (LEED) in combination with dispersion corrected density functional theory (DFT-D). In the temperature range between 20 K and 45 K, a p(1 × 1) structure is observed in the LEED experiment. According to the structure analysis based on the measured diffraction spot intensity profiles, the N2 molecules are adsorbed over the topmost Na+ ions. The experimental distance of the lower nitrogen to the Na+ ion underneath is (2.55 ± 0.07) Å; the corresponding DFT-D value is 2.65 Å. The axes of the molecules are tilted (26 ± 3)° with respect to the surface normal, while in the zero Kelvin optimum structure from DFT-D, the molecules have a perpendicular orientation. The experimental monolayer heat of adsorption, deduced from a Fowler-Guggenheim kinetic model of adsorption is -(13.6 ± 1.6) kJ mol-1, including a lateral molecule-molecule interaction energy of -(2.0 ± 0.4) kJ mol-1. The zero Kelvin adsorption energy from DFT-D, including zero point energy correction, is -15.6 kJ mol-1; the molecule-molecule interaction is -2.4 kJ mol-1. While the rumpling of the NaCl(100) surface is unchanged upon adsorption of nitrogen, the best-fit root mean square thermal displacements of the ions in the topmost substrate layer are significantly reduced.

  14. Crevice corrosion - NaCl concentration map for grade-2 titanium at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shigeo; Kojima, Yoichi

    1993-12-31

    The repassivation potential, ER, for metal/metal-crevice of Commercially Pure Titanium, C.P.Ti, was determined in NaCl solutions at temperatures up to 250C. The ER has its least noble value near 100C and becomes more noble as the temperature increases. As shown in previous research, the shrinkage of the repassivation region should continue with increasing temperatures. However, in conducting this same experiment at temperatures higher than 100C, an examination of the NaCl concentration - temperature - crevice corrosion map verifies that the repassivation region began to expand again when the temperature exceeded 140C. This expansion continued as the temperature continued to increase.

  15. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    PubMed

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.

    PubMed

    Vallon, Volker; Schroth, Jana; Lang, Florian; Kuhl, Dietmar; Uchida, Shinichi

    2009-09-01

    The Na-Cl cotransporter NCC is expressed in the distal convoluted tubule, activated by phosphorylation, and has been implicated in renal NaCl and K(+) homeostasis. The serum and glucocorticoid inducible kinase 1 (SGK1) contributes to renal NaCl retention and K(+) excretion, at least in part, by stimulating the epithelial Na(+) channel and Na(+)-K(+)-ATPase in the downstream segments of aldosterone-sensitive Na(+)/K(+) exchange. In this study we confirmed in wild-type mice (WT) that dietary NaCl restriction increases renal NCC expression and its phosphorylation at Thr(53), Thr(58), and Ser(71), respectively. This response, however, was attenuated in mice lacking SGK1 (Sgk1(-/-)), which may contribute to impaired NaCl retention in those mice. Total renal NCC expression and phosphorylation at Thr(53), Thr(58), and Ser(71) in WT were greater under low- compared with high-K(+) diet. This finding is consistent with a regulation of NCC to modulate Na(+) delivery to downstream segments of Na(+)/K(+) exchange, thereby modulating K(+) excretion. Dietary K(+)-dependent variation in renal expression of total NCC and phosphorylated NCC were not attenuated in Sgk1(-/-) mice. In fact, high-K(+) diet-induced NCC suppression was enhanced in Sgk1(-/-) mice. The hyperkalemia induced in Sgk1(-/-) mice by a high-K(+) diet may have augmented NCC suppression, thereby increasing Na(+) delivery and facilitating K(+) excretion in downstream segments of impaired Na(+)/K(+) exchange. In summary, changes in NaCl and K(+) intake altered NCC expression and phosphorylation, an observation consistent with a role of NCC in NaCl and K(+) homeostasis. The two maneuvers dissociated plasma aldosterone levels from NCC expression and phosphorylation, implicating additional regulators. Regulation of NCC expression and phosphorylation by dietary NaCl restriction appears to involve SGK1.

  17. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties.

    PubMed

    Jisha, K C; Puthur, Jos T

    2014-07-01

    The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.

  18. Monte Carlo simulations of backscattering process in dislocation-containing SrTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    Jozwik, P.; Sathish, N.; Nowicki, L.; Jagielski, J.; Turos, A.; Kovarik, L.; Arey, B.

    2014-05-01

    Studies of defects formation in crystals are of obvious importance in electronics, nuclear engineering and other disciplines where materials are exposed to different forms of irradiation. Rutherford Backscattering/Channeling (RBS/C) and Monte Carlo (MC) simulations are the most convenient tool for this purpose, as they allow one to determine several features of lattice defects: their type, concentration and damage accumulation kinetic. On the other hand various irradiation conditions can be efficiently modeled by ion irradiation method without leading to the radioactivity of the sample. Combination of ion irradiation with channeling experiment and MC simulations appears thus as a most versatile method in studies of radiation damage in materials. The paper presents the results on such a study performed on SrTiO3 (STO) single crystals irradiated with 320 keV Ar ions. The samples were analyzed also by using HRTEM as a complementary method which enables the measurement of geometrical parameters of crystal lattice deformation in the vicinity of dislocations. Once the parameters and their variations within the distance of several lattice constants from the dislocation core are known, they may be used in MC simulations for the quantitative determination of dislocation depth distribution profiles. The final outcome of the deconvolution procedure are cross-sections values calculated for two types of defects observed (RDA and dislocations).

  19. High NaCl- and urea-induced posttranslational modifications that increase glycerophosphocholine by inhibiting GDPD5 phosphodiesterase.

    PubMed

    Topanurak, Supachai; Ferraris, Joan D; Li, Jinxi; Izumi, Yuichiro; Williams, Chester K; Gucek, Marjan; Wang, Guanghui; Zhou, Xiaoming; Burg, Maurice B

    2013-04-30

    Glycerophosphocholine (GPC) is high in cells of the renal inner medulla where high interstitial NaCl and urea power concentration of the urine. GPC protects inner medullary cells against the perturbing effects of high NaCl and urea by stabilizing intracellular macromolecules. Degradation of GPC is catalyzed by the glycerophosphocholine phosphodiesterase activity of glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). We previously found that inhibitory posttranslational modification (PTM) of GDPD5 contributes to high NaCl- and urea-induced increase of GPC. The purpose of the present studies was to identify the PTM(s). We find at least three such PTMs in HEK293 cells: (i) Formation of a disulfide bond between C25 and C571. High NaCl and high urea increase reactive oxygen species (ROS). The ROS increase disulfide bonding between GDPD5-C25 and -C571, which inhibits GDPD5 activity, as supported by the findings that the antioxidant N-acetylcysteine prevents high NaCl- and urea-induced inhibition of GDPD5; GDPD5-C25S/C571S mutation or over expression of peroxiredoxin increases GDPD5 activity; H2O2 inhibits activity of wild type GDPD5, but not of GDPD5-C25S/C571S; and peroxiredoxin is relatively low in the renal inner medulla where GPC is high. (ii) Dephosphorylation of GDPD5-T587. GDPD5 threonine 587 is constitutively phosphorylated. High NaCl and high urea dephosphorylate GDPD5-T587. Mutation of GDPD5-T587 to alanine, which cannot be phosphorylated, decreases GPC-PDE activity of GDPD5. (iii) Alteration at an unknown site mediated by CDK1. Inhibition of CDK1 protein kinase reduces GDE-PDE activity of GDPD5 without altering phosphorylation at T587, and CDK1/5 inhibitor reduces activity of GDPD5- C25S/C571S-T587A.

  20. High NaCl- and urea-induced posttranslational modifications that increase glycerophosphocholine by inhibiting GDPD5 phosphodiesterase

    PubMed Central

    Topanurak, Supachai; Ferraris, Joan D.; Li, Jinxi; Izumi, Yuichiro; Williams, Chester K.; Gucek, Marjan; Wang, Guanghui; Zhou, Xiaoming; Burg, Maurice B.

    2013-01-01

    Glycerophosphocholine (GPC) is high in cells of the renal inner medulla where high interstitial NaCl and urea power concentration of the urine. GPC protects inner medullary cells against the perturbing effects of high NaCl and urea by stabilizing intracellular macromolecules. Degradation of GPC is catalyzed by the glycerophosphocholine phosphodiesterase activity of glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5). We previously found that inhibitory posttranslational modification (PTM) of GDPD5 contributes to high NaCl- and urea-induced increase of GPC. The purpose of the present studies was to identify the PTM(s). We find at least three such PTMs in HEK293 cells: (i) Formation of a disulfide bond between C25 and C571. High NaCl and high urea increase reactive oxygen species (ROS). The ROS increase disulfide bonding between GDPD5-C25 and -C571, which inhibits GDPD5 activity, as supported by the findings that the antioxidant N-acetylcysteine prevents high NaCl- and urea-induced inhibition of GDPD5; GDPD5-C25S/C571S mutation or over expression of peroxiredoxin increases GDPD5 activity; H2O2 inhibits activity of wild type GDPD5, but not of GDPD5-C25S/C571S; and peroxiredoxin is relatively low in the renal inner medulla where GPC is high. (ii) Dephosphorylation of GDPD5-T587. GDPD5 threonine 587 is constitutively phosphorylated. High NaCl and high urea dephosphorylate GDPD5-T587. Mutation of GDPD5-T587 to alanine, which cannot be phosphorylated, decreases GPC-PDE activity of GDPD5. (iii) Alteration at an unknown site mediated by CDK1. Inhibition of CDK1 protein kinase reduces GDE-PDE activity of GDPD5 without altering phosphorylation at T587, and CDK1/5 inhibitor reduces activity of GDPD5- C25S/C571S-T587A. PMID:23589856

  1. Researcher Determining a Ruby Laser’s Effect on a Crystal

    NASA Image and Video Library

    1965-05-21

    National Aeronautics and Space Administration (NASA) Lewis Research Center researcher Americo Forestieri aims a ruby laser beam at a crystal to determine the effects of its radiation. Forestieri was a researcher in the Electric Component Experiment Section of the Space Power System Division. Lewis was in the midst of a long-term effort to develop methods of delivering electrical power to spacecraft using nuclear, solar, or electrochemical technologies. Ruby lasers contain a ruby crystal with mirrors on either side. The laser action is created when a high-intensity lamp shines around the ruby and excites the electrons in the ruby’s chromium atoms. After the excitation, the electrons emit their ruby-red light. The mirrors reflect some of this red light back and forth inside the ruby which causes other excited chromium atoms to produce additional red light. This continues until the light pulse reaches high power levels and consumes all of the energy stored in the crystal. Forestieri used optical absorption and electron paramagnetic resonance techniques to study the extent and manner in which the radiation interacted with the samples. He determined that individual bands were assigned to specific electronic transitions. He also studied the atomic changes in the ruby crystals after irradiation. He found that complex interactions depend on the crystal pretreatment, purity, and irradiation dose.

  2. Structural and optical effects induced by gamma irradiation on NdPO{sub 4}: X-ray diffraction, spectroscopic and luminescence study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S.; Rajesh, N.P., E-mail: rajeshnp@hotmail.com

    2016-02-15

    Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM andmore » EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.« less

  3. Application of Membrane Crystallization for Minerals’ Recovery from Produced Water

    PubMed Central

    Ali, Aamer; Quist-Jensen, Cejna Anna; Macedonio, Francesca; Drioli, Enrico

    2015-01-01

    Produced water represents the largest wastewater stream from oil and gas production. Generally, its high salinity level restricts the treatment options. Membrane crystallization (MCr) is an emerging membrane process with the capability to extract simultaneously fresh water and valuable components from various streams. In the current study, the potential of MCr for produced water treatment and salt recovery was demonstrated. The experiments were carried out in lab scale and semi-pilot scale. The effect of thermal and hydrodynamic conditions on process performance and crystal characteristics were explored. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analyses confirmed that the recovered crystals are sodium chloride with very high purity (>99.9%), also indicated by the cubic structure observed by microscopy and SEM (scanning electron microscopy) analysis. It was demonstrated experimentally that at recovery factor of 37%, 16.4 kg NaCl per cubic meter of produced water can be recovered. Anti-scaling surface morphological features of membranes were also identified. In general, the study provides a new perspective of isolation of valuable constituents from produced water that, otherwise, is considered as a nuisance. PMID:26610581

  4. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    PubMed Central

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  5. EPR study of gamma irradiated N-methyl taurine (C3H9NO3S) and sodium hydrogen sulphate monohydrate (NaHSO3·H2O) single crystals.

    PubMed

    Yıldırım, Ilkay; Karabulut, Bünyamin

    2011-03-01

    EPR study of gamma irradiated C(3)H(9)NO(3)S and NaHSO(3).H(2)O single crystals have been carried out at room temperature. There is one site for the radicals in C(3)H(9)NO(3)S and two magnetically distinct sites for the radicals in NaHSO(3). The observed lines in the EPR spectra have been attributed to the species of SO(3)(-) and RH radicals for N-methyl taurine, and to the SO(3)(-) and OH radicals for sodium hydrogen sulfate monohydrate single crystals. The principal values of the g for SO(3)(-), the hyperfine values of RH and OH proton splitting have been calculated and discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  7. Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Wang, H.; Zhang, Yanwen

    2010-01-01

    Irradiation induced amorphization in nanocrystalline and single crystal 3C-SiC has been studied using 1 MeV Si+ ions under identical irradiation conditions at room temperature and 400 K. The disordering behavior has been characterized using in-situ ion channeling and ex-situ x-ray diffraction methods. The results show that, compared to single crystal 3C-SiC, full amorphization of small 3C-SiC grains (~3.8 nm in size) at room temperature occurs at a slightly lower dose. Grain size decreases with increasing dose until a fully amorphized state is attained. The amorphization dose increases at 400 K relative to room temperature. However, at 400 K, the dosemore » for amorphization for 2.0 nm grains is about a factor of 4 and 8 smaller than for 3.0 nm grains and bulk single crystal 3C-SiC, respectively. The behavior is attributed to the dominance of defect-stimulated interfacial amorphization.« less

  8. Effects of dilute aqueous NaCl solution on caffeine aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogenmore » bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.« less

  9. Plasma-membrane H(+)-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L.

    PubMed

    Niu, X; Zhu, J K; Narasimhan, M L; Bressan, R A; Hasegawa, P M

    1993-01-01

    An Atriplex nummularia L. cDNA probe encoding the partial sequence of an isoform of the plasma-membrane H(+)-ATPase was isolated, and used to characterize the NaCl regulation of mRNA accumulation in cultured cells of this halophyte. The peptide (477 amino acids) translated from the open reading frame has the highest sequence homology to the Nicotiana plumbaginifolia plasma-membrane H(+)-ATPase isoform pma4 (greater than 80% identity) and detected a transcript of approximately 3.7 kb on Northern blots of both total and poly(A)+ RNA. The mRNA levels were comparable in unadapted cells, adapted cells (cells adapted to and growing in 342 mM NaCl) and deadapted cells (cells previously adapted to 342 mM NaCl that are now growing without salt). Increased mRNA abundance was detected in deadapted cells within 24 h after exposure to NaCl but not in unadapted cells with similar salt treatments. The NaCl up-regulation of message abundance in deadapted cells was subject to developmental control. Analogous to those reported for glycophytes, the plasma-membrane H(+)-ATPase are encoded by a multigene family in the halophyte.

  10. Radiation-induced hydroxyl addition to purine molecules: EPR and ENDOR study of hypoxanthine hydrochloride monohydrate single crystals.

    PubMed

    Tokdemir, Sibel; Nelson, William H

    2005-06-01

    Three radical species were detected in an EPR/ENDOR study of X-irradiated hypoxanthine.HCl.H2O single crystals at room temperature: RI was identified as the product of net H addition to C8, RII was identified as the product of net H addition to C2, and RIII was identified as the product of OH addition to C8. The observed set of radicals was the same for room-temperature irradiation as for irradiation at 10 K followed by warming the crystals to room temperature; however, the C2 H-addition and C8 OH-addition radicals were not detectable after storage of the crystals for about 2 months at room temperature. Use of selectively deuterated crystals permitted unique assignment of the observed hyperfine couplings, and results of density functional theory calculations on each of the radical structures were consistent with the experimental results. Comparison of these experimental results with others from previous crystal-based systems and model system computations provides insight into the mechanisms by which the biologically important purine C8 hydroxyl addition products are formed. The evidence from solid systems supports the mechanism of net water addition to one-electron oxidized purine bases and demonstrates the importance of a facial approach between the reactants.

  11. Facilities for studing radiation damage in nonmetals during irradiation

    NASA Astrophysics Data System (ADS)

    Levy, P. W.

    1984-08-01

    Two facilities were developed for making optical absorption, luminescence and other measurements on a single sample before, during and after irradiation. One facility uses Co-60 gamma rays and the other 0.5 to 3 MeV electrons from an accelerator. Optical relays function as spectrophotometers, luminescence detectors, etc. All radiation sensitive components are outside of walk-in irradiation chambers; all measurement control and data recording is computerized. Irradiations are made at controlled temperatures between 5 K and 900 C. The materials studied include glasses, quartz, alkali halides (especially natural rock salt), organic crystals, etc. As determined from color center measurements the damage formation rate in all materials studied at 25 C or above is strongly temperature dependent. The defect concentration during irradiation is usually much greater than that measured after irradiation. The fraction of defects annealing after irradiation and the annealing rate usually increases as the irradiation temperature increases. The completed studies demonstrate that, in most cases, the extent of maximum damage and the damage formation and annealing kinetics can be determined only by making measurements during irradiation.

  12. Diamond structure recovery during ion irradiation at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Deslandes, Alec; Guenette, Mathew C.; Belay, Kidane; Elliman, Robert G.; Karatchevtseva, Inna; Thomsen, Lars; Riley, Daniel P.; Lumpkin, Gregory R.

    2015-12-01

    CVD diamond is irradiated by 5 MeV carbon ions, with each sample held at a different temperature (300-873 K) during irradiations. The defect structures resulting from the irradiations are evident as vacancy, interstitial and amorphous carbon signals in Raman spectra. The observed variation of the full width at half maximum (FWHM) and peak position of the diamond peak suggests that disorder in the diamond lattice is reduced for high temperature irradiations. The dumbbell interstitial signal is reduced for irradiations at 873 K, which suggests this defect is unstable at these temperatures and that interstitials have migrated to crystal surfaces. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy results indicate that damage to the diamond structure at the surface has occurred for room temperature irradiations, however, this structure is at least partially recovered for irradiations performed at 473 K and above. The results suggest that, in a high temperature irradiation environment such as a nuclear fusion device, in situ annealing of radiation-created defects can maintain the diamond structure and prolong the lifetime of diamond components.

  13. Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation.

    PubMed

    Lv, Jinman; Shang, Zhen; Tan, Yang; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-08-07

    We report the surface cladding-like waveguide fabricated by the cooperation of the ultrafast laser writing and the ion irradiation. The ultrafast laser writes tracks near the surface of the Nd:YAG crystal, constructing a semi-circle columnar structure with a decreased refractive index of - 0.00208. Then, the Nd:YAG crystal is irradiated by the Carbon ion beam, forming an enhanced-well in the semi-circle columnar with an increased refractive index of + 0.0024. Tracks and the enhanced-well consisted a surface cladding-like waveguide. Utilizing this cladding-like waveguide as the gain medium for the waveguide lasing, optimized characterizations were observed compared with the monolayer waveguide. This work demonstrates the refractive index of the Nd:YAG crystal can be well tailored by the cooperation of the ultrafast laser writing and the ion irradiation, which provides an convenient way to fabricate the complex and multilayered photonics devices.

  14. Natural sunlight irradiated flower-like CuS synthesized from DMF solvothermal treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Wang, Zihao; Zhou, Lei; Liu, Nianqi; Wang, Hongxing

    2016-09-01

    Three-dimensional CuS hierarchical crystals with high catalytic activity had been successfully fabricated using a facile solvothermal process. The CuS microparticles showed different flower-like morphology and good dispersion by optimizing reaction conditions. It was found that using N,N-dimethylformamide (DMF) as the solvent reagent in the proper temperature conditions was favorable for the growth of hierarchically structured CuS. The hexagonal flower-like CuS synthesized at 170°C for 60 min displayed broad-spectrum photocatalytic properties under ultraviolet (UV) and visible irradiation. The as-prepared CuS crystals exhibited good performance to decolorize methylene blue (MB) solution under visible light irradiation. The total organic carbon (TOC) removal of rhodamine B (RhB) solution was nearly 60% after 5 h of the natural sunlight irradiation, and the property was stable after testing over four recycles, demonstrating a potential application in waster water treatment.

  15. The laser radiation action on the crystal formation processes in the biological fluids

    NASA Astrophysics Data System (ADS)

    Malov, Alexander N.; Vaichas, Andrey A.; Novikova, Evgeniya A.

    2016-11-01

    The results of an experimental study of the laser radiation effect on the crystal`s formation in the volume of biological fluids that are complex multi-component solutions have been discussing. Are investigated white and natural bile in vitro. The qualitative changes were observed. Thus, at the bottom of the cell in which bile is not exposed to the laser radiation, the crystals are formed. In the irradiated bile gallstone has a thin layer of a homogeneous viscous colloidal liquid with very small, visible in polarized light crystalline formations was got. Irradiated laser bile's gallstone was covered evenly white deposit without surface defect unlike gallstone in bile without radiation exposure. A possible mechanism to explain the laser radiation action on the mineral formation in biological fluids and also practical application of this effect have been suggesting too.

  16. The Cathodic Behavior of Ti(III) Ion in a NaCl-2CsCl Melt

    NASA Astrophysics Data System (ADS)

    Song, Yang; Jiao, Shuqiang; Hu, Liwen; Guo, Zhancheng

    2016-02-01

    The cathodic behavior of Ti(III) ions in a NaCl-2CsCl melt was investigated by cyclic voltammetry, chronopotentiometry, and square wave voltammetry with a tungsten electrode being the working electrode at different temperatures. The results show that the cathodic behavior of Ti(III) ion consists of two irreversible steps: Ti3+ + e = Ti2+ and Ti2+ + 2 e = Ti. The diffusion coefficient for the Ti(III) ion in the NaCl-2CsCl eutectic is 1.26 × 10-5 cm2 s-1 at 873 K (600 °C), increases to be 5.57 × 10-5 cm2 s-1 at 948K (675°C), and further rises to 10.8 × 10-5 cm2 s-1 at 1023 (750 °C). Moreover, galvanostatic electrolysis performed on a titanium electrode further presents the feasibility of electrodepositing metallic titanium in the molten NaCl-2CsCl-TiCl3 system.

  17. Color center annealing and ageing in electron and ion-irradiated yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Beuneu, François

    2005-04-01

    We have used X-band electron paramagnetic resonance (EPR) measurements at room-temperature (RT) to study the thermal annealing and RT ageing of color centers induced in yttria-stabilized zirconia (YSZ), i.e. ZrO2:Y with 9.5 mol% Y2O3, by swift electron and ion-irradiations. YSZ single crystals with the <1 0 0> orientation were irradiated with 2.5 MeV electrons, and implanted with 100 MeV 13C ions. Electron and ion beams produce the same two color centers, namely an F+-type center (singly ionized oxygen vacancy) and the so-called T-center (Zr3+ in a trigonal oxygen local environment) which is also produced by X-ray irradiations. Isochronal annealing was performed in air up to 973 K. For both electron and ion irradiations, the defect densities are plotted versus temperature or time at various fluences. The influence of a thermal treatment at 1373 K of the YSZ single crystals under vacuum prior to the irradiations was also investigated. In these reduced samples, color centers are found to be more stable than in as-received samples. Two kinds of recovery processes are observed depending on fluence and heat treatment.

  18. Crystal growth, structural, low temperature thermoluminescence and mechanical properties of cubic fluoroperovskite single crystal (LiBaF3)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Ramasamy, P.; Ramaseshan, R.; Kim, H. J.; Kim, Sunghwan; Bhagavannarayana, G.; Cheon, Jong-Kyu

    2017-10-01

    Polycrystalline compounds of LiBaF3 were synthesized using conventional solid state reaction route and the phase purity was confirmed using powder X-ray diffraction technique. Using vertical Bridgman technique single crystal was grown from melt. Rocking curve measurements have been carried out to study the structural perfection of the grown crystal. The single peak of diffraction curve clearly reveals that the grown crystal was free from the structural grain boundaries. The low temperature thermoluminescence of the X-ray irradiated sample has been analyzed and found four distinguishable peaks having maximum temperatures at 18, 115, 133 and 216 K. Activation energy (E) and frequency factor (s) for the individual peaks have been studied using Peak shape method and the computerized curve fitting method combining with the Tmax- TStop procedure. Nanoindentation technique was employed to study the mechanical behaviour of the crystal. The indentation modulus and Vickers hardness of the grown crystal have values of 135.15 GPa and 680.81 respectively, under the maximum indentation load of 10 mN.

  19. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing

    PubMed Central

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-01-01

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson–Mehl–Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time. PMID:29068408

  20. Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing.

    PubMed

    Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin

    2017-10-25

    Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson-Mehl-Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.

  1. Calcium oxalate syntheses in a solution containing glucose by the atmospheric pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    The non-equilibrium atmospheric pressure plasma (NEAPP) has been attracted attention because of its characteristic high reactivity even in a low temperature so that various phenomena by the NEAPP such as a sterilization, growth promotion and so forth have been reported around the world. Previously, we reported the NEAPP irradiation generated the calcium oxalate crystals in the medium, which contains 31 kinds of organics and inorganics. The Dulbecco's Modified Eagle Medium (DMEM) which was used in previous study is composed of no oxalate. Interestingly, not only crystallization but also synthesis of the oxalate was occurred by the NEAPP irradiation. Also the crystallization details were analyzed with the X-ray diffraction (XRD). In this study, we have clarified the mechanism on the crystallization due that D-glucose, calcium ion and bicarbonate ions are minimum essential components. The oxalate synthesis was proved by the gas chromatography and mass spectrometer (GC-MS). Finally, we conclude that a supersaturation of oxalic acid synthesized in those 3 species by the NEAPP.

  2. Measurement of the index of refraction of μm crystals by a confocal laser microscope--potential application for the refractive index mapping of μm scale.

    PubMed

    Kimura, Keisaku; Sato, Seiichi

    2014-05-01

    A conventional laser microscope can be used to derive the index of refractivity by the ratio of geometrical height of the transparent platelet to the apparent height of the normal incident light for very small crystals in the wide size range. We demonstrate that the simple method is effective for the samples from 100 μm to 16 μm in size using alkali halide crystals as a model system. The method is also applied for the surface fractured micro-crystals and an inclined crystal with microscopic size regime. Furthermore, we present two-dimensional refractive index mapping as well as two-dimensional height profile for the mixture of three alkali halides, KCl, KI, and NaCl, all are μm in size.

  3. γ-Adducin Stimulates the Thiazide-sensitive NaCl Cotransporter

    PubMed Central

    Dimke, Henrik; San-Cristobal, Pedro; de Graaf, Mark; Lenders, Jacques W.; Deinum, Jaap; Hoenderop, Joost G.J.

    2011-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) plays a key role in renal salt reabsorption and the determination of systemic BP, but the molecular mechanisms governing the regulation of NCC are not completely understood. Here, through pull-down experiments coupled to mass spectrometry, we found that γ-adducin interacts with the NCC transporter. γ-Adducin colocalized with NCC to the distal convoluted tubule. 22Na+ uptake experiments in the Xenopus laevis oocyte showed that γ-adducin stimulated NCC activity in a dose-dependent manner, an effect that occurred upstream from With No Lysine (WNK) 4 kinase. The binding site of γ-adducin mapped to the N terminus of NCC and encompassed three previously reported phosphorylation sites. Supporting this site of interaction, competition with the N-terminal domain of NCC abolished the stimulatory effect of γ-adducin on the transporter. γ-Adducin failed to increase NCC activity when these phosphorylation sites were constitutively inactive or active. In addition, γ-adducin bound only to the dephosphorylated N terminus of NCC. Taken together, our observations suggest that γ-adducin dynamically regulates NCC, likely by amending the phosphorylation state, and consequently the activity, of the transporter. These data suggest that γ-adducin may influence BP homeostasis by modulating renal NaCl transport. PMID:21164023

  4. Effect of Pre-Irradiation Annealing and Laser Modification on the Formation of Radiation-Induced Surface Color Centers in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Novikov, A. N.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Tarasenko, N. V.

    2017-01-01

    It is shown that surface color centers of the same type are formed in the surface layer and in regions with damaged crystal structure inside crystalline lithium fluoride after γ-irradiation. Results are presented from a study of the effect of pre-irradiation annealing on the efficiency with which surface centers are formed in lithium fluoride nanocrystals. Raising the temperature for pre-irradiation annealing from room temperature to 250°C leads to a substantial reduction in the efficiency with which these centers are created. Surface color centers are not detected after γ-irradiation for pre-irradiation annealing temperatures of 300°C and above. Adsorption of atmospheric gases on the crystal surface cannot be regarded as a necessary condition for the formation of radiation-induced surface centers.

  5. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    PubMed

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  6. Fabrication of graded index single crystal in glass

    PubMed Central

    Veenhuizen, Keith; McAnany, Sean; Nolan, Daniel; Aitken, Bruce; Dierolf, Volkmar; Jain, Himanshu

    2017-01-01

    Lithium niobate crystals were grown in 3D through localized heating by femtosecond laser irradiation deep inside 35Li2O-35Nb2O5-30SiO2 glass. Laser scanning speed and power density were systematically varied to control the crystal growth process and determine the optimal conditions for the formation of single crystal lines. EBSD measurements showed that, in principle, single crystals can be grown to unlimited lengths using optimal parameters. We successfully tuned the parameters to a growth mode where nucleation and growth occur upon heating and ahead of the scanning laser focus. This growth mode eliminates the problem reported in previous works of non-uniform polycrystallinity because of a separate growth mode where crystallization occurs during cooling behind the scanning laser focus. To our knowledge, this is the first report of such a growth mode using a fs laser. The crystal cross-sections possessed a symmetric, smooth lattice misorientation with respect to the c-axis orientation in the center of the crystal. Calculations indicate the observed misorientation leads to a decrease in the refractive index of the crystal line from the center moving outwards, opening the possibility to produce within glass a graded refractive index single crystal (GRISC) optically active waveguide. PMID:28287174

  7. The effect of NaCl 0.9% and NaCl 0.45% on sodium, chloride, and acid-base balance in a PICU population.

    PubMed

    Almeida, Helena Isabel; Mascarenhas, Maria Inês; Loureiro, Helena Cristina; Abadesso, Clara S; Nunes, Pedro S; Moniz, Marta S; Machado, Maria Céu

    2015-01-01

    To study the effect of two intravenous maintenance fluids on plasma sodium (Na), and acid-base balance in pediatric intensive care patients during the first 24h of hospitalization. A prospective randomized controlled study was performed, which allocated 233 patients to groups: (A) NaCl 0.9% or (B) NaCl 0.45%. Patients were aged 1 day to 18 years, had normal electrolyte concentrations, and suffered an acute insult (medical/surgical). change in plasma sodium. Parametric tests: t-tests, ANOVA, X(2) statistical significance level was set at α=0.05. Group A (n=130): serum Na increased by 2.91 (±3.9)mmol/L at 24h (p<0.01); 2% patients had Na higher than 150 mmol/L. Mean urinary Na: 106.6 (±56.8)mmol/L. No change in pH at 0 and 24h. Group B (n=103): serum Na did not display statistically significant changes. Fifteen percent of the patients had Na<135 mmol/L at 24h. The two fluids had different effects on respiratory and post-operative situations. The use of saline 0.9% was associated with a lower incidence of electrolyte disturbances. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  8. In situ TEM observation of preferential amorphization in single crystal Si nanowire

    NASA Astrophysics Data System (ADS)

    Su, Jiangbin; Zhu, Xianfang

    2018-06-01

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  9. In situ TEM observation of preferential amorphization in single crystal Si nanowire.

    PubMed

    Su, Jiangbin; Zhu, Xianfang

    2018-06-08

    The nanoinstability of a single crystal Si nanowire under electron beam irradiation was in situ investigated at room temperature by the transmission electron microscopy technique. It was observed that the Si nanowire amorphized preferentially from the surface towards the center, with the increasing of the electron dose. In contrast, in the center of the Si nanowire the amorphization seemed much more difficult, being accompanied by the rotation of crystal grains and the compression of d-spacing. Such a preferential amorphization, which is athermally induced by the electron beam irradiation, can be well accounted for by our proposed concepts of the nanocurvature effect and the energetic beam-induced athermal activation effect, while the classical knock-on mechanism and the electron beam heating effect seem inadequate to explain these processes. Furthermore, the findings revealed the difference of amorphization between a Si nanowire and a Si film under electron beam irradiation. Also, the findings have important implications for the nanoinstability and nanoprocessing of future Si nanowire-based devices.

  10. An analysis of lamp irradiation in ellipsoidal mirror furnaces

    NASA Astrophysics Data System (ADS)

    Rivas, Damián; Vázquez-Espí, Carlos

    2001-03-01

    The irradiation generated by halogen lamps in ellipsoidal mirror furnaces is analyzed, in configurations suited to the study of the floating-zone technique for crystal growth in microgravity conditions. A line-source model for the lamp (instead of a point source) is developed, so that the longitudinal extent of the filament is taken into account. With this model the case of defocussed lamps can be handle analytically. In the model the lamp is formed by an aggregate of point-source elements, placed along the axis of the ellipsoid. For these point sources (which, in general, are defocussed) an irradiation model is formulated, within the approximation of geometrical optics. The irradiation profiles obtained (both on the lateral surface and on the inner base of the cylindrical sample) are analyzed. They present singularities related to the caustics formed by the family of reflected rays; these caustics are also analyzed. The lamp model is combined with a conduction-radiation model to study the temperature field in the sample. The effects of defocussing the lamp (common practice in crystal growth) are studied; advantages and also some drawbacks are pointed out. Comparison with experimental results is made.

  11. Effect of doping of KDP crystal with amino acid L-arginine on the strength properties and character of laser damage

    NASA Astrophysics Data System (ADS)

    Dolzhenkova, E. F.; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Pritula, I. M.

    2017-11-01

    Studied were the strength characteristics of KDP crystals doped with L-arginine under a concentrated load and irradiation of the first harmonic YAG:Nd3+ laser. The crystals were obtained by means of the temperature reduction method on a point seed, the content of L-arginine in the aqueous solution being 0.3, 0.4, 1.0 and 1.4 wt%. The character of the dependence of KDP microhardness versus the concentration of amino acid in the crystal was investigated. The regularities of brittle damage of the doped KDP crystal at mechanical testing and laser irradiation were shown to be similar. As confirmed in the study, the planes of easy crack extension in the crystal are {2 2 1}, (1 0 0), and (0 0 1) planes, the cracks mainly propagate parallel to {2 2 1} planes. The mechanical and laser strength values of doped KDP crystals were evaluated.

  12. Improvement of bioinsecticides production through adaptation of Bacillus thuringiensis cells to heat treatment and NaCl addition.

    PubMed

    Ghribi, D; Zouari, N; Jaoua, S

    2005-01-01

    The present work aimed to increase yields of delta-endotoxin production through adaptation of Bacillus thuringiensis cells to heat shock and sodium chloride and to investigate their involvements in bioinsecticides production improvement. Growing B. thuringiensis cells were heat treated after different incubation times to study the response of the adaptative surviving cells in terms of delta-endotoxin synthesis. Similarly, adaptation of B. thuringiensis cells to sodium chloride was investigated. Adaptation to combined stressors was also evaluated. When applied separately in the glucose-based medium, 20-min heat treatment of 6-h-old cultures and addition of 7 g l(-1) NaCl at the beginning of the incubation gave respectively 38 and 27% delta-endotoxin production improvements. Heat shock improved toxin synthesis yields, while NaCl addition improved delta-endotoxin production by increasing the spore titres without significant effect on toxin synthesis yields. Cumulative improvements (66%) were obtained by combination of the two stressors at the conditions previously established for each one. Interestingly, when the similar approach was conducted by using the large scale production medium based on gruel and fish meal, 17, 8 and 29% delta-endotoxin production improvements were respectively, obtained with heat shock, NaCl and combined stressors. Heat treatment of vegetative B. thuringiensis cells and NaCl addition to the culture media improved bioinsecticides production. Heat treatment increased toxin synthesis yields, while addition of NaCl increased biomass production yields. Cumulative improvements of 66 and 29% were obtained in glucose and economic production media, respectively. Overproduction of bioinsecticides by B. thuringiensis could be obtained by the combination of heat treatment of vegetative cells and addition of NaCl to the culture medium. This should contribute to a significant reduction of the cost of B. thuringiensis bioinsecticides production and

  13. Radiation effects in x-irradiated hydroxy compounds

    NASA Astrophysics Data System (ADS)

    Budzinski, Edwin E.; Potter, William R.; Box, Harold C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  14. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    USGS Publications Warehouse

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  15. An Application of Specific Sensors For The Monitoring of NaCl in Soft Cheeses

    NASA Astrophysics Data System (ADS)

    Lvova, Larisa; Mielle, Patrick; Salles, Christian; Denis, Sylvain; Vergoignan, Catherine; Barra, Aurélien; Di Natale, Corrado; Paolesse, Roberto; Temple-Boyer, Pierre; Feron, Gilles

    2011-09-01

    The commercial sensors and prototype ISEs array (Ion Selective Electrodes array) were utilized for NaCl concentration measurements in soft cheeses, in particular in vitro gut process and in commercial Italian mozzarella cheeses. The values obtained from the sensors were compared with HPLC analysis. The results showed the feasibility of the ISE array application to monitor NaCl in soft cheese during the breakdown in the digester. The best results were obtained with the use of ISEs array combining, in particular, Cl- and Na+ detections. The salinity of commercial mozzarella cheese samples and the originally utilized milk type (cow or buffalo) were also satisfactory determined with the developed ISE array.

  16. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review

    PubMed Central

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-01-01

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments. PMID:28787902

  17. Dimensional isotropy of 6H and 3C SiC under neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance L.; Katoh, Yutai; Koyanagi, Takaaki

    2016-01-16

    This investigation experimentally determines the as-irradiated crystal axes dimensional change of the common polytypes of SiC considered for nuclear application. Single crystal α-SiC (6H), β-SiC (3C), CVD β-SiC, and single crystal Si have been neutron irradiated near 60 °C from 2 × 10 23 to 2 × 10 26 n/m 2 (E > 0.1 MeV), or about 0.02–20 dpa, in order to study the effect of irradiation on bulk swelling and strain along independent crystalline axes. Single crystal, powder diffractometry and density measurement have been carried out. For all neutron doses where the samples remained crystalline all SiC materials demonstratedmore » equivalent swelling behavior. Moreover the 6H–SiC expanded isotropically. The magnitude of the swelling followed a ~0.77 power law against dose consistent with a microstructure evolution driven by single interstitial (carbon) mobility. Extraordinarily large ~7.8% volume expansion in SiC was observed prior to amorphization. Above ~0.9 × 10 25 n/m 2 (E > 0.1 MeV) all SiC materials became amorphous with an identical swelling: a 11.7% volume expansion, lowering the density to 2.84 g/cm 3. As a result, the as-amorphized density was the same at the 2 × 10 25 and 2 × 10 26 n/m 2 (E > 0.1 MeV) dose levels.« less

  18. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  19. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  20. Secondary organic aerosol formation from propylene irradiations in a chamber study

    NASA Astrophysics Data System (ADS)

    Ge, Shuangshuang; Xu, Yongfu; Jia, Long

    2017-05-01

    Some studies have shown that low-molecular-weight VOCs such as ethylene and acetylene can form SOA. However, so far propylene (C3H6) has not been studied. The current work systematically investigates irradiations of propylene in the presence of NOx (x = 1, 2) in a self-made indoor chamber. Only a small amount of secondary organic aerosols (SOA) was formed under 5% and 80% RH conditions without sodium chloride (NaCl) seed particles or in the presence of solid NaCl. When NaCl was in the form of droplets, liquid water content (LWC) increased from 34.5 to 169.8 μg m-3 under different initial NaCl concentrations, and correspondingly the amount of SOA linearly increased from 5.9 to 29.8 μg m-3 (SOA = 0.0164 × LWC+1.137, R2 = 0.97) at the C3H6/NOx ratio of 32.2-44.9 (ppbC/ppb). The initial C3H6/NOx concentration ratio considerably impacted the formation of SOA, in which the amount of SOA increased from 12.1 to 47.9 μg m-3 exponentially as the ratio decreased from 46.5 to 6.3 with an important point of the ratio value of 11. At the ratio of less than 11 in the regime under the control of C3H6, SOA concentrations decreased considerably with increasing ratio, whereas at the ratio value of larger than 11 in the NOx controlled regime, SOA slightly decreased with increasing ratio. From combination of the analysis of different functional groups of particles by IR spectra and ESI-Exactive-Orbitrap mass spectrometer, the constituents of SOA were identified to be hydroperoxides (e.g. HOCH2CCl(CH3)OOH), esters (e.g. CH2ClC(O)OCHClCHO), organic nitrates (e.g. HO2CH(CH2Cl)C(O)OCCl(CH2Cl)C(O)OCHClCH2ONO2), etc. Furthermore, a liquid-phase mechanism of SOA formation has been proposed in this study.

  1. Effect of antioxidants on the quality of irradiated sausages prepared with turkey thigh meat.

    PubMed

    Du, M; Ahn, D U

    2002-08-01

    The effects of antioxidants on the flavor and color of electron-beam-irradiated turkey sausages were studied. Sausages were prepared from turkey thigh meat, NaCl (2.0%), phosphate (0.5%), water (10%), and one of five antioxidant treatments (none, vitamin E, sesamol, rosemary extract, or gallic acid at 0.02%). Sausages were stuffed and cooked in an 85 C smokehouse to an internal temperature of 74 C, then chilled and sliced to 1.5-cm thickness, and vacuum-packaged. Packaged sausages were randomly divided into three groups and irradiated at 0, 1.5 or 3.0 kGy, using an electron beam. Volatiles, color, 2-TBA-reactive substances values, and sensory characteristics were analyzed. The antioxidant effect of sesamol was the highest, followed by vitamin E and gallic acid; rosemary extract had the weakest antioxidant effect. Irradiation induced red color in sausages, but addition of gallic acid, rosemary extract, or sesamol reduced it. Gallic acid was very effective in lowering the redness of irradiated and nonirradiated sausages. The redness (a*) values of sausages with added gallic acid that were irradiated at 0, 1.5, and 3.0 kGy were 1.49,2.03, and 2.29, respectively, whereas those of control sausages under the same irradiation conditions were 2.58, 2.81, and 3.25, respectively. The reduction of redness in irradiated sausages by antioxidants was not related to CO, because antioxidants had no effect on CO production by irradiation. The amount of total volatiles was decreased significantly by antioxidants, but antioxidants had minimal effect on the off-flavor of turkey sausages induced by irradiation.

  2. Molecular Dynamics Simulation of Surface Tension of NaCl Aqueous Solution at 298.15K: from Diluted to Highly Supersaturated Concentrations

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxiang; Chen, Chuchu; Poeschl, Ulirch; Su, Hang; Cheng, Yafang

    2017-04-01

    Sodium chloride (NaCl) is one of the key components of atmospheric aerosol particles. Concentration-depend surface tension of aqueous NaCl solution is essential to determine the equilibrium between droplet NaCl solution and water vapor, which is important in regards to aerosol-cloud interaction and aerosol climate effects. Although supersaturated NaCl droplets can be widely found under atmospheric conditions, the experimental determined concentration dependency of surface tension is limited up to the saturated concentration range due to technical difficulties, i.e., heterogeneous nucleation since nearly all surface tension measurement techniques requires contact of the sensor and solution surface. In this study, the surface tension of NaCl aqueous solution with solute mass fraction from 0 to 1 was calculated using molecular dynamics (MD) simulation. The surface tension increases monotonically and near linearly when mass fraction of NaCl (xNaCl) is lower than 0.265 (saturation point), which follows theoretical predictions (e.g., E-AIM, SP parameterization, and PK parameterization). Once entering into the supersaturated concentration range, the calculated surface tension starts to deviate from the near-linear extrapolation and adopts a slightly higher increasing rate until xNaCl of 0.35. We found that these two increasing phases (xNaCl 0.35) is mainly driven by the increase of excessive surface enthalpy when the solution becomes concentrated. After that, the surface tension remains almost unchanged until xNaCl of 0.52. This phenomenon is supported by the results from experiment based Differential Koehler Analyses. The stable surface tension in this concentration range is attributed to a simultaneous change of surface excess enthalpy and entropy at similar degree. When the NaCl solution is getting more concentrated than xNaCl of 0.52, the simulated surface tension regains an even faster growing momentum and shows the tendency of ultimately approaching the surface

  3. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  4. Structure and orientation of small particles of platinum deposited on NaCl and mica

    NASA Technical Reports Server (NTRS)

    Renou, A.; Gillet, M.

    1979-01-01

    The structure of small platinum particles condensed in vacuum onto NaCl (001), NaCl (111) and mica substrates was studied by electron diffraction and electron microscopy. Results show that above a certain substrate temperature decahedral or icosahedral particles are formed. These particles are practically absent with substrates cleaved in high vacuum. They are always much less numerous than in gold films prepared under the same conditions. Assumptions made to explain this phenomenon are: (1) the initial growth of an abnormal structure of the nuclei as opposed by the substrate; (2) the particles disappear before they attain a size which corresponds to the observations; and (3) the particles result from a coalescence mechanism leading to multiple twinned particles.

  5. A flow-free droplet-based device for high throughput polymorphic crystallization.

    PubMed

    Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi

    2015-06-21

    Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing

  6. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solutions to 350°C

    NASA Astrophysics Data System (ADS)

    Horita, Juske; Cole, David R.; Wesolowski, David J.

    1995-03-01

    The effect of dissolved NaCl on equilibrium oxygen and hydrogen isotope fractionation factors between liquid water and water vapor was precisely determined in the temperature range from 130-350°C, using two different types of apparatus with static or dynamic sampling techniques of the vapor phase. The magnitude of the oxygen and hydrogen isotope effects of NaCl is proportional to the molality of liquid NaCl solutions at a given temperature. Dissolved NaCl lowers appreciably the hydrogen isotope fractionation factor between liquid water and water vapor over the entire temperature range. NaCl has little effect on the oxygen isotope fractionation factor at temperatures below about 200°C, with the magnitude of the salt effect gradually increasing from 200-350°C. Our results are at notable variance with those of Truesdell (1974) and Kazahaya (1986), who reported large oxygen and hydrogen isotope effects of NaCl with very complex dependencies on temperature and NaCl molality. Our high-temperature results have been regressed along with our previous results between 50 and 100°C (Horita et al., 1993a) and the low-temperature literature data to simple equations which are valid for NaCl solutions from 0 to at least 5 molal NaCl in the temperature range from 10-350°C. Our preliminary results of oxygen isotope fractionation in the system CaCO3-water ± NaCl at 300°C and 1 kbar are consistent with those obtained from the liquid-vapor equilibration experiments, suggesting that the isotope salt effects are common to systems involving brines and any other coexisting phases or species (gases, minerals, dissolved species, etc.). The observed NaCl isotope effects at elevated temperatures should be taken into account in the interpretation of isotopic data of brine-dominated natural systems.

  7. Measuring Solvent Content of Macromolecular Crystals Using Fluorescence Recovery after Photobleaching

    NASA Astrophysics Data System (ADS)

    Siewny, Matthew; Kmetko, Jan

    2010-10-01

    We work out a novel protocol for measuring the solvent content (the fraction of crystal volume occupied by solvent) in biological crystals by the technique of fluorescence recovery after photobleaching (FRAP). Crystals of proteins with widely varying known solvent content (lysozyme, thaumatin, catalase, and ferritin) were grown in their native solution doped with sodium fluorescein dye and hydroxylamine (to prevent dye from binding to amine groups of the proteins.) The crystals were irradiated by a broadband, high intensity light through knife slits, leaving a rectangular area of bleached dye within the crystals. Measuring the flow of dye out of the bleached area allowed us to construct a curve relating the diffusion coefficient of dye to the channel size within the crystals, by solving the diffusion equation analytically. This curve may be used to measure the solvent content of any biological crystal in its native solution and help determine the number of proteins in the crystallographic asymmetric unit cell in x-ray structure solving procedures.

  8. Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.

    PubMed

    Li, D G; Wang, J D; Chen, D R; Liang, P

    2015-09-01

    The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides

    PubMed Central

    Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Watkins, G. Leonard; Breeman, Wouter A. P.

    2017-01-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [68Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time (< 15 min) and removal of organic solvents. The method produces high peptide-bound % (> 97%), and specific activity (> 40 MBq nmole−1 [68Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. PMID:23026223

  10. Purification, crystallization and preliminary X-ray diffraction studies on goat (Capra hircus) hemoglobin - a low oxygen affinity species.

    PubMed

    Moorthy, Ponnuraj Sathya; Neelagandan, Kamariah; Balasubramanian, Moovarkumudalvan; Ponnuswamy, Mondikalipudur Nanjappa Gounder

    2009-01-01

    Hemoglobin is a vital protein present in almost all higher species. It is a transport protein involved in carrying oxygen from lungs to tissues and carbon dioxide back to lungs by an intrinsically coordinated manner. Even though a good amount of work has been carried out in this direction there exists scarcity of structural insight on low oxygen affinity species. Attempts are being made to unravel the structural insight of this low oxygen affinity species. Goat blood plasma was collected, treated with EDTA to avoid blood clotting and purification was accomplished using DEAE-anion chromatographic column. The goat hemoglobin was crystallized using 50mM of phosphate buffer at pH 6.7 with 1M NaCl and PEG 3350 as precipitant by hanging drop vapor diffusion method. Crystals obtained are screened and suitable crystals are taken for data collection using mar345dtb as image plate detector system. Goat hemoglobin crystal diffracted up to 2.61 A resolution. Goat hemoglobin crystallizes in orthorhombic space group P212(1)2(1) as a whole biological molecule in the asymmetric unit with cell dimensions a=53.568A, b=67.365A, c=154.183A.

  11. Kinetics of the current response in TlBr detectors under a high dose rate of {gamma}-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazizov, I. M., E-mail: gazizov@isotop.dubna.ru; Zaletin, V. M.; Kukushkin, V. M.

    2012-03-15

    The kinetics of the photocurrent response in doped and undoped TlBr samples subjected to irradiation with {gamma}-ray photons from a {sup 137}Cs source with the dose rate 0.033 to 3.84 Gy/min are studied. The crystals were grown by the directional crystallization of the melt method using the Bridgman-Stockbarger technique. The Pb impurity mass fraction introduced into the doped TlBr crystals was 1-10 ppm and amounted to 150 ppm for the Ca impurity. The crystals were grown in a vacuum, in bromine vapors, in a hydrogen atmosphere, and in air. Decay of the photocurrent is observed for extrinsic semiconductor crystals dopedmore » with bivalent cations (irrespective of the growth atmosphere), and also for crystals grown in hydrogen and crystals grown in an excess of thallium. The time constant of photocurrent decay {tau} amounted to 30-1400 s and was proportional to resistivity. It is shown that the current response can be related to photolysis in the TlBr crystals during irradiation with {gamma}-ray photons. The energy of hole traps responsible for a slow increase in the photo-current has been estimated and found to be equal to 0.6-0.85 eV.« less

  12. UV LED lighting for automated crystal centring

    PubMed Central

    Chavas, Leonard M. G.; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2011-01-01

    A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity. PMID:21169682

  13. A comparison of total inward leakage measured using sodium chloride (NaCl) and corn oil aerosol methods for air-purifying respirators.

    PubMed

    Rengasamy, Samy; Zhuang, Ziqing; Niezgoda, George; Walbert, Gary; Lawrence, Robert; Boutin, Brenda; Hudnall, Judith; Monaghan, William P; Bergman, Michael; Miller, Colleen; Harris, James; Coffey, Christopher

    2018-05-21

    The International Organization for Standardization (ISO) standard 16900-1:2014 specifies the use of sodium chloride (NaCl) and corn oil aerosols, and sulfur hexafluoride gas for measuring total inward leakage (TIL). However, a comparison of TIL between different agents is lacking. The objective of this study was to measure and compare TIL for respirators using corn oil and NaCl aerosols. TIL was measured with 10 subjects donning two models of filtering facepiece respirators (FFRs) including FFP1, N95, P100, and elastomeric half-mask respirators (ERs) in NaCl and corn oil aerosol test chambers, using continuous sampling methods. After fit testing with a PortaCount (TSI, St. Paul, MN) using the Occupational Safety and Health Administration (OSHA) protocol, five subjects were tested in the NaCl chamber first and then in the corn oil chamber, while other subjects tested in the reverse order. TIL was measured as a ratio of mass-based aerosol concentrations in-mask to the test chamber, while the subjects performed ISO 16900-1-defined exercises. The concentration of NaCl aerosol was measured using two flame photometers, and corn oil aerosol was measured with one light scattering photometer. The same instruments were used to measure filter penetration in both chambers using a Plexiglas® setup. The size distribution of aerosols was determined using a scanning mobility particle sizer and charge was measured with an electrometer. Filter efficiency was measured using an 8130 Automated Filter Tester (TSI). Results showed the geometric mean TIL for corn oil aerosol for one model each of all respirator categories, except P100, were significantly (p<0.05) greater than for NaCl aerosol. Filter penetration in the two test chambers showed a trend similar to TIL. The count median diameter was ∼82 nm for NaCl and ∼200 nm for corn oil aerosols. The net positive charge for NaCl aerosol was relatively larger. Both fit factor and filter efficiency influence TIL measurement. Overall

  14. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Sumida, John

    2000-01-01

    -association process is a function of the protein concentration relative to the saturation concentration, and observing it in dilute solution (conc. less than or equal to 10(exp -5)M) requires that the experiments be performed under low solubility conditions, i.e., low temperatures and high salt concentrations. Data from preliminary steady state FRET studies with N-terminal bound pyrene acetic acid (PAA-lys, donor, Ex 340 nm, Em 376 nm) and asp101 LY-lys as an acceptor showed a consistent trend of decreasing donor fluorescence intensity with increasing total protein concentration. The FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding C(sub sat) values are 0.471 and 0.362 mg/ml (approx. 3.3 and approx. 2.5 x 10(exp -5)M respectively). The donor fluorescence decrease is more pronounced at7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations as reflected in the lower solubility. Results from these and other ongoing studies will be discussed in conjunction with an emerging model for how tetragonal lysozyme crystals nucleate and the relevance of that model to other proteins.

  15. H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium

    NASA Astrophysics Data System (ADS)

    Aranovich, L. Y.; Newton, R. C.

    1996-10-01

    H2O activities in concentrated NaCl solutions were measured in the ranges 600° 900° C and 2 15 kbar and at NaCl concentrations up to halite saturation by depression of the brucite (Mg(OH)2) periclase (MgO) dehydration equilibrium. Experiments were made in internally heated Ar pressure apparatus at 2 and 4.2 kbar and in 1.91-cm-diameter piston-cylinder apparatus with NaCl pressure medium at 4.2, 7, 10 and 15 kbar. Fluid compositions in equilibrium with brucite and periclase were reversed to closures of less than 2 mol% by measuring weight changes after drying of punctured Pt capsules. Brucite-periclase equilibrium in the binary system was redetermined using coarsely crystalline synthetic brucite and periclase to inhibit back-reaction in quenching. These data lead to a linear expression for the standard Gibbs free energy of the brucite dehydration reaction in the experimental temperature range: ΔG° (±120J)=73418 134.95 T(K). Using this function as a baseline, the experimental dehydration points in the system MgO-H2O-NaCl lead to a simple systematic relationship of high-temperature H2O activity in NaCl solution. At low pressure and low fluid densities near 2 kbar the H2O activity is closely approximated by its mole fraction. At pressures of 10 kbar and greater, with fluid densities approaching those of condensed H2O, the H2O activity becomes nearly equal to the square of its mole fraction. Isobaric halite saturation points terminating the univariant brucite-periclase curves were determined at each experimental pressure. The five temperature-composition points in the system NaCl-H2O are in close agreement with the halite saturation curves (liquidus curves) given by existing data from differential thermal analysis to 6 kbar. Solubility of MgO in the vapor phase near halite saturation is much less than one mole percent and could not have influenced our determinations. Activity concentration relations in the experimental P-T range may be retrieved for the binary

  16. Signaling role of phospholipid hydroperoxide glutathione peroxidase (PHGPX) accompanying sensing of NaCl stress in etiolated sunflower seedling cotyledons.

    PubMed

    Jain, Prachi; Bhatla, Satish C

    2014-01-01

    Sunflower seedlings subjected to 120 mM NaCl stress exhibit high total peroxidase activity, differential expression of its isoforms and accumulation of lipid hydroperoxides. This coincides with high specific activity of phospholipid hydroperoxide glutathione peroxidase (PHGPX) in the 10,000g supernatant from the homogenates of 2-6 d old seedling cotyledons. An upregulation of PHGPX activity by NaCl is evident from Western blot analysis. Confocal laser scanning microscopic (CLSM) analysis of sections of cotyledons incubated with anti-GPX4 (PHGPX) antibody highlights an enhanced cytosolic accumulation of PHGPX, particularly around the secretory canals. Present work, thus, highlights sensing of NaCl stress in sunflower seedlings in relation with lipid hydroperoxide accumulation and its scavenging through an upregulation of PHGPX activity in the cotyledons.

  17. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens

    NASA Astrophysics Data System (ADS)

    Kakiuchida, Hiroshi; Ogiwara, Akifumi

    2018-04-01

    Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.

  18. Low pH-Induced Pore Formation by the T Domain of Botulinum Toxin Type A is Dependent upon NaCl Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Swaminathan, S.; Agarwal, R.

    2010-07-19

    Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30more » mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.« less

  19. Multiple ion beam irradiation for the study of radiation damage in materials

    NASA Astrophysics Data System (ADS)

    Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.

    2017-12-01

    The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.

  20. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films

    PubMed Central

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-01-01

    The structure evolution and crystallization processes of Sb2Te-TiO2 films have been investigated. The Sb2Te-rich nanocrystals, surrounded by TiO2 amorphous phases, are observed in the annealed Sb2Te-TiO2 composite films. The segregated domains exhibit obvious chalcogenide/TiOx interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge2Sb2Te5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb2Te)94.7(TiO2)5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb2Te)94.7(TiO2)5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications. PMID:28397858

  1. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films.

    PubMed

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-04-11

    The structure evolution and crystallization processes of Sb 2 Te-TiO 2 films have been investigated. The Sb 2 Te-rich nanocrystals, surrounded by TiO 2 amorphous phases, are observed in the annealed Sb 2 Te-TiO 2 composite films. The segregated domains exhibit obvious chalcogenide/TiO x interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge 2 Sb 2 Te 5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications.

  2. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants

    PubMed Central

    Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A.; Abd_Allah, Elsayed F.; Alqarawi, A. A.; Alyemeni, Mohammed N.; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462

  3. Ion induced crystallization and grain growth of hafnium oxide nano-particles in thin-films deposited by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dhanunjaya, M.; Khan, S. A.; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2017-12-01

    We report on the swift heavy ion (SHI) irradiation induced crystallization and grain growth of HfO2 nanoparticles (NPs) within the HfO2 thin-films deposited by radio frequency (RF) magnetron sputtering technique. As grown films consisted of amorphous clusters of non-spherical HfO2 NPs. These amorphous clusters are transformed to crystalline grains under 100 MeV Ag ion irradiation. These crystallites are found to be spherical in shape and are well dispersed within the films. The average size of these crystallites is found to increase with fluence. Pristine and irradiated films have been characterized by high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), grazing incident x-ray diffraction (GIXRD) and photo luminescence (PL) measurements. The PL measurements suggested the existence of different types of oxygen related defects in pristine and irradiated samples. The observed results on crystallization and grain growth under the influence of SHI are explained within the framework of thermal spike model. The results are expected to provide useful information for understanding the electronic excitation induced crystallization of nanoparticles and can lead to useful applications in electronic and photonic devices.

  4. Effect of temperature on the formation of creep substructure in sodium chloride single crystals

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Pharr, George M.

    1992-01-01

    The effect of temperature on the substructure morphology and the cell and subgrain size was investigated experimentally in NaCl single crystals under creep in the temperature range 573-873 K. It is found that the effect of temperature on the cell and subgrain sizes is weak in comparison with the effect of stress. However, there was a qualitative change in the substructure morphology with temperature, with the cells and subgrains better defined at higher temperatures. The volume fraction of the cell boundaries decreased with increasing temperature, thereby indicating a refinement of the microstructure at higher temperatures.

  5. Calcium ascorbate as a potential partial substitute for NaCl in dry fermented sausages: effect on colour, texture and hygienic quality at different concentrations.

    PubMed

    Gimeno, O; Astiasarán, I; Bello, J

    2001-01-01

    A control product (2.6% NaCl) and different treatments with reduced levels of salt (1, 2.3% NaCl; 2, 2.0% NaCl; 3, 1.7% NaCl; 4, 1.4% NaCl) and increased amounts of calcium ascorbate with an equivalent ionic strength to that of the control were assayed. The percentages of reduction of sodium content in relation to the control were 15, 24, 37 and 45% and the supply of calcium was 26, 33, 42 and 50% of the Recommended Dietary Allowance (RDAs established by NRC, US) for treatments 1, 2, 3 and 4, respectively. Partial substitution of NaCl by calcium ascorbate caused higher acidification related with the higher lactic acid bacteria development and probably with the presence of calcium. The instrumental measurement of colour gave rise to some significant differences especially with the highest amount of calcium ascorbate (treatment 4), giving rise to significant higher a* and b* values and lower L* values in relation to the control. Treatments 2, 3 and 4 lead to products with lower hardness and gumminess values than the control. No problems related to the hygienic quality were observed.

  6. Growth of high-quality thin-film Ge single crystals by plasma-enhanced chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Hopson, P., Jr.

    1986-01-01

    Thin-film Ge single crystals (approx. 10 microns) have been epitaxially grown on polished NaCl(100) substrates at 450C by using plasma-enhanced chemical vapor deposition. Films on approximately 1 sq cm and larger were separated from the NaCl by either melting the salt or by differential shear stress upon cooling to room temperature. The ordered growth of the Ge was found to be most sensitive to the initial plasma power and to the continuum flow dynamics within the carbon susceptor. The films were visually specular and exhibited a high degree of crysalline order when examined by X-ray diffraction. The films were found to be p-type with a carrier concentration of approximately 3 x 10 to the 16th power/cu cm, a resistivity of 0.11 ohm-cm, and a Hall hole mobility of 1820 sq cm/v/s at room temperature. Vacuum firing minimized the primary contaminant, Na, and corresponding lowered the carrier concentration to 4 x 10 to the 14th power/cu cm.

  7. Effects of Irradiation on Albite's Chemical Durability.

    PubMed

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-19

    Albite (NaAlSi 3 O 8 ), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar + -implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  8. Self-trapped holes in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Giles, N. C.; Halliburton, L. E.; Foundos, G. K.; Chang, K. B.; Stevens, K. T.

    2017-12-01

    We have experimentally observed self-trapped holes (STHs) in a β-Ga2O3 crystal using electron paramagnetic resonance (EPR). These STHs are an intrinsic defect in this wide-band-gap semiconductor and may serve as a significant deterrent to producing usable p-type material. In our study, an as-grown undoped n-type β-Ga2O3 crystal was initially irradiated near room temperature with high-energy neutrons. This produced gallium vacancies (acceptors) and lowered the Fermi level. The STHs (i.e., small polarons) were then formed during a subsequent irradiation at 77 K with x rays. Warming the crystal above 90 K destroyed the STHs. This low thermal stability is a strong indicator that the STH is the correct assignment for these new defects. The S = 1/2 EPR spectrum from the STHs is easily observed near 30 K. A holelike angular dependence of the g matrix (the principal values are 2.0026, 2.0072, and 2.0461) suggests that the defect's unpaired spin is localized on one oxygen ion in a nonbonding p orbital aligned near the a direction in the crystal. The EPR spectrum also has resolved hyperfine structure due to equal and nearly isotropic interactions with 69,71Ga nuclei at two neighboring Ga sites. With the magnetic field along the a direction, the hyperfine parameters are 0.92 mT for the 69Ga nuclei and 1.16 mT for the 71Ga nuclei.

  9. Evolution of Helium Bubbles and Discs in Irradiated 6H-SiC during Post-Implantation Annealing.

    PubMed

    Shen, Qiang; Zhou, Wei; Ran, Guang; Li, Ruixiang; Feng, Qijie; Li, Ning

    2017-01-24

    The single crystal 6H-SiC with [0001] crystal direction irradiated by 400 keV He⁺ ions with 1 × 10 17 ions/cm² fluence at 400 °C were annealed at 600, 900, 1200 and 1400 °C for different durations. The evolution of helium bubbles and discs was investigated by transmission electron microscopy. An irradiated layer distributed with fine helium bubbles was formed with a width of ~170 nm after helium ion irradiation. The size of gas bubbles increased with increasing annealing time and temperature and finally reached stable values at a given annealing temperature. According to the relationship between the bubble radii and annealing time, an empirical formula for calculating the bubble radii at the annealing temperature ranged from 600 to 1400 °C was given by fitting the experiment data. Planar bubble clusters (discs) were found to form on (0001) crystal plane at both sides of the bubble layer when the annealing temperature was at the range of 800-1200 °C. The mechanism of bubble growth during post-implantation annealing and the formation of bubble discs were also analyzed and discussed.

  10. Localized excitons in fluoroperovskite LiBaF3 crystals

    NASA Astrophysics Data System (ADS)

    Springis, Maris; Trukhin, Anatoly N.; Tale, Ivar

    2003-08-01

    Two radiating processes in LiBaF3 crystals, fast valence-core transitions (5.4 - 6.5 eV) and slow, so called self-trapped exciton luminescence (about 4.3 eV), are important for practical application. Here we present a study of 4.3 eV luminescence under X-ray excitation and photoexcitation as well as under photostimulation after X-irradiation of undoped and Ag-doped LiBaF3 crystals at various temperatures. It is shown that 4.3 eV luminescence appears under X-ray excitation at least from 85 K to 400 K in both undoped and doped crystals. In all samples studied the excitation spectra of 4.3 eV luminescence contain both the main exciton like band at the edge of fundamental absorption at about 10 eV and weaker band in 7.8 - 8.6 eV region. Luminescence spectrum in the 3.8 - 4.8 eV region under 7.8 - 8.6 eV excitation differs slightly from that under 10 eV excitation. Several luminescence bands in 3.8 - 4.8 eV region arises in the temperature range 85 - 230 K under photostimulation in absorption band of F-type center at 2.9 eV created previously under X-irradiation. We propose the luminescence of LiBaF3 crystals in the 3.8 - 4.8 eV region may be caused by localized excitons formed not only under excitation near the fundamental absorption but also in result of electron recombination with localized holes thermally destroyed above 230 K.

  11. Enhancement of the sulfur capture capacity of limestones by the addition of Na2CO3 and NaCl.

    PubMed

    Laursen, K; Grace, J R; Lim, C J

    2001-11-01

    The ability of Na2CO3 and NaCl to enhance the sulfur capture capacity of three limestones was evaluated via fixed-bed calcination and sulfation experiments. The tested limestones represent three different sulfation morphologies: unreacted-core, network, and uniformly sulfated. Treatment with aqueous or powdered Na2CO3 significantly increased the Ca-utilization for two stones which normally sulfate in an unreacted-core pattern (20% to 45%) and network pattern (33% to 49%). The increase was lower for the uniformly sulfated stone (44% to 48%). Na2CO3 treatment increased the number of macropores leading to uniform sulfation of all particles, nearly eliminating the normal strong dependence of utilization on limestone type and particle size. The effect of Na2CO3 is believed to be associated with formation of a eutectic melt which enhances ionic diffusion and accelerates molecular rearrangement of the CaO. Treatment with aqueous NaCl solution caused a decrease in utilization, probably due to formation of large grains and plugging of pores caused by formation of a large amount of eutectic melt. The effect of Na2CO3 is less sensitive than that of NaCl to the amount added and the combustion environment (temperature and gas composition). In addition, Na2CO3 neither promotes corrosion nor forms chlorinated byproducts, which are main concerns associated with NaCl. Thus, Na2CO3 appears to have significant advantages over NaCl for enhancement of limestone sulfur capture capacity in fluidized-bed combustors.

  12. Effect of surface treatments on self-trapped exciton luminescence in single-crystal CaF2

    NASA Astrophysics Data System (ADS)

    Cramer, L. P.; Cumby, T. D.; Leraas, J. A.; Langford, S. C.; Dickinson, J. T.

    2005-05-01

    We show that near-surface defects produced by mechanical treatments and electron irradiation can significantly enhance the intensity of luminescence due to the decay of self-trapped excitons (STEs) in single-crystal calcium fluoride during 157- and 193-nm irradiation. For example, polishing can double the intensity of the STE luminescence. Defects produced by mechanical indentation can either increase or decrease the luminescence intensity, depending on the indentation force. Electron irradiation also enhances subsequent STE luminescence. When electron-irradiated samples are annealed, additional increases in luminescence intensity are observed. Plausible mechanisms for the observed effects on STE luminescence intensity are discussed.

  13. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    PubMed

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate.

  14. Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique

    NASA Astrophysics Data System (ADS)

    Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.

  15. The role of NaCl in flame chemistry, in the deposition process, and in its reactions with protective oxides as related to hot corrosion

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium chloride is believed to be the primary source of turbine engine contamination that contributes to hot corrosion. The behavior of NaCl-containing aerosols ingested with turbine intake air is very complex; some of the NaCl may vaporize during combustion while some may remain as particulates. The NaCl can lead to Na2SO4 formation by several possible routes or it can contribute to corrosion directly. Hydrogen or oxygen atom reaction with NaCl(c) was shown to result in the release of Na(g). Gaseous NaCl in flames can be partially converted to gaseous Na2SO4 by homogeneous reactions. The remaining gaseous NaCl and other Na-containing molecules can act as sodium carriers for condensate deposition of Na2SO4 on cool surfaces. A frozen boundary layer theory was developed to predict the rates of deposition. The condensed phase NaCl can be converted directly to condensed Na2SO4 by reaction with sulfur oxides and O2. Reaction of gaseous NaCl with Cr2O3 results in the vapor phase transport of chromium by the formation of complex Cr-containing gaseous molecules. Similar gaseous complexes are formed with molybdenum. The presence of gaseous NaCl was shown to affect the oxidation kinetics of Ni-Cr alloys. It also causes changes in the surface morphology of Al2O3 scales formed on Al-containing alloys.

  16. Regulated partitioning of fixed carbon (14C), sodium (Na+), potassium (K+) and glycine betaine determined salinity stress tolerance of gamma irradiated pigeonpea [Cajanus cajan (L.) Millsp].

    PubMed

    Kumar, Pankaj; Sharma, Vasundhara; Atmaram, Chobhe Kapil; Singh, Bhupinder

    2017-03-01

    Soil salinity is a major constraint that limits legume productivity. Pigeonpea is a salt sensitive crop. Seed gamma irradiation at a very low dose (2.5 Gy) is known to enhance seedling establishment, plant growth and yield of cereals and other crops. The present study conducted using two genetically diverse varieties of pigeonpea viz., Pusa-991 and Pusa-992 aimed at establishing the role of pre-sowing seed gamma irradiation at 0, 0.0025, 0.005, 0.01, 0.02, 0.05 and 0.1 kGy on plant growth, seed yield and seed quality under salt stress at 0, 80 and 100 mM NaCl (soil solution EC equivalent 1.92, 5.86 and 8.02 dS/m, respectively) imposed right from the beginning of the experiment. Changes in carbon flow dynamics between shoot and root and concentration of osmolyte, glycine betaine, plant uptake and shoot and root partitioning of Na + and K + and activity of protein degrading enzyme protease were measured under the combined effect of gamma irradiation and salt stress. Positive affect of pre-sowing exposure of seed to low dose of gamma irradiation (<0.01 kGy) under salt stress was evident in pigeonpea. Pigeonpea variety, Pusa-992 showed a better salt tolerance response than Pusa-991 and that the radiated plants performed better than the unirradiated plants even at increasing salinity level. Seed yield and seed protein and iron content were also positively affected by the low dose gamma irradiation under NaCl stress. Multiple factors interacted to determine physiological salt tolerance response of pigeonpea varieties. Gamma irradiation caused a favourable alteration in the source-sink (shoot-root) partitioning of recently fixed carbon ( 14 C) under salt stress in pigeonpea. Gamma irradiation of seeds prior to sowing enhanced glycine betaine content and reduced protease activity at 60-day stage under various salt stress regimes. Lower partitioning of Na + and relatively higher accumulation of K + under irradiation treatment was the other important determinants that

  17. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  18. Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl

    NASA Astrophysics Data System (ADS)

    Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat

    2015-09-01

    Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.

  19. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    PubMed

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  20. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-09-01

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery.

  1. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  2. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; ...

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  3. 2D mesoscale colloidal crystal patterns on polymer substrates

    NASA Astrophysics Data System (ADS)

    Bredikhin, Vladimir; Bityurin, Nikita

    2018-05-01

    The development of nanosphere lithography relies on the ability of depositing 2D colloidal crystals comprising micro- and nano-size elements on substrates of different materials. One of the most difficult problems here is deposition of coatings on hydrophobic substrates, e.g. polymers, from aqueous colloidal solutions. We use UV photooxidation for substrate hydrophilization. We demonstrate a new method of producing a two-dimensional ordered array of polymer microparticles (polystyrene microspheres ∼1 μm in diameter) on a polymer substrate (PMMA). We show that implementation of the new deposition technique for directed self-assembly of microspheres on an UV irradiated surface provides an opportunity to obtain coatings on a hydrophilized PMMA surface of large area (∼5 cm2). UV irradiation of the surface through masks allows creating 2D patterns consisting of mesoscale elements formed by the deposited self-assembled microparticles owing to the fact that the colloidal particles are deposited only on the irradiated area leaving the non-irradiated sections intact.

  4. Research on the optical spectra, g factors and defect structures for two tetragonal Y²+ centers in the irradiated CaF₂: Y crystal.

    PubMed

    Zheng, Wen-Chen; Mei, Yang; Yang, Yu-Guang; Liu, Hong-Gang

    2012-11-01

    Based on the defect models that the tetragonal Y(2+) (1) center in the irradiated CaF(2): Y crystal is due to Y(2+) at Ca(2+) site associated with a nearest interstitial F(-) ion along C(4) axis and the tetragonal Y(2+) (2) center is Y(2+) at Ca(2+) site where the tetragonal distortion is caused by the static Jahn-Teller effect, the two optical spectral bands and anisotropic g factors for both tetragonal Y(2+) centers are calculated. The calculations are made by using two methods based on the cluster approach, one is the complete diagonalization (of energy matrix) method (CDM) and another is the perturbation theory method (PTM). The calculated results for each Y(2+) center from CDM and PTM coincide and show reasonable agreement with the experimental values. The calculated isotropic g factor for Y(2+) (2) center at higher temperature owing to the dynamical Jahn-Teller effect is also consistent with the observed value. The defect structures (i.e., tetragonal distortion) of the two Y(2+) centers are obtained from the calculation. It appears that both theoretical methods can be applied to explain the optical and EPR data, to study the defect model and to determine the defect structures for d(1) ions in crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress.

    PubMed

    Li, Zhe; Wang, Wenwen; Li, Guilong; Guo, Kai; Harvey, Paul; Chen, Quan; Zhao, Zhongjuan; Wei, Yanli; Li, Jishun; Yang, Hetong

    2016-11-01

    Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.

  6. Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Wang, Haiyan; Kim, Ickchan

    2010-11-23

    Irradiation induced amorphization in nanocrystalline and single crystal 3C-SiC has been studied using 1 MeV Si+ ions under the identical irradiation conditions at room temperature and 400 K. The disordering behavior has been characterized using in-situ ion channeling and ex-situ x-ray diffraction methods. The results show that, compared to single crystal 3C-SiC, full amorphization of small 3C-SiC grains (~3.8 nm in size) occurs at a slightly lower dose at room temperature. For grains with sizes of 3.0 - 3.8 nm, the amorphization dose is lower at room temperature than 400 K. A significantly lower dose for amorphization of smaller grainsmore » (2.0 nm in size) is observed at 400 K. The behavior has been interpreted based on the competition between the interface and interior amorphization.« less

  7. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  8. Solubility of NaCl in water by molecular simulation revisited.

    PubMed

    Aragones, J L; Sanz, E; Vega, C

    2012-06-28

    In this paper, the solubility of NaCl in water is evaluated by using computer simulations for three different force fields. The condition of chemical equilibrium (i.e., equal chemical potential of the salt in the solid and in the solution) is obtained at room temperature and pressure to determine the solubility of the salt. We used the same methodology that was described in our previous work [E. Sanz and C. Vega, J. Chem. Phys. 126, 014507 (2007)] although several modifications were introduced to improve the accuracy of the calculations. It is found that the predictions of the solubility are quite sensitive to the details of the force field used. Certain force fields underestimate the experimental solubility of NaCl in water by a factor of four, whereas the predictions of other force fields are within 20% of the experimental value. Direct coexistence molecular dynamic simulations were also performed to determine the solubility of the salt. Reasonable agreement was found between the solubility obtained from free energy calculations and that obtained from direct coexistence simulations. This work shows that the evaluation of the solubility of salts in water can now be performed in computer simulations. The solubility depends on the ion-ion, ion-water, and water-water interactions. For this reason, the prediction of the solubility can be quite useful in future work to develop force fields for ions in water.

  9. Effect of concentration of hyaluronic acid and NaCl on corrosion behavior of 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Khobragade, Nilay N.; Giradkar, Karansagar V.; Patil, Awanikumar P.

    2017-11-01

    Due to low cost and easily available material, 316L stainless steel (SS) is used for biomedical implants. The electrochemical corrosion behavior of 316L (SS) was studied as a function of the concentration of simulated biological fluid (hyaluronic acid), the influence of Cl- and the combined effect of NaCl and hyaluronic acid (HA). For the electrochemical tests, potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were undertaken. With the increase in HA concentration, corrosion rate increases. Whereas, with the addition of NaCl to HA the solution, the corrosion resistance of the sample was enhanced. Also, in pure NaCl solution, the corrosion current density (i corr) increased as compared to bare HA and HA  +  NaCl. This is due to the adhesion property of the HA on the sample surface. EIS result agrees with the findings of potentiodynamic polarization tests. X-ray photoelectron spectroscopy (XPS) was executed to analyze the passive film formed in the solution of HA and NaCl on 316L SS. XPS spectra confirms the formation of the passive film containing chromium oxide and hydroxides. Also, the formation of MoO2 helps in improving better corrosion resistance. The peak of nitrogen was observed in the sample immersed in HA solution. Scanning electron microscope (SEM) was carried out to analyze the surface morphology.

  10. Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals

    NASA Astrophysics Data System (ADS)

    Kassem, M. E.; Hamed, A. E.; Abulnasr, L.; Abboudy, S.

    1994-11-01

    Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat ( Cp) technique. The obtained results showed an interesting dependence of the critical behavior of Cp on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (γ-type) to a first order transition. After γ-irradiation, the behavior of Cp around the phase transition region was essentially affected. The transition temperature, Tc, decreased and Δ Cp depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect.

  11. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    NASA Astrophysics Data System (ADS)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  12. Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo; Kwok, W.; Welp, U.; Graf, D.; Brooks, J. S.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.

    2013-08-01

    Irradiation with 1.4 GeV 208Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe1-xCox)2As2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x=0.108 and x=0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of Bϕ=6 T and 6.5 T with doses 2.22×1011 d/cm2 and 2.4×1011 d/cm2, respectively, suppresses the superconducting Tc by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δλ(T)=ATn. Irradiation increases the magnitude of the prefactor A and decreases the exponent n, similar to the effect of irradiation in optimally-doped samples. This finding supports universal s± pairing in Ba(Fe1-xCox)2As2 compounds for the entire Co doping range.

  13. Extremely Halophilic Bacteria in Crystallizer Ponds from Solar Salterns

    PubMed Central

    Antón, Josefa; Rosselló-Mora, Ramón; Rodríguez-Valera, Francisco; Amann, Rudolf

    2000-01-01

    It is generally assumed that hypersaline environments with sodium chloride concentrations close to saturation are dominated by halophilic members of the domain Archaea, while Bacteria are not considered to be relevant in this kind of environment. Here, we report the high abundance and growth of a new group of hitherto-uncultured Bacteria in crystallizer ponds (salinity, from 30 to 37%) from multipond solar salterns. In the present study, these Bacteria constituted from 5 to 25% of the total prokaryotic community and were affiliated with the Cytophaga-Flavobacterium-Bacteroides phylum. Growth was demonstrated in saturated NaCl. A provisional classification of this new bacterial group as “Candidatus Salinibacter gen. nov.” is proposed. The perception that Archaea are the only ecologically relevant prokaryotes in hypersaline aquatic environments should be revised. PMID:10877805

  14. Effect of gamma irradiation on Korean traditional multicolored paintwork

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Kim, Dae-Woon; Choi, Jong-il; Chung, Yong-Jae; Kang, Dai-Ill; Hoon Kim, Gwang; Son, Kwang-Tae; Park, Hae-Jun; Lee, Ju-Woon

    2015-10-01

    Gamma irradiation can destroy fungi and insects involved in the bio-deterioration of organic cultural heritages. However, this irradiation procedure can alter optical and structural properties of historical pigments used in wooden cultural heritage paintings. The crystal structure and color centers of these paintings must be maintained after application of the irradiation procedure. In this study, we investigated the effects of gamma irradiation on Korean traditional multicolored paintwork (Dancheong) for the preservation of wooden cultural heritages. The main pigments in Korean traditional wooden cultural heritages, Sukganju (Hematite; Fe2O3), Jangdan (Minium; Pb3O4), Whangyun (Crocoite; PbCrO4), and Jidang (Rutile; TiO2), were irradiated by gamma radiation at doses of 1, 5, and 20 kGy. After irradiation, changes in Commision Internationale d'Eclairage (CIE) color values (L*, a*, b*) were measured using the color difference meter, and their structural changes were analyzed using X-ray diffraction (XRD) analysis. The slightly change in less than 1 dE* unit by gamma irradiation was observed, and structural changes in the Dancheong were stable after exposure to 20 kGy gamma irradiation. In addition, gamma irradiation could be applied to painted wooden cultural properties from the Korean Temple. Based on the color values, gamma irradiation of 20 kGy did not affect the Dancheong and stability was maintained for five months. In addition, the fungicidal and insecticidal effect by less than 5 kGy gamma irradiation was conformed. Therefore, the optical and structural properties of Dancheong were maintained after gamma irradiation, which suggested that gamma irradiation can be used for the preservation of wooden cultural heritages painted with Dancheong.

  15. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE PAGES

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...

    2017-04-13

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  16. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  17. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai

    2017-07-01

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  18. Effects of NaCl and CaCl2 on Water Transport across Root Cells of Maize (Zea mays L.) Seedlings 1

    PubMed Central

    Azaizeh, Hassan; Gunse, Benito; Steudle, Ernst

    1992-01-01

    The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2

  19. Lattice damage and Al-metal precipitation in 2.5 MeV-electron-irradiated AlH3

    NASA Astrophysics Data System (ADS)

    Zogal, O. J.; Vajda, P.; Beuneu, F.; Pietraszko, A.

    1998-04-01

    AlH3 powder was bombarded with energetic electrons at 20 K and at room temperature and investigated by EPR, NMR, X-ray diffractometry, and microwave dielectric-constant measurements. The EPR spectra of the irradiated powder and of a selected single crystal cuboid of ˜ {10^{ - 1}} mm edge show a complex asymmetric line centered at g = 2.009, with a Curie-like temperature dependence, attributed to radiation-induced color centers and/or their agglomerates. At the same time, the grains, which have become shiny black after irradiation, exhibit an increase of both the real and the imaginary part of ɛ. 27Al-NMR spectra of the irradiated powder present a Knight-shifted line at 1600(50) ppm, close to the position of bulk metallic Al, and corresponding to a concentration of c(Al) ˜ {10^{ - 1}}. In addition, the main hydride line differs from that before irradiation, demonstrating an alteration of environmental symmetry. The irradiation induces also a change in shape and width of the 1H-NMR line, another indication of symmetry change in the lattice. Finally, a refined X-ray single-crystal structure analysis of the irradiated cuboid indicates a change of structure from trigonal R -3 c to R -3, with a loss of mirror symmetry for the two Al sites caused by the introduction of Al-defects in the vicinity of one of them.

  20. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Mei, Xianxiu; Liu, Xiaofei; Wang, Cunxia; Wang, Younian; Dong, Chuang

    2012-12-01

    In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y2O3-stablized ZrO2 thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the "sealing" of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 μs, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm2, and pulsed numbers 30. 1050 °C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm2, ZrO2 ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the "sealing" effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm2, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal insulation performance of irradiated coating was improved.

  1. Phase transformations in ion-irradiated silicides

    NASA Technical Reports Server (NTRS)

    Hewett, C. A.; Lau, S. S.; Suni, I.; Hung, L. S.

    1985-01-01

    The present investigation has three objectives. The first is concerned with the phase transformation of CoSi2 under ion implantation and the subsequent crystallization characteristics during annealing, taking into account epitaxial and nonepitaxial recrystallization behavior. The second objective is related to a study of the general trend of implantation-induced damage and crystallization behavior for a number of commonly used silicides. The last objective involves a comparison of the recrystallization behavior of cosputtered refractory silicides with that of the ion-implanted silicides. It was found that epitaxial regrowth of ion-irradiated CoSi2 occurred for samples with an epitaxial seed left at the Si/CoSi2 interface. A structural investigation of CoSi2 involving transmission electron microscopy (TEM) showed that after high-dose implantation CoSi2 is amorphous.

  2. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  3. The effect of a solid surface on the segregation and melting of salt hydrates.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali

    2014-10-22

    Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.

  4. Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity.

    PubMed

    Voigt, Eduardo Luiz; Almeida, Tânia Dias; Chagas, Roberta Magalhães; Ponte, Luiz Ferreira Aguiar; Viégas, Ricardo Almeida; Silveira, Joaquim Albenísio Gomes

    2009-01-01

    Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.

  5. Reversible uptake of water on NaCl nanoparticles at relative humidity below deliquescence point observed by noncontact environmental atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bruzewicz, Derek A.; Checco, Antonio; Ocko, Benjamin M.; Lewis, Ernie R.; McGraw, Robert L.; Schwartz, Stephen E.

    2011-01-01

    The behavior of NaCl nanoparticles as a function of relative humidity (RH) has been characterized using non-contact environmental atomic force microscopy (e-AFM) to measure the heights of particles deposited on a prepared hydrophobic surface. Cubic NaCl nanoparticles with sides of 35 and 80 nm were found to take up water reversibly with increasing RH well below the bulk deliquescence relative humidity (DRH) of 75% at 23° C, and to form a liquid-like surface layer of thickness 2 to 5 nm, with measurable uptake ( >2 nm increase in particle height) beginning at 70% RH. The maximum thickness of the layer increased with increasing RH and increasing particle size over the range studied. The liquid-like behavior of the layer was indicated by a reversible rounding at the upper surface of the particles, fit to a parabolic cross-section, where the ratio of particle height to maximum radius of curvature increases from zero (flat top) at 68% RH to 0.7 ± 0.3 at 74% RH. These observations, which are consistent with a reorganization of mass on the solid NaCl nanocrystal at RH below the DRH, suggest that the deliquescence of NaCl nanoparticles is more complex than an abrupt first-order phase transition. The height measurements are consistent with a phenomenological model that assumes favorable contributions to the free energy of formation of a liquid layer on solid NaCl due both to van der Waals interactions, which depend partly upon the Hamaker constant, A_{{film}}, of the interaction between the thin liquid film and the solid NaCl, and to a longer-range electrostatic interaction over a characteristic length of persistence, ξ; the best fit to the data corresponded to A_{{film}} = 1 kT and ξ = 2.33 nm.

  6. Proximate composition of Karkadeh (Hibiscus sabdariffa) seeds and some functional properties of seed protein isolate as influenced by pH and NaCl.

    PubMed

    Salah, E O Mahgoub; Hayat, Z E Elbashir

    2009-05-01

    Seeds of an inbred line (B-11-90) of Karkadeh (Hibiscus sabdariffa) were investigated for their proximate composition (AOAC methods), nitrogen solubility and protein isolate (Karkadeh seed protein isolates [KSPI]) functional properties (standard methods). The fat and protein contents of the seeds were 22.43% and 32.46%, respectively. Nitrogen solubility was good in both water and 1.0 M NaCl at alkaline pH rather than at acidic pH, with better solubility at higher pH levels in water than in 1.0 M NaCl. The functional properties of the KSPI were as follows: water absorption capacity, 181 ml/100 g; fat absorption capacity, 110 ml/100 g; bulk density, 0.77 g/ml; and apparent viscosity (at 20 degrees C), 13.42 cps. KSPI showed a maximum foaming capacity at pH 12 and 1.6 M NaCl, a maximum emulsification capacity at pH 11 and 1.8 M NaCl, and a weaker foam stability at neutral pH than at acidic or alkaline pH, with a better foam stability at alkaline pH. The foam stability was considerably improved by treatment with 1.6 M NaCl.

  7. Atomistic simulation of defect formation and structure transitions in U-Mo alloys in swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kolotova, L. N.; Starikov, S. V.

    2017-11-01

    In irradiation of swift heavy ions, the defects formation frequently takes place in crystals. High energy transfer into the electronic subsystem and relaxations processes lead to the formation of structural defects and cause specific effects, such as the track formation. There is a large interest to understanding of the mechanisms of defects/tracks formation due to the heating of the electron subsystem. In this work, the atomistic simulation of defects formation and structure transitions in U-Mo alloys in irradiation of swift heavy ions has been carried out. We use the two-temperature atomistic model with explicit account of electron pressure and electron thermal conductivity. This two-temperature model describes ionic subsystem by means of molecular dynamics while the electron subsystem is considered in the continuum approach. The various mechanisms of structure changes in irradiation are examined. In particular, the simulation results indicate that the defects formation may be produced without melting and subsequent crystallization. Threshold stopping power of swift ions for the defects formation in irradiation in the various conditions are calculated.

  8. Evaporation of NaCl solution from porous media with mixed wettability

    NASA Astrophysics Data System (ADS)

    Bergstad, Mina; Shokri, Nima

    2016-05-01

    Evaporation of saline water from porous media is ubiquitous in many processes including soil salinization, crop production, and CO2 sequestration in deep saline acquirer. It is controlled by the transport properties of porous media, atmospheric conditions, and properties of the evaporating saline solution. In the present study, the effects of mixed wettability conditions on the general dynamics of water evaporation from porous media saturated with NaCl solution were investigated. To do so, we conducted a comprehensive series of evaporation experiments using sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. Our results showed that increasing fraction of hydrophobic grains in the mixed wettability sand pack had minor impact on the evaporative mass losses due to the presence of salt whose precipitation patterns were significantly influenced by the mixed wettability condition. Through macroscale and microscale investigations, we found formation of patchy efflorescence in the case of mixed wettability sand pack as opposed to crusty efflorescence in the case of completely hydrophilic porous media. Furthermore, the presence of salty water and hydrophobic grains in the sand pack significantly influenced the general dynamics and morphology of the receding drying front. Our results extend the understanding of the saline water evaporation from porous media with direct applications to various hydrological and engineering processes.

  9. Collision-Induced Dissociation of Electrosprayed NaCl Clusters: Using Molecular Dynamics Simulations to Visualize Reaction Cascades in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Schachel, Tilo D.; Metwally, Haidy; Popa, Vlad; Konermann, Lars

    2016-11-01

    Infusion of NaCl solutions into an electrospray ionization (ESI) source produces [Na( n+1)Cl n ]+ and other gaseous clusters. The n = 4, 13, 22 magic number species have cuboid ground state structures and exhibit elevated abundance in ESI mass spectra. Relatively few details are known regarding the mechanisms whereby these clusters undergo collision-induced dissociation (CID). The current study examines to what extent molecular dynamics (MD) simulations can be used to garner insights into the sequence of events taking place during CID. Experiments on singly charged clusters reveal that the loss of small neutrals is the dominant fragmentation pathway. MD simulations indicate that the clusters undergo extensive structural fluctuations prior to decomposition. Consistent with the experimentally observed behavior, most of the simulated dissociation events culminate in ejection of small neutrals ([NaCl] i , with i = 1, 2, 3). The MD data reveal that the prevalence of these dissociation channels is linked to the presence of short-lived intermediates where a relatively compact core structure carries a small [NaCl] i protrusion. The latter can separate from the parent cluster via cleavage of a single Na-Cl contact. Fragmentation events of this type are kinetically favored over other dissociation channels that would require the quasi-simultaneous rupture of multiple electrostatic contacts. The CID behavior of NaCl cluster ions bears interesting analogies to that of collisionally activated protein complexes. Overall, it appears that MD simulations represent a valuable tool for deciphering the dissociation of noncovalently bound systems in the gas phase.

  10. Effect of fast neutron, gamma-ray and combined radiations on the thermal decomposition of ammonium perchlorate single crystals

    NASA Technical Reports Server (NTRS)

    Herley, P. J.; Wang, C. S.; Varsi, G.; Levy, P. W.

    1974-01-01

    The thermal decomposition kinetics have been determined for ammonium perchlorate crystals subjected to a fast neutron irradiation or to a fast neutron irradiation followed by a gamma-ray irradiation. Qualitatively, the radiation induced changes are similar to those obtained in this and in previous studies, with samples exposed only to gamma rays. The induction period is shortened and the rate constants, obtained from an Avrami-Erofeyev kinetic analysis, are modified. The acceleratory period constant increases and the decay period constant decreases. When compared on an equal deposited energy basis, the fast neutron induced changes are appreciably larger than the gamma-ray induced changes. Some, or all, of the fast neutron induced effects might be attributable to the introduction of localized regions of concentrated radiation damage ('spikes') by lattice atom recoils which become thermal decomposition sites when the crystals are heated.

  11. Photo-Responsive Soft Ionic Crystals: Ion-Pairing Assemblies of Azobenzene Carboxylates.

    PubMed

    Yamakado, Ryohei; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro; Maeda, Hiromitsu

    2017-07-12

    This report delineates the design and synthesis of negatively charged azobenzene derivatives that form photo-responsive ion-pairing assemblies. The azobenzene carboxylates possessing aliphatic chains were prepared as photo-responsive anions that promote the formation of ion-pairing dimension-controlled assemblies, including mesophases, when used in conjunction with a tetrabutylammonium (TBA) cation. The photo-responsive properties of the ion pairs and the precursory carboxylic acids in the bulk state were examined by polarized optical microscopy (POM) and X-ray diffraction (XRD), demonstrating that liquid crystal (LC)-liquid and crystal-liquid phase transitions occurred, depending on the number and lengths of the aliphatic chains of each assembly. An ion pair exhibited photo-induced crystal-crystal phase transitions upon switching between two irradiation wavelengths (365/436 nm). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    PubMed

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  13. STXM-XANES Analysis of Organic Matter in Dark Clasts and Halite Crystals in Zag and Monahans Meteorites

    NASA Technical Reports Server (NTRS)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Nakato, A.; Kilcoyne, A. L. D.; Takeichi, Y.; Suga, H.; Miyamoto, C.; Rahman, Z.; Kobayashi, K.; hide

    2016-01-01

    Zag and Monahans meteorites (H5) contains xenolithic dark clasts and halite (NaCl) crystals [e.g., 1]. The proposed source of the H chondrites is asteroid 6 Hebe [2]. The modern orbits of 1 Ceres and 6 Hebe essentially cross, with aphelion/perihelion of Ceres and Hebe of 2.99/2.55 and 2.91/1.94 AU (Astronomical Units), respectively. Therefore, Ceres might be the source of the clasts and halite in Zag and Monahans meteorites. Recent results from NASA's Dawn mission shows that bright spots in Ceres's crater may be hydrated magnesium sulfate with some water ice, and an average global surface contains ammoniated phyllosilicates that is likely of outer Solar System origin. One dark clast and all halite crystals in Zag and Monahans meteorites contain carbon-rich particles. We report organic analyses of these carbon-rich particles using carbon, nitrogen, and oxygen X-ray absorption near edge structure (C-, N-, and O-XANES), in order to constrain the origin of the clast and halite crystals.

  14. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3.

    PubMed

    Wei, Xuetuan; Luo, Mingfang; Li, Wei; Yang, Liangrong; Liang, Xiangfeng; Xu, Lin; Kong, Peng; Liu, Huizhou

    2012-01-01

    Silver nanoparticles (AgNPs) were obtained by solar irradiation of cell-free extracts of Bacillusamyloliquefaciens and AgNO3. Light intensity, extract concentration, and NaCl addition influenced the synthesis of AgNPs. Under optimized conditions (solar intensity 70,000 lx, extract concentration 3 mg/mL, and NaCl content 2 mM), 98.23±0.06% of the Ag+ (1 mM) was reduced to AgNPs within 80 min, and the ζ-potential of AgNPs reached -70.84±0.66 mV. TEM (Transmission electron microscopy) and XRD (X-ray diffraction) analysis confirmed that circular and triangular crystalline AgNPs with mean diameter of 14.6 nm were synthesized. Since heat-inactivated extracts also mediated the formation of AgNPs, enzymatic reactions are likely not involved in AgNPs formation. A high absolute ζ-potential value of the AgNPs, possibly caused by interaction with proteins likely explains the high stability of AgNPs suspensions. AgNPs showed antimicrobial activity against Bacillussubtilis and Escherichiacoli in liquid and solid medium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Investigation into the role of NaCl deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1981-01-01

    Morphological aspects of the conversion to Na2SO4 of NaCl deposits over the temperature range 500-700 C, in air with added SO2 and H2O. Progress of the reaction was observed by withdrawing samples at various times and examining them under the scanning electron microscope using EDAX to assess the extent of chloride to sulfate conversion. These initial results show that the conversion to Na2SO4 proceeds directly on the sodium chloride surface as well as on the surrounding substrate due to evaporation of NaCl from the solid particle. The mechanism of this reaction could involve reaction in the vapor to produce Na2SO4 which then deposits, alternatively Na2SO4 could form directly on the substrate surface due to direct reaction there between the vapors NaCl, SO2 and O2.

  16. Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation

    NASA Astrophysics Data System (ADS)

    Milosavljević, M.; Milinović, V.; Peruško, D.; Grce, A.; Stojanović, M.; Pjević, D.; Mitrić, M.; Kovač, J.; Homewood, K. P.

    2011-10-01

    The effects of argon ion irradiation on structural changes in Ta/Ti multilayers deposited on Si wafers were investigated. The starting structures consisted of sputter deposited 10 alternate Ta (˜23 nm) and Ti (˜17 nm) layers of a total thickness ˜200 nm. They were irradiated at room temperature with 200 keV Ar +, to the fluences from 5 × 10 15 to 2 × 10 16 ions/cm 2. The projected ion range was around mid-depth of the multilayered structure, and maximum displacements per atom ˜130. It was found that, despite of the relatively heavy ion irradiation, individual nanocrystalline Ta and Ti layers remain unmixed, keeping the same level of interface planarity. The changes observed in the mostly affected region are increase in lateral dimensions of crystal grains in individual layers, and incorporation of bubbles and defects that cause some stretching of the crystal lattice. Absence of interlayer mixing is assigned to Ta-Ti immiscibility (reaction enthalpy Δ H f = +2 kJ/mol). It is estimated that up to ˜5 at.% interface mixing induced directly by collision cascades could be compensated by dynamic demixing due to chemical driving forces in the temperature relaxation regime. The results can be interesting towards developing radiation tolerant materials based on multilayered structures.

  17. Expression, purification, crystallization and preliminary X-ray analysis of the Met244Ala variant of catalase–peroxidase (KatG) from the haloarchaeon Haloarcula marismortui

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ten-i, Tomomi; Kumasaka, Takashi; Higuchi, Wataru

    2007-11-01

    The Met244Ala variant of the H. marismortui KatG enzyme was expressed in haloarchaeal host cells and purified to homogeneity. The variant was crystallized using the hanging-drop vapour-diffusion method with ammonium sulfate and NaCl as precipitants. The reddish-brown rod-shaped crystals obtained belong to the monoclinic space group C2, with unit-cell parameters a = 315.24, b = 81.04, c = 74.77 Å, β = 99.81°. The covalent modification of the side chains of Trp95, Tyr218 and Met244 within the active site of Haloarcula marismortui catalase–peroxidase (KatG) appears to be common to all KatGs and has been demonstrated to be particularly significant formore » its bifunctionality [Smulevich et al. (2006 ▶), J. Inorg. Biochem.100, 568–585; Jakopitsch, Kolarich et al. (2003 ▶), FEBS Lett.552, 135–140; Jakopitsch, Auer et al. (2003 ▶), J. Biol. Chem.278, 20185–20191; Jakopitsch et al. (2004 ▶), J. Biol. Chem.279, 46082–46095; Regelsberger et al. (2001 ▶), Biochem. Soc. Trans.29, 99–105; Ghiladi, Knudsen et al. (2005 ▶), J. Biol. Chem.280, 22651–22663; Ghiladi, Medzihradzky et al. (2005 ▶), Biochemistry, 44, 15093–15105]. The Met244Ala variant of the H. marismortui KatG enzyme was expressed in haloarchaeal host cells and purified to homogeneity. The variant showed a complete loss of catalase activity, whereas the peroxidase activity of this mutant was highly enhanced owing to an increase in its affinity for the peroxidatic substrate. The variant was crystallized using the hanging-drop vapour-diffusion method with ammonium sulfate and NaCl as precipitants. The reddish-brown rod-shaped crystals obtained belong to the monoclinic space group C2, with unit-cell parameters a = 315.24, b = 81.04, c = 74.77 Å, β = 99.81°. A crystal frozen using lithium sulfate as the cryoprotectant diffracted to beyond 2.0 Å resolution. Preliminary X-ray analysis suggests the presence of a dimer in the asymmetric unit.« less

  18. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostafiychuk, B. K.; Yaremiy, I. P., E-mail: yaremiy@rambler.ru; Yaremiy, S. I.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  19. Effect of Acacia Gum, NaCl, and Sucrose on Physical Properties of Lotus Stem Starch

    PubMed Central

    Gill, Balmeet Singh

    2014-01-01

    Consumer preferences in east Asian part of the world pave the way for consumption of lotus stem starch (LSS) in preparations such as breakfast meals, fast foods, and traditional confectioneries. The present study envisaged the investigation and optimization of additives, that is, acacia gum, sodium chloride (NaCl), and sucrose, on water absorption (WA), water absorption index (WAI), and water solubility index (WSI) of LSS employing response surface methodology (RSM). Acacia gum resulted in increased water uptake and swelling of starch; however, NaCl reduced the swelling power of starch by making water unavailable to starch and also due to starch-ion electrostatic interaction. Sucrose restricted the water absorption by binding free water and decreased amylose leaching by building bridges with starch chains and thus forming rigid structure. PMID:26904639

  20. Critical behavior of dilute NaCl in H2O

    USGS Publications Warehouse

    Pitzer, Kenneth S.; Bischoff, J.L.; Rosenbauer, R.J.

    1987-01-01

    The compositions of the saturated vapor and liquid phases are measured for the system NaCl-H2O at 380??C, which is close to the critical point of pure water. The shape of the phase equilibrium curve is classical, which confirms a conclusion reached earlier on the basis of less accurate data. This implies that the long-range forces introduced by the NaCl suppress the non-classical effects present in pure H2O. An empirical equation of a classical type fits these data. ?? 1987.

  1. Self-organized nanostructure formation on the graphite surface induced by helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Dutta, N. J.; Mohanty, S. R.; Buzarbaruah, N.; Ranjan, M.; Rawat, R. S.

    2018-06-01

    The effects of helium ion irradiation on the graphite surface are studied by employing a plasma focus device. The device emits helium ion pulse having energies in the range of a few keV to a few MeV and flux on the order of 1025 m-2 s-1 at 60 mm axial position from the anode tip. The field emission scanning electron microscopy confirms the formation of multi-modal spherical and elongated agglomerated structures on irradiated samples surface with increase in agglomerate size with increasing number of irradiation shots. The transient annealing in each irradiation was not enough to cause the Oswald ripening or sintering of particles into bigger particle or crystal size but only resulted in clustering. The atomic force micrographs reveal an increase in average surface roughness with increasing ion irradiation. The Raman study demonstrates increase in disordered D peak along with reduced crystallite size (La) with increasing number of irradiation shots.

  2. Purification, crystallization and preliminary X-ray diffraction of SecDF, a translocon-associated membrane protein, from Thermus thermophilus

    PubMed Central

    Tsukazaki, Tomoya; Mori, Hiroyuki; Fukai, Shuya; Numata, Tomoyuki; Perederina, Anna; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo; Vassylyev, Dmitry G.; Nureki, Osamu; Ito, Koreaki

    2006-01-01

    Thermus thermophilus has a multi-path membrane protein, TSecDF, as a single-chain homologue of Escherichia coli SecD and SecF, which form a translocon-associated complex required for efficient preprotein translocation and membrane-protein integration. Here, the cloning, expression in E. coli, purification and crystallization of TSecDF are reported. Overproduced TSecDF was solubilized with dodecylmaltoside, chromatographically purified and crystallized by vapour diffusion in the presence of polyethylene glycol. The crystals yielded a maximum resolution of 4.2 Å upon X-ray irradiation, revealing that they belonged to space group P43212. Attempts were made to improve the diffraction quality of the crystals by combinations of micro-stirring, laser-light irradiation and dehydration, which led to the eventual collection of complete data sets at 3.74 Å resolution and preliminary success in the single-wavelength anomalous dispersion analysis. These results provide information that is essential for the determination of the three-dimensional structure of this important membrane component of the protein-translocation machinery. PMID:16582489

  3. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    NASA Astrophysics Data System (ADS)

    Jadhav, Vidya

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0> orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 1017 cm-3 were irradiated at 100 MeV Fe7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 1010-1 × 1014 ions cm-2. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet-visible-NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 1013, 5 × 1013 and 1 × 1014 ions cm-2, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 1013 ion cm-2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E1, E1 + Δ and E2 band gaps in all irradiated samples.

  4. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    PubMed

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The Effect of Ion Irradiation on Nanocrystallization and Surface Relief of a Ribbon from Fe72.5Cu1Nb2Mo1.5Si14B9 Alloy

    NASA Astrophysics Data System (ADS)

    Romanov, I. Yu.; Gushchina, N. V.; Ovchinnikov, V. V.; Makhinko, F. F.; Stepanov, A. V.; Medvedev, A. I.; Starodubtsev, Yu. N.; Belozerov, V. Ya.; Loginov, B. A.

    2018-02-01

    Using the methods of X-ray diffraction and atomic force microscopy, the process of crystallization of an amorphous Fe72.5Cu1Nb2Mo1.5Si14B9 alloy irradiated with accelerated Ar+ ions is investigated. It is found out that an irradiation by the Ar+ ions with the energy 30 keV at the ion current density 300 μA/cm2 (fluence 3.75·1015 cm-2, irradiation time 2 s, ion-beam short-duration heating up to 350°C, which is 150°C lower than the thermal crystallization threshold) results in a complete crystallization of this amorphous alloy (throughout the bulk of a 25 μm ribbon) followed by precipitation of solid solution crystals of α-Fe(Si), close in its composition to Fe80Si20, stable phase of Fe3Si, and metastable hexagonal phases. By the methods of atomic force and scanning tunneling microscopy it is shown that nanocrystallization caused by ion irradiation is accompanied by surface relief changes both on the irradiated and unirradiated sides of the Fe72.5Cu1Nb2Mo1.5Si14B9 alloy ribbon at the depth exceeding by a factor of 103 that of the physical ion penetration for this material. The data obtained, taking into account a significant temperature decrease and multiple acceleration of the crystallization process, serve an evidence of the radiation-dynamic influence of accelerated ions on the metastable amorphous medium.

  6. Activation energy of the low-load NaCl transition from nanoindentation loading curves.

    PubMed

    Kaupp, Gerd

    2014-01-01

    Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.

  7. Irradiation effects in UO2 and CeO2

    NASA Astrophysics Data System (ADS)

    Ye, Bei; Oaks, Aaron; Kirk, Mark; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.

    2013-10-01

    Single crystal CeO2, as a surrogate material to UO2, was irradiated with 500 keV xenon ions at 800 °C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 × 1015 ions/cm2, which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO2/CeO2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures.

  8. Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates.

    PubMed

    Jehlička, Jan; Culka, Adam; Mana, Lilly; Oren, Aharon

    2018-05-03

    Cell suspensions of the haloarchaea Halorubrum sodomense and Halobacterium salinarum and the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) in saturated solutions of chlorides and sulfates (NaCl, KCl, MgSO 4 ·7H 2 O, K 2 SO 4 , and (NH 4 )Al(SO 4 ) 2 ·12H 2 O) were left to evaporate to produce micrometric inclusions in laboratory-grown crystals. Raman spectra of these pinkish inclusions were obtained using a handheld Raman spectrometer with green excitation (532 nm). This portable instrument does not include any microscopic tool. Acceptable Raman spectra of carotenoids were obtained in the range of 200-4000 cm -1 . This detection achievement was related to the mode of illumination and collection of scattered light as well as due to resonance Raman enhancement of carotenoid signals under green excitation. The position of diagnostic Raman carotenoid bands corresponds well to those specific carotenoids produced by a given halophile. To our best knowledge, this is the first study of carotenoids included in the laboratory in crystalline chlorides and sulfates, using a miniature portable Raman spectrometer. Graphical abstract ᅟ.

  9. Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution

    PubMed Central

    Han, Yu-Mei; Chen, X.-Grant

    2015-01-01

    Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites. PMID:28793574

  10. A study of electron and thermal transport in layered titanium disulphide single crystals

    NASA Astrophysics Data System (ADS)

    Suri, Dhavala; Siva, Vantari; Joshi, Shalikram; Senapati, Kartik; Sahoo, P. K.; Varma, Shikha; Patel, R. S.

    2017-12-01

    We present a detailed study of thermal and electrical transport behavior of single crystal titanium disulphide flakes, which belong to the two dimensional, transition metal dichalcogenide class of materials. In-plane Seebeck effect measurements revealed a typical metal-like linear temperature dependence in the range of 85-285 K. Electrical transport measurements with in-plane current geometry exhibited a nearly T 2 dependence of resistivity in the range of 42-300 K. However, transport measurements along the out-of-plane current geometry showed a transition in temperature dependence of resistivity from T 2 to T 5 beyond 200 K. Interestingly, Au ion-irradiated TiS2 samples showed a similar T 5 dependence of resistivity beyond 200 K, even in the current-in-plane geometry. Micro-Raman measurements were performed to study the phonon modes in both pristine and ion-irradiated TiS2 crystals.

  11. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  12. RBS/C, HRTEM and HRXRD study of damage accumulation in irradiated SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagielski, Jacek; Jozwik, Przemyslaw A.; Jozwik Biala, Iwona

    2013-05-14

    Damage accumulation in argon-irradiated SrTiO3 single crystals has been studied by using combination of Rutherford Backscattering/Channeling (RBS/C), High Resolution Transmission Electron Microscopy (HRTEM) and High Resolution X-Ray Diffraction (HRXRD) techniques. The RBS/C spectra were fitted using McChasy, a Monte Carlo simulation code allowing the quantitative analysis of amorphous-like and dislocation-like types of defects. The results were interpreted by using a Multi-Step Damage Accumulation model which assumes, that the damage accumulation occurs in a series of structural transformations, the defect transformations are triggered by a stress caused by formation of a free volume in the irradiated crystal. This assumption has beenmore » confirmed by High Resolution Transmission Electron Microscopy and High Resolution X-Ray Diffraction analysis.« less

  13. Heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(s)

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Timonen, Raimo S.; Keyser, Leon F.; Yung, Yuk L.

    1995-01-01

    The heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) (eq 1) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(S) (eq 2) were investigated over the temperature range 223-296 K in a flow-tube reactor coupled to a quadrupole mass spectrometer. Either a chemical ionization mass spectrometer (CIMS) or an electron-impact ionization mass spectrometer (EIMS) was used to provide suitable detection sensitivity and selectivity. In order to mimic atmospheric conditions, partial pressures of HNO3 and N2O5 in the range 6 x 10(exp -8) - 2 x 10(exp -6) Torr were used. Granule sizes and surface roughness of the solid NaCl substrates were determined by using a scanning electron microscope. For dry NaCl substrates, decay rates of HNO3 were used to obtain gamma(1) = 0.013 +/- 0.004 (1sigma) at 296 K and > 0.008 at 223 K, respectively. The error quoted is the statistical error. After all corrections were made, the overall error, including systematic error, was estimated to be about a factor of 2. HCl was found to be the sole gas-phase product of reaction 1. The mechanism changed from heterogeneous reaction to predominantly physical adsorption when the reactor was cooled from 296 to 223 K. For reaction 2 using dry salts, gamma(2) was found to be less than 1.0 x 10(exp -4) at both 223 and 296 K. The gas-phase reaction product was identified as ClNO2 in previous studies using an infrared spectrometer. An enhancement in reaction probability was observed if water was not completely removed from salt surfaces, probably due to the reaction of N2O5(g) + H2O(s) yields 2HNO3(g). Our results are compared with previous literature values obtained using different experimental techniques and conditions. The implications of the present results for the enhancement of the hydrogen chloride column density in the lower stratosphere after the El Chichon volcanic eruption and for the chemistry of HCl and HNO3 in the marine troposphere are discussed.

  14. Sodium relations in desert plants: 8. Differential effects of NaCl and Na/sub 2/SO/sub 4/ on growth and composition of Atriplex hymenelytra (desert holly)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, S.M.; Wallace, A.

    1982-07-01

    Maximum growth over a period of 3 months of Atriplex hymenelytra (Torr.) Wats. (desert holly) in solution culture was obtained when the nutrient solution contained 5 x 10/sup -2/ N NaCl. Sodium concentratons in leaves at maximum yield was 7.88% and that of Cl was also 7.88%. In the presence of 10/sup -2/ N Na/sub 2/SO/sub 4/, there was much less growth than with 10/sup -2/ N NaCl. The highest NaCl level depressed levels of K, Ca, and Mg in leaves, stems, and roots. The highest NaCl level also decreased levels of micronutrients in many of the plants.

  15. Measuring parameters of large-aperture crystals used for generating optical harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R. E.; Hibbard, R. L.; Michie, R. B.

    1999-02-23

    The purpose of this project was to develop tools for understanding the influence of crystal quality and crystal mounting on harmonic-generation efficiency at high irradiance. Measuring the homogeneity of crystals interferometrically, making detailed physics calculations of conversion efficiency, performing finite- element modeling of mounted crystals, and designing a new optical metrology tool were key elements in obtaining that understanding. For this work, we used the following frequency-tripling scheme: type I second- harmonic generation followed by type II sum-frequency mixing of the residual fundamental and the second harmonic light. The doubler was potassium dihydrogen phosphate (KDP), and the tripler was deuteratedmore » KDP (KD*P). With this scheme, near-infrared light (1053 nm) can be frequency tripled (to 351 nm) at high efficiency (theoretically >90%) for high irradiance (>3 GW/cm²). Spatial variations in the birefringence of the large crystals studied here (37 to 41 cm square by about 1 cm thick) imply that the ideal phase-matching orientation of the crystal with respect to the incident laser beam varies across the crystal. We have shown that phase-measuring interferometry can be used to measure these spatial variations. We observed transmitted wavefront differences between orthogonally polarized interferograms of {lambda}/50 to {lambda}/100, which correspond to index variations of order 10 -6. On some plates that we measured, the standard deviation of angular errors is 22-23 µrad; this corresponds to a 1% reduction in efficiency. Because these conversion crystals are relatively thin, their surfaces are not flat (deviate by k2.5 urn from flat). A crystal is mounted against a precision-machined surface that supports the crystal on four edges. This mounting surface is not flat either (deviates by +2.5 µm from flat). A retaining flange presses a compliant element against the crystal. The load thus applied near the edges of the crystal surface holds it

  16. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    PubMed

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  17. Crystallization of the Membrane-Associated Annexin B1: Roles of Additive Screen, Dynamic Light Scattering, and Bioactivity Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, F.; Xu, Y; Azzi, A

    2010-01-01

    Annexin B1 (AnxB1) is a calcium-dependent phospholipid binding protein from Taenia solium cysticercus and has been reported to possess anticoagulant activity, to inhibit phospholipase A{sub 2}, and to regulate membrane transport. Native AnxB1 and its selenomethionyl derivative have been overproduced in Escherichia coli and purified. The results of dynamic light scattering analysis showed that Hepes buffer combined with low concentration salts (NaCl or CaCl{sub 2}) was beneficial for preventing aggregation and for AnxB1 stabilization in the storage. After the additive screen, crystals have been yielded in the presence of guanidine hydrochloride (Gn-HCl). We determined that a low concentration of Gn-HClmore » significantly delayed clotting time and increased anticoagulant activity. Analysis of the crystal showed that in the presence of Gn-HCl, AnxB1 crystallizes in orthorhombic space group, which is modified from the cubic space group for crystals grown in the absence of Gn-HCl. A high quality data set (at 1.9 {angstrom}) has been collected successfully for crystals of L-selenomethionine labeled protein in the presence of Gn-HCl, to solve the structure with the single anomalous dispersion method (SAD). The unit cell parameters are a = 102.35 {angstrom}, b = 103.59 {angstrom}, c = 114.60 {angstrom}, {alpha} = {beta} = {gamma} = 90.00{sup o}.« less

  18. Effect of NaCl Concentration and Cooking Temperature on the Color and Pigment Characteristics of Presalted Ground Chicken Breasts

    PubMed Central

    Bae, Su Min; Cho, Min Guk; Hong, Gi Taek; Jeong, Jong Youn

    2018-01-01

    Abstract This study was conducted to determine the effects of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Four treatments with different salt concentrations (0%, 1%, 2%, and 3%) were prepared and stored for 7 d prior to cooking. Each sample was cooked to four endpoint temperatures (70°C, 75°C, 80°C, and 85°C). The salt concentration affected the color and pigment properties of the cooked ground chicken breasts. As the salt concentration increased, the cooking yield and residual nitrite content also increased. However, the samples with 1%, 2%, and 3% NaCl showed similar nitrosyl hemochrome and total pigment contents. Among the products containing salt, the samples with 3% NaCl showed the lowest percentage myoglobin denaturation (PMD) and the lowest CIE a* values. The cooking temperature had limited effects on the pigment properties of cooked ground chicken breasts. The oxidation-reduction potential and residual nitrite contents increased with cooking temperature, while the PMD, nitrosyl hemochrome, total pigment contents and CIE a* values were similar in the samples cooked at different temperatures. These results indicated that the addition of up to 2% salt to ground chicken breasts and storage for 7 d could cause the pink color defect of cooked products. However, the addition of 3% NaCl could reduce the redness of the cooked products. PMID:29805289

  19. Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions.

    PubMed

    Bourgou, Soumaya; Bettaieb, Iness; Saidani, Moufida; Marzouk, Brahim

    2010-12-08

    This research evaluated the effect of saline conditions on fruit yield, fatty acids, and essential oils compositions and phenolics content of black cumin (Nigella sativa). This plant is one of the most commonly found aromatics in the Mediterranean kitchen. Increasing NaCl levels to 60 mM decreased significantly the fruits yield by 58% and the total fatty acids amount by 35%. Fatty acids composition analysis indicated that linoleic acid was the major fatty acid (58.09%) followed by oleic (19.21%) and palmitic (14.77%) acids. Salinity enhanced the linoleic acid percentage but did not affect the unsaturation degree of the fatty acids pool and thus the oil quality. The essential oil yield was 0.39% based on the dry weight and increased to 0.53, 0.56, and 0.72% at 20, 40, and 60 mM NaCl. Salinity results on the modification of the essential oil chemotype from p-cymene in controls to γ-terpinene/p-cymene in salt-stressed plants. The amounts of total phenolics were lower in the treated plants. Salinity decreased mainly the amount of the major class, benzoics acids, by 24, 29, and 44% at 20, 40, and 60 mM NaCl. The results suggest that salt treatment may regulate bioactive compounds production in black cumin fruits, influencing their nutritional and industrial values.

  20. Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe 1 - x Co x ) 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo

    2013-08-01

    Irradiation with 1.4 GeV 208 Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe 1 - x Co x ) 2 As 2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x = 0.108 and x = 0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of B Φ = 6 T and 6.5 T with doses 2.22 × 10 11 d /cm 2 and 2.4 × 10 11 d /cm 2 ,more » respectively, suppresses the superconducting T c by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δ λ ( T ) = A T n . Irradiation increases the magnitude of the prefactor A and decreases the exponent n , similar to the effect of irradiation in optimally-doped samples. This finding supports universal s ± pairing in Ba(Fe 1 - x Co x ) 2 As 2 compounds for the entire Co doping range.« less

  1. Gamma-irradiation effect on a commercial composite anticorrosive pigment and acidity-to-alkalinity conversion

    NASA Astrophysics Data System (ADS)

    Song, Weiqiang; Niu, Kaihui; Wu, Longchao

    2016-05-01

    A commercial composite anticorrosive pigment based on aluminum dihydrogen tripolyphosphate was studied after exposure to gamma irradiation (Co60, 0, 20, 50, 100 and 150 kGy) using FTIR, XRD, TGA and acid-base titration technologies. Although the FTIR spectra showed that the effect of the irradiation on functional groups in the pigments was not obvious, the decrease in the crystal lattice parameters of the irradiated pigments was observed in the XRD spectra compared to the non-irradiated sample. But the extent of the lattice parameter decrease monotonically with the increase of absorbed dose from 20 to 150 kGy, which was attributed to the decomposition of water and the simultaneous occurrence of lattice damage when the pigments were exposed to gamma rays. Of particular significance was the displayed basicity of the aqueous solutions of the irradiated pigments compared to the acidity of the solution of the non-irradiated pigment, which was attributed to the decomposition of P-OH groups (combined water).

  2. Intrinsic viscosity of binary gum mixtures with xanthan gum and guar gum: Effect of NaCl, sucrose, and pH.

    PubMed

    Bak, J H; Yoo, B

    2018-05-01

    The intrinsic viscosity ([η]) values of binary gum mixtures with xanthan gum (XG) and guar gum (GG) mixed with NaCl and sucrose at different concentrations as well as in the presence of different pH levels were examined in dilute solution as a function of XG/GG mixing ratio (100/0, 75/25, 50/50, and 0/100). Experimental values of concentration (C) and relative viscosity (η rel ) or specific viscosity (η sp ) of gums in dilute solution were fitted to five models to determine [η] values of binary gum mixtures including individual gums. A [η] model (η rel =1+[η]C) of Tanglertpaibul and Rao is recommended as the best model to estimate [η] values for the binary gum mixtures with XG and GG as affected by NaCl, sucrose, and pH. Overall, the synergistic interaction of XG-GG mixtures in the presence of NaCl and sucrose showed a greatly positive variation between measured and calculated values of [η]. In contrast, the binary gum mixtures showed synergy only under an acidic condition (pH3). These results suggest that the NaCl and sucrose addition or acidic condition appears to affect the intermolecular interaction occurred between XG and GG at different gum mixing ratios. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulfide bonds of 80% milk protein concentrate powder.

    PubMed

    Mao, X Y; Tong, P S; Gualco, S; Vink, S

    2012-07-01

    We investigated the surface hydrophobicity index based on different fluorescence probes [1-anilinonaphthalene-8-sulfonic acid (ANS) and 6-propionyl-2-(N,N-dimethylamino)-naphthalene (PRODAN)], free sulfhydryl and disulfide bond contents, and particle size of 80% milk protein concentrate (MPC80) powders prepared by adding various amounts of NaCl (0, 50, 100, and 150 mM) during the diafiltration process. The solubility of MPC80 powder was not strictly related to surface hydrophobicity. The MPC80 powder obtained by addition of 150 mM NaCl during diafiltration had the highest solubility but also the highest ANS-based surface hydrophobicity, the lowest PRODAN-based surface hydrophobicity, and the least aggregate formation. Intermolecular disulfide bonds caused by sulfhydryl-disulfide interchange reactions and hydrophobic interactions may be responsible for the lower solubility of the control MPC80 powder. The enhanced solubility of MPC80 powder with addition of NaCl during diafiltration may result from the modified surface hydrophobicity, the reduced intermolecular disulfide bonds, and the associated decrease in mean particle size. Addition of NaCl during the diafiltration process can modify the strength of hydrophobic interactions and sulfhydryl-disulfide interchange reactions and thereby affect protein aggregation and the solubility of MPC powders. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Teflon impregnated anatase TiO2 nanoparticles irradiated by 80 keV Xe+ ions

    NASA Astrophysics Data System (ADS)

    Khanam, Rizwin; Paul, Nibedita; Kumar, P.; Kanjilal, D.; Ahmed, Gazi A.; Mohanta, Dambarudhar

    2014-10-01

    We report the effect of 80 keV Xe+ ion irradiation on the morphological and optical responses of TiO2 nanoparticles spread over commercially available polytetrafluoroethylene (PTFE, Teflon). These nanoparticles were synthesized via a convenient, sol-gel approach with titanium isopropoxide as the main precursor. From X-ray diffraction (XRD) studies we found that, the nanoparticles crystallize in anatase phase and with a preferential orientation of crystallites along (1 0 1) plane. Upon irradiation at a fluence of 1.25 × 1017 ions/cm2, the nanoparticle dimension was found to increase from a value of ∼9 nm to ∼20-30 nm. Essentially, particle growth is predicted as a consequence of swelling behavior accompanied by the formation of Xe van der Waal crystals in isolated regions of nano-titania. Evidence of nanoripples was also witnessed on the surface of the irradiated nano-titania. The morphological evolution was assessed both by atomic force and transmission electron microscopies (AFM and TEM) independently. From the UV-Vis optical absorption studies, the estimated optical band gap was found to drop with increasing fluence, while refractive index exhibited a remarkable improvement. Photoluminescence (PL) studies have revealed that, the band edge emission and those due to the self trapped excitons (STE) and other oxygen vacancy related ones were manifested considerably as a result of Xe ion irradiation.

  5. Physiological and Metabolic Responses Triggered by Omeprazole Improve Tomato Plant Tolerance to NaCl Stress

    PubMed Central

    Rouphael, Youssef; Raimondi, Giampaolo; Lucini, Luigi; Carillo, Petronia; Kyriacou, Marios C.; Colla, Giuseppe; Cirillo, Valerio; Pannico, Antonio; El-Nakhel, Christophe; De Pascale, Stefania

    2018-01-01

    Interest in the role of small bioactive molecules (< 500 Da) in plants is on the rise, compelled by plant scientists' attempt to unravel their mode of action implicated in stimulating growth and enhancing tolerance to environmental stressors. The current study aimed at elucidating the morphological, physiological and metabolomic changes occurring in greenhouse tomato (cv. Seny) treated with omeprazole (OMP), a benzimidazole inhibitor of animal proton pumps. The OMP was applied at three rates (0, 10, or 100 μM) as substrate drench for tomato plants grown under nonsaline (control) or saline conditions sustained by nutrient solutions of 1 or 75 mM NaCl, respectively. Increasing NaCl concentration from 1 to 75 mM decreased the tomato shoot dry weight by 49% in the 0 μM OMP treatment, whereas the reduction was not significant at 10 or 100 μM of OMP. Treatment of salinized (75 mM NaCl) tomato plants with 10 and especially 100 μM OMP decreased Na+ and Cl− while it increased Ca2+ concentration in the leaves. However, OMP was not strictly involved in ion homeostasis since the K+ to Na+ ratio did not increase under combined salinity and OMP treatment. OMP increased root dry weight, root morphological characteristics (total length and surface), transpiration, and net photosynthetic rate independently of salinity. Metabolic profiling of leaves through UHPLC liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry facilitated identification of the reprogramming of a wide range of metabolites in response to OMP treatment. Hormonal changes involved an increase in ABA, decrease in auxins and cytokinin, and a tendency for GA down accumulation. Cutin biosynthesis, alteration of membrane lipids and heightened radical scavenging ability related to the accumulation of phenolics and carotenoids were observed. Several other stress-related compounds, such as polyamine conjugates, alkaloids and sesquiterpene lactones, were altered in response to OMP. Although a

  6. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception.

    PubMed

    Yi, Cheng; Tsai, Min-Lang; Liu, Tristan

    2017-09-15

    The composition, physicochemical properties and salinity of spray-dried chitosan/acid/NaCl microparticles were tested to ensure a low-sodium and high-salinity salty agent. The spray-dried chitosan/acid/NaCl microparticles were hollow and had a favourable hygroscopicity, and increased NaCl content and decreased organic acid content. Their size of the microparticles was 15.4-32.0μm and increased with NaCl concentration. The microparticles of acetic and lactic acid groups had a NaCl crystal size of 1-2 and 1-4μm, respectively. The NaCl crystals of acetic, lactic and citric acid group microparticles were distributed on the microparticle matrices, mostly on the microparticle surface and mainly on the inner walls of the microparticles walls, respectively. The acetic and lactic acid group microparticles were relatively smaller than general salt, with NaCl crystals distributed on the particle surfaces. Consequently, they were perceived as saltier than general salt and could potentially be regarded as a low-sodium salt for surface-salted foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Finding a Cold Needle in a Warm Haystack: Infrared Imaging Applied to Locating Cryocooled Crystals in Loops

    NASA Technical Reports Server (NTRS)

    Snell, E. H.; vanderWoerd, M. J.; Miller, M. D.; Deacon, A. M.

    2004-01-01

    We demonstrate the use of inbred imaging to locate crystals mounted in cryoloops and cryopreserved in a nitrogen gas stream at 100K. In the home laboratory crystals are clearly seen in the infrared images with light transmitting through the sample while irradiating the crystal from behind, and with illumination from a direction perpendicular to the direction of view. The crystals transmit and reflect infrared radiation differently from the surrounding mother liquor and loop. Because of differences in contrast between crystals and their surrounding mother liquor, it is possible to clearly identify the crystal position. In use at the synchrotron, with robotically mounted crystals the small depth of field of the lens required the recording of multiple images at different focal points. Image processing techniques were then used to produce a clear image of the crystal. The resulting infrared images and intensity profiles show that infrared imaging can be a powerful complement to visual imaging in locating crystals in cryocooled loops.

  8. Synthesis of CdS nanorods in soft template under gamma-irradiation.

    PubMed

    Zhao, Bing; Wang, Yanli; Zhang, Haijiao; Jiao, Zheng; Wang, Haobo; Ding, Guoji; Wu, Minghong

    2009-02-01

    CdS nano material which has a band gap of 2.42 eV at room temperature is a typical II-VII semiconductor having many commercial or potential applications, e.g., light-emitting diodes, solar cell and optoelectronic devices. In this paper, we use a new strategy to synthesize CdS nanorods. CdS nanorods were prepared in soft template under gamma-irradiation though the reaction of cadmium sulphide and thiacetamide (TAA). The formation process and characters of CdS nanorods was investigated in detail by transmission electron microscopy (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), ultraviolet spectrophotometer (UV) and photoluminescence spectrophotometer (PL). In the experiment we proposed that the irradiation of gamma-ray accelerated the formation of S(2-) under acidic condition (pH = 3) and vinyl acetate (VAc) monomer formed pre-organized nano polymer tubules which were used as both templates and nanoreacters for the growth of CdS nanorods. In this process, we have obtained the CdS polycrystal nanorods with PVAc nano tubules and CdS single-crystal nanorods. The result of X-ray powder diffraction confirms that the crystal type of CdS nanorods is cubic F-43 m (216). The results from transmission electron microscopy and electron diffraction show that the concentrations of reactants and the dose rate of gamma-ray are key to produce appropriate CdS nanorods. Relatively low concentrations (Cd2+: 0.008-0.02 mol/L, Cd2+ : S(2-) = 1 : 2) of reactants and long time (1-2 d) of irradiation in low dose rate (6-14 Gy/min) are propitious to form CdS single-crystal nanorods with small diameter (less than 100 nm) and well length (2-5 microm). UV and PL characterizations show the sample have well optical properties.

  9. Spectral, electron microscopic and chemical investigations of gamma-induced purple color zonings in amethyst crystals from the Dursunbey-Balıkesir region of Turkey

    NASA Astrophysics Data System (ADS)

    Hatipoğlu, Murat; Kibar, Rana; Çetin, Ahmet; Can, Nurdoğan; Helvacı, Cahit; Derin, H.

    2011-07-01

    Amethyst crystals on matrix specimens from the Dursunbey-Balıkesir region in Turkey have five representative purple color zonings: dark purple, light purple, lilac, orchid, and violet. The purple color zonings have been analyzed with optical absorption spectra in the visible wavelength region, chemical full trace element analyses (inductively coupled plasma-atomic emission spectroscopy and inductively coupled plasma-mass spectroscopy), and scanning electron microscopic images with high magnification. It can be proposed that the production of the purple color in amethyst crystals is due to three dominant absorption bands centered at 375, 530, and 675 nm, respectively. In addition, the purple color zonings are also due to four minor absorption bands centered at 435, 480, 620, and 760 nm. X-ray diffraction graphics of the investigated amethyst crystals indicate that these crystals are composed of a nearly pure alpha-quartz phase and do not include any moganite silica phase and/or other mineral implications. Trace element analyses of the amethyst crystals show five representative purple color zonings, suggesting that the absorption bands can be mainly attributed to extrinsic defects (chemical impurities). However, another important factor that influences all structural defects in amethyst is likely to be the gamma irradiation that exists during amethyst crystallization and its inclusion in host materials. This gamma irradiation originates from the large underlying intrusive granitoid body in the region of amethyst formation. Irradiation modifies the valence values of the impurity elements in the amethyst crystals. It is observed that the violet-colored amethyst crystals have the most stable and the least reversible coloration when exposed to strong light sources. This situation can be related to the higher impurity content of Fe (2.50 ppm), Co (3.1 ppm), Ni (38 ppm), Cu (17.9 ppm), Zn (10 ppm), Zr (3.9 ppm), and Mo (21.8 ppm).

  10. Crystal Growth and Scintillation Properties of Ho-Doped Lu3Al5O12 Single Crystals

    NASA Astrophysics Data System (ADS)

    Sugiyama, Makoto; Yanagida, Takayuki; Fujimoto, Yutaka; Totsuka, Daisuke; Yokota, Yuui; Kurosawa, Shunsuke; Futami, Yoshisuke; Yoshikawa, Akira

    2012-10-01

    The crystals of 0.1, 0.5, 1, and 3% Ho doped Lu3Al5O12 (Ho:LuAG) grown by the micro-pulling-down method were examined for their scintillation properties. At wavelengths longer than 300 nm, Ho:LuAG crystals demonstrated around 60% transparency with many absorption peaks attributed to Ho3+ 4f10-4 f10 transitions. When excited by 241Am α-ray to obtain radio luminescence spectra, broad host emission and four sharp Ho3+ 4f10-4 f10 emission peaks were detected in the visible region. Light yields and decay time profiles of the samples irradiated by 137Cs γ-ray were measured using photomultiplier tubes R7600 (Hamamatsu). Ho 0.5%:LuAG showed the highest light yield of 3100 ±310 photons/MeV among the present samples. The decay time profiles were well reproduced by two components exponential approximation consisting of 0.5-1 μs and 3-6 μs.

  11. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    NASA Astrophysics Data System (ADS)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  12. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide

    DOE PAGES

    Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu; ...

    2017-06-20

    Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less

  13. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu

    Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less

  14. Magnetic penetration-depth measurements of a suppressed superfluid density of superconducting Ca0.5Na0.5Fe2As2 single crystals by proton irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Jeehoon; Haberkorn, N.; Graf, M. J.; Usov, I.; Ronning, F.; Civale, L.; Nazaretski, E.; Chen, G. F.; Yu, W.; Thompson, J. D.; Movshovich, R.

    2012-10-01

    We report on the dramatic effect of random point defects, produced by proton irradiation, on the superfluid density ρs in superconducting Ca0.5Na0.5Fe2As2 single crystals. The magnitude of the suppression is inferred from measurements of the temperature-dependent magnetic penetration depth λ(T) using magnetic force microscopy. Our findings indicate that a radiation dose of 2×1016 cm-2 produced by 3 MeV protons results in a reduction of the superconducting critical temperature Tc by approximately 10%. In contrast, ρs(0) is suppressed by approximately 60%. This breakdown of the Abrikosov-Gorkov theory may be explained by the so-called “Swiss cheese model,” which accounts for the spatial suppression of the order parameter near point defects similar to holes in Swiss cheese. Both the slope of the upper critical field and the penetration depth λ(T/Tc)/λ(0) exhibit similar temperature dependences before and after irradiation. This may be due to a combination of the highly disordered nature of Ca0.5Na0.5Fe2As2 with large intraband and simultaneous interband scattering as well as the s±-wave nature of short coherence length superconductivity.

  15. Crystal structure, matrix-isolation FTIR, and UV-induced conformational isomerization of 3-quinolinecarboxaldehyde.

    PubMed

    Kuş, Nihal; Henriques, Marta Sofia; Paixão, José António; Lapinski, Leszek; Fausto, Rui

    2014-09-25

    The crystal structure of 3-quinolinecarboxaldehyde (3QC) has been solved, and the compound has been shown to crystallize in the space group P21/c (monoclinic) with a = 6.306(4), b = 18.551(11), c = 6.999(4) Å, β = 106.111(13)°, and Z = 4. The crystals were found to exhibit pseudomerohedral twinning with a twin law corresponding to a two-fold rotation around the monoclinic (100) reciprocal lattice axis (or [4 0 1] in direct space). Individual molecules adopt the syn conformation in the crystal, with the oxygen atom of the aldehyde substituent directed toward the same side of the ring nitrogen atom. In the gas phase, the compound exists in two nearly isoenergetic conformers (syn and anti), which could be successfully trapped in solid argon at 10 K, and their infrared spectra are registered and interpreted. Upon in situ irradiation of matrix-isolated 3QC with UV light (λ > 315 nm), significant reduction of the population of the less stable anti conformer was observed, while that of the conformational ground state (syn conformer) increased, indicating occurrence of the anti → syn isomerization. Upon irradiation at higher energy (λ > 235 nm), the syn → anti reverse photoreaction was observed. Interpretation of the structural, spectroscopic, and photochemical experimental data received support from quantum chemical theoretical results obtained at both DFT/B3LYP (including TD-DFT investigation of excited states) and MP2 levels, using the 6-311++G(d,p) basis set.

  16. Dissolution and subsequent re-crystallization as zeroing mechanism, thermal properties and component resolved dose response of salt (NaCl) for retrospective dosimetry.

    PubMed

    Polymeris, George S; Kitis, George; Kiyak, Nafiye G; Sfamba, Ioanna; Subedi, Bhagawan; Pagonis, Vasilis

    2011-09-01

    In the present study we report dosimetric properties of iodized salt aiming at using it as an accidental luminescent dosimeter. It was found that the very good sensitivity of its main dosimetric peak is strongly affected by thermal treatments. This is also the case for OSL emission. The sensitivity loss due to heating implies that caution should be exercised while applying single aliquot protocols for dose evaluation. The sequence of dissolution and subsequent re-crystallization was established to be an extremely effective zeroing mechanism for the TL signal. The linearity in the dose response was also monitored in the case of dissolved and subsequently re-crystallized salt. In the case of naturally occurring salt, zeroing of the TL signal due to dissolution as well as the linearity of dose response up to doses as large as 100 Gy were found to be very promising features for dating applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Uranium-molybdenum nuclear fuel plates behaviour under heavy ion irradiation: An X-ray diffraction analysis

    NASA Astrophysics Data System (ADS)

    Palancher, H.; Wieschalla, N.; Martin, P.; Tucoulou, R.; Sabathier, C.; Petry, W.; Berar, J.-F.; Valot, C.; Dubois, S.

    2009-03-01

    Heavy ion irradiation has been proposed for discriminating UMo/Al specimens which are good candidates for research reactor fuels. Two UMo/Al dispersed fuels (U-7 wt%Mo/Al and U-10 wt%Mo/Al) have been irradiated with a 80 MeV 127I beam up to an ion fluence of 2 × 1017 cm-2. Microscopy and mainly X-ray diffraction using large and micrometer sized beams have enabled to characterize the grown interaction layer: UAl3 appears to be the only produced crystallized phase. The presence of an amorphous additional phase can however not be excluded. These results are in good agreement with characterizations performed on in-pile irradiated fuels and encourage new studies with heavy ion irradiation.

  18. Oxygen-rich Mass Loss with a Pinch of Salt: NaCl in the Circumstellar Gas of IK Tauri and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Milam, S. N.; Apponi, A. J.; Woolf, N. J.; Ziurys, L. M.

    2007-10-01

    The NaCl molecule has been observed in the circumstellar envelopes of VY Canis Majoris (VY CMa) and IK Tauri (IK Tau)-the first identifications of a metal refractory in oxygen-rich shells of evolved stars. Five rotational transitions of NaCl at 1 and 2 mm were detected toward VY CMa and three 1 mm lines were observed toward IK Tau, using the telescopes of the Arizona Radio Observatory. In both objects, the line widths of the NaCl profiles were extremely narrow relative to those of other molecules, indicating that sodium chloride has not reached the terminal outflow velocity in either star, likely a result of early condensation onto grains. Modeling the observed spectra suggests abundances, relative to H2, of f~5×10-9 in VY CMa and f~4×10-9 in IK Tau, with source sizes of 0.5" and 0.3", respectively. The extent of these sources is consistent with the size of the dust acceleration zones in both stars. NaCl therefore appears to be at least as abundant in O-rich shells as compared to C-rich envelopes, where f~(0.2-2)×10-9, although it appears to condense out earlier in the O-rich case. Chemical equilibrium calculations indicate that NaCl is the major carrier of sodium at T~1100 K for oxygen-rich stars, with predicted fractional abundances in good agreement with the observations. These measurements suggest that crystalline salt may be an important condensate for sodium in both C- and O-rich circumstellar shells.

  19. Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene.

    PubMed

    Oh, Seung-Won; Baek, Jong-Min; Yoon, Tae-Hoon

    2016-11-14

    We propose a sunlight-switchable light shutter using liquid crystal/polymer composite doped with push-pull azobenzene. The proposed light shutter is switchable between the translucent and transparent states by application of an electric field or by UV irradiation. Switching by UV irradiation is based on the change of the liquid crystal (LC) clearing point by the photo-isomerization effect of push-pull azobenzene. Under sunlight, the light shutter can be switched from the translucent to the transparent state by the nematic-isotropic phase transition of the LC domains triggered by trans-cis photo-isomerization of the push-pull azobenzene molecules. When the amount of sunlight is low because of cloud cover or when there is no sunlight at sunset, the light shutter rapidly relaxes from its transparent state back to its initial translucent state by the isotropic-nematic phase transition induced by cis-trans back-isomerization of the push-pull azobenzene molecules.

  20. Volume effects in the decay of free radicals in organic crystals. [cobalt 60 gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markaryan, R.E.; Kovarskii, A.L.; Tshetinin, V.G.

    The decay kinetics of the free radicals produced by {gamma}-irradiation of single crystals of organic dicarboxylic acids is studied at hydrostatic pressures up to 200 MPa. Correlation is established between the reaction's activation parameters (V{sup *} and E{sup *}) and the crystals macrocharacteristics - the compressibility and thermal expansion coefficients. A common equation is proposed to describe the variation of the radical decay rate constant with temperature and pressure in malonic, succinic, adipic, glutaric, suberic, and sebacic acids.